Sample records for iceberg lettuce lactuca

  1. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa).

    PubMed

    Rooney, Alejandro P; Dunlap, Christopher A; Flor-Weiler, Lina B

    2016-09-01

    Strain NRRL B-41902T and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, Gram-stain-negative rods that formed cocci in late stationary phase. 16S rRNA gene sequence analysis showed that strain NRRL B-41902T was most closely related to species within the genera Acinetobacter, and that a grouping of it and the three other closely related strains was most closely related to the type strain of Acinetobacter pittii, which was also confirmed through a phylogenomic analysis. Moreover, in silico DNA-DNA hybridization analysis revealed a substantial amount of genomic divergence (39.1 %) between strain NRRL B-41902T and the type strain of A. pittii, which is expected if the strains represent distinct species. Further phenotypic analysis revealed that strain NRRL B-41902T was able to utilize a combination of l-serine, citraconic acid and citramalic acid, which differentiated it from other, closely related Acinetobacter species. Therefore, strain NRRL B-41902T (=CCUG 68785T) is proposed as the type strain of a novel species, Acinetobacter lactucae sp. nov.

  2. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa)

    USDA-ARS?s Scientific Manuscript database

    Strain NRRL B-41902 and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, gram-negative rods that formed cocci in late stationary phase. Subsequent to sequencing the 16S ribosomal RNA gene, it was found that strain NRRL B-41902 was...

  3. Shelf-life extension of fresh-cut iceberg lettuce (Lactuca sativa L) by different antimicrobial films.

    PubMed

    Kang, Sun-Chul; Kim, Min-Jeong; Choi, Ung-Kyu

    2007-08-01

    This study was conducted to investigate the antibacterial activity and shelf-life extension effect of iceberg lettuce packed in BN/PE film. The BN/PE film has a strong microbial suppression effect on pathogenic bacteria such as Escherichia coli, Salmonella enteritidis, and S. typhimurium. The number of psychrophiles and mesophiles during 5 days of cold storage of fresh-cut iceberg lettuce at 10 degrees C packaged in BN/PE film was strictly suppressed in comparison with other tested films (OPP, PE, and PET film). When fresh processed iceberg lettuce was processed and stored under the current conditions, the shelf-life of the product was longer than 5 days in the BN/PE film package, whereas the shelf-life when using the other films tested, PE, OPP and PET, was no longer than 3-4 days. The decay rates of the iceberg lettuce packed in the BN/PE film was maintained at 29.8 +/- 2.1% on the 5th day of preservation. The samples packed in BN/PE film maintained an excellent visual quality during the 3 days of storage without significant differences in comparison with the initial visual quality. No browning was observed in the samples packed in BN/PE film for up to 3 days. The texture of shredded iceberg lettuce packaged in BN/PE film remained unchanged up to 3 days, and then a moderate decrease in texture was observed after 4 days of storage. In addition, the overall acceptability of fresh-cut iceberg lettuce packaged in BN/PE film did not change for up to 3 days, whereas the samples packaged in the other films were inedible by 3 days of storage. In conclusion, the shelf-life of fresh-cut iceberg lettuce packaged in the BN/PE film was extended to more than 5 days at 10 degres C, whereas that in the other films was 2 days at 10 degrees C. Therefore, the shelf-life extension effect of the fresh-cut iceberg lettuce in BN/PE film packaging was very effective compared with the other films tested.

  4. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2013-03-20

    Enzymatic browning is generally reported as the reaction between phenolic substances and enzymes. The quality of iceberg lettuce is directly linked to this discoloration. In particular, the color change of lettuce stems considerably reduces consumer acceptance and thus decreases sales revenue of iceberg lettuce. Ten phenolic compounds (caffeic acid, chlorogenic acid, phaseolic acid, chicoric acid, isochlorogenic acid, luteolin-7-O-glucuronide, quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-glucoside, and quercetin-3-O-(6″-malonyl)-glucoside) were isolated from Lactuca sativa var. capitata by multilayer countercurrent chromatography (MLCCC) and preparative high-performance liquid chromatography (HPLC). In addition, syringin was identified for the first time in iceberg lettuce. This polyphenolic ingredient was previously not mentioned for the family of Cichorieae in general. The purity and identity of isolated compounds were confirmed by different NMR experiments, HPLC-DAD-MS, and HR-MS techniques. Furthermore, the relationship between discoloration of iceberg lettuce and enzymatic browning was thoroughly investigated. Unexpectedly, the total concentration of phenolic compounds and the activity of polyphenol oxidase were not directly related to the browning processes. Results of model incubation experiments of plant extract solutions led to the conclusion that in addition to the typical enzymatic browning induced by polyphenol oxidases, further mechanisms must be involved to explain total browning of lettuce.

  5. Structural and Sensory Characterization of Novel Sesquiterpene Lactones from Iceberg Lettuce.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2016-01-13

    Lactuca sativa var. capitate (iceberg lettuce) is a delicious vegetable and popular for its mild taste. Nevertheless, iceberg lettuce is a source of bitter substances, such as the sesquiterpene lactones. Chemical investigations on the n-butanol extract led to the isolation of three novel sesquiterpene lactones. All compounds were isolated by multilayer countercurrent chromatography followed by preparative high-performance liquid chromatography. The structures were verified by means of spectroscopic methods, including NMR and mass spectrometry techniques. For the first time 11ß,13-dihydrolactucin-8-O-sulfate (jaquinelin-8-O-sulfate) was structurally elucidated and identified in plants. In addition, the sesquiterpene lactones cichorioside B and 8-deacetylmatricarin-8-O-sulfate were identified as novel ingredients of iceberg lettuce. Further flowering plants in the daisy family Asteraceae were examined for the above three compounds. At least one of the compounds was identified in nine plants. The comparison between the lettuce butt end and the leaves of five types of the Cichorieae tribe showed an accumulation of the compounds in the butt end. Further experiments addressed the impact of sesquiterpene lactones on color formation and bitter taste.

  6. Iceberg lettuce breeding lines with resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae.

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture and the University of California, Davis, announce the release of two breeding lines of lettuce (Lactuca sativa L.). Lines RH08-0472 and RH08-0475 are F9 iceberg type lettuce breeding lines with resistance to Verticillium wil...

  7. Release of three iceberg lettuce populations that combined resistance to two soil borne diseases

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture and the University of California, Davis, announce the release of three F2:4 breeding populations of iceberg lettuce (Lactuca sativa L.). The breeding populations combine the cor and Verticillium resistance 1 (Vr1) loci to co...

  8. Combination of minimal processing and irradiation to improve the microbiological safety of lettuce ( Lactuca sativa, L.)

    NASA Astrophysics Data System (ADS)

    Goularte, L.; Martins, C. G.; Morales-Aizpurúa, I. C.; Destro, M. T.; Franco, B. D. G. M.; Vizeu, D. M.; Hutzler, B. W.; Landgraf, M.

    2004-09-01

    The feasibility of gamma radiation in combination with minimal processing (MP) to reduce the number of Salmonella spp. and Escherichia coli O157:H7 in iceberg lettuce ( Lactuca sativa, L.) (shredded) was studied in order to increase the safety of the product. The reduction of the microbial population during the processing, the D10-values for Salmonella spp. and E. coli O157:H7 inoculated on shredded iceberg lettuce as well as the sensory evaluation of the irradiated product were evaluated. The immersion in chlorine (200 ppm) reduced coliform and aerobic mesophilic microorganisms by 0.9 and 2.7 log, respectively. D-values varied from 0.16 to 0.23 kGy for Salmonella spp. and from 0.11 to 0.12 kGy for E. coli O157:H7. Minimally processed iceberg lettuce exposed to 0.9 kGy does not show any change in sensory attributes. However, the texture of the vegetable was affected during the exposition to 1.1 kGy. The exposition of MP iceberg lettuce to 0.7 kGy reduced the population of Salmonella spp. by 4.0 log and E. coli by 6.8 log without impairing the sensory attributes. The combination of minimal process and gamma radiation to improve the safety of iceberg lettuce is feasible if good hygiene practices begins at farm stage.

  9. Notice of release of iceberg, romaine, and leaf lettuce breeding lines with improved disease resistance

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, U.S. Department of Agriculture announces the release of sixteen breeding lines of lettuce (Lactuca sativa L.). Five (SM13-Il, SM13-I2, SM13-I3, SM13-I4, and SM13-I5) of the six iceberg breeding lines can be used for whole head or salad blend production; the sixth i...

  10. Decontamination and survival of Enterobacteriaceae on shredded iceberg lettuce during storage.

    PubMed

    Osaili, Tareq M; Alaboudi, Akram R; Al-Quran, Heba N; Al-Nabulsi, Anas A

    2018-08-01

    Enterobacteriaceae family can contaminate fresh produce at any stage of production either at pre-harvest or post-harvest stages. The objectives of the current study were to i) identify Enterobacteriaceae species on iceberg lettuce, ii) compare the decontamination efficiency of water, sodium hypochlorite (free chlorine 200 ppm), peroxyacetic acid (PA 80 ppm; Kenocid 2100 ® ) or their combinations and ionizing radiation against Enterobacteriaceae on shredded iceberg lettuce and iii) determine the survival of Enterobacteriaceae post-treatment storage of shredded iceberg lettuce at 4, 10 and 25 °C, for up to 7 days. Klebsiella pneumonia spp. pneumonia, Enterobacter cloacae, Klebsiella oxytoca, Pantoea spp., Leclercia adecarboxylata and Kluyvera ascorbate were identified on iceberg lettuce. No significant difference (P≥ 0.05) among Enterobacteriaceae survival after washing with water or sanitizing with sodium hypochlorite or Kenocid 2100 ® (reduction ≤ 0.6 log CFU/g) were found. Combined sanitizer treatments were more effective against Enterobacteriaceae than single washing/sanitizing treatments. Sanitization of iceberg lettuce with combined washing/sanitizing treatments reduced Enterobacteriaceae by 0.85-2.24 CFU/g. Post-treatment growth of Enterobacteriaceae during storage on samples sanitized with sodium hypochlorite and Kenocid 2100 ® was more than on samples washed with water. The D 10 -value of Enterobacteriaceae on shredded iceberg lettuce was 0.21 KGy. The reduction of Enterobacteriaceae populations on iceberg after gamma radiation (0.6 KGy) was 3 log CFU/g, however, Enterobacteriaceae counts increased post-irradiation storage by 4-5 log CFU/g. Therefore, washing shredded iceberg lettuce with combined sanitizing treatment (sodium hypochlorite/sodium hypochlorite, sodium hypochlorite/Kenocid 2100 ® , or Kenocid 2100 ® /Kenocid 2100 ® ) for total time of 6 min or exposing it to gamma irradiation (0.6 KGy) can decrease the risk of

  11. Outbreak of Shigella sonnei infection traced to imported iceberg lettuce.

    PubMed Central

    Kapperud, G; Rørvik, L M; Hasseltvedt, V; Høiby, E A; Iversen, B G; Staveland, K; Johnsen, G; Leitao, J; Herikstad, H; Andersson, Y

    1995-01-01

    In the period from May through June 1994, an increase in the number of domestic cases of Shigella sonnei infection was detected in several European countries, including Norway, Sweden, and the United Kingdom. In all three countries epidemiological evidence incriminated imported iceberg lettuce of Spanish origin as the vehicle of transmission. The outbreaks shared a number of common features: a predominance of adults among the case patients, the presence of double infections with other enteropathogens, and the finding of two dominant phage types among the bacterial isolates. In Norway 110 culture-confirmed cases of infection were recorded; more than two-thirds (73%) were adults aged 30 to 60 years. A nationwide case-control study comprising 47 case patients and 155 matched control individuals showed that the consumption of imported iceberg lettuce was independently associated with an increased risk of shigellosis. Epidemiological investigation of a local outbreak incriminated iceberg lettuce from Spain, consumed from a salad bar, as the source. The presence of shigellae in the suspected food source could not be documented retrospectively. However, high numbers of fecal coliforms were detected in iceberg lettuce from patients' homes. Three lettuce specimens yielded salmonellae. The imported iceberg lettuce harbored Escherichia coli strains showing resistance to several antimicrobial agents, including ampicillin, ciprofloxacin, gentamicin, and trimethoprim-sulfamethoxazole. During the outbreak it is likely that thousands of Norwegians and an unknown number of consumers in other countries were exposed to coliforms containing antibiotic resistance genes. PMID:7751364

  12. Wild lettuce (Lactuca virosa) toxicity.

    PubMed

    Besharat, Sima; Besharat, Mahsa; Jabbari, Ali

    2009-01-01

    Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity caused by wild lettuce intake and an accurate history formed the basis of the diagnosis. Conservative treatment, vital sign monitoring, control of patient intake and output, and reducing patient agitation provided the basis for treatment.

  13. Wild lettuce (Lactuca virosa) toxicity

    PubMed Central

    Besharat, Sima; Besharat, Mahsa; Jabbari, Ali

    2009-01-01

    Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity caused by wild lettuce intake and an accurate history formed the basis of the diagnosis. Conservative treatment, vital sign monitoring, control of patient intake and output, and reducing patient agitation provided the basis for treatment. PMID:21686920

  14. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce

    USDA-ARS?s Scientific Manuscript database

    Many cultivars of lettuce (Lactuca sativa L.), the most popular leafy vegetable, are susceptible to downy mildew disease caused by Bremia lactucae. Cultivars Iceberg and Grand Rapids that were released in 18th and 19th century, respectively, have high levels of quantitative resistance to downy milde...

  15. Low-Temperature Fumigation of Harvested Lettuce Using a Phosphine Generator.

    PubMed

    Liu, Yong-Biao

    2018-02-28

    A research-scale phosphine generator, QuickPHlo-R, from United Phosphorus Ltd. (Mumbai, India) was tested to determine whether it was suitable for low-temperature fumigation and oxygenated phosphine fumigation of harvested lettuce. Vacuum cooled Iceberg and Romaine lettuce (Lactuca sativa) were fumigated in 442-liter chambers at 2°C for 24 and 72 h for control of western flower thrips [Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)] and lettuce aphid [Nasonovia ribisnigri (Mosely) (Homoptera: Aphididae)]. Oxygenated phosphine fumigation for 48 h under 60% O2 was also conducted at 2°C with Iceberg and Romaine lettuce for control of lettuce aphid. The generator completed phosphine generation in 60-90 min. Complete control of western flower thrips was achieved in 24-h treatment, and the 48-h oxygenated fumigation, and 72-h regular fumigation treatments completely controlled lettuce aphid. Lettuce quality was evaluated 14 d after fumigation. There was increased incidence of brown stains on fumigated Iceberg lettuce, and the increases were more obvious in longer (≥48 h) treatments. Both Iceberg and Romaine lettuce from all treatments and controls had good visual quality even though there was significantly higher brown stain incidence on fumigated Iceberg lettuce in ≥48-h treatment and significant differences in quality score for both Iceberg and Romaine lettuce in the 72-h treatment. The brown stains were likely due to the high sensitivity of lettuce to carbon dioxide. The study indicated that QuiPHlo-R phosphine generator has potential in low-temperature phosphine fumigation due to the quick establishment of desired phosphine levels, efficacy in pest control, and reasonable safety to product quality.

  16. Lettucenin sesquiterpenes contribute significantly to the browning of lettuce.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2014-05-21

    Wound-induced changes in the composition of secondary plant compounds cause the browning of processed lettuce. Cut tissues near the lettuce butt end clearly exhibit increased formation of yellow-brown pigments. This browning reaction is typically been attributed to the oxidation of polyphenols by the enzyme polyphenol oxidase (PPO). However, in our previous study on Iceberg lettuce, we showed that, besides the enzymatic polyphenol browning, other reactions must be involved in the formation of colored structures. With the present study for the first time, we isolated yellow sesquiterpenes by multilayer countercurrent chromatography (MLCCC), followed by preparative high-performance liquid chromatography (HPLC). Further analyses by nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques identified lettucenin A and three novel derivatives. We call these compounds lettucenins A1, B, and B1. Color-dilution analyses revealed these lettucenins as key chromophores in the browning of Iceberg lettuce. A time formation curve showed the accumulation of lettucenins A and B within 40 h after cutting. Thereafter, these structures were degraded to unknown colored compounds. Lettucenin A was verified in five varieties of Lactuca. In contrast to that, lettucenin A was present only at trace levels in five varieties of Cichorium. Therefore, lettucenin A might be used as a chemosystematic marker of the genus Lactuca.

  17. Genetic characterization of quantitative resistance to Bremia lactucae, the causal organism of lettuce downy mildew

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the United States. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carryi...

  18. [Lettuce, lactuca sp., as a medicinal plant in polish publications of the 19th century].

    PubMed

    Trojanowska, Anna

    2005-01-01

    Mentions of lettuce Lactuca sp. that have appeared since antiquity contained similar information on its curative properties, but such properties were ascribed to different species or varieties. Apart from the wild and poisonous lettuce, also garden or common lettuce were identified as having curative action, and some publications lacked information enabling the precise identification of the lettuce in question. In the 19th century, attempts were made to put some order into the knowledge of lettuce as a medicinal plant. Information contained in Polish medical studies of the 19th century on lettuce points to the poisonous species, Lactuca virosa, and the common or garden lettuce, Lactuca sativa v. Lactuca hortensis, as being used as a medicinal plant. In that period, lettuce and especially the the desiccated lactescent juice obtained from it, lactucarium, were considered to be an intoxicant, and were used as a sedative and an analgesic. The action of the substance was weaker than that of opium but free of the side-effects, and medical practice showed that in some cases lactucarium produced better curative effects than opium. To corroborate those properties of lettuce and its lactescent juice, studies were undertaken to find the substance responsible for the curative effects of the juice. However, such studies failed to produce the expected results, and the component responsible for the curative properties of letuce was not identified. Medical practice thus had to restrict itself to the uses of the desiccated lactescent juice and extracts obtained from it. The possibility of obtaining lactucarium from plants cultivated in Poland caused Polish pharmacists and physicians to take an interest in the stuff and launch their own research of lettuce and the lactescent juice obtained from it. Results of research on lettuce were published in 19th-century journals by, among others, Jan Fryderyk Wolfgang, Florian Sawiczewski and Józef Orkisz.

  19. Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery.

    PubMed

    Ruhlman, Tracey A

    2014-01-01

    The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa L.). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide an ideal platform for the production of biopharmaceuticals.

