Widespread surface meltwater drainage in Antarctica
NASA Astrophysics Data System (ADS)
Kingslake, J.; Ely, J.; Das, I.; Bell, R. E.
2016-12-01
Surface meltwater is thought to cause ice-shelf disintegration, which accelerates the contribution of ice sheets to sea-level rise. Antarctic surface melting is predicted to increase and trigger further ice-shelf disintegration during this century. These climate-change impacts could be modulated by an active hydrological network analogous to the one in operation in Greenland. Despite some observations of Antarctic surface and sub-surface hydrological systems, large-scale active surface drainage in Antarctica has rarely been studied. We use satellite imagery and aerial photography to reveal widespread active hydrology on the surface of the Antarctic Ice Sheet as far south as 85o and as high as 1800 m a.s.l., often near mountain peaks that protrude through the ice (nunataks) and relatively low-albedo `blue-ice areas'. Despite predominantly sub-zero regional air temperatures, as simulated by a regional climate model, Antarctic active drainage has persisted for decades, transporting water through surface streams and feeding vast melt ponds up to 80 km long. Drainage networks (the largest are over 100 km in length) form on flat ice shelves, steep outlet glaciers and ice-sheet flanks across the West and East Antarctica Ice Sheets. Motivated by the proximity of many drainage systems to low-albedo rock and blue-ice areas, we hypothesize a positive feedback between exposed-rock extent, BIA formation, melting and ice-sheet thinning. This feedback relies on drainage moving water long distances from areas near exposed rock, across the grounding line onto and across ice shelves - a process we observe, but had previously thought to be unlikely in Antarctica. This work highlights previously-overlooked processes, not captured by current regional-scale models, which may accelerate the retreat of the Antarctic Ice Sheet.
NASA Astrophysics Data System (ADS)
Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.
2015-12-01
Here we present a detailed analysis of Arctic sea ice topography using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel ice topography statistics from 2009-2014 across both first-year and multiyear ice regimes - including the height, area coverage, orientation and spacing of distinct surface features. The sea ice topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and area coverage within the multi-year ice regions. The ice topography also shows a strong coastal dependency, with the feature height and area coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The ice topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea ice; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea ice model CICE.
Discrimination of first year sea ice thickness classes from a quad-Pol SAR image.
NASA Astrophysics Data System (ADS)
Hudier, E. J. J.
2016-12-01
Several methods have been developed to relate the average scattering represented by a T3 matrix into a dominant physical mechanism. These decomposition theorems rewrite the coherency matrix as the sum of physical components. Data extracted through these methods can then be used to classify ice areas according to a similarity in the statistics regarding those components. As the ice sheet is still thin enough to rupture under compressive forces, wind and current drag forces erect ridges at the periphery of un-deformed ice plates while opening up leads in which a an ice cover quickly develops. Freeze up under colder temperatures cause the ice to retain more salt in its upper layers therefore altering radar scattering compared to older ice areas. The statistics presented in the result section were computed implementing an eigenvalue/eigenvector decomposition method coupled with a whishart classifier on RadarSat II images of a late spring sea ice. It first shows a good resolution of the different ice environments characterized as a) linear ridges, b) rubble fields, c) old un-deformed ice and, d) young (thus thinner) un-deformed ice. The alpha angle parameter is coherent with a dominant surface scattering mechanism all over the scene which is consistent with a late spring sea ice and leads us to anticipate a classification mostly linked to surface roughness and ice surface orientation (in ridges). It is thus interesting to note than un-deformed ice areas result in two separate classes. We observe that areas of ice formed later during the winter season are well identified and their limits clearly delineated. Whereas, other ice areas display a certain diversity in term of scattering mechanisms, this type of ice turned out to be an almost perfect forward scatterer. While the main factor allowing to separate this type of ice from the rest of the sea ice may be the salt content of the surface layer, it gives an indirect way to discriminate sea ice areas of different thicknesses. Within areas of older ice, it worth noticing that continuous pressure ridges are resolved essentially as broken lines. Ridge extraction resulting mostly from the occurrence that one or several ice blocks within a target be oriented in a way that may cause single and double bounce scattering, odds remain high that such an occurrence do not happen.
ICESat: Ice, Cloud and Land Elevation Satellite
NASA Technical Reports Server (NTRS)
Zwally, Jay; Shuman, Christopher
2002-01-01
Ice exists in the natural environment in many forms. The Earth dynamic ice features shows that at high elevations and/or high latitudes,snow that falls to the ground can gradually build up tu form thick consolidated ice masses called glaciers. Glaciers flow downhill under the force of gravity and can extend into areas that are too warm to support year-round snow cover. The snow line, called the equilibrium line on a glacier or ice sheet, separates the ice areas that melt on the surface and become show free in summer (net ablation zone) from the ice area that remain snow covered during the entire year (net accumulation zone). Snow near the surface of a glacier that is gradually being compressed into solid ice is called firm.
NASA Astrophysics Data System (ADS)
Sledd, A.; L'Ecuyer, T. S.
2017-12-01
With Arctic sea ice declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and ice cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea ice fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea ice areas. Surface fluxes are especially responsive to the September sea ice minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea ice area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea ice area than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.
Holland, Marika M; Landrum, Laura
2015-07-13
We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Holland, Marika M.; Landrum, Laura
2015-01-01
We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318
NASA Astrophysics Data System (ADS)
Zhang, S.; Li, H.
2017-12-01
The changes of glacier area, ice surface elevation and ice storage in the upper reaches of the Shule River Basin were investigated by the Landsat TM series SRTM and stereo image pairs of Third Resources Satellite (ZY-3)from 2000 to 2015. There are 510 glaciers with areas large than 0.01 km2 in 2015, and the glacier area is 435 km2 in the upper reach of Shule River basin. 96 glaciers were disappeared from 2000 to 2015, and the total glacier area decreased by 57.6±2.68km2 (11.7 %). After correcting the elevation difference between ZY-3 DEM and SRTM and aspect, we found that the average ice surface elevation of glaciers reduced by 2.58±0.6m from 2000 to 2015 , with average reduction 0.172 ±0.04m a-1, and the ice storage reduced by 1.277±0.311km3. Elevation variation of ice surface in different sub-regions reflects the complexity of glacier change. The ice storage change calculated from the sum of single glacier area-volume relationship is glacier 1.46 times higher than that estimated from ice surface elevation change, indicating that the global ice storage change estimated from glacier area-volume change probably overestimated. The shrinkage of glacier increased glacier runoff, and led the significant increase of river runoff. The accuracy of projecting the potential glacier change, glacier runoff and river runoff is the key issues of delicacy water resource management in Shule River Basin.
Landcover Mapping of the McMurdo Ice Shelf Using Landsat and WorldView Image Data
NASA Astrophysics Data System (ADS)
Hansen, E. K.; Macdonald, G.; Mayer, D. P.; MacAyeal, D. R.
2016-12-01
Ice shelves bound approximately half of the Antarctic coast and act to buttress the glaciers that feed them. The collapse of the Larsen B Ice Shelf on the Antarctic Peninsula highlights the importance of processes at the surface for an ice shelf's stability. The McMurdo Ice Shelf is unique among Antarctic ice shelves in that it exists in a relatively warm climate zone and is thus more vulnerable to climate change than colder ice shelves at similar latitudes. However, little is known quantitatively about the surface cover types across the ice shelf, impeding the study of its hydrology and of the origins of its features. In particular, no work has been done linking field observations of supraglacial channels to shelf-wide surface hydrology. We will present the first satellite-derived multiscale landcover map of the McMurdo Ice Shelf based on Landsat 8 and WorldView-2 image data. Landcover types are extracted using supervised classification methods referenced to field observations. Landsat 8 provides coverage of the entire ice shelf ( 5,000 km2) at 30 m/pixel, sufficient to distinguish glacial ice, debris cover, and large supraglacial lakes. WorldView data cover a smaller area— 300 km2 at 2 m/pixel—and thus allow detailed mapping of features that are not spatially resolved by Landsat, such as supraglacial channels and small fractures across the ice shelf's surface. We take advantage of the higher resolution of WorldView-2 data to calculate the area of mid-summer surface water in channels and melt ponds within a detailed study area and use this as the basis for a spectral mixture model in order to estimate the total surface water area across the ice shelf. We intend to use the maps to guide strategic planning of future field research into the seasonal surface hydrology and climate stability of the McMurdo Ice Shelf.
NASA Astrophysics Data System (ADS)
Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min
2013-10-01
An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 μL) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.
Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity
NASA Astrophysics Data System (ADS)
Schroeder, D. M.; Grima, C.; Haynes, M.
2015-12-01
The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.
Fluctuating snow line altitudes in the Hunza basin (Karakoram) using Landsat OLI imagery
NASA Astrophysics Data System (ADS)
Racoviteanu, Adina; Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Armstrong, Richard
2016-04-01
Snowline altitudes (SLAs) on glacier surfaces are needed for separating snow and ice as input for melt models. When measured at the end of the ablation season, SLAs are used for inferring stable-state glacier equilibrium line altitudes (ELAs). Direct measurements of snowlines are rarely possible particularly in remote, high altitude glacierized terrain, but remote sensing data can be used to separate these snow and ice surfaces. Snow lines are commonly visible on optical satellite images acquired at the end of the ablation season if the images are contrasted enough, and are manually digitized on screen using various satellite band combinations for visual interpretation, which is a time-consuming, subjective process. Here we use Landsat OLI imagery at 30 m resolution to estimate glacier SLAs for a subset of the Hunza basin in the Upper Indus in the Karakoram. Clean glacier ice surfaces are delineated using a standardized semi-automated band ratio algorithm with image segmentation. Within the glacier surface, snow and ice are separated using supervised classification schemes based on regions of interest, and glacier SLAs are extracted on the basis of these areas. SLAs are compared with estimates from a new automated method that relies on fractional snow covered area rather than on band ratio algorithms for delineating clean glacier ice surfaces, and on grain size (instead of supervised classification) for separating snow from glacier ice on the glacier surface. The two methods produce comparable snow/ice outputs. The fSCA-derived glacierized areas are slightly larger than the band ratio estimates. Some of the additional area is the result of better detection in shadows from spectral mixture analysis (true positive) while the rest is shallow water, which is spectrally similar to snow/ice (false positive). On the glacier surface, a thresholding the snow grain size image (grain size > 500μm) results in similar glacier ice areas derived from the supervised classification, but there is noise (snow) on edges of dirty ice/ moraines at the glacier termini and around rock outcrops on the glacier surface. Neither of the two methods distinguishes the debris-covered ice, so these were mapped separately using a combination of topographic indices (slope, terrain curvature), along with remote sensing surface temperature and texture data. Using average elevation of snow and ice areas, we calculate an ELA of 5260 m for 2013. We construct yearly time series of the ELAs around the centerlines of selected glaciers in the Hunza for the period 2000 - 2014 using Landsat imagery. We explore spatial trends in glacier ELAs within the region, as well as relationships between ELA and topographic characteristics extracted on a glacier-by-glacier basis from a digital elevation model.
Modern shelf ice, equatorial Aeolis Quadrangle, Mars
NASA Technical Reports Server (NTRS)
Brakenridge, G. R.
1993-01-01
As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.
Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.; Koenig, L. S.; Hom, M. G.; Shuman, C. A.
2015-05-01
Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325-1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10-14 July and 20-24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function of bare ice expansion at the expense of snow, surface meltwater ponding, and melting of outcropped ice layers enriched with mineral materials, enabling dust and impurities to accumulate. As climate change continues in the Arctic region, understanding the seasonal evolution of ice sheet surface types in Greenland's ablation area is critical to improve projections of mass loss contributions to sea level rise.
Experimental Measurement of Frozen and Partially Melted Water Droplet Impact Dynamics
NASA Technical Reports Server (NTRS)
Palacios, Jose; Yan, Sihong; Tan, Jason; Kreeger, Richard E.
2014-01-01
High-speed video of single frozen water droplets impacting a surface was acquired. The droplets diameter ranged from 0.4 mm to 0.9 mm and impacted at velocities ranging from 140 m/sec to 309 m/sec. The techniques used to freeze the droplets and launch the particles against the surfaces is described in this paper. High-speed video was used to quantify the ice accretion area to the surface for varying impact angles (30 deg, 45 deg, 60 deg), impacting velocities, and break-up angles. An oxygen /acetylene cross-flow flame used to ensure partial melting of the traveling frozen droplets is also discussed. A linear relationship between impact angle and ice accretion is identified for fully frozen particles. The slope of the relationship is affected by impact speed. Perpendicular impacts, i.e. 30 deg, exhibited small differences in ice accretion for varying velocities, while an increase of 60% in velocity from 161 m/sec to 259 m/sec, provided an increase on ice accretion area of 96% at an impact angle of 60 deg. The increase accretion area highlights the importance of impact angle and velocity on the ice accretion process of ice crystals. It was experimentally observed that partial melting was not required for ice accretion at the tested velocities when high impact angles were used (45 and 60 deg). Partially melted droplets doubled the ice accretion areas on the impacting surface when 0.0023 Joules were applied to the particle. The partially melted state of the droplets and a method to quantify the percentage increase in ice accretion area is also described in the paper.
Present-day Exposures of Water Ice in the Northern Mid-latitudes of Mars
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Kanner, Lisa C.
2007-01-01
Water ice is exposed in the martian north polar cap, but is rarely exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60deg. We have examined mid-latitude areas of the northern plains displaying residual ice-rich layers, and report evidence of present-day surface exposures of water ice. These exposures, if confirmed, could con-strain the latitudinal and temporal stability of surface ice on Mars.
Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs
NASA Astrophysics Data System (ADS)
Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.
2013-12-01
Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?
Challenges for understanding Antarctic surface hydrology and ice-shelf stability
NASA Astrophysics Data System (ADS)
Kingslake, J.; Bell, R. E.; Banwell, A. F.; Boghosian, A.; Spergel, J.; Trusel, L. D.
2017-12-01
It is widely hypothesized that surface meltwater can contribute to ice mass loss in Antarctica through its impact on ice-shelf stability. Meltwater potentially expedites ice-shelf calving by flowing into and enlarging existing crevasses, and could even trigger ice-shelf disintegration via stresses generated by melt ponds. When ice shelves collapse, the adjacent grounded ice accelerates and thins, which contributes to sea-level rise. How these mechanisms mediate the interactions between the atmosphere, the ocean and the ice sheet is the subject of long-standing research efforts. The drainage of water across the surface of the Antarctic Ice Sheet and its ice shelves is beginning to be recognized as another important aspect of the system. Recent studies have revealed that surface meltwater drainage is more widespread than previously thought and that surface hydrological systems in Antarctica may expand and proliferate this century. Contrasting hypotheses regarding the impact of the proliferation of drainage systems on ice-shelf stability have emerged. Surface drainage could deliver meltwater to vulnerable area or export meltwater from ice shelves entirely. Which behavior dominates may have a large impact on the future response of the Antarctic Ice Sheet to atmospheric warming. We will discuss these recent discoveries and hypotheses, as well as new detailed studies of specific areas where hydrological systems are well developed, such as Amery and Nimrod Ice Shelves. We will highlight analogies that can be drawn with Greenlandic (near-)surface hydrology and, crucially, where hydrological systems on the two ice sheets are very different, leading to potentially important gaps in our understanding. Finally, we will look ahead to the key questions that we argue will need to be if we are to determine the role Antarctic surface hydrology could play in the future of the ice sheet. These include: Where does meltwater pond today and how will this change this century? What coupled glaciological-hydrological dynamics control how drainage systems will change as melt rates increase this century? How do we incorporate surface hydrology into ice-sheet models? While we may be currently unable to answer these and related questions, we aim to start the discussion on how the community can move towards answering them in the future.
NASA Astrophysics Data System (ADS)
Clason, C.; Holmlund, P.; Applegate, P. J.; Strömberg, B.
2012-12-01
Inclusion of surface-to-bed meltwater transfer in the ice sheet model SICOPOLIS may help explain enigmatic erosional features, remnant of the last-glacial Scandinavian Ice Sheet (SIS), off Sweden's east coast. Modelling of ice sheets has largely neglected specific transfer of meltwater from the ice surface to the subglacial system, yet numerous studies on Greenland reveal dynamic response to surface meltwater generation and lake drainages, alluding to the importance of meltwater transfer for ice sheet response to climate change. Geologic evidence suggests the SIS experienced a number of oscillations during its evolution, characterised by variability in areas of fast flow, likely driven by changes in the thermal regime and fluctuating basal water pressure. SICOPOLIS accounts for polythermal conditions by applying a Weertman-type sliding law where basal ice is temperate. Furthermore, a first approximation of the surface meltwater effect on basal sliding is implemented within the SICOPOLIS Greenland domain, dependent on ice thickness and runoff. Field studies within the Swedish Archipelago have revealed numerous meltwater erosion features, including polished flutes. These flutes are deeper than the glacial striations in the area, and are both younger than and oriented differently to the youngest striae. Significant quantities of meltwater would have been necessary to erode such features, and large deposits of silt and clay in the surrounding area reinforce that meltwater was in good supply. Given the scattered distribution of polished fluting sites, access of meltwater to the bed through fracture penetration and lake drainage may have been instrumental in the localised nature of the sites. Driven by the geological evidence, SICOPOLIS is modified to include the surface meltwater effect within the Scandinavian domain. We aim to evaluate the role of meltwater transfer on the evolution of the SIS during the Weichselian, with particular focus on the area of the theorised Baltic Ice Stream.
connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)
NASA Astrophysics Data System (ADS)
Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.
2013-12-01
This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity. Because water is 'heavier' than ice, water-filled cracks have unlimited capacity to hydraulically ';jack' open fractures, penetrating, fracturing and disaggregating a solid ice body. This process promotes iceberg calving at more than 150, 1km wide marine terminating Greenland glacier fronts. Resulting from a rising trend of surface melting and sea water temperature, meltwater ejection at the underwater front of marine glaciers drives a an increasing turbulent heat exchange between the glacier front and relatively warm sea water melting it faster. Underwater melting promotes an undercutting of the glacier front leading to ice berg calving. Calving through hydrofracture or marine undercutting provide a direct and immediate ice flow speed response mechanism for surface meltwater production. Ice flow speed reacts because calving reduces flow resistance. The above physical processes interact. Cooling shuts these processes down. Negative feedbacks dampen the warming impulse. Live 21 June, 2013 is a new Danish Web site1 that exploits total mass balance rate of decline as a function of albedo to predict GRACE mass rate of change with 80% explained variance. While surface mass balance explains the mass rate of change slightly higher, surface albedo is an observable quantity as is gravity change.
A coupled dynamic-thermodynamic model of an ice-ocean system in the marginal ice zone
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa
1987-01-01
Thermodynamics are incorporated into a coupled ice-ocean model in order to investigate wind-driven ice-ocean processes in the marginal zone. Upswelling at the ice edge which is generated by the difference in the ice-air and air-water surface stresses is found to give rise to a strong entrainment by drawing the pycnocline closer to the surface. Entrainment is shown to be negligible outside the areas affected by the ice edge upswelling. If cooling at the top is included in the model, the heat and salt exchanges are further enhanced in the upswelling areas. It is noted that new ice formation occurs in the region not affected by ice edge upswelling, and it is suggested that the high-salinity mixed layer regions (with a scale of a few Rossby radii of deformation) will overturn due to cooling, possibly contributing to the formation of deep water.
Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release
NASA Astrophysics Data System (ADS)
van As, Dirk; Mikkelsen, Andreas Bech; Holtegaard Nielsen, Morten; Box, Jason E.; Claesson Liljedahl, Lillemor; Lindbäck, Katrin; Pitcher, Lincoln; Hasholt, Bent
2017-06-01
Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the ˜ 12 000 km2 ice sheet area feeding the river. For the 2006-2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified ˜ 56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10-20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at ˜ 1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.
Volumetric and infrared measurements on amorphous ice structure
NASA Astrophysics Data System (ADS)
Manca, C.; Martin, C.; Roubin, P.
2004-05-01
We have simultaneously used adsorption isotherm volumetry and Fourier transform infrared spectroscopy in order to take the investigations on amorphous ice structure a step further, especially concerning porosity and annealing-induced modifications. We have studied surface reorganization during annealing and found that the number of surface sites decreases before crystallization, their relative ratios being different for amorphous and crystalline ice. We also present results confirming that ice can have a large specific surface area and nevertheless be non-microporous.
Exposure of Water Ice in the Northern Mid-lattitudes of Mars
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Kanner, Lisa C.
2007-01-01
Water ice is exposed in the martian north polar cap, and is occasionally exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60 deg. We have examined midlatitude areas of the northern plains displaying evidence of residual ice-rich layers, and report possible present-day exposures of ice. These exposures, if confirmed, could constrain the latitudinal and temporal stability of surface ice on Mars.
The Impact of Cloud Properties on Young Sea Ice during Three Winter Storms at N-ICE2015
NASA Astrophysics Data System (ADS)
Murphy, S. Y.; Walden, V. P.; Cohen, L.; Hudson, S. R.
2017-12-01
The impact of clouds on sea ice varies significantly as cloud properties change. Instruments deployed during the Norwegian Young Sea Ice field campaign (N-ICE2015) are used to study how differing cloud properties influence the cloud radiative forcing at the sea ice surface. N-ICE2015 was the first campaign in the Arctic winter since SHEBA (1997/1998) to study the surface energy budget of sea ice and the associated effects of cloud properties. Cloud characteristics, surface radiative and turbulent fluxes, and meteorological properties were measured throughout the field campaign. Here we explore how cloud macrophysical and microphysical properties affect young, thin sea ice during three winter storms from 31 January to 15 February 2015. This time period is of interest due to the varying surface and atmospheric conditions, which showcase the variety of conditions the newly-formed sea ice can experience during the winter. This period was characterized by large variations in the ice surface and near-surface air temperatures, with highs near 0°C when warm, moist air was advected into the area and lows reaching -40°C during clear, calm periods between storms. The advection of warm, moist air into the area influenced the cloud properties and enhanced the downwelling longwave flux. For most of the period, downwelling longwave flux correlates closely with the air temperature. However, at the end of the first storm, a drop in downwelling longwave flux of about 50 Wm-2 was observed, independent of any change in surface or air temperature or cloud fraction, indicating a change in cloud properties. Lidar data show an increase in cloud height during this period and a potential shift in cloud phase from ice to mixed-phase. This study will describe the cloud properties during the three winter storms and discuss their impacts on surface energy budget.
Modelling MIZ dynamics in a global model
NASA Astrophysics Data System (ADS)
Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto
2016-04-01
Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.
Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.
2017-11-01
Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.
Immersion Freezing of Aluminas: The Effect of Crystallographic Properties on Ice Nucleation
NASA Astrophysics Data System (ADS)
King, M.; Chong, E.; Freedman, M. A.
2017-12-01
Atmospheric aerosol particles serve as the nuclei for heterogeneous ice nucleation, a process that allows for ice to form at higher temperatures and lower supersaturations with respect to ice. This process is essential to the formation of ice in cirrus clouds. Heterogeneous ice nucleation is affected by many factors including the composition, crystal structure, porosity, and surface area of the particles. However, these factors are not well understood and, as such, are difficult to account for in climate models. To test the effects of crystal structure on ice nucleation, a system of transition aluminas (Al2O3) that differ only in their crystal structure, despite being compositionally similar, were tested using immersion freezing. Particles were immersed in water and placed into a temperature controlled chamber. Freezing events were then recorded as the chamber was cooled to negative 30 °. Alpha-alumina, which is a member of the hexagonal crystal system, showed a significantly higher temperature at which all particles froze in comparison to other samples. This supports the hypothesis that, since a hexagonal crystal structure is the lowest energy state for ice, hexagonal surface structures would best facilitate ice nucleation. However, a similar sample of hexagonal chi-alumina did not show the same results. Further analysis of the samples will be done to characterize surface structures and composition. These conflicting data sets raise interesting questions about the effect of other surface features, such as surface area and porosity, on ice nucleation.
Automated detection of ice cliffs within supraglacial debris cover
NASA Astrophysics Data System (ADS)
Herreid, Sam; Pellicciotti, Francesca
2018-05-01
Ice cliffs within a supraglacial debris cover have been identified as a source for high ablation relative to the surrounding debris-covered area. Due to their small relative size and steep orientation, ice cliffs are difficult to detect using nadir-looking space borne sensors. The method presented here uses surface slopes calculated from digital elevation model (DEM) data to map ice cliff geometry and produce an ice cliff probability map. Surface slope thresholds, which can be sensitive to geographic location and/or data quality, are selected automatically. The method also attempts to include area at the (often narrowing) ends of ice cliffs which could otherwise be neglected due to signal saturation in surface slope data. The method was calibrated in the eastern Alaska Range, Alaska, USA, against a control ice cliff dataset derived from high-resolution visible and thermal data. Using the same input parameter set that performed best in Alaska, the method was tested against ice cliffs manually mapped in the Khumbu Himal, Nepal. Our results suggest the method can accommodate different glaciological settings and different DEM data sources without a data intensive (high-resolution, multi-data source) recalibration.
Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn
NASA Astrophysics Data System (ADS)
Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong
2018-03-01
Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.
Space-based Swath Imaging Laser Altimeter for Cryospheric Topographic and Surface Property Mapping
NASA Technical Reports Server (NTRS)
Abshire, James; Harding, David; Shuman, Chris; Sun, Xiaoli; Dabney, Phil; Krainak, Michael; Scambos, Ted
2005-01-01
Uncertainties in the response of the Greenland and Antarctic polar ice sheets to global climatic change inspired the development of ICESat/GLAS as part of NASA's Earth Observing System. ICESat's primary purpose is the measurement of ice sheet surface elevation profiles with sufficient accuracy, spatial density, and temporal coverage so that elevation changes can be derived with an accuracy of <1.5 cm/year for averages of measurements over the ice sheets with areas of 100 x 100 km. The primary means to achieve this elevation change detection is spatial averaging of elevation differences at cross-overs between ascending and descending profiles in areas of low ice surface slope. Additional information is included in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guosheng
2013-03-15
Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term ofmore » condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.« less
NASA Astrophysics Data System (ADS)
Field, L. A.; Sholtz, A.; Chetty, S.; Manzara, A.; Johnson, D.; Christodoulou, E.; Decca, R.; Walter, P.; Katuri, K.; Bhattacharyya, S.; Ivanova, D.; Mlaker, V.; Perovich, D. K.
2017-12-01
This work uses ecologically benign surface treatment of silica-based materials in carefully selected, limited areas to reduce polar ice melt by reflecting energy from summertime polar sun to attempt to slow ice loss due to the Ice-Albedo Feedback Effect. Application of Ice911's materials can be accomplished within a season, at a comparatively low cost, and with far less secondary environmental impact than many other proposed geo-engineering solutions. Field testing, instrumentation, safety testing, data-handling and modeling results will be presented. The albedo modification has been tested over a number of melt seasons with an evolving array of instrumentation, at multiple sites and on progressively larger scales, most recently in a small artificial pond in Minnesota and in a lake in Barrow, Alaska's BEO (Barrow Experimental Observatory) area. The test data show that the glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. Using NCAR's CESM package the environmental impact of the approach of surface albedo modification was studied. During two separate runs, region-wide Arctic albedo modification as well as more targeted localized treatments were modeled and compared. The parameters of a surface snow layer are used as a proxy to simulate Ice911's high-albedo materials, and the modification is started in January over selected ice/snow regions in the Arctic. Preliminary results show promising possibilities of enhancements in surface albedo, sea ice area and sea-ice concentration, as well as temperature reductions of .5 to 3 degree Kelvin in the Arctic, and global average temperature reductions of .5 to 1 degrees.
Predictive model for ice formation on superhydrophobic surfaces.
Bahadur, Vaibhav; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J Ashley; Aizenberg, Joanna; Krupenkin, Tom
2011-12-06
The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies. © 2011 American Chemical Society
Quantifying Local Ablation Rates for the Greenland Ice Sheet Using Terrestrial LIDAR
NASA Astrophysics Data System (ADS)
Kershner, C. M.; Pitcher, L. H.; LeWinter, A.; Finnegan, D. C.; Overstreet, B. T.; Miège, C.; Cooper, M. G.; Smith, L. C.; Rennermalm, A. K.
2016-12-01
Quantifying accurate ice surface ablation or melt rates for the Greenland Ice Sheet is important for calibrating and validating surface mass balance models and constraining sea level rise estimates. Common practice is to monitor surface ablation at defined points by manually measuring ice surface lowering in relation to stakes inserted into the ice / snow. However, this method does not account for the effects of local topography, solar zenith angle, and local variations in ice surface albedo/impurities on ablation rates. To directly address these uncertainties, we use a commercially available terrestrial LIDAR scanner (TLS) to monitor daily melt rates in the ablation zone of the Greenland Ice Sheet for 7 consecutive days in July 2016. Each survey is registered to previous scans using retroreflective cylinders and is georeferenced using static GPS measurements. Bulk ablation will be calculated using multi-temporal differential LIDAR techniques, and difficulties in referencing scans and collecting high quality surveys in this dynamic environment will be discussed, as well as areas for future research. We conclude that this novel application of TLS technology provides a spatially accurate, higher fidelity measurements of ablation across a larger area with less interpolation and less time spent than using traditional manual point based methods alone. Furthermore, this sets the stage for direct calibration, validation and cross-comparison with existing airborne (e.g. NASA's Airborne Topographic Mapper - ATM - onboard Operation IceBridge and NASA's Land, Vegetation & Ice Sensor - LVIS) and forthcoming spaceborne sensors (e.g. NASA's ICESat-2).
Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra
NASA Astrophysics Data System (ADS)
Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.
2016-10-01
Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general active site density functions, such as the popular ns parameterization, cannot be reliably extrapolated below this critical surface area threshold to describe freezing curves for lower particle surface area concentrations. Freezing curves obtained below this threshold translate to higher ns values, while the ns values are essentially the same from curves obtained above the critical area threshold; ns should remain the same for a system as concentration is varied. However, we can successfully predict the lower concentration freezing curves, which are more atmospherically relevant, through a process of random sampling from g distributions obtained from high particle concentration data. Our analysis is applied to cold plate freezing measurements of droplets containing variable concentrations of particles from NX illite minerals, MCC cellulose, and commercial Snomax bacterial particles. Parameterizations that can predict the temporal evolution of the frozen fraction of cloud droplets in larger atmospheric models are also derived from this new framework.
NASA Technical Reports Server (NTRS)
Massom, Robert; Comiso, Josefino C.
1994-01-01
The accurate quantification of new ice and open water areas and surface temperatures within the sea ice packs is a key to the realistic parameterization of heat, moisture, and turbulence fluxes between ocean and atmosphere in the polar regions. Multispectral NOAA advanced very high resolution radiometer/2 (AVHRR/2) satellite images are analyzed to evaluate how effectively the data can be used to characterize sea ice in the Bering and Greenland seas, both in terms of surface type and physical temperature. The basis of the classification algorithm, which is developed using a late wintertime Bering Sea ice cover data, is that frequency distributions of 10.8- micrometers radiances provide four distinct peaks, represeting open water, new ice, young ice, and thick ice with a snow cover. The results are found to be spatially and temporally consistent. Possible sources of ambiguity, especially associated with wider temporal and spatial application of the technique, are discussed. An ice surface temperature algorithm is developed for the same study area by regressing thermal infrared data from 10.8- and 12.0- micrometers channels against station air temperatures, which are assumed to approximate the skin temperatures of adjacent snow and ice. The standard deviations of the results when compared with in situ data are about 0.5 K over leads and polynyas to about 0.5-1.5 K over thick ice. This study is based upon a set of in situ data limited in scope and coverage. Cloud masks are applied using a thresholding technique that utilizes 3.74- and 10.8- micrometers channel data. The temperature maps produced show coherence with surface features like new ice and leads, and consistency with corresponding surface type maps. Further studies are needed to better understand the effects of both the spatial and temporal variability in emissivity, aerosol and precipitable atmospheric ice particle distribution, and atmospheric temperature inversions.
NASA Technical Reports Server (NTRS)
Welch, Ronald M.
1993-01-01
A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.
Loitering of the retreating sea ice edge in the Arctic Seas.
Steele, Michael; Ermold, Wendy
2015-12-01
Each year, the arctic sea ice edge retreats from its winter maximum extent through the Seasonal Ice Zone (SIZ) to its summer minimum extent. On some days, this retreat happens at a rapid pace, while on other days, parts of the pan-arctic ice edge hardly move for periods of days up to 1.5 weeks. We term this stationary behavior "ice edge loitering," and identify areas that are more prone to loitering than others. Generally, about 20-25% of the SIZ area experiences loitering, most often only one time at any one location during the retreat season, but sometimes two or more times. The main mechanism controlling loitering is an interaction between surface winds and warm sea surface temperatures in areas from which the ice has already retreated. When retreat happens early enough to allow atmospheric warming of this open water, winds that force ice floes into this water cause melting. Thus, while individual ice floes are moving, the ice edge as a whole appears to loiter. The time scale of loitering is then naturally tied to the synoptic time scale of wind forcing. Perhaps surprisingly, the area of loitering in the arctic seas has not changed over the past 25 years, even as the SIZ area has grown. This is because rapid ice retreat happens most commonly late in the summer, when atmospheric warming of open water is weak. We speculate that loitering may have profound effects on both physical and biological conditions at the ice edge during the retreat season.
1998-06-04
This archival image taken by NASA Voyager 2, is of Europa, the smallest Galilean satellite. The bright areas are probably ice deposits, whereas the darkened areas may be the rocky surface or areas with a more patchy distribution of ice. http://photojournal.jpl.nasa.gov/catalog/PIA00325
NASA Technical Reports Server (NTRS)
Wu, Xiaoqing; Paden, John; Jezek, Ken; Rignot, Eric; Gim, Young
2013-01-01
We produced the high resolution bedmaps of several glaciers in western Greenland from IceBridge Mission sounding radar data using tomographic sounding technique. The bedmaps cover 3 regions: Russell glaciers, Umanaq glaciers and Jakobshavn glaciers of western Greenland. The covered areas is about 20x40 km(sup 2) for Russell glaciers and 300x100 sq km, and 100x80 sq km for Jakobshavn glaciers. The ground resolution is 50 meters and the average ice thickness accuracy is 10 to 20 meters. There are some void areas within the swath of the tracks in the bedmaps where the ice thickness is not known. Tomographic observations of these void areas indicate that the surface and shallow sub-surface pockets, likely filled with water, are highly reflective and greatly weaken the radar signal and reduce the energy reaching and reflected from the ice sheet bottom.
An Imminent Revolution in Modeling Interactions of Ice Sheets With Climate
NASA Astrophysics Data System (ADS)
Hughes, T.
2008-12-01
Modeling continental ice sheets was inaugurated by meteorologists William Budd and Uwe Radok, with mathematician Richard Jenssen, in 1971. Their model calculated the thermal and mechanical regime using measured surface accumulation rates, temperatures, and elevations, and bed topography. This top-down approach delivered a basal thermal regime of temperatures or melting rates for an assumed basal geothermal heat flux. When Philippe Huybrechts and others incorporated time, largely unknownpast surface conditions had a major effect on present basal thermal conditions. This approach produced ice-sheet models with only a slow response to external forcing, whereas the glacial geological record and climate records from ice and ocean cores show that ice sheets can have rapid changes in size and shape independent of external forcing. These top-down models were wholly inadequate for reconstructing former ice sheets at the LGM for CLIMAP in 1981. Ice-sheet areas,elevations, and volumes provided the albedo, surface topography, and sea-surface area as input to climate models. A bottom-up model based on dated glacial geology was developed to provide the areal extent and basal thermal regime of ice sheets at the LGM. Basal thermal conditions determined ice-bed coupling and therefore the elevation of ice sheets. High convex ice surfaces for slow sheet flow lower about 20 percent when a frozen bed becomes thawed. As further basal melting drowns bedrock bumps that "pin" basal ice, the ice surface becomes concave in fast stream flow that ends as low floating ice shelves at marine ice margins. A revolution in modeling interactions between glaciation, climate, and sea level is driven by new Greenland and Antarctic data from Earth-orbiting satellites, airborne and surface traverses, and deep drilling. We anticipate continuous data acquisition of surface albedo, accumulation/ablation rates, elevations, velocities, and temperatures over a whole ice sheet, mapping basal thermal conditions by radar, seismic, and magnetic profiling, and direct measurement of basal conditions by deep drilling and coring into the ice and the bed. These data allow calculating the geothermal heat flux and mapping flow of basal meltwater from geothermal sources to sinks at the termini of ice streams, which discharge up to 90 percent of the ice. James Fastook has a preliminary solution of the full momentum equation needed to model ice streams. Douglas MacAyeal has pioneered modeling catastrophic ice-shelf disintegration that releases "armadas" of icebergs into the world ocean, to extract heat from ocean surface water and thereby reduce the critical ocean-to-atmosphere heat exchange that drives global climate. Ice sheets are the only component of Earth's climate machine that can destroy itself-- swiftly--and thereby radically and rapidly alter global climate and sea level.
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Zeoli, Antonio; Belmaggio, Pietro; Folco, Luigi
2008-03-01
Three-dimensional laboratory physical experiments have been used to investigate the influence of bedrock topography and ablation on ice flow. Different models were tested in a Plexiglas box, where a transparent silicone simulating ice in nature was allowed to flow. Experimental results show how the flow field (in terms of both flow lines and velocity) and variations in the topography of the free surface and internal layers of the ice are strongly influenced by the presence and height of bedrock obstacles. In particular, the buttressing effect forces the ice to slow down, rise up, and avoid the obstacle; the higher the bedrock barrier, the more pronounced the process. Only limited uplift of internal layers is observed in these experiments. In order to exhume deep material embedded in the ice, ablation (simulated by physically removing portions of silicone from the model surface to maintain a constant topographic depression) must be included in the physical models. In this case, the analogue ice replenishes the area of material removal, thereby allowing deep layers to move vertically to the surface and severely altering the local ice flow pattern. This process is analogous to the ice flow model proposed in the literature for the origin of meteorite concentrations in blue ice areas of the Antarctic plateau.
NASA Astrophysics Data System (ADS)
Avian, M.; Kellerer-Pirklbauer, A.; Lieb, G. K.
2018-06-01
Since the end of the Little Ice Age around 1850 CE glaciers in the Alps have been receding dramatically. This study aimed to quantify and characterize the geomorphic and landform changes of a 0.9 km2 large proglacial area at the largest glacier in Austria (Pasterze Glacier, Austria, N 47°04‧, E 12°44‧). Point clouds from multiple terrestrial laserscanning (TLS) and different image data were used to quantify surface elevation changes and distinguish different types of erosional and depositional landforms during the period 2010-2013. Results indicate that the study area is characterized by a total volume loss of 1,309,000 m3. Excluding the area which was deglaciated, the volume loss equals 275,000 m3 in the period 2010-13. The decrease is related to sediment transfer out of study area and due to sediment-buried glacier ice which is slowly melting. The landform classification reveals that drift mantled slopes are most frequent (20.9% of the study area in 2013) next to ice contact terrace landforms (19.7%). In terms of vertical surface elevation changes, our results suggest distinguishing between 3 distinct domains within the study area: (i) a flat valley bottom area consisting of water/sandur areas and ice-cored landforms dominated by widespread subsurface ice melting and lateral fluvial (and thermal) erosion; (ii) a gently-sloping footslope area consisting of ice-contact sediments, former ice marginal channels and deep incised gullies with corresponding debris cones dominated by linear erosion and corresponding deposition; and (iii) a steep lateral slope area mainly built up of consolidated drift material with incised gullies dominated by linear erosion. Our results not only confirm the previously revealed high geomorphic activity for proglacial areas of alpine glaciers in terms of surface elevation variations, they also highlight that landforms might change substantially from one year to the next not only because of erosional/depositional processes, but also because of the melting of buried dead-ice bodies.
NASA Astrophysics Data System (ADS)
Shin, D.; Chiu, L. S.; Clemente-Colon, P.
2006-05-01
The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water, water vapor and surface wind on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor's field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric effects from cloud liquid water, water vapor and surface wind tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. This compensating effect reduces the retrieval uncertainties of total (FY and MY) ice concentration. Over marginal ice zones, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations in the normal ranges of these variables.
NASA Astrophysics Data System (ADS)
Irvine-Fynn, T. D.; Bunting, P.; Cook, J.; Hardy, A. J.; Hodson, A. J.; Holt, T.; Hubbard, A.; Naegeli, K.; Nilsson, J.; Ryan, J.; Roberts, O.; Tedstone, A.; Tranter, M.; Williamson, C.
2017-12-01
The seasonal melt on the southwestern margin of the Greenland Ice Sheet has been enhanced due to processes affecting the ablation area's ice surface reflectance (albedo). Recent trends in surface reflectance in the region suggest a decline potentially linked to an albedo-feedback associated with regional climate warming, emergence of organic and mineral particulates, and expansion of melt area. However, the heterogeneity of reflectance over bare ice areas in space and time has remained relatively poorly characterised. Numerous surface mass balance models utilise albedo products derived from remote sensing platforms with coarse scale resolution. Such products provide reasonable albedo estimates, but quantification of local variability in reflectance remains lacking. Consequently, there is a need to better define the distribution and representativeness of ice surface reflectance at and below the scale of satellite sensor pixel footprints to facilitate examination of albedo parameterisations. Here, we present reflectance data repeatedly collected in SW Greenland during the 2016 summer melt season over a 0.0625 km2 area proximate to the IMAU K-transect site S6 (67°04.5'N, 49°21.0'W). The Moderate Resolution Imaging Spectrometer (MODIS) albedo product MOD10A1(c6) for the study site was compared to reflectance data from Sentinel-2, centimetre resolution calibrated 12Mpix optical imagery collected using an Unmanned Aerial Vehicle (UAV) flown at a height of 70 m above the ice surface, and ground-based reflectance survey data acquired using a StellarNet Red-Dwarf/Blue-Wave visible-infrared dual system (250-1700nm) at 30 sites distributed over the area of interest. Our data highlight variability in the spatial distribution of ice surface reflectance characteristics over time. Specifically, data demonstrate marked changes in the distribution of reflectance values, despite maintaining a broadly equitable mean and median during July and August. The influence of the varied surface heterogeneity is explored further using surface energy balance modelling to quantify the impact of such changes on melt production. The findings determine the necessity to account for local variability underlying the pixel-averaged values retrieved from remote sensing platforms such as MODIS.
Laboratory Studies of Atmospheric Heterogeneous Chemistry
NASA Technical Reports Server (NTRS)
Keyser, L. F.; Leu, M-T.
1993-01-01
In the laboratory, ice films formed by freezing from the liquid or more frequently by deposition from the vapor phase have been used to simulate stratospheric cloud surfaces for measurements of reaction and uptake rates. To obtain intrinsic surface reaction probabilities that can be used in atmospheric models, the area of the film surface that actually takes part in the reaction must be known. It is important to know not only the total surface area but also the film morphology in order to determine where and how the surface is situated and, thus, what fraction of it is available for reaction. Information on the structure of these ice films has been obtained by using several experimental methods. In the sections that follow, these methods will be discussed, then the results will be used to construct a working model of the ice films, and finally the model will be applied to an experimental study of HC1 uptake by H_2O ice.
Wilkening, Jennifer L; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.
Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Nguyen, Thanh-Binh; Park, Seungchul; Lim, Hyuneui
2018-03-01
In this paper, we report the contributions of actual ice-substrate contact area and nanopillar height to passive anti-icing performance in terms of adhesion force and freezing time. Well-textured nanopillars with various parameters were fabricated via colloidal lithography and a dry etching process. The nanostructured quartz surface was coated with low-energy material to confer water-repellent properties. These superhydrophobic surfaces were investigated to determine the parameters essential for reducing adhesion strength and delaying freezing time. A well-textured surface with nanopillars of very small top diameter, regardless of height, could reduce adhesion force and delay freezing time in a subsequent de-icing process. Small top diameters of nanopillars also ensured the metastable Cassie-Baxter state based on energy barrier calculations. The results demonstrated the important role of areal fraction in anti-icing efficiency, and the negligible contribution of texture height. This insight into icing phenomena should lead to design of improved ice-phobic surfaces in the future.
Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice
NASA Technical Reports Server (NTRS)
Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan
2013-01-01
Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.
NASA Astrophysics Data System (ADS)
Coren, F.; Delisle, G.; Sterzai, P.
2003-09-01
The ice flow conditions of a 100 x 100 km area of Victoria Land, Antarctica were analyzed with the synthetic aperture radar (SAR) technique. The area includes a number of meteorite concentration sites, in particular the Allan Hills ice fields. Regional ice flow velocities around the Mid- western and Near-western ice fields and the Allan Hills main ice field are shown to be 2.5 m yr-1. These sites are located on a horseshoe-shaped area that bounds an area characterized by higher ice flow velocities of up to 5 m yr-1. Meteorite find locations on the Elephant Moraine are located in this "high ice flow" area. The SAR derived digital elevation model (DEM) shows atypical low surface slopes for Antarctic conditions, which are the cause for the slow ice movements. Numerous ice rises in the area are interpreted to cap sub-ice obstacles, which were formed by tectonic processes in the past. The ice rises are considered to represent temporary features, which develop only during warm stages when the regional ice stand is lowered. Ice depressions, which develop in warm stages on the lee side of ice rises, may act as the sites of temporary build-up of meteorite concentrations, which turn inoperative during cold stages when the regional ice level rises and the ice rises disappear. Based on a simplified ice flow model, we argue that the regional ice flow in cold stages is reduced by a factor of at least 3.
Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming
de la Peña, S.; Howat, I. M.; Nienow, P. W.; ...
2015-06-11
Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, when compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging -0.80 ± 0.39 m yr -1 between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. Furthermore, if current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less
Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone
NASA Astrophysics Data System (ADS)
Cooper, Matthew G.; Smith, Laurence C.; Rennermalm, Asa K.; Miège, Clément; Pitcher, Lincoln H.; Ryan, Jonathan C.; Yang, Kang; Cooley, Sarah W.
2018-03-01
We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l.) supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland ice sheet. We find low-density (0.43-0.91 g cm-3, μ = 0.69 g cm-3) ice to at least 1.1 m depth below the ice sheet surface. This near-surface, low-density ice consists of alternating layers of water-saturated, porous ice and clear solid ice lenses, overlain by a thin (< 0.5 m), even lower density (0.33-0.56 g cm-3, μ = 0.45 g cm-3) unsaturated weathering crust. Ice density data from 10 shallow (0.9-1.1 m) ice cores along an 800 m transect suggest an average 14-18 cm of specific meltwater storage within this low-density ice. Water saturation of this ice is confirmed through measurable water levels (1-29 cm above hole bottoms, μ = 10 cm) in 84 % of cryoconite holes and rapid refilling of 83 % of 1 m drilled holes sampled along the transect. These findings are consistent with descriptions of shallow, depth-limited aquifers on the weathered surface of glaciers worldwide and confirm the potential for substantial transient meltwater storage within porous low-density ice on the Greenland ice sheet ablation zone surface. A conservative estimate for the ˜ 63 km2 supraglacial catchment yields 0.009-0.012 km3 of liquid meltwater storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas of the Greenland ice sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface lowering observations from airborne and satellite altimetry, and supraglacial runoff processes.
Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
Kim, Philseok; Wong, Tak-Sing; Alvarenga, Jack; Kreder, Michael J; Adorno-Martinez, Wilmer E; Aizenberg, Joanna
2012-08-28
Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and even lead to increased ice adhesion due to a large surface area. We report a radically different type of ice-repellent material based on slippery, liquid-infused porous surfaces (SLIPS), where a stable, ultrasmooth, low-hysteresis lubricant overlayer is maintained by infusing a water-immiscible liquid into a nanostructured surface chemically functionalized to have a high affinity to the infiltrated liquid and lock it in place. We develop a direct fabrication method of SLIPS on industrially relevant metals, particularly aluminum, one of the most widely used lightweight structural materials. We demonstrate that SLIPS-coated Al surfaces not only suppress ice/frost accretion by effectively removing condensed moisture but also exhibit at least an order of magnitude lower ice adhesion than state-of-the-art materials. On the basis of a theoretical analysis followed by extensive icing/deicing experiments, we discuss special advantages of SLIPS as ice-repellent surfaces: highly reduced sliding droplet sizes resulting from the extremely low contact angle hysteresis. We show that our surfaces remain essentially frost-free in which any conventional materials accumulate ice. These results indicate that SLIPS is a promising candidate for developing robust anti-icing materials for broad applications, such as refrigeration, aviation, roofs, wires, outdoor signs, railings, and wind turbines.
Thin Ice Area Extraction in the Seasonal Sea Ice Zones of the Northern Hemisphere Using Modis Data
NASA Astrophysics Data System (ADS)
Hayashi, K.; Naoki, K.; Cho, K.
2018-04-01
Sea ice has an important role of reflecting the solar radiation back into space. However, once the sea ice area melts, the area starts to absorb the solar radiation which accelerates the global warming. This means that the trend of global warming is likely to be enhanced in sea ice areas. In this study, the authors have developed a method to extract thin ice area using reflectance data of MODIS onboard Terra and Aqua satellites of NASA. The reflectance of thin sea ice in the visible region is rather low. Moreover, since the surface of thin sea ice is likely to be wet, the reflectance of thin sea ice in the near infrared region is much lower than that of visible region. Considering these characteristics, the authors have developed a method to extract thin sea ice areas by using the reflectance data of MODIS (NASA MYD09 product, 2017) derived from MODIS L1B. By using the scatter plots of the reflectance of Band 1 (620 nm-670 nm) and Band 2 (841 nm-876 nm)) of MODIS, equations for extracting thin ice area were derived. By using those equations, most of the thin ice areas which could be recognized from MODIS images were well extracted in the seasonal sea ice zones in the Northern Hemisphere, namely the Sea of Okhotsk, the Bering Sea and the Gulf of Saint Lawrence. For some limited areas, Landsat-8 OLI images were also used for validation.
EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice
NASA Astrophysics Data System (ADS)
Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.
2016-12-01
The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.
NASA Astrophysics Data System (ADS)
Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.
2013-12-01
Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance. In this study we will model the different physical conditions at the bed and ice rheology from their distinct signatures in the near-surface strata. The results will identify the distinct mechanisms that form these bodies and their control over the surface morphology and snow accumulation.
Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.
2016-12-01
The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.
NASA Astrophysics Data System (ADS)
Hubbard, J.; Onac, B. P.; Kruse, S.; Forray, F. L.
2017-12-01
Research at Scăriloara Ice Cave has proceeded for over 150 years, primarily driven by the presence and paleoclimatic importance of the large perennial ice block and various ice speleothems located within its galleries. Previous observations of the ice block led to rudimentary volume estimates of 70,000 to 120,000 cubic meters (m3), prospectively placing it as one of the world's largest cave ice deposits. The cave morphology and the surface of the ice block are now recreated in a total station survey-validated 3D model, produced using Structure from Motion (SfM) software. With the total station survey and the novel use of ArcGIS tools, the SfM validation process is drastically simplified to produce a scaled, georeferenced, and photo-texturized 3D model of the cave environment with a root-mean-square error (RMSE) of 0.24 m. Furthermore, ground penetrating radar data was collected and spatially oriented with the total station survey to recreate the ice block basal surface and was combined with the SfM model to create a model of the ice block itself. The resulting ice block model has a volume of over 118,000 m3 with an uncertainty of 9.5%, with additional volumes left un-surveyed. The varying elevation of the ice block basal surface model reflect specific features of the cave roof, such as areas of enlargement, shafts, and potential joints, which offer further validation and inform theories on cave and ice genesis. Specifically, a large depression area was identified as a potential area of initial ice growth. Finally, an ice thickness map was produced that will aid in the designing of future ice coring projects. This methodology presents a powerful means to observe and accurately characterize and measure cave and cave ice morphologies with ease and affordability. Results further establish the significance of Scăriloara's ice block to paleoclimate research, provide insights into cave and ice block genesis, and aid future study design.
NASA Astrophysics Data System (ADS)
Yamazaki, Masafumi; Sumino, Yutaka; Morita, Katsuaki
2017-11-01
In the aviation industry, ice accretion on the airfoil has been a hazardous issue since it greatly declines the aerodynamic performance. Electric heaters and bleed air, which utilizes a part of gas emissions from engines, are used to prevent the icing. Nowadays, a new de-icing system combining electric heaters and super hydrophobic coatings have been developed to reduce the energy consumption. In the system, the heating temperature and the coating area need to be adjusted. Otherwise, the heater excessively consumes energy when it is set too high and when the coating area is not properly located, water droplets which are once dissolved possibly adhere again to the rear part of the airfoil as runback ice In order to deal with these problems, the physical phenomena of water droplets on the hydrophobic surface demand to be figured out. However, not many investigations focused on the behavior of droplets under the icing condition have been conducted. In this research, the temperature profiling of the rolling droplet on a heated super-hydrophobic surface is experimentally observed by the dual luminescent imaging.
Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro
2013-01-01
Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ∼20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater. PMID:24040074
Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro
2013-01-01
Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ~20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.
NASA Astrophysics Data System (ADS)
Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.
2016-12-01
Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.
NASA Astrophysics Data System (ADS)
Schmid, T.; López-Martínez, J.; Guillaso, S.; Serrano, E.; D'Hondt, O.; Koch, M.; Nieto, A.; O'Neill, T.; Mink, S.; Durán, J. J.; Maestro, A.
2017-09-01
Satellite-borne Synthetic Aperture Radar (SAR) has been used for characterizing and mapping in two relevant ice-free areas in the South Shetland Islands. The objective has been to identify and characterize land surface covers that mainly include periglacial and glacial landforms, using fully polarimetric SAR C band RADARSAT-2 data, on Fildes Peninsula that forms part of King George Island, and Ardley Island. Polarimetric parameters obtained from the SAR data, a selection of field based training and validation sites and a supervised classification approach, using the support vector machine were chosen to determine the spatial distribution of the different landforms. Eight periglacial and glacial landforms were characterized according to their scattering mechanisms using a set of 48 polarimetric parameters. The mapping of the most representative surface covers included colluvial deposits, stone fields and pavements, patterned ground, glacial till and rock outcrops, lakes and glacier ice. The overall accuracy of the results was estimated at 81%, a significant value when mapping areas that are within isolated regions where access is limited. Periglacial surface covers such as stone fields and pavements occupy 25% and patterned ground over 20% of the ice-free areas. These are results that form the basis for an extensive monitoring of the ice-free areas throughout the northern Antarctic Peninsula region.
NASA Astrophysics Data System (ADS)
Schlegel, N.; Larour, E. Y.; Gardner, A. S.; Lang, C.; Miller, C. E.; van den Broeke, M. R.
2016-12-01
How Greenland ice flow may respond to future increases in surface runoff and to increases in the frequency of extreme melt events is unclear, as it requires detailed comprehension of Greenland surface climate and the ice sheet's sensitivity to associated uncertainties. With established uncertainty quantification tools run within the framework of Ice Sheet System Model (ISSM), we conduct decadal-scale forward modeling experiments to 1) quantify the spatial resolution needed to effectively force distinct components of the surface radiation budget, and subsequently surface mass balance (SMB), in various regions of the ice sheet and 2) determine the dynamic response of Greenland ice flow to variations in components of the net radiation budget. The Glacier Energy and Mass Balance (GEMB) software is a column surface model (1-D) that has recently been embedded as a module within ISSM. Using the ISSM-GEMB framework, we perform sensitivity analyses to determine how perturbations in various components of the surface radiation budget affect model output; these model experiments allow us predict where and on what spatial scale the ice sheet is likely to dynamically respond to changes in these parameters. Preliminary results suggest that SMB should be forced at at least a resolution of 23 km to properly capture dynamic ice response. In addition, Monte-Carlo style sampling analyses reveals that the areas with the largest uncertainty in mass flux are located near the equilibrium line altitude (ELA), upstream of major outlet glaciers in the North and West of the ice sheet. Sensitivity analysis indicates that these areas are also the most vulnerable on the ice sheet to persistent, far-field shifts in SMB, suggesting that continued warming, and upstream shift in the ELA, are likely to result in increased velocities, and consequentially SMB-induced thinning upstream of major outlet glaciers. Here, we extend our investigation to consider various components of the surface radiation budget separately, in order to determine how and where errors in these fields may independently impact ice flow. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere and Interdisciplinary Research in Earth Science Programs.
Ice-Shelf Melting Around Antarctica
NASA Astrophysics Data System (ADS)
Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.
2013-07-01
We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.
Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587
NASA Astrophysics Data System (ADS)
Warren, S. G.; Dadic, R.; Mullen, P.; Schneebeli, M.; Brandt, R. E.
2012-12-01
The albedos of snow and ice surfaces are, because of their positive feedback, crucial to the initiation, maintenance, and termination of a snowball event, as well as for determining the ice thickness on the ocean. Despite the name, Snowball Earth would not have been entirely snow-covered. As on modern Earth, evaporation would exceed precipitation over much of the tropical ocean. After a transient period with sea ice, the dominant ice type would probably be sea-glaciers flowing in from higher latitude. As they flowed equatorward into the tropical region of net sublimation, their surface snow and subsurface firn would sublimate away, exposing bare glacier ice to the atmosphere and to solar radiation. This ice would be freshwater (meteoric) ice, which originated from snow and firn, so it would contain numerous air bubbles, which determine the albedo. The modern surrogate for this type of ice (glacier ice exposed by sublimation, which has never experienced melting), are the bare-ice surfaces of the Antarctic Ice Sheet near the Trans-Antarctic Mountains. These areas have been well mapped because of their importance in the search for meteorites. A transect across an icefield can sample ice of different ages that has traveled to different depths en route to the sublimation front. On a 6-km transect from snow to ice near the Allan Hills, spectral albedo was measured and 1-m core samples were collected. This short transect is meant to represent a north-south transect across many degrees of latitude on the snowball ocean. Surfaces on the transect transitioned through the sequence: new snow - old snow - firn - young white ice - old blue ice. The transect from snow to ice showed a systematic progression of decreasing albedo at all wavelengths, as well as decreasing specific surface area (SSA; ratio of air-ice interface area to ice mass) and increasing density. The measured spectral albedos are integrated over wavelength and weighted by the spectral solar flux to obtain broadband albedos. These range from 0.8 for snow to 0.55-0.6 for blue ice, which is in the range that favors thick ice over the tropical ocean of Snowball Earth. Air bubbles in the ice, as well as cracks, are responsible for the reflection of sunlight; their contributions to SSA were determined by micro-computed tomography. Scattering by bubbles dominates; removing cracks from the radiative-transfer calculation causes only a slight reduction of albedo. Although what determines the albedo is the SSA of bubbles or snow grains, the broadband albedo also shows a systematic relation to the snow or ice density, suggesting that density might serve as a surrogate variable that will be easier to predict than SSA in an ice-sheet model, using a parameterization for firn densification.
NASA Astrophysics Data System (ADS)
Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.
2015-11-01
We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.
NASA Astrophysics Data System (ADS)
de la Peña, S.; Howat, I.; Behar, A.; Price, S. F.; Thanga, J.; Crowell, J. M.; Huseas, S.; Tedesco, M.
2016-12-01
Observations made in recent years by repeated altimetry from CryoSat-2 and NASA's Operation IceBridge reveal large fluctuations in the firn volume of the Greenland Ice Sheet. Although an order of magnitude smaller than ice thinning rates observed in some areas at the margins of the ice sheet, short-term departures in surface elevation trends occur over most of the accumulation zone of Greenland. Changes in the thickness of the firn column are influenced by variability in surface mass balance, firn compaction, and abrupt seasonal densification near the surface caused by refreezing at depth of variable amounts of surface meltwater in the summer. These processes and dynamic thinning cannot be differentiated from each other by altimetry alone. Until recently, nearly all information on density and surface mass balance changes over the firn layer came from ice core and snow pit stratigraphy that provided annual rates with relatively large uncertainties. Here we present direct, continuous measurements of firn density and surface mass balance along with annual estimates of firn ice content used to assess observed elevation change in the percolation zone of western Greenland in relation to firn processes. Since 2012, autonomous in-situ firn compaction sensors have monitored several sites in the catchment area of Jakobshavn Isbrae, and since 2015 surface mass balance and surface displacement has been measured continuously using a combination of sensors. In addition to identify the different components in the altimetry signal, The temporal resolution of the data acquired provide a means to monitor short-term changes in the near-surface firn, and identifying individual events causing surface elevation displacement.
Depth-to-Ice Map of a Southern Mars Site Near Melea Planum
NASA Technical Reports Server (NTRS)
2007-01-01
Color coding in this map of a far-southern site on Mars indicates the change in nighttime ground-surface temperature between summer and fall. This site, like most of high-latitude Mars, has water ice mixed with soil near the surface. The ice is probably in a rock-hard frozen layer beneath a few centimeters or inches of looser, dry soil. The amount of temperature change at the surface likely corresponds to how close to the surface the icy material lies. The dense, icy layer retains heat better than the looser soil above it, so where the icy layer is closer to the surface, the surface temperature changes more slowly than where the icy layer is buried deeper. On the map, areas of the surface that cooled more slowly between summer and autumn (interpreted as having the ice closer to the surface) are coded blue and green. Areas that cooled more quickly (interpreted as having more distance to the ice) are coded red and yellow. The depth to the top of the icy layer estimated from these observations suggests that in some areas, but not others, water is being exchanged by diffusion between atmospheric water vapor and subsurface water ice. Differences in what type of material lies above the ice appear to affect the depth to the ice. The area in this image with the greatest seasonal change in surface temperature corresponds to an area of sand dunes. This map and its interpretation are in a May 3, 2007, report in the journal Nature by Joshua Bandfield of Arizona State University, Tempe. The Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter collected the data presented in the map. The site is centered near 67 degrees south latitude, 36.5 degrees east longitude, near a plain named Melea Planum. This site is within the portion of the planet where, in 2002, the Gamma Ray Spectrometer suite of instruments on Mars Odyssey found evidence for water ice lying just below the surface. The information from the Gamma Ray Spectrometer is averaged over patches of ground hundreds of kilometers or miles wide. The information from the Thermal Emission Imaging System allows more than 100-fold higher resolution in mapping variations in the depth to ice. The Thermal Emission Imaging System observed the site in infrared wavelengths during night time, providing surface-temperature information. It did so once on Dec. 27, 2005, during late summer in Mars' southern hemisphere, and again on Jan. 22, 2006, the first day of autumn there. The colors on this map signify relative differences in how much the surface temperature changed between those two observations. Blue indicates the locations with the least change. Red indicates areas with most change. Modeling provides estimates that the range of temperature changes shown in this map corresponds to a range in depth-to-ice of less than 1 centimeter (0.4 inch) to more than 19 centimeters (more than 7.5 inches). The sensitivity of this method for estimating the depth is not good for depths greater than about 20 centimeters (8 inches). The temperature-change data are overlaid on a mosaic of black-and-white, daytime images taken in infrared wavelengths by the same camera, providing information about shapes in the landscape. The 20-kilometer scale bar is 12.4 miles long. NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Science Mission Directorate, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Space Systems, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Ray, Debajyoti; Malongwe, Joseph K'Ekuboni; Klán, Petr
2013-07-02
The kinetics of the ozonation reaction of 1,1-diphenylethylene (DPE) on the surface of ice grains (also called "artificial snow"), produced by shock-freezing of DPE aqueous solutions or DPE vapor-deposition on pure ice grains, was studied in the temperature range of 268 to 188 K. A remarkable and unexpected increase in the apparent ozonation rates with decreasing temperature was evaluated using the Langmuir-Hinshelwood and Eley-Rideal kinetic models, and by estimating the apparent specific surface area of the ice grains. We suggest that an increase of the number of surface reactive sites, and possibly higher ozone uptake coefficients are responsible for the apparent rate acceleration of DPE ozonation at the air-ice interface at lower temperatures. The increasing number of reactive sites is probably related to the fact that organic molecules are displaced more to the top of a disordered interface (or quasi-liquid) layer on the ice surface, which makes them more accessible to the gas-phase reactants. The effect of NaCl as a cocontaminant on ozonation rates was also investigated. The environmental implications of this phenomenon for natural ice/snow are discussed. DPE was selected as an example of environmentally relevant species which can react with ozone. For typical atmospheric ozone concentrations in polar areas (20 ppbv), we estimated that its half-life on the ice surface would decrease from ∼5 days at 258 K to ∼13 h at 188 K at submonolayer DPE loadings.
Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael
2014-01-01
A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.
Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.
2016-01-01
A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.
Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery
NASA Astrophysics Data System (ADS)
Wright, Nicholas C.; Polashenski, Chris M.
2018-04-01
Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.
Tree recovery from ice storm injury
Kevin T. Smith
2015-01-01
Ice storms are part of nature, particularly in northeastern North America. The combination of air and surface temperatures, precipitation, and wind that result in damaging layers of ice is very specific, occurring infrequently at any given location. Across the region however, damaging ice is formed in fragmented areas every year. Occasionally as in December 2013 and...
The Role of Basal Channels in Ice Shelf Calving.
NASA Astrophysics Data System (ADS)
Dow, C. F.; Lee, W. S.; Greenbaum, J. S.; Greene, C. A.; Blankenship, D. D.; Poinar, K.; Forrest, A.; Young, D. A.; Zappa, C. J.
2017-12-01
Increased rates of ice shelf break-up drives acceleration of grounded glacial ice into the ocean, resulting in sea-level rise. Ice shelves are vulnerable to thinning, which make them more susceptible to calving. Here, we examine basal channels under three ice shelves that locally thin the ice and drive formation of transverse ice shelf fractures. The basal channels also cause surface depressions due to hydrostatic buoyancy effects and can draw in surface water to form rivers. These rivers exacerbate thinning by surface melting and hydraulic loading, and can accelerate rifting when they flow into the transverse fractures. Our investigation focuses on Nansen Ice Shelf in the Ross Sea Embayment, East Antarctica. We use ice-sounding radar and single-beam laser altimeter data from two aerogeophysical campaigns conducted in 2011 and 2014, ice surface DEM reconstruction, and satellite imagery analysis, to examine the role of a substantial basal channel in the stability of this ice shelf. Nansen Ice Shelf calved two large icebergs totaling 214 km2 in area in April 2016. The transverse fracture that eventually rifted to form these icebergs initiated directly over the basal channel in 1987. In years when surface water formed on Nansen Ice Shelf, a river flowed into the transverse fracture. In November 2016, we identified a new fracture over the basal channel during in-situ data collection. We compare the Nansen Ice Shelf fractures with those at other vulnerable ice-shelf systems, including Petermann Glacier in Greenland and Totten Glacier in East Antarctica, to evaluate the role that basal channels may play in simultaneous basal and surface weakening and their consequent effect on ice-shelf rifting and stability.
Malaspina Glacier: a modern analog to the Laurentide Glacier in New England
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavson, T.C.; Boothroyd, J.C.