  20. Disinfection of iceberg lettuce by titanium dioxide-UV photocatalytic reaction.

    PubMed

    Kim, Youngbong; Choi, Yoonjung; Kim, Soohyun; Park, Jonghyun; Chung, Myongsoo; Song, Kyung Bin; Hwang, Ingyun; Kwon, Kisung; Park, Jiyong

    2009-09-01

    Securing the physical quality and microbial safety of fresh foods has been a major focus in the food industry. To improve quality and increase the shelf life of fresh produce, disinfection methods have been developed. Titanium dioxide (TiO2) photocatalytic reactions under UV radiation produce hydroxyl radicals that can be used for disinfection of foodborne pathogenic bacteria. We investigated the effects of TiO2-UV photocatalytic disinfection on the shelf life of iceberg lettuce. Counts of natural microflora (total aerobic bacteria, coliforms, psychrotrophic bacteria, and yeasts and molds) and inoculated pathogenic bacteria (Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Salmonella Typhimurium) on iceberg lettuce were determined after 20-min treatments with TiO2-UV, UV radiation, a sodium hypochlorite (NaOCl) solution, and tap water. TiO2-UV treatment reduced the number of microorganisms by 1.8 to 2.8 log CFU/g compared with reductions of 0.9 to 1.4 and 0.7 to 1.1 log CFU/g obtained with UV radiation and NaOCl treatments, respectively. Treatment with tap water was used as a control and resulted in no reductions. Counts of microflora for iceberg lettuce at 4 and 25 degrees C were determined during a 9-day period. TiO2-UV treatment resulted in 1.2- and 4.3-log increases in the counts of total aerobic bacteria at 4 and 25 degrees C, respectively, compared with 1.3- to 1.6-log and 4.4- to 4.8-log increases due to UV radiation and NaOCl treatments.

  1. Low temperature phosphine fumigation of pre-chilled iceberg lettuce under insulation cover for postharvest control of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae).

    USDA-ARS?s Scientific Manuscript database

    Fumigation of chilled iceberg lettuce under an insulation cover was studied to develop economical alternatives to conduct low temperature phosphine fumigation for control of western flower thrips, Frankliniella occidentalis (Pergande), on exported lettuce. Vacuum cooled commercial iceberg lettuce o...

  2. Quality of Iceberg and Romaine lettuce treated by combinations of sanitizer, surfactant, and ultrasound

    USDA-ARS?s Scientific Manuscript database

    We report an investigation of the individual and combined effects of sonication, two sanitizers (chlorine and Tsunami 100®) and a surfactant (sodium dodecyl sulfate (SDS) on the quality of fresh-cut Iceberg and Romaine lettuce. Lettuce samples were treated for 1 minute with and without ultrasound in...

  3. Characterization and performance of 16 new inbred lines of lettuce

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, U.S. Department of Agriculture announces the release of sixteen breeding lines of lettuce (Lactuca sativa L.). Five (SM13-I1, SM13-I2, SM13-I3, SM13-I4, and SM13-I5) of the six iceberg breeding lines can be used for whole head or salad blend production; the sixth i...

  4. Development of an assay for rapid detection of the lettuce downy mildew pathogen, Bremia lactucae

    USDA-ARS?s Scientific Manuscript database

    Downy mildew of lettuce, caused by Bremia lactucae, causes chlorosis on leaves and adversely affects marketability. Though downy mildew on lettuce can be controlled by fungicide applications, it is costly to routinely apply fungicides to prevent the establishment of downy mildew. Repeated use of the...

  5. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes

    USDA-ARS?s Scientific Manuscript database

    Background: Lettuce (Lactuca sativa L.) is the major vegetable from the group of leafy vegetables. Several types of molecular markers were developed that are effictively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly avai...

  6. Deficit irrigation reduces postharvest rib pinking in wholehead Iceberg lettuce, but at the expense of head fresh weight.

    PubMed

    Monaghan, James M; Vickers, Laura H; Grove, Ivan G; Beacham, Andrew M

    2017-03-01

    Postharvest pinking is a serious issue affecting lettuce quality. Previous studies suggested the possibility of using deficit irrigation to control discolouration; however, this approach may also affect yield. This study investigated the effect of varying irrigation deficits on iceberg lettuce (Lactuca sativa L.) to determine the relationship between irrigation deficit, pinking and fresh weight. The deficit imposed and head fresh weight obtained depended on both the duration and timing of withholding irrigation. Withholding irrigation for a period of 2 or 3 weeks in the middle or end of the growth period significantly reduced rib pinking compared to well-watered controls. Withholding irrigation for 2 weeks at the start of the growth period or 1 week at the end did not significantly reduce pinking. Withholding irrigation also reduced head fresh weight such that minimising pinking would be predicted to incur a loss of 40% relative to well-watered controls. However, smaller benefits to pinking reduction were achieved with less effect on head fresh weight. Deficit irrigation could be used to provide smaller but higher quality heads which are less likely to be rejected. The balance of these factors will determine the degree of adoption of this approach to growers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce.

    PubMed

    Ioannidis, Angelos-Gerasimos; Kerckhof, Frederiek-Maarten; Riahi Drif, Yasmine; Vanderroost, Mike; Boon, Nico; Ragaert, Peter; De Meulenaer, Bruno; Devlieghere, Frank

    2018-04-22

    Fresh cut iceberg lettuce spoilage was studied considering the microbial and biochemical activity, the formation of volatile organic compounds (VOC) and consumer acceptability. Lettuce was packaged under three different packaging conditions and stored at 4 °C for 10 days: anaerobic packaging (ANAER), equilibrium modified atmosphere packaging with 3% O 2 (EMAP) and perforated packages (AIR). Results indicated a clear distinction between packaging conditions. EMAP and AIR resulted in a short shelf life (≤5.6 days) which was limited due to browning, leading to consumer rejection as assessed via the Weibull hazard analysis method, while no off-odors were detected. Culture- independent 16 s rRNA gene amplicon sequencing revealed Pseudomonas spp. as the dominating species. In contrast, under ANAER conditions, lactic acid bacteria dominated with genera of Leuconostoc spp. and Lactococcus spp. proliferating, while also oligotypes of Pseudomonas spp. were found. Spoilage under ANAER occurred after 6.6 days and it was related to strong fermentative-like off-odors that were present by the end of storage. As revealed by selective ion flow tube mass spectrometry (SIFT-MS), these odors were associated with several VOCs such as: ethanol, 3-methyl-1-butanol, 2,3-butanediol, (Z)-3-hexen-1-ol, hexanal, acetic acid, ethyl acetate and dimethyl sulfide. Panelists rejected the iceberg lettuce due to the formation of off-odors while the overall appearance remained good throughout the study. Hence a sensor based technology incorporated in the packaging, detecting VOCs and in particular ethanol as dominant compound, could serve as a spoilage indicator for ANAER packed lettuce, which proved to have the longest shelf life. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species.

    PubMed

    Giesbers, Anne K J; Pelgrom, Alexandra J E; Visser, Richard G F; Niks, Rients E; Van den Ackerveken, Guido; Jeuken, Marieke J W

    2017-11-01

    Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its cross-compatibility with the host species L. sativa enables the study of inheritance of nonhost resistance (NHR). We performed transient expression of candidate RXLR effector genes from B. lactucae in a diverse Lactuca germplasm set. Responses to two candidate effectors (BLR31 and BLN08) were genetically mapped and tested for co-segregation with disease resistance. BLN08 induced a hypersensitive response (HR) in 55% of the L. saligna accessions, but responsiveness did not co-segregate with resistance to Bl:24. BLR31 triggered an HR in 5% of the L. saligna accessions, and revealed a novel R gene providing complete B. lactucae race Bl:24 resistance. Resistant hybrid plants that were BLR31 nonresponsive indicated other unlinked R genes and/or nonhost QTLs. We have identified a candidate avirulence effector of B. lactucae (BLR31) and its cognate R gene in L. saligna. Concurrently, our results suggest that R genes are not required for NHR of L. saligna. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews.

    PubMed

    Tichá, Tereza; Sedlářová, Michaela; Činčalová, Lucie; Trojanová, Zuzana Drábková; Mieslerová, Barbora; Lebeda, Aleš; Luhová, Lenka; Petřivalský, Marek

    2018-05-01

    Resistant Lactuca spp. genotypes can efficiently modulate levels of S-nitrosothiols as reactive nitrogen species derived from nitric oxide in their defence mechanism against invading biotrophic pathogens including lettuce downy mildew. S-Nitrosylation belongs to principal signalling pathways of nitric oxide in plant development and stress responses. Protein S-nitrosylation is regulated by S-nitrosoglutathione reductase (GSNOR) as a key catabolic enzyme of S-nitrosoglutathione (GSNO), the major intracellular S-nitrosothiol. GSNOR expression, level and activity were studied in leaves of selected genotypes of lettuce (Lactuca sativa) and wild Lactuca spp. during interactions with biotrophic mildews, Bremia lactucae (lettuce downy mildew), Golovinomyces cichoracearum (lettuce powdery mildew) and non-pathogen Pseudoidium neolycopersici (tomato powdery mildew) during 168 h post inoculation (hpi). GSNOR expression was increased in all genotypes both in the early phase at 6 hpi and later phase at 72 hpi, with a high increase observed in L. sativa UCDM2 responses to all three pathogens. GSNOR protein also showed two-phase increase, with highest changes in L. virosa-B. lactucae and L. sativa cv. UCDM2-G. cichoracearum pathosystems, whereas P. neolycopersici induced GSNOR protein at 72 hpi in all genotypes. Similarly, a general pattern of modulated GSNOR activities in response to biotrophic mildews involves a two-phase increase at 6 and 72 hpi. Lettuce downy mildew infection caused GSNOR activity slightly increased only in resistant L. saligna and L. virosa genotypes; however, all genotypes showed increased GSNOR activity both at 6 and 72 hpi by lettuce powdery mildew. We observed GSNOR-mediated decrease of S-nitrosothiols as a general feature of Lactuca spp. response to mildew infection, which was also confirmed by immunohistochemical detection of GSNOR and GSNO in infected plant tissues. Our results demonstrate that GSNOR is differentially modulated in interactions of

  10. Infrequent transposition of Ac in lettuce, Lactuca sativa.

    PubMed

    Yang, C H; Ellis, J G; Michelmore, R W

    1993-08-01

    The maize transposable element Activator (Ac) is being used to develop a transposon mutagenesis system in lettuce, Lactuca sativa. Two constructs containing the complete Ac from the waxy-m7 locus of maize were introduced into lettuce and monitored for activity using Southern analysis and PCR amplification of the excision site. No transposition of Ac was detected in over 32 transgenic R1 plants, although these constructs were known to provide frequent transposition in other species. Also, no transposition was observed in later generations. In subsequent experiments, transposition was detected in lettuce calli using constructs that allowed selection for excision events. In these constructs, the neomycin phosphotransferase II gene was interrupted by either Ac or Ds. Excision was detected as the ability of callus to grow on kanamycin. Synthesis of the transposase from the cDNA of Ac expressed from the T-DNA 2' promoter resulted in more frequent excision of Ds than was observed with the wild-type Ac. No excision was observed with Ds in the absence of the transposase. The excision events were confirmed by amplification of the excision site by PCR followed by DNA sequencing. Excision and reintegration were also confirmed by Southern analysis. Ac/Ds is therefore capable of transposition in at least calli of lettuce.

  11. Microbiological evaluation of ready-to-eat iceberg lettuce during shelf-life and effectiveness of household washing methods

    PubMed Central

    Bencardino, Daniela; Vitali, Luca Agostino; Petrelli, Dezemona

    2018-01-01

    The aim of this study was to assess the microbiological quality of ready-to-eat (RTE) iceberg lettuce. Our investigation was based on the consumption tendency of university students considered a target market for this product. A total of 78 RTE samples were collected from chain supermarkets and analysed for the enumeration of aerobic mesophilic count (AMC), Escherichia coli and the detection of Salmonella spp. and Listeria monocytogenes. All samples were negative for the presence of pathogens. The mean value of AMC at the beginning, in the middle and after the expiration date was: 6.88, 8.51 and 8.72 log CFU g-1, respectively. The same investigation was performed on 12 samples of fresh iceberg lettuce samples. No pathogens were found and the mean value of AMC was lower than the RTE category (5.73 log CFU g-1; P<0.05). The effectiveness of 5 washing methods was determined on 15 samples of both fresh and RTE iceberg lettuce. Samples were washed for 15’ and 30’ in tap water (500 mL), tap water with NaCl (4 g/500 mL), tap water with bicarbonate (8 g/500 mL), tap water with vinegar (10 mL/500 mL) and tap water with chlorine-based disinfectant (10 mL/500 mL). A significant bacterial load reduction was recorded for vinegar and disinfectant after 30’ and 15’, respectively. Overall, these results showed that RTE iceberg lettuce is more contaminated than the fresh product. Also, the consumption in the first few days of packaging and after washing with disinfectants reduces the risk for health consumers. PMID:29732325

  12. Older leaves of lettuce (Lactuca spp.) support higher levels of Salmonella enterica ser. Senftenberg attachment and show greater variation between plant accessions than do younger leaves.

    PubMed

    Hunter, Paul J; Shaw, Robert K; Berger, Cedric N; Frankel, Gad; Pink, David; Hand, Paul

    2015-06-01

    Salmonella can bind to the leaves of salad crops including lettuce and survive for commercially relevant periods. Previous studies have shown that younger leaves are more susceptible to colonization than older leaves and that colonization levels are dependent on both the bacterial serovar and the lettuce cultivar. In this study, we investigated the ability of two Lactuca sativa cultivars (Saladin and Iceberg) and an accession of wild lettuce (L. serriola) to support attachment of Salmonella enterica serovar Senftenberg, to the first and fifth to sixth true leaves and the associations between cultivar-dependent variation in plant leaf surface characteristics and bacterial attachment. Attachment levels were higher on older leaves than on the younger ones and these differences were associated with leaf vein and stomatal densities, leaf surface hydrophobicity and leaf surface soluble protein concentrations. Vein density and leaf surface hydrophobicity were also associated with cultivar-specific differences in Salmonella attachment, although the latter was only observed in the older leaves and was also associated with level of epicuticular wax. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Efficacy of Slightly Acidic Electrolyzed Water and UV-Ozonated Water Combination for Inactivating Escherichia Coli O157:H7 on Romaine and Iceberg Lettuce during Spray Washing Process.

    PubMed

    Pang, Yu-Hsin; Hung, Yen-Con

    2016-07-01

    Spray washing is a common sanitizing method for the fresh produce industry. The purpose of this research was to investigate the antimicrobial effect of spraying slightly acidic electrolyzed water (SAEW) and a combination of ozonated water with ultraviolet (UV) in reducing Escherichia coli O157:H7 on romaine and iceberg lettuces. Both romaine and iceberg lettuces were spot inoculated with 100 μL of a 3 strain mixture of E. coli O157:H7 to achieve an inoculum of 6 log CFU/g on lettuce. A strong antimicrobial effect was observed for the UV-ozonated water combination, which reduced the population of E. coli by 5 log CFU/g of E. coli O157:H7 on both lettuces. SAEW achieved about 5 log CFU/g reductions in the bacterial counts on romaine lettuce. However, less than 2.5 log CFU/g in the population of E. coli O157:H7 was reduced on iceberg lettuce. The difference may be due to bacteria aggregation near and within stomata for iceberg lettuce but not for romaine lettuce. The UV light treatment may stimulate the opening of the stomata for the UV-ozonated water treatment and hence achieve better bacterial inactivation than the SAEW treatment for iceberg lettuce. Our results demonstrated that the combined treatment of SAEW and UV-ozonated water in the spray washing process could more effectively reduce E. coli O157:H7 on lettuce, which in turn may help reduce incidences of E. coli O157:H7 outbreaks. © 2016 Institute of Food Technologists®

  14. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy.

    PubMed

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management.

  15. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy

    PubMed Central

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  16. Transfer and expression of the rabbit defensin NP-1 gene in lettuce (Lactuca sativa).

    PubMed

    Song, D; Xiong, X; Tu, W F; Yao, W; Liang, H W; Chen, F J; He, Z Q

    2017-01-23

    Lettuce (Lactuca sativa L.) is an annual plant of the daisy family, Asteraceae, with high food and medicinal value. However, the crop is susceptible to several viruses that are transmitted by aphids and is highly vulnerable to post-harvest diseases, as well as insect and mammal pests and fungal and bacterial diseases. Here, the rabbit defensin gene NP-1 was transferred into lettuce by Agrobacterium-mediated transformation to obtain a broad-spectrum disease-resistant lettuce. Transgenic lettuce plants were selected and regenerated on selective media. The presence of the NP-1 gene in these plants was confirmed by western blot analyses. Resistance tests revealed native defensin NP-1 expression conferred partial resistance to Bacillus subtilis and Pseudomonas aeruginosa, which suggests new possibilities for lettuce disease resistance.

  17. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.

    PubMed

    Kanamoto, Hirosuke; Yamashita, Atsushi; Asao, Hiroshi; Okumura, Satoru; Takase, Hisabumi; Hattori, Masahira; Yokota, Akiho; Tomizawa, Ken-Ichi

    2006-04-01

    Transgenic plastids offer unique advantages in plant biotechnology, including high-level foreign protein expression. However, broad application of plastid genome engineering in biotechnology has been largely hampered by the lack of plastid transformation systems for major crops. Here we describe the development of a plastid transformation system for lettuce, Lactuca sativa L. cv. Cisco. The transforming DNA carries a spectinomycin-resistance gene (aadA) under the control of lettuce chloroplast regulatory expression elements, flanked by two adjacent lettuce plastid genome sequences allowing its targeted insertion between the rbcL and accD genes. On average, we obtained 1 transplastomic lettuce plant per bombardment. We show that lettuce leaf chloroplasts can express transgene-encoded GFP to approximately 36% of the total soluble protein. All transplastomic T0 plants were fertile and the T1 progeny uniformly showed stability of the transgene in the chloroplast genome. This system will open up new possibilities for the efficient production of edible vaccines, pharmaceuticals, and antibodies in plants.

  18. Occurrence of Multidrug Resistant Extended Spectrum Beta-Lactamase-Producing Bacteria on Iceberg Lettuce Retailed for Human Consumption.