1985-01-01
The land-based temperate Malaspina Glacier is a partial analog to the late Wisconsinan Laurentide Ice Sheet that occupied New England and adjacent areas. The Malaspina occupies a bedrock basin similar to basins occupied by the margin of the Laurentide Ice Sheet. Ice lobes of the Malaspina are similar in size to end moraine lobes in southern New England and Long Island,New York. Estimated ice temperature, ablation rates, surface slopes and meltwater discharge per unit of surface area for the Laurentide Ice Sheet are similar to those for the Malaspina Glacier. In a simple hydrologic-fluvial model for the Malaspina Glacier meltwatermore » moves towards the glacier bed and down-glacier along intercrystalline pathways, crevasses and moulins, and a series of tunnels. Regolith and bedrock at the glacier floor, which are eroded and transported by subglacial and englacial streams, are the sources of essentially all fluvio-lacustrine sediment on the Malaspina Foreland. Supraglacial eskers containing coarse gravels occur as much as 100 m above the glacier bed and are evidence that bedload can be lifted hydraulically. Subordinant amounts of sediment are contributed to outwash by small surface streams draining the ice margin. By analogy a similar hydrologic-fluvial system existed along the southeastern margin of the Laurentide Ice Sheet. Subglacial regolith and bedrock eroded from beneath the Laurentide Ice Sheet by meltwater was also the source of most glaciofluvial and glaciolacustrine deposits in southern New England, not sediment carried to the surface of the ice sheet along shear planes and washed off the glacier by meltwater.« less
NASA Technical Reports Server (NTRS)
Pruzan, Daniel A.; Khatkhate, Ateen A.; Gerardi, Joseph J.; Hickman, Gail A.
1993-01-01
A reliable way to detect and measure ice accretion during flight is required to reduce the hazards of icing currently threatening present day aircraft. Many of the sensors used for this purpose are invasive (probe) sensors which must be placed in areas of the airframe where ice does not naturally form. Due to the difference in capture efficiency of the exposed surface, difficulties result in correlating the ice accretion on the probe to what is happening on a number of vastly different airfoil sections. Most flush mounted sensors in use must be integrated into the aircraft surface by cutting or drilling the aircraft surface. An alternate type of ice detector which is based on a NASA patent is currently being investigated at Innovative Dynamics, Inc. (IDI). Results of the investigation into the performance of different capacitive type sensor designs, both rigid as well as elastic, are presented.
Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Matthew J.; Perego, Mauro; Andrews, Lauren C.
Moulins permit access of surface meltwater to the glacier bed, causing basal lubrication and ice speedup in the ablation zone of western Greenland during summer. In spite of the substantial impact of moulins on ice dynamics, the conditions under which they form are poorly understood. We assimilate a time series of ice surface velocity from a network of eleven Global Positioning System receivers into an ice sheet model to estimate ice sheet stresses during winter, spring, and summer in a ~30 × 10 km region. Surface-parallel von Mises stress increases slightly during spring speedup and early summer, sufficient to allowmore » formation of 16% of moulins mapped in the study area. Conversely, 63% of moulins experience stresses over the tensile strength of ice during a short (hours) supraglacial lake drainage event. Lake drainages appear to control moulin density, which is itself a control on subglacial drainage efficiency and summer ice velocities.« less
Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland
Hoffman, Matthew J.; Perego, Mauro; Andrews, Lauren C.; ...
2018-01-17
Moulins permit access of surface meltwater to the glacier bed, causing basal lubrication and ice speedup in the ablation zone of western Greenland during summer. In spite of the substantial impact of moulins on ice dynamics, the conditions under which they form are poorly understood. We assimilate a time series of ice surface velocity from a network of eleven Global Positioning System receivers into an ice sheet model to estimate ice sheet stresses during winter, spring, and summer in a ~30 × 10 km region. Surface-parallel von Mises stress increases slightly during spring speedup and early summer, sufficient to allowmore » formation of 16% of moulins mapped in the study area. Conversely, 63% of moulins experience stresses over the tensile strength of ice during a short (hours) supraglacial lake drainage event. Lake drainages appear to control moulin density, which is itself a control on subglacial drainage efficiency and summer ice velocities.« less
Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland
NASA Astrophysics Data System (ADS)
Hoffman, Matthew J.; Perego, Mauro; Andrews, Lauren C.; Price, Stephen F.; Neumann, Thomas A.; Johnson, Jesse V.; Catania, Ginny; Lüthi, Martin P.
2018-01-01
Moulins permit access of surface meltwater to the glacier bed, causing basal lubrication and ice speedup in the ablation zone of western Greenland during summer. Despite the substantial impact of moulins on ice dynamics, the conditions under which they form are poorly understood. We assimilate a time series of ice surface velocity from a network of eleven Global Positioning System receivers into an ice sheet model to estimate ice sheet stresses during winter, spring, and summer in a ˜30 × 10 km region. Surface-parallel von Mises stress increases slightly during spring speedup and early summer, sufficient to allow formation of 16% of moulins mapped in the study area. In contrast, 63% of moulins experience stresses over the tensile strength of ice during a short (hours) supraglacial lake drainage event. Lake drainages appear to control moulin density, which is itself a control on subglacial drainage efficiency and summer ice velocities.
Incorrect Match Detection Method for Arctic Sea-Ice Reconstruction Using Uav Images
NASA Astrophysics Data System (ADS)
Kim, J.-I.; Kim, H.-C.
2018-05-01
Shapes and surface roughness, which are considered as key indicators in understanding Arctic sea-ice, can be measured from the digital surface model (DSM) of the target area. Unmanned aerial vehicle (UAV) flying at low altitudes enables theoretically accurate DSM generation. However, the characteristics of sea-ice with textureless surface and incessant motion make image matching difficult for DSM generation. In this paper, we propose a method for effectively detecting incorrect matches before correcting a sea-ice DSM derived from UAV images. The proposed method variably adjusts the size of search window to analyze the matching results of DSM generated and distinguishes incorrect matches. Experimental results showed that the sea-ice DSM produced large errors along the textureless surfaces, and that the incorrect matches could be effectively detected by the proposed method.
Advances in heterogeneous ice nucleation research: Theoretical modeling and measurements
NASA Astrophysics Data System (ADS)
Beydoun, Hassan
In the atmosphere, cloud droplets can remain in a supercooled liquid phase at temperatures as low as -40 °C. Above this temperature, cloud droplets freeze via heterogeneous ice nucleation whereby a rare and poorly understood subset of atmospheric particles catalyze the ice phase transition. As the phase state of clouds is critical in determining their radiative properties and lifetime, deficiencies in our understanding of heterogeneous ice nucleation poses a large uncertainty on our efforts to predict human induced global climate change. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established model and parameterizations that accurately predict heterogeneous ice nucleation. Conversely, the sparsity of reliable measurement techniques available struggle to be interpreted by a single consistent theoretical or empirical framework, which results in layers of uncertainty when attempting to extrapolate useful information regarding ice nucleation for use in atmospheric cloud models. In this dissertation a new framework for describing heterogeneous ice nucleation is developed. Starting from classical nucleation theory, the surface of an ice nucleating particle is treated as a continuum of heterogeneous ice nucleating activity and a particle specific distribution of this activity g is derived. It is hypothesized that an individual particle species exhibits a critical surface area. Above this critical area the ice nucleating activity of a particle species can be described by one g distribution, g, while below it g expresses itself expresses externally resulting in particle to particle variability in ice nucleating activity. The framework is supported by cold plate droplet freezing measurements for dust and biological particles in which the total surface area of particle material available is varied. Freezing spectra above a certain surface area are shown to be successfully fitted with g while a process of random sampling from g can predict the freezing behavior below the identified critical surface area threshold. The framework is then extended to account for droplets composed of multiple particle species and successfully applied to predict the freezing spectra of a mixed proxy for an atmospheric dust-biological particle system. The contact freezing mode of ice nucleation, whereby a particle induces freezing upon collision with a droplet, is thought to be more efficient than particle initiated immersion freezing from within the droplet bulk. However, it has been a decades' long challenge to accurately measure this ice nucleation mode, since it necessitates reliably measuring the rate at which particles hit a droplet surface combined with direct determination of freezing onset. In an effort to remedy this longstanding deficiency a temperature controlled chilled aerosol optical tweezers capable of stably isolating water droplets in air at subzero temperatures has been designed and implemented. The new temperature controlled system retains the powerful capabilities of traditional aerosol optical tweezers: retrieval of a cavity enhanced Raman spectrum which could be used to accurately determine the size and refractive index of a trapped droplet. With these capabilities, it is estimated that the design can achieve ice supersaturation conditions at the droplet surface. It was also found that a KCl aqueous droplet simultaneously cooling and evaporating exhibited a significantly higher measured refractive index at its surface than when it was held at a steady state temperature. This implies the potential of a "salting out" process. Sensitivity of the cavity enhanced Raman spectrum as well as the visual image of a trapped droplet to dust particle collisions is shown, an important step in measuring collision frequencies of dust particles with a trapped droplet. These results may pave the way for future experiments of the exceptionally poorly understood contact freezing mode of ice nucleation.
Impact Studies of a 2 C Global Warming on the Arctic Sea Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2004-01-01
The possible impact of an increase in global temperatures of about 2 C, as may be caused by a doubling of atmospheric CO2, is studied using historical satellite records of surface temperatures and sea ice from late 1970s to 2003. Updated satellite data indicate that the perennial ice continued to decline at an even faster rate of 9.2 % per decade than previously reported while concurrently, the surface temperatures have steadily been going up in most places except for some parts of northern Russia. Surface temperature is shown to be highly correlated with sea ice concentration in the seasonal sea ice regions. Results of regression analysis indicates that for every 1 C increase in temperature, the perennial ice area decreases by about 1.48 x 10(exp 6) square kilometers with the correlation coefficient being significant but only -0.57. Arctic warming is estimated to be about 0.46 C per decade on average in the Arctic but is shown to be off center with respect to the North Pole, and is prominent mainly in the Western Arctic and North America. The length of melt has been increasing by 13 days per decade over sea ice covered areas suggesting a thinning in the ice cover. The length of melt also increased by 5 days per decade over Greenland, 7 days per decade over the permafrost areas of North America but practically no change in Eurasia. Statistically derived projections indicate that the perennial sea ice cover would decline considerably in 2025, 2035, and 2060 when temperatures are predicted by models to reach the 2 C global increase.
Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces
NASA Technical Reports Server (NTRS)
Cassidy, W. A. (Editor); Whillans, I. M. (Editor)
1990-01-01
The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material.
Metya, Atanu K; Singh, Jayant K; Müller-Plathe, Florian
2016-09-29
In this work, we address the nucleation behavior of a supercooled monatomic cylindrical water droplet on nanoscale textured surfaces using molecular dynamics simulations. The ice nucleation rate at 203 K on graphite based textured surfaces with nanoscale roughness is evaluated using the mean fast-passage time method. The simulation results show that the nucleation rate depends on the surface fraction as well as the wetting states. The nucleation rate enhances with increasing surface fraction for water in the Cassie-Baxter state, while contrary behavior is observed for the case of Wenzel state. Based on the spatial histogram distribution of ice formation, we observed two pathways for ice nucleation. Heterogeneous nucleation is observed at a high surface fraction. However, the probability of homogeneous ice nucleation events increases with decreasing surface fraction. We further investigate the role of the nanopillar height in ice nucleation. The nucleation rate is enhanced with increasing nanopillar height. This is attributed to the enhanced contact area with increasing nanopillar height and the shift in nucleation events towards the three-phase contact line associated with the nanotextured surface. The ice-surface work of adhesion for the Wenzel state is found to be 1-2 times higher than that in the Cassie-Baxter state. Furthermore, the work of adhesion of ice in the Wenzel state is found to be linearly dependent on the contour length of the droplet, which is in line with that reported for liquid droplets.
Surface-atmosphere decoupling limits accumulation at Summit, Greenland.
Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C
2016-04-01
Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.
Surface-atmosphere decoupling limits accumulation at Summit, Greenland
Berkelhammer, Max; Noone, David C.; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J.; O’Neill, Michael S.; Schneider, David; Steffen, Konrad; White, James W. C.
2016-01-01
Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland. PMID:27386509
Mechanisms of interannual- to decadal-scale winter Labrador Sea ice variability
NASA Astrophysics Data System (ADS)
Close, S.; Herbaut, C.; Houssais, M.-N.; Blaizot, A.-C.
2017-12-01
The variability of the winter sea ice cover of the Labrador Sea region and its links to atmospheric and oceanic forcing are investigated using observational data, a coupled ocean-sea ice model and a fully-coupled model simulation drawn from the CMIP5 archive. A consistent series of mechanisms associated with high sea ice cover are found amongst the various data sets. The highest values of sea ice area occur when the northern Labrador Sea is ice covered. This region is found to be primarily thermodynamically forced, contrasting with the dominance of mechanical forcing along the eastern coast of Baffin Island and Labrador, and the growth of sea ice is associated with anomalously fresh local ocean surface conditions. Positive fresh water anomalies are found to propagate to the region from a source area off the southeast Greenland coast with a 1 month transit time. These anomalies are associated with sea ice melt, driven by the enhanced offshore transport of sea ice in the source region, and its subsequent westward transport in the Irminger Current system. By combining sea ice transport through the Denmark Strait in the preceding autumn with the Greenland Blocking Index and the Atlantic Multidecadal Oscillation Index, strong correlation with the Labrador Sea ice area of the following winter is obtained. This relationship represents a dependence on the availability of sea ice to be melted in the source region, the necessary atmospheric forcing to transport this offshore, and a further multidecadal-scale link with the large-scale sea surface temperature conditions.
1979-03-04
Europa , the smallest of the Galilean satellites, or Moons , of Jupiter , is seen here as taken by Voyager 1. Range : 2 million km (1.2 million miles) is centered at about the 300 degree Meridian. The bright areas are probably ice deposits, while the dark may be rocky surface or areas of more patchy ice distribution. Most unusual features are systems of linear structures crossing the surface in various directions. Of these, some of which are over 1000 km. long , & 2 or 3 hundred km. wide, may be faults which have disrupted the surface.
Impact of Surface Roughness on AMSR-E Sea Ice Products
NASA Technical Reports Server (NTRS)
Stroeve, Julienne C.; Markus, Thorsten; Maslanik, James A.; Cavalieri, Donald J.; Gasiewski, Albin J.; Heinrichs, John F.; Holmgren, Jon; Perovich, Donald K.; Sturm, Matthew
2006-01-01
This paper examines the sensitivity of Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures (Tbs) to surface roughness by a using radiative transfer model to simulate AMSR-E Tbs as a function of incidence angle at which the surface is viewed. The simulated Tbs are then used to examine the influence that surface roughness has on two operational sea ice algorithms, namely: 1) the National Aeronautics and Space Administration Team (NT) algorithm and 2) the enhanced NT algorithm, as well as the impact of roughness on the AMSR-E snow depth algorithm. Surface snow and ice data collected during the AMSR-Ice03 field campaign held in March 2003 near Barrow, AK, were used to force the radiative transfer model, and resultant modeled Tbs are compared with airborne passive microwave observations from the Polarimetric Scanning Radiometer. Results indicate that passive microwave Tbs are very sensitive even to small variations in incidence angle, which can cause either an over or underestimation of the true amount of sea ice in the pixel area viewed. For example, this paper showed that if the sea ice areas modeled in this paper mere assumed to be completely smooth, sea ice concentrations were underestimated by nearly 14% using the NT sea ice algorithm and by 7% using the enhanced NT algorithm. A comparison of polarization ratios (PRs) at 10.7,18.7, and 37 GHz indicates that each channel responds to different degrees of surface roughness and suggests that the PR at 10.7 GHz can be useful for identifying locations of heavily ridged or rubbled ice. Using the PR at 10.7 GHz to derive an "effective" viewing angle, which is used as a proxy for surface roughness, resulted in more accurate retrievals of sea ice concentration for both algorithms. The AMSR-E snow depth algorithm was found to be extremely sensitive to instrument calibration and sensor viewing angle, and it is concluded that more work is needed to investigate the sensitivity of the gradient ratio at 37 and 18.7 GHz to these factors to improve snow depth retrievals from spaceborne passive microwave sensors.
Entrainment, transport and concentration of meteorites in polar ice sheets
NASA Technical Reports Server (NTRS)
Drewry, D. J.
1986-01-01
Glaciers and ice sheets act as slow-moving conveyancing systems for material added to both their upper and lower surfaces. Because the transit time for most materials is extremely long the ice acts as a major global storage facility. The effects of horizontal and vertical motions on the flow patterns of Antarctic ice sheets are summarized. The determination of the source areas of meteorites and their transport paths is a problem of central importance since it relates not only directly to concentration mechanisms but also to the wider issues in glaciology and meteorites. The ice and snow into which a meteorite falls, and which moves with it to the concentration area, encodes information about the infall area. The principle environmental conditions being former elevation, temperature (also related to elevation), and age of the ice. This encoded information could be used to identify the infall area.
Extensive Liquid Meltwater Storage in Firn Within the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Forster, Richard R.; Box, Jason E.; vandenBroeke, Michael R.; Miege, Clement; Burgess, Evan W.; vanAngelen, Jan H.; Lenaerts, Jan T. M.; Koenig, Lora S.; Paden, John; Lewis, Cameron;
2013-01-01
The accelerating loss of mass from the Greenland ice sheet is a major contribution to current sea level rise. Increased melt water runoff is responsible for half of Greenlands mass loss increase. Surface melt has been increasing in extent and intensity, setting a record for surface area melt and runoff in 2012. The mechanisms and timescales involved in allowing surface melt water to reach the ocean where it can contribute to sea level rise are poorly understood. The potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is significant, and could delay its sea-level contribution. Here we describe direct observation of water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet,where snow accumulation and melt rates are high. This represents a previously unknown storagemode for water within the ice sheet. Ice cores, groundairborne radar and a regional climatemodel are used to estimate aquifer area (70 plue or minus 10 x 10(exp 3) square kilometers ) and water table depth (5-50 m). The perennial firn aquifer represents a new glacier facies to be considered 29 in future ice sheet mass 30 and energy budget calculations.
Effects of Mackenzie River Discharge and Bathymetry on Sea Ice in the Beaufort Sea
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Hall, D. K.; Rigor, I. G; Li, P.; Neumann, G.
2014-01-01
Mackenzie River discharge and bathymetry effects on sea ice in the Beaufort Sea are examined in 2012 when Arctic sea ice extent hit a record low. Satellite-derived sea surface temperature revealed warmer waters closer to river mouths. By 5 July 2012, Mackenzie warm waters occupied most of an open water area about 316,000 sq km. Surface temperature in a common open water area increased by 6.5 C between 14 June and 5 July 2012, before and after the river waters broke through a recurrent landfast ice barrier formed over the shallow seafloor offshore the Mackenzie Delta. In 2012, melting by warm river waters was especially effective when the strong Beaufort Gyre fragmented sea ice into unconsolidated floes. The Mackenzie and other large rivers can transport an enormous amount of heat across immense continental watersheds into the Arctic Ocean, constituting a stark contrast to the Antarctic that has no such rivers to affect sea ice.
The Secret of the Svalbard Sea Ice Barrier
NASA Technical Reports Server (NTRS)
Nghiem, Son V.; Van Woert, Michael L.; Neumann, Gregory
2004-01-01
An elongated sea ice feature called the Svalbard sea ice barrier rapidly formed over an area in the Barents Sea to the east of Svalbard posing navigation hazards. The secret of its formation lies in the bottom bathymetry that governs the distribution of cold Arctic waters masses, which impacts sea ice growth on the water surface.
Review of Anti-Icing/Ice Release Systems
2014-01-29
be superhydrophobic and tend to be fragile, Figure 3. Note if the water completely wets the surface then the adhesion energy can be much higher due...to the increase in surface area. γSV γLV γSL θ 3 Figure 3: Water drops on a superhydrophobic coating [11]. Freezing of a drop... Superhydrophobic coatings. • Other: Phase change materials that change shape/volume may reduce the adhesive strength of the ice-coating bond. 4
NASA Astrophysics Data System (ADS)
Divine, Dmitry; Granskog, Mats A.; Hudson, Stephen R.; Pedersen, Christina A.; Karlsen, Tor I.; Gerland, Sebastian
2014-05-01
The paper presents the results of analysis of the radiative properties of first year sea ice in advanced stages of melt. The presented technique is based on the upscaling in situ point measurements of surface albedo to the regional (150 km) spatial scale using aerial photographs of sea ice captured by a helicopter borne camera setup. The sea ice imagery as well as in situ snow and ice data were collected during the eight day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic north of Svalbard at 83.5 N during 27 July-03 August 2012. In total some 100 ground albedo measurements were made on melting sea ice in locations representative of the four main types of sea ice surface identified using the discriminant analysis -based classification technique. Some 11000 images from a total of six ice survey flights adding up to some 770 km of flight tracks covering about 28 km2 of sea ice surface were classified to yield the along-track distributions of four major surface classes: bare ice, dark melt ponds, bright melt ponds and open water. Results demonstrated a relative homogeneity of sea ice cover in the study area allowing for upscaling the local optical measurements to the regional scale. For the typical 10% open water fraction and 25% melt pond coverage, with a ratio of dark to bright ponds of 2 identified from selected images, the aggregate scale surface albedo of the area was estimated to be 0.42(0.40;0.44). The confidence intervals on the estimate were derived using the moving block bootstrap approach applied to the sequences of classified sea ice images and albedo of the four surface classes treated as random variables. Uncertainty in the mean estimates of local albedo from in situ measurements contributed some 65% to the variance of the estimated regional albedo with the remaining variance to be associated with the spatial inhomogeneity of sea ice cover. The results of the study are of relevance for the modeling of sea ice processes in climate simulations. It particularly concerns the period of summer melt when the optical properties of sea ice undergo substantial changes which the existing sea ice models experience most difficulties to accurately reproduce. That phase of a season is especially crucial for climate and ecosystem processes in the polar regions.
Yallop, Marian L; Anesio, Alexandre M; Perkins, Rupert G; Cook, Joseph; Telling, Jon; Fagan, Daniel; MacFarlane, James; Stibal, Marek; Barker, Gary; Bellas, Chris; Hodson, Andy; Tranter, Martyn; Wadham, Jemma; Roberts, Nicholas W
2012-01-01
Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet. PMID:23018772
Yallop, Marian L; Anesio, Alexandre M; Perkins, Rupert G; Cook, Joseph; Telling, Jon; Fagan, Daniel; MacFarlane, James; Stibal, Marek; Barker, Gary; Bellas, Chris; Hodson, Andy; Tranter, Martyn; Wadham, Jemma; Roberts, Nicholas W
2012-12-01
Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet.
Satellite Data Sets in the Polar Regions
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
We have generated about two decades of consistently derived geophysical parameters in the polar regions. The key parameters are sea ice concentration, surface temperature, albedo, and cloud cover statistics. Sea ice concentrations were derived from the Scanning Multichannel Microwave Radiometer (SMMR) data and the Special Scanning Cl Microwave Imager (SSM/I) data from several platforms using the enhanced Bootstrap Algorithm for the period 1978 through 1999. The new algorithm reduces the errors associated with spatial and temporal variations in the emissivity and surface temperatures of sea ice. Also, bad data at ocean/land interfaces are identified and deleted in an unsupervised manner. Surface ice temperature, albedo and cloud cover statistics are derived simultaneously from the Advanced Very High Resolution Radiometer (AVHRR) data from 1981 through 1999 and mapped at a higher resolution but the same format as the ice concentration data. The technique makes use these co-registered ice concentration maps to enable cloud masking to be done separately for open ocean, sea ice and land areas. The effect of inversion is minimized by taking into consideration the expected changes in the effect of inversion with altitude, especially in the Antarctic. A technique for ice type regional classification has also been developed using multichannel cluster analysis and a neural network. This provide a means to identify large areas of thin ice, first year ice, and older ice types. The data sets have been shown to be coherent with each other and provide a powerful tool for in depth studies of the currently changing Arctic and Antarctic environment.
Atmospheric Science Data Center
2013-05-20
... Surface Emissivity Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Large Decadal Decline of the Arctic Multiyear Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2011-01-01
The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the extent and area remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic ice cover means a reduction in average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007 suggesting a strong role of second year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear ice record which could explain in part the slight recovery in the last three years.
Sediments in Arctic sea ice: Implications for entrainment, transport and release
Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn
1994-01-01
Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81??N and 83??N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms. ?? 1994.
Impact of surface roughness on L-band emissivity of the sea ice
NASA Astrophysics Data System (ADS)
Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.
2015-12-01
In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.
Direct measurements of meltwater runoff on the Greenland ice sheet surface
NASA Astrophysics Data System (ADS)
Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.
2017-12-01
Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.
Direct measurements of meltwater runoff on the Greenland ice sheet surface.
Smith, Laurence C; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T; Chu, Vena W; Rennermalm, Åsa K; Ryan, Jonathan C; Cooper, Matthew G; Gleason, Colin J; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L; Cullather, Richard I; Zhao, Bin; Willis, Michael J; Hubbard, Alun; Box, Jason E; Jenner, Brittany A; Behar, Alberto E
2017-12-12
Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km 2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. Copyright © 2017 the Author(s). Published by PNAS.
Direct measurements of meltwater runoff on the Greenland ice sheet surface
Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.
2017-01-01
Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland’s midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. PMID:29208716
Moulin Migration and Development on the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Chu, V. W.; Yang, L.
2017-12-01
Extensive river networks that terminate into moulins efficiently drain the surface of the Greenland ice sheet. These river moulins connect surface meltwater to englacial and subglacial drainage networks, where increased meltwater can enhance ice sliding dynamics. Previous moulin studies were limited to small geographic areas using field observations and/or high-resolution aerial/satellite imagery, or to medium-resolution satellite imagery for larger areas. In this study, high-resolution moulin maps created from WorldView-1/2/3 imagery near Russell Glacier in southwest Greenland show development of moulins and their migration between 2012 and 2015. Moulins are mapped and categorized as being located: in crevasse fields, along a single ice fracture, within drained lake basins, or having no visible formation mechanism. A majority of moulins mapped in 2015 (73%) are linked to moulins in 2012 and are analysed for their movement patterns and compared to ice velocity and strain rates. New moulins most commonly form in crevassed, thinner ice near the ice sheet edge, but significant quantities also develop at higher elevations (22% above 1300 m elevation).
Dynamics of ice nucleation on water repellent surfaces.
Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L
2012-02-14
Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.
NASA Astrophysics Data System (ADS)
Dadic, R.; Mullen, P.; Schneebeli, M.; Brandt, R. E.; Fitzpatric, M.; Carns, R.; Warren, S. G.
2012-04-01
The albedos of snow and ice surfaces are, because of their positive feedback, crucial to the initiation, continuation, and termination of a snowball event, as well as for determining the ice thickness on the ocean. Despite the name, Snowball Earth would not have been entirely snow-covered. As on modern Earth, evaporation would exceed precipitation over much of the tropical ocean. After a transient period with sea ice, the dominant ice type would probably be sea-glaciers flowing in from higher latitude. As they flowed equatorward into the tropical region of net sublimation, their surface snow and subsurface firn would sublimate away, exposing bare glacier ice to the atmosphere and to solar radiation. This ice would be freshwater (meteoric) ice, which originated from snow and firn, so it would contain numerous air bubbles, which determine the albedo. The modern surrogate for this type of ice (glacier ice exposed by pure sublimation, which has never experienced melting), are the bare-ice surfaces of the East Antarctic Ice Sheet near the Trans-Antarctic Mountains. These areas have been well mapped because of their importance in the search for meteorites. A transect across an icefield can potentially sample ice of different ages that has traveled to different depths en route to the sublimation front. We examined a 6-km transect from snow to ice near the Allan Hills (77 S, 158 E, 2000 m ASL), measuring spectral albedo and collecting 1-m core samples. This short transect is a surrogate of a north-south transect across many degrees of latitude on the Snowball ocean. Surfaces on the transect transitioned through the sequence: new snow - old snow - firn - young white ice - old blue ice. The transect from snow to ice showed a systematic progression of decreasing albedo at all wavelengths, as well as decreasing specific surface area (SSA; ratio of air-ice interface area to ice mass) and increasing density. The measured spectral albedos are integrated over wavelength and weighted by the spectral solar flux to obtain broadband albedos. These range from 0.8 for snow to 0.55 for blue ice. Although what determines the albedo is the SSA of bubbles or snow grains, the broadband albedo also shows a systematic relation to the snow or ice density, suggesting that density might serve as a surrogate variable that will be easier to predict than SSA in an ice-sheet model, using a parameterization for firn densification. The ice cores were analyzed by micro-CT (computer tomography) for bubble morphology, cracks (mainly thermal cracks), and SSA. The SSA is used in a radiative transfer model to explain the measured albedo spectra. We found that thermal cracks in the Allan Hills may be more important than in the equatorial region of Snowball Earth. We tried to separate the effects of cracks from original air bubbles by separately computing their individual SSAs in the CT images, and using those SSAs in the albedo model. These methods allow us to estimate a range of albedos for the different possible regions and climatic conditions on low latitudes of Snowball Earth.
Retrieval of total water vapour in the Arctic using microwave humidity sounders
NASA Astrophysics Data System (ADS)
Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg
2018-04-01
Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.
Atmospheric Science Data Center
2013-05-20
... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
NASA Astrophysics Data System (ADS)
Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.
2015-12-01
We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.
Centuries of intense surface melt on Larsen C Ice Shelf
NASA Astrophysics Data System (ADS)
Bevan, Suzanne L.; Luckman, Adrian; Hubbard, Bryn; Kulessa, Bernd; Ashmore, David; Kuipers Munneke, Peter; O'Leary, Martin; Booth, Adam; Sevestre, Heidi; McGrath, Daniel
2017-12-01
Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula (AP), Larsen C Ice Shelf (LCIS) has become the focus of ongoing investigation regarding its future stability. The ice shelf experiences surface melt and commonly features surface meltwater ponds. Here, we use a flow-line model and a firn density model (FDM) to date and interpret observations of melt-affected ice layers found within five 90 m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal dry compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice measured in two boreholes in Cabinet Inlet, which is close to the Antarctic Peninsula mountains - a region affected by föhn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flow-line model shows that, whilst preconditioning of the snow began in the late 1960s, it was probably not until the early 1990s that the modern period of ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, at 61 m in one of our Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, at 69 m in a mid-shelf borehole, formed at the same time on the edge of the pond area. Further south, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west-east and north-south gradient in the past melt distribution resembles current spatial patterns of surface melt intensity.
Monitoring Subsurface Ice-Ocean Processes Using Underwater Acoustics in the Ross Sea
NASA Astrophysics Data System (ADS)
Haxel, J. H.; Dziak, R. P.; Matsumoto, H.; Lee, W. S.; Yun, S.
2016-12-01
The Ross Sea is a dynamic area of ice-ocean interaction, where a large component of the Southern Ocean's sea ice formation occurs within regional polynyas in addition to the destructive processes happening at the seaward boundary of the Ross Ice Shelf. Recent studies show the sea-ice season has been lengthening and the sea ice extent has been growing with more persistent and larger regional polynyas. These trends have important implications for the Ross Sea ecosystem with polynyas supporting high rates of primary productivity in the area. Monitoring trends in sea ice and ice shelf dynamics in the Southern Ocean has relied heavily on satellite imagery and remote sensing methods despite a significant portion of these physical processes occurring beneath the ocean surface. In January 2014, an ocean bottom hydrophone (OBH) was moored on the seafloor in the polynya area of Terra Nova Bay in the northwest region of the Ross Sea, north of the Drygalski Ice Tongue. The OBH recorded a year long record of the underwater low frequency acoustic spectrum up to 500 Hz from January 29 until it was recovered the following December 17, 2014. The acoustic records reveal a complex annual history of ice generated signals with over 50,000 detected events. These ice generated events related to collisions and cracking provide important insight for the timing and intensity of the ice-ocean dynamics happening below the sea surface as the polynya grows and expands and the nearby Drygalski ice tongue flows into Terra Nova Bay. Additionally, high concentrations of baleen whale vocalizations in frequencies ranging from 200-400 Hz from September - December suggest a strong seasonal presence of whales in this ecologically important polynya region.
Variations in the amount of water ice on Ceres' surface suggest a seasonal water cycle.
Raponi, Andrea; De Sanctis, Maria Cristina; Frigeri, Alessandro; Ammannito, Eleonora; Ciarniello, Mauro; Formisano, Michelangelo; Combe, Jean-Philippe; Magni, Gianfranco; Tosi, Federico; Carrozzo, Filippo Giacomo; Fonte, Sergio; Giardino, Marco; Joy, Steven P; Polanskey, Carol A; Rayman, Marc D; Capaccioni, Fabrizio; Capria, Maria Teresa; Longobardo, Andrea; Palomba, Ernesto; Zambon, Francesca; Raymond, Carol A; Russell, Christopher T
2018-03-01
The dwarf planet Ceres is known to host a considerable amount of water in its interior, and areas of water ice were detected by the Dawn spacecraft on its surface. Moreover, sporadic water and hydroxyl emissions have been observed from space telescopes. We report the detection of water ice in a mid-latitude crater and its unexpected variation with time. The Dawn spectrometer data show a change of water ice signatures over a period of 6 months, which is well modeled as ~2-km 2 increase of water ice. The observed increase, coupled with Ceres' orbital parameters, points to an ongoing process that seems correlated with solar flux. The reported variation on Ceres' surface indicates that this body is chemically and physically active at the present time.
Convection from Hemispherical and Conical Model Ice Roughness Elements in Stagnation Region Flows
NASA Technical Reports Server (NTRS)
Hughes, Michael T.; Shannon, Timothy A.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy
2016-01-01
To improve ice accretion prediction codes, more data regarding ice roughness and its effects on convective heat transfer are required. The Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research was used to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. In the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with multiple surfaces or sets of roughness panels, each with a different representation of ice roughness. The sets of roughness panels were constructed using two element distribution patterns that were created based on a laser scan of an iced airfoil acquired in the Icing Research Tunnel at NASA Glenn. For both roughness patterns, surfaces were constructed using plastic hemispherical elements, plastic conical elements, and aluminum conical elements. Infrared surface thermometry data from tests run in the VIST were used to calculate area averaged heat transfer coefficient values. The values from the roughness surfaces were compared to the smooth control surface, showing convective enhancement as high as 400% in some cases. The data gathered during this study will ultimately be used to improve the physical modeling in LEWICE or other ice accretion codes and produce predictions of in-flight ice accretion on aircraft surfaces with greater confidence.
Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J
2009-01-01
Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957
Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights
NASA Astrophysics Data System (ADS)
Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang
2017-04-01
The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.
Atmospheric Science Data Center
2013-05-17
... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
NASA Technical Reports Server (NTRS)
Brooks, R. L.
1981-01-01
Generalized surface slopes were computed for the Antarctic and Greenland ice sheets by differencing plotted contour levels and dividing them by the distance between the contours. It was observed that more than 90% of the ice sheets have surface slopes less than 1%. Seasat test mode-1 Seasat altimeter measurements over Greenland were analyzed by comparisons with collinear and intersecting normal mode Seasat altimeter passes. Over the ice sheet, the computed surface elevations from test mode-1 measurements were consistently lower by about 45 m and the AGC levels were down by approximately 6 dB. No test mode-1 data were acquired over Antarctica. It is concluded that analysis of the existing altimeter data base over the two ice sheets is crucial in designing a future improved altimeter tracking capability. It is recommended that additional waveform retracking be performed to characterize ice sheet topography as a function of geographic area and elevation.
NASA Astrophysics Data System (ADS)
Larour, E. Y.; Khazendar, A.; Seroussi, H. L.; Schlegel, N.; Csatho, B. M.; Schenk, A. F.; Rignot, E. J.; Morlighem, M.
2014-12-01
Altimetry signals from missions such as ICESat-1, CryoSat, EnviSat, as well as altimeters onboard Operation IceBridge provide vital insights into processes such as surface mass balance, mass transport and ice-flow dynamics. Historically however, ice-flow models have been focused on assimilating surface velocities from satellite-based radar observations, to infer properties such as basal friction or the position of the bedrock. Here, we leverage a new methodology based on automatic differentation of the Ice Sheet System Model to assimilate surface altimetry data into a reconstruction of the past decade of ice flow on the North Greenland area. We infer corrections to boundary conditions such as basal friction and surface mass balance, as well as corrections to the ice hardness, to best-match the observed altimetry record. We compare these corrections between glaciers such as Petermann Glacier, 79 North and Zacchariae Isstrom. The altimetry signals exhibit very different patterns between East and West, which translate into very different signatures for the inverted boundary conditions. This study gives us greater insights into what differentiates different basins, both in terms of mass transport and ice-flow dynamics, and what could bethe controlling mechanisms behind the very different evolutions of these basins.
Perennial water ice identified in the south polar cap of Mars
NASA Astrophysics Data System (ADS)
Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; OMEGA Team; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; Ignatiev, N.; Titov, D.; Zasova, L.; Pinet, P.; Sotin, C.; Hauber, E.; Hoffman, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Duxbury, T.; Forget, F.
2004-04-01
The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.
NASA Astrophysics Data System (ADS)
Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.
2010-08-01
We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.
Comparing the ice nucleation efficiencies of ice nucleating substrates to natural mineral dusts
NASA Astrophysics Data System (ADS)
Steinke, Isabelle; Funk, Roger; Höhler, Kristina; Haarig, Moritz; Hoffmann, Nadine; Hoose, Corinna; Kiselev, Alexei; Möhler, Ottmar; Leisner, Thomas
2014-05-01
Mineral dust particles in the atmosphere may act as efficient ice nuclei over a wide range of temperature and relative humidity conditions. The ice nucleation capability of dust particles mostly depends on the particle surface area and the associated physico-chemical surface properties. It has been observed that the surface-related ice nucleation efficiency of different dust particles and mineral species can vary by several orders of magnitude. However, the relation between aerosol surface properties and observed ice nucleation efficiency is still not completely understood due to the large variability of chemical compositions and morphological features. In order to gain a better understanding of small scale freezing processes, we investigated the freezing of several hundreds of small droplets (V=0.4 nl) deposited on materials with reasonably well defined surfaces such as crystalline silicon wafers, graphite and freshly cleaved mica sheets under atmospherically relevant conditions. These substrates are intended to serve as simple model structures compared to the surface of natural aerosol particles. To learn more about the impact of particle morphology on ice nucleation processes, we also investigated micro-structured silicon wafers with prescribed trenches. The ice nucleation efficiencies deduced from these experiments are expressed as ice nucleation active surface site density values. With this approach, the freezing properties of the above-described substrates could be compared to those of natural mineral dusts such as agricultural soil dusts, volcanic ash and fossil diatoms, which have been investigated in AIDA cloud chamber experiments. All tested ice nucleating substrates were consistently less efficient at nucleating ice than the natural mineral dusts. Crystalline silicon only had a negligible influence on the freezing of small droplets, leading to freezing near the homogeneous freezing temperature threshold. Applying surface structures to silicon led to a shift towards heterogeneous freezing. However, the measured ice nucleation active surface site densities were still smaller than those of mineral dusts.
NASA Astrophysics Data System (ADS)
Wohlleben, Trudy M. H.
Canadian High Arctic terrestrial ice masses and the polar atmosphere evolve codependently, and interactions between the two systems can lead to feedbacks, positive and negative. The two primary positive cryosphere-atmosphere feedbacks are: (1) The snow/ice-albedo feedback (where area changes in snow and/or ice cause changes in surface albedo and surface air temperatures, leading to further area changes in snow/ice); and (2) The elevation - mass balance feedback (where thickness changes in terrestrial ice masses cause changes to atmospheric circulation and precipitation patterns, leading to further ice thickness changes). In this thesis, numerical experiments are performed to: (1) quantify the magnitudes of the two feedbacks for chosen Canadian High Arctic terrestrial ice masses; and (2) to examine the direct and indirect consequences of surface air temperature changes upon englacial temperatures with implications for ice flow, mass flux divergence, and topographic evolution. Model results show that: (a) for John Evans Glacier, Ellesmere Island, the magnitude of the terrestrial snow/ice-albedo feedback can locally exceed that of sea ice on less than decadal timescales, with implications for glacier response times to climate perturbations; (b) although historical air temperature changes might be the direct cause of measured englacial temperature anomalies in various glacier and ice cap accumulation zones, they can also be the indirect cause of their enhanced diffusive loss; (c) while the direct result of past air temperature changes has been to cool the interior of John Evans Glacier, and its bed, the indirect result has been to create and maintain warm (pressure melting point) basal temperatures in the ablation zone; and (d) for Devon Ice Cap, observed mass gains in the northwest sector of the ice cap would be smaller without orographic precipitation and the mass balance---elevation feedback, supporting the hypothesis that this feedback is playing a role in the evolution of the ice cap.
NASA Technical Reports Server (NTRS)
Scambos, Ted
2003-01-01
A technique for improving elevation maps of the polar ice sheets has been developed using AVHRR images. The technique is based on 'photoclinometry' or 'shape from shading', a technique used in the past for mapping planetary surfaces where little elevation information was available. The fundamental idea behind photoclinometry is using the brightness of imaged areas to infer their surface slope in the sun-illuminated direction. Our version of the method relies on a calibration of the images based on an existing lower-resolution digital elevation model (DEM), and then using the images to improve the input DEM resolution to the scale of the image data. Most current DEMs covering the ice sheets are based on Radar altimetry data, and have an inherent resolution of 10 to 25 km at best - although the grid scale of the DEM is often finer. These DEMs are highly accurate (to less than 1 meter); but they report the mean elevation of a broad area, thus erasing smaller features of glaciological interest. AVHRR image data, when accurately geolocated and calibrated, provides surface slope measurements (based on the pixel brightness under known lighting conditions) every approximately 1.1 km. The limitations of the technique are noisiness in the image data, small variations in the albedo of the snow surface, and the integration technique used to create an elevation field from the image-derived slopes. Our study applied the technique to several ice sheet areas having some elevation data; Greenland, the Amery Ice Shelf, the Institute Ice Stream, and the Siple Coast. For the latter, the input data set was laser-altimetry data collected under NSF's SOAR Facility (Support Office for Aerogeophysical Research) over the onset area of the Siple Coast. Over the course of the grant, the technique was greatly improved and modified, significantly improving accuracy and reducing noise from the images. Several publications resulted from the work, and a follow-on proposal to NASA has been submitted to apply the same method to MODIS data using ICESat and other elevation input information. This follow-on grant will explore two applications that are facilitated by the improved surface morphology characterizations of the ice sheets: accumulation and temperature variations near small undulations in the ice.
NASA Technical Reports Server (NTRS)
Sanin, A. B.; Mitrofanov, I. G.; Kozyrev, A. S.; Litvak, M. L.; Tretyakov, V.; Smith, D. E.; Zuber, M. T.; Boynton, W.; Saunders, R. S.
2003-01-01
The first year of neutron mapping measurements from the Mars Odyssey spacecraft revealed enormous hydrogen-rich regions in the southern and northern hemispheres of the Martian crust that imply significant amounts of near surface water ice. The hydrogen-rich areas of the southern and northern regions appear generally comparable in spatial extent and water ice content. This observation is interesting in light of topography measured by the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor (MGS) spacecraft, which shows a significant difference in elevation between northern lowlands and southern highlands that could imply a difference in seasonal CO2 condensation. In this study we correlate the high energy neutron flux observed by HEND (Mars Odyssey) and surface elevation measured by MOLA in order to interpret the seasonal change in epithermal neutron flux in terms near-surface water ice content.
Surface water hydrology and the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.
2016-12-01
Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.
High friction on ice provided by elastomeric fiber composites with textured surfaces
NASA Astrophysics Data System (ADS)
Rizvi, R.; Naguib, H.; Fernie, G.; Dutta, T.
2015-03-01
Two main applications requiring high friction on ice are automobile tires and footwear. The main motivation behind the use of soft rubbers in these applications is the relatively high friction force generated between a smooth rubber contacting smooth ice. Unfortunately, the friction force between rubber and ice is very low at temperatures near the melting point of ice and as a result we still experience automobile accidents and pedestrian slips and falls in the winter. Here, we report on a class of compliant fiber-composite materials with textured surfaces that provide outstanding coefficients of friction on wet ice. The fibrous composites consist of a hard glass-fiber phase reinforcing a compliant thermoplastic polyurethane matrix. The glass-fiber phase is textured such that it is aligned transversally and protruding out of the elastomer surface. Our analysis indicates that the exposed fiber phase exhibits a "micro-cleat" effect, allowing for it to fracture the ice and increase the interfacial contact area thereby requiring a high force to shear the interface.
NASA Astrophysics Data System (ADS)
Chen, C.; Box, J. E.; Hock, R. M.; Cogley, J. G.
2011-12-01
Current estimates of global Mountain Glacier and Ice Caps (MG&IC) mass changes are subject to large uncertainties due to incomplete inventories and uncertainties in land surface classification. This presentation features mitigative efforts through the creation of a MODIS dependent land ice classification system and its application for glacier inventory. Estimates of total area of mountain glaciers [IPCC, 2007] and ice caps (including those in Greenland and Antarctica) vary 15%, that is, 680 - 785 10e3 sq. km. To date only an estimated 40% of glaciers (by area) is inventoried in the World Glacier Inventory (WGI) and made available through the World Glacier Monitoring System (WGMS) and the National Snow and Ice Data Center [NSIDC, 1999]. Cogley [2009] recently compiled a more complete version of WGI, called WGI-XF, containing records for just over 131,000 glaciers, covering approximately half of the estimated global MG&IC area. The glaciers isolated from the conterminous Antarctic and Greenland ice sheets remain incompletely inventoried in WGI-XF but have been estimated to contribute 35% to the MG&IC sea-level equivalent during 1961-2004 [Hock et al., 2009]. Together with Arctic Canada and Alaska these regions alone make up almost 90% of the area that is missing in the global WGI-XF inventory. Global mass balance projections tend to exclude ice masses in Greenland and Antarctica due to the paucity of data with respect to basic inventory base data such as area, number of glaciers or size distributions. We address the need for an accurate Greenland and Antarctic peninsula land surface classification with a novel glacier surface classification and inventory based on NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data gridded at 250 m pixel resolution. The presentation includes a sensitivity analysis for surface mass balance as it depends on the land surface classification. Works Cited +Cogley, J. G. (2009), A more complete version of the World Glacier Inventory, Ann. Glaciol. 50(53). +Hock, R., M. de Woul, V. Radi and M. Dyurgerov, 2009. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 36, L07501, doi:10.1029/2008GL037020. +IPCC, Climate Change 2007 The Physical Science Basis, 2007. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S. et al.) Cambridge University Press, Cambridge, UK.
Ice Types in the Beaufort Sea, Alaska
NASA Technical Reports Server (NTRS)
2003-01-01
Determining the amount and type of sea ice in the polar oceans is crucial to improving our knowledge and understanding of polar weather and long term climate fluctuations. These views from two satellite remote sensing instruments; the synthetic aperture radar (SAR) on board the RADARSAT satellite and the Multi-angle Imaging SpectroRadiometer (MISR), illustrate different methods that may be used to assess sea ice type. Sea ice in the Beaufort Sea off the north coast of Alaska was classified and mapped in these concurrent images acquired March 19, 2001 and mapped to the same geographic area.To identify sea ice types, the National Oceanic and Atmospheric Administration (NOAA) National Ice Center constructs ice charts using several data sources including RADARSAT SAR images such as the one shown at left. SAR classifies sea ice types primarily by how the surface and subsurface roughness influence radar backscatter. In the SAR image, white lines delineate different sea ice zones as identified by the National Ice Center. Regions of mostly multi-year ice (A) are separated from regions with large amounts of first year and younger ice (B-D), and the dashed white line at bottom marks the coastline. In general, sea ice types that exhibit increased radar backscatter appear bright in SAR and are identified as rougher, older ice types. Younger, smoother ice types appear dark to SAR. Near the top of the SAR image, however, red arrows point to bright areas in which large, crystalline 'frost flowers' have formed on young, thin ice, causing this young ice type to exhibit an increased radar backscatter. Frost flowers are strongly backscattering at radar wavelengths (cm) due to both surface roughness and the high salinity of frost flowers, which causes them to be highly reflective to radar energy.Surface roughness is also registered by MISR, although the roughness observed is at a different spatial scale. Older, rougher ice areas are predominantly backward scattering to the MISR cameras, whereas younger, smoother ice types are predominantly forward scattering. The MISR map at right was generated using a statistical classification routine (called ISODATA) and analyzed using ice charts from the National Ice Center. Five classes of sea ice were found based upon the classification of MISR angular data. These are described, based on interpretation of the SAR image, by the image key. Very smooth ice areas that are predominantly forward scattering are colored red. Frost flowers are largely smooth to the MISR visible band sensor and are mapped as forward scattering. Areas mapped as blue are predominantly backward scattering, and the other three classes have statistically distinct angular signatures and fall within the middle of the forward/backward scattering continuum. Some areas that may be first year or younger ice between the multi year ice floes are not discernible to SAR, illustrating how MISR potentially can make a unique contribution to sea ice mapping.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during Terra orbit 6663. The MISR image has been cropped to include an area that is 200 kilometers wide, and utilizes data from blocks 30 to 33 within World Reference System-2 path 71.MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Photographer : JPL Europa , the smallest of the Galilean satellites, or Moons , of Jupiter , is seen
NASA Technical Reports Server (NTRS)
1979-01-01
Photographer : JPL Europa , the smallest of the Galilean satellites, or Moons , of Jupiter , is seen here as taken by Voyager 1. Range : 2 million km (1.2 million miles) is centered at about the 300 degree Meridian. The bright areas are probably ice deposits, while the dark may be rocky surface or areas of more patchy ice distribution. Most unusual features are systems of linear structures crossing the surface in various directions. Of these, some of which are over 1000 km. long , & 2 or 3 hundred km. wide, may be faults which have disrupted the surface.
Large Decadal Decline of the Arctic Multiyear Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2012-01-01
The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in extent and area remained strongly negative at -12.2% and -13.5% decade (sup -1), respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data during the winters of 1979-2011 was studied, and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2% decade(sup -1), respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic ice cover means a reduction in the average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007, suggesting a strong role of second-year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8-9-yr cycle is apparent in the multiyear ice record, which could explain, in part, the slight recovery in the last 3 yr.
Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work
NASA Technical Reports Server (NTRS)
Scambos, Ted
2002-01-01
Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approx. O C and persistent melt pending is observed, a rapid retreat and disintegration occurs. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', 'B' and Wilkins Ice shelves) by the results of a previous grant under ADRO-1. Modeling of ice flow and the effects of meltwater indicated that melt pending accelerates shelf breakup by increasing fracture penetration. SAR data supplemented an AVHRR- and SSM/I-based image analysis of extent and surface characteristic changes. This funded grant is a revised, scaled-down version of an earlier proposal under the ADRO-2 NRA. The overall objective remains the same: we propose to build on the previous study by examining other ice shelves of the Antarctic and incorporate an examination of the climate-related characteristics of landfast ice. The study now considers just a few shelf and fast ice areas for study, and is funded for two years. The study regions are the northeastern Ross Ice Shelf, the Larsen 'B' and 'C' shelves, fast ice and floating shelf ice in the Pine Island Glacier area, and fast ice along the Wilkes Land coast. Further, rather than investigating a host of shelf and fast ice processes, we will home in on developing a series of characteristics associated with climate change over shelf and fast ice areas. Melt pending and break-up are the end stages of a response to a warming climate that may begin with increased melt event frequency (which changes both albedo and emissivity temporarily), changing firn backscatter (due to percolation features), and possibly increased rifting of the shelf surface. Fast ice may show some of these same processes on a seasonal timescale, providing insight into shelf evolution.
The clementine bistatic radar experiment: Evidence for ice on the moon
Spudis, P.D.; Nozette, S.; Lichtenberg, C.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E.
1998-01-01
Ice deposits, derived from comets and water-bearing meteorites hitting the Moon over geological times, have long been postulated to exist in dark areas near the poles of the Moon. The characteristics of radio waves beamed from the Clementine spacecraft into the polar areas, reflected from the Moon's surface, and received on the large dish antennas of the Deep Space Network here on Earth show that roughly the volume of a small lake (???0.9-1.8 km3) of water ice makes up part of the Moon's surface layer near the south pole. The discovery of ice near the lunar south pole has important ramifications for a permanent return to the Moon. These deposits could be used to manufacture rocket propellant and to support human life on the Moon. ?? 1998 MAHK Hayka/Interperiodica Publishing.
Spectroscopic and volumetric characterization of a non-microporous amorphous ice
NASA Astrophysics Data System (ADS)
Manca, C.; Martin, C.; Roubin, P.
2002-10-01
The aim of this Letter is to re-investigate the characterization of ice porosity. N 2, CH 4 and Ar adsorption on amorphous ice has been compared to that on crystalline ice at low temperatures, using adsorption isotherm volumetry and infrared spectroscopy simultaneously. Here we show that amorphous ice can present a large specific surface area and nevertheless be non-microporous; this provides new ways for the understanding of interstellar reactivity.
NASA Astrophysics Data System (ADS)
Jawak, S. D.; Luis, A. J.
2017-12-01
Estimating mass loss of the Antarctic ice sheet caused by iceberg calving is a challenging job. Antarctica is surrounded by a variety of large, medium and small sized ice shelves, glacier tongues and coastal areas without offshore floating ice masses. It is possible to monitor surface structures on the continental ice and the ice shelves as well as calved icebergs using NASA-ISRO synthetic aperture radar (NISAR) satellite images in future. The NISAR, which is planned to be launched in 2020, can be used as an all-weather and all-season system to classify the coastline of Antarctica to map patterns of surface structures close to the calving front. Additionally, classifying patterns and density of surface structures distributed over the ice shelves and ice tongues can be a challenging research where NISAR can be of a great advantage. So this work explores use of NISAR to map surface structures visible on ice shelves which can provide advisories to field teams. The ice shelf fronts has been categorized into various classes based on surface structures relative to the calving front within a 30 km-wide seaward strip. The resulting map of the classified calving fronts around Antarctica and their description would provide a detailed representation of crevasse formation and dominant iceberg in the southern ocean which pose a threat to navigation of Antarctic bound ships.
Massive subsurface ice formed by refreezing of ice-shelf melt ponds
Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian
2016-01-01
Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades. PMID:27283778
Surges of outlet glaciers from the Drangajökull ice cap, northwest Iceland
NASA Astrophysics Data System (ADS)
Brynjólfsson, Skafti; Schomacker, Anders; Korsgaard, Niels J.; Ingólfsson, Ólafur
2016-09-01
Surface elevation and volume changes of the Drangajökull surge-type glaciers, Reykjarfjarðarjökull and Leirufjarðarjökull, were studied by comparing digital elevation models that pre-date and post-date their most recent surges. Annual glacier-frontal measurements were used to estimate average ice velocities during the last surge of the glaciers. The observations show a distinct ice discharge, most of which was from the upper reservoir areas, down to the receiving areas during the surges. The surface draw-down in the reservoir areas was usually 10-30 m during the surges, while the thickening of the receiving areas was significantly more variable, on the order of 10-120 m. Despite a negative geodetic net mass balance derived from the digital elevation models, the reservoir areas have been gaining mass since the surge terminations. This surface thickening along with considerable ablation of the receiving areas will most likely return the glacier surface profiles to the pre-surge stage. Our results indicate that (a) greatest surface thinning in the upper reservoir areas of Drangajökull rather than proximal to the equilibrium line during Vatnajökull surges and (b) development of Drangajökull surges that resembles Svalbard surge-type glaciers rather than Vatnajökull surge-type glaciers. The contrasting surge characteristics could be explained by differences in glacier geometry, topography and substratum of the Drangajökull and Vatnajökull surge-type glaciers.
NASA Astrophysics Data System (ADS)
Birch, L.; Cronin, T.; Tziperman, E.
2017-12-01
The climate over the past 0.8 million years has been dominated by ice ages. Ice sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of ice flow dynamics missing in GCMs. We investigate the growth of the Laurentide Ice Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an ice sheet model based on the shallow-ice approximation, capturing the ice flow that may be critical to the spread of ice sheets away from mountain ice caps. The ice sheet model calculates the surface area newly covered by ice and the change in the ice surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger areas of ice cover and changes in ice surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial ice growth on the Penny Ice Cap causes regional cooling that increases the accumulation on the Barnes Ice Cap. We investigate how ice and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.
Balance of the West Antarctic Ice Sheet
NASA Technical Reports Server (NTRS)
2002-01-01
For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project
Surface elevation change on ice caps in the Qaanaaq region, northwestern Greenland
NASA Astrophysics Data System (ADS)
Saito, Jun; Sugiyama, Shin; Tsutaki, Shun; Sawagaki, Takanobu
2016-09-01
A large number of glaciers and ice caps (GICs) are distributed along the Greenland coast, physically separated from the ice sheet. The total area of these GICs accounts for 5% of Greenland's ice cover. Melt water input from the GICs to the ocean substantially contributed to sea-level rise over the last century. Here, we report surface elevation changes of six ice caps near Qaanaaq (77°28‧N, 69°13‧W) in northwestern Greenland based on photogrammetric analysis of stereo pair satellite images. We processed the images with a digital map plotting instrument to generate digital elevation models (DEMs) in 2006 and 2010 with a grid resolution of 500 m. Generated DEMs were compared to measure surface elevation changes between 2006 and 2010. Over the study area of the six ice caps, covering 1215 km2, the mean rate of elevation change was -1.1 ± 0.1 m a-1. This rate is significantly greater than that previously reported for the 2003-2008 period (-0.6 ± 0.1 m a-1) for GICs all of northwestern Greenland. This increased mass loss is consistent with the rise in summer temperatures in this region at a rate of 0.12 °C a-1 for the 1997-2013 period.
NASA Astrophysics Data System (ADS)
Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Cawkwell, F.; Dowdeswell, J. A.
2016-12-01
With recent summer warming, surface melt on Canadian Arctic ice caps has intensified and extended to higher elevations in ice cap accumulation areas. Consequently, more meltwater percolates into the near-surface firn, and refreezes as ice layers where firn temperatures are below freezing. This process can increase firn densification rates, causing a lowering of the glacier surface height even in the absence of mass changes. Thus, knowledge of spatio-temporal variations in the near-surface firn stratigraphy is important for interpreting altimetrically-derived estimates of ice cap mass balance. We investigate the use of the scattering signal component of glacier surface reflections in airborne radio-echo sounding (RES) measurements to characterize the near-surface firn stratigraphy. The scattering signal distribution over Devon Ice Cap is compared to firn stratigraphy derived from ground-based radar data. We identify three distinct firn facies zones at different elevation ranges. The scattered signal component changes significantly between the different firn facies zones: low scattering correlates to laterally homogeneous firn containing thin, flat and continuous ice layers at elevations above 1800 m and below 1200 m, where firn consists mainly of ice. Higher scattering values are found from 1200-1800 m where the firn contains discrete, undulating ice layers. No correlation was found between the scattering component and surface roughness. Modelled scattering values for the measured roughness were significantly less than the observed values, and did not reproduce their observed spatial distribution. This indicates that the scattering component is determined mainly by the structure of near-surface firn. Our results suggest that the scattering component of surface reflections from airborne RES measurements has potential for characterizing heterogeneity in the spatial structure of firn that is affected by melting and refreezing processes.
NASA Astrophysics Data System (ADS)
Van Liefferinge, Brice; Pattyn, Frank; Cavitte, Marie G. P.; Young, Duncan A.; Roberts, Jason L.
2017-04-01
The quest for oldest ice in Antarctica has recently been launched through an EU H2020 project (Beyond EPICA - Oldest Ice) and aims at identifying suitable areas for a potential future drilling. Retrieving an ice core of such age is essential to understand the relation between orbital changes and atmospheric composition during the mid-Pliocene transition. However, sites for a potential undisturbed record of 1.5 million-year old ice in Antarctica are difficult to find and require slow-moving ice (preferably an ice divide) and basal conditions that are not disturbed by large topographic variations. Furthermore, ice should be sufficiently thick but cold basal conditions should still prevail, since basal melting would destroy the bottom layers. Therefore, ice-flow conditions and thermodynamic characteristics are crucial for identifying potential locations of undisturbed ice. Van Liefferinge and Pattyn (2013) identified suitable areas based on a pan-Antarctic simplified thermodynamic ice sheet model and demonstrated that uncertainty in geothermal conditions remain a major unknown. In order to refine these estimates, and provide uncertainties, we employ a full thermo-mechanically coupled higher-order ice sheet model (Pattyn, 2003; Pattyn et al., 2004). Initial conditions for the calculations are based on an inversion of basal slipperiness, based on observed surface topography (Pollard and DeConto, 2012; Pattyn, in prep.). Uncertainties in geothermal conditions are introduced using the convolution of two Gaussian probability density functions: (a) the reconstruction of the Antarctic ice sheet geometry and testing ice thickness variability over the last 2 million years (Pollard and DeConto, 2009) and (b) the surface temperature reconstruction over the same period (Snyder et al., 2016). The standard deviation, the skewness and the kurtosis of the whole Antarctic ice sheet are analyzed to observe likely probable melt conditions. Finally, we focus on model results in the divide area between Dome Concordia and Dome Fuji, and compare to newly acquired radar data in the region (OIA survey).
NASA Technical Reports Server (NTRS)
Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.;
2012-01-01
Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.
Denny, Mark; Dorgan, Kelly M; Evangelista, Dennis; Hettinger, Annaliese; Leichter, James; Ruder, Warren C; Tuval, Idan
2011-10-01
Sea ice typically forms at the ocean's surface, but given a source of supercooled water, an unusual form of ice--anchor ice--can grow on objects in the water column or at the seafloor. For several decades, ecologists have considered anchor ice to be an important agent of disturbance in the shallow-water benthic communities of McMurdo Sound, Antarctica, and potentially elsewhere in polar seas. Divers have documented anchor ice in the McMurdo communities, and its presence coincides with reduced abundance of the sponge Homaxinella balfourensis, which provides habitat for a diverse assemblage of benthic organisms. However, the mechanism of this disturbance has not been explored. Here we show interspecific differences in anchor-ice formation and propagation characteristics for Antarctic benthic organisms. The sponges H. balfourensis and Suberites caminatus show increased incidence of formation and accelerated spread of ice crystals compared to urchins and sea stars. Anchor ice also forms readily on sediments, from which it can grow and adhere to organisms. Our results are consistent with, and provide a potential first step toward, an explanation for disturbance patterns observed in shallow polar benthic communities. Interspecific differences in ice formation raise questions about how surface tissue characteristics such as surface area, rugosity, and mucus coating affect ice formation on invertebrates.
NASA Technical Reports Server (NTRS)
Wynne, Randolph H.; Lillesand, Thomas M.
1993-01-01
The research reported herein focused on the general hypothesis that satellite remote sensing of large-area, long-term trends in lake ice phenology (formation and breakup) is a robust, integrated measure of regional and global climate change. To validate this hypothesis, we explored the use of data from the Advanced Very High Resolution Radiometer (AVHRR) to discriminate the presence and extent of lake ice during the winter of 1990-1991 on the 45 lakes and reservoirs in Wisconsin with a surface area greater than 1,000 hectares. Our results suggest both the feasibility of using the AVHRR to determine the date of lake ice breakup as well as the strong correlation (R= -0.87) of the date so derived with local surface-based temperature measurements. These results suggest the potential of using current and archival satellite data to monitor changes in the date of lake ice breakup as a means of detecting regional 'signals' of greenhouse warming.
Sea ice roughness: the key for predicting Arctic summer ice albedo
NASA Astrophysics Data System (ADS)
Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.
2017-12-01
Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.
2014-01-01
From December 2013 to January 2014, MSFC Planetary Scientist Dr. Barbara Cohen participated in the Antarctic Search for Meteorites (ANSMET) 2013-2014 season. With a team of eight, a systematic search of the Antarctic ice in the South Miller Range turned up 333 samples; one of the largest is seen here with Dr. Cohen for scale. Since 1976, ANSMET has recovered more than 25,000 specimens from the ice along the Transantarctic Mountains. The icy surfaces of this area are particularly well suited for meteorite searches because of surface stranding: the surfaces must have bare ice, must be composed of large volumes, and the ice must flow out of the area more slowly than new ice arrives. The ANSMET specimens are currently the only reliable, continuous source of new, nonmicroscopic extraterrestrial material, and will continue to be until planetary sample-return missions are successful. The ANSMET program is supported by grants from the Solar System Exploration Division of NASA. Polar logistics are provided by the Office of Polar Programs of the U.S. National Science Foundation. The Principal Investigator of the current grant is Dr. Ralph P. Harvey at Case Western Reserve University. Dr. Barbara Cohen is seen with a large meteorite from the Antarctic's Miller Range
Young (late Amazonian), near-surface, ground ice features near the equator, Athabasca Valles, Mars
Burr, D.M.; Soare, R.J.; Wan, Bun Tseung J.-M.; Emery, J.P.
2005-01-01
A suite of four feature types in a ???20 km2 area near 10?? N, 204?? W in Athabasca Valles is interpreted to have resulted from near-surface ground ice. These features include mounds, conical forms with rimmed summit depressions, flatter irregularly-shaped forms with raised rims, and polygonal terrain. Based on morphology, size, and analogy to terrestrial ground ice forms, these Athabascan features are interpreted as pingos, collapsing pingos, pingo scars, and thermal contraction polygons, respectively. Thermal Infrared Mapping Spectrometer (THEMIS) data and geological features in the area are consistent with a sedimentary substrate underlying these features. These observations lead us to favor a ground ice interpretation, although we do not rule out volcanic and especially glaciofluvial hypotheses. The hypothesized ground ice that formed the mounds and rimmed features may have been emplaced via the deposition of saturated sediment during flooding; an alternative scenario invokes magmatically cycled groundwater. The ground ice implicit in the hypothesized thermal contraction polygons may have derived either from this flooding/ground water, or from atmospheric water vapor. The lack of obvious flood modification of the mounds and rimmed features indicates that they formed after the most recent flood inundated the area. Analogy with terrestrial pingos suggests that ground ice may be still extant within the positive relief mounds. As the water that flooded down Athabasca Valles emerged via a volcanotectonic fissure from a deep aquifer, any extant pingo ice may contain evidence of a deep subsurface biosphere. ?? 2005 Elsevier Inc. All rights reserved.
Microwave remote sensing of sea ice in the AIDJEX Main Experiment
Campbell, W.J.; Wayenberg, J.; Ramseyer, J.B.; Ramseier, R.O.; Vant, M.R.; Weaver, R.; Redmond, A.; Arsenaul, L.; Gloersen, P.; Zwally, H.J.; Wilheit, T.T.; Chang, T.C.; Hall, D.; Gray, L.; Meeks, D.C.; Bryan, M.L.; Barath, F.T.; Elachi, C.; Leberl, F.; Farr, Tom
1978-01-01
During the AIDJEX Main Experiment, April 1975 through May 1976, a comprehensive microwave sensing program was performed on the sea ice of the Beaufort Sea. Surface and aircraft measurements were obtained during all seasons using a wide variety of active and passive microwave sensors. The surface program obtained passive microwave measurements of various ice types using four antennas mounted on a tracked vehicle. In three test regions, each with an area of approximately 1.5 ?? 104 m2, detailed ice crystallographic, dielectric properties, and brightness temperatures of first-year, multiyear, and first-year/multiyear mixtures were measured. A NASA aircraft obtained passive microwave measurements of the entire area of the AIDJEX manned station array (triangle) during each of 18 flights. This verified the earlier reported ability to distinguish first-year and multiyear ice types and concentration and gave new information on ways to observe ice mixtures and thin ice types. The active microwave measurements from aircraft included those from an X- and L-band radar and from a scatterometer. The former is used to study a wide variety of ice features and to estimate deformations, while both are equally usable to observe ice types. With the present data, only the scatterometer can be used to distinguish positively multiyear from first-year and various types of thin ice. This is best done using coupled active and passive microwave sensing. ?? 1978 D. Reidel Publishing Company.