    PubMed

    Bhutani, Natasha; Muraleedharan, Chithra; Talreja, Deepa; Rana, Sonia Walia; Walia, Sandeep; Kumar, Ashok; Walia, Satish K

    2015-01-01

    Antibiotic resistance in bacteria is a global problem exacerbated by the dissemination of resistant bacteria via uncooked food, such as green leafy vegetables. New strains of bacteria are emerging on a daily basis with novel expanded antibiotic resistance profiles. In this pilot study, we examined the occurrence of antibiotic resistant bacteria against five classes of antibiotics on iceberg lettuce retailed in local convenience stores in Rochester, Michigan. In this study, 138 morphologically distinct bacterial colonies from 9 iceberg lettuce samples were randomly picked and tested for antibiotic resistance. Among these isolates, the vast majority (86%) demonstrated resistance to cefotaxime, and among the resistant bacteria, the majority showed multiple drug resistance, particularly against cefotaxime, chloramphenicol, and tetracycline. Three bacterial isolates (2.17%) out of 138 were extended spectrum beta-lactamase (ESBL) producers. Two ESBL producers (T1 and T5) were identified as Klebsiella pneumoniae, an opportunistic pathogen with transferable sulfhydryl variable- (SHV-) and TEM-type ESBLs, respectively. The DNA sequence analysis of the bla SHV detected in K. pneumoniae isolate T1 revealed 99% relatedness to bla SHV genes found in clinical isolates. This implies that iceberg lettuce is a potential reservoir of newly emerging and evolving antibiotic resistant bacteria and its consumption poses serious threat to human health.

  19. Occurrence of Multidrug Resistant Extended Spectrum Beta-Lactamase-Producing Bacteria on Iceberg Lettuce Retailed for Human Consumption

    PubMed Central

    Talreja, Deepa; Rana, Sonia Walia; Walia, Sandeep; Walia, Satish K.

    2015-01-01

    Antibiotic resistance in bacteria is a global problem exacerbated by the dissemination of resistant bacteria via uncooked food, such as green leafy vegetables. New strains of bacteria are emerging on a daily basis with novel expanded antibiotic resistance profiles. In this pilot study, we examined the occurrence of antibiotic resistant bacteria against five classes of antibiotics on iceberg lettuce retailed in local convenience stores in Rochester, Michigan. In this study, 138 morphologically distinct bacterial colonies from 9 iceberg lettuce samples were randomly picked and tested for antibiotic resistance. Among these isolates, the vast majority (86%) demonstrated resistance to cefotaxime, and among the resistant bacteria, the majority showed multiple drug resistance, particularly against cefotaxime, chloramphenicol, and tetracycline. Three bacterial isolates (2.17%) out of 138 were extended spectrum beta-lactamase (ESBL) producers. Two ESBL producers (T1 and T5) were identified as Klebsiella pneumoniae, an opportunistic pathogen with transferable sulfhydryl variable- (SHV-) and TEM-type ESBLs, respectively. The DNA sequence analysis of the bla SHV detected in K. pneumoniae isolate T1 revealed 99% relatedness to bla SHV genes found in clinical isolates. This implies that iceberg lettuce is a potential reservoir of newly emerging and evolving antibiotic resistant bacteria and its consumption poses serious threat to human health. PMID:26064922

  20. Evidence for a race-specific resistance factor in some lettuce (Lactuca sativa L.) cultivars previously considered to be universally susceptible to Bremia lactucae regel.

    PubMed

    Crute, I R; Lebeda, A

    1981-05-01

    Previously undetected race-specific resistance to Bremia lactucae (downy mildew) was located in many lettuce cultivars hitherto considered to be universally susceptible to this disease. This resistance factor(s) may also be widely distributed in other cultivars known to carry combinations of already recognised factors R1 to R11. Specific virulence to match this resistance is almost invariably present in pathogen collections. This situation may be either a relic of the evolutionary history of the B. lactucae - L. sativa asssociation or may reflect a rare mutation in B. lactucae for avirulence on all but a few specialised L. sativa genotypes.

  1. Assessment of Escherichia coli O157:H7 transference from soil to Iceberg Lettuce via a contaminated harvesting knife

    USDA-ARS?s Scientific Manuscript database

    The potential for coring knives to cross-contaminate lettuce heads with pathogens was evaluated for both ring and blade ends. Rings and blades artificially contaminated with Escherichia coli O157:H7 (EHEC), were used to core three successive heads of iceberg lettuce. The coring rings and blades were...

  2. Antimicrobial (BN/PE) film combined with modified atmosphere packaging extends the shelf life of minimally processed fresh-cut iceberg lettuce.

    PubMed

    Kang, Sun-Chul; Kim, Min-Jeong; Park, In-Sik; Choi, Ung-Kyu

    2008-03-01

    This study was conducted to investigate the effect of modified atmosphere packaging (MAP) in combination with BN/PE film on the shelf life and quality of fresh-cut iceberg lettuce during cold storage. The total mesophilic population in the sample packed in BN/PE film under MAP conditions was dramatically reduced in comparison with that of PE film, PE film under MAP conditions, and BN/PE film. The O2 concentration in the BN/PE film under MAP conditions decreased slightly as the storage period progressed. The coloration of the iceberg lettuce progressed the slowest when it was packaged in BN/PE film under MAP conditions, followed by BN/PE film, PE film, and PE film under MAP conditions. The shelf life of fresh-cut iceberg lettuce packaged in the BN/PE film under MAP conditions was extended by more than 2 days at 10 degrees as compared with that of the BN/PE film in which the extension effect was more than 2 days longer than that of PE, PET, and OPP films.

  3. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce

    PubMed Central

    Simko, Ivan; Atallah, Amy J.; Ochoa, Oswaldo E.; Antonise, Rudie; Galeano, Carlos H.; Truco, Maria Jose; Michelmore, Richard W.

    2013-01-01

    Many cultivars of lettuce (Lactuca sativa L.), the most popular leafy vegetable, are susceptible to downy mildew disease caused by Bremia lactucae. Cultivars Iceberg and Grand Rapids that were released in the 18th and 19th centuries, respectively, have high levels of quantitative resistance to downy mildew. We developed a population of recombinant inbred lines (RILs) originating from a cross between these two legacy cultivars, constructed a linkage map, and identified two QTLs for resistance on linkage groups 2 (qDM2.1) and 5 (qDM5.1) that determined resistance under field conditions in California and the Netherlands. The same QTLs determined delayed sporulation at the seedling stage in laboratory experiments. Alleles conferring elevated resistance at both QTLs originate from cultivar Iceberg. An additional QTL on linkage group 9 (qDM9.1) was detected through simultaneous analysis of all experiments with mixed-model approach. Alleles for elevated resistance at this locus originate from cultivar Grand Rapids. PMID:24096732

  4. Semi-high throughput screening for potential drought-tolerance in lettuce (Lactuca sativa) germplasm collections

    USDA-ARS?s Scientific Manuscript database

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of th...

  5. Resistance to lettuce aphid (Nasonovia ribisnigri) biotype 0 in wild lettuce accessions PI 491093 and PI 274378

    USDA-ARS?s Scientific Manuscript database

    Lettuce aphid, Nasonovia ribisnigri Mosley (Homoptera : Aphididae), is a major insect pest of lettuce, Lactuca sativa L, in many commercial lettuce productions areas around the world. Resistance to lettuce aphid was first reported in Lactuca virosa L. accession IVT 280 and characterized as complete,...

  6. Release of Esterase Following Germination of Lettuce Seed (Lactuca sativa L.)

    PubMed Central

    Chandra, G. Ram; Toole, Vivian K.

    1977-01-01

    Light-insensitive lettuce seeds, Lactuca sativa L. cv. Great Lakes, release esterases for a period following radicle protrusion. Very little or no enzymes are released prior to 24 hours or after 48 hours of germination. As compared to intact seeds, half-seeds readily release esterases and the release is not affected by far red irradiation. Bulk of the released esterases are derived from the endosperm tissue and presumably exists in the intact seed as a component of the extraembryonic fluid. PMID:16659992

  7. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa)

    PubMed Central

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham JJ; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  8. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa).

    PubMed

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham Jj; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  9. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.).

    PubMed

    Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan

    2017-01-01

    Lettuce ( Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce.

  10. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.)

    PubMed Central

    Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan

    2018-01-01

    Lettuce (Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce. PMID:29403510

  11. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa).

    PubMed

    Chakrabarty, Romit; Qu, Yang; Ro, Dae-Kyun

    2015-05-01

    Natural rubber, cis-1,4-polyisoprene, is an important raw material in chemical industries, but its biosynthetic mechanism remains elusive. Natural rubber is known to be synthesized in rubber particles suspended in laticifer cells in the Brazilian rubber tree (Hevea brasiliensis). In the rubber tree, rubber elongation factor (REF) and its homolog, small rubber particle protein (SRPP), were found to be the most abundant proteins in rubber particles, and they have been implicated in natural rubber biosynthesis. As lettuce (Lactuca sativa) can synthesize natural rubber, we utilized this annual, transformable plant to examine in planta roles of the lettuce REF/SRPP homologs by RNA interference. Among eight lettuce REF/SRPP homologs identified, transcripts of two genes (LsSRPP4 and LsSRPP8) accounted for more than 90% of total transcripts of REF/SRPP homologs in lettuce latex. LsSRPP4 displays a typical primary protein sequence as other REF/SRPP, while LsSRPP8 is twice as long as LsSRPP4. These two major LsSRPP transcripts were individually and simultaneously silenced by RNA interference, and relative abundance, polymer molecular weight, and polydispersity of natural rubber were analyzed from the LsSRPP4- and LsSRPP8-silenced transgenic lettuce. Despite previous data suggesting the implications of REF/SRPP in natural rubber biosynthesis, qualitative and quantitative alterations of natural rubber could not be observed in transgenic lettuce lines. It is concluded that lettuce REF/SRPP homologs are not critically important proteins in natural rubber biosynthesis in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. SSH reveals a linkage between a senescence-associated protease and Verticillium wilt symptom development in lettuce (Lactuca sativa)

    USDA-ARS?s Scientific Manuscript database

    Suppression subtractive hybridization (SSH) was employed to identify lettuce (Lactuca sativa) genes that are differentially expressed in symptomatic leaves infected with Verticillium dahliae. Genes expressed only in symptomatic leaves included those with homology to pathogenesis-related (PR) protei...

  13. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceberg lettuce during storage in modified atmosphere package.

    PubMed

    Guan, Wenqiang; Huang, Lihan; Fan, Xuetong

    2010-10-01

    Recent studies showed that sodium acid sulfate (SAS) and levulinic acid (LA) in combination with sodium dodecyl sulfate (SDS) was effective in inactivating human pathogens on Romaine lettuce. The present study investigated the effects of LA and SAS in combination with SDS (as compared with citric acid and chlorine) on the inactivation of E. coli O157:H7 and sensory quality of fresh-cut Iceberg lettuce in modified atmosphere packages during storage at 4 °C. Results showed that LA (0.5% to 3%) and SAS (0.25% to 0.75%) with 0.05% SDS caused detrimental effects on visual quality and texture of lettuce. LA- and SAS-treated samples were sensorially unacceptable due to development of sogginess and softening after 7 and 14 d storage. It appears that the combined treatments caused an increase in the respiration rate of fresh-cut lettuce as indicated by higher CO(2) and lower O(2) in modified atmosphere packages. On the positive side, the acid treatments inhibited cut edge browning of lettuce pieces developed during storage. LA (0.5%), SAS (0.25%), and citric acid (approximately 0.25%) in combination with SDS reduced population of E. coli OH157:H7 by 0.41, 0.87, and 0.58 log CFU/g, respectively, while chlorine achieved a reduction of 0.94 log CFU/g without damage to the lettuce. Therefore, compared to chlorine, LA and SAS in combination with SDS have limited commercial value for fresh-cut Iceberg lettuce due to quality deterioration during storage.

  14. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.

    PubMed

    Rauscher, Gilda; Simko, Ivan

    2013-01-22

    Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes.

  15. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes

    PubMed Central

    2013-01-01

    Background Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Results Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. Conclusions The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes. PMID:23339733

  16. [Effect of outer space factors on lettuce seeds (Lactuca sativa) flown on "Kosmos" biosatellites].

    PubMed

    Nevzgodina, L V; Maksimova, E N; Akatov, Iu A; Kaminskaia, E V; Marennyĭ, A M

    1990-01-01

    The effect of cosmic radiation on air-dry lettuce (Lactuca sativa) seeds was investigated. It was attempted to discriminate the effects of cosmic ionizing radiation per se and its combination with solar light radiation. It was found that the number of aberrant cells in the seeds exposed to solar light was smaller than that of cells chielded with 0.0008 to 0.0035 g/cm2 foil which could be attributed to photoreactivity.

  17. A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.).

    PubMed

    Armas, Isabel; Pogrebnyak, Natalia; Raskin, Ilya

    2017-01-01

    Successful biotechnological improvement of crop plants requires a reliable and efficient in vitro regeneration system. Lettuce ( Lactuca sativa L.), one the most important vegetable crops worldwide, is strongly genotype-dependent in terms of regeneration capacity, limiting the potential for biotechnological improvement of cultivars which show recalcitrance under currently available protocols. The effect of different nutrient sources, plant hormone combinations and activated charcoal supplementation on shoot induction efficiency was evaluated on the cultivar 'RSL NFR', which had previously shown poor regeneration efficiency. Multiple shoot organogenesis from cotyledon explants was recorded at the highest frequency and speed on Murashige and Skoog regeneration medium supplemented with 200 mg/l of activated charcoal, 3% sucrose, 10 mg/l benzylaminopurine and 0.5 mg/l naphthaleneacetic acid, which induced shoots through direct regeneration in 90.8 ± 7.9% of explants. High shoot induction efficiency was also observed, albeit not quantified, when using this medium on some other cultivars. This activated charcoal-containing regeneration medium might offer a rapid and efficient option for direct shoot induction in some lettuce genotypes that do not respond well to common lettuce regeneration protocols. This is also the first report of the effect of activated charcoal in lettuce tissue culture.

  18. Evaluation of Models Describing the Growth of Nalidixic Acid-Resistant E. coli O157:H7 in Blanched Spinach and Iceberg Lettuce as a Function of Temperature

    PubMed Central

    Kim, Juhui; Chung, Hyunjung; Cho, Joonil; Yoon, Kisun

    2013-01-01

    The aim of this study was to model the growth of nalidixic acid-resistant E. coli O157:H7 (E. coli O157:H7NR) in blanched spinach and to evaluate model performance with an independent set of data for interpolation (8.5, 13, 15 and 27 °C) and for extrapolation (broth and fresh-cut iceberg lettuce) using the ratio method and the acceptable prediction zone method. The lag time (LT), specific growth rate (SGR) and maximum population density (MPD) obtained from each primary model were modeled as a function of temperature (7, 10, 17, 24, 30, and 36 °C) using Davey, square root, and polynomial models, respectively. At 7 °C, the populations of E. coli O157:H7NR increased in tryptic soy broth with nalidixic acid (TSBN), blanched spinach and fresh-cut iceberg lettuce, while the populations of E. coli O157:H7 decreased in TSB after 118 h of LT, indicating the risk of nalidixic acid-resistant strain of E. coli O157:H7 contaminated in ready-to-eat produce at refrigerated temperature. When the LT and SGR models of blanched spinach was extended to iceberg lettuce, all relative errors (percentage of RE = 100%) were inside the acceptable prediction zone and had an acceptable Bf and Af values. Thus, it was concluded that developed secondary models for E. coli O157:H7NR in blanched spinach were suitable for use in making predictions for fresh cut iceberg lettuce, but not for static TSBN in this work. PMID:23839062

  19. LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting

    USDA-ARS?s Scientific Manuscript database

    We assessed the genetic diversity and population structure among 148 cultivated lettuce (Lactuca sativa L.) accessions using the high-throughput GoldenGate assay and 384 EST (Expressed Sequence Tag)-derived SNP (single nucleotide polymorphism) markers. A custom OPA (Oligo Pool All), LSGermOPA was fo...

  20. Semi-commercial ultralow oxygen treatment for control of western flower thrips, frankliniella occidentalis (thysanoptera: thripidae), on harvested iceberg lettuce.

    USDA-ARS?s Scientific Manuscript database

    Pallet scale two day ultralow oxygen (ULO) treatment with 30 ppm oxygen at 10°C ambient temperature was conducted on seven cultivars of vacuum cooled iceberg lettuce which had been stored for 1, 3, 4, and 6 days to develop a safe and effective treatment for control of western flower thrips, Franklin...

  1. Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa).

    PubMed

    Kim, Tae-Geum; Kim, Mi-Young; Kim, Bang-Geul; Kang, Tae-Jin; Kim, Young-Sook; Jang, Yong-Suk; Arntzen, Charles J; Yang, Moon-Sik

    2007-01-01

    Escherichia coli heat-labile enterotoxin B subunit (LTB) strongly induces immune responses and can be used as an adjuvant for co-administered antigens. Synthetic LTB (sLTB) based on optimal codon usage by plants was introduced into lettuce cells (Lactuca sativa) by Agrobacterium tumefaciens-mediated transformation methods. The sLTB gene was detected in the genomic DNA of transgenic lettuce leaf cells by PCR DNA amplification. Synthesis and assembly of the sLTB protein into oligomeric structures of pentameric size was observed in transgenic plant extracts using Western blot analysis. The binding of sLTB pentamers to intestinal epithelial cell membrane glycolipid receptors was confirmed by G(M1)-ganglioside enzyme-linked immunosorbent assay (G(M1)-ELISA). Based on the results of ELISA, sLTB protein comprised approximately 1.0-2.0% of total soluble protein in transgenic lettuce leaf tissues. The synthesis and assembly of sLTB monomers into biologically active oligomers in transgenic lettuce leaf tissues demonstrates the feasibility of the use of edible plant-based vaccines consumed in the form of raw plant materials to induce mucosal immunity.

  2. Genetics of resistance against lettuce downy mildew

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the U.S. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carrying dominan...

  3. Persistence of Escherichia coli O157:H7 during pilot-scale processing of iceberg lettuce using flume water containing peroxyacetic acid-based sanitizers and various organic loads.

    PubMed

    Davidson, Gordon R; Kaminski-Davidson, Chelsea N; Ryser, Elliot T

    2017-05-02

    In order to minimize cross-contamination during leafy green processing, chemical sanitizers are routinely added to the wash water. This study assessed the efficacy of peroxyacetic acid and mixed peracid against E. coli O157:H7 on iceberg lettuce, in wash water, and on equipment during simulated commercial production in a pilot-scale processing line using flume water containing various organic loads. Iceberg lettuce (5.4kg) inoculated to contain 10 6 CFU/g of a 4-strain cocktail of non-toxigenic, GFP-labeled, ampicillin-resistant E. coli O157:H7, was shredded using a commercial shredder, step-conveyed to a flume tank, washed for 90s using water alone or two different sanitizing treatments (50ppm peroxyacetic acid or mixed peracid) in water containing organic loads of 0, 2.5, 5 or 10% (w/v) blended iceberg lettuce, and then dried using a shaker table and centrifugal dryer. Thereafter, three 5.4-kg batches of uninoculated iceberg lettuce were identically processed. Various product (25g) and water (50ml) samples collected during processing along with equipment surface samples (100cm 2 ) from the flume tank, shaker table and centrifugal dryer were then assessed for numbers of E. coli O157:H7. Organic load rarely impacted (P>0.05) the efficacy of either peroxyacetic acid or mixed peracid, with typical reductions of >5logCFU/ml in wash water throughout processing for all organic loads. Increases in organic load in the wash water corresponded to changes in total solids, chemical oxygen demand, turbidity, maximum filterable volume, and oxidation/reduction potential. After 90s of exposure to flume water, E. coli O157:H7 reductions on inoculated lettuce ranged from 0.97 to 1.74logCFU/g using peroxyacetic acid, with an average reduction of 1.35logCFU/g for mixed peracid. E. coli O157:H7 persisted on all previously uninoculated lettuce following the inoculated batch, emphasizing the need for improved intervention strategies that can better ensure end-product safety. Copyright

  4. Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics.