The Search for Subsurface Ice Caps on Mercury
NASA Astrophysics Data System (ADS)
Allen, R. A.; Barlow, N. G.; Vilas, F.
1996-03-01
Recent ground-based radar observations of Mercury have detected strong, highly depolarized echoes from the north and south polar regions which have been interpreted as possible polar ice deposits. These radar echoes have been correlated with a number of impact craters. Theoretical studies indicate that such surface ice can be stable within permanently shadowed areas, such as the floors of high latitude impact craters. One proposed hypothesis suggests that stable subsurface ice caps exist at the poles of Mercury, and that several of the impact events that created the high latitude craters exposed this subsurface ice. Thus, our study focused on the possibility of ice caps extending below the mercurian surface, down to some unknown latitude in the polar regions. We used the experiences from Mars, where the depth/diameter ratio (d/D) is smaller for ice rich areas, to investigate whether a comparable latitudinal change in d/D is detectable on Mercury. We found no significant latitudinal differences within the two polar regions of our study or between the north polar and equatorial quadrangles, but craters in the south polar region tend to have slightly lower d/D than those in the north polar region.
Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket
NASA Astrophysics Data System (ADS)
Perovich, D. K.
2017-12-01
The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.
NASA Astrophysics Data System (ADS)
Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.
2011-09-01
We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.
Geomorphological evidence for ground ice on dwarf planet Ceres
Schmidt, Britney E.; Hughson, Kynan H.G.; Chilton, Heather T.; Scully, Jennifer E. C.; Platz, Thomas; Nathues, Andreas; Sizemore, Hanna; Bland, Michael T.; Byrne, Shane; Marchi, Simone; O'Brien, David; Schorghofer, Norbert; Hiesinger, Harald; Jaumann, Ralf; Hendrick Pasckert, Jan; Lawrence, Justin D.; Buzckowski, Debra; Castillo-Rogez, Julie C.; Sykes, Mark V.; Schenk, Paul M.; DeSanctis, Maria-Cristina; Mitri, Giuseppe; Formisano, Michelangelo; Li, Jian-Yang; Reddy, Vishnu; Le Corre, Lucille; Russell, Christopher T.; Raymond, Carol A.
2017-01-01
Five decades of observations of Ceres suggest that the dwarf planet has a composition similar to carbonaceous meteorites and may have an ice-rich outer shell protected by a silicate layer. NASA’s Dawn spacecraft has detected ubiquitous clays, carbonates and other products of aqueous alteration across the surface of Ceres, but surprisingly it has directly observed water ice in only a few areas. Here we use Dawn Framing Camera observations to analyse lobate morphologies on Ceres’ surface and we infer the presence of ice in the upper few kilometres of Ceres. We identify three distinct lobate morphologies that we interpret as surface flows: thick tongue-shaped, furrowed flows on steep slopes; thin, spatulate flows on shallow slopes; and cuspate sheeted flows that appear fluidized. The shapes and aspect ratios of these flows are different from those of dry landslides—including those on ice-poor Vesta—but are morphologically similar to ice-rich flows on other bodies, indicating the involvement of ice. Based on the geomorphology and poleward increase in prevalence of these flows, we suggest that the shallow subsurface of Ceres is comprised of mixtures of silicates and ice, and that ice is most abundant near the poles.
Simple rules govern the patterns of Arctic sea ice melt ponds
NASA Astrophysics Data System (ADS)
Popovic, P.; Cael, B. B.; Abbot, D. S.; Silber, M.
2017-12-01
Climate change, amplified in the far north, has led to a rapid sea ice decline in recent years. Melt ponds that form on the surface of Arctic sea ice in the summer significantly lower the ice albedo, thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback. However, currently it is unclear how to model this intricate geometry. Here we show that an extremely simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The model has only two parameters, circle scale and the fraction of the surface covered by voids, and we choose them by comparing the model to pond images. Using these parameters the void model robustly reproduces all of the examined pond features such as the ponds' area-perimeter relationship and the area-abundance relationship over nearly 7 orders of magnitude. By analyzing airborne photographs of sea ice, we also find that the typical pond scale is surprisingly constant across different years, regions, and ice types. These results demonstrate that the geometric and abundance patterns of Arctic melt ponds can be simply described, and can guide future models of Arctic melt ponds to improve predictions of how sea ice will respond to Arctic warming.
Surface elevation change over the Patagonia Ice Fields using CryoSat-2 swath altimetry
NASA Astrophysics Data System (ADS)
Foresta, Luca; Gourmelen, Noel; José Escorihuela, MarÍa; Garcia Mondejar, Albert; Wuite, Jan; Shepherd, Andrew; Roca, Mònica; Nagler, Thomas; Brockley, David; Baker, Steven; Nienow, Pete
2017-04-01
Satellite altimetry has been traditionally used in the past few decades to infer elevation of land ice, quantify changes in ice topography and infer mass balance estimates over large and remote areas such as the Greenland and Antarctic ice sheets. Radar Altimetry (RA) is particularly well suited to this task due to its all-weather year-round capability of observing the ice surface. However, monitoring of ice caps (area < 104 km^2) as well as mountain glaciers has proven more challenging. The large footprint of a conventional radar altimeter and relatively coarse ground track coverage are less suited to monitoring comparatively small regions with complex topography, so that mass balance estimates from RA rely on extrapolation methods to regionalize elevation change. Since 2010, the European Space Agency's CryoSat-2 (CS-2) satellite has collected ice elevation measurements over ice caps with its novel radar altimeter. CS-2 provides higher density of observations w.r.t. previous satellite altimeters, reduces the along-track footprint using Synthetic Aperture Radar (SAR) processing and locates the across-track origin of a surface reflector in the presence of a slope with SAR Interferometry (SARIn). Here, we exploit CS-2 as a swath altimeter [Hawley et al., 2009; Gray et al., 2013; Christie et al., 2016; Ignéczi et al., 2016, Foresta et al., 2016] over the Southern and Northern Patagonian Ice Fields (SPI and NPI, respectively). The SPI and NPI are the two largest ice masses in the southern hemisphere outside of Antarctica and are thinning very rapidly in recent decades [e.g Rignot et al., 2003; Willis et al, 2012]. However, studies of surface, volume and mass change in the literature, covering the entire SPI and NPI, are limited in number due to their remoteness, extremely complex topography and wide range of slopes. In this work, we present rates of surface elevation change for five glaciological years between 2011-2016 using swath-processed CS-2 SARIn heights and discuss the spatial and temporal coverage of elevation and its rate of change over the two regions.
Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes?
Hoffman, P F
2016-11-01
Geochemical, paleomagnetic, and geochronological data increasingly support the Snowball Earth hypothesis for Cryogenian glaciations. Yet, the fossil record reveals no clear-cut evolutionary bottleneck. Climate models and the modern cryobiosphere offer insights on this paradox. Recent modeling implies that Snowball continents never lacked ice-free areas. Wind-blown dust from these areas plus volcanic ash were trapped by snow on ice sheets and sea ice. At a Snowball onset, sea ice was too thin to flow and ablative ice was too cold for dust retention. After a few millenia, sea ice reached 100 s of meters in thickness and began to flow as a 'sea glacier' toward an equatorial ablation zone. At first, dust advected to the ablative surface was recycled by winds, but as the surface warmed with rising CO 2 , dust aka cryoconite began to accumulate. As a sea glacier has no terminus, cryoconite saturated the surface. It absorbed solar radiation, supported cyanobacterial growth, and sank to an equilibrium depth forming holes and decameter-scale pans of meltwater. As meltwater production rose, drainages developed, connecting pans to moulins, where meltwater was flushed into the subglacial ocean. Flushing cleansed the surface, creating a stabilizing feedback. If the dust flux rose, cryoconite was removed; if the dust flux waned, cryoconite accumulated. In addition to cyanobacteria, modern cryoconite holes are inhabited by green algae, fungi, protists, and certain metazoans. On Snowball Earth, cryoconite pans provided stable interconnected habitats for eukaryotes tolerant of fresh to brackish cold water on an ablation surface 60 million km 2 in area. Flushing and burial of organic matter was a potential source of atmospheric oxygen. Dominance of green algae among Ediacaran eukaryotic primary producers is a possible legacy of Cryogenian cryoconite pans, but a schizohaline ocean-supraglacial freshwater and subglacial brine-may have exerted selective stress on early metazoans, or impeded their evolution. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Li, X.; Gille, S. T.; shang-Ping, X.; Xie, S. P.; Holland, D. M.; Holland, M. M.
2016-12-01
The climate change observed around Antarctica in recent decades is characterized by distinct zonally asymmetric patterns, with the strongest changes over West Antarctica. These changes are marked by strong land ice melting and sea ice redistribution around West Antarctica. This is associated with temperature and circulation anomalies in the ocean and atmosphere around the same area. In this study, we comprehensively examine the coherency between these changes using a combination of observations and numerical simulations. Results show that the atmospheric circulation changes distinctly drive the changes in ocean circulation and sea ice distribution. In addition, the atmospheric circulation induced sea ice changes play an important role in lifting the subsurface ocean temperature and salinity around the West Antarctica. During recent decades, the Amundsen Sea Low (ASL) has deepened, especially in austral autumn and winter. This deepened ASL has intensified the offshore wind near the coastal regions of the Ross Sea. Driven by these atmospheric changes, more sea ice has formed near West Antarctica in winter. In contrast, more sea ice melts during the summer. This strengthened sea ice seasonality has been observed and successfully reproduced in the model simulation. The wind-driven sea ice changes causes a surface freshening over the Ross and Amundsen Seas, with a subsurface salinity increase over the Ross Sea. The additional fresh/salt water fluxes thus further change the vertical distribution of salinity and strengthen the stratification in the Ross and Amundsen Seas. As a result of the above ice-ocean process, the mixed-layer depth around the Ross and Amundsen Seas shallows. By weakening the vertical heat transport near the surface layer, and inducing an upward movement of the circumpolar deep water (CDW), this process freshened and cooled the surface layer, while the salinity and temperature in the sub-surface ocean are increased, extending from 150 meters to >700 meters. Around the Amundsen Sea, warm water touches the continent, which could potentially contribute to the accelerated land ice melting over this area.
Spatiotemporal Variability of Meltwater Refreezing in Southwest Greenland Ice Sheet Firn
NASA Astrophysics Data System (ADS)
Rennermalm, A. K.; Hock, R.; Tedesco, M.; Corti, G.; Covi, F.; Miège, C.; Kingslake, J.; Leidman, S. Z.; Munsell, S.
2017-12-01
A substantial fraction of the summer meltwater formed on the surface of the Greenland ice sheet is retained in firn, while the remaining portion runs to the ocean through surface and subsurface channels. Refreezing of meltwater in firn can create impenetrable ice lenses, hence being a crucial process in the redistribution of surface runoff. To quantify the impact of refreezing on runoff and current and future Greenland surface mass balance, a three year National Science Foundation funded project titled "Refreezing in the firn of the Greenland ice sheet: Spatiotemporal variability and implications for ice sheet mass balance" started this past year. Here we present an overview of the project and some initial results from the first field season in May 2017 conducted in proximity of the DYE-2 site in the percolation zone of the Southwest Greenland ice sheet at elevations between 1963 and 2355 m a.s.l.. During this fieldwork two automatic weather stations were deployed, outfitted with surface energy balance sensors and 16 m long thermistor strings, over 300 km of ground penetrating radar data were collected, and five 20-26 m deep firn cores were extracted and analyzed for density and stratigraphy. Winter snow accumulation was measured along the radar tracks. Preliminary work on the firn-core data reveals increasing frequency and thickness of ice lenses at lower ice-sheet elevations, in agreement with other recent work in the area. Data collected within this project will facilitate advances in our understanding of the spatiotemporal variability of firn refreezing and its role in the hydrology and surface mass balance of the Greenland Ice Sheet.
Ice shelf structure and stability: Larsen C Ice Shelf, Antarctica
NASA Astrophysics Data System (ADS)
Hubbard, B. P.; Ashmore, D.; Bevan, S. L.; Booth, A. D.; Holland, P.; Jansen, D.; Kuipers Munneke, P.; Kulessa, B.; Luckman, A. J.; Sevestre, H.; O'Leary, M.
2017-12-01
We report on recent empirical investigations of the internal structure and stability (or otherwise) of Larsen C Ice Shelf (LCIS), Antarctica, focusing on research carried out for the MIDAS research project between 2014 and 2017. Borehole- and surface geophysics-based fieldwork carried out in austral springs 2014 and 2015 revealed that ephemeral surface ponds, preferentially located within the major inlets within the northern sector of the ice shelf, result in the formation of several tens of metres of (relatively dense) subsurface ice within what would otherwise have been a progressively densifying snow and firn column. Five boreholes were drilled throughout the sector and logged by optical televiewer, showing this refrozen ice to be extensive and of variable composition depending on its process of formation. Mapping the depth-distribution of the resulting ice types and associating each with a simple flow-line model of ice motion and accumulation indicates that this area of LCIS has experienced substantial melting for some centuries but that surface ponding has only occurred in recent decades, possibly restricted to the past 20 years. We also present near-surface temperature data that reveal surprising temporal patterns in foehn wind activity and intensity. Finally, we report on the geometrical extension and widening of a rift that was responsible for calving a 5,800 km^2 iceberg from the LCIS in July 2017. The nature of rift propagation through `suture' ice bands, widely considered to be composed of marine ice, is contrasted with that of its propagation through meteoric ice.
Airborne gravity measurement over sea-ice: The western Weddel Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozena, J.; Peters, M.; LaBrecque, J.
1990-10-01
An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less
ERIC Educational Resources Information Center
Jones, M. Gail; Krebs, Denise L.; Banks, Alton J.
2011-01-01
There is a wide range of new products emerging from nanotechnology, and "nano ice cream" is an easy one that you can use to teach topics from surface area to volume applications. In this activity, students learn how ice cream can be made smoother and creamier tasting through nanoscience. By using liquid nitrogen to cool the cream mixture, students…
Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.
2015-01-01
Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.
NASA Astrophysics Data System (ADS)
Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.
2015-11-01
Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.
NASA Astrophysics Data System (ADS)
Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank
2015-05-01
The immersion freezing behavior of droplets containing size-segregated, monodisperse feldspar particles was investigated. For all particle sizes investigated, a leveling off of the frozen droplet fraction was observed reaching a plateau within the heterogeneous freezing temperature regime (T >- 38°C). The frozen fraction in the plateau region was proportional to the particle surface area. Based on these findings, an asymptotic value for ice active surface site density ns, which we named ns⋆, could be determined for the investigated feldspar sample. The comparison of these results with those of other studies not only elucidates the general feasibility of determining such an asymptotic value but also shows that the value of ns⋆ strongly depends on the method of the particle surface area determination. However, such an asymptotic value might be an important input parameter for atmospheric modeling applications. At least it shows that care should be taken when ns is extrapolated to lower or higher temperature.
NASA Astrophysics Data System (ADS)
Bosson, Jean-Baptiste; Lambiel, Christophe
2014-05-01
The current climate forcing, through negative glacier mass balance and rockfall intensification, is leading to the rapid burring of many small glacier systems. When the debris mantle exceeds some centimeters of thickness, the climate control on ice melt is mitigated and delayed. As well, debris-covered glaciers respond to climate forcing in a complex way. This situation is emphasised in high mountain environments, where topo-climatic conditions, such as cold temperatures, amount of solid precipitation, duration of snow cover, nebulosity or shadow effect of rockwalls, limit the influence of rising air temperatures in the ground. Beside, due to Holocene climate history, glacier-permafrost interactions are not rare within the periglacial belt. Glacier recurrence may have removed and assimilated former ice-cemented sediments, the negative mass balance may have led to the formation of ice-cored rock glaciers and neopermafrost may have formed recently under cold climate conditions. Hence, in addition to sedimentary ice, high mountain debris-covered glacier systems can contain interstitial magmatic ice. Especially because of their position at the top of alpine cascade systems and of the amount of water and (unconsolidated) sediment involved, it is important to understand and anticipate the evolution of these complex landforms. Due to the continuous and thick debris mantle and to the common existence of dead ice in deglaciated areas, the current extent of debris-covered glacier can be difficult to point out. Thus, the whole system, according to Little Ice Age (LIA) extent, has sometimes to be investigated to understand the current response of glacier systems to the climate warming. In this context, two neighbouring sites, Rognes and Pierre Ronde systems (45°51'38''N, 6°48'40''E; 2600-3100m a.s.l), have been studied since 2011. These sites are almost completely debris-covered and only few ice outcrops in the upper slopes still witness the existence of former glaciers. Electrical resistivity tomographies, kinematic data and ground surface temperature show that heterogeneous responses to climate forcing are occurring despites their small areas (> 0.3 km2). This complex situation is related to Holocene climate history and especially to glacier systems evolution since LIA. The current dynamics depend of ground ice nature and distribution. Five main behaviours can be highlighted: - Debris covered glacier areas are the most active. Their responses to climate forcing are relatively fast, especially through massive ice melt-out each summer. - Ice-cored rock glacier areas are quite active. The existence of massive glacier ice under few meters of debris explain the important surface lowering during the snow free period . - Ice-cemented rock glacier areas are characterised by winter and summer subhorizontal downslope creeping. - Moraine areas containing dead ice have heterogeneous activities (directions and values of detected movements) related to the ice vanishing. - Deglaciated moraine areas are almost inactive, except modest superficial paraglacial rebalancing.
Pluto: Fluidized Transport of Tholins by Heating of the Subsurface
NASA Technical Reports Server (NTRS)
Cruikshank, Dale P.; Spohrer, Steven; Grundy, William M.; Moore, Jeffrey M.; Umurhan, Orkan M.; White, Oliver L.; Beyer, Ross A.; Dalle Ore, Cristina M.; Stern, S. A.; Young, Leslie;
2017-01-01
New Horizons images of Pluto show evidence of the transport of the colored non-ice component across the surface, with substantial accumulations in some areas of low elevation. The non-ice component is presumed to be tholin produced in the atmosphere as a precipitating aerosol, in the surface ices by photolysis or radiolysis, or both. We model the surface layer of N2 ice with varying amounts of incorporated tholin particles to explore the heating within the ice that occurs by the solid-state greenhouse effect. We find that in plausible models of the contaminated N2 surface ice the triple point temperature (63.15K) is reached at a depth of approximately less than 1m. At that depth the confining pressure of the ice column is much less than the triple point pressure (12.52 kPa), so N2 should convert to the gas phase, exerting pressure on the overburden. When the gas pressure exceeds the strength of the confining ice, a breakout on the surface will occur, fluidizing fragments of ice and its contaminants that are then free to flow downhill, rafted on entrained gas, similar in some ways to the pyroclastic volcanic phenomenon known as nuée ardente. The digital elevation map of Pluto made from stereo images shows some surface regions that may have been stripped of the N2 layer, exposing H2O ice (presumed to be bedrock) below, with a corresponding accumulation of dark material that was that was the previously entrained particulate tholin. Accumulations of tholin are found associated with some of the fossae, and some cover preexisting topography to depths of up to a few hundred meters.
Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole
NASA Technical Reports Server (NTRS)
Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.
2017-01-01
The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.
Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder
NASA Astrophysics Data System (ADS)
Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.
2014-12-01
SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and Apu, Amazonian layered plateaus). From this analysis, the south polar cap could be covered by a thin frozen carbon dioxide coating. The perennial south polar cap is probably made of frozen carbon dioxide ca. 8 meters thick.
Monitoring Antarctic ice sheet surface melting with TIMESAT algorithm
NASA Astrophysics Data System (ADS)
Ye, Y.; Cheng, X.; Li, X.; Liang, L.
2011-12-01
Antarctic ice sheet contributes significantly to the global heat budget by controlling the exchange of heat, moisture, and momentum at the surface-atmosphere interface, which directly influence the global atmospheric circulation and climate change. Ice sheet melting will cause snow humidity increase, which will accelerate the disintegration and movement of ice sheet. As a result, detecting Antarctic ice sheet melting is essential for global climate change research. In the past decades, various methods have been proposed for extracting snowmelt information from multi-channel satellite passive microwave data. Some methods are based on brightness temperature values or a composite index of them, and others are based on edge detection. TIMESAT (Time-series of Satellite sensor data) is an algorithm for extracting seasonality information from time-series of satellite sensor data. With TIMESAT long-time series brightness temperature (SSM/I 19H) is simulated by Double Logistic function. Snow is classified to wet and dry snow with generalized Gaussian model. The results were compared with those from a wavelet algorithm. On this basis, Antarctic automatic weather station data were used for ground verification. It shows that this algorithm is effective in ice sheet melting detection. The spatial distribution of melting areas(Fig.1) shows that, the majority of melting areas are located on the edge of Antarctic ice shelf region. It is affected by land cover type, surface elevation and geographic location (latitude). In addition, the Antarctic ice sheet melting varies with seasons. It is particularly acute in summer, peaking at December and January, staying low in March. In summary, from 1988 to 2008, Ross Ice Shelf and Ronnie Ice Shelf have the greatest interannual variability in amount of melting, which largely determines the overall interannual variability in Antarctica. Other regions, especially Larsen Ice Shelf and Wilkins Ice Shelf, which is in the Antarctic Peninsula region, have relative stable and consistent melt occurrence from year to year.
NASA Technical Reports Server (NTRS)
Steffen, Konrad; Heinrichs, John
1994-01-01
Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and Landsat thematic mapper (TM) images were acquired for the same area in the Beaufort Sea, April 16 and 18, 1992. The two image pairs were colocated to the same grid (25-m resolution), and a supervised ice type classification was performed on the TM images in order to classify ice free, nilas, gray ice, gray-white ice, thin first-year ice, medium and thick first-year ice, and old ice. Comparison of the collocated SAR pixels showed that ice-free areas can only be classified under calm wind conditions (less than 3 m/s) and for surface winds greater than 10 m/s based on the backscattering coefficient alone. This is true for pack ice regions during the cold months of the year where ice-free areas are spatially limited and where the capillary waves that cause SAR backscatter are dampened by entrained ice crystals. For nilas, two distinct backscatter classes were found at -17 dB and at -10 dB. The higher backscattering coefficient is attributed to the presence of frost flowers on light nilas. Gray and gray-white ice have a backscatter signature similar to first-year ice and therefore cannot be distinguished by SAR alone. First-year and old ice can be clearly separated based on their backscattering coefficient. The performance of the Geophysical Processor System ice classifier was tested against the Landsat derived ice products. It was found that smooth first-year ice and rough first-year ice were not significantly different in the backscatter domain. Ice concentration estimates based on ERS 1 C band SAR showed an error range of 5 to 8% for high ice concentration regions, mainly due to misclassified ice-free and smooth first-year ice areas. This error is expected to increase for areas of lower ice concentration. The combination of C band SAR and TM channels 2, 4, and 6 resulted in ice typing performance with an estimated accuracy of 90% for all seven ice classes.
NASA Astrophysics Data System (ADS)
Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.
2013-11-01
We present airborne measurements to investigate the thickness of the western McMurdo Ice Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine ice and brine intrusions conventional radar systems are limited in detecting the ice thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the ice shelf. The maximum electromagnetically detectable ice thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of ice freeboard and thickness was used to derive bulk ice densities ranging from 800 to 975 kg m-3. Densities higher than those of pure ice can be largely explained by the abundance of sediments accumulated at the surface and present within the ice shelf, and are likely to a smaller extent related to the overestimation of ice thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the ice shelf, similar to what is observed in front of the ice shelf below the sea ice, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled Ice Shelf Water emerging from below the central ice shelf cavity into McMurdo Sound.
Ice nucleation efficiency of AgI: review and new insights
NASA Astrophysics Data System (ADS)
Marcolli, Claudia; Nagare, Baban; Welti, André; Lohmann, Ulrike
2016-07-01
AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI-AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times.
Processes driving rapid morphological changes observed on the Khumbu Glacier, Nepal
NASA Astrophysics Data System (ADS)
Quincey, Duncan; Rowan, Ann; Gibson, Morgan; Irvine-Fynn, Tristram; King, Owen; Watson, Scott
2016-04-01
The response of many Himalayan glaciers to climatic change is complicated by the presence of a supraglacial debris cover, which leads to a suite of processes controlling mass loss that are not commonly found where glaciers are debris-free. Here, we present a range of field, surface topographic and ice-dynamical observations acquired from Khumbu Glacier in Nepal, to describe and quantify these processes in fine spatial and temporal resolution. Like many other debris-covered glaciers in the Himalaya, the debris-covered tongue of the Khumbu Glacier is heavily in recession. For at least two decades, the lower ablation area has been stagnant as surface lowering in the mid-ablation zone has led to ever decreasing driving stresses. Contemporary velocity data derived from TerraSAR-X imagery confirms that the active-inactive ice boundary can now be found 5 km from the glacier terminus and that the maximum velocity, immediately below the icefall, is around 70 m per year. These data show that in this upper part of the ablation zone, the glacier velocity has not changed during the last 20 years, suggesting that at least above the icefall the glacier remains healthy. Across the stagnant debris-covered tongue there have been marked surface morphological changes. Mapping from 2004 shows relatively few surface ponds, a homogeneous debris-covered surface, and a small area towards the terminus supporting soil formation and low vegetation. Mapping from field observations in 2014 shows an abundance of surface meltwater, a more heterogeneous surface texture associated with many exposed ice cliffs, and a long (3 km) zone of stable terrain where soils are developing and, in places, low scrub can be found. Most dramatically, a string of surface ponds occupying the true-left lowermost 2 km of ice have expanded and coalesced, suggesting the glacier has crossed a threshold leading towards large glacial lake development. Two fine-resolution DEMs derived from Structure-from-Motion in spring 2014 and autumn 2015 elucidate the processes driving mass loss across the debris-covered area. Recession is greatest around surface meltwater ponds and in the upper part of the ablation area where debris cover is thinnest. Comparison with an historic DEM from 1984 shows the evolution of the glacier surface topography, which has become increasingly irregular because of the development of surface ponds and associated ice cliffs. These observations suggest a continuous cycle of relief inversion drives surface lowering across large areas of the debris-covered surface, and we propose a conceptual model to illustrate this cycle that is applicable to all receding debris-covered glaciers in the region.
NASA Astrophysics Data System (ADS)
Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan
2017-04-01
Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.
NASA Astrophysics Data System (ADS)
Lei, Ruibo; Tian-Kunze, Xiangshan; Leppäranta, Matti; Wang, Jia; Kaleschke, Lars; Zhang, Zhanhai
2016-08-01
SSM/I sea ice concentration and CLARA black-sky composite albedo were used to estimate sea ice albedo in the region 70°N-82°N, 130°W-180°W. The long-term trends and seasonal evolutions of ice concentration, composite albedo, and ice albedo were then obtained. In July-August 1982-2009, the linear trend of the composite albedo and the ice albedo was -0.069 and -0.046 units per decade, respectively. During 1 June to 19 August, melting of sea ice resulted in an increase of solar heat input to the ice-ocean system by 282 MJ·m-2 from 1982 to 2009. However, because of the counter-balancing effects of the loss of sea ice area and the enhanced ice surface melting, the trend of solar heat input to the ice was insignificant. The summer evolution of ice albedo matched the ice surface melting and ponding well at basin scale. The ice albedo showed a large difference between the multiyear and first-year ice because the latter melted completely by the end of a melt season. At the SHEBA geolocations, a distinct change in the ice albedo has occurred since 2007, because most of the multiyear ice has been replaced by first-year ice. A positive polarity in the Arctic Dipole Anomaly could be partly responsible for the rapid loss of summer ice within the study region in the recent years by bringing warmer air masses from the south and advecting more ice toward the north. Both these effects would enhance ice-albedo feedback.
Sustained High Basal Motion of the Greenland Ice Sheet Revealed by Borehole Deformation
NASA Technical Reports Server (NTRS)
Ryser, Claudia; Luthi, Martin P.; Andrews, Lauren C.; Hoffman, Matthew, J.; Catania, Ginny A.; Hawley, Robert L.; Neumann, Thomas A.; Kristensen, Steen S.
2014-01-01
Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73 percent in winter, and up to 90 percent in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.
Laser-induced cracks in ice due to temperature gradient and thermal stress
NASA Astrophysics Data System (ADS)
Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun
2018-06-01
This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.
Glacier Surface Lowering and Stagnation in the Manaslu Region of Nepal
NASA Astrophysics Data System (ADS)
Robson, B. A.; Nuth, C.; Nielsen, P. R.; Hendrickx, M.; Dahl, S. O.
2015-12-01
Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.
Oil and ice in the arctic ocean: possible large-scale interactions.
Campbell, W J; Martin, S
1973-07-06
The diffusion and transport mechanisms generated by the pack ice dynamics of the Beaufort Sea, combined with the slow rate of biodegradation of oil under Arctic conditions, would combine to diffuse an oil spill over the sea and eventually deposit the oil on the ice surface, where it would lower the natural albedo over a large area.
Quantification of Changes for the Milne Ice Shelf, Nunavut, Canada, 1950 -- 2009
NASA Astrophysics Data System (ADS)
Mortimer, Colleen Adel
This study presents a comprehensive overview of the current state of the Milne Ice Shelf and how it has changed over the last 59 years. The 205 +/-1 km2 ice shelf experienced a 28% (82 +/-0.8 km 2) reduction in area between 1950 -- 2009, and a 20% (2.5 +/-0.9km 3 water equivalent (w.e.)) reduction in volume between 1981 -- 2008/2009, suggesting a long-term state of negative mass balance. Comparison of mean annual specific mass balances (up to -0.34 m w.e. yr-1) with surface mass balance measurements for the nearby Ward Hunt Ice Shelf suggest that basal melt is a key contributor to total ice shelf thinning. The development and expansion of new and existing surface cracks, as well as ice-marginal and epishelf lake development, indicate significant ice shelf weakening. Over the next few decades it is likely that the Milne Ice Shelf will continue to deteriorate.
Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.
2006-01-01
Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.
NASA Astrophysics Data System (ADS)
Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin
2015-12-01
In this study the forecast skill of the U.S. Navy operational Arctic sea ice forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea ice and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include ice concentration, ice thickness, ice velocity, sea surface temperature, sea surface salinity, and sea surface velocities. Ice concentration forecast skill is compared to a persistent ice state and historical sea ice climatology. Skill scores are focused on areas where ice concentration changes by ±5% or more, and are therefore limited to primarily the marginal ice zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent ice state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled ice drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended ice concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and Ice Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and ice edge location compared to the independently derived National Ice Center Ice Edge product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schorghofer, Norbert; Aharonson, Oded, E-mail: norbert@hawaii.edu
2014-06-20
It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature ismore » below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.« less
NASA Astrophysics Data System (ADS)
Rikiishi, K.
2008-12-01
Recent rapid decline of cryosphere including mountain glaciers, sea ice, and seasonal snow cover tends to be associated with global warming. However, positive feedback is likely to operate between the cryosphere and air temperature, and then it may not be so simple to decide the cause-and-effect relation between them. The theory of heat budget for snow surface tells us that sensible heat transfer from the air to the snow by atmospheric warming by 1°C is about 10 W/m2, which is comparable with heat supply introduced by reduction of the snow surface albedo by only 0.02. Since snow impurities such as black carbon and soil- origin dusts have been accumulated every year on the snow surface in snow-melting season, it is very important to examine whether the snow-melting on the ice sheets, mountain glaciers, and sea ice is caused by global warming or by accumulated snow impurities originated from atmospheric pollutants. In this paper we analyze the dataset of snow-melt area in the Greenland ice sheet for the years 1979 - 2007 (available from the National Snow and Ice Data Center), which is reduced empirically from the satellite micro-wave observations by SMMR and SMM/I. It has been found that, seasonally, the snow-melt area extends most significantly from the second half of June to the first half of July when the sun is highest and sunshine duration is longest, while it doesn't extend any more from the second half of July to the first half of August when the air temperature is highest. This fact may imply that sensible heat required for snow-melting comes from the solar radiation rather than from the atmosphere. As for the interannual variation of snow-melt area, on the other hand, we have found that the growth rate of snow-melt area gradually increases from July, to August, and to the first half of September as the impurities come out to and accumulated at the snow surface. However, the growth rate is almost zero in June and the second half of September when fresh snow of high albedo covers the surface. This fact may imply that the combined operation of solar radiation and snow impurities is responsible for the recent global decline of cryosphere. Discussion about other research works will be given in the presentation in order to support the above idea.
NASA Technical Reports Server (NTRS)
Maslanik, J. A.
1992-01-01
Effects of wind, water vapor, and cloud liquid water on ice concentration and ice type calculated from passive microwave data are assessed through radiative transfer calculations and observations. These weather effects can cause overestimates in ice concentration and more substantial underestimates in multi-year ice percentage by decreasing polarization and by decreasing the gradient between frequencies. The effect of surface temperature and air temperature on the magnitudes of weather-related errors is small for ice concentration and substantial for multiyear ice percentage. The existing weather filter in the NASA Team Algorithm addresses only weather effects over open ocean; the additional use of local open-ocean tie points and an alternative weather correction for the marginal ice zone can further reduce errors due to weather. Ice concentrations calculated using 37 versus 18 GHz data show little difference in total ice covered area, but greater differences in intermediate concentration classes. Given the magnitude of weather-related errors in ice classification from passive microwave data, corrections for weather effects may be necessary to detect small trends in ice covered area and ice type for climate studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazauskas, A., E-mail: Algirdas.LAZAUSKAS@stud.ktu.lt; Guobienė, A., E-mail: Asta.GUOBIENE@ktu.lt; Prosyčevas, I., E-mail: IGORPROS@mail.ru
This work investigates water droplet behavior on superhydrophobic (water contact angle value of 162 ± 1°) SiO{sub 2} nanocomposite films subjected to repetitive icing/deicing treatments, changes in SiO{sub 2} nanocomposite film surface morphology and their non-wetting characteristics. During the experiment, water droplets on SiO{sub 2} nanocomposite film surface are subjected to a series of icing and deicing cycles in a humid (∼ 70% relative humidity) atmosphere and the resulting morphological changes are monitored and characterized using atomic force microscopy (AFM) and contact angle measurements. Our data show that the formation of the frozen or thawed water droplet, with no furthermore » shape change, on superhydrophobic SiO{sub 2} nanocomposite film, is obtained faster within each cycle as the number of the icing/deicing cycles increases. After 10 icing and deicing cycles, the superhydrophobic SiO{sub 2} nanocomposite film had a water contact angle value of 146 ± 2° which is effectively non-superhydrophobic. AFM analysis showed that the superhydrophobic SiO{sub 2} nanocomposite film surface area under the water droplet undergoes gradual mechanical damage during the repetitive icing/deicing cycles. We propose a possible mechanism of the morphological changes to the film surface that take place during the consecutive icing/deicing experiments. - Highlights: • Superhydrophobic film is subjected to repetitive icing/deicing treatments. • Water droplet shape transition is recorded and characterized thereafter. • Atomic force microscopy and contact angle measurements are performed. • The surface undergoes gradual mechanical damage during repetitive icing/deicing. • Mechanism for the observed surface morphological changes is suggested.« less
Changes in evaporation and potential hazards associated with ice accretion in a "New Arctic"
NASA Astrophysics Data System (ADS)
Boisvert, L.
2016-12-01
The Arctic sea ice acts as a barrier between the ocean and atmosphere inhibiting the exchange of heat, momentum, and moisture. Recently, the Arctic has seen unprecedented declines in the summer sea ice area, changing to a "New Arctic" climate system, one that is dominated by processes affected by large ice-free areas for the majority of the year as the melt season lengthens. Using atmospheric data from the Atmospheric Infrared Sounder (AIRS) instrument, we found that accompanying this loss of sea ice, the Arctic is becoming warmer and wetter. Evaporation, which plays an important role in the Arctic energy budget, water vapor feedback, and Arctic amplification, is also changing. The largest increases seen in evaporation are in the Arctic coastal seas during the spring and fall where there has been a reduction in sea ice cover and an increase in sea surface temperatures. Increases in evaporation also correspond to increases in low-level clouds. In this "New Arctic" transportation and shipping throughout the Arctic Ocean is becoming a more viable option as the areas in which ships can travel and the time period for ship travel continue to increase. There are various hazards associated with Arctic shipping, one being ice accretion. Ice accretion is the build up of ice on the surface of ships as they travel through regions of specific meteorological conditions unique to high-latitude environments. Besides reduced visibility, this build up of ice can cause ships to sink or capsize (by altering the ships center of gravity) depending on the severity and/or the location of ice build-up. With these changing atmospheric conditions in the Arctic, we expect there have been increases in the ice accretion potential over recent years, and an increase in the likelihood of high, and potentially dangerous ice accretion rates. Improved understanding of how this rapid loss of sea ice affects the "New Arctic" climate system, how evaporation is changing and how ice accretion could change will allow scientists, policy makers and the shipping/travel industry to make improved decisions in the future.
NASA Astrophysics Data System (ADS)
van As, D.; Mikkelsen, A. B.; Holtegaard Nielsen, M.; Claesson Liljedahl, L.; Lindback, K.; Pitcher, L. H.; Hasholt, B.
2016-12-01
A 12.000 km2 area of the Greenland ice sheet discharges meltwater via the proglacial Watson River in west Greenland. In a ten-year time span of continuous monitoring (2006-2015), the river discharged 3.8 km3 to 11.2 km3 yr-1. The large interannual variability is for an important part explained by hypsometric amplification: the flattening of the ice sheet with elevation adds 70% meltwater discharge sensitivity to atmospheric temperature. Comparing river discharge with ice sheet surface meltwater production from an observation-based surface mass balance model we quantify multiple-day routing delays for meltwater transit through the supra-, en-, sub- and proglacial system. This delay increases with ice sheet surface elevation: on average five days for surface water at the previous-known equilibrium line altitude (ELA) of ca. 1550 m, and seven days at the 2009-2015 ELA of ca. 1800 m above sea level. A flooding of the Kangerlussuaq bridge as in July 2012 thus requires a multi-day high-melt episode and can therefore be anticipated by in-situ monitoring of ice sheet melt. No evidence of significant en- or subglacial meltwater retention is found.
The microbiome of glaciers and ice sheets.
Anesio, Alexandre M; Lutz, Stefanie; Chrismas, Nathan A M; Benning, Liane G
2017-01-01
Glaciers and ice sheets, like other biomes, occupy a significant area of the planet and harbour biological communities with distinct interactions and feedbacks with their physical and chemical environment. In the case of the glacial biome, the biological processes are dominated almost exclusively by microbial communities. Habitats on glaciers and ice sheets with enough liquid water to sustain microbial activity include snow, surface ice, cryoconite holes, englacial systems and the interface between ice and overridden rock/soil. There is a remarkable similarity between the different specific glacial habitats across glaciers and ice sheets worldwide, particularly regarding their main primary producers and ecosystem engineers. At the surface, cyanobacteria dominate the carbon production in aquatic/sediment systems such as cryoconite holes, while eukaryotic Zygnematales and Chlamydomonadales dominate ice surfaces and snow dynamics, respectively. Microbially driven chemolithotrophic processes associated with sulphur and iron cycle and C transformations in subglacial ecosystems provide the basis for chemical transformations at the rock interface under the ice that underpin an important mechanism for the delivery of nutrients to downstream ecosystems. In this review, we focus on the main ecosystem engineers of glaciers and ice sheets and how they interact with their chemical and physical environment. We then discuss the implications of this microbial activity on the icy microbiome to the biogeochemistry of downstream ecosystems.
Fitzpatrick, J.J.; Muhs, D.R.
1989-01-01
During the 1987-1988 austral summer field season, membersof the south party of the antarctic search for meteorites south-ern team* working in the Lewis Cliff/Colbert Hills region dis-covered several areas of unusual mineralization within theLewis Cliff ice tongue and its associated moraine field (figure1). The Lewis Cliff ice tongue (84°15'S 161°25'E) is a meteorite-stranding surface of ablating blue ice, about 2.3 by 7.0 kilo-meters, bounded on the west by the Lewis Cliff, on the northand northeast by a large supraglacial moraine, and on the eastby the Colbert Hills. To the south it opens to the Walcott Névé.Because it is a meteorite-stranding surface, the major component of ice motion in the area is believed to be vertical(Whillans and Cassidy 1983). The presence of Thule-Baffinmoraines at the northern terminus of the blue ice tends tosupport the hypothesis that the area underlying the moraineis essentially stagnant and that ice arriving from the south ispiling up against it. Areas containing mineral deposits werefound within the moraine field to the north and east of theblue ice margin and also along the east margins of the blue iceitself. Subsequent X-ray diffraction analyses of these depositshave shown that they are composed predominantly of nah-colite (NaHCO3), trona [Na3(CO3)(HCO3) · 2H20], borax[Na2B405(OH)4 · 8H20], and a new hexagonal hydrous sulfatespecies. This paper reports the details of the borax occurrence,because it is the first known on the continent.
NASA Astrophysics Data System (ADS)
Dinniman, Michael S.; Klinck, John M.; Smith, Walker O.
2007-11-01
Satellite imagery shows that there was substantial variability in the sea ice extent in the Ross Sea during 2001-2003. Much of this variability is thought to be due to several large icebergs that moved through the area during that period. The effects of these changes in sea ice on circulation and water mass distributions are investigated with a numerical general circulation model. It would be difficult to simulate the highly variable sea ice from 2001 to 2003 with a dynamic sea ice model since much of the variability was due to the floating icebergs. Here, sea ice concentration is specified from satellite observations. To examine the effects of changes in sea ice due to iceberg C-19, simulations were performed using either climatological ice concentrations or the observed ice for that period. The heat balance around the Ross Sea Polynya (RSP) shows that the dominant term in the surface heat budget is the net exchange with the atmosphere, but advection of oceanic warm water is also important. The area average annual basal melt rate beneath the Ross Ice Shelf is reduced by 12% in the observed sea ice simulation. The observed sea ice simulation also creates more High-Salinity Shelf Water. Another simulation was performed with observed sea ice and a fixed iceberg representing B-15A. There is reduced advection of warm surface water during summer from the RSP into McMurdo Sound due to B-15A, but a much stronger reduction is due to the late opening of the RSP in early 2003 because of C-19.
Correlation of Comet 67P/CG'S Morphology with the Occurrence of Exposed Water Ice Patches
NASA Astrophysics Data System (ADS)
Arnold, G.; Weller, D.; Zeilinger, G.; Kappel, D.; Hviid, S.; Kührt, E.; Moroz, L. V.; Markus, K.; Henckel, D.; Capaccioni, F.; Filacchione, G.; Erard, S.; Bockelee-Morvan, D.
2017-04-01
Introduction: Comet 67P's surface is quite homogeneously covered by dark refractory materials rich in organics [1,2]. Rare water ice expo- sures on the surface, most likely originating from sub-surface layers, have recently been discovered [3,4]. Such H2O ice patches on 67P's Imhotep region in the pre-perihelion phase were ex- amined and related to the local morphology to understand the exposure mechanisms [5]. Methods: H2O ice was identified in two study areas using characteristic H2O spectral features observed by the VIRTIS-M instrument [1]: absorption bands at 1.04, 1.25, 1.52, 2.02, 2.96 μm, and the VIS spectral slope (0.5-0.8 μm). Corresponding normalized spectral indicators were projected onto a 3D digital shape model (DSM) of 67P [6], along with high spatial resolution images acquired by OSIRIS [7] for morphological context. Results and conclusions: The 2.0-μm absorption band proved to be the most sensitive H2O indicator in the IR. Flat (bluer) normalized VIS slopes correlate very well with depths of H2O ice absorption bands. The DSM projections show a significant spatial correlation between spectral H2O indicators and morphological features. H2O ice deposits were identified in two areas, each extending over hundreds of square meters. Both are located at the bases of steep-sloped (>60°) walls of Consolidated Cometary Material (CCM) on debris falls that came to rest on moderately inclined (20°-30°) terrain, pointing towards gravitational lows. Both deposits are located in poorly illuminated areas due to shadowing from close-by steep walls. The morphological and photometrical properties of these deposits appear to be stable over months. Spectral modeling [3,4] indicated the presence of large (mm-sized) H2O ice grains. Such grains form through vapor diffusion in ice-rich colder layers or by sintering and are exposed by erosion [3]. The CCM in both study areas was fractured and weakened by thermal fatigue and sublimation, leading to the collapse of overhangs in one single event or in small steps over a longer time. For study area 1 this interpretation is supported by a small remnant H2O ice patch in the upper part of the steep wall indicating the original location of the collapse overhang. Sinkhole-structures on the CCM in study area 2 indicate sub-surface activity connected to ice sublimation, thermal stress, and occasional outbursts. Even though the nucleus structure probably is mostly homogeneous and primordial, the variable size and irregular distribution of sink-holes and erosional features strongly imply a highly active and heterogeneous sub-surface layer of at least tens of meters [8,9]. References: [1] Capaccioni F. et al. (2015) Sci- ence, 347, 628. [2] Quirico E. et al. (2016) Ica- rus, 272, 32-47. [3] Filacchione G. et al. (2016) Nature, 529, 368-372. [4] Barucci A. et al. (2016) A&A, 595, A102. [5] Weller D. (2016) Master thesis, University of Potsdam. [6] Preusker F. et al. (2015) A&A, 583, A33. [7] Keller H. et al. (2007) Space Sci. Rev., 128(1), 433-506. [8] Thomas N. et al. (2015) Science, 347, 440. [9] Vincent J.B. et al. (2015) Nature, 523, 63-66.
Switch of flow direction in an Antarctic ice stream.
Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H
2002-10-03
Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.
NASA Astrophysics Data System (ADS)
Kavehpour, H. Pirouz; Shirazi, Elika T.; Alizadeh-Birjandi, Elaheh
2016-11-01
Ice adhesion and excessive accumulation on exposed structures and equipment are well known to cause serious problems in cold-climate regions; therefore, the development of coatings that can resist icing can solve many challenges in various areas of industry. This work was inspired by nature and ice-resistivity and superhydrophobicity of plants leaves. Kale is an example of a plant that can be harvested in winter. It shows superhydrophobic behavior, which is normally known as an advantage for cleaning the leaves, but we were able to show that its surface structure and high contact angle of water drops on kale leaves could delay the ice formation process making it a good candidate for an ice-repellent coating. We have performed in-depth experimental analyses on how different plants can prevent icing, and contact angle measurements and scanning electron microscopy (SEM) of the leaves were taken to further mimic their surface morphology.
Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.
2003-01-01
Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.
Evolution of supra-glacial lakes across the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Sundal, A. V.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P.
2009-04-01
We have used 268 cloud-free Moderate-resolution Imaging Spectroradiometer (MODIS) images spanning the 2003 and 2005-2007 melt seasons to study the seasonal evolution of supra-glacial lakes in three different regions of the Greenland Ice Sheet. Lake area estimates were obtained by developing an automated classification method for their identification based on 250 m resolution MODIS surface reflectance observations. Widespread supra-glacial lake formation and drainage is observed across the ice sheet, with a 2-3 weeks delay in the evolution of total supra-glacial lake area in the northern areas compared to the south-west. The onset of lake growth varies by up to one month inter-annually, and lakes form and drain at progressively higher altitudes during the melt season. A correlation was found between the annual peak in total lake area and modelled annual runoff across all study areas. Our results indicate that, in a future warmer climate (Meehl et al., 2007), Greenland supra-glacial lakes can be expected to form at higher altitudes and over a longer time period than is presently the case, expanding the area and time period over which connections between the ice sheet surface and base may be established (Das et al., 2008) with potential consequences for ice sheet discharge (Zwally et al., 2002). Das, S., Joughin, M., Behn, M., Howat, I., King, M., Lizarralde, D., & Bhatia, M. (2008). Fracture propagation to the base of the Greenland Ice Sheet during supra-glacial lake drainage. Science, 5877, 778-781. Meehl, G.A., Stocker, T.F., Collins W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. & Zhao, Z.C. (2007). Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J. & Steffen, K. (2002). Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow. Science, 297, 218-221.
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Helfert, Michael R.; Helms, David R.
1992-01-01
Earth photography from the Space Shuttle is used to examine the ice cover on Lake Baikal and correlate the patterns of weakened and melting ice with known hydrothermal areas in the Siberian lake. Particular zones of melted and broken ice may be surface expressions of elevated heat flow in Lake Baikal. The possibility is explored that hydrothermal vents can introduce local convective upwelling and disrupt a stable water column to the extent that the melt zones which are observed in the lake's ice cover are produced. A heat flow map and photographs of the lake are overlaid to compare specific areas of thinned or broken ice with the hot spots. The regions of known hydrothermal activity and high heat flow correlate extremely well with circular regions of thinned ice, and zones of broken and recrystallized ice. Local and regional climate data and other sources of warm water, such as river inlets, are considered.
Ross sea ice motion, area flux, and deformation
NASA Technical Reports Server (NTRS)
kwok, Ron
2005-01-01
The sea ice motion, area export, and deformation of the Ross Sea ice cover are examined with satellite passive microwave and RADARSAT observations. The record of high-resolution synthetic aperture radar (SAR) data, from 1998 and 2000, allows the estimation of the variability of ice deformation at the small scale (10 km) and to assess the quality of the longer record of passive microwave ice motion. Daily and subdaily deformation fields and RADARSAT imagery highlight the variability of motion and deformation in the Ross Sea. With the passive microwave ice motion, the area export at a flux gate positioned between Cape Adare and Land Bay is estimated. Between 1992 and 2003, a positive trend can be seen in the winter (March-November) ice area flux that has a mean of 990 x 103 km2 and ranges from a low of 600 x 103 km2 in 1992 to a peak of 1600 x 103 km2 in 2001. In the mean, the southern Ross Sea produces almost twice its own area of sea ice during the winter. Cross-gate sea level pressure (SLP) gradients explain 60% of the variance in the ice area flux. A positive trend in this gradient, from reanalysis products, suggests a 'spinup' of the Ross Sea Gyre over the past 12 yr. In both the NCEP-NCAR and ERA-40 surface pressure fields, longer-term trends in this gradient and mean SLP between 1979 and 2002 are explored along with positive anomalies in the monthly cross-gate SLP gradient associated with the positive phase of the Southern Hemisphere annular mode and the extrapolar Southern Oscillation.
NASA Astrophysics Data System (ADS)
Bordiec, Maï; Carpy, Sabrina; Perret, Laurent; Bourgeois, Olivier; Massé, Marion
2017-04-01
The redistribution of surface ice induced the wind flow may lead to the development and migration of periodic bedforms, or "ice ripples", at the surface of ice sheets. In certain cold and dry environments, this redistribution need not involve solid particle transport but may be dominated by sublimation and condensation, inducing mass transfers between the ice surface and the overlying steady boundary layer turbulent flow. These mass transfers diffuse the water vapour sublimated from the ice into the atmosphere and become responsible for the amplification and propagation of ripples in a direction perpendicular to their crests. Such ice ripples, 24 cm in wavelength, have been described in the so-called Blue Ice Areas of Antarctica. In order to understand the mechanisms that generate and develop these periodic bedforms on terrestrial glaciers and to evaluate the plausibility that similar bedforms may develop on Mars, we performed a linear stability analysis applied to a turbulent boundary layer flow perturbed by a wavy ice surface. The model is developed as follow. We first solve the flow dynamics using numerical methods analogous to those used in sand wave models assuming that the airflow is similar in both problems. We then add the transport/diffusion equation of water vapour following the same scheme. We use the Reynolds-averaged description of the equation with a Prandtl-like closure. We insert a damping term in the exponential formula of the Van Driest mixing length, depending on the pressure gradient felt by the flow and related to the thickness of the viscous sublayer at the ice-atmosphere interface. This formulation is an efficient way to properly represent the transitional regime under which the ripples grow. Once the mass flux of water vapour is solved, the phase shift between the ripples crests and the maximum of the flux can be deduced for different environments. The temporal evolution of the ice surface can be expressed from these quantities to infer the growth rate, migration direction and velocity of the ripples. The present approach has been first used to model the atmospheric flow developing over wavy terrestrial ice bedforms in the Blue Ice Areas of Antarctica. Both the predicted preferential wavelength and propagation direction of the ice ripple have been found to be in agreement with the observations. The present model has subsequently been applied to the same flow configuration but on Mars. Ice ripples are indeed likely to exist there, given that temperature and pressure conditions in the martian atmosphere favors sublimation/condensation as the dominant mass-transport process. The model has proved able to predict not only the development of ice-ripple on Mars (i.e it showed that some most amplified wavelength also exist under Martian atmospheric conditions) but also both their wavelength and propagation direction. The preferential wavelength of ices-ripples on the Martian polar caps appears to be much larger than on the Earth. Finally, a good match between the most likely ice-ripple wavelength predicted by the model and those deduced from recent available observations of the surface of Martian polar caps is shown.
Multi-platform observations on melt pond in Arctic summer 2010
NASA Astrophysics Data System (ADS)
Wang, Y.; Huang, W.; Lu, P.; Li, Z.
2011-12-01
Melt ponds play an important role in sea ice surface albedo and further affect the heat budget between ice-air interface. The overall reductions of Arctic sea ice extend and thickness especially in recent years is considered to be enhanced partly by the melt ponds, and understanding of melt ponds on how they change the heat and mass balance of sea ice through the ice surface albedo decrease is urgently required. Although satellite remote sensing is a general tool to observe sea ice surface features on a large scale, the small scale information with higher spatial and temporal resolution is more helpful to understand the physical mechanism in the evolution of melt ponds. Arctic summer in 2010 is special because of an obvious trans-polar melting, during which the multi-year ice in the central Arctic was seriously melted, and formed a trans-polar zone with ice concentration less than 80% stretching from the Chukchi Sea to the Greenland Sea. It provided a fantastic opportunity to observe melt ponds especially at the high latitude. The Fourth Chinese National Arctic Research Expedition in 2010 (CHINARE-2010) was carried out from July 1 to September 20, 2010. As R/V Xuelong sailing in the ice-infested seas, a multi-platform observation was conducted to investigate the evolution of melt ponds on Arctic sea ice. Among which, aerial photography provided a downward-looking snapshot of the ice surface by using the camera installed on a helicopter, and melt pond information on a 100-meter scale can be obtained. Shipboard photography gave an inclined inspection on the ice conditions beside the ship using the camera installed on the vessel, and melt pond information on a 10-meter scale can be determined. Ground-based photography was similar to the shipboard photography, but the camera with tilt angle was installed on the top of a vertical lifting device fixed on the ice, and melt pond information on a 1-meter scale can be observed. Over 10,000 sea ice images from different platforms were collected during the cruise, and the survey area covered the regions 140°W-180°W, 70°N-88°N. An image processing technique based on difference in colors of the surface features was used to divide each image into three components: snow-covered ice floes, melt ponds and leads. And then geometric features of melt ponds, such as area, perimeter, and roundness, could be extracted from the aerial images. These data can enrich our knowledge on the distribution of melt pond on different spatial scale, especially those in the high latitude regions where summer melting was never so serious in previous years.
Regional melt-pond fraction and albedo of thin Arctic first-year drift ice in late summer
NASA Astrophysics Data System (ADS)
Divine, D. V.; Granskog, M. A.; Hudson, S. R.; Pedersen, C. A.; Karlsen, T. I.; Divina, S. A.; Renner, A. H. H.; Gerland, S.
2015-02-01
The paper presents a case study of the regional (≈150 km) morphological and optical properties of a relatively thin, 70-90 cm modal thickness, first-year Arctic sea ice pack in an advanced stage of melt. The study combines in situ broadband albedo measurements representative of the four main surface types (bare ice, dark melt ponds, bright melt ponds and open water) and images acquired by a helicopter-borne camera system during ice-survey flights. The data were collected during the 8-day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic, north of Svalbard at 82.3° N, from 26 July to 3 August 2012. A set of > 10 000 classified images covering about 28 km2 revealed a homogeneous melt across the study area with melt-pond coverage of ≈ 0.29 and open-water fraction of ≈ 0.11. A decrease in pond fractions observed in the 30 km marginal ice zone (MIZ) occurred in parallel with an increase in open-water coverage. The moving block bootstrap technique applied to sequences of classified sea-ice images and albedo of the four surface types yielded a regional albedo estimate of 0.37 (0.35; 0.40) and regional sea-ice albedo of 0.44 (0.42; 0.46). Random sampling from the set of classified images allowed assessment of the aggregate scale of at least 0.7 km2 for the study area. For the current setup configuration it implies a minimum set of 300 images to process in order to gain adequate statistics on the state of the ice cover. Variance analysis also emphasized the importance of longer series of in situ albedo measurements conducted for each surface type when performing regional upscaling. The uncertainty in the mean estimates of surface type albedo from in situ measurements contributed up to 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea-ice cover.
Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.
Patel, Sajal M; Bhugra, Chandan; Pikal, Michael J
2009-01-01
A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure Ice Fog Technique" is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.
Influence of projected snow and sea-ice changes on future climate in heavy snowfall region
NASA Astrophysics Data System (ADS)
Matsumura, S.; Sato, T.
2011-12-01
Snow/ice albedo and cloud feedbacks are critical for climate change projection in cryosphere regions. However, future snow and sea-ice distributions are significantly different in each GCM. Thus, surface albedo in cryosphere regions is one of the causes of the uncertainty for climate change projection. Northern Japan is one of the heaviest snowfall regions in the world. In particular, Hokkaido is bounded on the north by the Okhotsk Sea, where is the southernmost ocean in the Northern Hemisphere that is covered with sea ice during winter. Wintertime climate around Hokkaido is highly sensitive to fluctuations in snow and sea-ice. The purpose of this study is to evaluate the influence of global warming on future climate around Hokkaido, using the Pseudo-Global-Warming method (PGW) by a regional climate model. The boundary conditions of the PGW run were obtained by adding the difference between the future (2090s) and past (1990s) climates simulated by coupled general circulation model (MIROC3.2 medres), which is from the CMIP3 multi-model dataset, into the 6-hourly NCEP reanalysis (R-2) and daily OISST data in the past climate (CTL) run. The PGW experiments show that snow depth significantly decreases over mountainous areas and snow cover mainly decreases over plain areas, contributing to higher surface warming due to the decreased snow albedo. Despite the snow reductions, precipitation mainly increases over the mountainous areas because of enhanced water vapor content. However, precipitation decreases over the Japan Sea and the coastal areas, indicating the weakening of a convergent cloud band, which is formed by convergence between cold northwesteries from the Eurasian continent and anticyclonic circulation over the Okhotsk Sea. These results suggest that Okhotsk sea-ice decline may change the atmospheric circulation and the resulting effect on cloud formation, resulting in changes in winter snow or precipitation. We will also examine another CMIP3 model (MRI-CGCM2.3.2), which sensitivity of surface albedo to surface air temperature is the lowest in the CMIP3 models.
The Effect of Topographic Shadowing by Ice on Irradiance in the Greenland Ice Sheet Ablation Zone
NASA Astrophysics Data System (ADS)
Leidman, S. Z.; Rennermalm, A. K.; Ryan, J.; Cooper, M. G.; Smith, L. C.
2017-12-01
Accurately predicting runoff contributions to global sea level rise requires more refined surface mass balance (SMB) models of the Greenland Ice Sheet (GrIS). Topographic shadowing has shown to be important in the SMB of snow-covered regions, yet SMB models for the GrIS generally ignore how surface topography affects spatial variability of incoming solar radiation on a surface. In the ablation zone of Southwest Greenland, deeply incised supraglacial drainage features, fracturing, and large-scale bed deformation result in extensive areas of rough surface topography. This topography blocks direct radiation such that shadowed areas receive less energy for melting while other topographic features such as peaks recieve more energy. In this study, we quantify how shadowing from local topography features changes incoming solar radiation. We apply the ArcGIS Pro Solar Radiation Toolset to calculate the direct and diffuse irradiance in sunlit and shadowed areas by determining the sun's movement for every half hour increment of 2016. Multiple digital elevation models (DEMs) with spatial resolutions ranging from 0.06 to 5m were derived from fixed wing and quadcopter UAV imagery collected in summer 2016 and the ArcticDEM dataset. Our findings show that shadowing significantly decreases irradiance compared to smoothed surfaces where local topography is removed. This decrease is exponentially proportional to the DEM pixel sized with 5m DEMs only able to capture a small percentage of the effect. Applying these calculations to the ArcticDEM to cover a larger study area indicates that decreases in irradiance are nonlinearly proportional to elevation with highly crevassed areas showing a larger effect from shadowing. Even so, shading at higher elevations reduces irradiance enough to result in several centimeters snow water equivalence (SWE) per year of over-prediction of runoff in SMB models. Furthermore, analysis of solar radiation products shows that shadowing predicts albedo variability far better than a range of variables derived from UAV imagery mosaics including slope, aspect, elevation, or the distance to dark surface features. In summary, implementation of the effect of shadowing on irradiance should therefore be considered for accurate surface mass balance calculations for the Greenland ice sheet.
1979-02-26
Range : 5 million miles (8.025 million kilometers) This is a morning shot of Ganymede, largest of Jupiter's 13 satellites. It's slightly larger than Mercury with a density about twice that of water. It's believed to be made of rock and ice with a surface of water and ice. Ganymede is 4 times brighter than our Moon with the bright spot in center of photo 5 times brighter than the Moon, and may contain more ice than surrounding areas. The bright pattern around the spot seems like ray craters on the Moon and Mercury and the area may in fact be an impact crater that has exposed fresh, underlying ice. Photo taken through blue, green and orange filters.
1979-02-26
Range : 5 million miles (8.025 million kilometers) This is a morning shot of Ganymede, largest of Jupiter's 13 satellites. It's slightly larger than Mercury with a density about twice that of water. It's believed to be made of rock and ice with a surface of water and ice. Ganymede is 4 times brighter than our Moon with the bright spot in center of photo 5 times brighter than the Moon, and may contain more ice than surrounding areas. The bright pattern around the spot seems like ray craters on the Moon and Mercury and the area may in fact be an impact crater that has exposed fresh, underlying ice. Photo taken through blue, green and orange filters.
2014-11-21
The puzzling, fascinating surface of Jupiter icy moon Europa looms large in this newly-reprocessed [sic] color view, made from images taken by NASA Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. The view was previously released as a mosaic with lower resolution and strongly enhanced color (see PIA02590). To create this new version, the images were assembled into a realistic color view of the surface that approximates how Europa would appear to the human eye. The scene shows the stunning diversity of Europa's surface geology. Long, linear cracks and ridges crisscross the surface, interrupted by regions of disrupted terrain where the surface ice crust has been broken up and re-frozen into new patterns. Color variations across the surface are associated with differences in geologic feature type and location. For example, areas that appear blue or white contain relatively pure water ice, while reddish and brownish areas include non-ice components in higher concentrations. The polar regions, visible at the left and right of this view, are noticeably bluer than the more equatorial latitudes, which look more white. This color variation is thought to be due to differences in ice grain size in the two locations. Images taken through near-infrared, green and violet filters have been combined to produce this view. The images have been corrected for light scattered outside of the image, to provide a color correction that is calibrated by wavelength. Gaps in the images have been filled with simulated color based on the color of nearby surface areas with similar terrain types. This global color view consists of images acquired by the Galileo Solid-State Imaging (SSI) experiment on the spacecraft's first and fourteenth orbits through the Jupiter system, in 1995 and 1998, respectively. Image scale is 1 mile (1.6 kilometers) per pixel. North on Europa is at right. http://photojournal.jpl.nasa.gov/catalog/PIA19048
Exploring the mobility of cryoconite on High-Arctic glaciers
NASA Astrophysics Data System (ADS)
Irvine-Fynn, T. D.; Hodson, A. J.; Bridge, J. W.; Langford, H.; Anesio, A.; Ohlanders, N.; Newton, S.
2010-12-01
There has been a growing awareness of the significance of biologically active dust (cryoconite) on the energy balance of, and nutrient cycling at glacier surfaces. Moreover, researchers have estimated the mass of biological material released from glacier ice to downstream environments and ecosystems, including the melt-out of cells from emergent ice in the ablation area. However, the processes, rates and mechanisms of cryoconite mobility and transport have not been fully explored. For many smaller valley glaciers in the High-Arctic, the climate dictates only a thin (~ 1m) layer of ice at the glacier surface is at the melting point during the summer months. This surface ice is commonly characterized by an increased porosity in response to incident energy and hydraulic conditions, and has been termed the “weathering crust”. The presence of cryoconite, with its higher radiation absorption, exacerbates the weathering crust development. Thus, crucially, the transport of cryoconite is not confined to simply a ‘smooth’ ice surface, but rather also includes mobility in the near-surface ice matrix. Here, we present initial results from investigations of cryoconite transport at Midtre Lovénbreen and Longyearbreen, two north-facing valley glaciers in Svalbard (Norway). Using time-lapse imagery, we explore the transport rates of cryoconite on a glacier surface and consider the associations between mobility and meteorological conditions. Results suggest some disparity between micro-, local- and plot-scale observations of cryoconite transport: the differences imply controlling influences of cryoconite volume, ice surface topography and ice structure. While to examine the relative volumes of cryoconite exported from the glacier surface by supraglacial streams we employ flow cytometry, using SYBR-Green-II staining to identify the biological component of the suspended load. Preliminary comparisons between shallow (1m) ice cores and in-stream concentrations suggest cryoconite may be retained within the near-surface ice rather than being readily transported from the glacier by meltwater flows. We propose these processes lead to a reduced cell flux transported by meltwaters from the glacier to aquatic ecosystems, but an increase in the volume of cryoconite deposited in the forefield of a retreating glacier and made available for terrestrial ecosystem development.
Astrobiology of Jupiter's icy moons
NASA Astrophysics Data System (ADS)
Lipps, Jere H.; Delory, Gregory; Pitman, Joseph T.; Rieboldt, Sarah
2004-11-01
Jupiter's Icy Moons, Europa, Ganymede and Callisto, may possess energy sources, biogenic molecules, and oceans below their icy crusts, thus indicating a strong possibility that they were abodes for present or past life. Life in Earth's icy areas lives in a wide variety of habitats associated with the ice, in the water column below the ice, and on the floor of the ocean below the ice. Similar habitats may exist on JIM, have been transported to the icy crust, and be exposed in tectonic or impact features. Europa has a young, dynamic surface with many outcrops exposing older ice, fresh ice, possible materials from the subsurface ocean, and a few impact craters. Ganymede has older, darker, tectonized terrains surrounded by light ice. Callisto has a much older, heavily impacted surface devoid of significant tectonic structures. Past and present life habitats may be exposed in these features, making Europa the most favorable target while Ganymede is of interest, and Callisto seems more unlikely to have detectable life. A proper search strategy requires detailed orbital imaging and spectrometry of the likely places, and surface data collection with microscopic, spectrometric, and biochemical instruments.