    PubMed

    Bito, Tomohiro; Ohishi, Noriharu; Hatanaka, Yuka; Takenaka, Shigeo; Nishihara, Eiji; Yabuta, Yukinori; Watanabe, Fumio

    2013-04-24

    When lettuces (Lactuca sativa L.) grown for 30 days in hydroponic culture were treated with various concentrations of cyanocobalamin for 24 h, its content in their leaves increased significantly from nondetectable to 164.6 ± 74.7 ng/g fresh weight. This finding indicated that consumption of only two or three of these fresh leaves is sufficient to meet the Recommended Dietary Allowance for adults of 2.4 μg/day. Analyses using a cobalamin-dependent Escherichia coli 215 bioautogram and LC/ESI-MS/MS demonstrated that the cyanocobalamin absorbed from the nutrient solutions by the leaves did not alter any other compounds such as coenzymes and inactive corrinoids. Gel filtration indicated that most (86%) of the cyanocobalamin in the leaves was recovered in the free cyanocobalamin fractions. These results indicated that cyanocobalamin-enriched lettuce leaves would be an excellent source of free cyanocobalamin, particularly for strict vegetarians or elderly people with food-bound cobalamin malabsorption.

  5. Effectiveness of Active Packaging on Control of Escherichia Coli O157:H7 and Total Aerobic Bacteria on Iceberg Lettuce.

    PubMed

    Lu, Haixia; Zhu, Junli; Li, Jianrong; Chen, Jinru

    2015-06-01

    Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3-strain mixture of E. coli O157:H7 at 10(2) or 10(4) CFU/g. The contaminated lettuce and un-inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables. © 2015 Institute of Food Technologists®

  6. Differential Scanning Calorimetry as a Tool for Nondestructive Measurements of Seed Deterioration in Lettuce (Lactuca sativa, CV “Black Seeded Simpson”)

    USDA-ARS?s Scientific Manuscript database

    This study was undertaken to determine if changes in lipid phase behavior could be used to detect lost viability in lettuce (Lactuca sativa) seeds. We used seeds from the cultivar ‘Black Seeded Simpson’ that were purchased every 2-3 years since 1989 and stored in resealable plastic bags at constan...

  7. Is There a Relation between the Microscopic Leaf Morphology and the Association of Salmonella and Escherichia coli O157:H7 with Iceberg Lettuce Leaves?

    PubMed

    VAN der Linden, Inge; Eriksson, Markus; Uyttendaele, Mieke; Devlieghere, Frank

    2016-10-01

    To prevent contamination of fresh produce with enteric pathogens, more insight into mechanisms that may influence the association of these pathogens with fresh produce is needed. In this study, Escherichia coli O157:H7 and Salmonella were chosen as model pathogens, and fresh cut iceberg lettuce was chosen as a model fresh produce type. The morphological structure of iceberg lettuce leaves (stomatal density and length of cell margins per leaf area) was quantified by means of leaf peels and light microscopy of leaves at different stages of development (outer, middle, and inner leaves of the crop) on both leaf sides (abaxial and adxial) and in three leaf regions (top, center, and bottom). The morphology of the top region of the leaves was distinctly different from that of the center and base, with a significantly higher stomatal density (up to five times more stomata), different cell shape, and longer cell margins (two to three times longer). Morphological differences between the same regions of the leaves at different stages of development were smaller or nonsignificant. An attachment assay with two attenuated E. coli O157:H7 strains (84-24h11-GFP and BRMSID 188 GFP) and two Salmonella strains (serovars Thompson and Typhimurium) was performed on different regions of the middle leaves. Our results confirmed earlier reports that these pathogens have a higher affinity for the base of the lettuce leaf than the top. Differences of up to 2.12 log CFU/g were seen ( E. coli O157:H7 86-24h11-GFP). Intermediate attachment occurred in the central region. The higher incidence of preferential bacterial attachment sites such as stomata and cell margins or grooves could not explain the differences observed in the association of the tested pathogens with different regions of iceberg lettuce leaves.

  8. Effects of oxygen-depleted atmospheres on survival and growth of Listeria monocytogenes on fresh-cut Iceberg lettuce stored at mild abuse commercial temperatures.

    PubMed

    O'Beirne, David; Gomez-Lopez, Vicente; Tudela, Juan A; Allende, Ana; Gil, Maria I

    2015-06-01

    The effects of oxygen-depleted atmospheres, 0.25% O2+12% CO2 (balance N2) and 2% O2 + 6% CO2 (balance N2), on growth of Listeria monocytogenes on fresh-cut Iceberg lettuce were determined. The study was carried out at mild abuse temperatures using controlled atmosphere chambers. During storage at a constant temperature of 7 °C, growth was enhanced at the lower oxygen level of 0.25% O2 by Day 10. Over 17 days of storage at temperatures designed to mimic mild abuse commercial conditions, there were again significantly higher counts under 0.25% O2 from Day 10 onwards. These were 0.9 and 0.7 log cycles higher on Days 14 and 17, respectively. When a model lettuce agar medium was used to eliminate possible interactions with competing flora the direct effects of the atmosphere enhancing the growth of L. monocytogenes was also observed. It is concluded that use of very O2-depleted atmospheres for control of enzymatic browning of fresh-cut Iceberg lettuce may introduce a potential hazard under some commercial conditions. There is a need for greater vigilance and possibly additional measures to ensure consumer safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.).

    PubMed

    Witsenboer, H; Michelmore, R W; Vogel, J

    1997-12-01

    Selectively amplified microsatellite polymorphic locus (SAMPL) analysis is a method of amplifying microsatellite loci using generic PCR primers. SAMPL analysis uses one AFLP primer in combination with a primer complementary to microsatellite sequences. SAMPL primers based on compound microsatellite sequences provided the clearest amplification patterns. We explored the potential of SAMPL analysis in lettuce to detect PCR-based codominant microsatellite markers. Fifty-eight SAMPLs were identified and placed on the genetic map. Seventeen were codominant. SAMPLs were dispersed with RFLP markers on 11 of the 12 main linkage groups in lettuce, indicating that they have a similar genomic distribution. Some but not all fragments amplified by SAMPL analysis were confirmed to contain microsatellite sequences by Southern hybridization. Forty-five cultivars of lettuce and five wild species of Lactuca were analyzed to determine the allelic diversity for codominant SAMPLs. From 3 to 11 putative alleles were found for each SAMPL; 2-6 alleles were found within Lactuca sativa and 1-3 alleles were found among the crisphead genotypes, the most genetically homogeneous plant type of L. sativa. This allelic diversity is greater than that found for RFLP markers. Numerous new alleles were observed in the wild species; however, there were frequent null alleles. Therefore, SAMPL analysis is more applicable to intraspecific than to interspecific comparisons. A phenetic analysis based on SAMPLs resulted in a dendrogram similar to those based on RFLP and AFLP markers.

  10. Reduction of Escherichia coli 0157:H7 in shredded iceberg lettuce by chlorination and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Foley, D. M.; Dufour, A.; Rodriguez, L.; Caporaso, F.; Prakash, A.

    2002-03-01

    Lettuce was inoculated with a six-strain cocktail of acid-adapted Escherichia coli 0157:H7 at a level of 1×10 7 CFU/g. Following chlorination at 200 μg/ml, the lettuce was irradiated at 0.15, 0.38, or 0.55 kGy using a 60Co source. Survival of E. coli 0157:H7, aerobic mesophiles and yeast and molds were measured over a period of 10 days. For quality analysis, chlorinated lettuce was subjected to irradiation at 0.33 and 0.53 kGy and stored at 1.0°C, 4.0°C or 7.0°C. Changes in texture and color were determined by instrumental means and changes in flavor, odor, and visual quality were determined by sensory testing. Chlorination plus irradiation at 0.55 kGy produced a 5.4-log reduction in E. coli 0157:H7 levels. Chlorination alone reduced the E. coli 0157:H7 counts by 1-2 logs. Irradiation at 0.55 kGy was also effective in reducing standard plate counts and yeast and mold counts. Irradiation at this level did not cause softening of lettuce and sensory attributes were not adversely affected. In general, appearance and flavor were affected more by the length of storage than by temperature conditions. The 5+log reduction in E. coli counts and lack of adverse effects on sensory attributes indicate that low-dose irradiation can improve the safety and shelf-life of fresh-cut iceberg lettuce for retail sale or food service.

  11. Effect of acaricidal components isolated from lettuce (Lactuca sativa) on carmine spider mite (Tetranychus cinnabarinus Boisd.).

    PubMed

    Li, M; Zhang, Y; Ding, W; Luo, J; Li, S; Zhang, Q

    2018-06-01

    This study aimed to evaluate the acaricidal activity of lettuce (Lactuca sativa) extracts against carmine spider mites (Tetranychus cinnabarinus Boisd.) and isolate the acaricidal components. Acaricidal activities of lettuce extracts isolated from different parts (the leaf, root and seed) using various solvents (petroleum ether, acetone and methanol) were evaluated with slide-dip bioassay and relatively high median lethal concentration (LC50) values were detected. Acetone extracts of lettuce leaves harvested in July and September were fractionated and isolated with silica gel and thin-layer chromatography. Consequently, acetone extracts of lettuce leaves harvested in July exhibited higher acaricidal activity than those harvested in September, with an LC50 value of 0.268 mg ml-1 at 72 h post-treatment. A total of 27 fractions were obtained from the acetone extract of lettuce leaves harvested in July, and mite mortalities with the 11th and 12th fractions were higher than those with the other 25 fractions (LC50: 0.751 and 1.258 mg ml-1 at 48 h post-treatment, respectively). Subsequently, active acaricidal components of the 11th fraction were identified by infrared, nuclear magnetic resonance and liquid chromatography/mass spectrometry. Five components were isolated from the 11th fraction, with components 11-a and 11-b showing relatively high acaricidal activities (LC50: 0.288 and 0.114 mg ml-1 at 48 h post-treatment, respectively). Component 11-a was identified as β-sitosterol. In conclusion, acetone extracts of lettuce leaves harvested in July might be used as a novel phytogenic acaricide to control mites.

  12. Efficacy of commercial produce sanitizers against nontoxigenic Escherichia coli O157:H7 during processing of iceberg lettuce in a pilot-scale leafy green processing line.

    PubMed

    Davidson, Gordon R; Buchholz, Annemarie L; Ryser, Elliot T

    2013-11-01

    Chemical sanitizers are routinely used during commercial flume washing of fresh-cut leafy greens to minimize cross-contamination from the water. This study assessed the efficacy of five commercial sanitizer treatments against Escherichia coli O157:H7 on iceberg lettuce, in wash water, and on equipment during simulated commercial production in a pilot-scale processing line. Iceberg lettuce (5.4 kg) was inoculated to contain 10(6) CFU/g of a four-strain cocktail of nontoxigenic, green fluorescent protein-labeled, ampicillin-resistant E. coli O157:H7 and processed after 1 h of draining at ~22 °C. Lettuce was shredded using a commercial slicer, step-conveyed to a flume tank, washed for 90 s using six different treatments (water alone, 50 ppm of peroxyacetic acid, 50 ppm of mixed peracid, or 50 ppm of available chlorine either alone or acidified to pH 6.5 with citric acid [CA] or T-128), and then dried using a shaker table and centrifugal dryer. Various product (25-g) and water (50-ml) samples collected during processing along with equipment surface samples (100 cm(2)) from the flume tank, shaker table, and centrifugal dryer were homogenized in neutralizing buffer and plated on tryptic soy agar. During and after iceberg lettuce processing, none of the sanitizers were significantly more effective (P ≤ 0.05) than water alone at reducing E. coli O157:H7 populations on lettuce, with reductions ranging from 0.75 to 1.4 log CFU/g. Regardless of the sanitizer treatment used, the centrifugal dryer surfaces yielded E. coli O157:H7 populations of 3.49 to 4.98 log CFU/100 cm(2). Chlorine, chlorine plus CA, and chlorine plus T-128 were generally more effective (P ≤ 0.05) than the other treatments, with reductions of 3.79, 5.47, and 5.37 log CFU/ml after 90 s of processing, respectively. This indicates that chlorine-based sanitizers will likely prevent wash water containing low organic loads from becoming a vehicle for cross-contamination.

  13. Improving Water Use Efficiency of Lettuce (Lactuca sativa L.) Using Phosphorous Fertilizers.

    PubMed

    Alkhader, Asad M F; Abu Rayyan, Azmi M

    2013-01-01

    A greenhouse pot experiment was conducted to evaluate the effect of phosphorous (P) fertilizers application to an alkaline calcareous soil on the water use efficiency (WUE) of lettuce cultivar "robinson" of iceberg type. Head fresh and dry weights, total water applied and WUE were affected significantly by the P fertilizer type and rate. P fertilizers addition induced a significant enhancement in the WUE and fresh and dry weights of the crop. A local phosphate rock (PR) applied directly was found to be inferior to the other types of P fertilizers (Mono ammonium phosphate (MAP), Single superphosphate (SSP), and Di ammonium phosphate ((DAP)). MAP fertilizer at 375 and 500 kg P2O5/ha application rates recorded the highest significant values of head fresh weight and WUE, respectively.

  14. LCM-seq reveals the crucial role of LsSOC1 in heat-promoted bolting of lettuce (Lactuca sativa L.).

    PubMed

    Chen, Zijing; Zhao, Wensheng; Ge, Danfeng; Han, Yingyan; Ning, Kang; Luo, Chen; Wang, Shenglin; Liu, Renyi; Zhang, Xiaolan; Wang, Qian

    2018-05-17

    Lettuce (Lactuca sativa L.) is one of the most economically important vegetables. The floral transition in lettuce is accelerated under high temperatures, which can significantly decrease yields. However, the molecular mechanism underlying the floral tranition in lettuce is poorly known. Using laser capture microdissection coupled with RNA sequencing, we isolated shoot apical meristem cells from the bolting-sensitive lettuce line S39 at four critical stages of development. Subsequently, we screened specifically for the flowering-related gene LsSOC1 during the floral transition through comparative transcriptomic analysis. Molecular biology, developmental biology, and biochemical tools were combined to investigate the biological function of LsSOC1 in lettuce. LsSOC1 knockdown by RNA interference resulted in a significant delay in the timing of bolting and insensitivity to high temperature, which indicated that LsSOC1 functions as an activator during heat-promoted bolting in lettuce. We determined that two heat-shock transcription factors, HsfA1e and HsfA4c, bound to the promoter of LsSOC1 to confirm that LsSOC1 played an important role in heat-promoted bolting. This study indicates that LsSOC1 plays a crucial role in the heat-promoted bolting process in lettuce. Further investigation of LsSOC1 may be useful for clarification of the bolting mechanism in lettuce. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Beneficial Phytochemicals with Anti-Tumor Potential Revealed through Metabolic Profiling of New Red Pigmented Lettuces (Lactuca sativa L.).

    PubMed

    Qin, Xiao-Xiao; Zhang, Ming-Yue; Han, Ying-Yan; Hao, Jing-Hong; Liu, Chao-Jie; Fan, Shuang-Xi

    2018-04-11

    The present study aimed to compare polyphenols among red lettuce cultivars and identify suitable cultivars for the development and utilization of healthy vegetables. Polyphenols, mineral elements, and antioxidant activity were analyzed in the leaves of six red pigmented lettuce ( Lactuca sativa L.) cultivars; thereafter, we assessed the anti-tumor effects of cultivar B-2, which displayed the highest antioxidant activity. Quadrupole-Orbitrap mass spectrometry analysis revealed four classes of polyphenols in these cultivars. The composition and contents of these metabolites varied significantly among cultivars and primarily depended on leaf color. The B-2 cultivar had the highest antioxidant potential than others because it contained the highest levels of polyphenols, especially anthocyanin, flavone, and phenolic acid; furthermore, this cultivar displayed anti-tumor effects against the human lung adenocarcinoma cell line A549, human hepatoma cell line Bel7402, human cancer colorectal adenoma cell line HCT-8, and HT-29 human colon cancer cell line. Hence, the new red-leaf lettuce cultivar B-2 has a distinct metabolite profile, with high potential for development and utilization of natural phytochemical and mineral resources in lettuces and can be used as a nutrient-dense food product.

  16. Interspecific somatic hybridization between lettuce (Lactuca sativa) and wild species L. virosa.

    PubMed

    Matsumoto, E

    1991-02-01

    Somatic hybrids between cultivated lettuce (Lactuca sativa) and a wild species L. virosa were produced by protoplast electrofusion. Hybrid selection was based on inactivation of L. sativa with 20mM iodoacetamide for 15 min, and the inability of L. virosa protoplasts to divide in the culture conditions used. Protoplasts were cultured in agarose beads in a revised MS media. In all 71 calli were formed and 21 of them differentiated shoots on LS medium containing 0.1mg/l NAA and 0.2mg/l BA. Most regenerated plants exhibited intermediate morphology. These plants were confirmed as hybrids by isoenzyme analysis. The majority of somatic hybrids had 2n=4x=36 chromosomes, and had more vigorous growth than either parent. Hybrids had normal flower morphology, but all were sterile.

  17. Evaluation of Lettuce Genotypes for Seed Thermotolerance

    USDA-ARS?s Scientific Manuscript database

    Thermoinhibition of lettuce (Lactuca sativa L.) seed germination is a common problem associated with lettuce production. Depending on lettuce cultivars, seed germination may be inhibited when temperatures exceed 28oC. The delay or inhibition of seed germination at high temperatures may reduce seedli...

  18. Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions.