Clouds and Ice of the Lambert-Amery System, East Antarctica
NASA Technical Reports Server (NTRS)
2002-01-01
These views from the Multi-angle Imaging SpectroRadiometer (MISR) illustrate ice surface textures and cloud-top heights over the Amery Ice Shelf/Lambert Glacier system in East Antarctica on October 25, 2002.The left-hand panel is a natural-color view from MISR's downward-looking (nadir) camera. The center panel is a multi-angular composite from three MISR cameras, in which color acts as a proxy for angular reflectance variations related to texture. Here, data from the red-band of MISR's 60o forward-viewing, nadir and 60o backward-viewing cameras are displayed as red, green and blue, respectively. With this display technique, surfaces which predominantly exhibit backward-scattering (generally rough surfaces) appear red/orange, while surfaces which predominantly exhibit forward-scattering (generally smooth surfaces) appear blue. Textural variation for both the grounded and sea ice are apparent. The red/orange pixels in the lower portion of the image correspond with a rough and crevassed region near the grounding zone, that is, the area where the Lambert and four other smaller glaciers merge and the ice starts to float as it forms the Amery Ice Shelf. In the natural-color view, this rough ice is spectrally blue in color.Clouds exhibit both forward and backward-scattering properties in the middle panel and thus appear purple, in distinct contrast with the underlying ice and snow. An additional multi-angular technique for differentiating clouds from ice is shown in the right-hand panel, which is a stereoscopically derived height field retrieved using automated pattern recognition involving data from multiple MISR cameras. Areas exhibiting insufficient spatial contrast for stereoscopic retrieval are shown in dark gray. Clouds are apparent as a result of their heights above the surface terrain. Polar clouds are an important factor in weather and climate. Inadequate characterization of cloud properties is currently responsible for large uncertainties in climate prediction models. Identification of polar clouds, mapping of their distributions, and retrieval of their heights provide information that will help to reduce this uncertainty.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire Earth between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 15171. The panels cover an area of 380 kilometers x 984 kilometers, and utilize data from blocks 145 to 151 within World Reference System-2 path 127.MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center,Greenbelt, MD. JPL is a division of the California Institute of Technology.NASA Astrophysics Data System (ADS)
Perkovic-Martin, D.; Johnson, M. P.; Holt, B.; Panzer, B.; Leuschen, C.
2012-12-01
This paper presents estimates of snow depth over sea ice from the 2009 through 2011 NASA Operation IceBridge [1] spring campaigns over Greenland and the Arctic Ocean, derived from Kansas University's wideband Snow Radar [2] over annually repeated sea-ice transects. We compare the estimates of the top surface interface heights between NASA's Atmospheric Topographic Mapper (ATM) [3] and the Snow Radar. We follow this by comparison of multi-year snow depth records over repeated sea-ice transects to derive snow depth changes over the area. For the purpose of this paper our analysis will concentrate on flights over North/South basin transects off Greenland, which are the closest overlapping tracks over this time period. The Snow Radar backscatter returns allow for surface and interface layer types to be differentiated between snow, ice, land and water using a tracking and classification algorithm developed and discussed in the paper. The classification is possible due to different scattering properties of surfaces and volumes at the radar's operating frequencies (2-6.5 GHz), as well as the geometries in which they are viewed by the radar. These properties allow the returns to be classified by a set of features that can be used to identify the type of the surface or interfaces preset in each vertical profile. We applied a Support Vector Machine (SVM) learning algorithm [4] to the Snow Radar data to classify each detected interface into one of four types. The SVM algorithm was trained on radar echograms whose interfaces were visually classified and verified against coincident aircraft data obtained by CAMBOT [5] and DMS [6] imaging sensors as well as the scanning ATM lidar. Once the interface locations were detected for each vertical profile we derived a range to each interface that was used to estimate the heights above the WGS84 ellipsoid for direct comparisons with ATM. Snow Radar measurements were calibrated against ATM data over areas free of snow cover and over GPS land surveyed areas of Thule and Sondrestrom air bases. The radar measurements were compared against the ATM and the GPS measurements that were located in the estimated radar footprints, which resulted in an overall error of ~ 0.3 m between the radar and ATM. The agreement between ATM and GPS survey is within +/- 0.1 m. References: [1] http://www.nasa.gov/mission_pages/icebridge/ [2] Panzer, B. et. al, "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. of Glaciology Instr. and Tech., July 23, 2012. [3] Krabill, William B. 2009 and 2011, updated current year. IceBridge ATM L1B Qfit Elevation and Return Strength. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. [4] Chih-Chung Chang and Chih-Jen Lin. "Libsvm: a library for support vector machines", ACM Transactions on Intelligent Systems and Technology, 2:2:27:1-27:27, 2011. [5] Krabill, William B. 2009 and 2011, updated current year. IceBridge CAMBOT L1B Geolocated Images, [2009-04-25, 2011-04-15]. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. [6] Dominguez, Roseanne. 2011, updated current year. IceBridge DMS L1B Geolocated and Orthorectified Images. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media
Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage
NASA Astrophysics Data System (ADS)
Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.
2017-12-01
Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.
Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes
NASA Astrophysics Data System (ADS)
Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon
2014-04-01
Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.; Howard, Alan D.; Schenk, Paul M.
2013-01-01
Many regions of Callisto feature an unusual landscape consisting of rolling dark plains with interspersed bright knobs (pinnacles) and ridges. In earlier work we interpreted the dark plains as dusty, mass-wasted residue from sublimation from volatile-rich bedrock and the bright knobs (often crater rims) as water ice accumulations at locations sheltered from thermal reradiation from the dusty residue. We simulated evolution of Callisto's craters as a combination of bedrock volatile sublimation, mass wasting of the dark, non-coherent residue, and redeposition of ice, and concluded that the ice pinnacles and ridges might be underlain by tens to hundreds of meters of ice. Here we report the initial work of a new study of pinnacles addressing additional questions: 1) Is there an evolutionary sequence starting, e.g., from a cratered initial surface through growth and formation of a dust mantle and pinnacles, to eventual loss of ice to sublimation resulting in just a dark, dusty surface? 2) What determines the areal density and spatial scale of pinnacles - volatile content of bedrock, crater density, surface age, broad-scale topographic setting? 3) Are pinnacles still forming? Several observations address these questions. In a few places scattered high-albedo blocks approx. 25-60 m in diameter occur in the vicinity of large icy pinnacles. We interpret these blocks to be remnants from the collapse of tall pinnacles that were undermined by mass wasting. Some high-relief icy knobs have developed a skeletonized planform due to mass wasting by avalanching, or perhaps to seeding of new sites of ice deposition on mass-wasted ice blocks. Some areas nearly lack fresh craters with well-defined ejecta and ice-free rims. This may imply rapid transformation of fresh craters by sublimation, mass wasting, and ice reprecipitation. In other areas small sharp-rimmed craters occur which lack ice pinnacles, but the craters nonetheless lack visible ejecta sheets. Our preliminary interpretation is that mass wasting is very efficient on Callisto, or alternatively the dust cover is very thick and lacks competent coarse materials.
Towards multi-decadal to multi-millennial ice core records from coastal west Greenland ice caps
NASA Astrophysics Data System (ADS)
Das, Sarah B.; Osman, Matthew B.; Trusel, Luke D.; McConnell, Joseph R.; Smith, Ben E.; Evans, Matthew J.; Frey, Karen E.; Arienzo, Monica; Chellman, Nathan
2017-04-01
The Arctic region, and Greenland in particular, is undergoing dramatic change as characterized by atmospheric warming, decreasing sea ice, shifting ocean circulation patterns, and rapid ice sheet mass loss, but longer records are needed to put these changes into context. Ice core records from the Greenland ice sheet have yielded invaluable insight into past climate change both regionally and globally, and provided important constraints on past surface mass balance more directly, but these ice cores are most often from the interior ice sheet accumulation zone, at high altitude and hundreds of kilometers from the coast. Coastal ice caps, situated around the margins of Greenland, have the potential to provide novel high-resolution records of local and regional maritime climate and sea surface conditions, as well as contemporaneous glaciological changes (such as accumulation and surface melt history). But obtaining these records is extremely challenging. Most of these ice caps are unexplored, and thus their thickness, age, stratigraphy, and utility as sites of new and unique paleoclimate records is largely unknown. Access is severely limited due to their high altitude, steep relief, small surface area, and inclement weather. Furthermore, their relatively low elevation and marine moderated climate can contribute to significant surface melting and degradation of the ice stratigraphy. We recently targeted areas near the Disko Bay region of central west Greenland where maritime ice caps are prevalent but unsampled, as potential sites for new multi-decadal to multi-millennial ice core records. In 2014 & 2015 we identified two promising ice caps, one on Disko Island (1250 m. asl) and one on Nuussuaq Peninsula (1980 m. asl) based on airborne and ground-based geophysical observations and physical and glaciochemical stratigraphy from shallow firn cores. In spring 2015 we collected ice cores at both sites using the Badger-Eclipse electromechanical drill, transported by a medley of small fixed wing and helicopter aircraft, and working out of small tent camps. On Disko Island, despite high accumulation rates and ice thickness of 250 meters, drilling was halted twice due to the encounter of liquid water at depths ranging from 18-20 meters, limiting the depth of the final core to 21 m, providing a multi-decadal record (1980-2015.) On Nuussuaq Peninsula, we collected a 138 m ice core, almost to bedrock, representing a 2500 year record. The ice cores were subsequently analyzed using a continuous flow analysis system (CFA). Age-depth profiles and accumulation histories were determined by combining annual layer counting and an ice flow thinning model, both constrained by glaciochemical tie points to other well-dated Greenland ice core records (e.g. volcanic horizons and continuous heavy metal records). Here we will briefly provide an overview of the project and the new sites, and the novel dating methodology, and describe the latest stratigraphic, isotopic and glaciochemical results. We will also provide a particular focus on new regional climatological insight gained from our records during three climatically sensitive time periods: the late 20th & early 21st centuries; the Little Ice Age; and the Medieval Climate Anomaly.
Marginal Ice Zone Processes Observed from Unmanned Aerial Systems
NASA Astrophysics Data System (ADS)
Zappa, C. J.
2015-12-01
Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. We capture a melting and mixing event that explains the changing pattern observed in skin SST and is substantiated using laboratory experiments.
Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.
2012-12-01
The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.
The Bossons glacier protects Europe's summit from erosion
NASA Astrophysics Data System (ADS)
Godon, C.; Mugnier, J. L.; Fallourd, R.; Paquette, J. L.; Pohl, A.; Buoncristiani, J. F.
2013-08-01
The contrasting efficiency of erosion beneath cold glacier ice, beneath temperate glacier ice, and on ice-free mountain slopes is one of the key parameters in the development of relief during glacial periods. Detrital geochronology has been applied to the subglacial streams of the north face of the Mont-Blanc massif in order to estimate the efficiency of erosional processes there. Lithologically this area is composed of granite intruded at ~303 Ma within an older polymetamorphic complex. We use macroscopic features (on ~10,000 clasts) and U-Pb dating of zircon (~500 grains) to establish the provenance of the sediment transported by the glacier and its subglacial streams. The lithology of sediment collected from the surface and the base of the glacier is compared with the distribution of bedrock sources. The analysis of this distribution takes into account the glacier's surface flow lines, the surface areas beneath temperate and cold ice above and below the Equilibrium Line Altitude (ELA), and the extent of the watersheds of the three subglacial meltwater stream outlets located at altitudes of 2300 m, 1760 m and 1450 m. Comparison of the proportions of granite and metamorphics in these samples indicates that (1) glacial transport does not mix the clasts derived from subglacial erosion with the clasts derived from supraglacial deposition, except in the lower part of the ice tongue where supraglacial streams and moulins transfer the supraglacial load to the base of the glacier; (2) the glacial erosion rate beneath the tongue is lower than the erosion rate in adjacent non-glaciated areas; and (3) glacial erosion beneath cold ice is at least 16 times less efficient than erosion beneath temperate ice. The low rates of subglacial erosion on the north face of the Mont-Blanc massif mean that its glaciers are protecting "the roof of Europe" from erosion. A long-term effect of this might be a rise in the maximum altitude of the Alps.
The Evolution of Remnant Ice at the Lunar South Pole from Diviner Surface Temperature Results
NASA Technical Reports Server (NTRS)
Elphic, Richard C.; Siegler, Mathew; Paige, David; Teodoro, Luis Filipe; Vasavada, Ashwin R.
2010-01-01
The Diviner lunar radiometer instrument aboard the Lunar Reconnaissance Orbiter mission has revealed large areas of lunar polar terrain with surface temperatures well below 100K. At these temperatures, the sublimation rate of water ice is well below 1 mm per billion years. In contrast, the loss rate at 120K is more than 1 meter of ice in that time consequently volatiles delivered to the coldest locations can be trapped for over 1 Ga, but will be quickly lost from warmer locales. Here we investigate the loss or retention of a layer of ice-bearing regolith at the lunar south poe, assuming contemporary surface temperature conditions and no other loss processes. We use an analytic solution for the one-dimensional diffusion equation of water ice, assuming an isothermal regolith with pore space comparable to mean grain size, 75 micrometers. Only the top meter of soil is assumed to be ice-bearing. We can then calculate the history of ice content with time based on local temperature, and predict what the epithermal neutron output would be in the presence of such a concentration of hydrogen. We compare the present, observed distribution of hydrogen with what one would expect from the temperature-dependent loss or retention of ice for various times since emplacement.
Stability of ice on the Moon with rough topography
NASA Astrophysics Data System (ADS)
Rubanenko, Lior; Aharonson, Oded
2017-11-01
The heat flux incident upon the surface of an airless planetary body is dominated by solar radiation during the day, and by thermal emission from topography at night. Motivated by the close relationship between this heat flux, the surface temperatures, and the stability of volatiles, we consider the effect of the slope distribution on the temperature distribution and hence prevalence of cold-traps, where volatiles may accumulate over geologic time. We develop a thermophysical model accounting for insolation, reflected and emitted radiation, and subsurface conduction, and use it to examine several idealized representations of rough topography. We show how subsurface conduction alters the temperature distribution of bowl-shaped craters compared to predictions given by past analytic models. We model the dependence of cold-traps on crater geometry and quantify the effect that while deeper depressions cast more persistent shadows, they are often too warm to trap water ice due to the smaller sky fraction and increased reflected and reemitted radiation from the walls. In order to calculate the temperature distribution outside craters, we consider rough random surfaces with a Gaussian slope distribution. Using their derived temperatures and additional volatile stability models, we estimate the potential area fraction of stable water ice on Earth's Moon. For example, surfaces with slope RMS ∼15° (corresponding to length-scales ∼10 m on the lunar surface) located near the poles are found to have a ∼10% exposed cold-trap area fraction. In the subsurface, the diffusion barrier created by the overlaying regolith increases this area fraction to ∼40%. Additionally, some buried water ice is shown to remain stable even beneath temporarily illuminated slopes, making it more readily accessible to future lunar excavation missions. Finally, due to the exponential dependence of stability of ice on temperature, we are able to constrain the maximum thickness of the unstable layer to a few decimeters.
Studies of Antarctic Sea Ice Concentrations from Satellite Data and Their Applications
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Steffen, Konrad; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
Large changes in the sea ice cover have been observed recently. Because of the relevance of such changes to climate change studies it is important that key ice concentration data sets used for evaluating such changes are interpreted properly. High and medium resolution visible and infrared satellite data are used in conjunction with passive microwave data to study the true characteristics of the Antarctic sea ice cover, assess errors in currently available ice concentration products, and evaluate the applications and limitations of the latter in polar process studies. Cloud-free high resolution data provide valuable information about the natural distribution, stage of formation, and composition of the ice cover that enables interpretation of the large spatial and temporal variability of the microwave emissivity of Antarctic sea ice. Comparative analyses of co-registered visible, infrared and microwave data were used to evaluate ice concentrations derived from standard ice algorithms (i.e., Bootstrap and Team) and investigate the 10 to 35% difference in derived values from large areas within the ice pack, especially in the Weddell Sea, Amundsen Sea, and Ross Sea regions. Landsat and OLS data show a predominance of thick consolidated ice in these areas and show good agreement with the Bootstrap Algorithm. While direct measurements were not possible, the lower values from the Team Algorithm results are likely due to layering within the ice and snow and/or surface flooding, which are known to affect the polarization ratio. In predominantly new ice regions, the derived ice concentration from passive microwave data is usually lower than the true percentage because the emissivity of new ice changes with age and thickness and is lower than that of thick ice. However, the product provides a more realistic characterization of the sea ice cover, and are more useful in polar process studies since it allows for the identification of areas of significant divergence and polynya activities. Also, heat and salinity fluxes are proportionately increased in these areas compared to those from the thicker ice areas. A slight positive trend in ice extent and area from 1978 through 2000 is observed consistent with slight continental cooling during the period. However, the confidence in this result is only moderate because the overlap period for key instruments is just one month and the sensitivity to changes in sensor characteristics, calibration and threshold for the ice edge is quite high.
Interaction of acetonitrile with the surfaces of amorphous and crystalline ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaff, J.E.; Roberts, J.T.
1999-10-12
The adsorption of acetonitrile (CH{sub 3}CN) on ultrathin films of ice under ultrahigh vacuum was investigated with temperature-programmed desorption ass spectrometry (TPD) and Fourier transform infrared reflection absorption spectroscopy (FTIRAS). Two types of film were studied, amorphous and crystalline. On the amorphous films, two sates of adsorbed acetonitrile were observed by TPD and FTIRAS. One of the states is attributed to acetonitrile that is hydrogen bonded to agree OH group at the ice surface; the other state is assigned to acetonitrile that is purely physiorbed. Evidence for the hydrogen-bonded state is two-fold. First, there is a large kinetic isotope effectmore » for desorption from H{sub 2}O-and D{sub 2}O-ice: the desorption temperatures from ice-h{sub 2} and ice-d{sub 2} are {approximately}161 and {approximately}176 K, respectively. Second, the C{triple{underscore}bond}N stretching frequency (2,265 cm{sup {minus}1}) is 16 cm{sup {minus}1} is greater than that of physisorbed acetonitrile, and it is roughly equal to that of acetonitrile which is hydrogen bonded to an OH group at the air-liquid water interface. On the crystalline films, there is no evidence for a hydrogen-bonded state in the TPD spectra. The FTIRAS spectra do show that some hydrogen-bonded acetonitrile is present but at a maximum coverage that is roughly one-sixth of that on the amorphous surface. The difference between the amorphous and crystalline surfaces cannot be attributed to a difference n surface areas. Rather, this work provides additional evidence that the surface chemical properties of amorphous ice are different from those of crystalline ice.« less
Optimal proportion of studded tyres in traffic flow to prevent polishing of an icy road.
Tuononen, Ari J; Sainio, Panu
2014-04-01
Studded tyres can significantly wear the road surface and increase particle emissions from the road surface, which has a negative impact on air quality in urban areas. However, road wear might have a positive aspect by roughening the road surface and thus preventing polishing. As a consequence, other vehicles than the ones using studded tyres might also benefit from the usage of studded tyres. The impact of the proportion of studded tyres in the traffic flow on the tyre-ice friction coefficient was studied with a fleet of real cars in a closed environment under strict procedural control. The results show that a proportion of 25-50% studded tyres in the traffic flow is enough to prevent ice from developing in a manner that is critically slippery for non-studded winter tyres. It was also observed that the visual appearance of the ice surface does not indicate if the ice has become more slippery or not. Copyright © 2013 Elsevier Ltd. All rights reserved.
2016-03-17
This enhanced color view of Pluto's surface diversity was created by merging Ralph/Multispectral Visible Imaging Camera (MVIC) color imagery (650 meters per pixel) with Long Range Reconnaissance Imager panchromatic imagery (230 meters per pixel). At lower right, ancient, heavily cratered terrain is coated with dark, reddish tholins. At upper right, volatile ices filling the informally named Sputnik Planum have modified the surface, creating a chaos-like array of blocky mountains. Volatile ice also occupies a few nearby deep craters, and in some areas the volatile ice is pocked with arrays of small sublimation pits. At left, and across the bottom of the scene, gray-white CH4 ice deposits modify tectonic ridges, the rims of craters, and north-facing slopes. The scene in this image is 260 miles (420 kilometers) wide and 140 miles (225 kilometers) from top to bottom; north is to the upper left. http://photojournal.jpl.nasa.gov/catalog/PIA20534
NASA Astrophysics Data System (ADS)
Koziol, Conrad P.; Arnold, Neil
2018-03-01
Surface runoff at the margin of the Greenland Ice Sheet (GrIS) drains to the ice-sheet bed, leading to enhanced summer ice flow. Ice velocities show a pattern of early summer acceleration followed by mid-summer deceleration due to evolution of the subglacial hydrology system in response to meltwater forcing. Modelling the integrated hydrological-ice dynamics system to reproduce measured velocities at the ice margin remains a key challenge for validating the present understanding of the system and constraining the impact of increasing surface runoff rates on dynamic ice mass loss from the GrIS. Here we show that a multi-component model incorporating supraglacial, subglacial, and ice dynamic components applied to a land-terminating catchment in western Greenland produces modelled velocities which are in reasonable agreement with those observed in GPS records for three melt seasons of varying melt intensities. This provides numerical support for the hypothesis that the subglacial system develops analogously to alpine glaciers and supports recent model formulations capturing the transition between distributed and channelized states. The model shows the growth of efficient conduit-based drainage up-glacier from the ice sheet margin, which develops more extensively, and further inland, as melt intensity increases. This suggests current trends of decadal-timescale slowdown of ice velocities in the ablation zone may continue in the near future. The model results also show a strong scaling between average summer velocities and melt season intensity, particularly in the upper ablation area. Assuming winter velocities are not impacted by channelization, our model suggests an upper bound of a 25 % increase in annual surface velocities as surface melt increases to 4 × present levels.
Seasonal evolution of the Martian cryptic region: influence of the atmospheric opacity
NASA Astrophysics Data System (ADS)
Portyankina, G.; Markiewicz, W. J.; Kossacki, K. J.
2005-08-01
Mars Orbiter Camera (MOC) performed repeated observations of chosen areas in polar regions to monitor seasonal and/or annual changes. Images E09-00028 and R08-01730 centered at 82.5°S, 41°E were taken in years 2001 and 2003 respectively. They show the same morphological features, however differ significantly in surface albedo, the image from 2001 shows a lower albedo than the one from 2003. Imaged areas lie inside the cryptic region and show spider patterns. The observed interannual variability may be related to the global dust storm that happened in 2001 and finished around Ls=230°, i.e. just before image E09-00028 was taken. Here we model the seasonal ice sublimation/condensation cycle to show that the evolution of this particular area of the cryptic region was affected by the dust storm during year 2001. The model used for the present work has been described in Kossacki and Markiewicz, (2004). It includes self-consistent treatment of the sublimation and condensation of CO2 and H2O ices, and was used to calculate surface temperatures and thicknesses of CO2 and H2O ice layers for the corresponding conditions of these two years. Our modelling shows that the dust storm lowered surface temperatures, and thus caused later than usual seasonal sublimation of both CO2 and water ices. It also considerably decreased surface albedo and these two important effects almost cancel: the solar flux is reduced during a dust storm but at the same time the dust that precipitates onto the surface reduces the albedo and thus allows a bigger fraction of the solar radiation to be absorbed. The surface temperature stays at about 146K for almost half of the Martian year, both during 2001 and 2003. We also considered impact of the surface roughness: it results in some smoothing of the average temperature rise that is associated with the defrosting of the surface.
The phenology of Arctic Ocean surface warming.
Steele, Michael; Dickinson, Suzanne
2016-09-01
In this work, we explore the seasonal relationships (i.e., the phenology) between sea ice retreat, sea surface temperature (SST), and atmospheric heat fluxes in the Pacific Sector of the Arctic Ocean, using satellite and reanalysis data. We find that where ice retreats early in most years, maximum summertime SSTs are usually warmer, relative to areas with later retreat. For any particular year, we find that anomalously early ice retreat generally leads to anomalously warm SSTs. However, this relationship is weak in the Chukchi Sea, where ocean advection plays a large role. It is also weak where retreat in a particular year happens earlier than usual, but still relatively late in the season, primarily because atmospheric heat fluxes are weak at that time. This result helps to explain the very different ocean warming responses found in two recent years with extreme ice retreat, 2007 and 2012. We also find that the timing of ice retreat impacts the date of maximum SST, owing to a change in the ocean surface buoyancy and momentum forcing that occurs in early August that we term the Late Summer Transition (LST). After the LST, enhanced mixing of the upper ocean leads to cooling of the ocean surface even while atmospheric heat fluxes are still weakly downward. Our results indicate that in the near-term, earlier ice retreat is likely to cause enhanced ocean surface warming in much of the Arctic Ocean, although not where ice retreat still occurs late in the season.
NASA Astrophysics Data System (ADS)
Rowan, Ann V.; Egholm, David L.; Quincey, Duncan J.; Glasser, Neil F.
2015-11-01
Many Himalayan glaciers are characterised in their lower reaches by a rock debris layer. This debris insulates the glacier surface from atmospheric warming and complicates the response to climate change compared to glaciers with clean-ice surfaces. Debris-covered glaciers can persist well below the altitude that would be sustainable for clean-ice glaciers, resulting in much longer timescales of mass loss and meltwater production. The properties and evolution of supraglacial debris present a considerable challenge to understanding future glacier change. Existing approaches to predicting variations in glacier volume and meltwater production rely on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. We developed a numerical model that couples the flow of ice and debris and includes important feedbacks between debris accumulation and glacier mass balance. To investigate the impact of debris transport on the response of a glacier to recent and future climate change, we applied this model to a large debris-covered Himalayan glacier-Khumbu Glacier in Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, Khumbu Glacier has lost 34% of its volume while its area has reduced by only 6%. We predict a decrease in glacier volume of 8-10% by AD2100, accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 yr. This detachment will accelerate rates of glacier decay, and similar changes are likely for other debris-covered glaciers in the Himalaya.
Acoustic detection of ice crystals in Antarctic waters
NASA Astrophysics Data System (ADS)
Penrose, John D.; Conde, M.; Pauly, T. J.
1994-06-01
During the voyage of the RSV Aurora Australis to the region of Prydz Bay, Antarctica in January-March 1991, ice crystals were encountered at depths from the surface to 125-m in the western area of the bay. On two occasions, crystals were retrieved by netting, and echo sounder records have been used to infer additional regions of occurrence. Acoustic target strength estimates made on the ice crystal assemblies encountered show significant spatial variation, which may relate to crystal size and/or aggregation. Data from a suite of conductivity-temperature-depth casts have been used to map regions of the study area where in situ water temperatures fell below the computed freezing point. Such regions correlate well with those selected on the basis of echogram type and imply that ice crystals occurred at depth over large areas of the bay during the cruise period. The ice crystal distribution described is consistent with that expected from a plume of supercooled water emerging from under the Amery Ice Shelf and forming part of the general circulation of the bay. The magnitude of the supercooled water plume is greater than those reported previously in the Prydz Bay region. If misinterpreted as biota on echo sounder records, ice crystals could significantly bias biomass estimates based on echo integration in this and potentially other areas.
Sea Ice, Climate and Fram Strait
NASA Technical Reports Server (NTRS)
Hunkins, K.
1984-01-01
When sea ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. Sea ice also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the ice pack in that area including the interactions between sea, air and ice.
Development of a Climate-Data Record (CDR) of the Surface Temperature of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Hall, Dorthy K.; Comiso, Josefino C.; Shuman, Christopher A.; DiGirolamo, Nicolo E.; Stock, Larry V.
2010-01-01
Regional "clear sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 deg C to 72+/-0.10 deg C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. To quantify the ice-surface temperature (IST) of the Greenland Ice Sheet, and to provide an IST dataset of Greenland for modelers that provides uncertainties, we are developing a climate-data record (CDR) of daily "clear-sky" IST of the Greenland Ice Sheet, from 1982 to the present using AVHRR (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. Known issues being addressed in the production of the CDR are: time-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds, time-series of satellite IST do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products and biases will be calculated.
Measurements of sea ice mass redistribution during ice deformation event in Arctic winter
NASA Astrophysics Data System (ADS)
Itkin, P.; Spreen, G.; King, J.; Rösel, A.; Skourup, H.; Munk Hvidegaard, S.; Wilkinson, J.; Oikkonen, A.; Granskog, M. A.; Gerland, S.
2016-12-01
Sea-ice growth during high winter is governed by ice dynamics. The highest growth rates are found in leads that open under divergent conditions, where exposure to the cold atmosphere promotes thermodynamic growth. Additionally ice thickens dynamically, where convergence causes rafting and ridging. We present a local study of sea-ice growth and mass redistribution between two consecutive airborne measurements, on 19 and 24 April 2015, during the N-ICE2015 expedition in the area north of Svalbard. Between the two overflights an ice deformation event was observed. Airborne laser scanner (ALS) measurements revisited the same sea-ice area of approximately 3x3 km. By identifying the sea surface within the ALS measurements as a reference the sea ice plus snow freeboard was obtained with a spatial resolution of 5 m. By assuming isostatic equilibrium of level floes, the freeboard heights can be converted to ice thickness. The snow depth is estimated from in-situ measurements. Sea ice thickness measurements were made in the same area as the ALS measurements by electromagnetic sounding from a helicopter (HEM), and with a ground-based device (EM31), which allows for cross-validation of the sea-ice thickness estimated from all 3 procedures. Comparison of the ALS snow freeboard distributions between the first and second overflight shows a decrease in the thin ice classes and an increase of the thick ice classes. While there was no observable snowfall and a very low sea-ice growth of older level ice during this period, an autonomous buoy array deployed in the surroundings of the area measured by the ALS shows first divergence followed by convergence associated with shear. To quantify and link the sea ice deformation with the associated sea-ice thickness change and mass redistribution we identify over 100 virtual buoys in the ALS data from both overflights. We triangulate the area between the buoys and calculate the strain rates and freeboard change for each individual triangle. From the freeboard change we calculate the sea ice volume change. Our results show exemplary sea-ice mass redistribution caused by sea ice dynamics during winter conditions in the Arctic, which can be used to estimate sea-ice growth due to deformation processes in a wider region, and ultimately to distinguish between thermodynamic and dynamic ice growth processes.
Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.
2013-04-01
The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few μm to 700 μm, were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surface-ice values of 700-900 μmol kg-1 ice (~25 × 106 crystals kg-1) to values of 100-200 μmol kg-1 ice (1-7 × 106 crystals kg-1) near the sea ice-water interface, all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution of observed concentrations of ikaite would result in meltwater with a pCO2 of <15 μatm. This value is far below atmospheric values of 390 μatm and surface water concentrations of 315 μatm. Hence, the meltwater increases the potential for seawater uptake of CO2.
Mars Researchers Rendezvous on Remote Arctic Island
NASA Technical Reports Server (NTRS)
2002-01-01
Devon Island is situated in an isolated part of Canada's Nunavut Territory, and is usually considered to be the largest uninhabited island in the world. However, each summer since 1999, researchers from NASA's Haughton-Mars Project and the Mars Society reside at this 'polar desert' location to study the geologic and environmental characteristics of a site which is considered to be an excellent 'Mars analog': a terrestrial location wherein specific conditions approximate environmental features reported on Mars. Base camps established amidst the rocks and rubble surrounding the Haughton impact crater enable researchers to conduct surveys designed to test the habitat, equipment and technology that may be deployed during a human mission to Mars. One of the many objectives of the project scientists is to understand the ice formations around the Haughton area, in the hopes that this might ultimately assist with the recognition of areas where ice can be found at shallow depth on Mars.These images of Devon Island from NASA's Multi-angle Imaging SpectroRadiometer (MISR) instrument provide contrasting views of the spectral and angular reflectance 'signatures' of different surfaces within the region. The top panel is a natural color view created with data from the red, green and blue-bands of MISR's nadir (vertical-viewing) camera. The bottom panel is a false-color multiangular composite of the same area, utilizing red band data from MISR's 60-degree backward, nadir, and 60-degree forward-viewing cameras, displayed as red, green and blue, respectively. In this representation, colors highlight textural properties of elements within the scene, with blue tones indicating smooth surfaces (which preferentially forward scatter sunlight) and red hues indicating rougher surfaces (which preferentially backscatter). The angular reflectance 'signature' of low clouds causes them to appear purple, and this visualization provides a unique way of distinguishing clouds from snow and ice.The data were captured on June 28, 2001, during the early part of the arctic summer, when sea ice becomes thinner and begins to move depending upon localized currents and winds. In winter the entire region is locked with several meters of nearly motionless sea ice, which acts as a thermodynamic barrier to the loss of heat from the comparatively warm ocean to the colder atmosphere. Summer melting of sea ice can be observed at the two large, dark regions of open water; one is present in the Jones Sound (near the top to the left of center), and another appears in the Wellington Channel (left-hand edge). A large crack caused by tidal heaving has broken the ice cover over the Parry Channel (lower right-hand corner). A substantial ice cap permanently occupies the easternmost third of the island (upper right). Surface features such as dendritic meltwater channels incised into the island's surface are apparent. The Haughton-Mars project site is located slightly to the left and above image center, in an area which appears with relatively little surface ice, near the island's inner 'elbow.'The images were acquired during Terra orbit 8132 and cover an area of about 334 kilometers x 229 kilometers. They utilize data from blocks 27 to 31 within World Reference System-2 path 42.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.NASA Astrophysics Data System (ADS)
Putniņš, Artūrs; Henriksen, Mona
2017-05-01
More than 17 000 landforms from detailed LiDAR data sets have been mapped in the Gausdal Vestfjell area, south-central Norway. The spatial distribution and relationships between the identified subglacial bedforms, mainly streamlined landforms and ribbed moraine ridges, have provided new insight on the glacial dynamics and the sequence of glacial events during the last glaciation. This established evolution of the Late Weichselian ice flow pattern at this inner region of the Fennoscandian Ice Sheet is stepwise where a topography independent ice flow (Phase I) are followed by a regional (Phase II) before a strongly channelized, topography driven ice flow (Phase III). The latter phase is divided into several substages where the flow sets are becoming increasingly confined into the valleys, likely separated by colder, less active ice before down-melting of ice took place. A migrating ice divide and lowering of the ice surface seems to be the main reasons for these changes in ice flow pattern. Formation of ribbed moraine can occur both when the ice flow slows down and speeds up, forming respectively broad fields and elongated belts of ribbed moraines.
NASA Astrophysics Data System (ADS)
Xiao, Xiaotong; Zhao, Meixun; Knudsen, Karen Luise; Sha, Longbin; Eiríksson, Jón; Gudmundsdóttir, Esther; Jiang, Hui; Guo, Zhigang
2017-08-01
Sea-ice conditions on the North Icelandic shelf constitute a key component for the study of the climatic gradients between the Arctic and the North Atlantic Oceans at the Polar Front between the cold East Icelandic Current delivering Polar surface water and the relatively warm Irminger Current derived from the North Atlantic Current. The variability of sea ice contributes to heat reduction (albedo) and gas exchange between the ocean and the atmosphere, and further affects the deep-water formation. However, lack of long-term and high-resolution sea-ice records in the region hinders the understanding of palaeoceanographic change mechanisms during the last glacial-interglacial cycle. Here, we present a sea-ice record back to 15 ka (cal. ka BP) based on the sea-ice biomarker IP25, phytoplankton biomarker brassicasterol and terrestrial biomarker long-chain n-alkanols in piston core MD99-2272 from the North Icelandic shelf. During the Bølling/Allerød (14.7-12.9 ka), the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence, as well as strong meltwater input in the area. This pattern showed an anti-phase relationship with the ice-free/less ice conditions in marginal areas of the eastern Nordic Seas, where the Atlantic Water inflow was strong, and contributed to an enhanced deep-water formation. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas (12.9-11.7 ka) interrupted by a brief interval of enhanced Irminger Current and deposition of the Vedde Ash, as opposed to abruptly increased sea-ice conditions in the eastern Nordic Seas. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Ice-free conditions and sea surface warming were observed for the Early Holocene, followed by expansion of sea ice during the Mid-Holocene.
NASA Technical Reports Server (NTRS)
Warren, S. G.; Wiscombe, W. J.
1985-01-01
It is shown that smoke from fires started by nuclear explosions could continue to cause significant disruption even after it has fallen from the atmosphere, by lowering the reflectivity of snow and sea ice surfaces, with possible effects on climate in northern latitudes caused by enhanced absorption of sunlight. The reduced reflectivity could persist for several years on Arctic sea ice and on the ablation area of the Greenland ice sheet.
NASA Astrophysics Data System (ADS)
Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.
2014-10-01
Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of "shallow melting" is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of "deep melting", in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.
Floe-size distributions in laboratory ice broken by waves
NASA Astrophysics Data System (ADS)
Herman, Agnieszka; Evers, Karl-Ulrich; Reimer, Nils
2018-02-01
This paper presents the analysis of floe-size distribution (FSD) data obtained in laboratory experiments of ice breaking by waves. The experiments, performed at the Large Ice Model Basin (LIMB) of the Hamburg Ship Model Basin (Hamburgische Schiffbau-Versuchsanstalt, HSVA), consisted of a number of tests in which an initially continuous, uniform ice sheet was broken by regular waves with prescribed characteristics. The floes' characteristics (surface area; minor and major axis, and orientation of equivalent ellipse) were obtained from digital images of the ice sheets after five tests. The analysis shows that although the floe sizes cover a wide range of values (up to 5 orders of magnitude in the case of floe surface area), their probability density functions (PDFs) do not have heavy tails, but exhibit a clear cut-off at large floe sizes. Moreover, the PDFs have a maximum that can be attributed to wave-induced flexural strain, producing preferred floe sizes. It is demonstrated that the observed FSD data can be described by theoretical PDFs expressed as a weighted sum of two components, a tapered power law and a Gaussian, reflecting multiple fracture mechanisms contributing to the FSD as it evolves in time. The results are discussed in the context of theoretical and numerical research on fragmentation of sea ice and other brittle materials.
NASA Astrophysics Data System (ADS)
Lee, Hyunho; Baik, Jong-Jin
2016-10-01
The effects of turbulence-induced collision enhancement (TICE) on a heavy precipitation event that occurred on 21 September 2010 over the middle Korean Peninsula are examined. For this purpose, an updated bin microphysics scheme incorporating TICE for drop-drop and drop-graupel collisions is implemented into the Weather Research and Forecasting (WRF) model. The numerical simulation shows some differences in the strong precipitation system compared to the observations but generally captures well the important features of observed synoptic conditions, surface precipitation, and radar reflectivity. While the change in domain-averaged surface precipitation amount due to TICE is small and similar to that due to small initial perturbations, the spatial distribution of surface precipitation amount is somewhat altered due to TICE. The surface precipitation amount is increased due to TICE in the area where the largest surface precipitation occurred, but the effects of different flow realizations also contribute to the changes. TICE accelerates the coalescence between small cloud droplets, which induces a decrease in condensation and an increase in excess water vapor transported upward. This causes an increase in relative humidity with respect to ice at high altitudes, hence increasing the depositional growth of ice particles. Therefore, the ice mass increases due to TICE, and this increase induces the increases in riming and melting of ice particles. A series of these microphysical changes due to TICE are regarded as partially contributing to the increase in surface precipitation amount in some areas, hence inducing alterations in the spatial distribution of surface precipitation amount.
Abrupt Decline in the Arctic Winter Sea Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2007-01-01
Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice cover towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice cover.
Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices.
Isokoski, K; Bossa, J-B; Triemstra, T; Linnartz, H
2014-02-28
The majority of astronomical and laboratory based studies of interstellar ices have been focusing on ice constituents. Ice structure is a much less studied topic. Particularly the amount of porosity is an ongoing point of discussion. A porous ice offers more surface area than a compact ice, for reactions that are fully surface driven. In this paper we discuss the amount of compaction for four different ices--H2O, CH3OH, CO2 and mixed H2O : CO2 = 2 : 1--upon heating over an astronomically relevant temperature regime. Laser interference and Fourier transform infrared spectroscopy are used to confirm that for amorphous solid water the full signal loss of dangling OH bonds is not a proof for full compaction. These data are compared with the first compaction results for pure CH3OH, pure CO2 and mixed H2O : CO2 = 2 : 1 ice. Here we find that thermal segregation benefits from a higher degree of porosity.
A GCM Recent History of the Northern Martian Polar Layered Deposits
NASA Technical Reports Server (NTRS)
Levrard, B.; Laskar, J.; Forget, F.; Montmessin, F.
2003-01-01
The polar layered deposits are thought to contain alternate layers of water and dust in different proportions resulting from the astronomical forcing of the martian climate. In particular, longterm variations in the orbital and axial elements of Mars are presumed to generate variations of the latitudes of surface water ice stability and of the amount of water exchanged in the polar areas. At high obliquity, simplified climate models and independent general circulation simulations suggest a transfer of water ice from the north polar region to tropical areas, whereas at lower and present obliquities, water ice is expected to be stable only at the poles. If so, over obliquity cycles, water ice may be redistributed between the surface water reservoirs leading to their incremental building or disintegration depending on the rates of water transfer. If only a relative limited amount of the available water is exchanged on orbital timescales, this may provide an efficient mechanism for the formation of the observed polar deposits. Within this context, GCM simulations of the martian water cycle have been performed for various obliquities ranging from 15 degrees to 45 degrees and for a large set of initial water ice locations to determine the rate of water exchange between the surface water reservoirs as a function of the obliquity. Propagating these rates over the last 10 Ma orbital history gives a possible recent evolution of these reservoirs.
Multi-decadal evolution of ice/snow covers in the Mont-Blanc massif (France)
NASA Astrophysics Data System (ADS)
Guillet, Grégoire; Ravanel, Ludovic
2017-04-01
Dynamics and evolution of the major glaciers of the Mont-Blanc massif have been vastly studied since the XXth century. Ice/snow covers on steep rock faces as part of the cryosphere however remain poorly studied with only qualitative descriptions existing. The study of ice/snow covers is primordial to further understand permafrost degradation throughout the Mont-Blanc massif and to improve safety and prevention for mountain sports practitioners. This study focuses on quantifying the evolution of ice/snow covers surface during the past century using a specially developed monoplotting tool using Bayesian statistics and Markov Chain Monte Carlo algorithms. Combining digital elevation models and photographs covering a time-span of 110 years, we calculated the ice/snow cover surface for 3 study sites — North faces of the Tour Ronde (3792 m a.s.l.) and the Grandes Jorasses (4208 m a.s.l.) and Triangle du Tacul (3970 m a.s.l.) — and deduced the evolution of their area throughout the XXth century. First results are showing several increase/decrease periods. The first decrease in ice/snow cover surface occurs between the 1940's and the 1950's. It is followed by an increase up to the 1980's. Since then, ice/snow covers show a general decrease in surface which is faster since the 2010's. Furthermore, the gain/loss during the increase/decrease periods varies with the considered ice/snow cover, making it an interesting cryospheric entity of its own.
2015-03-16
This view shows Mercury's north polar region, colored by the maximum biannual surface temperature, which ranges from >400 K (red) to 50 K (purple). As expected for the Solar System's innermost planet, areas of Mercury's surface that are sunlit reach high temperatures, and hence most of this image is colored red! In contrast, some craters near Mercury's poles have regions that remain permanently in shadow, and in these regions even the maximum temperatures can be extremely low. Evidence from MESSENGER and Earth-based observations indicate that water ice deposits are present in these cold craters. The craters nearest Mercury' poles have surface temperatures less than 100 K (-173°C, -280°F), and water ice is stable on the surface, such as in Prokofiev. However, many craters near but somewhat farther from Mercury's poles have cold, permanently shadowed interiors, but the maximum temperature is too high for water ice to persist at the surface. In these craters, water ice is present but is buried beneath a thin, low-reflectance volatile layer likely consisting of organic-rich material, such as in Berlioz crater. http://photojournal.jpl.nasa.gov/catalog/PIA19247
NASA Astrophysics Data System (ADS)
Falk, Ulrike; Lopez, Damian; Silva-Busso, Adrian
2017-04-01
The South Shetland Islands are located at the northern tip of the Antarctic Peninsula which is among the fastest warming regions on Earth. Surface air temperature increases (ca. 3 K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K/100 m), and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns especially during winter glacial mass accumulation periods. The increased mesocyclonic activity during the winter time in the study area results in intensified advection of warm, moist air with high temperatures and rain, and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. The impact on winter accumulation results in even more negative mass balance estimates. Six years of glaciological measurements on mass balance stake transects are used with a glacier melt model to assess changes in melt water input to the coastal waters, glacier surface mass balance and the equilibrium line altitude. The average equilibrium line altitude (ELA) calculated from own glaciological observations for KGI over the time period 2010 - 2015 amounts to ELA=330±100 m. Published studies suggest rather stable condition slightly negative glacier mass balance until the mid 80's with an ELA of approx. 150 m. The calculated accumulation area ratio suggests rather dramatic changes in extension of the inland ice cap for the South Shetland Islands until an equilibrium with concurrent climate conditions is reached.
Evolution of Meltwater on the McMurdo Ice Shelf, Antarctica During Two Summer Melt Seasons
NASA Astrophysics Data System (ADS)
Macdonald, G. J.; Banwell, A. F.; Willis, I.; Mayer, D. P.; Hansen, E. K.; MacAyeal, D. R.
2017-12-01
Ice shelves surround > 50% of Antarctica's coast and their response to climate change is key to the ice sheet's future and global sea-level rise. Observations of the development and drainage of 2750 lakes prior to the collapse of the Larsen B Ice Shelf, combined with our understanding of ice-shelf flexure/fracture, suggest that surface meltwater plays a key role in ice-shelf stability, although the present state of knowledge remains limited. Here, we report results of an investigation into the seasonal evolution of meltwater on the McMurdo Ice Shelf (MIS) during the 2015/16 and 2016/17 austral summers using satellite remote sensing, complemented by ground survey. Although the MIS is relatively far south (78° S), it experiences relatively high ablation rates in the west due to adiabatically warmed winds, making it a useful example of how meltwater could evolve on more southerly ice shelves in a warming climate. We calculate the areas and depths of ponded surface meltwater on the ice shelf at different stages of the two melt seasons using a modified NDWI approach and water-depth algorithm applied to both Landsat 8 and Worldview imagery. Data from two automatic weather stations on the ice shelf are used to drive a positive degree-day model to compare our observations of surface water volumes with modelled meltwater production. Results suggest that the spatial and temporal variations in surface meltwater coverage on the ice shelf vary not only with climatic conditions but also in response to other important processes. First, a rift that widens and propagates between the two melt seasons intercepts meltwater streams, redirecting flow and facilitating ponding elsewhere. Second, some lakes from previous years remain frozen over and become pedestalled, causing streams to divert around their perimeter. Third, surface debris conditions also cause large-scale spatial variation in melt rates and the flow and storage of water.
Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages
Phillips, W.M.; Hall, A.M.; Ballantyne, C.K.; Binnie, S.; Kubik, P.W.; Freeman, S.
2008-01-01
The extent of the last British-Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23-19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice-free. An alternative model implies that these three areas were ice-covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright ?? 2008 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Frew, Craig R.; Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Hughes, Philip D.; Ivy-Ochs, Susan; Lukas, Sven; Renssen, Hans; Ribolini, Adriano
2014-05-01
Reconstruction of glacier equilibrium line altitudes (ELAs) associated with advance stages of former ice masses is widely used as a tool for palaeoclimatic reconstruction. This requires an accurate reconstruction of palaeo-glacier surface hypsometry, based on mapping of available ice-marginal landform evidence. Classically, the approach used to define ice-surface elevations, using such evidence, follows the 'cartographic method', whereby contours are estimated based on an 'understanding' of the typical surface form of contemporary ice masses. This method introduces inherent uncertainties in the palaeoclimatic interpretation of reconstructed ELAs, especially where the upper limits of glaciation are less well constrained and/or the age of such features in relation to terminal moraine sequences is unknown. An alternative approach is to use equilibrium profile models to define ice surface elevations. Such models are tuned, generally using basal shear stress, in order to generate an ice surface that reaches 'target elevations' defined by geomorphology. In areas where there are no geomorphological constraints for the former ice surface, the reconstruction is undertaken using glaciologiaclly representative values for basal shear stress. Numerical reconstructions have been shown to produce glaciologically "realistic" ice surface geometries, allowing for more objective and robust comparative studies at local to regional scales. User-friendly tools for the calculation of equilibrium profiles are presently available in the literature. Despite this, their use is not yet widespread, perhaps owing to the difficult and time consuming nature of acquiring the necessary inputs from contour maps or digital elevation models. Here we describe a tool for automatically reconstructing palaeo-glacier surface geometry using an equilibrium profile equation implemented in ArcGIS. The only necessary inputs for this tool are 1) a suitable digital elevation model and 2) mapped outlines of the former glacier terminus position (usually a frontal moraine system) and any relevant geomorphological constraints on ice surface elevation (e.g. lateral moraines, trimlines etc.). This provides a standardised method for glacier reconstruction that can be applied rapidly and systematically to large geomorphological datasets.
Photolysis of aromatic pollutants in clean and dirty ice
NASA Astrophysics Data System (ADS)
Kahan, T.; Malley, P.; Stathis, A.
2015-12-01
Anthropogenic aromatic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and substituted benzenes often become more toxic following atmospheric oxidation. Photolysis of these pollutants in ice can be much faster than that in aqueous solution, which might lead to higher carcinogenic loadings in snow-covered regions. In this work we investigate two things. First, we investigate whether toluene, which has been detected at very elevated concentrations near hydraulic fracturing operations, can undergo photolysis at ice surfaces. Toluene in aqueous solution does not absorb sunlight, so photolysis has not been considered a potential atmospheric fate. However, benzene was recently demonstrated to undergo a significant red shift in its absorbance at ice surfaces, leading to photolysis under environmentally-relevant conditions. Here we show that toluene also undergoes photolysis at ice surfaces. In a second set of experiments, we have investigated the effects of organic matter on the photolysis kinetics ofPAHs in ice and at ice surfaces. We found that very small loadings of hydrophobic organics such as octanol can significantly suppress PAH photolysis kinetics in ice, but that the primary effect of the more soluble fulvic acid is competitive photon absorption. Our results show that photochemistry of anthropogenic pollutants can follow very different mechanisms and kinetics in ice than in aqueous solution, and that the photochemical fate of these pollutants depends strongly on the composition of the snow. These results have implications for pollutant fate and human health in a wide range of snow-covered environments including remote areas, cities, and regions near gas and oil extraction operations.
Topography of Sputnik Planitia Basin on Pluto: What We Know and Don't Know
NASA Astrophysics Data System (ADS)
Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Moore, J.; Spencer, J. R.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.
2017-12-01
Pluto's topography is complex and reflects a diversity of geologic processes throughout its history. The most dominant feature is the deep 1200-by-2000-km-wide topographic depression enclosing the Sputnik Planitia nitrogen-rich ice sheet. Centered in the encounter hemisphere this large basin is ideally suited for topographic analysis. Despite this, considerable effort is required to constrain the true depth of this giant feature due to the uncertainties in controlling MVIC line-scan images, our primary source for long-wavelength information. Here we will summarize the current state of knowledge of this feature, as processing continues. Current estimates are that the floor of the observed basin (i.e., the top of the ice sheet) is 2-2.5 km depressed below the mean elevation of the surface. There is a highly eroded annular raised arched-ridge surrounding most of the basin that rises up to 1 km above mean surface. The surface of most of the ice sheet appears to be remarkably level within the limits of measurement ( 125 m). Comparison to other similar-sized depressions on Mars and the Moon support the interpretation that this is a large ancient impact structure. The outer 20-40- km of the ice sheet can be either depressed or raised several hundred meters, with the depressed moat forming north of 30° latitude or so, the raised portions forming south of this and corresponding to areas where glacier-like flow of material from the elevated rim regions meets the ice sheet. This suggests that the equatorial areas are areas of net accumulation of ice and the areas to the north are net deflation or lateral flow. The ice sheet is also characterized by polygonal and ovoid `cells' diagnostic of convection. These have shading patterns consistent with cell centers being raised in elevation. Preliminary shape-from-shading measurements suggest elevations of 100-200 m, consistent with weak stereo observations, though much more work is required on all these topics. Interpolation of d/D statistics for smaller craters implies a minimum depth of the original basin floor of 10 km below the rim (assuming that low angle or low-impact-velocity effects do not produce an anomalous basin profile). Pending updates, this would imply a possible maximum thickness of the observed ice sheet of 6 km.
NASA Astrophysics Data System (ADS)
Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.
2018-01-01
Variations in sea ice freeze onset and regional sea surface temperatures (SSTs) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.
NASA Astrophysics Data System (ADS)
Shi, Xiaoxu; Lohmann, Gerrit
2017-09-01
A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.
NASA Astrophysics Data System (ADS)
Kellerer-Pirklbauer, Andreas; Avian, Michael; Hirschmann, Simon; Lieb, Gerhard Karl; Seier, Gernot; Sulzer, Wolfgang; Wakonigg, Herwig
2017-04-01
Rapid deglaciation does not only reveal a landscape which is prone to rapid geomorphic changes and sediment reworking but also the glacier ice itself might be in a state of disintegration by ice melting, pressure relief, crevasse formation, ice collapse or changes in the glacier's hydrology. In this study we considered the sudden disintegration of glacier ice in the glacial-proglacial transition zone of Pasterze Glacier. Pasterze Glacier is a typical alpine valley glacier and covers currently some 16.5 km2 making it to the largest glacier in Austria. This glacier is an important site for alpine mass tourism in Austria related to a public high alpine road and a cable car which enable access to the glacier rather easily also for unexperienced mountaineers. Spatial focus in our research is given on two particular study areas where several ice-mass movement events occurred during the 2015- and 2016-melting seasons. The first study area is a crevasse field at the lower third of the glacier tongue. This lateral crevasse field has been substantially modified during the last two melting seasons particularly because of thermo-erosional effects of a glacial stream which changed at this site from subglacial (until 2015) to glacier-lateral revealing a several tens of meters high unstable ice cliff prone to ice falls of different magnitudes. The second study area is located at the proglacial area. At Pasterze Glacier the proglacial area is widely influenced by dead-ice bodies of various dimensions making this area prone to slow to sudden geomorphic changes caused by ice mass changes. A particular ice-mass movement event took place on 20.09.2016. Within less than one hour the surface of the proglacial area changed substantially by tilting, lateral shifting, and subsidence of the ground accompanied by complete ice disintegration of once-debris covered ice. To understand acting processes at both areas of interest and to quantify mass changes we used field observations, terrain analysis (based on multi-temporal DEM generation derived from terrestrial laser scanning/TLS and unmanned aerial systems/UAS), electrical resistivity tomography (ERT), ground climate monitoring, and data from an automatic remote camera (RDC) system. Results for both areas of interest are presented and discussed regarding its relevance for the glacier itself but also the potential risks for mountaineers.
NASA Astrophysics Data System (ADS)
Falk, U.; Braun, M.; Sala, H.; Menz, G.
2012-04-01
The Antarctic Peninsula is amongst the fastest warming places on Earth and further temperature increase is to be expected. It has undergone rapid environmental changes in the past decades. Exceptional rates of surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, surface lowering and rapid retreat, break-up and disintegration of ice shelves. The South Shetland Islands are located on the northern tip of the Peninsula and are especially vulnerable to climate change due to their maritime climate. For King George Island we have compiled a unique data set comprising direct measurements of evaporation and sensible heat flux by eddy covariance on the Warszawa Icefield for the austral summers November 2010 to March 2011 and January to February 2012 in combination with a fully equipped automated weather station measuring long- and short-wave radiation components, profiles of temperature, humidity and wind velocities as well as glacier ice temperatures in profile. The combination with the eddy covariance data allows for analysis of variability and seasonality of surface energy balance components on a glacier for an entire year. Repeat measurements of surface lowering at different locations on King George Island are used for analysis of multi-sensor satellite data to identify melt patterns and bare ice areas during summer. In combination with long-term time series of weather data, these data give indication of the sensitivity of the inland ice cap to the ongoing changes. This research is part of the ESF project IMCOAST funded by BMBF. Field work was carried out at the Dallmann laboratory (Jubany, King George Island) in cooperation of the Instituto Antartico Argentino (Argentina) and the Alfred-Wegener Institute (German).
NASA Astrophysics Data System (ADS)
Tonkin, T. N.; Midgley, N. G.; Cook, S. J.; Graham, D. J.
2016-04-01
Ice-cored lateral-frontal moraines are common at the margins of receding high-Arctic valley glaciers, but the preservation potential of these features within the landform record is unclear. Recent climatic amelioration provides an opportunity to study the morphological evolution of these landforms as they de-ice. This is important because high-Arctic glacial landsystems have been used as analogues for formerly glaciated areas in the mid-latitudes. This study uses SfM (Structure-from-Motion) photogrammetry and a combination of archive aerial and UAV (unmanned aerial vehicle) derived imagery to investigate the degradation of an ice-cored lateral-frontal moraine at Austre Lovénbreen, Svalbard. Across the study area as a whole, over an 11-year period, the average depth of surface lowering was - 1.75 ± 0.89 m. The frontal sections of the moraine showed low or undetectable rates of change. Spatially variable rates of surface lowering are associated with differences in the quantity of buried ice within the structure of the moraine. Morphological change was dominated by surface lowering, with limited field evidence of degradation via back-wastage. This permits the moraine a greater degree of stability than previously observed at other sites in Svalbard. It is unclear whether the end point will be a fully stabilised ice-cored moraine, in equilibrium with its environment, or an ice-free lateral-frontal moraine complex. Controls on geomorphological change (e.g. topography and climate) and the preservation potential of the lateral-frontal moraine are discussed. The methods used by this research also demonstrate the potential value of SfM photogrammetry and unmanned aerial vehicles for monitoring environmental change and are likely to have wider applications in other geoscientific sub-disciplines.
Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams.
Bell, Robin E; Studinger, Michael; Shuman, Christopher A; Fahnestock, Mark A; Joughin, Ian
2007-02-22
Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments.
Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2
NASA Astrophysics Data System (ADS)
Lee, Sanggyun; Im, Jungho; yoon, Hyeonjin; Shin, Minso; Kim, Miae
2014-05-01
Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation, provides a continuous insulating layer at air-sea interface, and reflects a large portion of the incoming solar radiation in Polar Regions. Sea ice extent has constantly declined since 1980s. Its area was the lowest ever recorded on 16 September 2012 since the satellite record began in 1979. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change, there has been a great effort to quantify them using various approaches. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter from National Aeronautics and Space Administration (NASA), provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) on April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness in 2012 and 2013 were estimated using CryoSat-2 SAR mode data that has sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard height, elevation difference between the top of sea ice surface and leads should be calculated. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, number of echoes, and significant wave height were examined to distinguish leads from sea ice. Several near-real time cloud-free MODIS images as CryoSat-2 data were used to identify leads. Rule-based machine learning approaches such as random forest and See5.0 and human-derived decision trees were used to produce rules to identify leads. With the freeboard height calculated from the lead analysis, sea ice thickness was finally estimated using the Archimedes' buoyancy principle with density of sea ice and sea water and the height of freeboard. The results were compared with Arctic sea ice thickness distribution retrieved from CryoSat-2 data by Alfred-Wegener-Institute.
NASA Astrophysics Data System (ADS)
Charalampidis, C.; van As, D.; Machguth, H.; Smeets, P.; van den Broeke, M. R.; Box, J. E.
2014-12-01
We present five years (2009-2013) of automatic weather station (AWS) data from the lower accumulation area (1840 m above sea level) of the Kangerlussuaq region, western Greenland ice sheet. The summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in negative surface mass budget (SMB) and surface runoff. The observed runoff was due to a large ice fraction in the upper 10 m of firn that prevented melt water from percolating to available pore space below. Analysis of the in situ data reveals a relatively low 2012 summer albedo of ~0.7 as melt water was present at the surface. Consequently, during the 2012 melt season the surface absorbed 30% (213 MJ m-2) more solar radiation than in 2010. We drive a surface energy balance model with the AWS data to evaluate the seasonal and interannual variability of all surface energy fluxes. The model is able to reproduce the observed melt rates as well as the SMB for each season. While the drive for melt is solar radiation, year-to-year differences are controlled by terrestrial radiation, apart from 2012 when solar radiation dominated melt. Sensitivity tests reveal that 72% of the excess solar energy in 2012 was used for melt, corresponding to 40% (0.67 m) of the 2012 surface ablation. The remaining ablation (0.99 m) was primarily due to the relatively high atmospheric temperatures up to +2.6 °C daily average, indicating that 2012 would have been a negative SMB year in the lower accumulation area even without the melt-albedo feedback. Longer time series of SMB, regional temperature and remotely sensed albedo (MODIS) suggest that 2012 was the first negative SMB year with the lowest albedo at this elevation on record. The warming conditions of the last years resulted in enhanced melt and reduction of the refreezing capacity of the lower accumulation area. If the warming continues the lower accumulation area will be transformed into superimposed ice.
Can regional climate engineering save the summer Arctic sea ice?
NASA Astrophysics Data System (ADS)
Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois
2014-02-01
Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.
Evidence for subduction in the ice shell of Europa
NASA Astrophysics Data System (ADS)
Kattenhorn, Simon A.; Prockter, Louise M.
2014-10-01
Jupiter’s icy moon Europa has one of the youngest planetary surfaces in the Solar System, implying rapid recycling by some mechanism. Despite ubiquitous extension and creation of new surface area at dilational bands that resemble terrestrial mid-ocean spreading zones, there is little evidence of large-scale contraction to balance the observed extension or to recycle ageing terrains. We address this enigma by presenting several lines of evidence that subduction may be recycling surface material into the interior of Europa’s ice shell. Using Galileo spacecraft images, we produce a tectonic reconstruction of geologic features across a 134,000 km2 region of Europa and find, in addition to dilational band spreading, evidence for transform motions along prominent strike-slip faults, as well as the removal of approximately 20,000 km2 of the surface along a discrete tabular zone. We interpret this zone as a subduction-like convergent boundary that abruptly truncates older geological features and is flanked by potential cryolavas on the overriding ice. We propose that Europa’s ice shell has a brittle, mobile, plate-like system above convecting warmer ice. Hence, Europa may be the only Solar System body other than Earth to exhibit a system of plate tectonics.
NASA Astrophysics Data System (ADS)
Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.
2017-06-01
This paper focuses on environmental controls, spatiotemporal variability and rates of contemporary fluvial suspended sediment transport in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was conducted since 2004 in Erdalen and since 2008 in Bødalen. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (> 70 mm d- 1) in autumn can trigger significant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The proportion of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls for the detected spatial variability of suspended sediment yields. The contemporary sediment supply from glacierized surface areas and the Jostedalsbreen ice cap through different defined outlet glaciers shows a high spatial variability. The fact that the mean annual suspended sediment yield of Bødalen is with 31.3 t km- 2 yr- 1 almost twice as high as the mean annual suspended sediment yield of Erdalen (16.4 t km- 2 yr- 1) is to a large extent explained by the higher proportion of glacier coverage in Bødalen (38% of the drainage basin surface area) as compared to Erdalen (18% of the drainage basin surface area) and by a significantly higher sediment yield from the glacierized area of the Bødalen drainage basin compared to the glacierized surface area in Erdalen. When looking at the total annual mass of suspended sediments being fluvially exported from both entire drainage basin systems, the total amount of suspended sediments coming from the ice-free drainage basin surface areas altogether dominates over the total amount of suspended sediments coming from the glacierized surface area of both drainage basins. Drainage-basin wide annual suspended sediment yields are rather low when compared with yields of other partly glacierized drainage basin systems in Norway and in other cold climate environments worldwide, which is mainly due to the high resistance of the predominant gneisses towards glacial erosion and weathering, the altogether only small amounts of sediments being available within the entire drainage basin systems, the stable and nearly closed vegetation cover in the ice-free surface areas with sedimentary covers, and the efficiency of proglacial lakes in trapping sediments supplied by defined outlet glaciers. Both contemporary and long-term suspended sediment yields are altogether supply-limited. Contemporary suspended sediment transport accounts for nearly two-thirds of the total fluvial transport and, accordingly, plays an important role within the sedimentary budgets of the entire Erdalen and Bødalen drainage basins.
NASA Astrophysics Data System (ADS)
Wright, N.; Polashenski, C. M.
2017-12-01
Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces exert tremendous influence over the energy balance of the Arctic Ocean by controlling the absorption of solar radiation. Here we demonstrate the use of a newly released, open source, image classification algorithm designed to identify surface features in high resolution optical satellite imagery of sea ice. Through explicitly resolving individual features on the surface, the algorithm can determine the percentage of ice that is covered by melt ponds with a high degree of certainty. We then compare observations of melt pond fraction extracted from these images with an established method of estimating melt pond fraction from medium resolution satellite images (e.g. MODIS). Because high resolution satellite imagery does not provide the spatial footprint needed to examine the entire Arctic basin, we propose a method of synthesizing both high and medium resolution satellite imagery for an improved determination of melt pond fraction across whole Arctic. We assess the historical trends of melt pond fraction in the Arctic ocean, and address the question: Is pond coverage changing in response to changing ice conditions? Furthermore, we explore the image area that must be observed in order to get a locally representative sample (i.e. the aggregate scale), and show that it is possible to determine accurate estimates of melt pond fraction by observing sample areas significantly smaller than the typical footprint of high-resolution satellite imagery.
NASA Astrophysics Data System (ADS)
Poch, Olivier; Pommerol, Antoine; Jost, Bernhard; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas
2016-03-01
The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70 °C) and pressure (10-5 mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS-NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.
NASA Technical Reports Server (NTRS)
2004-01-01
19 March 2004 The martian south polar residual ice cap is mostly made of frozen carbon dioxide. There is no place on Earth that a person can go to see the landforms that would be produced by erosion and sublimation of hundreds or thousands of cubic kilometers of carbon dioxide. Thus, the south polar cap of Mars is as alien as alien can get. This image, acquired in February 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows how the cap appears in summer as carbon dioxide is subliming away, creating a wild pattern of pits, mesas, and buttes. Darker surfaces may be areas where the ice contains impurities, such as dust, or where the surface has been roughened by the removal of ice. This image is located near 86.3oS, 0.8oW. This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the top/upper left.
Waves on White: Ice or Clouds?
NASA Technical Reports Server (NTRS)
2005-01-01
As it passed over Antarctica on December 16, 2004, the Multi-angle Imaging SpectroRadiometer (MISR) on NASA's Terra satellite captured this image showing a wavy pattern in a field of white. At most other latitudes, such wavy patterns would likely indicate stratus or stratocumulus clouds. MISR, however, saw something different. By using information from several of its multiple cameras (each of which views the Earth's surface from a different angle), MISR was able to tell that what looked like a wavy cloud pattern was actually a wavy pattern on the ice surface. One of MISR's cloud classification products, the Angular Signature Cloud Mask (ASCM), correctly identified the rippled area as being at the surface. In this image pair, the view from MISR's most oblique backward-viewing camera is on the left, and the color-coded image on the right shows the results of the ASCM. The colors represent the level of certainty in the classification. Areas that were classed as cloudy with high confidence are white, and areas where the confidence was lower are yellow; dark blue shows confidently clear areas, while light blue indicates clear with lower confidence. The ASCM works particularly well at detecting clouds over snow and ice, but also works well over ocean and land. The rippled area on the surface which could have been mistaken for clouds are actually sastrugi -- long wavelike ridges of snow formed by the wind and found on the polar plains. Usually sastrugi are only several centimeters high and several meters apart, but large portions of East Antarctica are covered by mega-sastrugi ice fields, with dune-like features as high as four meters separated by two to five kilometers. The mega-sastrugi fields are a result of unusual snow accumulation and redistribution processes influenced by the prevailing winds and climate conditions. MISR imagery indicates that these mega sastrugi were stationary features between 2002 and 2004. Being able to distinguish clouds from snow or ice-covered surfaces is important in order to adequately characterize the radiation balance of the polar regions. However, detecting clouds using spaceborne detectors over snow and ice surfaces is notoriously difficult, because the surface may often be as bright and as cold as the overlying clouds, and because polar atmospheric temperature inversions sometimes mean that clouds are warmer than the underlying snow or ice surface. The Angular Signature Cloud Mask (ASCM) was developed based on the Band-Differenced Angular Signature (BDAS) approach, introduced by Di Girolamo and Davies (1994) and updated for MISR application by Di Girolamo and Wilson (2003). BDAS uses both spectral and angular changes in reflectivity to distinguish clouds from the background, and the ASCM calculates the difference between the 446 and 866 nanometer reflectances at MISR's two most oblique cameras that view forward-scattered light. New land thresholds for the ASCM are planned for delivery later this year. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. This image area covers about 277 kilometers by 421 kilometers in the interior of the East Antarctic ice sheet. These data products were generated from a portion of the imagery acquired during Terra orbit 26584 and utilize data from within blocks 159 to 161 within World Reference System-2 path 63. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Seasonal Ice Wedge Dynamics in Fosheim Peninsula, Ellesmere Island, Nunavut
NASA Astrophysics Data System (ADS)
Ward, M. K.; Pollard, W. H.