    PubMed

    D'Andrea, Luigi; Felber, François; Guadagnuolo, Roberto

    2008-01-01

    Hybridization and introgression between crops and wild relatives may have important evolutionary and ecological consequences such as gene swamping or increased invasiveness. In the present study, we investigated hybridization under field conditions between crop lettuce (Lactuca sativa) and its wild relative prickly lettuce (L. serriola), two cross-compatible, predominantly autogamous and insect pollinated species. In 2003 and 2004, we estimated the rates of hybridization between L. sativa and L. serriola in close-to-reality field experiments carried out in two locations of Northern Switzerland. Seeds set by the experimental wild plants were collected and sown (44 352 in 2003 and 252 345 in 2004). Progeny was screened morphologically for detecting natural hybrids. Prior to the experiment, specific RAPD markers were used to confirm that morphological characters were reliable for hybrid identification. Hybridization occurred up to the maximal distance tested (40 m), and hybridization rates varied between 0 to 26%, decreasing with distance. More than 80% of the wild plants produced at least one hybrid (incidence of hybridization, IH) at 0 m and 1 m. It equaled 4 to 5% at 40 m. In sympatric crop-wild populations, cross-pollination between cultivated lettuce and its wild relative has to be seen as the rule rather than the exception for short distances.

  19. Screening of lettuce germplasm for agronomic traits under low water conditions

    USDA-ARS?s Scientific Manuscript database

    After a preliminary screening of over 3,500 varieties, we selected 200 cultivars of butterhead, cos, crisphead, leaf, and stem lettuce (Lactuca sativa L.) and wild prickly lettuce (Lactuca serriola L.) to test under high water (150% ET) and low water (50% ET) conditions in the field, and tracked com...

  20. Variation within Lactuca for resistance to Impatiens necrotic spot virus

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) production in coastal California, one of the major lettuce-producing areas of the US, is affected by outbreaks of Impatiens necrotic spot virus (INSV) from the genus Tospovirus. Transmission of INSV among lettuce crops in this growing region has been attributed mostly to ...

  1. Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids.

    PubMed

    Harada, Hisashi; Maoka, Takashi; Osawa, Ayako; Hattan, Jun-Ichiro; Kanamoto, Hirosuke; Shindo, Kazutoshi; Otomatsu, Toshihiko; Misawa, Norihiko

    2014-04-01

    The plastid genome of lettuce (Lactuca sativa L.) cv. Berkeley was site-specifically modified with the addition of three transgenes, which encoded β,β-carotenoid 3,3'-hydroxylase (CrtZ) and β,β-carotenoid 4,4'-ketolase (4,4'-oxygenase; CrtW) from a marine bacterium Brevundimonas sp. strain SD212, and isopentenyl diphosphate isomerase from a marine bacterium Paracoccus sp. strain N81106. Constructed transplastomic lettuce plants were able to grow on soil at a growth rate similar to that of non-transformed lettuce cv. Berkeley and generate flowers and seeds. The germination ratio of the lettuce transformants (T0) (98.8%) was higher than that of non-transformed lettuce (93.1 %). The transplastomic lettuce (T1) leaves produced the astaxanthin fatty acid (myristate or palmitate) diester (49.2% of total carotenoids), astaxanthin monoester (18.2%), and the free forms of astaxanthin (10.0%) and the other ketocarotenoids (17.5%), which indicated that artificial ketocarotenoids corresponded to 94.9% of total carotenoids (230 μg/g fresh weight). Native carotenoids were there lactucaxanthin (3.8%) and lutein (1.3 %) only. This is the first report to structurally identify the astaxanthin esters biosynthesized in transgenic or transplastomic plants producing astaxanthin. The singlet oxygen-quenching activity of the total carotenoids extracted from the transplastomic leaves was similar to that of astaxanthin (mostly esterified) from the green algae Haematococcus pluvialis.

  2. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.).

    PubMed

    Yang, Xiao; Cui, Xiaoxian; Zhao, Li; Guo, Doudou; Feng, Lei; Wei, Shiwei; Zhao, Chao; Huang, Danfeng

    2017-01-01

    Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce ( Lactuca sativa L.), one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control) for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa) significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol) and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  3. Inoculation density is affecting growth conditions of Listeria monocytogenes on fresh cut lettuce.

    PubMed

    McManamon, Oisin; Scollard, Johann; Schmalenberger, Achim

    2017-11-27

    Listeria monocytogenes is a particular risk for the ready-to-eat food sector because of its ability to grow in various environmental conditions. In the literature, growth and survival of L. monocytogenes on food is tested using inoculation densities ranging from less than 10 2 to over 10 5  CFU g -1 . Inoculation densities on food have been rarely tested as a factor for growth. In this study, inoculation densities from 10 2 to 10 5 of L. monocytogenes were tested on iceberg lettuce (Lactuca sativa) in modified atmospheres and air in model packages at 4 and 8 °C to identify any potential inoculation density effects. On days 0, 2, 5 and 7, L. monocytogenes was extracted from the lettuce surface and enumerated via selective media. The resulting growth curves identified a significant inoculation density effect at 4 and 8 °C with significantly higher amounts of growth (1-2 logs) when lettuce was inoculated at 10 2  CFU g -1 as opposed to 10 4 and 10 5  CFU g -1 . In contrast, the use of different atmospheres had limited influence on growth of L. monocytogenes. In conclusion, greater emphasis on inoculation density of L. monocytogenes should be taken in inoculation experiments when confirmation of growth or the efficacies of growth inhibiting treatments are tested on ready-to-eat food such as lettuce.

  4. Advancements in utilizing molecular markers in lettuce breeding

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is globally the most popular commercially produced, leafy vegetable, farmed in moderate climates. Cultivated lettuce is a self-fertilizing, diploid (2n = 2x = 18) species from the family Compositae (Asteraceae). New cultivars of lettuce are developed by combining desirabl...

  5. Seaweeds along KwaZulu-Natal coast of South Africa-3: elemental uptake by Ulva lactuca (Sea lettuce).

    PubMed

    Misheer, Natasha; Kindness, A; Jonnalagadda, S B

    2006-01-01

    The elemental uptake by Ulva lactuca (Sea lettuce), a marine macro-algae (chlorophyta, green alga) grown richly along KwaZulu-Natal coastline. The total elemental concentrations of seven important elements, namely manganese, iron, arsenic, boron, titanium, zinc and mercury, selected based on their abundance in U. lactuca were investigated for one year cycle (June 2002 to May 2003). The four selected sampling sites, Zinkwasi, Ballito, Treasure Beach and Park Ryrie are spread over 150 km wide along the KwaZulu-Natal coastline from North to South. The Ulva lectuca possess good manganese and arsenic accumulating ability and an excellent bio-indicator for most of the metals studied. A typical U. lectuca sample at Zinkwasi (in winter) recorded Mn (25.3 +/- 1.16 ppm), Fe (21.0 +/- 0.85 ppm), As (6.2 +/- 0.30 ppm), B (935 +/- 14 ppb), Ti (863 +/- 34 ppb), Zn (421 +/- 21 ppb), and Hg (61.3 +/- 1.2 ppb). The general trend found at all sites was high elemental concentrations in winter and a decrease in concentrations from winter to spring and summer. Iron uptake was lowest in summer and autumn at all sites. Ulva lactuca recorded highest mercury levels (>400 ppb) during the spring season at the Treasure Beach site near Durban.

  6. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections

    PubMed Central

    Knepper, Caleb; Mou, Beiquan

    2015-01-01

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits. PMID:25938876

  7. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections.

    PubMed

    Knepper, Caleb; Mou, Beiquan

    2015-04-17

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits.

  8. Phylogenetic relationships among Lactuca (Asteraceae) species and related genera based on ITS-1 DNA sequences.

    PubMed

    Koopman, W J; Guetta, E; van de Wiel, C C; Vosman, B; van den Berg, R G

    1998-11-01

    Internal transcribed spacer (ITS-1) sequences from 97 accessions representing 23 species of Lactuca and related genera were determined and used to evaluate species relationships of Lactuca sensu lato (s.l.). The ITS-1 phylogenies, calculated using PAUP and PHYLIP, correspond better to the classification of Feráková than to other classifications evaluated, although the inclusion of sect. Lactuca subsect. Cyanicae is not supported. Therefore, exclusion of subsect. Cyanicae from Lactuca sensu Feráková is proposed. The amended genus contains the entire gene pool (sensu Harlan and De Wet) of cultivated lettuce (Lactuca sativa). The position of the species in the amended classification corresponds to their position in the lettuce gene pool. In the ITS-1 phylogenies, a clade with L. sativa, L. serriola, L. dregeana, L. altaica, and L. aculeata represents the primary gene pool. L. virosa and L. saligna, branching off closest to this clade, encompass the secondary gene pool. L. virosa is possibly of hybrid origin. The primary and secondary gene pool species are classified in sect. Lactuca subsect. Lactuca. The species L. quercina, L. viminea, L. sibirica, and L. tatarica, branching off next, represent the tertiary gene pool. They are classified in Lactuca sect. Lactucopsis, sect. Phaenixopus, and sect. Mulgedium, respectively. L. perennis and L. tenerrima, classified in sect. Lactuca subsect. Cyanicae, form clades with species from related genera and are not part of the lettuce gene pool.

  9. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table.

    PubMed

    Koseki, Shigenobu; Isobe, Seiichiro

    2005-10-25

    The growth of pathogenic bacteria Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on iceberg lettuce under constant and fluctuating temperatures was modelled in order to estimate the microbial safety of this vegetable during distribution from the farm to the table. Firstly, we examined pathogen growth on lettuce at constant temperatures, ranging from 5 to 25 degrees C, and then we obtained the growth kinetic parameters (lag time, maximum growth rate (micro(max)), and maximum population density (MPD)) using the Baranyi primary growth model. The parameters were similar to those predicted by the pathogen modelling program (PMP), with the exception of MPD. The MPD of each pathogen on lettuce was 2-4 log(10) CFU/g lower than that predicted by PMP. Furthermore, the MPD of pathogens decreased with decreasing temperature. The relationship between mu(max) and temperature was linear in accordance with Ratkowsky secondary model as was the relationship between the MPD and temperature. Predictions of pathogen growth under fluctuating temperature used the Baranyi primary microbial growth model along with the Ratkowsky secondary model and MPD equation. The fluctuating temperature profile used in this study was the real temperature history measured during distribution from the field at harvesting to the retail store. Overall predictions for each pathogen agreed well with observed viable counts in most cases. The bias and root mean square error (RMSE) of the prediction were small. The prediction in which mu(max) was based on PMP showed a trend of overestimation relative to prediction based on lettuce. However, the prediction concerning E. coli O157:H7 and Salmonella spp. on lettuce greatly overestimated growth in the case of a temperature history starting relatively high, such as 25 degrees C for 5 h. In contrast, the overall prediction of L. monocytogenes under the same circumstances agreed with the observed data.

  10. MU06-857, a Green Leaf Lettuce Breeding Line with Resistance to Leafminer and Lettuce Mosaic Virus.

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture announces the release of a breeding line of green leaf lettuce (Lactuca sativa L.) with resistance to leafminers (Liriomyza langei Frick) and lettuce mosaic. The line MU06-857 is similar to cultivar ‘Lolla Rossa’ (‘Lollo Ros...

  11. Minimal processing of iceberg lettuce has no substantial influence on the survival, attachment and internalization of E. coli O157 and Salmonella.

    PubMed

    Van der Linden, Inge; Avalos Llano, Karina R; Eriksson, Markus; De Vos, Winnok H; Van Damme, Els J M; Uyttendaele, Mieke; Devlieghere, Frank

    2016-12-05

    The influence of a selection of minimal processing techniques (sanitizing wash prior to packaging, modified atmosphere, storage conditions under light or in the dark) was investigated in relation to the survival of, attachment to and internalization of enteric pathogens in fresh produce. Cut Iceberg lettuce was chosen as a model for fresh produce, Escherichia coli O157:H7 (E. coli O157) and Salmonella enterica were chosen as pathogen models. Care was taken to simulate industrial post-harvest processing. A total of 50±0.1g of fresh-cut Iceberg lettuce was packed in bags under near ambient atmospheric air with approximately 21% O 2 (NAA) conditions or equilibrium modified atmosphere with 3% O 2 (EMAP). Two lettuce pieces inoculated with E. coli O157 BRMSID 188 or Salmonella Typhimurium labeled with green fluorescent protein (GFP) were added to each package. The bags with cut lettuce were stored under either dark or light conditions for 2days at 7°C. The pathogens' capacity to attach to the lettuce surface and cut edge was evaluated 2days after inoculation using conventional plating technique and the internalization of the bacteria was investigated and quantified using confocal microscopy. The effect of a sanitizing wash step (40mg/L NaClO or 40mg/L peracetic acid+1143mg/L lactic acid) of the cut lettuce prior to packaging was evaluated as well. Our results indicate that both pathogens behaved similarly under the investigated conditions. Pathogen growth was not observed, nor was there any substantial influence of the investigated atmospheric conditions or light/dark storage conditions on their attachment/internalization. The pathogens attached to and internalized via cut edges and wounds, from which they were able to penetrate into the parenchyma. Internalization through the stomata into the parenchyma was not observed, although some bacteria were found in the substomatal cavity. Washing the cut edges with sanitizing agents to reduce enteric pathogen numbers was not

  12. Sustainable lettuce: Adaptability to uncertain production conditions

    USDA-ARS?s Scientific Manuscript database

    Lettuce is a popular and widely consumed leafy vegetable. California and Arizona annually produce more than 250,000 acres of iceberg, romaine, leaf, and specialty types of lettuce, supplying more than 95% of the U.S market as well as exports to Canada and other countries. These states have dominat...

  13. Complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from lettuce (Lactuca sativa) originating from a conventional field in Norway.

    PubMed

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2016-12-01

    Here, we present the 3,795,952 bp complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from conventionally grown lettuce ( Lactuca sativa ) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017580.

  14. Genotype variations in cadmium and lead accumulations of leafy lettuce (Lactuca sativa L.) and screening for pollution-safe cultivars for food safety.

    PubMed

    Zhang, Kun; Yuan, Jiangang; Kong, Wei; Yang, Zhongyi

    2013-06-01

    Heavy-metals in polluted soils can accumulate in plants and threaten crop safety. To evaluate the risk of heavy-metal pollution in leafy lettuce (Lactuca sativa L.), two pot experiments were conducted to investigate Cd and Pb accumulation and transfer potential in 28 cultivars of lettuce and to screen for low-Cd and low-Pb accumulative cultivars. In the three treatments, 5.2-fold, 4.8-fold and 4.8-fold differences in the shoot Cd concentration were observed between the cultivars with the highest and the lowest Cd concentrations, respectively. This genotype variation was sufficiently large to identify low-Cd accumulative genotypes to reduce Cd contamination in food. Cadmium accumulation in the low-Cd accumulative genotypes was significantly positively correlated with Pb accumulation. At the cultivar level, Cd and Pb accumulation in lettuce was stable and genotype-dependent. High Pb soil levels did not affect shoot Cd accumulation in lettuce. Lettuce was concluded to be at high risk for Cd pollution and low risk for Pb pollution. Among the tested cultivars, cvs. SJGT, YLGC, N518, and KR17 had the lowest Cd and Pb accumulation abilities in shoots and are thus important parental material for breeding pollution-safe cultivars to minimize Cd and Pb accumulation.

  15. Marker-assisted selection for disease resistance in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is the most popular leafy vegetable that is cultivated mainly in moderate climate. Consumers demand lettuce with good visual appearance and free of disease. Improved disease resistance of new cultivars is achieved by combining desirable genes (or alleles) from existing cu...

  16. Partial aphid resistance in lettuce negatively affects parasitoids.

    PubMed

    Lanteigne, Marie-Eve; Brodeur, Jacques; Jenni, Sylvie; Boivin, Guy

    2014-10-01

    This study investigated the effects of partial plant resistance on the lettuce aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), a major pest of cultivated lettuce (Lactuca sativa L.), and one of its parasitoids, Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids were reared on susceptible (L. sativa variety Estival; S) or partially resistant (Lactuca serriola L. PI 491093; PR) lettuce, and next parasitized by A. ervi females. Fitness proxies were measured for both aphids and parasitoids. Developmental time to adult stage took longer for alate and apterous aphids (an average of 3.5 and 1.5 additional days, respectively) on PR than on S lettuce, and fecundity of alate aphids reared on PR lettuce was reduced by 37.8% relative to those reared on S lettuce. Size (tibia length) and weight of aphids reared on PR lettuce were lower than for aphids reared on S lettuce from the third and second instar onward, respectively. Parasitism of aphids reared on PR plants resulted in lower parasitoid offspring emergence (-49.9%), lower adult female (-30.3%) and male (-27.5%) weight, smaller adult female (-17.5%) and male (-11.9%) size, and lower female fecundity (37.8% fewer eggs) than when parasitoids developed from aphids reared on S plants. Our results demonstrate that partial aphid resistance in lettuce negatively affects both the second and third trophic levels. Host plant resistance in cultivated lettuce may therefore create an ecological sink for aphid parasitoids.

  17. Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).

    PubMed

    Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana

    2015-01-01

    Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.

  18. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil.

    PubMed

    França, Fernanda C S S; Albuuerque, Adriana M A; Almeida, Amanda C; Silveira, Patrícia B; Filho, Crescêncio A; Hazin, Clovis A; Honorato, Eliane V

    2017-01-15

    Currently one of the main sources of atmospheric pollution identified in urban centers is derived from both industrial and motor vehicle emissions. These pollutants can be adsorbed to particulate matter which is present in the air or deposited in the soil and plants, eventually reaching the human food chain. In this context, the present study aimed to determine the concentration of metals such as Cu, Pb, Cd, Ni and Zn in two subspecies of Lactuca sativa L. and in the soil from were lettuce samples were collected. The results for the soil samples analyzed show a possible contamination by Pb with concentration values as high as 140mg.kg(-1), which are above the Brazilian standards defined by Resolution CONAMA 420/2009 (Brazilian Environmental Council). However, the values found in the lettuce itself reveal that it is still suitable for consumption. Copyright © 2016. Published by Elsevier Ltd.

  19. Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus.

    PubMed

    Nebreda, M; Moreno, A; Pérez, N; Palacios, I; Seco-Fernández, V; Fereres, A

    2004-03-01

    This research sought to identify the aphid virus vector species associated with lettuce and broccoli crops in Spain, and to determine their population dynamics and ability to transmit Lettuce mosaic virus (LMV). Green tile traps and Moericke yellow water-pan traps were used to monitor aphid flights during the spring and autumn growing seasons of 2001. Aphid species feeding on lettuce were counted weekly. The transmission efficiencies of LMV were determined for the aphid species caught most frequently. The Moericke traps generally caught more aphid species than the tile trap, but the latter was the most suitable to estimate flight activity of species involved in virus spread. Spring aphid catches indicated that the main aphid species landing on lettuce in the regions of Madrid and Murcia was Hyperomyzus lactucae, but Brachycaudus helichrysi was also abundant in both regions. In broccoli in the Navarra region, the most abundant species in spring were Aphis fabae, B. helichrysi and H. lactucae. In autumn-sown crops, the main species landing on lettuce in the Madrid region were Hyadaphis coriandri and Aphis spiraecola. In Murcia, A. spiraecola and Myzus persicae were the most abundant, while in Navarra, Therioaphis trifolii, and various Aphis spp. were the most numerous landing on broccoli. The main aphid species colonising lettuce was Nasonovia ribisnigri, but other less abundant colonising species were Aulacorthum solani and Macrosiphum euphorbiae. The most efficient vectors of LMV were M. persicae, Aphis gossypii and M. euphorbiae, while A. fabae and H. lactucae transmitted with low efficiency, and Rhopalosiphum padi and N. ribisnigri did not transmit. Occurrence of LMV epidemics in central Spain in relation to aphid flights and the role of weeds as virus reservoirs is discussed.