2017-12-01
Areas with ice-rice permafrost are vulnerable to thermokarst (lowering of the land surface from melting ground ice). The Fosheim Peninsula on Ellesmere Island, Nunavut is a high Arctic polar desert system with cold permafrost 500 m thick that is ice-rich in the upper 20 - 30 m. Our team has been monitoring changing permafrost conditions on the Fosheim since 1990. In this area ground ice consists mainly of ice-wedge ice and massive tabular ice bodies. With a mean annual temperature of - 19°C, the area is still sensitive to thermokarst as experienced in 2012; one of the warmest summers on record there was a three-fold increase in thermokarst, with the accelerated deepening of ice wedge troughs and the development of retrogressive thaw slumps. In this study, 7 ice wedges were monitored for 7 weeks in July and August, 2017. Ice wedges were chosen to represent different conditions including varying tough depths (0.36 m to 1.2 m), secondary wedge, varying plant cover (heavily covered to bare soil) and one wedge initially experienced ponding from snow melt that subsequently drained. Data collected included active layer depth measurements, soil moisture, ground temperatures at ice wedge through and polygon centres, dGPS and GPR surveys. Using Worldview 2 satellite imagery from 2008, 2012, 2016, these sites were compared to assess changes in polygons at a landscape scale. Ice wedges are ubiquitous to the arctic but may respond differently within different high Arctic environments. With the majority of studies being focused in the lower arctic, this study provides important field data from a high arctic site.
An interannual link between Arctic sea-ice cover and the North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Caian, Mihaela; Koenigk, Torben; Döscher, Ralf; Devasthale, Abhay
2018-01-01
This work investigates links between Arctic surface variability and the phases of the winter (DJF) North Atlantic Oscillation (NAO) on interannual time-scales. The analysis is based on ERA-reanalysis and model data from the EC-Earth global climate model. Our study emphasizes a mode of sea-ice cover variability that leads the NAO index by 1 year. The mechanism of this leading is based on persistent surface forcing by quasi-stationary meridional thermal gradients. Associated thermal winds lead a slow adjustment of the pressure in the following winter, which in turn feeds-back on the propagation of sea-ice anomalies. The pattern of the sea-ice mode leading NAO has positive anomalies over key areas of South-Davis Strait-Labrador Sea, the Barents Sea and the Laptev-Ohkostsk seas, associated to a high pressure anomaly over the Canadian Archipelago-Baffin Bay and the Laptev-East-Siberian seas. These anomalies create a quasi-annular, quasi-steady, positive gradient of sea-ice anomalies about coastal line (when leading the positive NAO phase) and force a cyclonic vorticity anomaly over the Arctic in the following winter. During recent decades in spite of slight shifts in the modes' spectral properties, the same leading mechanism remains valid. Encouraging, actual models appear to reproduce the same mechanism leading model's NAO, relative to model areas of persistent surface forcing. This indicates that the link between sea-ice and NAO could be exploited as a potential skill-source for multi-year prediction by addressing the key problem of initializing the phase of the NAO/AO (Arctic Oscillation).
Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport
NASA Astrophysics Data System (ADS)
Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi
2017-04-01
Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of seismic profiles collected over the floating ice shelves and the grounded ice sheet.
EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Arctic2003 Aircraft Campaign Flight Report
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Markus,T.
2003-01-01
In March 2003 a coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products to be validated include sea ice concentration, sea ice temperature, and snow depth on sea ice. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. Two additional flights were dedicated to making heat and moisture flux measurements over the St. Lawrence Island polynya to support ongoing air-sea-ice processes studies of Arctic coastal polynyas. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound.
Ice-shell purification of ice-binding proteins.
Marshall, Craig J; Basu, Koli; Davies, Peter L
2016-06-01
Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.
Summer Arctic ice concentrations and characteristics from SAR and SSM/I data
NASA Technical Reports Server (NTRS)
Comiso, Joey C.; Kwok, Ron
1993-01-01
The extent and concentration of the Summer minima provide indirect information about the long term ability of the perennial portion of the ice pack to survive the Arctic atmosphere and ocean system. Both active and passive microwave data were used with some success for monitoring the ice cover during the Summer, but they both suffer from similar problems caused by the presence of meltponding, surface wetness, flooding, and freeze/thaw cycles associated with periodic changes in surface air temperatures. A comparative analysis of ice conditions in the Arctic region using coregistered ERS-1 SAR (Synthetic Aperture Radar) and SSM/I (Special Sensor Microwave/Imager) data was made. The analysis benefits from complementary information from the two systems, the good spatial resolution of SAR data, and the good time resolution of and global coverage by SSM/I data. The results show that in many areas ice concentrations derived from SAR data are significantly different (usually higher) than those derived from passive microwave data. Additional insights about surface conditions can be inferred depending on the nature of the discrepancies.
The influence of meltwater on the thermal structure and flow of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Poinar, Kristin
As the climate has warmed over the past decades, the amount of melt on the Greenland Ice Sheet has increased, and areas higher on the ice sheet have begun to melt regularly. This increase in melt has been hypothesized to enhance ice flow in myriad ways, including through basal lubrication and englacial refreezing. By developing and interpreting thermal ice-sheet models and analyzing remote sensing data, I evaluate the effect of these processes on ice flow and sea-level rise from the Greenland Ice Sheet. I first develop a thermal ice sheet model that is applicable to western Greenland. Key components of this model are its treatment of multiple phases (solid ice and liquid water) and its viscosity-dependent velocity field. I apply the model to Jakobshavn Isbrae, a fast-flowing outlet glacier. This is an important benchmark for my model, which I next apply to the topics outlined above. I use the thermal model to calculate the effect of englacial latent-heat transfer (meltwater refreezing within englacial features such as firn and crevasses) on ice dynamics in western Greenland. I find that in slow-moving areas, this can significantly warm the ice, but that englacial latent heat transfer has only a minimal effect on ice motion (60%) of the ice flux into the ocean, evidence of deep englacial warming is virtually absent. Thus, the effects of englacial latent heat transfer on ice motion are likely limited to slow-moving regions, which limits its importance to ice-sheet mass balance. Next, I couple a model for ice fracture to a modified version of my thermal model to calculate the depth and shape evolution of water-filled crevasses that form in crevasse fields. At most elevations and for typical water input volumes, crevasses penetrate to the top ~200--300 meters depth, warm the ice there by ~10°C, and may persist englacially, in a liquid state, for multiple decades. The surface hydrological network limits the amount of water that can reach most crevasses. We find that the depth and longevity of such crevasses is relatively robust to realistic increases in melt volumes over the coming century, so that we should not expect large changes in the englacial hydrological system under near-future climate regimes. These inferences put important constraints on the timescales of the Greenland supraglacial-to-subglacial water cycle. Finally, I assess the likelihood that higher-elevation surface melt could deliver water to regions where the bed is currently frozen. This hypothetical process is important because it could potentially greatly accelerate the seaward motion of the ice sheet. By analyzing surface strain rates and comparing them to my modeled basal temperature field, I find that this scenario is unlikely to occur: the conditions necessary to form surface-to-bed conduits are rarely found at higher elevations (~1600 meters) that may overlie frozen beds.
A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015)
NASA Astrophysics Data System (ADS)
Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; Lhermitte, Stef; Howat, Ian; Fettweis, Xavier; van den Broeke, Michiel R.
2016-10-01
This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958-2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.
NASA Astrophysics Data System (ADS)
Chu, T.; Lindenschmidt, K. E.
2016-12-01
Monitoring river ice cover dynamics during the course of winter is necessary to comprehend possible negative effects of ice on anthropogenic systems and natural ecosystems to provide a basis to develop mitigation measures. Due to their large scale and limited accessibility to most places along river banks, especially in northern regions, remote sensing techniques are a suitable approach for monitoring river ice regimes. Additionally, determining the vertical displacements of ice covers due to changes in flow provides an indication of vulnerable areas to initial cracking and breakup of the ice cover. Such information is paramount when deciding on suitable locations for winter road crossing along rivers. A number of RADARSAT-2 (RS-2) beam modes (i.e. Wide Fine, Wide Ultra-Fine, Wide Fine Quad Polarization and Spotlight) and D-InSAR methods were examined in this research to characterize slant range and vertical displacement of ice covers along the Slave River in the Northwest Territories, Canada. Our results demonstrate that the RS-2 Spotlight beam mode, processed by the Multiple Aperture InSAR (MAI) method, outperformed other beam modes and conventional InSAR when characterizing spatio-temporal patterns of ice surface fluctuations. For example, the MAI based Spotlight differential interferogram derived from the January and February 2016 images of the Slave River Delta resulted in a slant range displacement of the ice surface between -3.3 and +3.6 cm (vertical displacement between -4.3 and +4.8 cm), due to the changes in river flow and river ice morphology between the two acquisition dates. It is difficult to monitor the ice movement in early and late winter periods due to the loss of phase coherence and error in phase unwrapping. These findings are consistent with our river ice hydraulic modelling and visual interpretation of the river ice processes under different hydrometeorological conditions and river ice morphology. An extension of this study is planned to incorporate the results of ice cover displacement (rise/drop) to locate areas of initial breakup in an ice jam forecasting system. Keywords: D-InSAR, Mutiple Aperture Radar InSAR (MAI), river ice displacement, RADARSAT-2
Thaw pond dynamics and carbon emissions in a Siberian lowland tundra landscape
NASA Astrophysics Data System (ADS)
van Huissteden, Ko; Heijmans, Monique; Dean, Josh; Meisel, Ove; Goovaerts, Arne; Parmentier, Frans-Jan; Schaepman-Strub, Gabriela; Belelli Marchesini, Luca; Kononov, Alexander; Maximov, Trofim; Borges, Alberto; Bouillon, Steven
2017-04-01
Arctic climate change induces drastic changes in permafrost surface wetness. As a result of thawing ground ice bodies, ice wedge troughs and thaw ponds are formed. Alternatively, ongoing thaw may enhance drainage as a result of increased interconnectedness of thawing ice wedge troughs, as inferred from a model study (Liljedahl et al., 2016, Nature Geoscience, DOI: 10.1038/NGEO2674). However, a recent review highlighted the limited predictability of consequences of thawing permafrost on hydrology (Walvoord and Kurylyk, 2016, Vadose Zone J., DOI:10.2136/vzj2016.01.0010). Overall, these changes in tundra wetness modify carbon cycling in the Arctic and in particular the emissions of CO2 and CH4 to the atmosphere, providing a possibly positive feedback on climate change. Here we present the results of a combined remote sensing, geomorphological, vegetation and biogechemical study of thaw ponds in Arctic Siberian tundra, at Kytalyk research station near Chokurdakh, Indigirka lowlands. The station is located in an area dominated by Pleistocene ice-rich 'yedoma' sediments and drained thaw lake bottoms of Holocene age. The development of three types of ponds in the Kytalyk area (polygon centre ponds, ice wedge troughs and thaw ponds) has been traced with high resolution satellite and aerial imagery. The remote sensing data show net areal expansion of all types of ponds. Next to formation of new ponds, local vegetation change from dry vegetation types to wet, sedge-dominated vegetation is common. Thawing ice wedges and thaw ponds show an increase in area and number at most studied locations. In particular the area of polygon centre ponds increased strongly between 2010 and 2015, but this is highly sensitive to antecedent precipitation conditions. Despite a nearly 60% increase of the area of thawing ice wedge troughs, there is no evidence of decreasing water surfaces by increasing drainage through connected ice wedge troughs. The number of thaw ponds shows an equilibrium between newly formed and disappearing ponds, although their net area increased by 16%. The disappearing of ponds was mostly the result of vegetation succession, rather than drainage. This vegetation succession results from an invasion by sedges, followed by establishment of Sphagnum and seedlings of dwarf shrubs. The formation of thaw ponds and troughs resulting from small-scale permafrost collapse results in a drastic change of CH4 and CO2 emissions, from near-zero emission or uptake to high emission. New water surfaces with drowned dry tundra vegetation show the highest emission. However, rapid vegetation succession may mitigate these emissions over time, in particular in the relatively shallow thaw ponds. In contrast, the polygon centre ponds with a stable, oligotrophic vegetation show modest and constant CH4 emission and CO2 uptake.
NASA Astrophysics Data System (ADS)
Pendleton, S.; Anderson, R. S.; Miller, G. H.; Refsnider, K. A.
2015-12-01
Increasing Arctic summer temperatures in recent decades and shrinking cold-based ice caps on Cumberland Peninsula, Baffin Island, are exposing ancient landscapes complete with uneroded bedrock surfaces. Previous work has indicated that these upland surfaces covered with cold-based ice experience negligible erosion compared with the valleys and fjords systems that contain fast-flowing ice. Given the appearance of highly weathered bedrock, it is argued that these landscapes have remained largely unchanged since at least the last interglaciation (~120 ka), and have likely experienced multiple cycles of ice expansion and retraction with little erosion throughout the Quaternary. To explore this hypothesis, we use multiple cosmogenic radionuclides (26Al and 10Be) to investigate and provide insight into longer-term cryosphere activity and landscape evolution. 26Al/10Be in surfaces recently exposed exhibit a wide range of exposure-burial histories. Total exposure-burial times range from ~0.3 - 1.5 My and estimated erosion rates from 0.5 - 6.2 m Ma-1. The upland surfaces of the Penny Ice cap generally experienced higher erosion rates (~0.45 cm ka-1) than those covered by smaller ice caps (~0.2 cm ka-1). The cumulative burial/exposure histories in high, fjord-edge locations indicate that significant erosion north of the Penny Ice Cap ceased between ~600 and 800 ka, suggesting that Laurentide Ice Sheet (LIS) organization and fjord inception was underway by at least this time. Additionally, 26Al/10Be ratios near production values despite high inventories from a coastal summit 50 km east of the Penny Ice Cape suggest that that area has not experienced appreciable burial by ice, suggesting that it was never inundated by the LIS. Moreover, these initial data suggest a variable and dynamic cryosphere in the region and provide insight into how large ice sheets evolved and organized themselves during the Quaternary.
March, Rod S.
2000-01-01
The 1995 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 0.94 meter on April 19, 1995, 0.6 standard deviation below the long-term average; the maximum winter snow balance, 0.94 meter, was reached on April 25, 1995; the net balance (from September 18, 1994 to August 29, 1995) was -0.70 meter, 0.76 standard deviation below the long-term average. The annual balance (October 1, 1994, to September 30, 1995) was -0.86 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 2.05 meters averaged over the basin, approximately equal to the long-term average. The 1976 ice-thickness data are reported from a single site near the highest measurement site (180 meters thick) and from two glacier cross profiles near the mid-glacier (270 meters thick on centerline) and low glacier (150 meters thick on centerline) measurement sites. A new area-altitude distribution determined from 1993 photogrammetry is reported. Area-averaged balances are reported from both the 1967 and 1993 area-altitude distribution so the reader may directly see the effect of the update. Briefly, loss of ablation area between 1967 and 1993 results in a larger weighting being applied to data from the upper glacier site and hence, increases calculated area-averaged balances. The balance increase is of the order of 15 percent for net balance.
Paleoglacier reconstruction of the central massif of Gredos range during Last Glacial Maximum.
NASA Astrophysics Data System (ADS)
Campos, Néstor; Tanarro, Luis Miguel
2017-04-01
The accurate reconstruction of paleoglaciers require a well determined extent and morphology of them, one of the main problems is the absence of glacial geomorphic evidences which made possible the delimitation of the ice limits, for this reason physical-based models are useful for ice surface reconstruction in areas where geomorphological information is incomplete. A paleoglacier reconstruction during its maximum extension is presented for a high mountain area of the western part of the central massif of Gredos range, in the center of Iberian Peninsula, this area is located 30 km west of Almanzor (40˚ 14' 48? N; 5˚ 17' 52? W; 2596 m a.s.l.), the highest peak of Iberian Central System (ICS) and covers five gorges: La Nava, Taheña- Honda, La Vega, San Martín and Los Infiernos, the first three facing North, San Martin facing Northwest and Los Infiernos facing West. Despite the existence of some works analyzing the extension of paleoglaciers in the ICS during its maximum extension, there is still a need to improve the understanding of this zone, to provide a more detailed knowlegde of the evolution of the range and to know more in detail the full extent of paleoglaciers in this area. For delimitate the glaciated area the most distant frontal moraines with a larger geomorphological entity that indicates a great advance or a prolonged stay and stabilization which would presumably correspond with the maximum advance of the glaciers have been mapped, for that, photo interpretation of digital aerial photographs (25 cm resolution) has been done, in some areas where the location or limits of the moraines were not clear 3D images were used, all the work was complemented with detailed field surveys. Once the ice limits have been determined is necessary to estimate the topography of the paleoglaciers, for that purpose a simple steady-state models that assume a perfectly plastic ice rheology have been used, reconstructing the theoretical ice profiles and obtaining the extent of the paleoglaciers (based on the largest moraines of the front and sides of the valley as the main indicator of the LGM), in order to reconstruct the ice surface we calculated longitudinal profiles, with these reconstructed profiles a digital elevation model (DEM) of 5 m pixel size was created and combined with actual topography in order to obtain the ice thickness at the LGM. The combination of these physical-based models and geomorphological evidences has demonstrated to be a successful method to reconstruct the topography of paleoglaciers, the most distant frontal moraines of the studied area are located at different altitudes depending on the paleoglacier, the lower altitude of a frontal moraine is 1320 meters and the higher is located at 1570 meters, the preliminary results show that during the LGM, the studied paleoglaciers had a maximum ice thickness of 366 meters in La Vega gorge, with a total volume of 28.56 x 108 m3 and a mean paleoELA of 1940 meters. References: Benn, D.I., Hulton, N.R.J., 2010. An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences 36, 605e610. Schilling, D.H., Hollin, J., 1981. Numerical reconstructions of valley glaciers and small ice caps. In: Denton, G.H., Hughes, T.J. (Eds.), The Last Great Ice Sheets. Willey, New York, USA, pp. 207e220. Research funded by Deglaciation project (CGL2015-65813-R), Government of Spain
PRISM 8 degrees X 10 degrees North Hemisphere paleoclimate reconstruction; digital data
Barron, John A.; Cronin, Thomas M.; Dowsett, Harry J.; Fleming, Farley R.; Holtz, Thomas R.; Ishman, Scott E.; Poore, Richard Z.; Thompson, Robert S.; Willard, Debra A.
1994-01-01
The PRISM 8?x10? data set represents several years of investigation by PRISM (Pliocene Research, Interpretation, and Synoptic Mapping) Project members. One of the goals of PRISM is to produce time-slice reconstructions of intervals of warmer than modern climate within the Pliocene Epoch. The first of these was chosen to be at 3.0 Ma (time scale of Berggren et al., 1985) and is published in Global and Planetary Change (Dowsett et al., 1994). This document contains the actual data sets and a brief explanation of how they were constructed. For paleoenvironmental interpretations and discussion of each data set, see Dowsett et al., in press. The data sets includes sea level, land ice distribution, vegetation or land cover, sea surface temperature and sea-ice cover matrices. This reconstruction of Middle Pliocene climate is organized as a series of datasets representing different environmental attributes. The data sets are designed for use with the GISS Model II atmospheric general circulation model (GCM) using an 8?x10? resolution (Hansen et al., 1983). The first step in documenting the Pliocene climate involves assigning an appropriate fraction of land versus ocean to each grid box. Following grid cell by grid cell, land versus ocean allocations, winter and summer sea ice coverage of ocean areas are assigned and then winter and summer sea surface temperatures are assigned to open ocean areas. Average land ice cover is recorded for land areas and then land areas not covered by ice are assigned proportions of six vegetation or land cover categories modified from Hansen et al. (1983).
Compositional Variations of Titan's Impact Craters Indicates Active Surface Erosion
NASA Astrophysics Data System (ADS)
Werynski, Alyssa; Neish, Catherine; Le Gall, Alice; Janssen, Michael A.
2017-10-01
Titan’s crust is assumed to be mostly water-ice. However, the surface composition is not well constrained due to its thick atmosphere. Based on infrared and radiometry data, the surface appears enriched in organics, with only few areas showing evidence of exposed water-ice. Regions of water-ice enrichment include the rims and ejecta blankets of impact craters. This study utilizes these geologic features to examine compositional variations across Titan’s surface, and their subsequent modification due to erosional processes.Sixteen craters and their ejecta blankets were mapped on a Cassini RADAR mosaic. These features were selected because they are some of the best preserved craters on Titan. Composition was inferred from Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) and 2-cm emissivity data from the Cassini radiometer. With VIMS, different compositional units were inferred from their reflectivity at specific wavelengths. With the emissivity data, high values suggest more organic-rich material, while lower values indicate strong volume scattering. Areas with low emissivity have been interpreted to be water-ice rich, as water-ice is a favorable medium for volume scattering.Results show fresher, well-preserved craters in the dunes regions have a low emissivity indicative of water-ice, and a VIMS spectrum consistent with an unknown material, possibly a mixture of water-ice and organics. As these craters erode over time, the VIMS spectra remain the same but the emissivity increases. Well-preserved craters in the mid-latitude plains show VIMS spectra and emissivity values consistent with water-ice. As these plain craters degrade, the VIMS spectra remain the same, but the emissivity increases. The differing VIMS signatures suggest more mixing with organics during the cratering event in the organic-rich dunes than the plains. The changes in emissivity over time are consistent with organic infilling of subsurface fractures in both regions, with limited surficial alteration. These results support the idea that compositional variations in Titan’s impact craters are related primarily to erosion and infilling, and to a lesser extent, local variations in the overlying organic material of the pre-impact substrate.
NASA Astrophysics Data System (ADS)
Thompson, Lonnie G.; Yao, Tandong; Davis, Mary E.; Mosley-Thompson, Ellen; Wu, Guangjian; Porter, Stacy E.; Xu, Baiqing; Lin, Ping-Nan; Wang, Ninglian; Beaudon, Emilie; Duan, Keqin; Sierra-Hernández, M. Roxana; Kenny, Donald V.
2018-05-01
Records of recent climate from ice cores drilled in 2015 on the Guliya ice cap in the western Kunlun Mountains of the Tibetan Plateau, which with the Himalaya comprises the Third Pole (TP), demonstrate that this region has become warmer and moister since at least the middle of the 19th century. Decadal-scale linkages are suggested between ice core temperature and snowfall proxies, North Atlantic oceanic and atmospheric processes, Arctic temperatures, and Indian summer monsoon intensity. Correlations between annual-scale oxygen isotopic ratios (δ18O) and tropical western Pacific and Indian Ocean sea surface temperatures are also demonstrated. Comparisons of climate records during the last millennium from ice cores acquired throughout the TP illustrate centennial-scale differences between monsoon and westerlies dominated regions. Among these records, Guliya shows the highest rate of warming since the end of the Little Ice Age, but δ18O data over the last millennium from TP ice cores support findings that elevation-dependent warming is most pronounced in the Himalaya. This, along with the decreasing precipitation rates in the Himalaya region, is having detrimental effects on the cryosphere. Although satellite monitoring of glaciers on the TP indicates changes in surface area, only a few have been directly monitored for mass balance and ablation from the surface. This type of ground-based study is essential to obtain a better understanding of the rate of ice shrinkage on the TP.
Photographer : JPL Range : 5 million miles (8.025 million kilometers) This is a morning shot of
NASA Technical Reports Server (NTRS)
1979-01-01
Photographer : JPL Range : 5 million miles (8.025 million kilometers) This is a morning shot of Ganymede, largest of Jupiter's 13 satellites. It's slightly larger than Mercury with a density about twice that of water. It's believed to be made of rock and ice with a surface of water and ice. Ganymede is 4 times brighter than our Moon with the bright spot in center of photo 5 times brighter than the Moon, and may contain more ice than surrounding areas. The bright pattern around the spot seems like ray craters on the Moon and Mercury and the area may in fact be an impact crater that has exposed fresh, underlying ice. Photo taken through blue, green and orange filters.
Large Scale Ice Water Path and 3-D Ice Water Content
Liu, Guosheng
2008-01-15
Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.
Barreira, S.; Compagnucci, R.
2007-01-01
Principal Components Analysis (PCA) in S-Mode (correlation between temporal series) was performed on sea ice monthly anomalies, in order to investigate which are the main temporal patterns, where are the homogenous areas located and how are they related to the sea surface temperature (SST). This analysis provides 9 patterns (4 in the Amundsen and Bellingshausen Seas and 5 in the Weddell Sea) that represent the most important temporal features that dominated sea ice concentration anomalies (SICA) variability in the Weddell, Amundsen and Bellingshausen Seas over the 1979-2000 period. Monthly Polar Gridded Sea Ice Concentrations data set derived from satellite information generated by NASA Team algorithm and acquired from the National Snow and Ice Data Center (NSIDC) were used. Monthly means SST are provided by the National Center for Environmental Prediction reanalysis. The first temporal pattern series obtained by PCA has its homogeneous area located at the external region of the Weddell and Bellingshausen Seas and Drake Passage, mostly north of 60°S. The second region is centered in 30°W and located at the southeast of the Weddell. The third area is localized east of 30°W and north of 60°S. South of the first area, the fourth PC series has its homogenous region, between 30° and 60°W. The last area is centered at 0° W and south of 60°S. Correlation charts between the five Principal Components series and SST were performed. Positive correlations over the Tropical Pacific Ocean were found for the five PCs when SST series preceded SICA PC series. The sign of the correlation could relate the occurrence of an El Niño/Southern Oscillation (ENSO) warm (cold) event with posterior positive (negative) anomalies of sea ice concentration over the Weddell Sea.
NASA Astrophysics Data System (ADS)
Cassanelli, James P.; Head, James W.
2016-06-01
Recent modeling studies of the early Mars climate predict a predominantly cold climate, characterized by the formation of regional ice sheets across the highland areas of Mars. Formation of the predicted "icy highlands" ice sheets is coincident with a peak in the volcanic flux of Mars involving the emplacement of the Late Noachian - Early Hesperian ridged plains unit. We explore the relationship between the predicted early Mars "icy highlands" ice sheets, and the extensive early flood volcanism to gain insight into the surface conditions prevalent during the Late Noachian to Early Hesperian transition period. Using Hesperia Planum as a type area, we develop an ice sheet lava heating and loading model. We quantitatively assess the thermal and melting processes involved in the lava heating and loading process following the chronological sequence of lava emplacement. We test a broad range of parameters to thoroughly constrain the lava heating and loading process and outline predictions for the formation of resulting geological features. We apply the theoretical model to a study area within the Hesperia Planum region and assess the observed geology against predictions derived from the ice sheet lava heating and loading model. Due to the highly cratered nature of the Noachian highlands terrain onto which the volcanic plains were emplaced, we predict highly asymmetrical lava loading conditions. Crater interiors are predicted to accumulate greater thicknesses of lava over more rapid timescales, while in the intercrater plains, lava accumulation occurs over longer timescales and does not reach great thicknesses. We find that top-down melting due to conductive heat transfer from supraglacial lava flows is generally limited when the emplaced lava flows are less than ∼10 m thick, but is very significant at lava flow thicknesses of ∼100 m or greater. We find that bottom-up cryosphere and ice sheet melting is most likely to occur within crater interiors where lavas accumulate to a sufficient thickness to raise the ice-melting isotherm to the base of the superposed lavas. In these locations, if lava accumulation occurs rapidly, bottom-up melting of the ice sheet can continue, or begin, after lava accumulation has completed in a process we term "deferred melting". Subsurface mass loss through melting of the buried ice sheets is predicted to cause substantial subsidence in the superposed lavas, leading to the formation of associated collapse features including fracture systems, depressions, surface faulting and folding, wrinkle-ridge formation, and chaos terrain. In addition, if meltwater generated from the lava heating and loading process becomes trapped at the lava flow margins due to the presence of impermeable confining units, large highly pressurized episodic flooding events could occur. Examination of the study area reveals geological features which are generally consistent with those predicted to form as a result of the ice sheet lava heating and loading process, suggesting the presence of surface snow and ice during the Late Noachian to Early Hesperian period.
The physical basis of glacier volume-area scaling
Bahr, D.B.; Meier, M.F.; Peckham, S.D.
1997-01-01
Ice volumes are known for only a few of the roughly 160,000 glaciers worldwide but are important components of many climate and sea level studies which require water flux estimates. A scaling analysis of the mass and momentum conservation equations shows that glacier volumes can be related by a power law to more easily observed glacier surface areas. The relationship requires four closure choices for the scaling behavior of glacier widths, slopes, side drag and mass balance. Reasonable closures predict a volume-area scaling exponent which is consistent with observations, giving a physical and practical basis for estimating ice volumes. Glacier volume is insensitive to perturbations in the mass balance scaling, but changes in average accumulation area ratios reflect significant changes in the scaling of both mass balance and ice volume. Copyright 1997 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Grima, C.; Rosales, A.; Blankenship, D. D.; Young, D. A.
2014-12-01
McMurdo Ice Shelf, Antarctica, is characterized by two particular geophysical processes. (1) Marine ice accretion supplies most of the ice shelf material rather than meteoric ice from glacier outflow and snow-falls. (2) A brine layer infiltrates the ice shelf laterally up to 20-km inward. The infiltration mainly initiates at the ice-front from sea water percolation when the firn/snow transition is below sea-level. A better characterization of the McMurdo ice shelf could constrain our knowledges of these mechanisms and assess the stability of the region that hosts numerous human activities from the close McMurdo station (USA) and Scott base (New-Zealand). McMurdo ice shelf is also an analog for the Jovian icy moon Europa where brine pockets are supposed to reside in the ice crust and accretion to occur at the 10-30-km deep ice-ocean interface.The University of Texas Institute for Geophysics (UTIG) acquired two radar survey grids over the McMurdo Ice Shelf during southern summers 2011-2012 and 2012-2013 with the High Capability Radar Sounder (HiCARS) on-board a Basler DC-3 aircraft. HiCARS transmits a chirped signal at 60-MHz central frequency and 15-MHz bandwidth. The corresponding vertical resolution in ice is 5-10 m. An important design goal of the radar was to maintain sufficient dynamic range to correctly measure echo intensities.Here we present the brine infiltration extent and bathymetry derived from its dielectric horizon well distinguishable on the HiCARS radargram. We complement the ice-shelf characterization by classifying its surface thanks to the novel Radar Statistical Reconnaissance (RSR) methodology. The RSR observable is the statistical distribution of the surface echo amplitudes from successive areas defined along-track. The distributions are best-fitted with a theoretical stochastic envelop parameterized with the signal reflectance and scattering. Once those two components are deduced from the fit, they are used in a backscattering model to invert surface properties such as roughness, density, and/or impurity load. This combined analysis gives new insights into the superficial processes and exchanges at the McMurdo ice shelf.
Ice sheet climate modeling: past achievements, ongoing challenges, and future endeavors
NASA Astrophysics Data System (ADS)
Lenaerts, J.
2017-12-01
Fluctuations in surface mass balance (SMB) mask out a substantial portion of contemporary Greenland and Antarctic ice sheet mass loss. That implies that we need accurate, consistent, and long-term SMB time series to isolate the mass loss signal. This in turn requires understanding of the processes driving SMB, and how they interplay. The primary controls on present-day ice sheet SMB are snowfall, which is regulated by large-scale atmospheric variability, and surface meltwater production at the ice sheet's edges, which is a complex result of atmosphere-surface interactions. Additionally, wind-driven snow redistribution and sublimation are large SMB contributors on the downslope areas of the ice sheets. Climate models provide an integrated framework to simulate all these individual ice sheet components. Recent developments in RACMO2, a regional climate model bound by atmospheric reanalyses, have focused on enhancing horizontal resolution, including blowing snow, snow albedo, and meltwater processes. Including these physics not only enhanced our understanding of the ice sheet climate system, but also enabled to obtain increasingly accurate estimates of ice sheet SMB. However, regional models are not suitable to capture the mutual interactions between ice sheet and the remainder of the global climate system in transient climates. To take that next step, global climate models are essential. In this talk, I will highlight our present work on improving ice sheet climate in the Community Earth System Model (CESM). In particular, we focus on an improved representation of polar firn, ice sheet clouds, and precipitation. For this exercise, we extensively use field observations, remote sensing data, as well as RACMO2. Next, I will highlight how CESM is used to enhance our understanding of ice sheet SMB, its drivers, and past and present changes.
Distinct ice patterns on solid surfaces with various wettabilities
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun
2017-01-01
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045
Distinct ice patterns on solid surfaces with various wettabilities.
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun
2017-10-24
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.
The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows
NASA Astrophysics Data System (ADS)
Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.
2018-02-01
The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative "compactness" of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, "New Arctic", sea ice regime.
NASA Astrophysics Data System (ADS)
Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank
2015-04-01
The formation of ice in atmospheric clouds has a substantial influence on the radiative properties of clouds as well as on the formation of precipitation. Therefore much effort has been made to understand and quantify the major ice formation processes in clouds. Immersion freezing has been suggested to be a dominant primary ice formation process in low and mid-level clouds (mixed-phase cloud conditions). It also has been shown that mineral dust particles are the most abundant ice nucleating particles in the atmosphere and thus may play an important role for atmospheric ice nucleation (Murray et al., 2012). Additionally, biological particles like bacteria and pollen are suggested to be potentially involved in atmospheric ice formation, at least on a regional scale (Murray et al., 2012). In recent studies for biological particles (SNOMAX and birch pollen), it has been demonstrated that freezing is induced by ice nucleating macromolecules and that an asymptotic value for the mass density of these ice nucleating macromolecules can be determined (Hartmann et al., 2013; Augustin et al., 2013, Wex et al., 2014). The question arises whether such an asymptotic value can also be determined for the ice active surface site density ns, a parameter which is commonly used to describe the ice nucleation activity of e.g., mineral dust. Such an asymptotic value for ns could be an important input parameter for atmospheric modeling applications. In the presented study, we therefore investigated the immersion freezing behavior of droplets containing size-segregated, monodisperse feldspar particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). For all particle sizes considered in the experiments, we observed a leveling off of the frozen droplet fraction reaching a plateau within the heterogeneous freezing temperature regime (T > -38°C) which was proportional to the particle surface area. Based on these findings, we could determine an asymptotic value for the ice active surface site density, which we named ns*, for the investigated feldspar sample. The comparison of these results with those of other studies elucidates the general feasibility of determining such an asymptotic value and also show that the value of ns* strongly depends on the method of the particle surface area determination. Acknowledgement This work is partly funded by the Federal Ministry of Education and Research (BMBF - project CLOUD 12) and by the German Research Foundation (DFG project WE 4722/1-1, part of the research unit INUIT, FOR 1525). D. Niedermeier acknowledges financial support from the Alexander von Humboldt-foundation. References Augustin et al.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989-11003, doi:10.5194/acp-13-10989-2013, 2013. Hartmann et al.: Immersion freezing of ice nucleation active protein complexes, Atmos. Chem. Phys., 13, 5751-5766, doi:10.5194/acp-13-5751-2013, 2013. Murray et al.: Ice nucleation by particles immersed in supercooled cloud droplets, Chem. Soc. Rev., 41, 6519-6554, 2012. Wex et al.: Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance, Atmos. Chem. Phys. Discuss., 14, 22321-22384, doi:10.5194/acpd-14-22321-2014, 2014.
Assessing More than a Decade of Alaska/yukon, High Elevation, Glacier Ice/rock Landslides
NASA Astrophysics Data System (ADS)
Molnia, B. F.; Angeli, K.
2017-12-01
On September 14, 2005, an estimated 5.0x106 m3 of rock, glacier ice, and snow fell from below the summit of 3,236-m-high Mt. Steller, Alaska, onto a tributary of Bering Glacier. Next day photography of the slide and source area suggested that meltwater played a significant role in its origin. Aerial photography and space-based electro-optical imagery collected for months following the event recorded continuing evidence of meltwater flowing from the head-scarp region and continued ice and snow melt. We investigated five similar glacier ice-rock landslides. These originated from the north face of Mt. Steller in late 2005-early 2006, the south side of Waxell Ridge in late 2005-early 2006, Mt. Steele on July 24, 2007, Mt. Lituya on June 11, 2012, and Mt. La Perouse on February 16, 2014. None was triggered by a seismic event. Four were detected based on seismic events they generated. All source areas exhibited failed hanging glaciers and/or failed perennial snowfields. Five had detectable glacier hydrologic features (moulins, conduits, and collapsed englacial stream channels) in near-summit failed ice and snow margins. Four displayed fresh concave bedrock failure surfaces. All originated at locations where mean annual temperatures were below freezing. Our observations support water triggering each event. We propose that abnormally warm summer temperatures or extreme winter precipitation produced unusual volumes of water which saturated summit snow and ice and/or filled summit glacier channels and conduits with liquid water. Water reached the frozen water/bedrock interface, destabilizing the contact. Fresh concave bedrock failure surfaces suggest that glacier beds were adhering to steep bedrock surfaces composed of a mélange of freeze/thaw shattered rock held together by interstitial ice. When the mass of saturated glacier ice failed, the bedrock mélange also failed, exposing fresh bedrock scarp depressions and generating the observed gravel-dominated slide debris.
Investigation of relative humidity and induced-vortex effects on aircraft icing
NASA Astrophysics Data System (ADS)
Ogretim, Egemen O.
2005-07-01
Aircraft icing is an area of research that has drawn attention since the early times of powered flight at high altitudes. Since World War II, aircraft icing research has gained a great deal of momentum, and several branches of research have developed as a result. These branches include the experimental, analytical and computational methods. With the advent of high-speed computers, the computational methods are becoming the leading icing research area due to their low cost requirements. However, a significant hindrance is the lack of a complete understanding of the icing phenomena, which leads to discrepancies between the predictions and the experiments. In recent years, there have been efforts to improve this situation by accounting for several mechanisms within the computational models. These mechanisms include the droplet splash and re-impingement, water film dynamics, and different heat transfer mechanisms. In support of enhancing the understanding of the aircraft icing process, this Ph.D. study focuses on the relative humidity effects and the interaction of the induced vortices with the droplets and the surface water. Currently the relative humidity effects are neglected in the icing prediction codes with the assumption that it can at best be a second-order effect. This Ph.D. study looks at the conditions in which the relative humidity effects can pose significant impact on the accreted ice shape. It was seen that the flow around the airfoil suction surfaces and the vortices, which have low-pressure cores, shed from the existing ice shape are highly supersaturated. Therefore, the suction surfaces and the aft regions of the main ice shape are exposed to condensation/deposition due to relative humidity effects. The time scales involved in the relative humidity effects were also investigated by using a numerical droplet growth experiment. In the particular case considered in this study, the required time to re-establish equilibrium, i.e. recover saturation conditions, varied from 12 milliseconds for droplets with 1 micron diameter to 5 seconds for droplets with 20 micron diameter. In an actual flight scenario, the direct impingement region mostly overlaps with the stagnation region, where the local flow is subsaturated. (Abstract shortened by UMI.)
Lehmann, Sara; Gajek, Grzegorz; Chmiel, Stanisław; Polkowska, Żaneta
2016-12-01
The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.
On charging of snow particles in blizzard
NASA Technical Reports Server (NTRS)
Shio, Hisashi
1991-01-01
The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.
The role of SO2 on Mars and on the primordial oxygen isotope composition of water on Earth and Mars
NASA Technical Reports Server (NTRS)
Waenke, H.; Dreibus, G.; Jagoutz, E.; Mukhin, L. M.
1992-01-01
We stress the importance of SO2 on Mars. In the case that water should have been supplied in sufficient quantities to the Martian surface by a late veneer and stored in the near surface layers in form of ice, temporary greenhouse warming by SO2 after large SO2 discharges may have been responsible for melting of ice and break-out of water in areas not directly connected to volcanic activity. Aside from water, liquid SO2 could explain at least some of the erosion features on the Martian surface.
NASA Astrophysics Data System (ADS)
Quiquet, Aurélien; Roche, Didier M.
2017-04-01
Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.
NASA Technical Reports Server (NTRS)
Comiso, Joey C.
1995-01-01
Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have been developed. Errors have been estimated to range from 1K to 5K mainly due to cloud masking problems. With many additional channels available, it is expected that the EOS-Moderate Resolution Imaging Spectroradiometer (MODIS) will provide an improved characterization of clouds and a good discrimination of clouds from snow or ice surfaces.
Transport of contaminants by Arctic sea ice and surface ocean currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfirman, S.
1995-12-31
Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brinemore » drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins.« less
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2016-12-01
Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. Here we show that melting and freezing driven by the pressure dependence of the melting point of water - the "ice pump" - can rapidly erase topography at the ice/water interface. We consider ice pumps driven by both tidal action and buoyancy-driven flow. We first show that as tidal action drives the ocean up and down along a sloping interface, ice will be melted from areas where it's thickest and deposited where the ice is thinnest. We show that this process causes the ice interface topography to relax according to a simple "diffusion" linear partial differential equation. We estimate that a 10-km-wide topographic feature would be erased by the tidal ice pump in 3000 years if Europa's tidal current amplitude is 1 cm/s; however, this timescale is inversely proportional to the cube of the tidal velocity! Next, we consider an ice pump powered by ascent of meltwater along a sloping ice-water interface. We consider layer-averaged budgets for heat, mass, and momentum, along with turbulent mixing of the meltwater layer with underlying seawater via a Richardson number dependent entrainment process, and use these to estimate the thickness and mass flux of the meltwater layer. From this we estimate the rate of melting and freezing at the interface. These two ice pump processes combine with the glacial flow of warm basal ice to rapidly flatten out any variations in the height of the ice-water interface: Europa's ice/water interface may be perfectly flat! If so, topography at Europa's surface can only be supported by variations in density of the shell or the strength of the brittle surface ice.
UV 380 nm Reflectivity of the Earth's Surface
NASA Technical Reports Server (NTRS)
Herman, J. R.; Celarier, E.; Larko, D.
2000-01-01
The 380 nm radiance measurements of TOMS (Total Ozone Mapping Spectrometer) have been converted into a global data set of daily (1979 to 1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice). Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicates the presence of clouds, haze, or aerosols in the satellite field of view. Statistical analysis of 14 years of daily data show that most snow/ice-free regions of the Earth have their largest fraction of days each year when the reflectivity is low (R less than 10%). The 380 nm reflectivity data shows that the true surface reflectivity is 2 to 3% lower than the most frequently occurring reflectivity value for each TOMS scene. The most likely cause of this could be a combination of frequently occurring boundary-layer water or aerosol haze. For most regions, the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain-forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R greater than 15%) more than half of each year. In the low to middle latitudes, the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.
UV 380 nm reflectivity of the Earth's surface, clouds and aerosols
NASA Astrophysics Data System (ADS)
Herman, J. R.; Celarier, E.; Larko, D.
2001-03-01
The 380 nm radiance measurements of the Total Ozone Mapping Spectrometer (TOMS) have been converted into a global data set of daily (1979-1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice) and then corrected to RPC for the presence of partly clouded scenes. Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicate the presence of clouds, haze, or aerosols in the satellite field of view. A statistical analysis of 14 years of daily reflectivity data shows that most snow-/ice-free scenes observed by TOMS have a reflectivity less than 10% for the majority of days during a year. The 380 nm reflectivity data show that the true surface reflectivity is 2-3% lower than the most frequently occurring reflectivity value for each TOMS scene as seen from space. Most likely the cause is a combination of frequently occurring boundary layer water and/or aerosol haze. For most regions the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R>15%) more than half of each year. In the low to middle latitudes the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show both the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.
Cloud-Scale Numerical Modeling of the Arctic Boundary Layer
NASA Technical Reports Server (NTRS)
Krueger, Steven K.
1998-01-01
The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.
Mellon, M.T.; Boynton, W.V.; Feldman, W.C.; Arvidson, R. E.; Titus, Joshua T.N.; Bandfield, L.; Putzig, N.E.; Sizemore, H.G.
2009-01-01
We review multiple estimates of the ice table depth at potential Phoenix landing sites and consider the possible state and distribution of subsurface ice. A two-layer model of ice-rich material overlain by ice-free material is consistent with both the observational and theoretical lines of evidence. Results indicate ground ice to be shallow and ubiquitous, 2-6 cm below the surface. Undulations in the ice table depth are expected because of the thermodynamic effects of rocks, slopes, and soil variations on the scale of the Phoenix Lander and within the digging area, which can be advantageous for analysis of both dry surficial soils and buried ice-rich materials. The ground ice at the ice table to be sampled by the Phoenix Lander is expected to be geologically young because of recent climate oscillations. However, estimates of the ratio of soil to ice in the ice-rich subsurface layer suggest that that the ice content exceeds the available pore space, which is difficult to reconcile with existing ground ice stability and dynamics models. These high concentrations of ice may be the result of either the burial of surface snow during times of higher obliquity, initially high-porosity soils, or the migration of water along thin films. Measurement of the D/H ratio within the ice at the ice table and of the soil-to-ice ratio, as well as imaging ice-soil textures, will help determine if the ice is indeed young and if the models of the effects of climate change on the ground ice are reasonable. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Popov, A.; Rubchenia, A.
2009-04-01
Numerous of model simulations of ice extent in Arctic Ocean predict almost full disappearance of sea ice in Arctic regions by 2050. However, the nature, as against models, does not suffer the unidirectional processes. By means of various feedback responses system aspires to come in an equilibrium condition. In Arctic regions one of the most powerful generators of a negative feedback is the fresh-water stream to Greenland Sea and Northern Atlantic. Increasing or decreasing of a fresh-water volume from the Arctic basin to Greenland Sea and Northern Atlantic results in significant changes in climatic system. At the Oceanology department of Arctic and Antarctic Research Institute (AARI) (St-Petersburg, Russia) in 2007, on the basis of the incorporated Russian-American database of the oceanographic data, reconstruction of long-term time series of average salinity of ocean surface was executed. The received time series describes the period from 1950 to 1993. For allocation of the processes determining formation of changes of average salinity of surface waters in Arctic basin the correlation analysis of interrelation of the received time series and several physical parameters which could affect formation of changes of salinity was executed. We found counter-intuitive result: formation of long-term changes of average salinity of surface waters of Arctic basin in the winter period does not depend on changes of a Siberian rivers runoff. Factors of correlation do not exceed -0,31. At the same time, clear inverse relationship of salinity of surface waters from volumes of the ice formed in flaw lead polynyas of the Siberian shelf seas is revealed. In this case factors of correlation change from -0,56 to -0,7. The maximum factor of correlation is -0,7. It characterizes interrelation of total volume of the ice formed in flaw lead polynyas of all seas of the Siberian shelf and average salinity of surface waters of Arctic basin. Thus, at increase of volumes of the ice formed in flaw lead polynyas there is a reduction of average salinity of surface waters of Arctic basin. In the winter period obvious influence of waters of a river runoff on a hydrological situation of this or that sea is limited to a zone of distribution of fast ice and a narrow zone of flaw lead polynyas between fast ice and drift ice. That fresh water from the Arctic seas is transferred in the Arctic basin. There should be a certain effective mechanism to carry it. Presence of clear interrelation of salinity of surface waters and volumes of ice formed in polynyas, allows us to offer the following circuit of formation of average salinity of surface waters in the Arctic basin. The ice formed in polynya, is constantly taken out for limits of an area of flaw lead polynyas. This ice accumulates the fresh water acting with a river runoff. New ice hummocking and accumulate snow - the next source of fresh water. In the summer period ice is melting and forms surface fresh layer. In the cold period of year, presence of thick ice not allows accumulating all fresh water, and the zone of fresh water is forming. These fresh water areas could exist for months. In the reports [1] was offered a hypothesis describing formation of distant connections in climatic system. In the hypothesis offered by us about a role of polynyas in formation of distant feedback in climatic system the most important and, unfortunately, the least certain parameter is «reaching time» of climatic signal from a place of origin (in flaw lead polynya area) up to the Greenland sea and Northern Atlantic. For an estimation of reaching time» we tried to trace drift of this anomaly from polynyas to Greenland Sea. For the initial moment of anomaly genesis month of the maximal development of polynya (when ice production of it was maximal) was chosen. Core of freshwater anomaly was determined for several polynyas. Using results of our simulations, data from database with areas of polynyas, wind stress data and current speed data from several sources, we got vector diagrams of drift of anomalies. Within the limits of the seas were taken into account a vector of constant currents. The vector of displacement within the limits of each of the seas represented the sum of constant current and average for one month of a vector of isobaric drift. In the Arctic basin we used only a vector of isobaric drift. Vectors of isobaric drift are constructed by I. Karelin (AARI, St-Petersburg, Russia) on the basis of average for one month of fields of ground pressure. As shown in numerous researches, monthly averaging most adequately allow us to display a field of wind drift of ice. For construction of vector diagrams on sphere we used «MapInfo Professional 7.5». For conviction of a reality of our hypothetical assumptions of carry of anomalies of salinity we have executed comparison of a spatial-temporal arrangement of areas vector diagrams we got with an arrangement of real anomalies of the salinity revealed as a result of instrumental observations. Such results of comparison have surpassed all expectations. We got confirmation of position of fresh water areas from instrumental observations executed in 2005-2007 by several cruises of AARI institute. Thus good concurrence of time and the location of areas of abnormal fleshing, received by theoretical and instrumentally observed conditions is marked. The map of a field of anomalies of the salinity, constructed for 2007 is most indicative. On this map a number of isolated fresh water areas in surface waters clearly allocated. To each of these areas of observed freshening there corresponds predicted passage of core of predicted anomaly. We could conclude that there is concurrence of predicted fresh water anomalies and observed fresh water areas. It allows us to say hypothesis is working. Flaw lead polynyas really forming significant anomalies of salinity which being distributed in Arctic basin. These anomalies keep the properties within several years. Hydrodynamic aspects of distribution of anomalies are not clear yet. But the fact of formation and distribution of anomalies of salinity of surface waters in Arctic basin could be taken for granted. In a case when the climatic signal from the several seas simultaneously reach Greenland Sea climatically significant anomaly of fresh water of ice could appear. It capable to result in sharp change of a climatic situation. Probably, the similar situation was in 1963-1964 years when «Great Salinity Anomaly» was observed in North Atlantic. Changes of atmospheric circulation was so significant, that in Arctic regions has rather sharply increased ice cover areas and the temperature of air has gone down. In our opinion similar conditions could arise in the present period when after several years of extreme development of flaw lead polynyas extreme freshwater anomaly which reaching of Greenland Sea is possible to expect 2008-2009 should be generated. In 2008 several freshwater anomalies generated in various flaw lead polynyas in 2003-2004 years already has left to Greenland sea and in April, July and November has reached Northern Atlantic. Synoptic situations which, in our opinion, can be connected to the given phenomenon, and also reaction of the Arctic seas to the given atmospheric processes are shown. The analysis of a map of drift of anomalies allows us to conclude, that in 2009 it is necessary to expect an exit of the strong salinity anomaly generated from several large polynyas. To the given event there will correspond reduction of repeatability and reduction of areas of polynyas in the seas of the Siberian shelf, easing of carrying out concerning warm air masses to the Central Arctic regions and increase here ground atmospheric pressure in the cold period of year. In the summer period will take place strengthening of ice cover and, hence - downturn of temperature of air in Arctic regions. We could assume we are at the break point of temperature change and next year there will be cooling in Arctic. [1] Popov A., Rubchenia A. Flaw polynyas as a source of long-distance connections in climate system // Geophysical Research Abstracts, Vol. 10, EGU2008-A-02009, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-02009 EGU General Assembly 2008
NASA Astrophysics Data System (ADS)
Mitchell, David L.
1996-06-01
Based on boundary layer theory and a comparison of empirical power laws relating the Reynolds and Best numbers, it was apparent that the primary variables governing a hydrometeor's terminal velocity were its mass, its area projected to the flow, and its maximum dimension. The dependence of terminal velocities on surface roughness appeared secondary, with surface roughness apparently changing significantly only during phase changes (i.e., ice to liquid). In the theoretical analysis, a new, comprehensive expression for the drag force, which is valid for both inertial and viscous-dominated flow, was derived.A hydrometeor's mass and projected area were simply and accurately represented in terms of its maximum dimension by using dimensional power laws. Hydrometeor terminal velocities were calculated by using mass- and area-dimensional power laws to parameterize the Best number, X. Using a theoretical relationship general for all particle types, the Reynolds number, Re, was then calculated from the Best number. Terminal velocities were calculated from Re.Alternatively, four Re-X power-law expressions were extracted from the theoretical Re-X relationship. These expressions collectively describe the terminal velocities of all ice particle types. These were parameterized using mass- and area-dimensional power laws, yielding four theoretically based power-law expressions predicting fall speeds in terms of ice particle maximum dimension. When parameterized for a given ice particle type, the theoretical fall speed power law can be compared directly with empirical fall speed-dimensional power laws in the literature for the appropriate Re range. This provides a means of comparing theory with observations.Terminal velocities predicted by this method were compared with fall speeds given by empirical fall speed expressions for the same ice particle type, which were curve fits to measured fall speeds. Such comparisons were done for nine types of ice particles. Fall speeds predicted by this method differed from those based on measurements by no more than 20%.The features that distinguish this method of determining fall speeds from others are that it does not represent particles as spheroids, it is general for any ice particle shape and size, it is conceptually and mathematically simple, it appears accurate, and it provides for physical insight. This method also allows fall speeds to be determined from aircraft measurements of ice particle mass and projected area, rather than directly measuring fall speeds. This approach may be useful for ice crystals characterizing cirrus clouds, for which direct fall speed measurements are difficult.
NASA Technical Reports Server (NTRS)
Steffen, Konrad; Key, Jeff; Maslanik, Jim; Haefliger, Marcel; Fowler, Chuck
1992-01-01
Satellite data for the estimation of radiative and turbulent heat fluxes is becoming an increasingly important tool in large-scale studies of climate. One parameter needed in the estimation of these fluxes is surface temperature. To our knowledge, little effort has been directed to the retrieval of the sea ice surface temperature (IST) in the Arctic, an area where the first effects of a changing climate are expected to be seen. The reason is not one of methodology, but rather our limited knowledge of atmospheric temperature, humidity, and aerosol profiles, the microphysical properties of polar clouds, and the spectral characteristics of the wide variety of surface types found there. We have developed a means to correct for the atmospheric attenuation of satellite-measured clear sky brightness temperatures used in the retrieval of ice surface temperature from the split-window thermal channels of the advanced very high resolution radiometer (AVHRR) sensors on-board three of the NOAA series satellites. These corrections are specified for three different 'seasons' and as a function of satellite viewing angle, and are expected to be applicable to the perennial ice pack in the central Arctic Basin.
NASA Technical Reports Server (NTRS)
Steffen, K.; Abdalati, W.; Stroeve, J.; Nolin, A.; Box, J.; Key, J.; Zwally, J.; Stober, M.; Kreuter, J.
1996-01-01
The proposed research involves the application of multispectral satellite data in combination with ground truth measurements to monitor surface properties of the Greenland Ice Sheet which are essential for describing the energy and mass of the ice sheet. Several key components of the energy balance are parameterized using satellite data and in situ measurements. The analysis has been done for a 6 to 17 year time period in order to analyze the seasonal and interannual variations of the surface processes and the climatology. Our goal was to investigate to what accuracy and over what geographic areas large scale snow properties and radiative fluxes can be derived based upon a combination of available remote sensing and meteorological data sets. For the understanding of the surface processes a field program was designed to collect information on spectral albedo, specular reflectance, soot content, grain size and the physical properties of different snow types. Further, the radiative and turbulent fluxes at the ice/snow surface were monitored for the parameterization and interpretation of the satellite data. Highlights include AVHRR time series and surface based radiation measurements, passive microwave time series, and geodetic results from the ETH/CU camp.
Sea ice and surface water circulation, Alaskan continental shelf
NASA Technical Reports Server (NTRS)
Wright, F. F. (Principal Investigator); Sharma, G. D.; Burns, J. J.
1973-01-01
The author has identified the following significant results. Sediments contributed by the Copper River in the Gulf of Alaska are carried westward along the shore as a distinct plume. Oceanic water relatively poor in suspended material appears to intrude near Montague Island, and turbid water between Middleton Island and Kayak Island is the result of Ekman between transport. An anticlockwise surface water circulation is observed in this region. Ground truth data indicate striking similarity with ERTS-1 imagery obtained on October 12, 1972. Observations of ERTS-1 imagery reveal that various characteristics and distribution of sea ice in the Arctic Ocean can be easily studied. Formation of different types of sea ice and their movement is quite discrenible. Sea ice moves parallel to the cost in near shore areas and to the northerly direction away from the coast.
Generation and evaluation of Cryosat-2 SARIn L1b Interferometric elevation
NASA Astrophysics Data System (ADS)
DONG, Y.; Zhang, K.; Liu, Q.; MA, J.; WANG, J.
2016-12-01
CryoSat-2 radar altimeter data have successfully used in mapping surface elevations of ice caps and ice sheets, finding the change of surface height in polar area. The SARIn mode of Synthetic Aperture Interferometric Altimeter (SIRAL), which working similar with the traditional Interferometric Synthetic Aperture Radar (IFSAR) method, can improve the across- and along-track resolution by IFSAR processing algorithm. In this study, three L1b Baseline-C SARIn tracks over the Filchner ice shelf are used to generate the location and height of ground points in sloping glacial terrain. The elevation data is mapped and validated with IceBridge Airborne Topographic Mapper (ATM) data acquired at Nov. 2, 2012. The comparison with ATM data shows a mean difference of -1.91 m with a stand deviation of 4.04 m.
Bulk water freezing dynamics on superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.
2017-01-01
In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm < Lc < 6 mm) using carefully designed freezing experiments in a temperature-controlled, zero-humidity environment on thin water slabs. To probe the effect of surface wettability, we investigated the total time for room temperature water to completely freeze into ice on superhydrophilic ( θaapp→ 0°), hydrophilic (0° < θa < 90°), hydrophobic (90° < θa < 125°), and superhydrophobic ( θaapp→ 180°) surfaces. Our results show that at macroscopic length scales, heat conduction through the bulk water/ice layer dominates the freezing process when compared to heat conduction through the functional coatings or nanoscale gaps at the superhydrophobic substrate-water/ice interface. In order to verify our findings, and to determine when the surface structure thermal resistance approaches the water/ice resistance, we fabricated and tested the additional substrates coated with commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.
Interpretation of collapsed terrain on Mars
NASA Astrophysics Data System (ADS)
Ewa Zalewska, Natalia; Skocki, Krzysztof
2016-10-01
On the images from HiRISE camera within volcanoes and circumpolar areas there are depressions that can be explained in two ways, either by melting subsurface layer of ice or by cooling of lava which forms branch intrusion and flank craters underneath. On many pictures from Mars similar cavities are found on the slopes of Martian craters on Arsia Mons , Pavonis Mons on northern hemisphere and Alba Patera on southern hemisphere. Such cavities can be compared to a Hawaiian type volcanoes. At the top of Mauna Loa linearly arranged craters can be seen, strikingly similar to those on Arsia Mons . Basing on map ice content measured by Odyssey GRS apparatus, in this place of the volcanic cone, quite small ice content can be observed that varies in the range of 2-4% hydrogen abundance. It is therefore difficult to explain these collapses by unfreezing of subsurface ice. In an infrared spectrum of these areas there are no bands of water in the CRISM spectra, although it does not say that the water in the form of ice couldn't have been there before. In the central part of Chryse, there are series of chains depressions caused most likely by the collapse of land. These forms have been associated with an open pingo type system additionally with assisted topography of the area or tectonics and internal cracks in the rocks. These are noticed on the slopes of craters or wherever the area decline. Then flowing subsurface water or brine coming from the ice layer could while freezing accumulate and create a longitudinal hill that collapsed due to seasonal thawing forming gullies or canyons . At the end of these gullies remaining trace of the leak can be seen, as if there was a crack in the ground and liquid flew out on the surface. Cryosubsurface processes on Mars can support the hypothesis of geochemical origin of water, which separates from the magma, and its primary source comes from the protoplanetary disk. The water separated from the magma migrates up to the surface and if the temperature is below zero the water deposits as a layer of ice in the case of Mars as a subsurface layer or in the case of moons of gas giants as an eruption through the surface.
The study of fresh-water lake ice using multiplexed imaging radar
Leonard, Bryan M.; Larson, R.W.
1975-01-01
The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (< 3.0) and a low loss tangent Thus, this ice is somewhat transparent to the energy used by the imaging SLAR system. The ice types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.
Fundamental Ice Crystal Accretion Physics Studies
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan
2012-01-01
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component such as a stator blade to degrade significantly, and could damage downstream components if shed.
Fundamental Ice Crystal Accretion Physics Studies
NASA Technical Reports Server (NTRS)
Currie, Tom; Knezevici, Danny; Fuleki, Dan; Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-ching; Vargas, Mario; Wright, William
2011-01-01
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 grams per cubic meter, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 millimeters in 3 minutes. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component such as a stator blade to degrade significantly, and could damage downstream components if shed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knopf, Daniel A.; Alpert, Peter A.
Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humiditymore » (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result we term the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log 10(J het) values for the various IN types derived exclusively by T and aw, provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Finally, we demonstrate that ABIFM can be used to derive frozen fractions of droplets and ice particle production for atmospheric models of cirrus and mixed phase cloud conditions.« less
Knopf, Daniel A; Alpert, Peter A
2013-01-01
Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can be used to derive frozen fractions of droplets and ice particle production for atmospheric models of cirrus and mixed phase cloud conditions.
Knopf, Daniel A.; Alpert, Peter A.
2013-04-24
Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humiditymore » (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result we term the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log 10(J het) values for the various IN types derived exclusively by T and aw, provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Finally, we demonstrate that ABIFM can be used to derive frozen fractions of droplets and ice particle production for atmospheric models of cirrus and mixed phase cloud conditions.« less
1981-06-01
I0’ writing -up of results, and synthesis of the Bering km in surface area; the Bering Sea area is on the MIZ results with incoming results from the...application to rapid Ielting . Rev. Iho trne.ali Sea sdui ri Al ).f X, N. pi I 1975 Api I 19761 li la yer lj t ’ii.,i r wNil liet.,ii fol r1 od,% ’ir e r. S
The association of Antarctic krill Euphausia superba with the under-ice habitat.
Flores, Hauke; van Franeker, Jan Andries; Siegel, Volker; Haraldsson, Matilda; Strass, Volker; Meesters, Erik Hubert; Bathmann, Ulrich; Wolff, Willem Jan
2012-01-01
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0-2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m(-2) in summer and autumn, and 2.7 individuals m(-2) in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0-2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0-2 m layer were higher than corresponding values from the 0-200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0-200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change.
The Association of Antarctic Krill Euphausia superba with the Under-Ice Habitat
Flores, Hauke; van Franeker, Jan Andries; Siegel, Volker; Haraldsson, Matilda; Strass, Volker; Meesters, Erik Hubert; Bathmann, Ulrich; Wolff, Willem Jan
2012-01-01
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0–2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m−2 in summer and autumn, and 2.7 individuals m−2 in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0–2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0–2 m layer were higher than corresponding values from the 0–200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0–200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change. PMID:22384073
2003-04-09
The mottled surface texture and flow features observed in this NASA Mars Odyssey image suggest materials may be, or have been, mixed with ice. There is also evidence in some areas for infilling of sediments as crater rims and ridges appear covered.
NASA Astrophysics Data System (ADS)
Noh, M. J.; Howat, I. M.
2017-12-01
Glaciers and ice sheets are changing rapidly. Digital Elevation Models (DEMs) and Velocity Maps (VMs) obtained from repeat satellite imagery provide critical measurements of changes in glacier dynamics and mass balance over large, remote areas. DEMs created from stereopairs obtained during the same satellite pass through sensor re-pointing (i.e. "in-track stereo") have been most commonly used. In-track stereo has the advantage of minimizing the time separation and, thus, surface motion between image acquisitions, so that the ice surface can be assumed motionless in when collocating pixels between image pairs. Since the DEM extraction process assumes that all motion between collocated pixels is due to parallax or sensor model error, significant ice motion results in DEM quality loss or failure. In-track stereo, however, puts a greater demand on satellite tasking resources and, therefore, is much less abundant than single-scan imagery. Thus, if ice surface motion can be mitigated, the ability to extract surface elevation measurements from pairs of repeat single-scan "cross-track" imagery would greatly increase the extent and temporal resolution of ice surface change. Additionally, the ice motion measured by the DEM extraction process would itself provide a useful velocity measurement. We develop a novel algorithm for generating high-quality DEMs and VMs from cross-track image pairs without any prior information using the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm and its sensor model bias correction capabilities. Using a test suite of repeat, single-scan imagery from WorldView and QuickBird sensors collected over fast-moving outlet glaciers, we develop a method by which RPC biases between images are first calculated and removed over ice-free surfaces. Subpixel displacements over the ice are then constrained and used to correct the parallax estimate. Initial tests yield DEM results with the same quality as in-track stereo for cases where snowfall has not occurred between the two images and when the images have similar ground sample distances. The resulting velocity map also closely matches independent measurements.
SMAP Global Map of Surface Soil Moisture Aug. 25-27, 2015
2015-09-02
A three-day composite global map of surface soil moisture as retrieved from NASA SMAP radiometer instrument between Aug. 25-27, 2015. Dry areas appear yellow/orange, such as the Sahara Desert, western Australia and the western U.S. Wet areas appear blue, representing the impacts of localized storms. White areas indicate snow, ice or frozen ground. http://photojournal.jpl.nasa.gov/catalog/PIA19877
A Laboratory Study of the Effect of Frost Flowers on C Band Radar Backscatter from Sea Ice
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Martin, S.; Perovich, D. K.; Kwok, R.; Drucker, R.; Gow, A. J.