  20. Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.).

    PubMed

    Hamdi, Helmi; De La Torre-Roche, Roberto; Hawthorne, Joseph; White, Jason C

    2015-03-01

    The effect of non-functionalized and amino-functionalized multiwall carbon nanotube (CNT) exposure, as well as the impact of CNT presence on coexistent pesticide accumulation, was investigated in lettuce (Lactuca sativa L.). Lettuce seeds were sown directly into CNT-amended vermiculite (1000 mg L(-1)) to monitor phytotoxicity during germination and growth. During growth, lettuce seedlings were subsequently exposed to chlordane (cis-chlordane [CS], trans-chlordane [TC] and trans-nonachlor [TN]) and p,p'-DDE (all at 100 ng/L) in the irrigation solution for a 19-d growth period. CNT exposure did not significantly influence seed germination (82-96%) or plant growth. Similarly, pesticide exposure had no impact on plant growth, total pigment production or tissue lipid peroxidation. After 19 d, the root content of total chlordane and p,p'-DDE was 390 and 73.8 µg g(-1), respectively; in plants not exposed to CNTs, the shoot levels were 1.58 and 0.40 µg g(-1), respectively. The presence and type of CNT significantly influenced pesticide availability to lettuce seedlings. Non-functionalized CNT decreased the root and shoot pesticide content by 88% and 78%, respectively, but amino-functionalized CNT effects were significantly more modest, with decreases of 57% in the roots and 23% in the shoots, respectively. The presence of humic acid completely reversed the reduced accumulation of pesticides induced by amino-functionalized CNT, likely due to strong competition over adsorption sites on the nanomaterial (NM). These findings have implications for food safety and for the use of engineered NMs in agriculture, especially with leafy vegetables.

  1. Genome-wide association study for lettuce cultivars with improved salad processing efficiency

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is widely used as the main ingredient of packaged leafy vegetable salads. Salad lettuce can have short shelf life, decaying as early as eight days after harvest and reducing the nutritional quality. Decayed lettuce is not marketable, produces extra waste, and results in t...

  2. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa)

    PubMed Central

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun

    2008-01-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches. PMID:18317777

  3. Lettuce contact allergy.

    PubMed

    Paulsen, Evy; Andersen, Klaus E

    2016-02-01

    Lettuce (Lactuca sativa L.) and its varieties are important vegetable crops worldwide. They are also well-known, rarely reported, causes of contact allergy. As lettuce allergens and extracts are not commercially available, the allergy may be underdiagnosed. The aims of this article are to present new data on lettuce contact allergy and review the literature. Lettuce is weakly allergenic, and occupational cases are mainly reported. Using aimed patch testing in Compositae-allergic patients, two recent Danish studies showed prevalence rates of positive lettuce reactions of 11% and 22%. The majority of cases are non-occupational, and may partly be caused by cross-reactivity. The sesquiterpene lactone mix seems to be a poor screening agent for lettuce contact allergy, as the prevalence of positive reactions is significantly higher in non-occupationally sensitized patients. Because of the easy degradability of lettuce allergens, it is recommended to patch test with freshly cut lettuce stem and supplement this with Compositae mix. As contact urticaria and protein contact dermatitis may present as dermatitis, it is important to perform prick-to-prick tests, and possibly scratch patch tests as well. Any person who is occupationally exposed to lettuce for longer periods, especially atopics, amateur gardeners, and persons keeping lettuce-eating pets, is potentially at risk of developing lettuce contact allergy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa).

    PubMed

    Hong, Jie; Rico, Cyren M; Zhao, Lijuan; Adeleye, Adeyemi S; Keller, Arturo A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 days-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg L(-1). At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species.

  5. Assessment of genetic diversity in lettuce (Lactuca sativa L.) germplasm using RAPD markers.

    PubMed

    Sharma, Shubhangi; Kumar, Pankaj; Gambhir, Geetika; Kumar, Ramesh; Srivastava, D K

    2018-01-01

    The importance of germplasm characterization is an important link between the conservation and utilization of plant genetic resources in various breeding programmes. In the present study, genetic variability and relationships among 25 Lactuca sativa L. genotypes were tested using random amplified polymorphic DNA (RAPD) molecular markers. A total of 45 random decamer oligonucleotide primers were examined to generate RAPD profiles, out of these reproducible patterns were obtained with 22 primers. A total of 87 amplicon were obtained, out of which all were polymorphic and 7 were unique bands. The level of polymorphism across genotypes was 100% as revealed by RAPD. Genetic similarity matrix, based on Jaccard's coefficients ranged from 13.7 to 84.10% indicating a wide genetic base. Dendrogram was constructed by unweighted pair group method with arithmetic averages method. RAPD technology could be useful for identification of different accessions as well as assessing the genetic similarity among different genotypes of lettuce. The study reveals the limited genetic base and the needs to diversify using new sources from the germplasm.

  6. Complete genome sequence of the biofilm-forming Microbacterium sp. strain BH-3-3-3, isolated from conventional field-grown lettuce (Lactuca sativa) in Norway.

    PubMed

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2017-03-01

    The genus Microbacterium contains bacteria that are ubiquitously distributed in various environments and includes plant-associated bacteria that are able to colonize tissue of agricultural crop plants. Here, we report the 3,508,491 bp complete genome sequence of Microbacterium sp. strain BH-3-3-3, isolated from conventionally grown lettuce ( Lactuca sativa ) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017674.

  7. Validation of a Method for Cylindrospermopsin Determination in Vegetables: Application to Real Samples Such as Lettuce (Lactuca sativa L.).

    PubMed

    Prieto, Ana I; Guzmán-Guillén, Remedios; Díez-Quijada, Leticia; Campos, Alexandre; Vasconcelos, Vitor; Jos, Ángeles; Cameán, Ana M

    2018-02-01

    Reports on the occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) have increased worldwide because of CYN toxic effects in humans and animals. If contaminated waters are used for plant irrigation, these could represent a possible CYN exposure route for humans. For the first time, a method employing solid phase extraction and quantification by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) of CYN was optimized in vegetables matrices such as lettuce ( Lactuca sativa ). The validated method showed a linear range, from 5 to 500 ng CYN g -1 of fresh weight (f.w.), and detection and quantitation limits (LOD and LOQ) of 0.22 and 0.42 ng CYN g -1 f.w., respectively. The mean recoveries ranged between 85 and 104%, and the intermediate precision from 12.7 to 14.7%. The method showed to be robust for the three different variables tested. Moreover, it was successfully applied to quantify CYN in edible lettuce leaves exposed to CYN-contaminated water (10 µg L -1 ), showing that the tolerable daily intake (TDI) in the case of CYN could be exceeded in elderly high consumers. The validated method showed good results in terms of sensitivity, precision, accuracy, and robustness for CYN determination in leaf vegetables such as lettuce. More studies are needed in order to prevent the risks associated with the consumption of CYN-contaminated vegetables.

  8. Validation of a Method for Cylindrospermopsin Determination in Vegetables: Application to Real Samples Such as Lettuce (Lactuca sativa L.)

    PubMed Central

    Prieto, Ana I.; Díez-Quijada, Leticia; Campos, Alexandre; Vasconcelos, Vitor

    2018-01-01

    Reports on the occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) have increased worldwide because of CYN toxic effects in humans and animals. If contaminated waters are used for plant irrigation, these could represent a possible CYN exposure route for humans. For the first time, a method employing solid phase extraction and quantification by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) of CYN was optimized in vegetables matrices such as lettuce (Lactuca sativa). The validated method showed a linear range, from 5 to 500 ng CYN g−1 of fresh weight (f.w.), and detection and quantitation limits (LOD and LOQ) of 0.22 and 0.42 ng CYN g−1 f.w., respectively. The mean recoveries ranged between 85 and 104%, and the intermediate precision from 12.7 to 14.7%. The method showed to be robust for the three different variables tested. Moreover, it was successfully applied to quantify CYN in edible lettuce leaves exposed to CYN-contaminated water (10 µg L−1), showing that the tolerable daily intake (TDI) in the case of CYN could be exceeded in elderly high consumers. The validated method showed good results in terms of sensitivity, precision, accuracy, and robustness for CYN determination in leaf vegetables such as lettuce. More studies are needed in order to prevent the risks associated with the consumption of CYN-contaminated vegetables. PMID:29389882

  9. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator.

    PubMed

    Charles, Jérémie; Sancey, Bertrand; Morin-Crini, Nadia; Badot, Pierre-Marie; Degiorgi, François; Trunfio, Giuseppe; Crini, Grégorio

    2011-10-01

    Industrial wastewater containing heavy metals is generally decontaminated by physicochemical treatment consisting in insolublizing the contaminants and separating the two phases, water and sludge, by a physical process (filtration, settling or flotation). However, chemical precipitation does not usually remove the whole pollution load and the effluent discharged into the environment can be toxic even if it comes up to regulatory standards. To assess the impact of industrial effluent from 4 different surface treatment companies, we performed standardized bioassays using seeds of the lettuce Lactuca sativa. We measured the rate of germination, and the length and mass of the lettuce plantlet. The results were used to compare the overall toxicity of the different effluents: effluents containing copper and nickel had a much higher impact than those containing zinc or aluminum. In addition, germination tests conducted using synthetic solutions confirmed that mixtures of metals have higher toxicity than the sum of their separate constituents. These biological tests are cheap, easy to implement, reproducible and highlight the effects caused by effluent treated with the methods commonly applied in industry today. They could be routinely used to check the impact of industrial discharges, even when they meet regulatory requirements for the individual metals. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Selenium accumulation in lettuce germplasm

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential micronutrient for animals and humans. Increasing Se content in food crops offers an effective approach to reduce the widespread selenium deficiency problem in many parts of the world. In this study, we evaluated thirty diverse accessions of lettuce (Lactuca sativa L.) f...

  11. A Lettuce (Lactuca sativa) Homolog of Human Nogo-B Receptor Interacts with cis-Prenyltransferase and Is Necessary for Natural Rubber Biosynthesis*

    PubMed Central

    Qu, Yang; Chakrabarty, Romit; Tran, Hue T.; Kwon, Eun-Joo G.; Kwon, Moonhyuk; Nguyen, Trinh-Don; Ro, Dae-Kyun

    2015-01-01

    Natural rubber (cis-1,4-polyisoprene) is an indispensable biopolymer used to manufacture diverse consumer products. Although a major source of natural rubber is the rubber tree (Hevea brasiliensis), lettuce (Lactuca sativa) is also known to synthesize natural rubber. Here, we report that an unusual cis-prenyltransferase-like 2 (CPTL2) that lacks the conserved motifs of conventional cis-prenyltransferase is required for natural rubber biosynthesis in lettuce. CPTL2, identified from the lettuce rubber particle proteome, displays homology to a human NogoB receptor and is predominantly expressed in latex. Multiple transgenic lettuces expressing CPTL2-RNAi constructs showed that a decrease of CPTL2 transcripts (3–15% CPTL2 expression relative to controls) coincided with the reduction of natural rubber as low as 5%. We also identified a conventional cis-prenyltransferase 3 (CPT3), exclusively expressed in latex. In subcellular localization studies using fluorescent proteins, cytosolic CPT3 was relocalized to endoplasmic reticulum by co-occurrence of CPTL2 in tobacco and yeast at the log phase. Furthermore, yeast two-hybrid data showed that CPTL2 and CPT3 interact. Yeast microsomes containing CPTL2/CPT3 showed enhanced synthesis of short cis-polyisoprenes, but natural rubber could not be synthesized in vitro. Intriguingly, a homologous pair CPTL1/CPT1, which displays ubiquitous expressions in lettuce, showed a potent dolichol biosynthetic activity in vitro. Taken together, our data suggest that CPTL2 is a scaffolding protein that tethers CPT3 on endoplasmic reticulum and is necessary for natural rubber biosynthesis in planta, but yeast-expressed CPTL2 and CPT3 alone could not synthesize high molecular weight natural rubber in vitro. PMID:25477521

  12. Proximate nutrient analyses of four species of submerged aquatic vegetation consumed by Florida manatee (Trichechus manatus latirostris) compared to romaine lettuce (Lactuca sativa var. longifolia).

    PubMed

    Siegal-Willott, Jessica L; Harr, Kendal; Hayek, Lee-Ann C; Scott, Karen C; Gerlach, Trevor; Sirois, Paul; Reuter, Mike; Crewz, David W; Hill, Richard C

    2010-12-01

    Free-ranging Florida manatees (Trichechus manatus latirostris) consume a variety of sea grasses and algae. This study compared the dry matter (DM) content, proximate nutrients (crude protein [CP], ether-extracted crude fat [EE], nonfiber carbohydrate [NFC], and ash), and the calculated digestible energy (DE) of sea grasses (Thalassia testudinum, Halodule wrightii, and Syringodium filiforme) collected in spring, summer, and winter, and an alga (Chara sp.) with those of romaine lettuce (Lactuca sativa var. longifolia). Neutral-detergent fiber (NDF), acid-detergent fiber (ADF), and lignin (L) measured after ash-extraction were also compared. Results of statistical tests (C = 0.01) revealed DM content was higher in aquatic vegetation than in lettuce (P = 0.0001), but NDF and ADF were up to threefold greater, EE (P = 0.00001) and CP (P = 0.00001) were 2-9 times less, and NFC (P = 0.0001) was 2-6 times lower in sea grass than in lettuce, on a DM basis. Chara was lower in NDF, ADF, L, EE, CP, and NFC relative to lettuce on a DM basis. Ash content (DM basis) was higher (P = 0.0001), and DE was 2-6 times lower in aquatic vegetation than in lettuce. Sea grass rhizomes had lower L and higher ash contents (DM basis) than sea grass leaves. Based on the nutrient analyses, romaine lettuce and sea grasses are not equivalent forages, which suggests that the current diet of captive Florida manatees should be reassessed.

  13. Assessing the effect of sodium dichloroisocyanurate concentration on transfer of Salmonella enterica serotype Typhimurium in wash water for production of minimally processed iceberg lettuce (Lactuca sativa L.).

    PubMed

    Maffei, D F; Sant'Ana, A S; Monteiro, G; Schaffner, D W; Franco, B D G M

    2016-06-01

    This study evaluated the impact of sodium dichloroisocyanurate (5, 10, 20, 30, 40, 50 and 250 mg l(-1) ) in wash water on transfer of Salmonella Typhimurium from contaminated lettuce to wash water and then to other noncontaminated lettuces washed sequentially in the same water. Experiments were designed mimicking the conditions commonly seen in minimally processed vegetable (MPV) processing plants in Brazil. The scenarios were as follows: (1) Washing one inoculated lettuce portion in nonchlorinated water, followed by washing 10 noninoculated portions sequentially. (2) Washing one inoculated lettuce portion in chlorinated water followed by washing five noninoculated portions sequentially. (3) Washing five inoculated lettuce portions in chlorinated water sequentially, followed by washing five noninoculated portions sequentially. (4) Washing five noninoculated lettuce portions in chlorinated water sequentially, followed by washing five inoculated portions sequentially and then by washing five noninoculated portions sequentially in the same water. Salm. Typhimurium transfer from inoculated lettuce to wash water and further dissemination to noninoculated lettuces occurred when nonchlorinated water was used (scenario 1). When chlorinated water was used (scenarios 2, 3 and 4), no measurable Salm. Typhimurium transfer occurred if the sanitizer was ≥10 mg l(-1) . Use of sanitizers in correct concentrations is important to minimize the risk of microbial transfer during MPV washing. In this study, the impact of sodium dichloroisocyanurate in the wash water on transfer of Salmonella Typhimurium from inoculated lettuce to wash water and then to other noninoculated lettuces washed sequentially in the same water was evaluated. The use of chlorinated water, at concentration above 10 mg l(-1) , effectively prevented Salm. Typhimurium transfer under several different washing scenarios. Conversely, when nonchlorinated water was used, Salm. Typhimurium transfer occurred in

  14. Carotenoids of lettuce (Lactuca sativa L.) grown on soil enriched with spent coffee grounds.

    PubMed

    Cruz, Rebeca; Baptista, Paula; Cunha, Sara; Pereira, José Alberto; Casal, Susana

    2012-02-07

    The impact of spent coffee grounds on carotenoid and chlorophyll content in lettuce (Lactuca sativa L. var. capitata) was evaluated. A greenhouse pot experiment was conducted with spent coffee amounts ranging from 0% to 20% (v/v). All evaluated pigments increased proportionally to spent coffee amounts. Lutein and β-carotene levels increased up to 90% and 72%, respectively, while chlorophylls increased up to 61%. Biomass was also improved in the presence of 2.5% to 10% spent coffee, decreasing for higher amounts. Nevertheless, all plants were characterized by lower organic nitrogen content than the control ones, inversely to the spent coffee amounts, pointing to possible induced stress. Collected data suggests that plants nutritional features, with regards to these bioactive compounds, can be improved by the presence of low amounts of spent coffee grounds (up to 10%). This observation is particularly important because soil amendment with spent coffee grounds is becoming increasingly common within domestic agriculture. Still, further studies on the detailed influence of spent coffee bioactive compounds are mandatory, particularly regarding caffeine.

  15. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce).

    PubMed

    Young, Chiu-Chung; Kämpfer, Peter; Shen, Fo-Ting; Lai, Wei-An; Arun, A B

    2005-01-01

    A yellow-pigmented bacterial strain (CC-H3-2T), isolated from the rhizosphere of Lactuca sativa L. (garden lettuce) in Taiwan, was investigated using a polyphasic taxonomic approach. The cells were Gram-negative, rod-shaped and non-spore-forming. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Chryseobacterium, with the highest sequence similarity to the type strains of Chryseobacterium indoltheticum (97.7 %), Chryseobacterium scophthalmum (97.5 %), Chryseobacterium joostei (97.2 %) and Chryseobacterium defluvii (97.2 %). The major whole-cell fatty acids were iso-C(15 : 0) (52.2 %) and iso-C(17 : 0) 3-OH. DNA-DNA hybridization experiments revealed levels of only 27.4 % to C. scophthalmum, 27.1 % to C. indoltheticum, 14.1 % to C. joostei and 7.8 % to C. defluvii. DNA-DNA relatedness and biochemical and chemotaxonomic properties demonstrate that strain CC-H3-2T represents a novel species, for which the name Chryseobacterium formosense sp. nov. is proposed. The type strain is CC-H3-2T (=CCUG 49271T=CIP 108367T).

  16. The use of nile tilapia ( Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce ( Lactuca sativa L. var. longifolia) in water recirculation system

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Wahyuningsih, Sri; Wardiatno, Yusli

    2017-10-01

    In the recirculation aquaponic system (RAS), fish farming waste was utilized as a nutrient for plant, minimizing the water need, reducing the waste disposal into the environment, and producing the fish and plant as well. The study aimed to examine the growth of romaine lettuce ( Lactuca sativa L. var. Longifolia) in aquaponic system without the addition of artificial nutrient. The nutrient relies solely on wastewater of nile tilapia ( Oreochromis niloticus) cultivation circulated continuously on the aquaponic system. The results showed that tilapia weight reached 48.49 ± 3.92 g of T3 (tilapia, romaine lettuce, and inoculated bacteria), followed by T2 (tilapia and romaine lettuce) and T1 (tilapia) of 47.80 ± 1.97 and 45.89 ± 1.10 g after 35 days of experiment. Tilapia best performance in terms of growth and production occurred at T3 of 3.96 ± 0.44 g/day, 12.10 ± 0.63 %/day, 96.11 ± 1.44 % and 1.60 ± 0.07 for GR, SGR, SR, and FCR, respectively. It is also indicated by better water quality characteristic in this treatment. Romaine lettuce harvests of T2 and T3 showed no significant difference, with the final weight of 61.87 ± 5.59 and 57.74 ± 4.35 g. Overall, the integration of tilapia fish farming and romaine lettuce is potentially a promising aquaponic system for sustainable fish and horticulture plant production.

  17. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis.

    PubMed

    Qu, Yang; Chakrabarty, Romit; Tran, Hue T; Kwon, Eun-Joo G; Kwon, Moonhyuk; Nguyen, Trinh-Don; Ro, Dae-Kyun

    2015-01-23

    Natural rubber (cis-1,4-polyisoprene) is an indispensable biopolymer used to manufacture diverse consumer products. Although a major source of natural rubber is the rubber tree (Hevea brasiliensis), lettuce (Lactuca sativa) is also known to synthesize natural rubber. Here, we report that an unusual cis-prenyltransferase-like 2 (CPTL2) that lacks the conserved motifs of conventional cis-prenyltransferase is required for natural rubber biosynthesis in lettuce. CPTL2, identified from the lettuce rubber particle proteome, displays homology to a human NogoB receptor and is predominantly expressed in latex. Multiple transgenic lettuces expressing CPTL2-RNAi constructs showed that a decrease of CPTL2 transcripts (3-15% CPTL2 expression relative to controls) coincided with the reduction of natural rubber as low as 5%. We also identified a conventional cis-prenyltransferase 3 (CPT3), exclusively expressed in latex. In subcellular localization studies using fluorescent proteins, cytosolic CPT3 was relocalized to endoplasmic reticulum by co-occurrence of CPTL2 in tobacco and yeast at the log phase. Furthermore, yeast two-hybrid data showed that CPTL2 and CPT3 interact. Yeast microsomes containing CPTL2/CPT3 showed enhanced synthesis of short cis-polyisoprenes, but natural rubber could not be synthesized in vitro. Intriguingly, a homologous pair CPTL1/CPT1, which displays ubiquitous expressions in lettuce, showed a potent dolichol biosynthetic activity in vitro. Taken together, our data suggest that CPTL2 is a scaffolding protein that tethers CPT3 on endoplasmic reticulum and is necessary for natural rubber biosynthesis in planta, but yeast-expressed CPTL2 and CPT3 alone could not synthesize high molecular weight natural rubber in vitro. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Chemical control of downy mildew on lettuce and basil under greenhouse.

    PubMed

    Gullino, M L; Gilardi, G; Garibaldi, A

    2009-01-01

    Eight experimental trials were carried out during 2007 and 2008 to evaluate the efficacy of different fungicides against downy mildew of lettuce (Bremia lactucae) and basil (Peronospora belbahrii) under greenhouse conditions, at temperatures ranging from 19 to 24 degrees C. The mixture fluopicolide (fungicide belonging to the + propamocarb hydrochloride (fungicide belonging to the new chemical class of acyl-picolides) was compared with metalaxyl m + copper, zoxamide + mancozeb, iprovalicarb + Cu, fenamidone + fosetyl-Al and azoxystrobin. Two treatments were carried out at 8-12 day interval on lettuce and basil. The artificial inoculation of B. lactucae on lettuce (cv Cobham Green) and P. belbahrii. on basil (cv Genovese gigante) was carried out by using 1 x 10(5) CFU/ml 24 h after the first treatment. In the presence of a medium-high disease severity, all fungicides tested in these trials were effective against downy mildew on lettuce and basil as the other fungicides already available. The importance of the availability of a number of different chemicals to control downy mildews is discussed.

  19. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    USDA-ARS?s Scientific Manuscript database

    Organic growers in California typically devote 5 to 10% of the area in lettuce (Lactuca sativa L.) fields to insectary strips of alyssum (Lobularia maritime (L.) Desv.) to attract syrphid flies (Syrphidae) whose larvae provide biological control of aphids. A 2-year study with organic romaine lettuc...

  20. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community.

    PubMed

    Xu, Jiangbing; Luo, Xiaosan; Wang, Yanling; Feng, Youzhi

    2018-02-01

    The wide spread of nanoparticles (NPs) has caused tremendous concerns on agricultural ecosystem. Some metallic NPs, such as zinc oxide (ZnO), can be utilized as a nano-fertilizer when used at optimal doses. However, little is known about the responses of plant development and concomitant soil bacteria community to ZnO NPs. The present pot experiment studied the impacts of different doses of ZnO NPs and bulk ZnO (0, 1, 10, 100 mg ZnO/kg), on the growth of lettuce (Lactuca sativa L.) and the associated rhizospheric soil bacterial community. Results showed that at a dose of 10 mg/kg, ZnO NPs and bulk ZnO, enhanced the lettuce biomass and the net photosynthetic rate; whereas, the Zn content in plant tissue was higher in NPs treatment than in their bulk counterpart at 10 mg/kg dose or higher. For the underground observations, 10 mg/kg treatment doses (NPs or bulk) significantly changed the soil bacterial community structure, despite the non-significant variations in alpha diversity. Taxonomic distribution revealed that some lineages within Cyanobacteria and other phyla individually demonstrated similar or different responses to ZnO NPs and bulk ZnO. Moreover, some lineages associated with plant growth promotion were also influenced to different extents by ZnO NPs and bulk ZnO, suggesting the distinct microbial processes occurring in soil. Collectively, this study expanded our understanding of the influence of ZnO NPs on plant performance and the associated soil microorganisms.

  1. Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano).

    PubMed

    Pepe, Giacomo; Sommella, Eduardo; Manfra, Michele; De Nisco, Mauro; Tenore, Gian Carlo; Scopa, Antonio; Sofo, Adriano; Marzocco, Stefania; Adesso, Simona; Novellino, Tiziana; Campiglia, Pietro

    2015-01-15

    Fresh cut vegetables represent a widely consumed food worldwide. Among these, lettuce (Lactuca sativa L.) is one of the most popular on the market. The growing interest for this "healthy" food is related to the content of bioactive compounds, especially polyphenols, that show many beneficial effects. In this study, we report the anti-inflammatory and antioxidant potential of polyphenols extracted from lettuce (var. Maravilla de Verano), in J774A.1 macrophages stimulated with Escherichia coli lipopolysaccharide (LPS). Lettuce extract significantly decreased reactive oxygen species, nitric oxide release, inducible nitric oxide synthase and cycloxygenase-2 expression. A detailed quali/quantitative profiling of the polyphenolic content was carried out, obtaining fast separation (10 min), good retention time and peak area repeatability, (RSD% 0.80 and 8.68, respectively) as well as linearity (R(2)⩾ 0.999) and mass accuracy (⩽ 5 ppm). Our results show the importance in the diet of this cheap and popular food for his healthy properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Genetics of the partial resistance against race 2 of Verticillium dahliae in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) production on the Coastal California is threatened by Verticillium wilt, a soil borne fungal disease caused by Verticillium dahliae that diminishes yield and quality. Two races of V. dahliae were identified on lettuce, race 1 and race 2. Complete resistance to race 1 is c...

  3. Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization.

    PubMed

    Matoba, Hideyuki; Mizutani, Takayuki; Nagano, Katsuya; Hoshi, Yoshikazu; Uchiyama, Hiroshi

    2007-12-01

    In this study, in addition to the karyotype analysis, the chromosomal distributions of 5 S and 18 S rDNAs, and the Arabidopsis-type (T3AG3) telomeric sequences were detected by means of fluorescence in situ hybridization (FISH) to promote the information of chromosomal organization and evolution in the cultivated lettuce and its wild relatives, L. sativa, L. serriola, L. saligna and L. virosa. The karyotype analysis revealed the dissimilarity between L. virosa and the remaining species. In all four Lactuca species studied, one 5 S rDNA and two 18 S rDNA loci were detected. The simultaneous FISH of 5 S and 18 S rDNAs revealed that both rDNA loci of L. sativa, L. serriola and L. saligna were identical, however, that of L. virosa was different from the other species. These analyses indicate the closer relationships between L. sativa/L. serriola and L. saligna rather than L. virosa. Arabidopsis-type telomeric sequences were detected at both ends of their chromatids of all chromosomes not in the other regions. This observation suggests the lack of telomere-mediated chromosomal rearrangements among the Lactuca chromosomes.

  4. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    PubMed

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  5. The Effect of Arsenate and Other Inhibitors on Early Events during the Germination of Lettuce Seeds (Lactuca sativa L.)

    PubMed Central

    Speer, Henry L.

    1973-01-01

    The effect of arsenate, arsenite, 2,4-dinitrophenol, and anaerobiosis on early events in seed germination was investigated using both intact and punched seeds of lettuce (Lactuca sativa L.). It was found that punching the seed removes penetration barriers to the entrance of inhibitors without an undue loss of germination or light responses. The kinetics of the action of germination inhibitors were established by 2-hour pulse experiments. Arsenate and 2, 4-dinitrophenol have very different kinetics. The inhibition of germination in punched seeds by arsenate given in conjunction with phosphate compared with the lack of inhibition of arsenate plus phosphate on the growing seedling, suggest a distinct metabolic change in the germinating embryo at some time between the onset of germination and subsequent seedling growth. Images PMID:16658515

  6. Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Lettuce is one of the most popularly consumed vegetables worldwide but its nutritional value has been underestimated. Lettuce is low in calories and fat but high in fiber. Moreover, lettuce is high in potassium but low in sodium. Lettuce is also a good source of health-beneficial bioactive compounds...

  7. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves

    PubMed Central

    Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2015-01-01

    Recently, the so-called “plant factory with artificial lighting” (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight. PMID:26697055

  8. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves.

    PubMed

    Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2015-01-01

    Recently, the so-called "plant factory with artificial lighting" (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight.

  9. Application of chlorophyll fluorescence imaging and hyperspectral imaging in evaluation of decay in fresh-cut lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is commercially the most popular leafy vegetable whose leaves are usually consumed raw. Cleaned, cored, and chopped (fresh-cut) lettuce is a desirable, but highly perishable product. Modified atmosphere packaging (MAP) has been introduced to maintain quality of fresh-cut ...

  10. Phylogeography of the Macaronesian Lettuce Species Lactuca watsoniana and L. palmensis (Asteraceae).

    PubMed

    Dias, Elisabete F; Kilian, Norbert; Silva, Luís; Schaefer, Hanno; Carine, Mark; Rudall, Paula J; Santos-Guerra, Arnoldo; Moura, Mónica

    2018-02-24

    The phylogenetic relationships and phylogeography of two relatively rare Macaronesian Lactuca species, Lactuca watsoniana (Azores) and L. palmensis (Canary Islands), were, until this date, unclear. Karyological information of the Azorean species was also unknown. For this study, a chromosome count was performed and L. watsoniana showed 2n = 34. A phylogenetic approach was used to clarify the relationships of the Azorean endemic L. watsoniana and the La Palma endemic L. palmensis within the subtribe Lactucinae. Maximum parsimony, Maximum likelihood and Bayesian analysis of a combined molecular dataset (ITS and four chloroplast DNA regions) and molecular clock analyses were performed with the Macaronesian Lactuca species, as well as a TCS haplotype network. The analyses revealed that L. watsoniana and L. palmensis belong to different subclades of the Lactuca clade. Lactuca watsoniana showed a strongly supported phylogenetic relationship with North American species, while L. palmensis was closely related to L. tenerrima and L. inermis, from Europe and Africa. Lactuca watsoniana showed four single-island haplotypes. A divergence time estimation of the Macaronesian lineages was used to examine island colonization pathways. Results obtained with BEAST suggest a divergence of L. palmensis and L. watsoniana clades c. 11 million years ago, L. watsoniana diverged from its North American sister species c. 3.8 million years ago and L. palmensis diverged from its sister L. tenerrima, c. 1.3 million years ago, probably originating from an African ancestral lineage which colonized the Canary Islands. Divergence analyses with *BEAST indicate a more recent divergence of the L. watsoniana crown, c. 0.9 million years ago. In the Azores colonization, in a stepping stone, east-to-west dispersal pattern, associated with geological events might explain the current distribution range of L. watsoniana.

  11. Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.).

    PubMed

    Freitas, Marisa; Azevedo, Joana; Pinto, Edgar; Neves, Joana; Campos, Alexandre; Vasconcelos, Vitor

    2015-06-01

    Toxic cyanobacterial blooms are documented worldwide as an emerging environmental concern. Recent studies support the hypothesis that microcystin-LR (MC-LR) and cylindrospermopsin (CYN) produce toxic effects in crop plants. Lettuce (Lactuca sativa L.) is an important commercial leafy vegetable that supplies essential elements for human nutrition; thus, the study of its sensitivity to MC-LR, CYN and a MC-LR/CYN mixture is of major relevance. This study aimed to assess the effects of environmentally relevant concentrations (1, 10 and 100 µg/L) of MC-LR, CYN and a MC-LR/CYN mixture on growth, antioxidant defense system and mineral content in lettuce plants. In almost all treatments, an increase in root fresh weight was obtained; however, the fresh weight of leaves was significantly decreased in plants exposed to 100 µg/L concentrations of each toxin and the toxin mixture. Overall, GST activity was significantly increased in roots, contrary to GPx activity, which decreased in roots and leaves. The mineral content in lettuce leaves changed due to its exposure to cyanotoxins; in general, the mineral content decreased with MC-LR and increased with CYN, and apparently these effects are time and concentration-dependent. The effects of the MC-LR/CYN mixture were almost always similar to the single cyanotoxins, although MC-LR seems to be more toxic than CYN. Our results suggest that lettuce plants in non-early stages of development are able to cope with lower concentrations of MC-LR, CYN and the MC-LR/CYN mixture; however, higher concentrations (100 µg/L) can affect both lettuce yield and nutritional quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. [Studies on the calcium distribution in developing synergids of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Tian, Hui Qiao

    2007-08-01

    Potassium antimonite was used to locate calcium in the synergids of lettuce (Lactuca sativa L) during their development. The two synergids on 3d before anthesis formed evident polarity with most cytoplasm located in the micropylar end and nucleus in the middle and a big vacuole in the chalazal end. At this time, calcium precipitates were a few in both cells. Calcium precipitates in the two synergids began to increase on 2d before anthesis. Synergid wall in the micropylar end thickened on 1d before anthesis, in which many calcium precipitates located. Near anthesis, synergids formed filiform apparatus in which abundant calcium precipitates accumulated to prepare for attracting pollen tubes entering. At anthesis, the distribution of calcium precipitates between two synergids was the same. At 1h after pollination, calcium precipitates evidently increased in one synergid that seemed to degenerate, the other one was persistent and the distribution of calcium granules did not change. Two synergids kept intact at 1d after emasculated, and the distribution of calcium precipitates did not display difference, suggesting that the degeneration of one synergid was caused by approaching pollen tubes which might give some signal to induce calcium increase of the synergid. Before fusion of sperm cell with egg cell, the cytoplasm of degenerated synergid embraced the egg and formed a thin layer between the egg and the central cell. Calcium precipitates in the different parts of degenerated synergid were closely connected with the fertilization: calcium precipitates accumulated in the near chalazal end of degenerated synergid at 1h after pollination. At 2.5h after pollination, the calcium precipitates increased at the chalazal end, especially abundant in the thin layer between the egg and the central cell. However, at 4h after pollination, the fertilization had finished at this time, the distribution of calcium precipitates in degenerated synergid changed again: the precipitates

  13. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  14. Influence of season growth, soils and irrigation water composition on the concentration of uranium in two lettuce (Lactuca sativa L.) varieties. Field experiments

    NASA Astrophysics Data System (ADS)

    Abreu, M. M.; Neves, O.; Marcelino, M.

    2012-04-01

    Former uranium mines areas are frequently the sources of environmental radionuclides problems even many years after the closure of mining operations. A concern for inhabitants from mining areas is the use of contaminated land or irrigation water for agriculture, and the potential transfer of metals from soils to vegetables, and to humans through the food chain. The main aim of this study was to compare the uranium concentration in lettuce (Lactuca sativa L. varieties Marady and Romana) grown in different seasons (autumn and summer) and exposed to high and low uranium concentrations both in irrigation water and agricultural soil. The content of uranium in irrigation water, soil (total and available fraction) and in lettuce leaf samples was analyzed in a certified laboratory. In the field experiments, two agricultural soils were divided into two plots (four replicates each); one of them was irrigated with uranium contaminated water (0.94 to 1.14 mg/L) and the other with uncontaminated water (< 0.02 mg/L). Irrigation with contaminated water together with highest soil uranium available concentration (10 to 13 mg/kg) had negative effects on both studied lettuce varieties, namely yield reduction (up to 53% and 87% in autumn and summer experiments, respectively) and increase of uranium leaf concentration (up to 1.4 and 7 fold in autumn and summer, respectively). Effect on lettuce yield was mainly due to the high soil salinity (1.01 to 6.31 mS/cm) as a consequence of high irrigation water electrical conductivity (up to 1.82 mS/cm) and low lettuce soil salinity tolerance (1 to 3 mS/cm). The highest lettuce uranium concentration (dry weight) observed was 2.13 and 5.37 mg/kg for Marady and Romana variety, respectively. The highest uranium lettuce concentration in Romana variety was also the effect of its growing in summer season when it was subject to greatest frequency and amount of water irrigation. The consumption by an adult of the lettuce that concentrate more uranium

  15. Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR

    USDA-ARS?s Scientific Manuscript database

    Bremia lactucae causes the characteristic vein-delimited lesions, leaf chlorosis and necrosis and adversely affects marketability of lettuce. The disease has been managed with a combination of host resistance and fungicide applications with mixed success over the years. Fungicide applications are ro...