1997-01-01
C band images of Arctic sea ice taken by the ERS 1 synthetic aperture radar show transitory regions of enhanced radar backscatter from young sea ice. Published field observations associate this increase with frost flower growth and the capture of blowing snow by the flowers. To investigate the first part of this phenomenon, we carried out a laboratory experiment on the response of C band radar backscatter to frost flowers growing on the surface of newly formed saline ice. The experiment took place in a 5 m by 7 m by 1.2 m deep saline water pool located in a two-story indoor refrigerated facility at the Cold Regions Research and Engineering Laboratory. Sodium chloride ice was grown in this pool at an air temperature of -28 C. The frost flowers first appeared on the ice surface as dendrites and then changed to needles as the ice sheet grew thicker and the surface temperatures became colder. The frost flowers reached to a height of 10-15 mm, and beneath each cluster of frost flowers a slush layer formed to a thickness of approximately 4 mm. Far-field radar measurements of the backscatter from the ice were made at incident angles from 20 to 40 deg and at approximately 6-hour intervals throughout the 3-day period of the experiment. A backscatter minimum occurred early in the flower growth at the time coincident with an abrupt doubling in the ice surface salinity. Once the full flower coverage was achieved, we removed first the crystal flowers and then the slush layer from the ice surface. The results for these cases show that the crystals have little impact on the backscatter, while the underlying slush patches yield a backscatter increase of 3-5 dB over that of bare ice. The laboratory results suggest that this relative backscatter increase of approximately 5 dB can be used as an index to mark the full area coverage of frost flowers.
Radar attenuation and temperature within the Greenland Ice Sheet
MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E
2015-01-01
The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.
Potential Climatic Effects on the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Bindschadler, R. A.
1984-01-01
The Greenland Ice Sheet covers an area of 1,720,000 sq. km and contains approximately 2,600,000 cu km of ice. Most of the ice sheet receives an excess of snow accumulation over the amount of ice lost to wind, meltwater run-off or other ablative processes. The majority of mass loss occurs at the margin of the ice sheet as either surface melt, which flows into the sea or calving of icebergs from the tongues of outlet glaciers. Many estimates of these processes were published. An average of five published estimates is summarized. If these estimates are correct, then the Greenland Ice Sheet is in approximate equilibrium and contributes 490 cu km/a of fresh water to the North Atlantic and Arctic Oceans. Climate effects, ice sheet flow, and application of remote sensing to tracking of the ice sheet are discussed.
NASA Technical Reports Server (NTRS)
Casey, Kimberly A.; Polashenski, Chris M.; Chen, Justin; Tedesco, Marco
2017-01-01
We evaluate Greenland Ice Sheet (GrIS) surface reflectance and albedo trends using the newly released Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) products over the period 2001-2016. We find that the correction of MODIS sensor degradation provided in the new C6 data products reduces the magnitude of the surface reflectance and albedo decline trends obtained from previous MODIS data (i.e., Collection 5, C5). Collection 5 and 6 data product analysis over GrIS is characterized by surface (i.e., wet vs. dry) and elevation (i.e., 500-2000 m, 2000 m and greater) conditions over the summer season from 1 June to 31 August. Notably, the visible-wavelength declining reflectance trends identified in several bands of MODIS C5 data from previous studies are only slightly detected at reduced magnitude in the C6 versions over the dry snow area. Declining albedo in the wet snow and ice area remains over the MODIS record in the C6 product, albeit at a lower magnitude than obtained using C5 data. Further analyses of C6 spectral reflectance trends show both reflectance increases and decreases in select bands and regions, suggesting that several competing processes are contributing to Greenland Ice Sheet albedo change. Investigators using MODIS data for other ocean, atmosphere and/or land analyses are urged to consider similar re-examinations of trends previously established using C5 data.
Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal
NASA Astrophysics Data System (ADS)
Wagnon, Patrick; Vincent, Christian; Shea, Joseph M.; Immerzeel, Walter W.; Kraaijenbrink, Philip; Shrestha, Dibas; Soruco, Alvaro; Arnaud, Yves; Brun, Fanny; Berthier, Etienne; Futi Sherpa, Sonam
2017-04-01
Approximately 25% of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of debris-covered portions of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry, unmanned aerial vehicle (UAV) and satellite elevation models to derive the surface mass balance of the debris-covered tongue of Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is -0.93 m year-1 or -0.84 m water equivalent per year (w.e. a-1). The mean emergence velocity over this region, estimated from the total ice flux through a cross section immediately above the debris-covered zone, is +0.37mw.e. a-1. The debris-covered portion of the glacier thus has an area averaged mass balance of -1.21+/-0.2mw.e. a-1 between 5240 and 5525 m above sea level (m a.s.l.). Surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8mw.e. a-1) by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs. This finding contradicts earlier geodetic studies and should be considered for modelling the future evolution of debris-covered glaciers.
Assessment of the Dehydration-Greenhouse Feedback Over the Arctic During Winter
NASA Astrophysics Data System (ADS)
Girard, E.; Stefanof, A.; Peltier-Champigny, M.; Munoz-Alpizar, R.; Dueymes, G.; Jean-Pierre, B.
2007-12-01
The effect of pollution-derived sulphuric acid aerosols on the aerosol-cloud-radiation interactions is investigated over the Arctic for February 1990. Observations suggest that acidic aerosols can decrease the heterogeneous nucleation rate of ice crystals and lower the homogeneous freezing temperature of haze droplets. Based on these observations, we hypothesize that the cloud thermodynamic phase is modified in polluted air mass (Arctic haze). Cloud ice number concentration is reduced, thus promoting further ice crystal growth by the Bergeron-Findeisen process. Hence, ice crystals reach larger sizes and low-level ice crystal precipitation from mixed-phase clouds increases. Enhanced dehydration of the lower troposphere contributes to decrease the water vapour greenhouse effect and cool the surface. A positive feedback is created between surface cooling and air dehydration, accelerating the cold air production. This process is referred to as the dehydration-greenhouse feedback (DGF). Simulations performed using an arctic regional climate model for February 1990, February and March 1985 and 1995 are used to assess the potential effect of the DGF on the Arctic climate. Results show that the DGF has an important effect over the Central and Eurasian Arctic, which is the coldest part of the Arctic with a surface cooling ranging between 0 and -3K. Moreover, the lower tropospheric cooling over the Eurasian and Central Arctic strengthens the atmospheric circulation at upper level, thus increasing the aerosol transport from the mid-latitudes and enhancing the DGF. Over warmer areas, the increased aerosol concentration (caused by the DGF) leads to longer cloud lifetime, which contributes to warm these areas. It is also shown that the maximum ice nuclei reduction must be of the order of 100 to get a significant effect.
NASA Technical Reports Server (NTRS)
Zwally, H. Jay
2004-01-01
NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.
Pina, Pedro; Vieira, Gonçalo; Bandeira, Lourenço; Mora, Carla
2016-12-15
The ice-free areas of Maritime Antarctica show complex mosaics of surface covers, with wide patches of diverse bare soils and rock, together with various vegetation communities dominated by lichens and mosses. The microscale variability is difficult to characterize and quantify, but is essential for ground-truthing and for defining classifiers for large areas using, for example high resolution satellite imagery, or even ultra-high resolution unmanned aerial vehicle (UAV) imagery. The main objective of this paper is to verify the ability and robustness of an automated approach to discriminate the variety of surface types in digital photographs acquired at ground level in ice-free regions of Maritime Antarctica. The proposed method is based on an object-based classification procedure built in two main steps: first, on the automated delineation of homogeneous regions (the objects) of the images through the watershed transform with adequate filtering to avoid an over-segmentation, and second, on labelling each identified object with a supervised decision classifier trained with samples of representative objects of ice-free surface types (bare rock, bare soil, moss and lichen formations). The method is evaluated with images acquired in summer campaigns in Fildes and Barton peninsulas (King George Island, South Shetlands). The best performances for the datasets of the two peninsulas are achieved with a SVM classifier with overall accuracies of about 92% and kappa values around 0.89. The excellent performances allow validating the adequacy of the approach for obtaining accurate surface reference data at the complete pixel scale (sub-metric) of current very high resolution (VHR) satellite images, instead of a common single point sampling. Copyright © 2016 Elsevier B.V. All rights reserved.
SEASAT views oceans and sea ice with synthetic aperture radar
NASA Technical Reports Server (NTRS)
Fu, L. L.; Holt, B.
1982-01-01
Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.
Variability and trends in the Arctic Sea ice cover: Results from different techniques
NASA Astrophysics Data System (ADS)
Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert
2017-08-01
Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.
NASA Astrophysics Data System (ADS)
Barucci, M. A.; Fornasier, S.; Filacchione, G.; Deshapriya, J. D. P.; Raponi, A.; Tosi, F.; Feller, C.; Ciarniello, M.; Fulchignoni, M.; Sierks, H.; Capaccioni, F.:
2017-04-01
During more than two years of observations on board of Rosetta spacecraft orbiting close to the comet 67P/Churyumov-Gerasimenko, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera acquired a huge quantity of resolved images of the comet, producing the most detailed maps at the highest spatial resolution ever made of a cometary nucleus surface. Comet 67P shows a body with a dark, dehydrated surface, rich in hetereogeneous geological structures [1]. The morphologically complex surface shows color and albedo variations with local time and perihelion distance. Numerous bright spots of different size with high visible albedo and flat visible slope have been identified by OSIRIS high resolution images [2, 3, 4, 5]. The detected bright spots are mostly situated on consolidated dust free areas distributed on the two lobes of 67P in locations which stay longer in shadow, mostly concentrated at equatorial latitudes Some of them have been observed also by VIRTIS (Visible InfraRed Thermal Imaging Spectrometer) which has detected the diagnostic absorption bands of ice in at 1.5 and 2.05 μm [6, 7]. Comparing the image data with near- infrared spectra and modeling the spectra as a mixture of H2O ice and the ubiquitious "Dark Material" associated to complex organic material present on the nucleus' surface [8, 9], we were able to study at the same time the morphological, thermal and compositional properties of these areas. With this complementary study we are able to confirm the presence of H2O ice on many brighter areas distributed on the two lobes of 67P. We analysed in detail the OSIRIS images in the areas where the spots have been identified. The majority of the detected H2O ice spots are located in the vicinity of previously detected cometary outbursts source areas. We investigated all the available observations of the selected areas to evaluate the lifetime of the ice spots. Some spots are stable for several months and others show temporal changes connected to diurnal and seasonal variations. The temporal variation of these spots will be presented and discussed as well as their stability in general, well corroborated by the temperature retrieved at the surface. References: [1] Sierks H. et al. (2015) Science, 347, 1044. [2] Pommerol A. et al. (2015) A&A, 583, A25. [3] Barucci M. A. et al. (2016) A&A., 595, A102. [4] Oklay N. et al. (2016) MNRAS, in press. [5] Fornasier S. et al. (2016) Science in press, DOI : 10.1126/science.aag2671. [6] Filacchione et al. (2016) Nature, 529, 368. [7] Filacchione et al. (2016) Icarus 274, 334- 349. [8] Capaccioni F. et al. (2015) Science, 347, 0628. [9] Quirico, E. et al. (2016) Icarus, 272, 32.
Late summer and fall wave climate in the Beaufort and Chukchi Seas, 2000-2014
NASA Astrophysics Data System (ADS)
Fan, Y.; Rogers, W.; Thomson, J.; Stopa, J.
2016-02-01
Jim Thomson, Applied Physics Laboratory, University of Washington, Seattle, WA According to IPCC, "warming in the Arctic, as indicated by daily maximum and minimum temperatures, has been as great as in any other part of the world." Some regions within the Arctic have warmed even more rapidly, with Alaska and western Canada's temperature rising by 3 to 4 °C (5.40 to 7.20 °F). Arctic ice is getting thinner, melting and rupturing. The polar ice cap as a whole is shrinking. Images from NASA satellites show that the area of permanent ice cover is contracting at a rate of 9 percent each decade. If this trend continues, summers in the Arctic could become ice-free by the end of the century. Arctic storms thus have the potential to create large waves in the region. Ocean waves can also penetrate remarkable distances into ice fields and impact sea-ice thermodynamics by breaking up ice floes and accelerating ice melting during the summer (Asplin et al 2012); or influencing sea-ice growth and hence the morphology of the mature ice sheet during the winter (Lange et al 1989). Waves breaking on the shore could also affect the coastlines, where melting permafrost is already making shores more vulnerable to erosion. Preliminary wave model results from four selected years suggests that the sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. In particular, larger waves are more common in years with low or late sea ice cover. Trends in amount of wave energy impinging on the ice edge, however, are inconclusive. To better understand the potential effect of surface wave on the advance/retreat of ice edges and the coastlines. 15 years (2000 to 2014) of surface wave simulations in the Arctic Ocean using WAVEWATCH III will be conducted. Wind and ice forcing are obtained from the ERA-interim global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). Wave energy flux arriving at the ice edges and land boundaries will be analyzed and histograms and fitted Weibull probability distribution functions will used to identify similarities and differences during the 15 year period. The potential effect of surface waves on ice advance/retreat and land erosion will be explored and discussed.
NASA Iced Aerodynamics and Controls Current Research
NASA Technical Reports Server (NTRS)
Addy, Gene
2009-01-01
This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.
The surface of the ice-age Earth.
1976-03-19
In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based ice sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of pack ice and marine-based ice sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea ice. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent ice and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.
Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.
Springtime atmospheric transport controls Arctic summer sea-ice extent
NASA Astrophysics Data System (ADS)
Kapsch, Marie; Graversen, Rune; Tjernström, Michael
2013-04-01
The sea-ice extent in the Arctic has been steadily decreasing during the satellite remote sensing era, 1979 to present, with the highest rate of retreat found in September. Contributing factors causing the ice retreat are among others: changes in surface air temperature (SAT; Lindsay and Zhang, 2005), ice circulation in response to winds/pressure patterns (Overland et al., 2008) and ocean currents (Comiso et al., 2008), as well as changes in radiative fluxes (e.g. due to changes in cloud cover; Francis and Hunter, 2006; Maksimovich and Vihma, 2012) and ocean conditions. However, large interannual variability is superimposed onto the declining trend - the ice extent by the end of the summer varies by several million square kilometer between successive years (Serreze et al., 2007). But what are the processes causing the year-to-year ice variability? A comparison of years with an anomalously large September sea-ice extent (HIYs - high ice years) with years showing an anomalously small ice extent (LIYs - low ice years) reveals that the ice variability is most pronounced in the Arctic Ocean north of Siberia (which became almost entirely ice free in September of 2007 and 2012). Significant ice-concentration anomalies of up to 30% are observed for LIYs and HIYs in this area. Focusing on this area we find that the greenhouse effect associated with clouds and water-vapor in spring is crucial for the development of the sea ice during the subsequent months. In years where the end-of-summer sea-ice extent is well below normal, a significantly enhanced transport of humid air is evident during spring into the region where the ice retreat is encountered. The anomalous convergence of humidity increases the cloudiness, resulting in an enhancement of the greenhouse effect. As a result, downward longwave radiation at the surface is larger than usual. In mid May, when the ice anomaly begins to appear and the surface albedo therefore becomes anomalously low, the net shortwave radiation anomaly becomes positive. The net shortwave radiation contributes during the rest of the melting season to an enhanced energy flux towards the surface. These findings lead to the conclusion that enhanced longwave radiation associated with positive humidity and cloud anomalies during spring plays a significant role in initiating the summer ice melt, whereas shortwave-radiation anomalies act as an amplifying feedback once the melt has started. References: Lindsay, R. and J. Zhang. The thinning of Arctic Sea Ice, 19882003: Have We Passed a Tipping Point?. J. Clim. 18, 48794894 (2005). Overland, J. E., M. Wang and S. Salo. The recent Arctic warm period. Tellus 60A, 589-597 (2008). Comiso, J. C., C. L. Parkinson, R. Gersten and L. Stock. Accelerated Decline in the Arctic sea ice cover. Geophys. Res. Lett. 35, L01703 (2008). Francis, J. A. and E. Hunter. New Insight Into the Disappearing Arctic Sea Ice. EOS T. Am. Geophys. Un. 87, 509511 (2006). Maksimovich, E. and T. Vihma. The effect of heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean. J. Geophys. Res. 117, C07012 (2012). Serreze, M. C., M. M. Holland and J. Stroeve. Perspectives on the Arctic's Shrinking Sea-Ice Cover. Science 315, 1533-1536 (2007).
NASA Astrophysics Data System (ADS)
Muldoon, Gail; Jackson, Charles S.; Young, Duncan A.; Quartini, Enrica; Cavitte, Marie G. P.; Blankenship, Donald D.
2017-04-01
Information about the extent and dynamics of the West Antarctic Ice Sheet during past glaciations is preserved inside ice sheets themselves. Ice cores are capable of retrieving information about glacial history, but they are spatially sparse. Ice-penetrating radar, on the other hand, has been used to map large areas of the West Antarctic Ice Sheet and can be correlated to ice core chronologies. Englacial isochronous layers observed in ice-penetrating radar are the result of variations in ice composition, fabric, temperature and other factors. The shape of these isochronous surfaces is expected to encode information about past and present boundary conditions and ice dynamics. Dipping of englacial layers, for example, may reveal the presence of rapid ice flow through paleo ice streams or high geothermal heat flux. These layers therefore present a useful testbed for hypotheses about paleo ice sheet conditions. However, hypothesis testing requires careful consideration of the sensitivity of layer shape to the competing forces of ice sheet boundary conditions and ice dynamics over time. Controlled sensitivity tests are best completed using models, however ice sheet models generally do not have the capability of simulating layers in the presence of realistic boundary conditions. As such, modeling 3D englacial layers for comparison to observations is difficult and requires determination of a 3D ice velocity field. We present a method of post-processing simulated 3D ice sheet velocities into englacial isochronous layers using an advection scheme. We then test the sensitivity of layer geometry to uncertain boundary conditions, including heterogeneous subglacial geothermal flux and bedrock topography. By identifying areas of the ice sheet strongly influenced by boundary conditions, it may be possible to isolate the signature of paleo ice dynamics in the West Antarctic ice sheet.
NASA Astrophysics Data System (ADS)
Timmermann, Ralph; Schaffer, Janin
2016-04-01
The RTopo-1 data set of Antarctic ice sheet/shelf geometry and global ocean bathymetry has proven useful not only for modelling studies of ice-ocean interaction in the southern hemisphere. Following the spirit of this data set, we introduce a new product (RTopo-2) that contains consistent maps of global ocean bathymetry, upper and lower ice surface topographies for Greenland and Antarctica, and global surface height on a spherical grid with now 30 arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. To achieve a good representation of the fjord and shelf bathymetry around the Greenland continent, we corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Helheim Glacier assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79°N, we incorporated a high-resolution digital bathymetry model including all available multibeam survey data for the region. Radar data for ice surface and ice base topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database.
Water survey of Canada: Application for use of ERTS-A for retransmission of water resources data
NASA Technical Reports Server (NTRS)
Halliday, R. A. (Principal Investigator); Reid, I. A.
1974-01-01
The author has identified the following significant results. The fact that water resources data can be retransmitted from remote areas of Canada by polar orbiting spacecraft to users in population centers on a near real time basis reliably, accurately, and at relative low cost continues to be demonstrated. Over 60,000 transmissions from the nine data collection platforms installed at Water Survey of Canada gauging stations have been received. The stage and ice-out data retransmitted via ERTS-1 have been plotted on a chart record produced by a water stage servo-manometer installed on the Albany River. The stage increased smoothly until shortly after noon on May 19, 1974. During this time the indicator showed that the ice surface was intact. The stage then dropped sharply and the indicator read that the ice was out. The erratic chart trace after that was consistent with the assumption that the ice surface had broken up and that some short duration jams of broken ice were occurring.
NASA Astrophysics Data System (ADS)
Tanaka, Mio; Morita, Katsuaki; Kimura, Shigeo; Sakaue, Hirotaka
2012-11-01
Icing occurs by a collision of a supercooled-water droplet on a surface. It can be seen in any cold area. A great attention is paid in an aircraft icing. To understand the icing process on an aircraft, it is necessary to give the temperature information of the supercooled water. A conventional technique, such as a thermocouple, is not valid, because it becomes a collision surface that accumulates ice. We introduce a dual-luminescent imaging to capture a global temperature distribution of supercooled water under the icing conditions. It consists of two-color luminescent probes and a multi-band filter. One of the probes is sensitive to the temperature and the other is independent of the temperature. The latter is used to cancel the temperature-independent luminescence of a temperature-dependent image caused by an uneven illumination and a camera location. The multi-band filter only selects the luminescent peaks of the probes to enhance the temperature sensitivity of the imaging system. By applying the system, the time-resolved temperature information of a supercooled-water droplet is captured.
NASA Astrophysics Data System (ADS)
Bao, Luyao; Huang, Zhaoyuan; Priezjev, Nikolai V.; Chen, Shaoqiang; Luo, Kai; Hu, Haibao
2018-04-01
It is well recognized that excessive ice accumulation at low-temperature conditions can cause significant damage to civil infrastructure. The passive anti-icing surfaces provide a promising solution to suppress ice nucleation and enhance ice removal. However, despite extensive efforts, it remains a challenge to design anti-icing surfaces with low ice adhesion. Using all-atom molecular dynamics (MD) simulations, we show that surfaces with single-walled carbon nanotube array (CNTA) significantly reduce ice adhesion due to the extremely low solid areal fraction. It was found that the CNTA surface exhibits up to a 45% decrease in the ice adhesion strength in comparison with the atomically smooth graphene surface. The details of the ice detachment from the CNTA surface were examined for different water-carbon interaction energies and temperatures of the ice cube. Remarkably, the results of MD simulations demonstrate that the ice detaching strength depends linearly on the ratio of the ice-surface interaction energy and the ice temperature. These results open the possibility for designing novel robust surfaces with low ice adhesion for passive anti-icing applications.
Mapping the northern plains of Mars: origins, evolution and response to climate change
NASA Astrophysics Data System (ADS)
Balme, Matthew; Conway, Susan; Costard, François; Gallagher, Colman; van Gasselt, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Séjourné, Antoine; Skinner, James; Swirad, Zuzanna
2014-05-01
An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material near, beneath, or at the surface. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The northern plains comprise three linked zones: Acidalia Planitia, Utopia Planitia and Arcadia Planitia. Each region consists of a shallow basin, with the three areas are separated by low topographic divides. Our aim is to study the ice-related geomorphology of each region in order to understand the origins, evolution and response to climate change of ice on Mars. In particular, by comparing and contrasting the three separate basins we hope to determine if the processes that created the ice-related terrains are regional (perhaps basin limited) or global in scope, and whether the differing geology of each basin has an effect on the ice-related features observed there. The ISSI team is using planetary geomorphological mapping to meet this aim. Three long strips, each about 250 km wide and spanning the ~30N to ~80N latitude range have been defined and sub-teams are each mapping a single area. The group contains experts in mapping, GIS and crater counting (details in the size-frequency distribution of impact craters on a planetary surface can reveal information about when terrains were emplaced, modified, eroded or exhumed). The first meeting of this group was held in December 2013. Here, we give an overview of the science aims of the project, describe the main difference between the three strips and report on mapping work done so far.
Europa: Sea Salts or Battery Acid
2000-04-19
This composite image of the Jupiter-facing hemisphere of Europa was obtained on Nov. 25, 1999 by NASA Galileo spacecraft. Blue areas show cleanest, brightest icy surfaces, while the red areas have the highest concentrations of darker, non-ice materials.
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.
2011-01-01
The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.
Depth-to-Ice Map of an Arctic Site on Mars
NASA Technical Reports Server (NTRS)
2007-01-01
Color coding in this map of a far-northern site on Mars indicates the change in nighttime ground-surface temperature between summer and fall. This site, like most of high-latitude Mars, has water ice mixed with soil near the surface. The ice is probably in a rock-hard frozen layer beneath a few centimeters or inches of looser, dry soil. The amount of temperature change at the surface likely corresponds to how close to the surface the icy material lies. The dense, icy layer retains heat better than the looser soil above it, so where the icy layer is closer to the surface, the surface temperature changes more slowly than where the icy layer is buried deeper. On the map, areas of the surface that cooled more slowly between summer and autumn (interpreted as having the ice closer to the surface) are coded blue and green. Areas that cooled more quickly (interpreted as having more distance to the ice) are coded red and yellow. The depth to the top of the icy layer estimated from these observations, as little as 5 centimeters (2 inches), matches modeling of where it would be if Mars has an active cycle of water being exchanged by diffusion between atmospheric water vapor and subsurface water ice. This map and its interpretation are in a May 3, 2007, report in the journal Nature by Joshua Bandfield of Arizona State University, Tempe. The Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter collected the data presented in the map. The site is centered near 67.5 degrees north latitude, 132 degrees east longitude, in the Martian arctic plains called Vastitas Borealis. It was formerly a candidate landing site for NASA's Phoenix Mars Lander mission. This site is within the portion of the planet where, in 2002, the Gamma Ray Spectrometer suite of instruments on Mars Odyssey found evidence for water ice lying just below the surface. The information from the Gamma Ray Spectrometer is averaged over patches of ground hundreds of kilometers or miles wide. The information from the Thermal Emission Imaging System allows more than 100-fold higher resolution in mapping variations in the depth to ice. The Thermal Emission Imaging System observed the site in infrared wavelengths during night time, providing surface-temperature information, once on March 13, 2005, during summer in Mars' northern hemisphere, and again on April 8, 2005, during autumn there. The colors on this map signify relative differences in how much the surface temperature changed between those two observations. Blue indicates the locations with the least change. Red indicates areas with most change. Modeling provides estimates that the range of temperature changes shown in this map corresponds to a range in depth-to-ice of 5 centimeters (2 inches) to more than 18 centimeters (more than 7 inches). The sensitivity of this method for estimating the depth is not good for depths greater than about 20 centimeters (8 inches). The temperature-change data are overlaid on a mosaic of black-and-white, daytime images taken in visible-light wavelengths by the same camera, providing information about shapes in the landscape. The 10-kilometer scale bar is 6.2 miles long. NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Science Mission Directorate, Washington, D.C. The Thermal Emission Imaging System was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Space Systems, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow
NASA Astrophysics Data System (ADS)
Tatar, V.; Yildizay, H.; Aras, H.
2015-05-01
One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.
Using Ice Nucleating Particles to Enable Desublimation on Chilled Substrates
NASA Astrophysics Data System (ADS)
O'Brien, Julia; Failor, Kevin; Bisbano, Caitlin; Mulroe, Megan; Nath, Saurabh; Vinatzer, Boris; Boreyko, Jonathan
2017-11-01
On a subfreezing surface, nucleating embryos usually form as supercooled condensate that later freeze into ice, as opposed to desublimation. Ice nucleating particles (INPs) have been widely used to freeze existing water; however, nobody has studied how they might affect the initial mode of nucleation. Here, we show that INPs deposited on a substrate can switch the mode of embryo nucleation to desublimation, rather than supercooled condensation. Deposition was achieved by evaporating a water droplet containing INPs on a hydrophobic silicon wafer. A Peltier stage was used to cool the wafer down inside of a controlled humidity chamber, such that the desired set point temperature correlated with the dew point and onset of nucleation. Beneath a critical surface temperature, microscopy indicated that desublimation occurred on the circular patch of deposited INPs, compared to supercooled condensation outside the circle. The hydrophobic surface was then patterned with hydrophilic stripe arrays, which facilitated the deposition of stripes of INPs via the same evaporation method. The resulting array of desublimating ice stripes created dry zones free of condensation or frost in the intermediate areas, as the hygroscopic ice stripes served as overlapping humidity sinks.
IGLOO: an Intermediate Complexity Framework to Simulate Greenland Ice-Ocean Interactions
NASA Astrophysics Data System (ADS)
Perrette, M.; Calov, R.; Beckmann, J.; Alexander, D.; Beyer, S.; Ganopolski, A.
2017-12-01
The Greenland ice-sheet is a major contributor to current and future sea level rise associated to climate warming. It is widely believed that over a century time scale, surface melting is the main driver of Greenland ice volume change, in contrast to melting by the ocean. It is due to relatively warmer air and less ice area exposed to melting by ocean water compared to Antarctica, its southern, larger twin. Yet most modeling studies do not have adequate grid resolution to represent fine-scale outlet glaciers and fjords at the margin of the ice sheet, where ice-ocean interaction occurs, and must use rather crude parameterizations to represent this process. Additionally, the ice-sheet area grounded below sea level has been reassessed upwards in the most recent estimates of bedrock elevation under the Greenland ice sheet, revealing a larger potential for marine-mediated melting than previously thought. In this work, we develop an original approach to estimate potential Greenland ice sheet contribution to sea level rise from ocean melting, in an intermediate complexity framework, IGLOO. We use a medium-resolution (5km) ice-sheet model coupled interactively to a number of 1-D flowline models for the individual outlet glaciers. We propose a semi-objective methodology to derive 1-D glacier geometries from 2-D Greenland datasets, as well as preliminary results of coupled ice-sheet-glaciers simulations with IGLOO.
NASA Astrophysics Data System (ADS)
Csatho, B. M.; Schenk, A.; Nagarajan, S.; Babonis, G. S.
2010-12-01
Investigations of ice sheet mass balance and the changing dynamics of outlet glaciers have been hampered by the lack of comprehensive data. In recent years, this situation has been remedied. Satellite laser altimetry data from the Ice Cloud and land Elevation Satellite mission (ICESat), combined with airborne laser altimetry, provide accurate measurements of surface elevation changes, and surface velocities derived from various satellite platforms yield crucial information on changing glacier dynamics. Taken together, a rich and diverse data set is emerging that allows for characterizing the spatial and temporal evolution of ice sheets and outlet glaciers. In particular, it enables quantitative studies of outlet glaciers undergoing rapid and complex changes. Although airborne and laser altimetry have been providing precise measurements of ice sheet topography since the early 1990s, determining detailed and accurate spatial and temporal distribution of surface changes remains a challenging problem. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which estimates surface changes by a simultaneous reconstruction of surface topography from fused multisensor data. The mathematical model is based on the assumption that for a small surface area, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs contribute to the shape parameters; points of each time period determine the absolute elevation of the surface patch at that period. This method provides high-resolution surface topography, precise changes and a rigorous error estimate of the quantities. By using SERAC we combined ICESat and ATM laser altimetry data to determine the evolution of surface change rates of the whole Greenland Ice Sheet between 2003 and 2009 on a high-resolution grid. Our reconstruction, consistent with GRACE results, shows ice sheet thinning propagating along the NW coast, and thinning expanding to higher elevations in SW and N Greenland. Several outlet glaciers, for example Humboldt and Petermann glaciers in NW Greenland and Kangilerngata Sermia in W Greenland exhibit a complex spatial and temporal pattern of thickening-thinning with regions of thickening observed at lower elevations. We will examine the thickening and thinning history and the record of surface velocity of these glaciers to investigate the processes responsible for initiating and sustaining these changes. Moreover, by analyzing the detailed surface elevation change history along flowlines or across drainage basins, the propagation of thinning following perturbations at the glacier terminus can be investigated. Results, depicting the evolution of surface elevation changes of three major outlet glaciers, Jakobshavn, Helheim and Kangerlussuaq glaciers, will be shown.
Kim, Intae; Hahm, Doshik; Park, Keyhong; Lee, Youngju; Choi, Jung-Ok; Zhang, Miming; Chen, Liqi; Kim, Hyun-Cheol; Lee, SangHoon
2017-04-15
We investigated horizontal and vertical distributions of DMS in the upper water column of the Amundsen Sea Polynya and Pine Island Polynya during the austral summer (January-February) of 2016 using a membrane inlet mass spectrometer (MIMS) onboard the Korean icebreaker R/V Araon. The surface water concentrations of DMS varied from <1 to 400nM. The highest DMS (up to 300nM) were observed in sea ice-polynya transition zones and near the Getz ice shelf, where both the first local ice melting and high plankton productivity were observed. In other regions, high DMS concentration was generally accompanied by higher chlorophyll and ΔO 2 /Ar. The large spatial variability of DMS and primary productivity in the surface water of the Amundsen Sea seems to be attributed to melting conditions of sea ice, relative dominance of Phaeocystis Antarctica as a DMS producer, and timing differences between bloom and subsequent DMS productions. The depth profiles of DMS and ΔO 2 /Ar were consistent with the horizontal surface data, showing noticeable spatial variability. However, despite the large spatial variability, in contrast to the previous results from 2009, DMS concentrations and ΔO 2 /Ar in the surface water were indistinct between the two major domains: the sea ice zone and polynya region. The discrepancy may be associated with inter-annual variations of phytoplankton assemblages superimposed on differences in sea-ice conditions, blooming period, and spatial coverage along the vast surface area of the Amundsen Sea. Copyright © 2017 Elsevier B.V. All rights reserved.
Ice-sheet contributions to future sea-level change.
Gregory, J M; Huybrechts, P
2006-07-15
Accurate simulation of ice-sheet surface mass balance requires higher spatial resolution than is afforded by typical atmosphere-ocean general circulation models (AOGCMs), owing, in particular, to the need to resolve the narrow and steep margins where the majority of precipitation and ablation occurs. We have developed a method for calculating mass-balance changes by combining ice-sheet average time-series from AOGCM projections for future centuries, both with information from high-resolution climate models run for short periods and with a 20km ice-sheet mass-balance model. Antarctica contributes negatively to sea level on account of increased accumulation, while Greenland contributes positively because ablation increases more rapidly. The uncertainty in the results is about 20% for Antarctica and 35% for Greenland. Changes in ice-sheet topography and dynamics are not included, but we discuss their possible effects. For an annual- and area-average warming exceeding 4.5+/-0.9K in Greenland and 3.1+/-0.8K in the global average, the net surface mass balance of the Greenland ice sheet becomes negative, in which case it is likely that the ice sheet would eventually be eliminated, raising global-average sea level by 7m.
Kanji, Z A; Abbatt, J P D
2010-01-21
The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC) was used to study ice formation onto monodisperse Arizona Test Dust (ATD) particles. The onset relative humidity with respect to ice (RH(i)) was measured as a function of temperature in the range 251-223 K for 100 nm ATD particles. It was found that for 0.1% of the particles to freeze, water saturation was required at all temperatures except 223 K where particles activated at RH(i) below water saturation. At this temperature, where deposition mode freezing is occurring, we find that the larger the particle size, the lower the onset RH(i). We also demonstrate that the total number of particles present may influence the onset RH(i) observed. The surface area for ice activation, aerosol size, and temperature must all be considered when reporting onset values of ice formation onto ATD mineral dust particles. In addition, we calculate nucleation rates and contact angles of ice germs with ATD aerosols which indicate that there exists a range of active sites on the surface with different efficiencies for activating ice formation.
SIZE AND SURFACE AREA OF ICY DUST AGGREGATES AFTER A HEATING EVENT AT A PROTOPLANETARY NEBULA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirono, Sin-iti
2013-03-01
The activity of a young star rises abruptly during an FU Orionis outburst. This event causes a temporary temperature increase in the protoplanetary nebula. H{sub 2}O icy grains are sublimated by this event, and silicate cores embedded inside the ice are ejected. During the high-temperature phase, the silicate grains coagulate to form silicate core aggregates. After the heating event, the temperature drops, and the ice recondenses onto the aggregates. I determined numerically the size distribution of the ice-covered aggregates. The size of the aggregates exceeds 10 {mu}m around the snow line. Because of the migration of the ice to largemore » aggregates, only a small fraction of the silicate core aggregate is covered with H{sub 2}O ice. After the heating event, the surface of an ice-covered aggregate is totally covered by silicate core aggregates. This might reduce the fragmentation velocity of aggregates when they collide. It is possible that the covering silicate cores shield the UV radiation field which induces photodissociation of H{sub 2}O ice. This effect may cause the shortage of cold H{sub 2}O vapor observed by Herschel.« less
Coastal-change and glaciological map of the Ross Island area, Antarctica
Ferrigno, Jane G.; Foley, Kevin M.; Swithinbank, Charles; Williams, Richard S.
2010-01-01
Reduction in the area and volume of Earth?s two polar ice sheets is intricately linked to changes in global climate and to the resulting rise in sea level. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council. On the basis of these recommendations, the U.S. Geological Survey used its archive of satellite images to document changes in the cryospheric coastline of Antarctica and analyze the glaciological features of the coastal regions. The Ross Island area map is bounded by long 141? E. and 175? E. and by lat 76? S. and 81? S. The map covers the part of southern Victoria Land that includes the northwestern Ross Ice Shelf, the McMurdo Ice Shelf, part of the polar plateau and Transantarctic Mountains, the McMurdo Dry Valleys, northernmost Shackleton Coast, Hillary Coast, the southern part of Scott Coast, and Ross Island. Little noticeable change has occurred in the ice fronts on the map, so the focus is on glaciological features. In the western part of the map area, the polar plateau of East Antarctica, once thought to be a featureless region, has subtle wavelike surface forms (megadunes) and flow traces of glaciers that originate far inland and extend to the coast or into the Ross Ice Shelf. There are numerous outlet glaciers. Glaciers drain into the McMurdo Dry Valleys, through the Transantarctic Mountains into the Ross Sea, or into the Ross Ice Shelf. Byrd Glacier is the largest. West of the Transantarctic Mountains are areas of blue ice, readily identifiable on Landsat images, that have been determined to be prime areas for finding meteorites. Three subglacial lakes have been identified in the map area. Because McMurdo Station, the main U.S. scientific research station in Antarctica, is located on Ross Island in the map area, many of these and other features in the area have been studied extensively. The paper version of this map is available for purchase from the USGS Store.
Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2
NASA Astrophysics Data System (ADS)
Lee, S.; Im, J.; Kim, J. W.; Kim, M.; Shin, M.
2014-12-01
Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation. Sea ice extent has constantly declined since 1980s. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) in April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness between 2011 and 2014 were estimated using CryoSat-2 SAR and SARIn mode data that have sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard, i.e., elevation difference between the top of sea ice surface should be calculated. Freeboard can be estimated through detecting leads. We proposed a novel lead detection approach. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, stack standard deviation, skewness and kurtosis were examined to distinguish leads from sea ice. Near-real time cloud-free MODIS images corresponding to CryoSat-2 data measured were used to visually identify leads. Rule-based machine learning approaches such as See5.0 and random forest were used to identify leads. The proposed lead detection approach better distinguished leads from sea ice than the existing approaches. With the freeboard height calculated using the lead detection approach, sea ice thickness was finally estimated using the Archimedes' buoyancy principle. The estimated sea ice freeboard and thickness were validated using ESA airborne Ku-band interferometric radar and Airborne Electromagnetic (AEM) data.
Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.
2013-01-01
Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for <1%. Identification of smaller landscape features such as beaded stream pools may be important because of their distribution and role in connecting other water bodies on the landscape. These findings advance techniques for detecting and knowledge associated with potential winter habitat distribution for fish and invertebrates at the local scale in a region of the Arctic with increasing stressors related to climate and land use change.
NASA Astrophysics Data System (ADS)
Caissie, B.; Brigham-Grette, J.; Kanamaru-Shinn, K.
2010-12-01
Recent environmental change in the Bering Sea includes a shift from the negative to positive phase of the Pacific Decadal Oscillation in 1976/77, a secondary shift in sea level pressure and sea surface temperatures in 1998, increasing sea surface temperatures, an earlier spring, an increase in the number of days that sea ice is present along the shelf-slope break, and a decrease in the number of days that sea ice is present in the Chukchi Sea and Arctic Ocean. These physical changes have manifest biological changes such as a northward migration of invertebrates and fish from the southern Bering Sea and shifts in the timing and duration of sea-ice related primary productivity and the spring bloom. We aim to see if diatom sediment assemblages are faithful recorders of these ecological changes in the Bering Sea or if bioturbation has essentially mixed today’s rapid change down core such that the signal is either muted or no longer apparent. Six continental shelf areas were examined in the Bering Sea ranging from northeast of St. Lawrence Island to the shelf-slope break in the south-central Bering Sea. Diatom assemblages from core tops collected as part of the PROBES program in the 1960s were compared to core tops taken nearby (<40 km away) in 2006 and 2007. Additionally, diatom assemblages, magnetic susceptibility, and grain size were examined in 3 short cores (<20 cm long) from the study area. In general, the diatom assemblages remain relatively stable over the past 50 years and in some cases the variability between sites in the same area is greater than the variability over the past 50 years. However, there are several apparent changes that may reflect changing ice conditions and the related sea-ice bloom. In general, cores collected in the 1960s have a greater relative percentage of Thalassiosira antarctica resting spores than their counterparts from 2006 and 2007. T. antarctica spores are often associated with thick (>7 m) multi-year ice so their decline may be related to the decrease in multi-year ice over the past 30 years. Additionally, in most cases, species diversity has declined over the past 50 years with Fragilariopsis oceanica and Fragilariopsis cylindrus accounting for a greater percentage of the sediment assemblages today. These two species are collectively considered indicators of seasonal sea ice; their relative abundance peaks when ice is present for 5 months per year. Ongoing down core analyses in these six areas will further reveal the nature of these assemblage changes.
NASA Astrophysics Data System (ADS)
Falk, U.; Sala, H.; Braun, M.
2012-12-01
The Antarctic Peninsula is amongst the fastest warming places on Earth and further temperature increase is to be expected. It has undergone rapid environmental changes in the past decades. Exceptional rates of surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, surface lowering and rapid retreat of glaciers, break-up and disintegration of ice shelves. The South Shetland Islands are located on the northern tip of the Antarctic Peninsula and are especially vulnerable to climate change due to their maritime climate. For King George Island we have compiled a unique data set comprising direct measurements of evaporation and sensible heat flux by eddy covariance on the Warszawa Icefield over 1.5 years from November 2010 to 2012 in combination with a fully equipped automated weather station measuring long- and short-wave radiation components, profiles of temperature, humidity and wind velocities as well as glacier ice temperatures. The combination with the eddy covariance data allows for analysis of variability and seasonality of surface energy balance components on a glacier for one and a half years. Repeat measurements of snow accumulation and surface lowering along transects on the glacier and at different locations on King George Island are used for analysis of multi-sensor satellite data to identify melt patterns and bare ice areas during summer within the source area of the ground measurements. In combination with long-term time series of weather data, these data give indication of the sensitivity of the ice cap to the ongoing changes. This research is part of the ESF project IMCOAST funded by BMBF. Field work was carried out at the Dallmann laboratory (Carlini station, King George Island/Isla 25 de Mayo) in cooperation of the Instituto Antartico Argentino (Argentina) and the Alfred-Wegener Institute of Marine and Polar Research (Germany).
NASA Astrophysics Data System (ADS)
Dunse, T.; Greve, R.; Schuler, T.; Hagen, J. M.; Navarro, F.; Vasilenko, E.; Reijmer, C.
2009-12-01
The Austfonna ice cap covers an area of 8120 km2 and is by far the largest glacier on Svalbard. Almost 30% of the entire area is grounded below sea-level, while the figure is as large as 57% for the known surge-type basins in particular. Marine ice dynamics, as well as flow instabilities presumably control flow regime, form and evolution of Austfonna. These issues are our focus in numerical simulations of the ice cap. We employ the thermodynamic, large-scale ice sheet model SICOPOLIS (http://sicopolis.greveweb.net/) which is based on the shallow-ice approximation. We present improved parameterizations of (a) the marine extent and calving and (b) processes that may initiate flow instabilities such as switches from cold to temperate basal conditions, surface steepening and hence, increases in driving stress, enhanced sliding or deformation of unconsolidated marine sediments and diminishing ice thicknesses towards flotation thickness. Space-borne interferometric snapshots of Austfonna revealed a velocity structure of a slow moving polar ice cap (< 10m/a) interrupted by distinct fast flow units with velocities in excess of 100m/a. However, observations of flow variability are scarce. In spring 2008, we established a series of stakes along the centrelines of two fast-flowing units. Repeated DGPS and continuous GPS measurements of the stake positions give insight in the temporal flow variability of these units and provide constrains to the modeled surface velocity field. Austfonna’s thermal structure is described as polythermal. However, direct measurements of the temperature distribution is available only from one single borehole at the summit area. The vertical temperature profile shows that the bulk of the 567m thick ice column is cold, only underlain by a thin temperate basal layer of approximately 20m. To acquire a spatially extended picture of the thermal structure (and bed topography), we used low-frequency (20 MHz) GPR profiling across the ice cap and the particular flow units. The measurements indicate that the gross volume of Austfonna is cold. This observation is supported by model results which suggest that regional fast flow occurs despite the lack of considerable temperate-ice volumes. This in turn indicates that fast flow is accomplished exclusively by basal motion in regions where the glacier base is at pressure-melting conditions, and not by enhanced deformation of considerable volumes of temperate ice.
January 2016 extensive summer melt in West Antarctica favoured by strong El Niño
Nicolas, Julien P.; Vogelmann, Andrew M.; Scott, Ryan C.; ...
2017-06-15
Over the past two decades the primary driver of mass loss from the West Antarctic Ice Sheet (WAIS) has been warm ocean water underneath coastal ice shelves, not a warmer atmosphere. Yet, surface melt occurs sporadically over low-lying areas of the WAIS and is not fully understood. Here we report on an episode of extensive and prolonged surface melting observed in the Ross Sea sector of the WAIS in January 2016. A comprehensive cloud and radiation experiment at the WAIS ice divide, downwind of the melt region, provided detailed insight into the physical processes at play during the event. Themore » unusual extent and duration of the melting are linked to strong and sustained advection of warm marine air toward the area, likely favoured by the concurrent strong El Niño event. Finally, the increase in the number of extreme El Niño events projected for the twenty-first century could expose the WAIS to more frequent major melt events.« less
January 2016 extensive summer melt in West Antarctica favoured by strong El Niño
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolas, Julien P.; Vogelmann, Andrew M.; Scott, Ryan C.
Over the past two decades the primary driver of mass loss from the West Antarctic Ice Sheet (WAIS) has been warm ocean water underneath coastal ice shelves, not a warmer atmosphere. Yet, surface melt occurs sporadically over low-lying areas of the WAIS and is not fully understood. Here we report on an episode of extensive and prolonged surface melting observed in the Ross Sea sector of the WAIS in January 2016. A comprehensive cloud and radiation experiment at the WAIS ice divide, downwind of the melt region, provided detailed insight into the physical processes at play during the event. Themore » unusual extent and duration of the melting are linked to strong and sustained advection of warm marine air toward the area, likely favoured by the concurrent strong El Niño event. Finally, the increase in the number of extreme El Niño events projected for the twenty-first century could expose the WAIS to more frequent major melt events.« less
January 2016 extensive summer melt in West Antarctica favoured by strong El Niño
NASA Astrophysics Data System (ADS)
Nicolas, Julien P.; Vogelmann, Andrew M.; Scott, Ryan C.; Wilson, Aaron B.; Cadeddu, Maria P.; Bromwich, David H.; Verlinde, Johannes; Lubin, Dan; Russell, Lynn M.; Jenkinson, Colin; Powers, Heath H.; Ryczek, Maciej; Stone, Gregory; Wille, Jonathan D.
2017-06-01
Over the past two decades the primary driver of mass loss from the West Antarctic Ice Sheet (WAIS) has been warm ocean water underneath coastal ice shelves, not a warmer atmosphere. Yet, surface melt occurs sporadically over low-lying areas of the WAIS and is not fully understood. Here we report on an episode of extensive and prolonged surface melting observed in the Ross Sea sector of the WAIS in January 2016. A comprehensive cloud and radiation experiment at the WAIS ice divide, downwind of the melt region, provided detailed insight into the physical processes at play during the event. The unusual extent and duration of the melting are linked to strong and sustained advection of warm marine air toward the area, likely favoured by the concurrent strong El Niño event. The increase in the number of extreme El Niño events projected for the twenty-first century could expose the WAIS to more frequent major melt events.
Growing Crack in Antarctica Larsen C Ice Shelf Spotted by NASA MISR
2016-08-31
Project MIDAS, a United Kingdom-based group that studies the Larsen Ice Shelf in Antarctica, reported Aug. 18, 2016, that a large crack in the Larsen C shelf has grown by another 13 miles (22 kilometers) in the past six months. The crack is now more than 80 miles (130 kilometers) long. Larsen C is the fourth largest ice shelf in Antarctica, with an area of about 19,300 square miles (50,000 square kilometers), greater than the size of Maryland. Computer modeling by Project MIDAS predicts that the crack will continue to grow and eventually cause between nine and twelve percent of the ice shelf to collapse, resulting in the loss of 2,300 square miles (6,000 square kilometers) of ice -- more than the area of Delaware. This follows the collapse of the Larsen B shelf in 2002 and the Larsen A shelf in 1995, which removed about 1,255 square miles (3,250 square kilometers) and 580 square miles (1,500 square kilometers) of ice, respectively. The Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite flew over Larsen C on Aug. 22, 2016. The MISR instrument views Earth with nine cameras pointed at different angles, which provides information about the texture of the surface. On the left is a natural-color image of the shelf from MISR's vertical-viewing camera. Antarctica is slowly emerging from its polar night, and the low light gives the scene a bluish tint. The Larsen C shelf is on the left, while thinner sea ice is present on the right. A variety of cracks are visible in the Larsen C shelf, all appearing roughly the same. The image is about 130 by 135 miles (210 by 220 kilometers) in size. On the right is a composite image made by combining data from MISR's 46-degree backward-pointing camera (plotted as blue), the vertical-pointing camera (plotted as green), and the 46-degree forward-pointing camera (plotted as red). This has the effect of highlighting surface roughness; smooth surfaces appear as blue-purple, while rough surfaces appear as orange. Clouds near the upper left appear multi-hued because their elevation above the surface causes the different angular views to be slightly displaced. In this composite, the difference between the rough sea ice and the smoother ice shelf is immediately apparent. An examination of the cracks in the ice shelf shows that the large crack Project MIDAS is tracking (indicated by an arrow) is orange in color, demonstrating that it is actively growing. These data were acquired during Terra orbit 88717 http://photojournal.jpl.nasa.gov/catalog/PIA20894
NASA Astrophysics Data System (ADS)
Divine, D. V.; Granskog, M. A.; Hudson, S. R.; Pedersen, C. A.; Karlsen, T. I.; Divina, S. A.; Gerland, S.
2014-07-01
The paper presents a case study of the regional (≈ 150 km) broadband albedo of first year Arctic sea ice in advanced stages of melt, estimated from a combination of in situ albedo measurements and aerial imagery. The data were collected during the eight day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic north of Svalbard at 82.3° N from 26 July to 3 August 2012. The study uses in situ albedo measurements representative of the four main surface types: bare ice, dark melt ponds, bright melt ponds and open water. Images acquired by a helicopter borne camera system during ice survey flights covered about 28 km2. A subset of > 8000 images from the area of homogeneous melt with open water fraction of ≈ 0.11 and melt pond coverage of ≈ 0.25 used in the upscaling yielded a regional albedo estimate of 0.40 (0.38; 0.42). The 95% confidence interval on the estimate was derived using the moving block bootstrap approach applied to sequences of classified sea ice images and albedo of the four surface types treated as random variables. Uncertainty in the mean estimates of surface type albedo from in situ measurements contributed some 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea ice cover. The results of the study are of relevance for the modeling of sea ice processes in climate simulations. It particularly concerns the period of summer melt, when the optical properties of sea ice undergo substantial changes, which existing sea ice models have significant diffuculty accurately reproducing.
Calving fluxes and basal melt rates of Antarctic ice shelves.
Depoorter, M A; Bamber, J L; Griggs, J A; Lenaerts, J T M; Ligtenberg, S R M; van den Broeke, M R; Moholdt, G
2013-10-03
Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-shelf base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing.
NASA Technical Reports Server (NTRS)
1977-01-01
NASA aircraft-icing research has been applied to expand the utility of the big flying-crane helicopter built by the Sikorsky Aircraft Division of United Technologies in Stratford, Conn. Sikorsky wanted to adapt the Skycrane, used in both military and commercial service, to lift heavy external loads in areas where icing conditions occur; ice build-up around the engine air inlets caused the major problem. NASA-Lewis has a special wind tunnel for injecting super cooled water droplets into the wind thereby simulating a natural icing cloud and observing how ice builds up on various shaped surfaces. From Lewis, Sikorsky engineers obtained information which optimized the design of the inlet anti-ice system. The resulting design proved to be an effective anti-icing modification for the flying crane. Sikorsky is also using additional Lewis Icing Research Tunnel data in its development of a new VTOL (Vertical Take-Off and Landing) aircraft.
NASA Astrophysics Data System (ADS)
Williams, N. R.; Hibbard, S. M.; Golombek, M. P.
2017-12-01
The plains of Arcadia Planitia on Mars at 40°N and 200°E straddle the southern boundary of a latitude-dependent mantle (LDM) of shallow water-ice that holds key records for the planet's climate. Ice is not stable at mid-latitude surfaces today, but is expected to have precipitated in the past during different obliquities and climatic conditions with remnant excess ice preserved in the subsurface under a veneer of soil partially isolating it from the atmosphere. Previous work has documented evidence for substantial ice in Arcadia using gamma ray spectrometry; ground-penetrating radar reflections and dielectric constants; and surface morphologies of lobate debris aprons, expanded secondary craters, terraced craters, and surface polygons. New high-resolution orbital images have been acquired that resolve meter-scale ice-related morphologies. In particular, Arcadia exhibits widespread polygonal patterned ground created by cryoturbation, and large areas of crenulated "brain coral" terrain for which the sinuous troughs have already undergone sublimation while the sinuous ridges are still ice-rich. We examined over 200 High Resolution Imaging Science Experiment (HiRISE) 25 cm/pixel images that resolve these morphologies indicating a complex transition of progressive ice loss at the edge of the LDM. HiRISE coverage is sparse across Arcadia; however, 6 m/pixel Context Camera (CTX) image coverage is nearly complete and fills in the gaps for terrain units with distinct textures. We find that crenulated terrain is restricted to a narrow latitude band at 38°N-43°N. Isolated shallow pits also occur northward of 40°N, and in many cases interconnect to form crenulations as part of a transitional morphologic continuum. Polygonal surface morphologies are ubiquitous farther north, but become increasingly sparse and more degraded farther south. These pits, crenulations, and polygons are sensitive to ice at depths of centimeters to a few meters, which could be easily accessible for future in-situ resource utilization. The latitude band of 38°N-43°N where these fine-scale morphologies occur represents the southern edge of the LDM where significant remnant ice is stored in the shallow subsurface.
Enhanced Heterogeneous Nitrates Photolysis on Ice and Potential Impacts on NOx Emissions
NASA Astrophysics Data System (ADS)
Ayotte, P.; Marcotte, G.; Pronovost, S.; Marchand, P.; Laffon, C.; Parent, P.
2015-12-01
Nitrates photolysis plays a key role in the chemistry of the polar boundary layer and of the lower troposphere over snow-covered areas (1). Using a combination of vibrational (2) and photo-absorption spectroscopies (3), we show that nitric acid is mostly dissociated upon its adsorption onto, and its dissolution within ice at temperatures as low 20K. Using amorphous solid water as a model substrate for the disordered surface layer at the interstitial air-ice interface, UV irradiation in the environmentally relevant n-π* transition uncovers the fact that the photolysis rates are significantly higher for surface-bound nitrates compared to those dissolved within the bulk. The complex coupled interfacial transport and reaction kinetics result in the formation of a thin photochemically active layer at the surface of ice which may magnify the impact of surface-enhanced nitrates photolysis rates on ice thereby providing a significant contribution to the intense photochemical NOxfluxes observed to emanate from the sunlit snowpack upon polar sunrise.(4) (1) F. Dominé, P.B. Shepson, Science, 297, 1506-1510 (2002).(2) P. Marchand, G. Marcotte, and P. Ayotte, Spectroscopic Study of HNO3 Dissociation on Ice, J. Phys. Chem. A 116, 12112-12122 (2012).(3) G. Marcotte, P. Ayotte, A. Bendounan, F. Sirotti, C. Laffon and P. Parent, J. Phys. Chem. Lett. 4, 2643-2648 (2013).(4) G. Marcotte, P. Marchand, S. Pronovost, P. Ayotte, C. Laffon and P. Parent, J. Phys. Chem. A 119, 1996-2005 (2015).
Modelling large-scale ice-sheet-climate interactions at the last glacial inception
NASA Astrophysics Data System (ADS)
Browne, O. J. H.; Gregory, J. M.; Payne, A. J.; Ridley, J. K.; Rutt, I. C.
2010-05-01
In order to investigate the interactions between coevolving climate and ice-sheets on multimillenial timescales, a low-resolution atmosphere-ocean general circulation model (AOGCM) has been coupled to a three-dimensional thermomechanical ice-sheet model. We use the FAMOUS AOGCM, which is almost identical in formulation to the widely used HadCM3 AOGCM, but on account of its lower resolution (7.5° longitude × 5° latitude in the atmosphere, 3.75°× 2.5° in the ocean) it runs about ten times faster. We use the community ice-sheet model Glimmer at 20 km resolution, with the shallow ice approximation and an annual degree-day scheme for surface mass balance. With the FAMOUS-Glimmer coupled model, we have simulated the growth of the Laurentide and Fennoscandian ice sheets at the last glacial inception, under constant orbital forcing and atmospheric composition for 116 ka BP. Ice grows in both regions, totalling 5.8 m of sea-level equivalent in 10 ka, slower than proxy records suggest. Positive climate feedbacks reinforce this growth at local scales (order hundreds of kilometres), where changes are an order of magnitude larger than on the global average. The albedo feedback (higher local albedo means a cooler climate) is important in the initial expansion of the ice-sheet area. The topography feedback (higher surface means a cooler climate) affects ice-sheet thickness and is not noticeable for the first 1 ka. These two feedbacks reinforce each other. Without them, the ice volume is ~90% less after 10 ka. In Laurentia, ice expands initially on the Canadian Arctic islands. The glaciation of the islands eventually cools the nearby mainland climate sufficiently to produce a positive mass balance there. Adjacent to the ice-sheets, cloud feedbacks tend to reduce the surface mass balance and restrain ice growth; this is an example of a local feedback whose simulation requires a model that includes detailed atmospheric physics.
Probability based hydrologic catchments of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Hudson, B. D.
2015-12-01
Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.
Sea-ice cover in the Nordic Seas and the sensitivity to Atlantic water temperatures
NASA Astrophysics Data System (ADS)
Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.
2017-04-01
Changes in the sea-ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-ice cover can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea ice in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea ice is present in the interior of the domain. However, the sea-ice cover in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea ice and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully covered in sea ice. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea ice. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-ice cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.
Greenland Ice Sheet flow response to runoff variability
NASA Astrophysics Data System (ADS)
Stevens, Laura A.; Behn, Mark D.; Das, Sarah B.; Joughin, Ian; Noël, Brice P. Y.; Broeke, Michiel R.; Herring, Thomas
2016-11-01
We use observations of ice sheet surface motion from a Global Positioning System network operating from 2006 to 2014 around North Lake in west Greenland to investigate the dynamical response of the Greenland Ice Sheet's ablation area to interannual variability in surface melting. We find no statistically significant relationship between runoff season characteristics and ice flow velocities within a given year or season. Over the 7 year time series, annual velocities at North Lake decrease at an average rate of -0.9 ± 1.1 m yr-2, consistent with the negative trend in annual velocities observed in neighboring regions over recent decades. We find that net runoff integrated over several preceding years has a negative correlation with annual velocities, similar to findings from the two other available decadal records of ice velocity in western Greenland. However, we argue that this correlation is not necessarily evidence for a direct hydrologic mechanism acting on the timescale of multiple years but could be a statistical construct. Finally, we stress that neither the decadal slowdown trend nor the negative correlation between velocity and integrated runoff is predicted by current ice-sheet models, underscoring that these models do not yet capture all the relevant feedbacks between runoff and ice dynamics needed to predict long-term trends in ice sheet flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMott, P. J.; Hill, T. C.J.
Despite the significance of the marginal ice zones of the Arctic Ocean, basic parameters such as sea surface temperature (SST) and a range of sea-ice characteristics are still insufficiently understood in these areas, and especially so during the summer melt period. The field campaigns summarized here, identified collectively as the “Marginal Ice Zone Ocean and Ice Observations and Processes Experiment” (MIZOPEX), were funded by U.S. National Aeronautic and Space Administration (NASA) with the intent of helping to address these information gaps through a targeted, intensive observation field campaign that tested and exploited unique capabilities of multiple classes of unmanned aerialmore » systems (UASs). MIZOPEX was conceived and carried out in response to NASA’s request for research efforts that would address a key area of science while also helping to advance the application of UASs in a manner useful to NASA for assessing the relative merits of different UASs. To further exercise the potential of unmanned systems and to expand the science value of the effort, the field campaign added further challenges such as air deployment of miniaturized buoys and coordinating missions involving multiple aircraft. Specific research areas that MIZOPEX data were designed to address include relationships between ocean skin temperatures and subsurface temperatures and how these evolve over time in an Arctic environment during summer; variability in sea-ice conditions such as thickness, age, and albedo within the marginal ice zone (MIZ); interactions of SST, salinity, and ice conditions during the melt cycle; and validation of satellite-derived SST and ice concentration fields provided by satellite imagery and models.« less
Formation and interpretation of eskers beneath retreating ice sheets
NASA Astrophysics Data System (ADS)
Creyts, T. T.; Hewitt, I.
2017-12-01
The retreat of the ice sheets during the Pleistocene left large and spectacular subglacial features exposed. Understanding these features gives us insight into how the ice sheets retreated, how meltwater influenced retreat, and can help inform our understanding of potential future rates of ice sheet retreat. Among these features, eskers, long sinuous ridges primarily composed of clastic sediments, lack a detailed explanation of how surface melt rates and ice sheet retreat rates influence their growth and spatial distribution. Here, we develop a theory for esker formation based on the initial work of Rothlisberger modified for sediment transport and inclusion of surface meltwater forcing. The primary subglacial ingredients include water flow through subglacial tunnels with the addition of mass balances for sediment transport. We show how eskers when water flow slows below a critical stress for sediment motion. This implies that eskers are deposited in a localized region near the snout of the ice sheet. Our findings suggest that very long eskers form sequentially as the ice front retreats. The position of the esker follows the path of the channel mouth through time, which does not necessarily coincide with the instantaneous route of the feeding channel. However, in most cases, we expect those locations to be similar. The role of surface meltwater and the climatology associated with the forcing is crucial to the lateral spacing of the eskers. We predict that high surface melt rates lead to narrower catchments but that the greater extent of the ablation area means that channels are likely larger. At the same time, for a given channel size (and hence sediment flux), the size of a deposited esker depends on a margin retreat rate. Hence, the size of the eskers is related delicately to the balance between surface melt rates and margin retreat rates. We discuss how our theory can be combined with observed esker distributions to infer the relationship between these two rates and help understand the melt history of ice sheets.
NASA Astrophysics Data System (ADS)
Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean
2016-09-01
The ultimate objective of this work is to improve characterization of the ice cover distribution in the polar areas, to improve sea ice mapping and to develop a new automated real-time high spatial resolution multi-sensor ice extent and ice edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea ice extent datasets, analysts at the National Ice Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated ice identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the ice cover and rough ice-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea ice cover from imaging instruments VIIRS and MODIS, including regions covered by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify ice cover underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea ice maps and thus more accurate and detailed delineation of the ice edge. We have also developed a web-based monitoring system that allows comparison of our daily ice extent product with the several other independent operational daily products.
Invisible polynyas: Modulation of fast ice thickness by ocean heat flux on the Canadian polar shelf
NASA Astrophysics Data System (ADS)
Melling, Humfrey; Haas, Christian; Brossier, Eric
2015-02-01
Although the Canadian polar shelf is dominated by thick fast ice in winter, areas of young ice or open water do recur annually at locations within and adjacent to the fast ice. These polynyas are detectable by eye and sustained by wind or tide-driven ice divergence and ocean heat flux. Our ice-thickness surveys by drilling and towed electromagnetic sounder reveal that visible polynyas comprise only a subset of thin-ice coverage. Additional area in the coastal zone, in shallow channels and in fjords is covered by thin ice which is too thick to be discerned by eye. Our concurrent surveys by CTD reveal correlation between thin fast ice and above-freezing seawater beneath it. We use winter time series of air and ocean temperatures and ice and snow thicknesses to calculate the ocean-to-ice heat flux as 15 and 22 W/m2 at locations with thin ice in Penny Strait and South Cape Fjord, respectively. Near-surface seawater above freezing is not a sufficient condition for ocean heat to reach the ice; kinetic energy is needed to overcome density stratification. The ocean's isolation from wind under fast ice in winter leaves tides as the only source. Two tidal mechanisms driving ocean heat flux are discussed: diffusion via turbulence generated by shear at the under-ice and benthic boundaries, and the internal hydraulics of flow over topography. The former appears dominant in channels and the coastal zone and the latter in some silled fjords where and when the layering of seawater density permits hydraulically critical flow.
NASA Astrophysics Data System (ADS)
Fischer, Andrea; Seiser, Bernd
2014-05-01
First documentations of Austrian glaciers date from as early as 1601. Early documentations were triggered by glacier advances that created glacier-dammed lakes that caused floods whenever the dam collapsed . Since then, Austrian glaciers have been documented in drawings, descriptions and later on in maps and photography. These data are stored in historical archives but today only partly exploited for historical glaciology. They are of special interest for historical hydrology in glacier-covered basins, as the extent of the snow, firn and ice cover and its elevation affect the hydrological response of the basin to precipitation events in several ways: - Firn cover: the more area is covered by firn, the higher is the capacity for retention or even refreezing of liquid precipitation and melt water. - Ice cover: the area covered by glaciers can be affected by melt and contributes to a peak discharge on summer afternoons. - Surface elevation and temperatures: in case of precipitation events, the lower surface temperatures and higher surface elevation of the glaciers compared to ice-free ground have some impact on the capacity to store precipitation. - Glacier floods: for the LIA maximum around 1850, a number of advancing glaciers dammed lakes which emptied during floods. These parameters show different variability with time: glacier area varies only by about 60% to 70% between the LIA maximum and today. The variability of the maximum meltwater peak changes much more than the area. Even during the LIA maximum, several years were extremely warm, so that more than twice the size of today's glacier area was subject to glacier melt. The minimum elevations of large glaciers were several hundred meters lower than today, so that in terms of today's summer mean temperatures, the melt water production from ice ablation would have been much higher than today. A comparison of historical glacier images and description with today's makes it clear that the extent of the snow cover and thus the albedo of the glacier surface has been highly variable. This has significant impact on the meltwater production. These historical glacier data complement the first available runoff data from the early 20th century taken close to the glacier tongues.
NASA Technical Reports Server (NTRS)
Hegyi, Bradley M.; Taylor, Patrick C.
2017-01-01
An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth.
Terrestrial geophysics in the SeaRISE project
NASA Technical Reports Server (NTRS)
Bentley, C. R.
1991-01-01
Some areas of research in the SeaRISE project are briefly discussed. They are as follows: (1) Radar Sounding serves multiple purposes. The most general and obvious is mapping ice thickness and the surface and bedrock topography of the ice sheet. (2) The purpose of Seismic Shooting, in addition to water depth measurements on floating ice, is to provide information about the internal physical characteristics of the ice sheet, the rock beneath it, and the interface between the two. (3) Passive Seismic monitoring of microearthquakes can be used to study brittle fracture within the ice or the rock beneath it. Common parameters available from these studies are fault location, orientation, and displacement, as well as the size of the rupture area, stress drop, and energy released. (4) There is a large contrast in Electrical Resistivity between ice or permafrost on the one hand and liquid water or wet rock on the other hand. Thus, electrical resistivity profiles have the ability of revealing the depth to the melting point, whether it is found at the base of the ice or in the subglacial rock. (5) Gravity anomalies, especially combined with seismic measurements, are an effective tool for determining deeper crustal structure. Anomalies averaged over extensive areas are useful also for their potential to reveal isostatic imbalance, which is a measure of average glacial change over the last several hundred years.
Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature.
Fornasier, S; Mottola, S; Keller, H U; Barucci, M A; Davidsson, B; Feller, C; Deshapriya, J D P; Sierks, H; Barbieri, C; Lamy, P L; Rodrigo, R; Koschny, D; Rickman, H; A'Hearn, M; Agarwal, J; Bertaux, J-L; Bertini, I; Besse, S; Cremonese, G; Da Deppo, V; Debei, S; De Cecco, M; Deller, J; El-Maarry, M R; Fulle, M; Groussin, O; Gutierrez, P J; Güttler, C; Hofmann, M; Hviid, S F; Ip, W-H; Jorda, L; Knollenberg, J; Kovacs, G; Kramm, R; Kührt, E; Küppers, M; Lara, M L; Lazzarin, M; Moreno, J J Lopez; Marzari, F; Massironi, M; Naletto, G; Oklay, N; Pajola, M; Pommerol, A; Preusker, F; Scholten, F; Shi, X; Thomas, N; Toth, I; Tubiana, C; Vincent, J-B
2016-12-23
The Rosetta spacecraft has investigated comet 67P/Churyumov-Gerasimenko from large heliocentric distances to its perihelion passage and beyond. We trace the seasonal and diurnal evolution of the colors of the 67P nucleus, finding changes driven by sublimation and recondensation of water ice. The whole nucleus became relatively bluer near perihelion, as increasing activity removed the surface dust, implying that water ice is widespread underneath the surface. We identified large (1500 square meters) ice-rich patches appearing and then vanishing in about 10 days, indicating small-scale heterogeneities on the nucleus. Thin frosts sublimating in a few minutes are observed close to receding shadows, and rapid variations in color are seen on extended areas close to the terminator. These cyclic processes are widespread and lead to continuously, slightly varying surface properties. Copyright © 2016, American Association for the Advancement of Science.
Detection of Supra-Glacial Lakes on the Greenland Ice Sheet Using MODIS Images
NASA Astrophysics Data System (ADS)
Verin, Gauthier; Picard, Ghislain; Libois, Quentin; Gillet-Chaulet, Fabien; Roux, Antoine
2015-04-01
During melt season, supra-glacial lakes form on the margins of the Greenland ice sheet. Because of their size exceeding several kilometers, and their concentration, they affect surface albedo leading to an amplification of the regional melt. Furthermore, they foster hydro-fracturing that propagate liquid water to the bedrock and therefore enhance the basal lubrication which may affect the ice motion. It is known that Greenland ice sheet has strongly responded to recent global warming. As air temperature increases, melt duration and melt intensity increase and surface melt area extends further inland. These recent changes may play an important role in the mass balance of the Greenland ice sheet. In this context, it is essential to better monitor and understand supra-glacial spatio-temporal dynamics in order to better assess future sea level rise. In this study MODIS (Moderate Resolution Imaging Spectroradiometer) images have been used to detect supra-glacial lakes. The observation site is located on the West margin of the ice sheet, between 65°N and 70°N where the concentration of lake is maximum. The detection is performed by a fully automatic algorithm using images processing techniques introduced by Liang et al. (2012) which can be summarized in three steps: the selection of usable MODIS images, mainly we exclude images with too many clouds. The detection of lake and the automatic correction of false detections. This algorithm is capable to tag each individual lake allowing a survey of all lake geometrical properties over the entire melt season. We observed a large population of supra-glacial lakes over 14 melt seasons, from 2000 to 2013 on an extended area of 70.000 km2. In average, lakes are observed from June 9 ± 8.7 days to September 13 ± 13.9 days, and reach a maximum total area of 699 km2 ± 146 km2. As the melt season progresses, lakes form higher in altitude up to 1800 m above sea level. Results show a very strong inter-annual variability in term of date of melt and freeze up onset, melt season duration, maximum total surface area and number of lakes. As it has already been noticed, we observed a strong spatial persistence. Lakes tend to form at the same place for several years, probably because of the ice sheet surface topography. In order to investigate possible links with climatic parameters we calculated positive degree day (PDD). The main result of this comparison is a strong correlation between melt intensity and the altitude of lakes. During warmer summer, lakes form higher in altitude and consequently the extent of melting increase. Recent studies showed this trend is likely to continue and to increase in the years to come.
NASA Astrophysics Data System (ADS)
de Vernal, Anne; Rochon, André; Fréchette, Bianca; Henry, Maryse; Radi, Taoufik; Solignac, Sandrine
2013-11-01
Dinocysts occur in a wide range of environmental conditions, including polar areas. We review here their use for the reconstruction of paleo sea ice cover in such environments. In the Arctic Ocean and subarctic seas characterized by dense sea ice cover, Islandinium minutum, Islandinium? cezare, Echinidinium karaense, Polykrikos sp. var. Arctic, Spiniferites elongatus-frigidus and Impagidinium pallidum are common and often occur with more cosmopolitan taxa such as Operculodinium centrocarpum sensu Wall & Dale, cyst of Pentapharsodinium dalei and Brigantedinium spp. Canonical correspondence analyses conducted on dinocyst assemblages illustrate relationships with sea surface parameters such as salinity, temperature, and sea ice cover. The application of the modern analogue technique permits quantitative reconstruction of past sea ice cover, which is expressed in terms of seasonal extent of sea ice cover (months per year with more than 50% of sea ice concentration) or mean annual sea ice concentration (in tenths). The accuracy of reconstructions or root mean square error of prediction (RMSEP) is ±1.1 over 10, which corresponds to perennial sea ice. Such an error is close to the interannual variability (standard deviation) of observed sea ice cover. Mismatch between the time interval of instrumental data used as reference (1953-2000) and the time interval represented by dinocyst populations in surface sediment samples, which may cover decades if not centuries, is another source of error. Despite uncertainties, dinocyst assemblages are useful for making quantitative reconstruction of seasonal sea ice cover.
NASA Technical Reports Server (NTRS)
1996-01-01
Jupiter's moon Europa, as seen in this image taken June 27, 1996 by NASA's Galileo spacecraft, displays features in some areas resembling ice floes seen in Earth's polar seas. Europa, about the size of Earth's moon, has an icy crust that has been severely fractured, as indicated by the dark linear, curved, and wedged-shaped bands seen here. These fractures have broken the crust into plates as large as 30 kilometers (18.5 miles) across. Areas between the plates are filled with material that was probably icy slush contaminated with rocky debris. Some individual plates were separated and rotated into new positions. Europa's density indicates that it has a shell of water ice as thick as 100 kilometers (about 60 miles), parts of which could be liquid. Currently, water ice could extend from the surface down to the rocky interior, but the features seen in this image suggest that motion of the disrupted icy plates was lubricated by soft ice or liquid water below the surface at the time of disruption. This image covers part of the equatorial zone of Europa and was taken from a distance of 156,000 kilometers (about 96,300 miles) by the solid-state imager camera on the Galileo spacecraft. North is to the right and the sun is nearly directly overhead. The area shown is about 360 by 770 kilometers (220-by-475 miles or about the size of Nebraska), and the smallest visible feature is about 1.6 kilometers (1 mile) across. The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science.
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Cavalieri, Donald J.; Ivanoff, Alvaro; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
During spring and summer, the Surface of the Arctic sea ice cover undergoes rapid changes that greatly affect the surface albedo and significantly impact the further decay of the sea ice. These changes are primarily the development of a wet snow cover and the development of melt ponds. As melt pond diameters generally do not exceed a couple of meters, the spatial resolutions of sensors like AVHRR and MODIS are too coarse for their identification. Landsat 7, on the other hand, has a spatial resolution of 30 m (15 m for the pan-chromatic band). The different wavelengths (bands) from blue to near-infrared offer the potential to distinguish among different surface conditions. Landsat 7 data for the Baffin Bay region for June 2000 have been analyzed. The analysis shows that different surface conditions, such as wet snow and meltponded areas, have different signatures in the individual Landsat bands. Consistent with in-situ albedo measurements, melt ponds show up as blueish whereas dry and wet ice have a white to gray appearance in the Landsat true-color image. These spectral differences enable the distinction of melt ponds. The melt pond fraction for the scene studied in this paper was 37%.
NASA Astrophysics Data System (ADS)
Raponi, Andrea; De Sanctis, Maria Cristina; Ciarniello, Mauro; Tosi, Federico; Combe, Jean-Philippe; Frigeri, Alessandro; Zambon, Francesca; Ammannito, Eleonora; Giacomo Carrozzo, Filippo; Magni, Gianfranco; Capria, Maria Teresa; Formisano, Michelangelo; Longobardo, Andrea; Palomba, Ernesto; Pieters, Carle; Russell, Christopher T.; Raymond, Carol; Dawn/VIR Team
2016-10-01
Dawn spacecraft orbits around Ceres since early 2015 acquiring a huge amount of data at different spatial resolutions during the several phases of the mission. VIR, the visible and InfraRed spectrometer onboard Dawn [1] allowed to detect the principal mineralogical phases present on Ceres: a large abundance of dark component, NH4-phillosilicates and carbonates.Water has been detected in small areas on Ceres' surface by the Dawn-VIR instrument. The most obvious finding is located in Oxo crater [2]. Further detections of water have been made during the Survey observation phase (1.1 km/pixel) and High-Altitude Mapping Orbit (400 m/px) [3]. During the LAMO phase (Low Altitude Mapping Orbit), the data with increased spatial resolution (100 m/px) coming from both regions have improved the detection of water, highlighting clear diagnostic water ice absorption features. In this study, we focused on spectral modeling of VIR spectra of Oxo and another crater (lon = 227°, lat 57°), near Messor crater.The Hapke radiative transfer model [4] has been applied in order to retrieve the water ice properties. We consider two types of mixtures: areal and intimate mixing. In areal mixing, the surface is modelled as patches of pure water ice, with each photon scattered within one patch. In intimate mixing, the particles of water ice are in contact with particles of the dark terrain, and both are involved in the scattering of a single photon. The best fit with the measured spectra has been derived with the areal mixture. The water ice abundance obtained is up to 15-20% within the field of view, and the grain size retrieved is of the order of 100-200 μm. Phyllosilicates and carbonates, which are ubiquitous on Ceres surface [5], have been also detected and modeled in correspondence with the icy regions. The water ice is typically located near and within the shadows projected by the crater rims. Further analysis is required to study the thermal state of the ice and its origin.References[1] De Sanctis M.C. et al., Space Sci. Rev., 2010[2] Combe J-Ph. et al., 2016, LPI N. 1903, 1820[3] Combe J.-Ph. Et al., 2016, DPS-EPSC[4] Hapke B., Cambridge Univ. Press., 1993, 2012[5] De Sanctis M.C. et al., 2015. Nature 242, 528
NASA Astrophysics Data System (ADS)
Geilfus, N.-X.; Pind, M. L.; Else, B. G. T.; Galley, R. J.; Miller, L. A.; Thomas, H.; Gosselin, M.; Rysgaard, S.; Wang, F.; Papakyriakou, T. N.
2018-03-01
The partial pressure of CO2 in surface water (pCO2sw) measured within the Canadian Arctic Archipelago (CAA) and Baffin Bay was highly variable with values ranging from strongly undersaturated (118 μatm) to slightly supersaturated (419 μatm) with respect to the atmospheric levels ( 386 μatm) during summer and autumn 2011. During summer, melting sea ice contributed to cold and fresh surface water and enhanced the ice-edge bloom, resulting in strong pCO2sw undersaturation. Coronation Gulf was the only area with supersaturated pCO2sw, likely due to warm CO2-enriched freshwater input from the Coppermine River. During autumn, the entire CAA (including Coronation Gulf) was undersaturated, despite generally increasing pCO2sw. Coronation Gulf was the one place where pCO2sw decreased, likely due to seasonal reduction in discharge from the Coppermine River and the decreasing sea surface temperature. The seasonal summer-to-autumn increase in pCO2sw across the archipelago is attributed in part to the continuous uptake of atmospheric CO2 through both summer and autumn and to the seasonal deepening of the surface mixed layer, bringing CO2-rich waters to the surface. These observations demonstrate how freshwater from sea ice melt and rivers affect pCO2sw differently. The general pCO2sw undersaturation during summer-autumn 2011 throughout the CAA and Baffin Bay give an estimated net oceanic sink for atmospheric CO2 over the study period of 11.4 mmol CO2 m-2 d-1, assuming no sea-air CO2 flux exchange across the sea-ice covered areas.
Pleistocene ice-rich yedoma in Interior Alaska
NASA Astrophysics Data System (ADS)
Kanevskiy, M. Z.; Shur, Y.; Jorgenson, T. T.; Sturm, M.; Bjella, K.; Bray, M.; Harden, J. W.; Dillon, M.; Fortier, D.; O'Donnell, J.
2011-12-01
Yedoma, or the ice-rich syngenetic permafrost with large ice wedges, widely occurs in parts of Alaska that were unglaciated during the last glaciation including Interior Alaska, Foothills of Brooks Range and Seward Peninsula. A thick layer of syngenetic permafrost was formed by simultaneous accumulation of silt and upward permafrost aggradation. Until recently, yedoma has been studied mainly in Russia. In Interior Alaska, we have studied yedoma at several field sites (Erickson Creek area, Boot Lake area, and several sites around Fairbanks, including well-known CRREL Permafrost tunnel). All these locations are characterized by thick sequences of ice-rich silt with large ice wedges up to 30 m deep. Our study in the CRREL Permafrost tunnel and surrounding area revealed a yedoma section up to 18 m thick, whose formation began about 40,000 yr BP. The volume of wedge-ice (about 10-15%) is not very big in comparison with other yedoma sites (typically more than 30%), but soils between ice wedges are extremely ice-rich - an average value of gravimetric moisture content of undisturbed yedoma silt with micro-cryostructures is about 130%. Numerous bodies of thermokarst-cave ice were detected in the tunnel. Geotechnical investigations along the Dalton Highway near Livengood (Erickson Creek area) provided opportunities for studies of yedoma cores from deep boreholes. The radiocarbon age of sediments varies from 20,000 to 45,000 yr BP. Most of soils in the area are extremely ice-rich. Thickness of ice-rich silt varies from 10 m to more than 26 m, and volume of wedge-ice reaches 35-45%. Soil between ice wedges has mainly micro-cryostructures and average gravimetric moisture content from 80% to 100%. Our studies have shown that the top part of yedoma in many locations was affected by deep thawing during the Holocene, which resulted in formation of the layer of thawed and refrozen soils up to 6 m thick on top of yedoma deposits. Thawing of the upper permafrost could be related to climate changes during Holocene or to wildfires, or both. The ice-poor layer of thawed and refrozen sediments (gravimetric moisture content usually does not exceed 40%) was encountered in many boreholes below the thin ice-rich intermediate layer (gravimetric moisture content usually exceeds 100%). These two layers separate ice wedges from the active layer and protect them from further thawing. Such structure of the upper permafrost at different yedoma sites of Interior Alaska can explain a relatively rare occurrence of surface features related to yedoma degradation such as thermokarst mounds and erosional gullies developed along ice wedges.
NASA Astrophysics Data System (ADS)
Shigeyama, Wataru; Nagatsuka, Naoko; Homma, Tomoyuki; Takata, Morimasa; Goto-Azuma, Kumiko; Weikusat, Ilka; Drury, Martyn R.; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Mateiu, Ramona V.; Azuma, Nobuhiko; Dahl-Jensen, Dorthe
2017-04-01
Dynamics of ice sheets is governed by the flow of the ice and this flow results from the internal deformation of the ice aggregate. The deformation properties of the ice are known to be dependent on several factors, such as microstructure (e.g. crystal grain size and orientation) and impurities. It is well known that ice from glacial periods in ice sheets has a high impurity concentration, and the deformation is reported to be faster than that of non-glacial ice (Faria et al., 2014). However, the mechanisms of the deformation are still not well understood. For a better understanding of ice sheet dynamics, it is a prerequisite to elucidate deformation mechanisms of such impurity-rich ice. The microstructure of a material is a factor that influences mechanical properties and is also an indicator of the dominant deformation mechanisms. The effects of impurities on the deformation and the microstructure depend on chemical compositions, states (viz. insoluble inclusions or soluble ions) and locations of the impurities in the crystal lattice. Therefore, in order to better understand the deformation mechanisms in ice, investigation of relationship between the microstructure and characteristics of the impurities is important. We examined the relationship between grain boundaries and inclusions. Light microscopy (LM) is commonly used to map grain boundary structures on a large area of the ice samples (up to 10 × 10 cm); however, observation of small inclusions < 1 µm is limited due to the spatial resolution of LM. For observations of small impurities in ice cores, scanning electron microscopy (SEM) is useful although limited area (1 × 1 cm) can be examined, and sublimation/surface diffusion on ice in the SEM could move the impurities from their original locations. In order to examine the relationship between the grain boundary and the inclusions, we have combined LM and SEM. We first mapped large areas of the ice samples with LM, and then chose several smaller areas within the mapped area for SEM observations. Energy dispersive X-ray spectroscopy (EDS) was also performed during SEM observations to characterize the chemical composition. Our approach was applied to NEEM glacial ice (1548 m depth, 19.2 kyr BP). The initial results show inclusions observed by LM formed aggregates of sub-micrometer-sized particles, whose main constituents were silicates. Reference Faria, S. H., I. Weikusat and N. Azuma (2014). The microstructure of polar ice. Part II: State of the art, Journal of Structural Geology 61: 21-49.
Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan; McDonald, Adrian; Rack, Wolfgang
2016-04-01
Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes.
NASA Astrophysics Data System (ADS)
Sala, M.; Delmonte, B.; Frezzotti, M.; Proposito, M.; Scarchilli, C.; Maggi, V.; Artioli, G.; Dapiaggi, M.; Marino, F.; Ricci, P. C.; De Giudici, G.
2008-07-01
Micrometre-sized aeolian dust particles stored in Antarctic firn and ice layers are a useful tool for reconstructing climate and environmental changes in the past. The mineral content, particle concentration and chemical composition of modern dust in firn cores from the peripherycal dome (Talos Dome) and coastal area of East Antarctica (Ross Sea sector) were investigated. During analyses there was a considerable decrease in microparticle concentrations within a few hours of ice sample melting, accompanied by a systematic increase in the concentration of calcium ions (Ca 2+) in solution. Based on mineralogical phase analyses, which reveal the presence of anhydrous and hydrous calcium carbonates such as calcite (CaCO 3), monohydrocalcite (CaCO 3·H 2O) and ikaite (CaCO 3·6H 2O, hexahydrate calcium carbonate), the observed variations in concentrations are ascribed to the partial dissolution of the carbonate content of samples. Soluble carbonate compounds are thus primary aerosols included into the samples along with insoluble aluminosilicate minerals. We hypothesize hydrous carbonates may derive from the sea ice surface, where ikaite typically forms at the early stages of sea ice formation. Back trajectory calculations show that favourable events for air mass advection from the sea ice surface to Talos Dome are rare but likely to occur.
Woodruff, L.G.; Attig, J.W.; Cannon, W.F.
2004-01-01
Geochemical exploration in northern Wisconsin has been problematic because of thick glacial overburden and complex stratigraphic record of glacial history. To assess till geochemical exploration in an area of thick glacial cover and complex stratigraphy samples of glacial materials were collected from cores from five rotasonic boreholes near a known massive sulfide deposit, the Bend deposit in north-central Wisconsin. Diamond drilling in the Bend area has defined a long, thin zone of mineralization at least partly intersected at the bedrock surface beneath 30-40 m of unconsolidated glacial sediments. The bedrock surface has remnant regolith and saprolite resulting from pre-Pleistocene weathering. Massive sulfide and mineralized rock collected from diamond drill core from the deposit contain high (10s to 10,000s ppm) concentrations of Ag, As, Au, Bi, Cu, Hg, Se, Te, and Tl. Geochemical properties of the glacial stratigraphic units helped clarify the sequence and source areas of several glacial ice advances preserved in the section. At least two till sheets are recognized. Over the zone of mineralization, saprolite and preglacial alluvial and lacustrine samples are preserved on the bedrock surface in a paleoriver valley. The overlying till sheet is a gray, silty carbonate till with a source hundreds of kilometers to the northwest of the study area. This gray till is overlain by red, sandy till with a source to the north in Proterozoic rocks of the Lake Superior area. The complex glacial stratigraphy confounds down-ice geochemical till exploration. The presence of remnant saprolite, preglacial sediment, and far-traveled carbonate till minimized glacial erosion of mineralized material. As a result, little evidence of down-ice glacial dispersion of lithologic or mineralogic indicators of Bend massive sulfide mineralization was found in the samples from the rotasonic cores. This study points out the importance of determining glacial stratigraphy and history, and identifying favorable lithologies required for geochemical exploration. Drift prospecting in Wisconsin and other areas near the outer limits of the Pleistocene ice sheets may not be unsuccessful, in part, because of complex stratigraphic sequences of multiple glaciations where deposition dominates over erosion. ?? 2004 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Diandong; Leslie, Lance M.; Lynch, Mervyn J.
2013-03-01
The long residence time of ice and the relatively gentle slopes of the Antarctica Ice Sheet make basal sliding a unique positive feedback mechanism in enhancing ice discharge along preferred routes. The highly organized ice stream channels extending to the interior from the lower reach of the outlets are a manifestation of the role of basal granular material in enhancing the ice flow. In this study, constraining the model-simulated year 2000 ice flow fields with surface velocities obtained from InSAR measurements permits retrieval of the basal sliding parameters. Forward integrations of the ice model driven by atmospheric and oceanic parameters from coupled general circulation models under different emission scenarios provide a range of estimates of total ice mass loss during the 21st century. The total mass loss rate has a small intermodel and interscenario spread, rising from approximately -160 km3/yr at present to approximately -220 km3/yr by 2100. The accelerated mass loss rate of the Antarctica Ice Sheet in a warming climate is due primarily to a dynamic response in the form of an increase in ice flow speed. Ice shelves contribute to this feedback through a reduced buttressing effect due to more frequent systematic, tabular calving events. For example, by 2100 the Ross Ice Shelf is projected to shed 40 km3 during each systematic tabular calving. After the frontal section's attrition, the remaining shelf will rebound. Consequently, the submerged cross-sectional area will reduce, as will the buttressing stress. Longitudinal differential warming of ocean temperature contributes to tabular calving. Because of the prevalence of fringe ice shelves, oceanic effects likely will play a very important role in the future mass balance of the Antarctica Ice Sheet, under a possible future warming climate.
Large-Scale Structure and Hyperuniformity of Amorphous Ices
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto
2017-09-01
We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Hoffmann, N.; Kiselev, A.; Dreyer, A.; Zhang, K.; Kulkarni, G.; Koop, T.; Möhler, O.
2014-03-01
In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface-area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber. Complementary offline characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, dynamic light scattering (DLS), and an electro-kinetic particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5) to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at -35.2 °C < T < -33.5 °C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet freezing.
A new temperature and humidity dependent surface site density approach for deposition ice nucleation
NASA Astrophysics Data System (ADS)
Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.
2014-07-01
Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to decribe the temperature and humidity dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature and relative humidity dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 × 105 \\centerdot exp(0.2659 \\centerdot xtherm) [m-2] (1) where the thermodynamic variable xtherm is defined as xtherm = -(T - 273.2) + (Sice-1) × 100 (2) with Sice>1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.
Meteoric 10Be as a tracer of subglacial processes and interglacial surface exposure in Greenland
NASA Astrophysics Data System (ADS)
Graly, Joseph A.; Corbett, Lee B.; Bierman, Paul R.; Lini, Andrea; Neumann, Thomas A.
2018-07-01
In order to test whether sediment emerging from presently glaciated areas of Greenland was exposed near or at Earth's surface during previous interglacial periods, we measured the rare isotope 10Be contained in grain coatings of sediment collected at five ice marginal sites. Such grain coatings contain meteoric 10Be (10Bemet), which forms in the atmosphere and is deposited onto Earth's surface. Samples include sediment entrained in ice, glaciofluvial sediment collected at the ice margin, and subglacial sediment extracted during hot water drilling in the ablation zone. Due to burial by ice, contemporary subglacial sediment could only have acquired substantial 10Bemet concentrations during periods in the past when the Greenland Ice Sheet was less extensive than present. The highest measured 10Bemet concentrations are comparable to those found in well-developed, long-exposed soils, suggesting subglacial preservation and glacial transport of sediment exposed during preglacial or interglacial periods. Ice-bound sediment has significantly higher 10Bemet concentrations than glaciofluvial sediment, suggesting that glaciofluvial processes are sufficiently erosive to remove tracers of previous interglacial exposures. Northern Greenland sites where ice and sediment are supplied from the ice sheet's central main dome have significantly higher 10Bemet concentrations than sites in southern Greenland, indicating greater preglacial or interglacial landscape preservation in central Greenland than in the south. Because southern Greenland has more frequent and spatially extensive periods of glacial retreat but nevertheless has less evidence of past subaerial exposure, we suggest that 10Bemet measurements in glacial sediment are primarily controlled by erosional efficiency rather than interglacial exposure length.
NASA Astrophysics Data System (ADS)
Peckhaus, Andreas; Bachmann, Felix; Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas
2015-04-01
Recently K-feldspar was identified as one of the most active atmospheric ice nucleating particles (INP) of mineral origin [1]. Seeking the explanation to this phenomena we have conducted extensive experimental investigation of the ice nucleating efficiency of K-feldspar in three heterogeneous freezing modes. The immersion freezing of K-feldspar was investigated with the cold stage using arrays of nanoliter-size droplets containing aqueous suspension of polydisperse feldspar particles. For contact freezing, the charged droplets of supercooled water were suspended in the laminar flow of the DMA-selected feldspar-containing particles, allowing for determination of freezing probability on a single particle-droplet contact [2]. The nucleation and growth of ice via vapor deposition on the crystalline surfaces of macroscopic feldspar particles have been investigated in the Environmental Scanning Electron Microscope (ESEM) under humidified nitrogen atmosphere. The ice nucleation experiments were supplemented with measurements of effective surface area of feldspar particles and ion chromatography (IC) analysis of the leached framework cations (K+, Na+, Ca2+, Mg2+). In this contribution we focus on the role of surface chemistry influencing the IN efficiency of K-feldspar, in particular the connection between the degree of surface hydroxylation and its ability to induce local structural ordering in the interfacial layer in water molecules (as suggested by recent modeling efforts). We mimic the natural process of feldspar ageing by suspending it in water or weak aqueous solution of carbonic acid for different time periods, from minutes to months, and present its freezing efficiency as a function of time. Our immersion freezing experiments show that ageing have a nonlinear effect on the freezing behavior of feldspar within the investigated temperature range (-40°C to -10°C). On the other hand, deposition nucleation of ice observed in the ESEM reveals clear different pattern between freshly cleaved and aged mineral surfaces. This effect is especially pronounced for surfaces having different crystallographic orientations (001 and 010), with 001 being clearly preferential for ice nucleation. The factor two change of the BET effective area of the naturally aged feldspar particles is also indicative for the change in the surface morphology. Based on the IC analysis of framework cations removal from the surface of feldspar, we discuss the possible implications of this process for the interpretation of observed freezing behavior of feldspars. [1] Atkinson, J.D., Murray, B.J., Woodhouse, M.T., Whale, T.F., Baustian, K.J., Carslaw, K.S., Dobbie, S., O'Sullivan, D., and Malkin, T.L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355-358, 2013 [2] Hoffmann, N., Kiselev, A., Rzesanke, D., Duft, D., and Leisner, T.: Experimental quantification of contact freezing in an electrodynamic balance. Atmos. Meas. Tech., 6, 2373-2382, 2013.
Spatial variation in energy exchange across coastal environments in Greenland
NASA Astrophysics Data System (ADS)
Lund, M.; Abermann, J.; Citterio, M.; Hansen, B. U.; Larsen, S. H.; Stiegler, C.; Sørensen, L. L.; van As, D.
2015-12-01
The surface energy partitioning in Arctic terrestrial and marine areas is a crucial process, regulating snow, glacier ice and sea ice melt, and permafrost thaw, as well as modulating Earth's climate on both local, regional, and eventually, global scales. The Arctic region has warmed approximately twice as much as the global average, due to a number of feedback mechanisms related to energy partitioning, most importantly the snow and ice-albedo feedback. However, direct measurements of surface energy budgets in the Arctic are scarce, especially for the cold and dark winter period and over transects going from the ice sheet and glaciers to the sea. This study aims to describe annual cycles of the surface energy budget from various surface types in Arctic Greenland; e.g. glacier, snow, wet and dry tundra and sea ice, based on data from a number of measurement locations across coastal Greenland related to the Greenland Ecosystem Monitoring (GEM) program, including Station Nord/Kronprins Christians Land, Zackenberg/Daneborg, Disko, Qaanaq, Nuuk/Kobbefjord and Upernaviarsuk. Based on the available time series, we will analyze the sensitivity of the energy balance partitioning to variations in meteorological conditions (temperature, cloudiness, precipitation). Such analysis would allow for a quantification of the spatial variation in the energy exchange in aforementioned Arctic environments. Furthermore, this study will identify uncertainties and knowledge gaps in Arctic energy budgets and related climate feedback effects.
NASA Astrophysics Data System (ADS)
Niwano, Masashi; Aoki, Teruo; Hashimoto, Akihiro; Matoba, Sumito; Yamaguchi, Satoru; Tanikawa, Tomonori; Fujita, Koji; Tsushima, Akane; Iizuka, Yoshinori; Shimada, Rigen; Hori, Masahiro
2018-02-01
To improve surface mass balance (SMB) estimates for the Greenland Ice Sheet (GrIS), we developed a 5 km resolution regional climate model combining the Japan Meteorological Agency Non-Hydrostatic atmospheric Model and the Snow Metamorphism and Albedo Process model (NHM-SMAP) with an output interval of 1 h, forced by the Japanese 55-year reanalysis (JRA-55). We used in situ data to evaluate NHM-SMAP in the GrIS during the 2011-2014 mass balance years. We investigated two options for the lower boundary conditions of the atmosphere: an offline configuration using snow, firn, and ice albedo, surface temperature data from JRA-55, and an online configuration using values from SMAP. The online configuration improved model performance in simulating 2 m air temperature, suggesting that the surface analysis provided by JRA-55 is inadequate for the GrIS and that SMAP results can better simulate physical conditions of snow/firn/ice. It also reproduced the measured features of the GrIS climate, diurnal variations, and even a strong mesoscale wind event. In particular, it successfully reproduced the temporal evolution of the GrIS surface melt area extent as well as the record melt event around 12 July 2012, at which time the simulated melt area extent reached 92.4 %. Sensitivity tests showed that the choice of calculation schemes for vertical water movement in snow and firn has an effect as great as 200 Gt year-1 in the GrIS-wide accumulated SMB estimates; a scheme based on the Richards equation provided the best performance.
Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume
NASA Technical Reports Server (NTRS)
Sauber, J.; Molnia, B. F.; Lutchke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spade, G.
2004-01-01
Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat footprint returns to estimate glacier ice elevations and surface characteristics. Additional information is included in the original extended abstract.
Measurements of Turbulent Fluxes over Sea Ice Region in the Sea of Okhotsk.
NASA Astrophysics Data System (ADS)
Fujisaki, A.; Yamaguchi, H.; Toyota, T.; Futatsudera, A.; Miyanaga, M.
2007-12-01
The measurements of turbulent fluxes over sea ice area were done in the southern part of the Sea of Okhotsk, during the cruises of the ice-breaker P/V 'Soya' in 2000-2005. The air-ice drag coefficients CDN were 3.57×10-3 over small floes \\left(diameter:φ=20- 100m\\right), 3.38×10-3 over medium floes \\left(φ=100-500m\\right), and 2.12×10-3 over big floes \\left( φ=500m-2km\\right), which showed a decrease with the increase of floe size. This is because the smaller floes contribue to the roughness of sea-ice area by their edges more than the larger ones. The average CDN values showed a gradual upslope with ice concentration, which is simply due to the rougher surface of sea ice than that of open water, while they showed a slight decline at ice concentration 100%, which is possibly due to the lack of freeboard effect of lateral side of floes. We also compared the relation between the roughness length zM and the friction velocity u* with the model developed in the previous study. The zM-u* relation well corresponded with the model results, while the range of zM we obtained was larger than those obtained at the Ice Station Weddell and during the Surface Heat Budget of the Arctic Ocean project. The sensible heat transfer coefficients CHN were 1.35×10-3 at 80-90% ice concentration, and 0.95×10-3 at 100% ice concentration, which are comparable with the results of the past reaserches. On the other hand, we obtained a maximum CHN value of 2.39×10-3at 20-50% ice concentration, and 2.35×10-3 over open water, which are more than twice as the typical value of 1.0×10-3 over open water. These large CHN values are due to the significant upward sensible heat flux during the measurements.
Lidar Ice nuclei estimates and how they relate with airborne in-situ measurements
NASA Astrophysics Data System (ADS)
Marinou, Eleni; Amiridis, Vassilis; Ansmann, Albert; Nenes, Athanasios; Balis, Dimitris; Schrod, Jann; Binietoglou, Ioannis; Solomos, Stavros; Mamali, Dimitra; Engelmann, Ronny; Baars, Holger; Kottas, Michael; Tsekeri, Alexandra; Proestakis, Emmanouil; Kokkalis, Panagiotis; Goloub, Philippe; Cvetkovic, Bojan; Nichovic, Slobodan; Mamouri, Rodanthi; Pikridas, Michael; Stavroulas, Iasonas; Keleshis, Christos; Sciare, Jean
2018-04-01
By means of available ice nucleating particle (INP) parameterization schemes we compute profiles of dust INP number concentration utilizing Polly-XT and CALIPSO lidar observations during the INUIT-BACCHUS-ACTRIS 2016 campaign. The polarization-lidar photometer networking (POLIPHON) method is used to separate dust and non-dust aerosol backscatter, extinction, mass concentration, particle number concentration (for particles with radius > 250 nm) and surface area concentration. The INP final products are compared with aerosol samples collected from unmanned aircraft systems (UAS) and analyzed using the ice nucleus counter FRIDGE.
Mapping tide-water glacier dynamics in east Greenland using landsat data
Dwyer, John L.
1995-01-01
Landsat multispectral scanner and thematic mapper images were co-registered For the Kangerdlugssuaq Fjord region in East Greenland and were used to map glacier drainage-basin areas, changes in the positions of tide-water glacier termini and to estimate surface velocities of the larger tide-water glaciers. Statistics were compiled to document distance and area changes to glacier termini. The methodologies developed in this study are broadly applicable to the investigation of tide-water glaciers in other areas. The number of images available for consecutive years and the accuracy with which images are co-registered are key factors that influence the degree to which regional glacier dynamics can be characterized using remotely sensed data.Three domains of glacier state were interpreted: net increase in terminus area in the southern part of the study area, net loss of terminus area for glaciers in upper Kangerdlugssuaq Fjord and a slight loss of glacier terminus area northward from Ryberg Fjord. Local increases in the concentrations of drifting icebergs in the fjords coincide with the observed extension of glacier termini positions Ice-surface velocity estimates were derived for several glaciers using automated image cross-correlation techniques The velocity determined for Kangerdlugssuaq Gletscher is approximately 5.0 km a−1 and that for Kong Christian IV Gletscher is 0.9 km a−1. The continuous presence of icebergs and brash ice in front of these glaciers indicates sustained rates of ice-front calving.
Geodetic mass balance measurements on debris and clean-ice tropical glaciers in Ecuador
NASA Astrophysics Data System (ADS)
La Frenierre, J.; Decker, C. R.; Jordan, E.; Wigmore, O.; Hodge, B. E.; Niederriter, C.; Michels, A.
2017-12-01
Glaciers are recognized as highly sensitive indicators of climate change in high altitude, low latitude environments. In the tropical Andes, various analyses of glacier surface area change have helped illuminate the manifestation of climate change in this region, however, information about actual glacier mass balance behavior is much more limited given the relatively small glaciers, difficult access, poor weather, and/or limited local resources common here. Several new technologies, including aerial and terrestrial LIDAR and structure-from-motion photogrammetry using small unmanned aerial vehicles (UAVs), make mass balance measurements using geodetic approaches increasingly feasible in remote mountain locations, which can both further our understanding of changing climatic conditions, and improve our ability to evaluate the downstream hydrologic impacts of ice loss. At Volcán Chimborazo, Ecuador, these new technologies, combined with a unique, 5-meter resolution digital elevation model derived from 1997 aerial imagery, make possible an analysis of the magnitude and spatial patterns of mass balance behavior over the past two decades. Here, we evaluate ice loss between 1997 and 2017 at the tongues of two adjacent glaciers, one debris-covered and detached from its accumulation area (Reschreiter Glacier), and one debris-free and intact (Hans Meyer Glacier). Additionally, we incorporate data from 2012 and 2013 terrestrial LIDAR surveys to evaluate the behavior of the Reschreiter at a finer temporal resolution. We find that on the Hans Meyer, the mean surface deflation rate since 1997 at the present-day tongue has been nearly 3 m yr-1, while on the lower-elevation Reschreiter, the mean deflation rate has been approximately 1 m yr-1. However, the processes by which debris-covered ice becomes exposed results in highly heterogeneous patterns of ice loss, with some areas experiencing surface deflation rates approaching 15 m yr-1 when energy absorption is unimpeded.
Over-wintering of Supraglacial Lakes on the Greenland Ice Sheet from Sentinel-1 and Landsat-8 Data
NASA Astrophysics Data System (ADS)
Benedek, C. L.; Tedesco, M.
2015-12-01
Supra-glacial lakes on the GrIS have become a focus of research relating to the contribution of the GrIS to sea level rise. Lakes have been observed to appear during the summer melt season. Though it appears that the quantity of water collected on the surface is small, it is thought that the fracture and drainage of these lakes delivers significant pulses of water to the ice sheet bed, influencing the dynamic movement of glaciers towards the sea. The pattern of this transport mechanism may be a central driver of its influence over dynamic losses, as the flow of the viscoelastic ice sheet will differ if the water is delivered in a short pulse or a slower constant supply. A number of studies have catalogued the traits of lakes with an aim to quantify lake areas, depths, and timing of formation and cessation using visible and near infrared remote sensing instruments mostly focused on the summer melt season. Little is known about the behaviour of the surface lakes over the winter. A recent examination of the over-wintering of surface lakes has been conducted by Koenig et al. [2015] using airborne radar. While the study is extensive in area covered, it is limited in its temporal resolution by the availability of Operation IceBridge data, typically at one pass per year. This study seeks to observe the development of lakes over the winter period. Sentinel-1A radar images are used to track the presence of surface lakes and their variation in three study sites on the Greenland ice sheet. The sites are as follows: upstream of Ryder glacier, upstream of Petermann glacier, and upstream of Jakobshavn glacier. Water masks are created based on summer Landsat-8 images following NDWIice and then compared to Sentinel images at monthly temporal resolution through the winter of 2014-2015. These radar images show persistence of liquid water through the winter in agreement with previous research as well as variation in the buried lake area over the span of the year studied.
NASA Astrophysics Data System (ADS)
Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.
2015-04-01
Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m-2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = -(T-273.2)+(Sice-1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.
Investigating ice shelf mass loss processes from continuous satellite altimetry
NASA Astrophysics Data System (ADS)
Fricker, H. A.
2017-12-01
The Antarctic Ice Sheet continually gains mass through snowfall over its large area and, to remain approximately in equilibrium, it sheds most of this excess mass through two processes, basal melting and iceberg calving, that both occur in the floating ice shelves surrounding the continent. Small amounts of mass are also lost by surface melting, which occurs on many ice shelves every summer to varying degrees, and has been linked to ice-shelf collapse via hydrofracture on ice shelves that have been pre-weakened. Ice shelves provide mechanical support to `buttress' seaward flow of grounded ice, so that ice-shelf thinning and retreat result in enhanced ice discharge to the ocean. Ice shelves are susceptible to changes in forcing from both the atmosphere and the ocean, which both change on a broad range of timescales to modify mass gains and losses at the surface and base, and from internal instabilities of the ice sheet itself. Mass loss from iceberg calving is episodic, with typical intervals between calving events on the order of decades. Since ice shelves are so vast, the only viable way to monitor them is with satellites. Here, we discuss results from satellite radar and laser altimeter data from one NASA satellite (ICESat), and four ESA satellites (ERS-1, ERS-2, Envisat, CryoSat-2) to obtain estimates of ice-shelf surface height since the early 1990s. The continuous time series show accelerated losses in total Antarctic ice-shelf volume from 1994 to 2017, and allow us to investigate the processes causing ice-shelf mass change. For Larsen C, much of the variability comes from changing atmospheric conditions affecting firn state. In the Amundsen Sea, the rapid thinning is a combination of accelerated ocean-driven thinning and ice dynamics. This long-term thinning signal is, however, is strongly modulated by ENSO-driven interannual variability. However, observations of ocean variability around Antarctica are sparse, since these regions are often covered in sea ice and difficult to access. Some innovative methods are being used to acquire these data, including airborne deployment of ALAMO profiling floats which we tested in the Ross Sea as part of the ROSETTA-Ice project. Combining these altimeter datasets and in situ ocean datasets will allow us to examine processes causing basal melting in the sub-ice-shelf cavities.
NASA Astrophysics Data System (ADS)
Rowan, Ann; Quincey, Duncan; Egholm, David; Gibson, Morgan; Irvine-Fynn, Tristram; Porter, Philip; Glasser, Neil
2016-04-01
Many mountain glaciers are characterised in their lower reaches by thick layers of rock debris that insulate the glacier surface from solar radiation and atmospheric warming. Supraglacial debris modifies the response of these glaciers to climate change compared to glaciers with clean-ice surfaces. However, existing modelling approaches to predicting variations in the extent and mass balance of debris-covered glaciers have relied on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. Moreover, few data exist describing the mass balance of debris-covered glaciers and many observations are only made over short periods of time, but these data are needed to constrain and validate numerical modelling experiments. To investigate the impact of supraglacial debris on the response of a glacier to climate change, we developed a numerical model that couples the flow of ice and debris to include important feedbacks between mass balance, ice flow and debris accumulation. We applied this model to a large debris-covered Himalayan glacier - Khumbu Glacier in the Everest region of Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming air temperatures and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, the volume of Khumbu Glacier has reduced by 34%, while glacier area has reduced by only 6%. We predict a further decrease in glacier volume of 8-10% by AD2100 accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 years. For five months during the 2014 summer monsoon, we measured temperature profiles through supraglacial debris and proglacial discharge on Khumbu Glacier. We found that temperatures at the ice surface beneath 0.4-0.7 m of debris were sufficient to promote considerable amounts of ablation. Moreover, although temperatures within the debris layer decreased with depth at the start of the monsoon, later in the monsoon season thicker debris (0.7 m) appeared to retain more heat close to the glacier surface than thin debris (0.4 m). Remote sensing observations indicate that Khumbu Glacier is losing mass more rapidly than is predicted by our model, particularly as ice cliffs and supraglacial ponds enhance ablation locally, and our field observations suggest an additional mechanism for enhanced mass loss.
Glatz, Brittany; Sarupria, Sapna
2018-01-23
Ice is ubiquitous in nature, and heterogeneous ice nucleation is the most common pathway of ice formation. How surface properties affect the propensity to observe ice nucleation on that surface remains an open question. We present results of molecular dynamics studies of heterogeneous ice nucleation on model surfaces. The models surfaces considered emulate the chemistry of kaolinite, an abundant component of mineral dust. We investigate the interplay of surface lattice and hydrogen bonding properties in affecting ice nucleation. We find that lattice matching and hydrogen bonding are necessary but not sufficient conditions for observing ice nucleation at these surfaces. We correlate this behavior to the orientations sampled by the metastable supercooled water in contact with the surfaces. We find that ice is observed in cases where water molecules not only sample orientations favorable for bilayer formation but also do not sample unfavorable orientations. This distribution depends on both surface-water and water-water interactions and can change with subtle modifications to the surface properties. Our results provide insights into the diverse behavior of ice nucleation observed at different surfaces and highlight the complexity in elucidating heterogeneous ice nucleation.
Development of a novel nanoscratch technique for quantitative measurement of ice adhesion strength
NASA Astrophysics Data System (ADS)
Loho, T.; Dickinson, M.
2018-04-01
The mechanism for the way that ice adheres to surfaces is still not well understood. Currently there is no standard method to quantitatively measure how ice adheres to surfaces which makes ice surface studies difficult to compare. A novel quantitative lateral force adhesion measurement at the micro-nano scale for ice was created which shears micro-nano sized ice droplets (less than 3 μm in diameter and 100nm in height) using a nanoindenter. By using small ice droplets, the variables associated with bulk ice measurements were minimised which increased data repeatability compared to bulk testing. The technique provided post- testing surface scans to confirm that the ice had been removed and that measurements were of ice adhesion strength. Results show that the ice adhesion strength of a material is greatly affected by the nano-scale surface roughness of the material with rougher surfaces having higher ice adhesion strength.
A direct evidence of vibrationally delocalized response at ice surface.
Ishiyama, Tatsuya; Morita, Akihiro
2014-11-14
Surface-specific vibrational spectroscopic responses at isotope diluted ice and amorphous ice are investigated by molecular dynamics (MD) simulations combined with quantum mechanics/molecular mechanics calculations. The intense response specific to the ordinary crystal ice surface is predicted to be significantly suppressed in the isotopically diluted and amorphous ices, demonstrating the vibrational delocalization at the ordinary ice surface. The collective vibration at the ice surface is also analyzed with varying temperature by the MD simulation.
Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.
Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip
2016-04-06
The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.
Sink or Swim: Ions and Organics at the Ice-Air Interface.
Hudait, Arpa; Allen, Michael T; Molinero, Valeria
2017-07-26
The ice-air interface is an important locus of environmental chemical reactions. The structure and dynamics of the ice surface impact the uptake of trace gases and kinetics of reactions in the atmosphere and snowpack. At tropospheric temperatures, the ice surface is partially premelted. Experiments indicate that ions increase the liquidity of the ice surface but hydrophilic organics do not. However, it is not yet known the extent of the perturbation solutes induce at the ice surface and what is the role of the disordered liquid-like layer in modulating the interaction between solutes and their mobility and aggregation at the ice surface. Here we use large-scale molecular simulations to investigate the effect of ions and glyoxal, one of the most abundant oxygenated volatile organic compounds in the atmosphere, on the structure, dynamics, and solvation properties of the ice surface. We find that the premelted surface of ice has unique solvation properties, different from those of liquid water. The increase in surface liquidity resulting from the hydration of ions leads to a water-mediated attraction of ions at the ice surface. Glyoxal molecules, on the other hand, perturb only slightly the surface of ice and do not experience water-driven attraction. They nonetheless accumulate as dry agglomerates at the ice surface, driven by direct interactions between the organic molecules. The enhanced attraction and clustering of ions and organics at the ice surface may play a significant role in modulating the mechanism and rate of heterogeneous chemical reactions occurring at the surface of atmospheric ice particles.
NASA Astrophysics Data System (ADS)
Yang, S.; Christensen, J. H.; Madsen, M. S.; Ringgaard, I. M.; Petersen, R. A.; Langen, P. P.
2017-12-01
Greenland ice sheet (GrIS) is observed undergoing a rapid change in the recent decades, with an increasing area of surface melting and ablation and a speeding mass loss. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems incorporating with an explicit and physically consistent ice sheet module. In this work we study the GrIS evolution and its interaction with the climate system using a fully coupled global climate model with a dynamical ice sheet model for the GrIS. The coupled model system, EC-EARTH - PISM, consisting of the atmosphere-ocean-sea ice model system EC-EARTH, and the Parallel Ice Sheet Model (PISM), has been employed for a 1400-year simulation forced by CMIP5 historical forcing from 1850 to 2005 and continued along an extended RCP8.5 scenario with the forcing peaking at 2200 and stabilized hereafter. The simulation reveals that, following the anthropogenic forcing increase, the global mean surface temperature rapidly rises about 10 °C in the 21st and 22nd century. After the forcing stops increasing after 2200, the temperature change slows down and eventually stabilizes at about 12.5 °C above the preindustrial level. In response to the climate warming, the GrIS starts losing mass slowly in the 21st century, but the ice retreat accelerates substantially after 2100 and ice mass loss continues hereafter at a constant rate of approximately 0.5 m sea level rise equivalence per 100 years, even as the warming rate gradually levels off. Ultimately the volume and extent of GrIS reduce to less than half of its preindustrial value. To understand the interaction of GrIS with the climate system, the characteristics of atmospheric and oceanic circulation in the warm climate are analyzed. The circulation patterns associated with the negative surface mass balance that leads to GrIS retreat are investigated. The impact of the simulated surface warming on the ice flow and ice dynamics is explored.
NASA Astrophysics Data System (ADS)
Stephani, E.; Fortier, D.; Shur, Y.
2012-12-01
In some areas that remained unglaciated during the Late Pleistocene, inorganic and organic sedimentation supported syngenetic upward permafrost development and the creation of so-called yedoma deposits (Ice Complex). This type of periglacial deposit is usually very ice-rich and is highly unstable upon thawing. As this deposit thaws, the landscape goes from a carbon sink to a carbon and inorganic sediment source. This carbon can be released into the environment or transformed to CH4. Yedoma deposits have been extensively studied in Russia and more recently in Alaska. However, very few studies have focused on yedomas of Yukon. With the objective to provide regional information on yedoma distribution in North America, we present here preliminary field evidences of a yedoma deposit near Beaver Creek, close to current Alaska border. 28 boreholes were core-drilled, and cores were described and analyzed in the laboratory. Well-developed microlenticular cryostructures in silt and numerous small rootlets are typical of yedoma deposit. Tiny ice lenses are formed in fine-grained sediment by cryosuction and rootlets gets incorporated into the permafrost as the table rises syngenetically in response to surface sedimentation. During sedimentary accumulation, when sedimentation slows down, peat layers can be formed at the surface. This change in material properties often lead to the development of belt-like cryostructures (thick ice lenses separated by reticulate ice veins). At Beaver Creek, the microlenticular and belt-like cryofacies with rootlets (typical of syngenetic ice-rich yedoma) were abundant in Units 2A and 2C. The average ice content of Units 2A and 2C was respectively 91 % and 109 %, and the organic matter content (loss on ignition) was 6 % and 8 %. Significant thaw strain was measured in Units 2A (50%) and 2C (35%). Interestingly Unit 2B was very ice-poor (gravimetric ice content: 47 %, thaw strain: 9 %) and showed only porous cryostructure (interstitial ice) in silt (3 % organic matter). This was interpreted as ice-rich fine-grained soils that thawed, drained, and refroze afterward. This ice-poor layer with sediment deformations (e.g. fold, fault, diapir) is called 'taberal deposit' in the Russian literature. This layer can be observed in yedoma deposit in areas which were affected by permafrost degradation. Yedoma deposits are usually characterized by the presence of tall and wide ice wedges. These wedges form continuously as the permafrost table rises in response to surface sedimentation and their size is thus a function of sedimentation rate and time. In our study, we observed ice wedges at least 8 m tall (tip of the wedge > maximum coring depth). The bottom of the ice wedges was located in lodgement till (> 11 m below surface). This deposit was covered by woody peat deposit up to 4.9 m thick and was thus interpreted to be older than MIS 3. We propose that frost cracking first occurred in the peat and the underlying diamicton after the last interglacial and that upward syngenetic ice wedge growth followed silt accumulation over thousands of years sometimes during the last glacial period. The top of the ice wedges were located at about 2.5 m depth in Unit 2B. This indicates that ice wedge growth was interrupted by an episode of permafrost degradation and resumed afterward during accumulation of unit 2A.
Shape-Constrained Segmentation Approach for Arctic Multiyear Sea Ice Floe Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Brucker, Ludovic; Ivanoff, Alvaro; Tilton, James C.
2013-01-01
The melting of sea ice is correlated to increases in sea surface temperature and associated climatic changes. Therefore, it is important to investigate how rapidly sea ice floes melt. For this purpose, a new Tempo Seg method for multi temporal segmentation of multi year ice floes is proposed. The microwave radiometer is used to track the position of an ice floe. Then,a time series of MODIS images are created with the ice floe in the image center. A Tempo Seg method is performed to segment these images into two regions: Floe and Background.First, morphological feature extraction is applied. Then, the central image pixel is marked as Floe, and shape-constrained best merge region growing is performed. The resulting tworegionmap is post-filtered by applying morphological operators.We have successfully tested our method on a set of MODIS images and estimated the area of a sea ice floe as afunction of time.
Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.
2017-12-01
Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and greater wave activity. Our findings suggest that increasing winds, along with retreating sea ice and thawing permafrost, represent another important contributor to the growing problem of Arctic coastal erosion.
NASA Astrophysics Data System (ADS)
Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N. B.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.
2014-07-01
The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75°37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP (North Greenland Ice Core Project) ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
Hodson, A. J.
2010-12-01
It is well known from ice cores that organic and mineral debris accumulates within glacier ice following atmospheric deposition. However, the concentrations of such debris are usually greatest upon the ice surface, especially at the margins of continental glaciers and ice sheets, where it forms mm-scale aggregate particles called “cryoconite”. According to the literature, cryoconite covers about 2 % of the ablation areas of glaciers outside Greenland and Antarctica, equivalent to a mass loading of ca. 25 g/m2. Of the great ice sheets not included in this figure, Greenland is the easiest to estimate, and new observations from the NE and SW sectors indicate mass loadings in the range 17 - 440 g/m2. Studies of cryoconite often report the presence of a significant biomass (usually 10^4 - 10^7 cells/g) that is capable of a wide range of biogeochemical functions. The first part of this presentation will therefore explore the contention that the formation of cryoconite represents the first stages of pedogenesis, resulting in the production of soil-type aggregates that inoculate glacial forefields following glacier retreat. Emphasis will be given to the relevant processes that result in aggregate formation, including rapid cell-mineral attachment within melting snowpacks and the slower, biological processes of cementation within thermodynamically stable habitats such as cryoconite holes. The second part of the presentation will use examples from Svalbard, Greenland and Antarctica to consider the carbon balance of the cryoconite during the longest phase of its life cycle: upon the ice. It will be demonstrated how the efficacy of photosynthesis is strongly influenced by thermodynamic conditions at or near this surface. Data from the Greenland and Antarctic ice sheets will show how thermal equilibration decouples variations in photosynthesis from variations in incident radiation over timescales > 1 d, resulting in an equitable, low-carbon economy for aggregates within deep cryoconite holes. Here rates of primary production can be low (e.g. average 2.2 µg C/g (cryoconite)/d in East Antarctica). However, upon maritime glaciers and perhaps parts of the Greenland Ice Sheet margin, high rates of sensible heat transfer maintain cryoconite aggregates close to or upon the ice surface, rendering a communal existence far less likely. This near-surface habitat enables higher rates of photosynthesis (e.g. average 17 µgC/g/d in Svalbard), but also means the probability of meltwater flushing from the ice surface is greatly increased.
Characterization of nitrogen ice on Pluto's surface from 1-4 micron spectroscopy
NASA Astrophysics Data System (ADS)
Young, E.; Olkin, C.; Grundy, W.; Young, L.; Schmitt, B.; Tokunaga, A.; Owen, T.; Roush, T.; Terada, H.
Nitrogen ice is the predominant ice on Pluto's surface. Methane and CO have also been identified (e.g., Grundy & Buie 2001), but they are thought to be trace consituents relative to N2 , mainly because of the strength of nitrogen's 2.147 µm feature. It is assumed that the temperature of the surface N2 frost controls the column abundance of Pluto's atmosphere through vapor pressure equilibrium. The vapor pressures of CO and CH4 are about 5 and 10,000 times less than that of N2 at a typical temperature for Pluto's surface. There is spectroscopic evidence that CH4 ice exists as a dissolved constituent in a predominantly nitrogen ice matrix as well as separate, pure CH4 ice. It would be interesting to know what fraction of N2 ice is pure for purposes of modeling the surface/atmosphere interactions on Pluto. We present spectroscopic modeling to show that the fraction of pure N2 ice on Pluto is very small indeed - conservatively less than 6% by area. We will present spectral observations and modeling results from the IRTF1 , W.M. Keck2 and Subaru3 Observatories spanning 1.0 to 4.0 µm. We have implemented a Hapke model (Hapke 1993) to constrain the abundance and states of N2 ice and CH4 ice. The depth of the Pluto spectrum at 3.3 µm effectively limits the amount of pure N2 ice that can be present on Pluto. Grundy, W. M. & Buie, M. W. 2001, Icarus, 153, 248. Hapke, B. 1993, Theory of Reflectance and Emittance Spectroscopy, Cambridge Univ. Press, New York. 1 Based in part on data obtained at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. 2 The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The 1 Observatory was made possible by the generous financial support of the W.M. Keck Foundation. 3 Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. 2
Evaluation of CryoSat-2 SARIn vs. SAR Arctic Sea Ice Freeboard
NASA Astrophysics Data System (ADS)
Di Bella, A.; Skourup, H.; Forsberg, R.
2017-12-01
Earth climate is a complex system which behaviour is dictated by the interaction among many components. Sea ice, one of these fundamental components, interacts directly with the oceans and the atmosphere playing an important role in defining heat exchange processes and, thus, impacting weather patterns on a global scale. Sea ice thickness estimates have notably improved in the last couple of decades, however, the uncertainty of such estimates is still significant. For the past 7 years, the ESA CryoSat-2 (CS2) mission has provided a unique opportunity to observe polar regions due to its extended coverage up to 88° N/S. The SIRAL radar altimeter on board CS2 enables the sea ice community to estimate sea ice thickness by measuring the sea ice freeboard. Studies by Armitage and Davidson [2014] and Di Bella et al. [submitted] showed that the interferometric capabilities of SIRAL can be used to retrieve an increased number of valid sea surface heights in sea ice covered regions and thus reduce the random uncertainty of the estimated freeboards, especially in areas with a sparse lead distribution. This study focuses on the comparison between sea ice freeboard estimates obtained by processing L1B SARIn data inside the Wingham box - an area in the Arctic Ocean where SIRAL has acquired SARIn data for 4 years - and those obtained by processing L1B SAR data in the area surrounding the box. This comparison evaluates CS2 performance on Arctic sea ice from a statistical perspective by analysing the continuity of freeboard estimates in areas where SIRAL switches between SAR and SARIn acquisition modes. Data collected during the Operation IceBridge and CryoVEx field campaigns are included in the study as an additional validation. Besides investigating the possibility of including the phase information from SIRAL in currently available freeboard estimates, this results provide valuable information for a possible SARIn CryoSat follow-on mission.
Modeling of Antarctic Sea Ice in a General Circulation Model.
NASA Astrophysics Data System (ADS)
Wu, Xingren; Simmonds, Ian; Budd, W. F.
1997-04-01
A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distribution. The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. A lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution.
Ultrastructure in frozen/etched saline solutions: on the internal cleansing of ice.
Menger, Fredric M; Galloway, Ashley L; Chlebowski, Mary E; Apkarian, Robert P
2004-05-19
Seawater, with its 3.5% salt content, freezes into hexagonal ice (Ih) that encloses concentrated brine within its matrix. When unsubmerged sea ice reaches a certain height and temperature, the brine drains downward through narrow channels. This mechanism was now modeled by frozen 2-3.5% saline as investigated by cryo-etch high-resolution secondary electron microscopy. Thus, saline was either plunge-frozen in liquid ethane at -183 degrees C or else high-pressure frozen to -105 degrees C in 5-6 ms. Ice from a freshly exposed surface was then subjected to a high-vacuum sublimation ("etching"), a procedure that removes pure bulk ice in preference to ice from frozen hydrated salt. After chromium-coating the etched surface with a 2-nm film, the sample was examined by cryo-HRSEM. Granular icy "fences" were seen surrounding empty areas where amorphous ice had originally resided. Since the fences, about 1-2 mum high, survived the etching, it is likely that they consist of frozen brine. The presence of such fences suggests that, during freezing, saline can purge itself of salt with remarkable speed (5-6 ms). Alternatively, channels (perhaps routed around submicroscopic crystallites of cubic ice (Ic) embedded in the amorphous ice at -105 degrees C) can guide the migration of salt to the periphery of ice patches. Macromolecules fail to form fences because they diffuse too slowly or because they are too large to pass through the channels.
NASA Astrophysics Data System (ADS)
Emmert, Adrian; Kneisel, Christof
2017-04-01
Uertsch rockglacier (46.61° N, 9.84°E, ca. 2500m asl.) is a tongue-shaped 300m x 100m landform at the head of a small high mountain valley in the Eastern Swiss Alps. Located at the lower end of possible permafrost existence, the rockglacier shows indications of permafrost decay although borehole temperature measurements exhibit an at least partly occurrence of permanently frozen subsurface conditions. To delimit the extent of the frozen area and to characterize subsurface structures, we performed three adjacent 3-D Electrical Resistivity Imaging (ERI) surveys consisting of data from altogether 138 merged 2-D profiles, covering nearly the entire rockglacier by an investigation area of more than 2.5 ha. More than 47000 data points of Wenner-Schlumberger and Dipol-Dipol electrode arrays grant sufficient data coverage. Ground-truthing was achieved through borehole temperature measurements and multiple comparative ground-penetrating radar (GPR) and seismic refraction tomography (SRT) surveys. Results show that the rockglacier today lacks a consistent permafrost table and only shows a patchy permafrost distribution. Several structures differing in geometry and electric resistivity show a complex pattern of ice-rich, ice-poor and ice-free areas. We could identify glacial influence in the root zone of the rockglacier, where a 3200m2 perennial surface ice field is visible. In a downslope direction, a shallow layer of high resistivity values, which is limited to the shallow subsurface, follows the ice field and indicates a genesis by refreezing meltwater. The central part of the rockglacier also shows traces of glacial interaction by the occurrence of a several meters thick buried ice patch in the shallow subsurface at a marginal position. Next to this position, in an area where longitudinal surface ridges are exposed, modelled resistivity values indicate frozen conditions with relatively low ice content, limited to the shallow subsurface. We assume that these structures are likely connected to permafrost creep processes. The frontal part of the rockglacier is affected by a strong ridge-and-furrow topography with arcuate ridge structures. Frozen conditions within these structures indicate an increase of ice content by thickening through compressive flow. Our study reflects the complexity of landform evolution for Uertsch rockglacier, where glacial and periglacial processes occur in close proximity. This emphasize the value of comprehensive 3-D investigations to assess the geometry and characteristics of larger subsurface structures.
NASA Astrophysics Data System (ADS)
Kanevskiy, Mikhail; Shur, Yuri; Jorgenson, Torre; Brown, Dana R. N.; Moskalenko, Nataliya; Brown, Jerry; Walker, Donald A.; Raynolds, Martha K.; Buchhorn, Marcel
2017-11-01
Widespread degradation of ice wedges has been observed during the last decades in numerous areas within the continuous permafrost zone of Eurasia and North America. To study ice-wedge degradation, we performed field investigations at Prudhoe Bay and Barrow in northern Alaska during 2011-2016. In each study area, a 250-m transect was established with plots representing different stages of ice-wedge degradation/stabilization. Field work included surveying ground- and water-surface elevations, thaw-depth measurements, permafrost coring, vegetation sampling, and ground-based LiDAR scanning. We described cryostratigraphy of frozen soils and stable isotope composition, analyzed environmental characteristics associated with ice-wedge degradation and stabilization, evaluated the vulnerability and resilience of ice wedges to climate change and disturbances, and developed new conceptual models of ice-wedge dynamics that identify the main factors affecting ice-wedge degradation and stabilization and the main stages of this quasi-cyclic process. We found significant differences in the patterns of ice-wedge degradation and stabilization between the two areas, and the patterns were more complex than those previously described because of the interactions of changing topography, water redistribution, and vegetation/soil responses that can interrupt or reinforce degradation. Degradation of ice wedges is usually triggered by an increase in the active-layer thickness during exceptionally warm and wet summers or as a result of flooding or disturbance. Vulnerability of ice wedges to thermokarst is controlled by the thickness of the intermediate layer of the upper permafrost, which overlies ice wedges and protects them from thawing. In the continuous permafrost zone, degradation of ice wedges rarely leads to their complete melting; and in most cases wedges eventually stabilize and can then resume growing, indicating a somewhat cyclic and reversible process. Stabilization of ice wedges after their partial degradation makes them better protected than before degradation because the intermediate layer is usually 2 to 3 times thicker on top of stabilized ice wedges than on top of initial ice wedges in undisturbed conditions. As a result, the likelihood of formation of large thaw lakes in the continuous permafrost zone triggered by ice-wedge degradation alone is very low.
NASA Astrophysics Data System (ADS)
Motyka, R.; Fahnestock, M.; Howat, I.; Truffer, M.; Brecher, H.; Luethi, M.
2008-12-01
Jakobshavn Isbrae drains about 7 % of the Greenland Ice Sheet and is the ice sheet's largest outlet glacier. Two sets of high elevation (~13,500 m), high resolution (2 m) aerial photographs of Jakobshavn Isbrae were obtained about two weeks apart during July 1985 (Fastook et al, 1995). These historic photo sets have become increasingly important for documenting and understanding the dynamic state of this outlet stream prior to the rapid retreat and massive ice loss that began in 1998 and continues today. The original photogrammetric analysis of this imagery is summarized in Fastook et al. (1995). They derived a coarse DEM (3 km grid spacing) covering an area of approximately 100 km x 100 km by interpolating several hundred positions determined manually from block-aerial triangulation. We have re-analyzed these photos sets using digital photogrammetry (BAE Socet Set©) and significantly improved DEM quality and resolution (20, 50, and 100 m grids). The DEMs were in turn used to produce high quality orthophoto mosaics. Comparing our 1985 DEM to a DEM we derived from May 2006 NASA ATM measurements showed a total ice volume loss of ~ 105 km3 over the lower drainage area; almost all of this loss has occurred since 1997. Ice stream surface velocities derived from the 1985 orthomosaics showed speeds of 20 m/d on the floating tongue, diminishing to 5 m/d at 50 km further upstream. Velocities have since nearly doubled along the ice stream during its current retreat. Fastook, J.L., H.H. Brecher, and T.J. Hughes, 1995. J.of Glaciol. 11 (137), 161-173.
Uptake of HNO3 on water-ice and coadsorption of HNO3 and HCl in the temperature range 210-235 K
NASA Astrophysics Data System (ADS)
Hynes, Robert G.; Fernandez, Miguel A.; Cox, R. Anthony
2002-12-01
The uptake of HNO3 on water-ice films was investigated in a coated wall flow reactor under tropospheric temperature conditions. Experiments were performed in the "ice" region of the HNO3-H2O phase diagram. With HNO3 partial pressures in the range of (0.3-2.0) × 10-6 Torr, continuous uptake was observed below 215 K; whereas above 215 K, the uptake was time dependent. Using the geometric surface area of the ice film, the surface coverage at 218 K was 3.0 × 1014 molecules/cm2, decreasing to 1.5 × 1014 molecules/cm2 at 233 K; the timescales for saturation were 700 and 800 s at 218 and 233 K, respectively. The surface coverage was found to change by a factor of 2 over a 10-fold change in HNO3 partial pressure. By assuming that the surface coverage can be represented by a Langmuir isotherm for dissociative adsorption, the enthalpy of adsorption of HNO3 onto ice was found to be -(54.0 ± 2.6) kJ/mol. At a constant HNO3 partial pressure, the maximum uptake coefficients, γ, were measured as a function of temperature, decreasing from 0.03 at 215 K down to 0.006 at 235 K. The uptake coefficients at 218 K were not significantly affected by changes in HNO3 partial pressure. The uptake of HCl at 218 K on ice surfaces previously dosed with HNO3 was found to be reversible, and the coadsorption of HNO3 with HCl indicates that HCl is displaced from surface sites by HNO3 molecules. Uptake of HNO3 on HCl-dosed surfaces showed that HNO3 molecules displace ˜1013 molecules/cm3 of HCl. The efficiency of cirrus clouds in scavenging HNO3 is discussed, as well as the implications for chlorine activation reactions under tropospheric temperature conditions.
Cassini radar views the surface of Titan.
Elachi, C; Wall, S; Allison, M; Anderson, Y; Boehmer, R; Callahan, P; Encrenaz, P; Flamini, E; Franceschetti, G; Gim, Y; Hamilton, G; Hensley, S; Janssen, M; Johnson, W; Kelleher, K; Kirk, R; Lopes, R; Lorenz, R; Lunine, J; Muhleman, D; Ostro, S; Paganelli, F; Picardi, G; Posa, F; Roth, L; Seu, R; Shaffer, S; Soderblom, L; Stiles, B; Stofan, E; Vetrella, S; West, R; Wood, C; Wye, L; Zebker, H
2005-05-13
The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of approximately 0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface appears to be young, with few impact craters. Scattering and dielectric properties are consistent with porous ice or organics. Dark patches in the radar images show high brightness temperatures and high emissivity and are consistent with frozen hydrocarbons.
Cassini radar views the surface of Titan
Elachi, C.; Wall, S.; Allison, M.; Anderson, Y.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Franceschetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.; Johnson, W.; Kelleher, K.; Kirk, R.; Lopes, R.; Lorenz, R.; Lunine, J.; Muhleman, D.; Ostro, S.; Paganelli, F.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Soderblom, L.; Stiles, B.; Stofan, E.; Vetrella, S.; West, R.; Wood, C.; Wye, L.; Zebker, H.
2005-01-01
The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of ???0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface appears to be young, with few impact craters. Scattering and dielectric properties are consistent with porous ice or organics. Dark patches in the radar images show high brightness temperatures and high emissivity and are consistent with frozen hydrocarbons.
The extreme melt across the Greenland ice sheet in 2012
NASA Astrophysics Data System (ADS)
Nghiem, S. V.; Hall, D. K.; Mote, T. L.; Tedesco, M.; Albert, M. R.; Keegan, K.; Shuman, C. A.; DiGirolamo, N. E.; Neumann, G.
2012-10-01
The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors - including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder - are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research.
Response of faults to climate-driven changes in ice and water volumes on Earth's surface.
Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios
2010-05-28
Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.
NASA Astrophysics Data System (ADS)
Box, J. E.; Hubbard, A.; Howat, I. M.; Csatho, B. M.; Decker, D. T.; Bates, R.; Tulaczyk, S. M.
2010-12-01
On 4 August, 2010, 275 square km of the front of the floating Petermann Glacier, far northwest Greenland, broke away. The glacier effectively retreated 15 km. Petermann has retreated 21 km since year 2000. Consulting available imagery, publications, and maps spanning the past century, we conclude that this is a retreat to a minimum extent in the observational record. This glacier is not the only ice are loser in Greenland. GRACE observations verify the concern of increased mass budget deficit. Retreat is ongoing at the 110 km wide Humboldt glacier and at the 23 km wide Zachariae ice stream. Humboldt, Zachariae, and Petermann (16 km wide) are among a handful of large marine-terminating outlets that have bedrock trenches that lead inland below sea level to the thick, interior reservoir of the ice sheet. Sleeping giants are awakening. Our area change survey of the 35 widest Greenland outlets indicates an annual marine-terminating glacier area loss rate in excess of 130 sq km per year. Here, we evaluate in this context the mechanisms for marine-terminating glacier retreat, dynamical responses to calving, and the apparent climate forcings. The work thus consults a suite of data sets, including: long-term meteorological station records; satellite-derived sea and land surface temperatures; satellite-derived sea ice extent; regional climate model output; oceanographic casts; time lapse cameras, surface elevation change, and tidal records. Cumulative area change at Greenland’s glacier top 5 “losers”. 2010 areas are measured ~1 month prior to the end of summer melt when the survey usually is made . We do not expect 2010 area changes to be much different using the future data. If anything, we expect the losses to be larger. Click here for a full resolution graphic.
Possible Sea Ice Impacts on Oceanic Deep Convection
NASA Technical Reports Server (NTRS)
Parkinson, C. L.
1984-01-01
Many regions of the world ocean known or suspected to have deep convection are sea-ice covered for at least a portion of the annual cycle. As this suggests that sea ice might have some impact on generating or maintaining this phenomenon, several mechanisms by which sea ice could exert an influence are presented in the following paragraphs. Sea ice formation could be a direct causal factor in deep convection by providing the surface density increase necessary to initiate the convective overturning. As sea ice forms, either by ice accretion or by in situ ice formation in open water or in lead areas between ice floes, salt is rejected to the underlying water. This increases the water salinity, thereby increasing water density in the mixed layer under the ice. A sufficient increase in density will lead to mixing with deeper waters, and perhaps to deep convection or even bottom water formation. Observations are needed to establish whether this process is actually occurring; it is most likely in regions with extensive ice formation and a relatively unstable oceanic density structure.
SPH Modelling of Sea-ice Pack Dynamics
NASA Astrophysics Data System (ADS)
Staroszczyk, Ryszard
2017-12-01
The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.
The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway
NASA Astrophysics Data System (ADS)
Lydersen, Christian; Assmy, Philipp; Falk-Petersen, Stig; Kohler, Jack; Kovacs, Kit M.; Reigstad, Marit; Steen, Harald; Strøm, Hallvard; Sundfjord, Arild; Varpe, Øystein; Walczowski, Waldek; Weslawski, Jan Marcin; Zajaczkowski, Marek
2014-01-01
Approximately 60% of Svalbard's land areas are glaciated at the present time. The Archipelago has more than 1100 glaciers (> 1 km2) and 163 of these are “tidewater glaciers” - that is glaciers that terminate (with their calving front) at the sea. It has been known for a long time that these glacier front areas are important feeding areas for seabirds and marine mammals. Herein, we review current knowledge regarding the importance of these areas for these animals and reflect upon the processes that create these apparent “hotspots”. Kittiwakes Rissa tridactyla, routinely dominate avian assemblages in front of glaciers in Svalbard, but fulmars Fulmarus glacialis, ivory gulls Pagophila eburnea and glaucous gulls Larus hyperboreus also contribute to aggregations, which can sometimes comprise many thousands of individuals. The birds are often found in the so-called “brown zone”, which is an area in front of tidewater glaciers that is ice-free due to currents and muddy due to suspended sediments. Animals at these sites typically have their stomachs full of large zooplankton or fish. These brown zones are also foraging hotspots for Svalbard's ringed seals (Pusa hispida) and white whales (Delphinapterus leucas). Prime breeding habitat for ringed seals in Svalbard occurs deep in the fjords where ice pieces calved from the glacier fronts become frozen into land-fast sea-ice, promoting the accumulation of snow to a depth suitable for ringed seal females to dig out birth lairs above breathing holes in the ice. These pupping areas are important hunting areas for polar bears (Ursus maritimus) in spring, especially female bears with cubs of the year during the period following emergence from the winter/birthing den. Glacier-ice pieces floating in coastal areas are also important for all seal species in the region as dry platforms during moulting and also as general resting platforms for both birds and seals. During the last decade there have been several years with a complete lack of spring sea ice in many of the fjords along the west coast of Spitsbergen. During the spring periods in these years, bearded seals (Erignathus barbatus) have replaced their regular sea-ice platform with glacier ice, using it as a solid substrate for both birthing and nursing as well as general resting. The mechanisms that create foraging hotspots at the fronts of tidewater glaciers are related to the massive subsurface plumes of freshwater discharged from the glacier fronts. As these plumes rise towards the surface they entrain large volumes of ambient water, tens to hundreds of times the original discharge volume. This water is drawn from all depth levels as the plume ascends. This entrainment ensures a continuous resupply of intermediate depth waters from the outer parts of the fjords towards the glacier front and greatly amplifies the general estuarine circulation. The intermediate water masses carry plankton from a broad area, including the outer fjord, into the glacier front area, where they get entrained in the plume rising towards the surface, and often become stunned or die from freshwater osmotic shock. These small animals fall as an easy prey to the surface feeding predators. Large, strong swimming marine zooplankton species can sometimes escape by swimming below the inflow of marine water. But, they then become concentrated in a water layer near the bottom, making them of interest and susceptible to predators. The intermediate water masses also bring nutrients towards the glacier fronts where they are transported up to the surface layer where they can subsequently be utilized for post-bloom primary production. However, this tends to have greatest influence some distance away from the glacier front, when much of the outflow sediment has settled out. Currently, the mass balance for Svalbard glaciers is negative and climate change predictions for the future suggest continued warming, and hence continued glacial retreat. This will result in a reduction in both the number of glaciers calving into the ocean in Svalbard and the total length of calving fronts around the Archipelago. Similar to the retraction of the northern sea-ice edge (which is another diminishing foraging hotspot for these same arctic vertebrates), the climate-warming-induced changes in glaciers will likely lead to substantial distributional shifts and abundance reductions for many arctic species.
Buried glacier ice in southern Iceland and its wider significance
NASA Astrophysics Data System (ADS)
Everest, Jeremy; Bradwell, Tom
2003-06-01
Geo-electrical resistivity surveys have been carried out at recently deglaciated sites in front of three glaciers in southern Iceland: Skeiðarájökull, Hrútárjökull, and Virkisjökull. The results show the presence of old glacier ice beneath debris mantles of various thickness. We conclude that buried glacier ice has survived for at least 50 years at Virkisjökull and Hrútárjökull, and probably for over 200 years at Skeiðarájökull. Additional data from a further site have identified a discontinuous ice core within 18th-century jökulhlaup deposits. Photographic and lichenometric evidence show that the overlying debris has been relatively stable, and hence melting of the ice at all four sites is proceeding slowly due to the heat-shielding properties of the overburden. The geomorphic implications are pertinent when considering the potential longevity of buried ice. The possible implications for dating techniques, such as lichenometry, radiocarbon dating and cosmogenic surface-exposure dating are also important, as long-term readjustments of surface forms may lead to dating inaccuracy. Finally, it is recognised that landscape development in areas of stagnant ice topography may post-date initial deglaciation by a considerable degree.
Potential sources of bacteria colonizing the cryoconite of an Alpine glacier
Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio
2017-01-01
We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas. We used high throughput DNA sequencing to identify Operational Taxonomic Units (OTUs) present in cryoconite holes and three ice-marginal environments, the moraines, the glacier forefield, and a large (> 3 m high) ice-cored dirt cone occurring on the glacier surface. Bacterial communities of cryoconite holes were different from those of ice-marginal environments and hosted fewer OTUs. However, a network analysis revealed that the cryoconite holes shared more OTUs with the moraines and the dirt cone than with the glacier forefield. Ice-marginal environments may therefore act as sources of bacteria for cryoconite holes, but differences in environmental conditions limit the number of bacterial strains that may survive in them. At the same time, cryoconite holes host a few OTUs that were not found in any ice-marginal environment we sampled, thus suggesting that some bacterial populations are positively selected by the specific environmental conditions of the cryoconite holes. PMID:28358872
Potential sources of bacteria colonizing the cryoconite of an Alpine glacier.
Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto
2017-01-01
We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas. We used high throughput DNA sequencing to identify Operational Taxonomic Units (OTUs) present in cryoconite holes and three ice-marginal environments, the moraines, the glacier forefield, and a large (> 3 m high) ice-cored dirt cone occurring on the glacier surface. Bacterial communities of cryoconite holes were different from those of ice-marginal environments and hosted fewer OTUs. However, a network analysis revealed that the cryoconite holes shared more OTUs with the moraines and the dirt cone than with the glacier forefield. Ice-marginal environments may therefore act as sources of bacteria for cryoconite holes, but differences in environmental conditions limit the number of bacterial strains that may survive in them. At the same time, cryoconite holes host a few OTUs that were not found in any ice-marginal environment we sampled, thus suggesting that some bacterial populations are positively selected by the specific environmental conditions of the cryoconite holes.
NASA Technical Reports Server (NTRS)
Key, Jeff; Maslanik, James; Steffen, Konrad
1995-01-01
During the second phase project year we have made progress in the development and refinement of surface temperature retrieval algorithms and in product generation. More specifically, we have accomplished the following: (1) acquired a new advanced very high resolution radiometer (AVHRR) data set for the Beaufort Sea area spanning an entire year; (2) acquired additional along-track scanning radiometer(ATSR) data for the Arctic and Antarctic now totalling over eight months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) developed cloud masking procedures for both AVHRR and ATSR; (6) generated a two-week bi-polar global area coverage (GAC) set of composite images from which IST is being estimated; (7) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; and (8) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and special sensor microwave imager (SSM/I).
Fabrication of micro-patterned aluminum surfaces for low ice adhesion strength
NASA Astrophysics Data System (ADS)
Jeon, Jaehyeon; Jang, Hanmin; Chang, Jinho; Lee, Kwan-Soo; Kim, Dong Rip
2018-05-01
We report a fabrication method to obtain a low-ice-adhesion aluminum surface by surface texturing using solution etching and subsequent thin-film coating. Specifically, the textured surface has microstructures of a low aspect ratio, that is, with a much smaller height than width. Such microstructures can effectively reduce ice-adhesion strengths by sliding the ice during detachment. Because our method is based on solution etching, it can be applied to curved surfaces with complex shapes for uniformly constructing the morphology of a low-ice-adhesion aluminum surface. Finally, the low-ice-adhesion aluminum surface reduces the ice-adhesion strengths by up to 95%.
Crustal movements due to Iceland's shrinking ice caps mimic magma inflow signal at Katla volcano.
Spaans, Karsten; Hreinsdóttir, Sigrún; Hooper, Andrew; Ófeigsson, Benedikt Gunnar
2015-05-20
Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.
Evidence for glaciation in Elysium
NASA Technical Reports Server (NTRS)
Anderson, Duwayne M.
1987-01-01
Evidence for the existence of permafrost and the surface modification due to frost effects and the presence of ice on Mars dates from early observations. Later analysis of the Viking Orbiter imagery produced evidence suggesting the former presence of ice sheets that could have played a part in shaping the surface of Mars. Similarities were pointed out between a number of streamlined Martian channel features and similar streamlined landforms created by Antarctic ice sheet movement. A study of Viking Orbiter imagery of Granicus Valles and the surrounding terrain in Elysium has produced further evidence of glaciation on Mars. Volcanism has played an important role in developing the landscapes of the Elysium region. A possible explanation is that subsidence occurred during formation of the Martian moberg ridges due to the melting of ground ice near the eruption area while at a distance most of the ground ice in the permafrost is still present and the original elevation was preserved. Meltwater during and following eruptions might be suddenly released during subglacial volcanism into Granicus Valles in one case and into Hrad Valles in the other. Fluvial erosion thus could have played a role in shaping both.
Archival processes of the water stable isotope signal in East Antarctic ice cores
NASA Astrophysics Data System (ADS)
Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean
2018-05-01
The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.
Thermodynamic and Dynamic Aspects of Ice Nucleation
NASA Technical Reports Server (NTRS)
Barahona, Donifan
2018-01-01
It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.
Sea ice and surface water circulation, Alaskan Continental Shelf
NASA Technical Reports Server (NTRS)
Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.
1973-01-01
The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.
Glacial lakes amplify glacier recession in the central Himalaya
NASA Astrophysics Data System (ADS)
King, Owen; Quincey, Duncan; Carrivick, Jonathan; Rowan, Ann
2016-04-01
The high altitude and high latitude regions of the world are amongst those which react most intensely to climatic change. Across the Himalaya glacier mass balance is predominantly negative. The spatial and temporal complexity associated with this ice loss across different glacier clusters is poorly documented however, and our understanding of the processes driving change is limited. Here, we look at the spatial variability of glacier hypsometry and glacial mass loss from three catchments in the central Himalaya; the Dudh Koshi basin, Tama Koshi basin and an adjoining section of the Tibetan Plateau. ASTER and SETSM digital elevation models (2014/15), corrected for elevation dependant biases, co-registration errors and along or cross track tilts, are differenced from Shuttle Radar Topographic Mission (SRTM) data (2000) to yield surface lowering estimates. Landsat data and a hypsometric index (HI), a classification scheme used to group glaciers of similar hypsometry, are used to examine the distribution of glacier area with altitude in each catchment. Surface lowering rates of >3 m/yr can be detected on some glaciers, generally around the clean-ice/debris-cover boundary, where dark but thin surface deposits are likely to enhance ablation. More generally, surface lowering rates of around 1 m/yr are more pervasive, except around the terminus areas of most glaciers, emphasising the influence of a thick debris cover on ice melt. Surface lowering is only concentrated at glacier termini where glacial lakes have developed, where surface lowering rates are commonly greater than 2.5 m/yr. The three catchments show contrasting hypsometric distributions, which is likely to impact their future response to climatic changes. Glaciers of the Dudh Koshi basin store large volumes of ice at low elevation (HI > 1.5) in long, debris covered tongues, although their altitudinal range is greatest given the height of mountain peaks in the catchment. In contrast, glaciers of the Tama Koshi store large amounts of ice in broad accumulation zones and are more equidimensional (HI -1.2 to 1.2). Glaciers flowing onto the Tibetan Plateau have a similar hypsometric distribution to glaciers of the Dudh Koshi, but terminate at a higher altitude overall, approximately 500 m higher than glaciers of the Dudh Koshi or Tama Koshi. We estimate the approximate Equilibrium Line Altitudes (ELA) of the last 15 years to be above a substantial portion (66%- Dudh Koshi; 87%- Tama Koshi; 83% Tibetan Plateau) of the glacierised area for all three catchments. Future ice recession may therefore be governed primarily by glacier hypsometry, but is likely to be amplified by the continued development of new, or growth of current glacial lakes.
Ice sheet topography by satellite altimetry
Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J.
1978-01-01
The surface elevation of the southern Greenland ice sheet and surface features of the ice flow are obtained from the radar altimeter on the GEOS 3 satellite. The achieved accuracy in surface elevation is ???2 m. As changes in surface elevation are indicative of changes in ice volume, the mass balance of the present ice sheets could be determined by repetitive mapping of the surface elevation and the surface could be monitored to detect surging or significant changes in ice flow. ?? 1978 Nature Publishing Group.
NASA Technical Reports Server (NTRS)
Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.
2000-01-01
Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.
Is there a lower size limit for mineral dust ice nuclei in the immersion mode?
NASA Astrophysics Data System (ADS)
Welti, André; Lohmann, Ulrike; Kanji, Zamin A.
2014-05-01
There is observational evidence that atmospheric aerosol particles which are able to trigger ice nucleation are larger than approximately 100nm (e.g. Fletcher, 1959). On the other hand observations of IN active macromolecules which have been proposed to be responsible for the enhanced ice formation in the washing water of pollen indicate no such size limit (Augustin et al., 2013). We present measurements on the size dependent ability of feldspars and clay minerals to serve as ice nuclei. The size dependent frozen fraction of droplets containing monodisperse, single immersed particles is investigated with the IMCA/ZINC experimental setup (Lüönd et. al., 2010). To meet the requirement of a narrow particle size distribution, special care is taken to generate monodisperse particles in the lower size range, by using a two stage size selection setup including a differential mobility analyser and a centrifugal particle mass analyser. From the analysis of the temperature at which 50% of the particles initiate ice nucleation, we find a logarithmic dependence of the median ice nucleation temperature on the particle surface area, with no discontinuous decrease in the ice nucleation ability of 100nm particles. The medium ice nucleation temperature of clay minerals however reaches homogeneous nucleation temperatures in this size range. The logarithmic dependence of the median ice nucleation temperature on particle surface area is addressed by comparing the experimental findings to predictions using the classical nucleation theory and the active site approach. Augustin, S., Wex, H., Niedermeier, D., Pummer, B., Grothe, H., Hartmann, S., Tomsche, L., Clauss, T., Voigtländer, J., Ignatius, K., and Stratmann, F.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989-11003, 2013. Fletcher, N.H.: On Ice-Crystal Production by Aerosol Particles, J. Meteo., 16, 173-180, 1959. Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U.: Experimental study on the ice nucleation ability of size selected kaolinite particles in the immersion mode, J. Geophys. Res., 115, D14201, 2010.
Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean
NASA Astrophysics Data System (ADS)
Fujiwara, A.; Hirawake, T.; Suzuki, K.; Imai, I.; Saitoh, S.-I.
2014-04-01
This study assesses the response of phytoplankton assemblages to recent climate change, especially with regard to the shrinking of sea ice in the northern Chukchi Sea of the western Arctic Ocean. Distribution patterns of phytoplankton groups in the late summers of 2008-2010 were analysed based on HPLC pigment signatures and, the following four major algal groups were inferred via multiple regression and cluster analyses: prasinophytes, diatoms, haptophytes and dinoflagellates. A remarkable interannual difference in the distribution pattern of the groups was found in the northern basin area. Haptophytes dominated and dispersed widely in warm surface waters in 2008, whereas prasinophytes dominated in cold water in 2009 and 2010. A difference in the onset date of sea ice retreat was evident among years-the sea ice retreat in 2008 was 1-2 months earlier than in 2009 and 2010. The spatial distribution of early sea ice retreat matched the areas in which a shift in algal community composition was observed. Steel-Dwass's multiple comparison tests were used to assess the physical, chemical and biological parameters of the four clusters. We found a statistically significant difference in temperature between the haptophyte-dominated cluster and the other clusters, suggesting that the change in the phytoplankton communities was related to the earlier sea ice retreat in 2008 and the corollary increase in sea surface temperatures. Longer periods of open water during the summer, which are expected in the future, may affect food webs and biogeochemical cycles in the western Arctic due to shifts in phytoplankton community structure.
Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean
NASA Astrophysics Data System (ADS)
name prefix surname suffix, given; Fujiwara, A.; Hirawake, T.; Suzuki, K.; Imai, I.; Saitoh, S.-I.
2013-09-01
This study assesses the response of phytoplankton assemblages to recent climate change, especially with regard to the shrinking of sea ice in the northern Chukchi Sea of the western Arctic Ocean. Distribution patterns of phytoplankton groups in the late summers of 2008-2010 were analyzed based on HPLC pigment signatures and, the following four major algal groups were inferred via multiple regression and cluster analyses: prasinophytes, diatoms, haptophytes and dinoflagellates. A remarkable interannual difference in the distribution pattern of the groups was found in the northern basin area. Haptophytes dominated and dispersed widely in warm surface waters in 2008, whereas prasinophytes dominated in cold water in 2009 and 2010. A difference in the onset date of sea ice retreat was evident among years - the sea ice retreat in 2008 was 1-2 months earlier than in 2009 and 2010. The spatial distribution of early sea ice retreat matched the areas in which a shift in algal community composition was observed. Steel-Dwass's multiple comparison tests were used to assess the physical, chemical and biological parameters of the four clusters. We found a statistically significant difference in temperature between the haptophyte-dominated cluster and the other clusters, suggesting that the change in the phytoplankton communities was related to the earlier sea ice retreat in 2008 and the corollary increase in sea surface temperatures. Longer periods of open water during the summer, which are expected in the future, may affect food webs and biogeochemical cycles in the western Arctic due to shifts in phytoplankton community structure.
Where's the Water in (Salty) Ice?
NASA Astrophysics Data System (ADS)
Kahan, T.; Malley, P.
2017-12-01
Solutes can have large effects on reactivity in ice and at ice surfaces. Freeze concentration ("the salting out effect") forms liquid regions containing high solute concentrations surrounded by relatively solute-free ice. Thermodynamics can predict the fraction of ice that is liquid for a given temperature and (pre-frozen) solute concentration, as well as the solute concentration within these liquid regions, but they do not inform on the spatial distribution of the solutes and the liquid regions within the ice. This leads to significant uncertainty in predictions of reaction kinetics in ice and at ice surfaces. We have used Raman microscopy to determine the location of liquid regions within ice and at ice surface in the presence of sodium chloride (NaCl). Under most conditions, liquid channels are observed at the ice surface and throughout the ice bulk. The fraction of the ice that is liquid, as well as the widths of these channels, increases with increasing temperature. Below the eutectic temperature (-21.1 oC), no liquid is observed. Patches of NaCl.2H2O ("hydrohalite") are observed at the ice surface under these conditions. These results will improve predictions of reaction kinetics in ice and at ice surfaces.
Snow, Firn and Ice Heterogeneity within Larsen C Ice Shelf Revealed by Borehole Optical-televiewing
NASA Astrophysics Data System (ADS)
Hubbard, B. P.; Ashmore, D.; Luckman, A. J.; Kulessa, B.; Bevan, S. L.; Booth, A.; Kuipers Munneke, P.; O'Leary, M.; Sevestre, H.
2016-12-01
The north-western sector of Larsen C Ice Shelf (LCIS), Antarctica, hosts intermittent surface ponds resulting from intense melting, largely driven by warm föhn winds. The fate of such surface melt water is largely controlled by the shelf's firn structure, which also dictates shelf density (widely used to reconstruct ice shelf thickness from altimetric data) and preconditioning to hydrofracture. Here, we report a suite of five 90 m long optical-televiewer (OPTV) borehole logs from the northern and central regions of LCIS recorded in spring 2014 and 2015. For each OPTV log we reconstruct vertical variations in material density via an empirical OPTV log-ice core calibration, and apply a thresholding technique to estimate refrozen ice content within the firn column. These data are combined to define five material facies present within this sector of LCIS. The firn/ice column is anomalously dense at all five sites, having an overall mean depth-averaged density of 873 +/-32 kg m-3. In terms of spatial variability, our findings generally support previous estimates of firn air content fields and implied infiltration ice content. However, they also highlight finer-resolution complexity of ice shelf structure. For example, the most dense ice, with the lowest equivalent firn air content, is not located within the most westerly inlets, where firn-driven melting and ponding are most active, but some tens of km down-flow of these areas. We interpret this effect in terms of the inheritance nearer the grounding line of relatively low-density glacial ice (e.g., 52 m thick with a density of 852 +/-21 kg m-3 in northernmost Cabinet Inlet) advected from inland. This inherited ice forms one of five facies identified across the study region. These are, extending broadly downwards into the shelf, and with different representation at each site: local accumulation (F1); local accumulation hosting substantial infiltration ice, i.e. influenced by intense melt but insufficient to form surface ponds (F2); massive refrozen pond ice (F3); ice composed of both metamorphosed host ice and infiltration ice, the origin of which is difficult to determine due to the facies being located at depth within our logs (F4); and glacial ice inherited from up-flow (F5).
Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn.
Harper, J; Humphrey, N; Pfeffer, W T; Brown, J; Fettweis, X
2012-11-08
Surface melt on the Greenland ice sheet has shown increasing trends in areal extent and duration since the beginning of the satellite era. Records for melt were broken in 2005, 2007, 2010 and 2012. Much of the increased surface melt is occurring in the percolation zone, a region of the accumulation area that is perennially covered by snow and firn (partly compacted snow). The fate of melt water in the percolation zone is poorly constrained: some may travel away from its point of origin and eventually influence the ice sheet's flow dynamics and mass balance and the global sea level, whereas some may simply infiltrate into cold snow or firn and refreeze with none of these effects. Here we quantify the existing water storage capacity of the percolation zone of the Greenland ice sheet and show the potential for hundreds of gigatonnes of meltwater storage. We collected in situ observations of firn structure and meltwater retention along a roughly 85-kilometre-long transect of the melting accumulation area. Our data show that repeated infiltration events in which melt water penetrates deeply (more than 10 metres) eventually fill all pore space with water. As future surface melt intensifies under Arctic warming, a fraction of melt water that would otherwise contribute to sea-level rise will fill existing pore space of the percolation zone. We estimate the lower and upper bounds of this storage sink to be 322 ± 44 gigatonnes and 1,289(+388)(-252) gigatonnes, respectively. Furthermore, we find that decades are required to fill this pore space under a range of plausible future climate conditions. Hence, routing of surface melt water into filling the pore space of the firn column will delay expansion of the area contributing to sea-level rise, although once the pore space is filled it cannot quickly be regenerated.
NASA Technical Reports Server (NTRS)
Cutts, J. A.; Blasius, K. R.; Roberts, W. J.
1979-01-01
The discovery of a new type of Martian polar terrain, called undulating plain, is reported and the evolution of the plains and other areas of the Martian polar region is discussed in terms of the trapping of dust by the perennial ice cover. High-resolution Viking Orbiter 2 observations of the north polar terrain reveal perennially ice-covered surfaces with low relief, wavelike, regularly spaced, parallel ridges and troughs (undulating plains) occupying areas of the polar terrain previously thought to be flat, and associated with troughs of considerable local relief which exhibit at least partial annual melting. It is proposed that the wavelike topography of the undulating plains originates from long-term periodic variations in cyclical dust precipitation at the margin of a growing or receding perennial polar cap in response to changes in insolation. The troughs are proposed to originate from areas of steep slope in the undulating terrain which have lost their perennial ice cover and have become incapable of trapping dust. The polar landscape thus appears to record the migrations, expansions and contractions of the Martian polar cap.
NASA Astrophysics Data System (ADS)
Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew; Abe-Ouchi, Ayako; Aschwanden, Andy; Calov, Reinhard; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Golledge, Nicholas R.; Gregory, Jonathan; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Kennedy, Joseph H.; Larour, Eric; Lipscomb, William H.; Le clec'h, Sébastien; Lee, Victoria; Morlighem, Mathieu; Pattyn, Frank; Payne, Antony J.; Rodehacke, Christian; Rückamp, Martin; Saito, Fuyuki; Schlegel, Nicole; Seroussi, Helene; Shepherd, Andrew; Sun, Sainan; van de Wal, Roderik; Ziemen, Florian A.
2018-04-01
Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.
Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; ...
2018-04-19
Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin
Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less
NASA Astrophysics Data System (ADS)
Crozier, J. A.; Karlstrom, L.; Yang, K.
2017-12-01
Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream profiles, as a function of location on the GIS (hence ice thickness and background melt rate) using spectral techniques to quantify longitudinal stream profiles. This work should provide a predictive guide for which processes are responsible for ice sheet topography scales from several m (DEM resolution) up to several ice thicknesses.
A Digital 3D-Reconstruction of the Younger Dryas Baltic Ice Lake
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Alm, G.; Bjorck, S.; Lindeberg, G.; Svensson, N.
2005-12-01
A digital 3D-reconstruction of the final stage of the ice dammed Baltic Ice Lake (BIL), dated to the very end of the Younger Dryas cold period (ca. 11 600 cal. yr BP) has been compiled using a combined bathymetric-topographic Digital Terrain Model (DTM), Scandinavian ice sheet limits, Baltic Sea Holocene bottom sediment thickness information, and a paleoshoreline database maintained at the Lund University. The combined bathymetric-topographic Digital Terrain Model (DTM) model used to reconstruct the ice dammed lake was compiled specifically for this study from publicly available data sets. The final DTM is in the form of a digital grid on Lamberts Equal Area projection with a resolution of 500 x 500 m, which permits a much more detailed reconstruction of the BIL than previously made. The lake was constructed through a series of experiments where mathematical algorithms were applied to fit the paleolake's surface through the shoreline database. The accumulated Holocene bottom sediments in the Baltic Sea were subsequently subtracted from the present bathymetry in our reconstruction. This allows us to estimate the Baltic Ice Lake's paleobathymetry, area, volume, and hypsometry, which will comprise key input data to lake/climate modeling exercises following this study. The Scandinavian ice sheet margin eventually retreated north of Mount Billingen, which was the high point in terrain of Southern central Sweden bordering to lower terrain further to the North. As a consequence, the BIL was catastrophically drained through this area, resulting in a 25 m drop of the lake level. With our digital BIL model we estimate that approximately 7, 800 km3 of water drained during this event and that the ice dammed lake area was reduced with ca 18 percent. The digital BIL reconstruction is analyzed using 3D-visualization techniques that provide new detailed information on the paleogeography in the area, both before and after the lake drainage, with implications for interpretations of geological records concerning the post-glacial environmental development of southern Scandinavia.
Assessing the accuracy of Greenland ice sheet ice ablation measurements by pressure transducer
NASA Astrophysics Data System (ADS)
Fausto, R. S.; van As, D.; Ahlstrøm, A. P.
2012-04-01
In the glaciological community there is a need for reliable mass balance measurements of glaciers and ice sheets, ranging from daily to yearly time scales. Here we present a method to measure ice ablation using a pressure transducer. The pressure transducer is drilled into the ice, en-closed in a hose filled with a liquid that is non-freezable at common Greenlandic temperatures. The pressure signal registered by the transducer is that of the vertical column of liquid over the sensor, which can be translated in depth knowing the density of the liquid. As the free-standing AWS moves down with the ablating surface and the hose melts out of the ice, an increasingly large part of the hose will lay flat on the ice surface, and the hydrostatic pressure from the vertical column of liquid in the hose will get smaller. This reduction in pressure provides us with the ablation rate. By measuring at (sub-) daily timescales this assembly is well-suited to monitor ice ablation in remote regions, with clear advantages over other well-established methods of measuring ice ablation in the field. The pressure transducer system has the potential to monitor ice ablation for several years without re-drilling and the system is suitable for high ablation areas. A routine to transform raw measurements into ablation values will also be presented, including a physically based method to remove air pressure variability from the signal. The pressure transducer time-series is compared to that recorded by a sonic ranger for the climatically hostile setting on the Greenland ice sheet.
NASA Astrophysics Data System (ADS)
Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.
2014-01-01
The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75° 37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that a deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel
2016-04-01
The better understanding of temporal variability and regional distribution of surface melt on Antarctic sea ice is crucial for the understanding of atmosphere-ocean interactions and the determination of mass and energy budgets of sea ice. Since large regions of Antarctic sea ice are covered with snow during most of the year, observed inter-annual and regional variations of surface melt mainly represents melt processes in the snow. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study we combine two approaches for observing both surface and volume snowmelt by means of passive microwave satellite data. The former is achieved by measuring diurnal differences of the brightness temperature TB at 37 GHz, the latter by analyzing the ratio TB(19GHz)/TB(37GHz). Moreover, we use both melt onset proxies to divide the Antarctic sea ice cover into characteristic surface melt patterns from 1988/89 to 2014/15. Our results indicate four characteristic melt types. On average, 43% of the ice-covered ocean shows diurnal freeze-thaw cycles in the surface snow layer, resulting in temporary melt (Type A), less than 1% shows continuous snowmelt throughout the snowpack, resulting in strong melt over a period of several days (Type B), 19% shows Type A and B taking place consecutively (Type C), and for 37% no melt is observed at all (Type D). Continuous melt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 20 days after the onset of temporary melt. Considering the entire data set, snowmelt processes and onset do not show significant temporal trends. Instead, areas of increasing (decreasing) sea-ice extent have longer (shorter) periods of continuous snowmelt.
NASA Astrophysics Data System (ADS)
Grima, C.; Koch, I.; Greenbaum, J. S.; Soderlund, K. M.; Blankenship, D. D.; Young, D. A.; Fitzsimons, S.
2017-12-01
The McMurdo ice shelves (northern and southern MIS), adjacent to the eponymous station and the Ross Ice Shelf, Antarctica, are known for large gradients in surface snow accumulation and snow/ice impurities. Marine ice accretion and melting are important contributors to MIS's mass balance. Due to erosive winds, the southern MIS (SMIS) shows a locally negative surface mass balance. Thus, marine ice once accreted at the ice shelf base crops out at the surface. However, the exact processes that exert primary control on SMIS mass balance have remained elusive. Radar statistical reconnaissance (RSR) is a recent technique that has been used to characterize the surface properties of the Earth's cryosphere, Mars, and Titan from the stochastic character of energy scattered by the surface. Here, we apply RSR to map the surface density and roughness of the SMIS and extend the technique to derive the basal reflectance and scattering coefficients of the ice-ocean interface. We use an airborne radar survey grid acquired over the SMIS in the 2014-2015 austral summer by the University of Texas Institute for Geophysics with the High Capability Radar Sounder (HiCARS2; 60-MHz center frequency and 15-MHz bandwidth). The RSR-derived snow density values and patterns agree with directly -measured ice shelf surface accumulation rates. We also compare the composition of SMIS ice surface samples to test the ability of RSR to discriminate ices with varying dielectric properties (e.g., marine versus meteoric ice) and hypothesize relationships between the RSR-derived basal reflectance/scattered coefficients and accretion or melting at the ice-ocean interface. This improved knowledge of air-ice and ice-ocean boundaries provides a new perspective on the processes governing SMIS surface and basal mass balance.
A molecular model for ice nucleation and growth, attachment 1
NASA Technical Reports Server (NTRS)
Plummer, P. L. M.
1981-01-01
The quantum mechanical technique is used to study ionic, configurational, and impurity defects in the ice surface. In addition to static calculations of the energetics of the water monomer-ice surface interactions, molecular dynamics studies were initiated. The calculations of the monomer-ice surface interaction, molecular dynamics studies were initiated. The calculations of monomer-ice surface interactions indicate that many adsorption sites exist on the ice surfaces and that the barriers between bonding sites are relatively low. Bonding on the prism face of ice is preferentially above lattice sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swarctz, Christopher; Alijallis, Elias; Hunter, Scott Robert
In this study, a closed loop low-temperature wind tunnel was custom-built and uniquely used to investigate the anti-icing mechanism of superhydrophobic surfaces in regulated flow velocities, temperatures, humidity, and water moisture particle sizes. Silica nanoparticle-based hydrophobic coatings were tested as superhydrophobic surface models. During tests, images of ice formation were captured by a camera and used for analysis of ice morphology. Prior to and after wind tunnel testing, apparent contact angles of water sessile droplets on samples were measured by a contact angle meter to check degradation of surface superhydrophobicity. A simple peel test was also performed to estimate adhesionmore » of ice on the surfaces. When compared to an untreated sample, superhydrophobic surfaces inhibited initial ice formation. After a period of time, random droplet strikes attached to the superhydrophobic surfaces and started to coalesce with previously deposited ice droplets. These sites appear as mounds of accreted ice across the surface. The appearance of the ice formations on the superhydrophobic samples is white rather than transparent, and is due to trapped air. These ice formations resemble soft rime ice rather than the transparent glaze ice seen on the untreated sample. Compared to untreated surfaces, the icing film formed on superhydrophobic surfaces was easy to peel off by shear flows.« less
Satellite imagery of the onset of streaming flow of ice streams C and D, West Antarctica
Hodge, S.M.; Doppelhammer, S.K.
1996-01-01
Five overlapping Landsat multispectral scanner satellite images of the interior of the West Antarctic ice sheet were enhanced with principal component analysis, high-pass filtering, and linear contrast stretching and merged into a mosaic by aligning surface features in the overlap areas. The mosaic was registered to geodetic coordinates, to an accuracy of about 1 km, using the five scene centers as control points. The onset of streaming flow of two tributaries of ice stream C and one tributary of ice stream D is visible in the mosaic. The onset appears to occur within a relatively short distance, less than the width of the ice stream, typically at a subglacial topographic feature such as a step or ridge. The ice streams extend farther up into the interior than previously mapped. Ice stream D starts about 150 km from the ice divide, at an altitude of about 1500 m, approximately halfway up the convex-upward dome shape of the interior ice sheet. Ice stream D is relatively much longer than ice stream C, possibly because ice stream D is currently active whereas ice stream C is currently inactive. The grounded portion of the West Antarctic ice sheet is perhaps best conceptualized as an ice sheet in which ice streams are embedded over most of its area, with slow moving ice converging into fast moving ice streams in a widely distributed pattern, much like that of streams and rivers in a hydrologic basin. A relic margin appears to parallel most of the south margin of the tributary of ice stream D, separated from the active shear margin by about 10 km or less for a distance of over 200 km. This means there is now evidence for recent changes having occurred in three of the five major ice streams which drain most of West Antarctica (B, C, and D), two of which (B and D) are currently active.
NASA Astrophysics Data System (ADS)
Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.
2010-12-01
Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.
NASA Astrophysics Data System (ADS)
Gergely, Mathias; Cooper, Steven J.; Garrett, Timothy J.
2017-10-01
The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.
NASA: First Map Of Thawed Areas Under Greenland Ice Sheet
2017-12-08
NASA researchers have helped produce the first map showing what parts of the bottom of the massive Greenland Ice Sheet are thawed – key information in better predicting how the ice sheet will react to a warming climate. Greenland’s thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth’s depths. Knowing whether Greenland’s ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future, But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Now, a new study synthesizes several methods to infer the Greenland Ice Sheet’s basal thermal state –whether the bottom of the ice is melted or not– leading to the first map that identifies frozen and thawed areas across the whole ice sheet. Map caption: This first-of-a-kind map, showing which parts of the bottom of the Greenland Ice Sheet are likely thawed (red), frozen (blue) or still uncertain (gray), will help scientists better predict how the ice will flow in a warming climate. Credit: NASA Earth Observatory/Jesse Allen Read more: go.nasa.gov/2avKgl2 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
What Lies Beneath: Surface Patterns of Glacier-Like Landforms
2016-09-21
The rotational axis of Mars is currently tilted by about 25 degrees, very similar to that of the Earth (at 23.4 degrees). However, while Earth's axial tilt (also known as "obliquity") tends to change very slightly over time (almost 3 degrees in 40,000 year-cycles), the obliquity of Mars is much more chaotic and varies widely from 0 to almost 60 degrees! The fact that it is currently similar to that of the Earth is merely a coincidence. Currently, water-ice is stable on the Martian surface only in the polar regions. However, during times of "high obliquity," that stability shifts towards the equatorial regions. We see evidence for recent periods of high obliquity on Mars in the form of features common in the mid-latitude regions, which planetary scientists call "viscous flow features," "lobate debris aprons," or "lineated valley fills." These are all scientifically conservative ways of describing features on Mars that resemble mountain glaciers on Earth. We now know from radar observations, particularly using the SHARAD instrument on board the Mars Reconnaissance Orbiter, that these features are really composed of mixtures of pure ice and dust, and as a result, many scientists have started using the term "glacier-like forms" (GLF) to describe some of them. The main reason that these feature are still present for us to observe nowadays-despite the inhospitable conditions for water ice in these latitudes-is that these "glaciers" are covered by thin layers of dust, which protect them from the atmosphere of Mars and prevents, or significantly slows down, the loss of ice through sublimation to the atmosphere. However, if we were to take a look at this image of a "lobate debris apron," we will see that some areas show numerous depressions, which suggests that these areas have lost some of the ice creating these "deflation features." In addition, if we zoom in on one of these depressions, we will see surface polygonal patterns, which are common in cold regions on Earth (such as Alaska, northern Canada, and Siberia) and are indicators of shallow sub-surface water-ice. http://photojournal.jpl.nasa.gov/catalog/PIA21065
Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.
2014-12-01
During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness except in areas of relatively flat snow and ice. The LiDAR had a ground point spacing of ~25-50 cm (depending on survey altitude) and so easily encompassed all other data. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.
Cratering and Grooved Terrain on Ganymede
NASA Technical Reports Server (NTRS)
1979-01-01
This color picture as acquired by Voyager 1 during its approach to Ganymede on Monday afternoon (the 5th of March). At ranges between about 230 to 250 thousand km. The image shows detail on the surface with a resolution of four and a half km. This picture is just south of PIA001515 (P21161) and shows more craters. It also shows the two distinctive types of terrain found by Voyager, the darker ungrooved regions and the lighter areas which show the grooves or fractures in abundance. The most striking features are the bright ray craters which havE a distinctly 'bluer' color appearing white against the redder background. Ganymede's surface is known to contain large amounts of surface ice and it appears that these relatively young craters have spread bright fresh ice materials over the surface. Likewise, the lighter color and reflectivity of the grooved areas suggests that here too, there is cleaner ice. We see ray craters with all sizes of ray patterns, ranging from extensive systems of the crater in the northern part of this picture, which has rays at least 300-500 kilometers long, down to craters which have only faint remnants of bright ejecta patterns. This variation suggests that, as on the Moon, there are processes which act to darken ray material, probably 'gardening' by micrometeoroid impact. JPL manages and controls the Voyager project for NASA's Office of Space Science.
Meltwater flux and runoff modeling in the abalation area of jakobshavn Isbrae, West Greenland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mernild, Sebastian Haugard; Chylek, Petr; Liston, Glen
2009-01-01
The temporal variability in surface snow and glacier melt flux and runoff were investigated for the ablation area of lakobshavn Isbrae, West Greenland. High-resolution meteorological observations both on and outside the Greenland Ice Sheet (GrIS) were used as model input. Realistic descriptions of snow accumulation, snow and glacier-ice melt, and runoff are essential to understand trends in ice sheet surface properties and processes. SnowModel, a physically based, spatially distributed meteorological and snow-evolution modeling system was used to simulate the temporal variability of lakobshavn Isbrre accumulation and ablation processes for 2000/01-2006/07. Winter snow-depth observations and MODIS satellite-derived summer melt observations weremore » used for model validation of accumulation and ablation. Simulations agreed well with observed values. Simulated annual surface melt varied from as low as 3.83 x 10{sup 9} m{sup 3} (2001/02) to as high as 8.64 x 10{sup 9} m{sup 3} (2004/05). Modeled surface melt occurred at elevations reaching 1,870 m a.s.l. for 2004/05, while the equilibrium line altitude (ELA) fluctuated from 990 to 1,210 m a.s.l. during the simulation period. The SnowModel meltwater retention and refreezing routines considerably reduce the amount of meltwater available as ice sheet runoff; without these routines the lakobshavn surface runoff would be overestimated by an average of 80%. From September/October through May/June no runoff events were simulated. The modeled interannual runoff variability varied from 1.81 x 10{sup 9} m{sup 3} (2001/02) to 5.21 x 10{sup 9} m{sup 3} (2004/05), yielding a cumulative runoff at the Jakobshavn glacier terminus of {approx}2.25 m w.eq. to {approx}4.5 m w.eq., respectively. The average modeled lakobshavn runoff of {approx}3.4 km{sup 3} y{sup -1} was merged with previous estimates of Jakobshavn ice discharge to quantify the freshwater flux to Illulissat Icefiord. For both runoff and ice discharge the average trends are similar, indicating increasing (insignificant) influx of freshwater to the Illulissat Icefiord for the period 2000/01-2006/07. This study suggests that surface runoff forms a minor part of the overall Jakobshavn freshwater flux to the fiord: around 7% ({approx}3.4 km{sup 3} y{sup -1}) of the average annual freshwater flux of {approx}51.0 km{sup 3} y{sup -1} originates from the surface runoff.« less
NASA Astrophysics Data System (ADS)
Hara, Keiichiro; Matoba, Sumito; Hirabayashi, Motohiro; Yamasaki, Tetsuhide
2017-07-01
Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl-, Mg2+, K+, Ca2+, Br-, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14-3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl-, Br-, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42-. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.
NASA Technical Reports Server (NTRS)
1997-01-01
Jupiter's moon Europa, as seen in this image taken June 27, 1996 by NASA's Galileo spacecraft, displays features in some areas resembling ice floes seen in Earth's polar seas. Europa, about the size of Earth's moon, has an icy crust that has been severely fractured, as indicated by the dark linear, curved, and wedged-shaped bands seen here. These fractures have broken the crust into plates as large as 30 kilometers (18.5 miles) across. Areas between the plates are filled with material that was probably icy slush contaminated with rocky debris. Some individual plates were separated and rotated into new positions. Europa's density indicates that it has a shell of water ice thicker than 100 kilometers (about 60 miles), parts of which could be liquid. Currently, water ice could extend from the surface down to the rocky interior, but the features seen in this image suggest that motion of the disrupted icy plates was lubricated by soft ice or liquid water below the surface at the time of disruption. This image covers part of the equatorial zone of Europa and was taken from a distance of 156,000 kilometers (about 96,300 miles) by the Solid-state Imaging Subsystem on the Galileo spacecraft. North is to the right and the sun is nearly directly overhead. The area shown is about 510 by 989 kilometers (310-by-600 miles), and the smallest visible feature is about 1.6 kilometers (1 mile) across.
The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http:// www.jpl.nasa.gov/galileo/sepo.NASA Astrophysics Data System (ADS)
Motoyama, H.; Suzuki, T.; Fukui, K.; Ohno, H.; Hoshina, Y.; Hirabayashi, M.; Fujita, S.
2017-12-01
1. Introduction It is possible to reveal the past climate and environmental change from the ice core drilled in polar ice sheet and glaciers. The 54th Japanese Antarctic Research Expedition conducted several shallow core drillings up to 30 m depth in the inland and coastal areas of the East Antarctic ice sheet. Ice core sample was cut out at a thickness of about 5 cm in the cold room of the National Institute of Polar Research, and analyzed ion, water isotope, dust and so one. We also conducted dielectric profile measurement (DEP measurement). The age as a key layer of large-scale volcanic explosion was based on Sigl et al. (Nature Climate Change, 2014). 2. Inland ice core Ice cores were collected at the NDF site (77°47'14"S, 39°03'34"E, 3754 m.a.s.l.) and S80 site (80°00'00"S, 40°30'04"E, 3622 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. We determined the key layer with nssSO42 - peak corresponding to several large volcanic explosions. The accumulation rate was kept constant between the key layers. As a result, NDF was estimated to be around 1360 AD and S80 was estimated to be around 1400 AD in the deepest ice core. 3. Coastal ice core An ice core was collected at coastal H15 sites (69°04'10"S, 40°44'51"E, 1030 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from ice core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. Basically we decided to summer (December) and winter (June) due to the seasonal change of the water isotope (δD or δ18O). In addition to the seasonal change of isotope, confirm the following. Maximum of SO42- / Na +, which is earlier in time than the maximum of water isotope. Maximum of MSA at about the same time as the maximum of the water isotope. Na+ is maximal immediately after the local maximum of the water isotope. The deepest age was estimated to be around 1940 AD. 4. Example of results In the inland area, the annual average surface mass balance decreased from 1450 to 1850 AD, but it has increased since 1850 AD. The annual mass balance of coastal H15 is consistent with the result of snow stake measurement.
NASA Astrophysics Data System (ADS)
Vatle, S. S.
2015-12-01
Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.
NASA Astrophysics Data System (ADS)
Jourdain, Nicolas C.; Mathiot, Pierre; Gallée, Hubert; Barnier, Bernard
2011-04-01
Air-sea ice-ocean interactions in the Ross Sea sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean-sea ice-atmosphere coupled model TANGO to simulate the Ross Sea sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean-sea ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic sea ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, air temperatures over ocean and winter sea ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold air produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of sea ice. It is suggested that slow heat conduction within sea ice could amplify the feedbacks. These local feedbacks result in less sea ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.
Towards a morphogenetic classification of eskers: Implications for modelling ice sheet hydrology
NASA Astrophysics Data System (ADS)
Perkins, Andrew J.; Brennand, Tracy A.; Burke, Matthew J.
2016-02-01
Validations of paleo-ice sheet hydrological models have used esker spacing as a proxy for ice tunnel density. Changes in crest type (cross-sectional shape) along esker ridges have typically been attributed to the effect of changing subglacial topography on hydro- and ice-dynamics and hence subglacial ice-tunnel shape. These claims assume that all eskers formed in subglacial ice tunnels and that all major subglacial ice tunnels produced a remnant esker. We identify differences in geomorphic context, sinuosity, cross-sectional shape, and sedimentary architecture by analysing eskers formed at or near the margins of the last Cordilleran Ice Sheet on British Columbia's southern Fraser Plateau, and propose a morphogenetic esker classification. Three morphogenetic types and 2 subtypes of eskers are classified based on differences in geomorphic context, ridge length, sinuosity, cross-sectional shape and sedimentary architecture using geophysical techniques and sedimentary exposures; they largely record seasonal meltwater flows and glacial lake outburst floods (GLOFs) through sub-, en- and supraglacial meltwater channels and ice-walled canyons. General principles extracted from these interpretations are: 1) esker ridge crest type and sinuosity strongly reflect meltwater channel type. Eskers formed in subglacial conduits are likely to be round-crested with low sinuosity (except where controlled by ice structure or modified by surging) and contain faults associated with flank collapse. Eskers formed near or at the ice surface are more likely to be sharp-crested, highly sinuous, and contain numerous faults both under ridge crest-lines and in areas of flank collapse. 2) Esker ridges containing numerous flat-crested reaches formed directly on the land-surface in ice-walled canyons (unroofed ice tunnels) or in ice tunnels at atmospheric pressure, and therefore likely record thin or dead ice. 3) Eskers containing macroforms exhibiting headward and downflow growth likely record flood-scale flows (possibly GLOFs where a lake can be inferred). These conclusions suggest that esker crest type, sinuosity and geomorphic context, when understood along with sedimentary architecture, largely reflect formational position with respect to the ice-surface. Reconstructions of ice sheet hydrology need to account for variation in esker morphology because basing hydrodynamic inferences on the presence or absence of an esker alone ignores encoded differences in water source, supply, flow magnitude and frequency, and conduit position.
Organic Carbon Deposits of Soils Overlying the Ice Complex in the Lena River Delta
NASA Astrophysics Data System (ADS)
Zubrzycki, Sebastian; Pfeiffer, Eva-Maria; Kutzbach, Lars; Desiatkin, Aleksei
2017-04-01
The Lena River Delta (LRD) is located in northeast Siberia and extends over a soil covered area of around 21,500 km2. LRD likely stores more than half of the entire soil organic carbon (SOC) mass stored in deltas affected by permafrost. LRD consists of several geomorphic units. Recent studies showed that the spatially dominating Holocene units of the LRD (61 % of the area) store around 240 Tg of SOC and 12 Tg of nitrogen (N) within the first meter of ground. These units are a river terrace dominated by wet sedge polygons and the active floodplains. About 50 % of these reported storages are located in the perennially frozen ground below 50 cm depth and are excluded from intense biogeochemical exchange with the atmosphere today. However, these storages are likely to be mineralized in near future due to the projected temperature increases in this region. A substantial part of the LRD (1,712 km2) belongs to the so-called Ice Complex (Yedoma) Region, which formed during the Late Pleistocene. This oldest unit of the LRD is characterized by extensive plains incised by thermo-erosional valleys and large thermokarst depressions. Such depressions are called Alases and cover around 20 % of the area. Ice Complex deposits in the LDR are known to store high amounts of SOC. However, within the LRD no detailed spatial studies on SOC and N in the soils overlying Ice Complex and thermokarst depressions were carried out so far. We present here our "investigation in progress" on soils in these landscape units of the LRD. Our first estimates, based on 69 pedons sampled in 2008, show that the mean SOC stocks for the upper 30 cm of soils on both units were estimated at 13.0 kg m2 ± 4.8 kg m2 on the Ice Complex surfaces and at 13.1 kg m2 ± 3.8 kg m2 in the Alases. The stocks of N were estimated at 0.69 kg m2 ± 0.25 kg m2 and at 0.70 kg m2 ± 0.18 kg m2 on the Ice Complex surfaces and in the Alases, respectively. The estimated SOC and N pools for the depth of 30 cm within the investigated part of the LRD add to 20.9 Tg and 1.1 Tg, respectively. The Ice Complex surfaces (1,313 km2) store 17.1 ± 6.3 Tg SOC and 0.9 ± 0.3 Tg N, whereas the Alases (287 km2) store 3.8 ± 1.1 Tg SOC and 0.2 ± 0.05 Tg N within the investigated depth of 30 cm. Further analyses of the soil core material collected in 2015 will provide SOC and N pool estimates for a depth of 100 cm including both, the seasonally active layer and the perennially frozen ground. With continuing advanced analyses of an available digital elevation model, slopes will be designated with their extents and inclinations since the planar extents of slopes derived from satellite imagery do not correspond to the actual slope soil surface area, which is vital for spatial SOC and N storage calculations as well as trace gas release estimates. The actual soil surface area of slopes will be calculated prior to result extrapolations.
Tweens feel the burn: "salt and ice challenge" burns.
Roussel, Lauren O; Bell, Derek E
2016-05-01
To review our institution's experience with frostbite injury secondary to "salt and ice challenge" (SIC) participation. We conducted a retrospective analysis of intentional freezing burns from 2012 to 2014. Demographics, depth and location of burn, total body surface area of burn, treatment, time to wound healing, length of stay, complications, and motives behind participation were analyzed. Five patients were seen in the emergency department for intentional freezing burns that resulted from SIC (all females; mean age: 12.3 years; range age: 10.0-13.2 years). Mean total body surface area was 0.408%. Salt and ice was in contact with skin for >10 min for two patients, >20 min for two patients, and an unknown duration for one patient. Complications included pain and burn scar dyschromia. Four patients cited peer pressure and desire to replicate SIC as seen on the Internet as their motivation in attempting the challenge. SIC has become a popular, self-harming behavior among youths. Increased public education, and provider and parent awareness of SIC are essential to address this public health concern.
NASA Astrophysics Data System (ADS)
Romundset, Anders; Akçar, Naki; Fredin, Ola; Tikhomirov, Dmitry; Reber, Regina; Vockenhuber, Christof; Christl, Marcus; Schlüchter, Christian
2017-12-01
We report results from a comprehensive surface exposure dating campaign in eastern Finnmark, located in the northernmost part of Norway and close to the Norwegian-Russian border. This is a palaeo-glaciologically important region as it sits near the proposed border-zone between the former Scandinavian and Barents Sea Ice Sheets. However, until now the deglaciation history has few direct dates onshore and the chronology of ice front retreat is instead found by correlating ice-marginal deposits with isostatically raised shorelines and marine sediment cores. We measured the content of 10Be (N = 22) and 36Cl (N = 17) from boulders located at the crest of major moraine ridges at four localities; Kjæs, Kongsfjorden, Vardø and Kirkenes. These are key localities of existing regional reconstructions of ice recession in this area. Despite some spread in age results from each locality due to methodological challenges associated with surface exposure dating, the large numbers of samples from each site except Kjæs still allow for obtaining clusters of similar ages which are used for arriving at a likely chronology of ice front retreat. Our results show that the Kongsfjorden and Vardø moraines were deposited 14.3 ± 1.7 ka and 13.6 ± 1.4 ka, respectively, and thus point to a Older Dryas age of the proposed 'Outer Porsanger' deglaciation sub-stage. Moraine ridges belonging to the 'Main' sub-stage near Kirkenes were dated to 11.9 ± 1.2 ka, corresponding well with the ice retreat chronology farther west in northern Norway and suggesting that the maximum Younger Dryas ice sheet extent was attained in the late Younger Dryas along a more than 500 km long stretch in northernmost Scandinavia.
NASA Astrophysics Data System (ADS)
Ward, M. K.; Pollard, W. H.
2016-12-01
The Eureka Sound Lowlands is an area underlain with over 500 m of ice-rich permafrost largely composed of massive ground ice and ice wedge polygons with a thin active layer of a mean thickness of 57cm. The region has a polar desert climate, with a mean annual air temperature of -19°C, and approximately 67mm of annual precipitation (falling mostly as snow). The area has an Environment Canada Weather Station (located at Eureka at 79°59'N, 85°56'W) that has been conducting daily meteorological measurements since it was founded in 1947. The area is sensitive to increasing summer temperatures as observed during the summer of 2012: as one of the warmest summer on record, there was a three-fold increase in thermokarst (collapse of the land surface from melting ground ice) with the accelerated collapse of ice wedge polygon troughs and widespread development of retrogressive thaw slumps. This study monitors thermokarst activity within the area using air photos from 1959, 1974 and 1982, satellite imagery (WorldView2) from 2009 and 2012, and annual air surveys (since 1989). Thermokarst activity between 2013 and 2016 has been monitored in the field using a differential GPS (Global Positioning System) to survey headwall locations of retrogressive thaw slumps. The purpose of this study is to provide a detailed baseline of landscape processes to compare future landscape changes resulting from thermokarst in the area.
Quantifying Glacier Volume Change Using UAV-Derived Imagery and Structure from Motion Photogrammetry
NASA Astrophysics Data System (ADS)
Decker, C. R.; La Frenierre, J.
2017-12-01
Glaciers in the Tropical Andes, like those worldwide, are experiencing rapid ice volume loss due to climate change. Tropical areas are of significant interest in glacier studies because they are especially sensitive to climate change. Quantifying the rate of ice volume loss is important given their sensitivity to climate change and the importance of glacier meltwater for downstream human use. Past studies have found shrinking ice surfaces areas, but finding the actual rate of volume loss gives more information about how glaciers are reacting to climate change as well as the direct hydrological effects of ice volume loss. In this study we determined the rate of ice volume loss for a debris covered section of the Reschreiter Glacier and a portion of the clean ice tongue of the Hans Meyer Glacier on Volcán Chimborazo in Ecuador. Traditional geodetic approaches of measuring ice volume change, including the use of satellite-derived digital elevation models and airborne LIDAR, are difficult in this case due to the small size of Chimborazo's glaciers, frequently cloudy conditions, and limited local resources. Instead, we obtained imagery with an Unmanned Aerial Vehicle (UAV) and processed this imagery using Structure from Motion photogrammetry. Our results are used to evaluate the role of elevation and debris cover as Chimborazo's glaciers respond to climate change.
Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate
NASA Astrophysics Data System (ADS)
Steig, Eric J.; Huybers, Kathleen; Singh, Hansi A.; Steiger, Nathan J.; Ding, Qinghua; Frierson, Dargan M. W.; Popp, Trevor; White, James W. C.
2015-06-01
Climate model simulations are used to examine the impact of a collapse of the West Antarctic Ice Sheet (WAIS) on the surface climate of Antarctica. The lowered topography following WAIS collapse produces anomalous cyclonic circulation with increased flow of warm, maritime air toward the South Pole and cold-air advection from the East Antarctic plateau toward the Ross Sea and Marie Byrd Land, West Antarctica. Relative to the background climate, areas in East Antarctica that are adjacent to the WAIS warm, while substantial cooling (several °C) occurs over parts of West Antarctica. Anomalously low isotope-paleotemperature values at Mount Moulton, West Antarctica, compared with ice core records in East Antarctica, are consistent with collapse of the WAIS during the last interglacial period, Marine Isotope Stage 5e. More definitive evidence might be recoverable from an ice core record at Hercules Dome, East Antarctica, which would experience significant warming and positive oxygen isotope anomalies if the WAIS collapsed.
UV Signatures of Ices: Moons in the Solar System
NASA Astrophysics Data System (ADS)
Hendrix, A. R.; Hansen, C. J.; Retherford, K. D.; Vilas, F.
2017-12-01
Using Earth-orbiting telescopes such as the International Ultraviolet Explorer and the Hubble Space Telescope, significant advances have been made in the area of ultraviolet observations of solar system objects. More in-depth studies have been made using interplanetary probes such as Galileo, Cassini and Lunar Reconnaissance Orbiter (LRO). While the UV spectral range has traditionally been used to study atmospheric and auroral processes, there is much to be learned by examining solid surfaces in the UV, including surface composition, weathering processes and effects, and the generation of thin atmospheres. Here we focus on moons in the solar system, including Earth's moon and the Saturnian satellites. The diagnostic UV signature of H2O is used to study ice in the lunar polar regions as well as hydration at lower latitudes, in observations from LRO LAMP. The water ice signature is nearly ubiquitous in the Saturn system; Cassini UVIS datasets are used to study grain sizes, exogenic processes/effects and non-ice species.
Ice911 Research: Preserving and Rebuilding Multi-Year Ice
NASA Astrophysics Data System (ADS)
Field, L. A.; Chetty, S.; Manzara, A.
2013-12-01
A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year ice using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year ice has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time ice disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key areas on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo modification options such as the one being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method could be deployed on a large enough scale, it could conceivably bring about a reduction in the Ice-Albedo Feedback Effect, possibly slowing one of the key effects and factors in climate change. Test site at man-made lake in Minnesota 2013
Vapor-deposited water and nitric acid ices
NASA Astrophysics Data System (ADS)
Leu, Ming-Taun; Keyser, Leon F.
Ices formed by vapor deposition have been the subject of numerous laboratory investigations in connection with snow and glaciers on the ground, ice clouds in the terrestrial atmosphere, surfaces of other planets and their satellites, and the interstellar medium. In this review we will focus on these specific subjects: (1) heterogeneous chemistry on the surfaces of polar stratospheric clouds (PSCs) and (2) surfaces of satellites of the outer planets in our solar system. Stratospheric ozone provides a protective shield for mankind and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical atmospheric models for the calculation of ozone balance frequently used only homogeneous gas-phase reactions in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions on the surface of PSCs is definitely needed to understand this significant natural event due to the anthropogenic emission of chlorofluorocarbons (CFCs). We will briefly discuss the experimental techniques for the investigation of heterogeneous chemistry on ice surfaces carried out in our laboratories. The experimental apparatus used include: several flow-tube reactors, an electron-impact ionization mass spectrometer, a Fourier transform infrared spectrometer, a BET adsorption apparatus, and a scanning environmental electron microscope. The adsorption experiments and electron microscopic work have demonstrated that the vapor-deposited ices are highly porous. Therefore, it is necessary to develop theoretical models for the elucidation of the uptake and reactivity of trace gases in porous ice substrates. Several measurements of uptake and reaction probabilities of these trace gases on water ices and nitric acid ices have been performed under ambient conditions in the upper troposphere and lower stratosphere, mainly in the temperature range 180-220 K. The trace gases of atmospheric importance in heterogeneous chemistry include: ClONO2, HCl, HOCl, and HNO3. In addition, recent interest in the possible landing of a robotic spacecraft on the surface of Europa, one of the Galilean satellites of Jupiter, and ground based telescopic observations demand detailed knowledge of the physical properties of the icy surfaces of the outer planets and their satellites. Lower temperature studies in the range 77-150 K using both electron microscopy and adsorption isotherms (BET surface area measurements) have revealed some intriguing observations that may provide some insights for remote sensing of these satellite surfaces. Finally, we will attempt to summarize our recent results and suggest future research directions in both theoretical and laboratory investigations.
NASA Technical Reports Server (NTRS)
Barnett, Donald M.
1995-01-01
Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system components include: a dry ice pellet supply, a non-reactive propellant gas source, a pellet and propellant metering device, and a media transport and acceleration hose and nozzle arrangement. Dry ice cleaning system operating parameters include: choice of propellant gas, its pressure and temperature, dry ice mass flow rate, dry ice pellet size and shape, and acceleration nozzle configuration. These parameters may be modified to fit different applications. The growth of the dry ice cleaning industry will depend upon timely data acquisition of the effects that independent changes in these parameters have on cleaning rates, with respect to different surface coating and substrate combinations. With this data, optimization of cleaning rates for particular applications will be possible. The analysis of the applicable range of modulation of these parameters, within system component mechanical constraints, has just begun.