  16. Metabolite profiling of sesquiterpene lactones from Lactuca species. Major latex components are novel oxalate and sulfate conjugates of lactucin and its derivatives.

    PubMed

    Sessa, R A; Bennett, M H; Lewis, M J; Mansfield, J W; Beale, M H

    2000-09-01

    Wounding leaves or stems of Lactuca species releases a milky latex onto the plant surface. We have examined the constituents of latex from Lactuca sativa (lettuce) cv. Diana. The major components were shown to be novel 15-oxalyl and 8-sulfate conjugates of the guaianolide sesquiterpene lactones, lactucin, deoxylactucin, and lactucopicrin. The oxalates were unstable, reverting to the parent sesquiterpene lactone on hydrolysis. Oxalyl derivatives have been reported rarely from natural sources. The sulfates were stable and are the first reported sesquiterpene sulfates from plants. Unusual tannins based on 4-hydroxyphenylacetyl conjugates of glucose were also identified. Significant qualitative and quantitative variation was found in sesquiterpene lactone profiles in different lettuce varieties and in other Lactuca spp. The proportions of each conjugate in latex also changed depending on the stage of plant development. A similar profile was found in chicory, in which oxalyl conjugates were identified, but the 8-sulfate conjugates were notably absent. The presence of the constitutive sesquiterpene lactones was not correlated with resistance to pathogens but may have a significant bearing on the molecular basis of the bitter taste of lettuce and related species. The induced sesquiterpene lactone phytoalexin, lettucenin A, was found in the Lactuca spp. but not in chicory.

  17. Resistance to downy mildew in lettuce ‘La Brillante’ is conferred by dm50 gene and multiple QTL

    USDA-ARS?s Scientific Manuscript database

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar La Brillante has a high level of field resistance to the disease in California. Testing of a mapping popu...

  18. [The dynamics of calcium distribution in stigma and style of lettuce (Lactuca sativa L.) before and after pollination].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Xie, Chao Tian; Yang, Yan Hong; Gu, Li; Tian, Hui Qiao

    2005-08-01

    Potassium antimonite was used to deposit calcium in the stigma and style of lettuce (Lactuca sativa L.) before and after pollination. The stigma of lettuce is two splits. Abundant calcium granules are displayed in the wall of papillae on the receptive surface of stigma before and after pollination, which may facilitate pollen germination. However, a few calcium granules in the wall of epidermis cell on no-receptive surface. Calcium distribution in style presents a gradient in transmitting tissue and parenchyma cells from the top to the base of the style before pollination. After pollination, calcium in transmitting tissue distinctly increased and its gradient distribution became more evident. Pollen tubes grow in the intercellular gaps of transmitting tissue. When pollen tubes grew into transmitting tissue, calcium granules in parenchyma around transmitting tissue decreased, suggesting a calcium movement was controlled by pollen tubes. The calcium gradient distribution also appeared in the trachea of vascular bundle of style. In general, calcium in style displays a feature of time-special distribution: transmitting tissue doesn't need much more calcium that is only stored in the parenchyma before pollination. However, calcium in parenchyma cells may be transported to transmitting tissue and make the latter contain more calcium to form an evident calcium gradient and meet the requirement of pollen tubes directionally growing after pollination. This is the second sample of calcium gradient existing in style, which was found by using potassium antimonite method.

  19. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    PubMed Central

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  1. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    PubMed

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  2. Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid.

    PubMed

    Jeuken, Marieke J W; Zhang, Ningwen W; McHale, Leah K; Pelgrom, Koen; den Boer, Erik; Lindhout, Pim; Michelmore, Richard W; Visser, Richard G F; Niks, Rients E

    2009-10-01

    Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew. Segregation analysis revealed a specific allelic combination at two interacting loci to be responsible. The allelic interaction had two consequences: (1) a quantitative temperature-dependent autoimmunity reaction leading to necrotic lesions, lethality, and quantitative resistance to an otherwise virulent race of Bremia lactucae; and (2) a qualitative temperature-independent race-specific resistance to an avirulent race of B. lactucae. We demonstrated by transient expression and silencing experiments that one of the two interacting genes was Rin4. In Arabidopsis thaliana, RIN4 is known to interact with multiple R gene products, and their interactions result in hypersensitive resistance to Pseudomonas syringae. Site-directed mutation studies on the necrosis-eliciting allele of Rin4 in lettuce showed that three residues were critical for hybrid necrosis.

  3. Effect of aqueous and hydro-alcoholic extracts of lettuce (Lactuca sativa) seed on testosterone level and spermatogenesis in NMRI mice.

    PubMed

    Ahangarpour, Akram; Oroojan, Ali Akbar; Radan, Maryam

    2014-01-01

    One of the considerable uses of lettuce (Lactuca sativa) seed in traditional medicine has been to reduce semen, sperm and sexuality. The aim of this study was to investigate the effects of aqueous and hydro-alcoholic extracts of lettuce seed on testosterone level and spermatogenesis. In this experimental study 24 adult male NMRI mice weighing 20-25gr were purchased. Animals were randomly divided into 4 groups: controls, hydro-alcoholic (200 mg/kg) and aqueous extracts (50, 100mg/kg). The extracts were injected intraperitoneally once a day for 10 consecutive days. 2 weeks after the last injection, the mice were anaesthetized by ether and after laparatomy blood was collected from the heart to determine testosterone by ELISA assay kit. Then testis and cauda epididymis of all animals were removed for analyzing testis morphology and sperm count and viability. Testis weight in hydro-alcoholic and aqueous extracts 100 mg/kg (p=0.001) and aqueous extract 50 mg/kg (p=0.008) groups was increased. Sperm viability in hydro-alcoholic (p=0.001) and aqueous extracts 50 (p=0.026), 100 mg/kg (p=0.045) groups was decreased, Also the results showed a significant decrease in sperm count in hydro-alcoholic (p=0.035) and aqueous extracts 50 mg/kg (p=0.006) groups in comparison with control group. Also there was a significant increase in serum level of testosterone in aqueous extract 50 mg/kg group in comparison with control (p=0.002) hydro-alcoholic (p=0.001) and aqueous extracts 100 mg/kg (p=0.003) groups. Present results demonstrated that hydro-alcoholic and aqueous 50 mg/kg extracts of lettuce seed have antispermatogenic effects, also aqueous extract 50 mg/kg increased serum level of testosterone in mice. Therefore we can suggest that lettuce seed could be a potential contraceptive agent. This article extracted from M.Sc. student research project. (Ali Akbar Oroojan).

  4. Effect of aqueous and hydro-alcoholic extracts of lettuce (Lactuca sativa) seed on testosterone level and spermatogenesis in NMRI mice

    PubMed Central

    Ahangarpour, Akram; Oroojan, Ali Akbar; Radan, Maryam

    2014-01-01

    Background: One of the considerable uses of lettuce (Lactuca sativa) seed in traditional medicine has been to reduce semen, sperm and sexuality. Objective: The aim of this study was to investigate the effects of aqueous and hydro-alcoholic extracts of lettuce seed on testosterone level and spermatogenesis. Materials and Methods: In this experimental study 24 adult male NMRI mice weighing 20-25gr were purchased. Animals were randomly divided into 4 groups: controls, hydro-alcoholic (200 mg/kg) and aqueous extracts (50, 100mg/kg). The extracts were injected intraperitoneally once a day for 10 consecutive days. 2 weeks after the last injection, the mice were anaesthetized by ether and after laparatomy blood was collected from the heart to determine testosterone by ELISA assay kit. Then testis and cauda epididymis of all animals were removed for analyzing testis morphology and sperm count and viability. Results: Testis weight in hydro-alcoholic and aqueous extracts 100 mg/kg (p=0.001) and aqueous extract 50 mg/kg (p=0.008) groups was increased. Sperm viability in hydro-alcoholic (p=0.001) and aqueous extracts 50 (p=0.026), 100 mg/kg (p=0.045) groups was decreased, Also the results showed a significant decrease in sperm count in hydro-alcoholic (p=0.035) and aqueous extracts 50 mg/kg (p=0.006) groups in comparison with control group. Also there was a significant increase in serum level of testosterone in aqueous extract 50 mg/kg group in comparison with control (p=0.002) hydro-alcoholic (p=0.001) and aqueous extracts 100 mg/kg (p=0.003) groups. Conclusion: Present results demonstrated that hydro-alcoholic and aqueous 50 mg/kg extracts of lettuce seed have antispermatogenic effects, also aqueous extract 50 mg/kg increased serum level of testosterone in mice. Therefore we can suggest that lettuce seed could be a potential contraceptive agent. This article extracted from M.Sc. student research project. (Ali Akbar Oroojan) PMID:24799863

  5. Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.)

    PubMed Central

    2012-01-01

    Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types

  6. Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.).

    PubMed

    Stoffel, Kevin; van Leeuwen, Hans; Kozik, Alexander; Caldwell, David; Ashrafi, Hamid; Cui, Xinping; Tan, Xiaoping; Hill, Theresa; Reyes-Chin-Wo, Sebastian; Truco, Maria-Jose; Michelmore, Richard W; Van Deynze, Allen

    2012-05-14

    High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types. By hybridizing

  7. Allelopathic Activity of Extracts from Different Brazilian Peanut (Arachis hypogaea L.) Cultivars on Lettuce (Lactuca sativa) and Weed Plants

    PubMed Central

    Garcia, R.; Simas, N. K.

    2017-01-01

    Peanut (Arachis hypogaea L.) is the fourth most consumed oleaginous plant in the world, producing seeds with high contents of lipids, proteins, vitamins, and carbohydrates. Biological activities of different extracts of this species have already been evaluated by many researchers, including antioxidant, antitumoral, and antibacterial. In this work, the allelopathic activity of extracts from different Brazilian peanut cultivars against lettuce (Lactuca sativa) and two weed plants (Commelina benghalensis and Ipomoea nil) was studied. Aerial parts, roots, seeds, and seed coats were used for the preparation of crude extracts. Seed extract partitioning was performed with n-hexane, dichloromethane, ethyl acetate, n-butanol, and aqueous residue. Germination and growth of hypocotyls and rootlets were evaluated after one and five days of incubation with plant extracts, respectively. Crude seed extract and its dichloromethanic partition displayed highest allelopathic activity. These results contribute for the study of new potential natural herbicides. PMID:28396881

  8. Allelopathic Activity of Extracts from Different Brazilian Peanut (Arachis hypogaea L.) Cultivars on Lettuce (Lactuca sativa) and Weed Plants.

    PubMed

    Casimiro, G S; Mansur, E; Pacheco, G; Garcia, R; Leal, I C R; Simas, N K

    2017-01-01

    Peanut ( Arachis hypogaea L.) is the fourth most consumed oleaginous plant in the world, producing seeds with high contents of lipids, proteins, vitamins, and carbohydrates. Biological activities of different extracts of this species have already been evaluated by many researchers, including antioxidant, antitumoral, and antibacterial. In this work, the allelopathic activity of extracts from different Brazilian peanut cultivars against lettuce (Lactuca sativa) and two weed plants ( Commelina benghalensis and Ipomoea nil ) was studied. Aerial parts, roots, seeds, and seed coats were used for the preparation of crude extracts. Seed extract partitioning was performed with n -hexane, dichloromethane, ethyl acetate, n -butanol, and aqueous residue. Germination and growth of hypocotyls and rootlets were evaluated after one and five days of incubation with plant extracts, respectively. Crude seed extract and its dichloromethanic partition displayed highest allelopathic activity. These results contribute for the study of new potential natural herbicides.

  9. The influence of the microbial quality of wastewater, lettuce cultivars and enumeration technique when estimating the microbial contamination of wastewater-irrigated lettuce.

    PubMed

    Makkaew, P; Miller, M; Cromar, N J; Fallowfield, H J

    2017-04-01

    This study investigated the volume of wastewater retained on the surface of three different varieties of lettuce, Iceberg, Cos, and Oak leaf, following submersion in wastewater of different microbial qualities (10, 10 2 , 10 3 , and 10 4 E. coli MPN/100 mL) as a surrogate method for estimation of contamination of spray-irrigated lettuce. Uniquely, Escherichia coli was enumerated, after submersion, on both the outer and inner leaves and in a composite sample of lettuce. E. coli were enumerated using two techniques. Firstly, from samples of leaves - the direct method. Secondly, using an indirect method, where the E. coli concentrations were estimated from the volume of wastewater retained by the lettuce and the E. coli concentration of the wastewater. The results showed that different varieties of lettuce retained significantly different volumes of wastewater (p < 0.01). No statistical differences (p > 0.01) were detected between E. coli counts obtained from different parts of lettuce, nor between the direct and indirect enumeration methods. Statistically significant linear relationships were derived relating the E. coli concentration of the wastewater in which the lettuces were submerged to the subsequent E. coli count on each variety the lettuce.

  10. An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce

    PubMed Central

    Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W.

    2013-01-01

    We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa. The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. PMID:23550116

  11. An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce.

    PubMed

    Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W

    2013-04-09

    We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F 7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. Copyright © 2013 Truco et al.

  12. Bacterial networks and co-occurrence relationships in the lettuce root microbiota.

    PubMed

    Cardinale, Massimiliano; Grube, Martin; Erlacher, Armin; Quehenberger, Julian; Berg, Gabriele

    2015-01-01

    Lettuce is one of the most common raw foods worldwide, but occasionally also involved in pathogen outbreaks. To understand the correlative structure of the bacterial community as a network, we studied root microbiota of eight ancient and modern Lactuca sativa cultivars and the wild ancestor Lactuca serriola by pyrosequencing of 16S rRNA gene amplicon libraries. The lettuce microbiota was dominated by Proteobacteria and Bacteriodetes, as well as abundant Chloroflexi and Actinobacteria. Cultivar specificity comprised 12.5% of the species. Diversity indices were not different between lettuce cultivar groups but higher than in L. serriola, suggesting that domestication lead to bacterial diversification in lettuce root system. Spearman correlations between operational taxonomic units (OTUs) showed that co-occurrence prevailed over co-exclusion, and complementary fluorescence in situ hybridization-confocal laser scanning microscopy (FISH-CLSM) analyses revealed that this pattern results from both potential interactions and habitat sharing. Predominant taxa, such as Pseudomonas, Flavobacterium and Sphingomonadaceae rather suggested interactions, even though these are not necessarily part of significant modules in the co-occurrence networks. Without any need for complex interactions, single organisms are able to invade into this microbial network and to colonize lettuce plants, a fact that can influence the susceptibility to pathogens. The approach to combine co-occurrence analysis and FISH-CLSM allows reliably reconstructing and interpreting microbial interaction networks. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Rin4 Causes Hybrid Necrosis and Race-Specific Resistance in an Interspecific Lettuce Hybrid[W

    PubMed Central

    Jeuken, Marieke J.W.; Zhang, Ningwen W.; McHale, Leah K.; Pelgrom, Koen; den Boer, Erik; Lindhout, Pim; Michelmore, Richard W.; Visser, Richard G.F.; Niks, Rients E.

    2009-01-01

    Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew. Segregation analysis revealed a specific allelic combination at two interacting loci to be responsible. The allelic interaction had two consequences: (1) a quantitative temperature-dependent autoimmunity reaction leading to necrotic lesions, lethality, and quantitative resistance to an otherwise virulent race of Bremia lactucae; and (2) a qualitative temperature-independent race-specific resistance to an avirulent race of B. lactucae. We demonstrated by transient expression and silencing experiments that one of the two interacting genes was Rin4. In Arabidopsis thaliana, RIN4 is known to interact with multiple R gene products, and their interactions result in hypersensitive resistance to Pseudomonas syringae. Site-directed mutation studies on the necrosis-eliciting allele of Rin4 in lettuce showed that three residues were critical for hybrid necrosis. PMID:19855048

  14. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Efficacy of slightly acidic electrolyzed water in killing or reducing Escherichia coli O157:H7 on iceberg lettuce and tomatoes under simulated food service operation conditions.

    PubMed

    Pangloli, Philipus; Hung, Yen-Con

    2011-08-01

    The objective of this study was to evaluate the efficacy of slightly acidic electrolyzed (SAEO) water in killing or removing Escherichia coli O157:H7 on iceberg lettuce and tomatoes by washing and chilling treatment simulating protocols used in food service kitchens. Whole lettuce leaves and tomatoes were spot-inoculated with 100 μL of a mixture of 5 strains of E. coli O157:H7. Washing lettuce with SAEO water for 15 s reduced the pathogen by 1.4 to 1.6 log CFU/leaf, but the treatments did not completely inactivate the pathogen in the wash solution. Increasing the washing time to 30 s increased the reductions to 1.7 to 2.3 log CFU/leaf. Sequential washing in SAEO water for 15 s and then chilling in SAEO water for 15 min also increased the reductions to 2.0 to 2.4 log CFU/leaf, and no cell survived in chilling solution after treatment. Washing tomatoes with SAEO water for 8 s reduced E. coli O157:H7 by 5.4 to 6.3 log CFU/tomato. The reductions were increased to 6.6 to 7.6 log CFU/tomato by increasing the washing time to 15 s. Results suggested that application of SAEO water to wash and chill lettuce and tomatoes in food service kitchens could minimize cross-contamination and reduce the risk of E. coli O157:H7 present on the produce. SAEO water is equally or slightly better than acidic electrolyzed (AEO) water for inactivation of bacteria on lettuce and tomato surfaces. In addition, SAEO water may have the advantages over AEO water on its stability, no chlorine smell, and low corrosiveness. Therefore, SAEO water may have potential for produce wash to enhance food safety. © 2011 Institute of Food Technologists®

  16. Transfer of Metals in Food Chain: An Example with Copper and Lettuce

    NASA Astrophysics Data System (ADS)

    Vincevica-Gaile, Zane; Klavins, Maris

    2012-12-01

    Present study investigated the possible transfer of metals in the food chain (from soil to edible plants). The experiment was done with lettuce Lactuca sativa grown in different types of soil contaminated with copper (Cu2+) in various concentrations, with or without addition of humic substances. The highest content of copper was detected in lettuce samples grown in soils with lower levels of organic matter, thus indicating the importance of soil organics in metal transfer routes and accumulation rates in plants. It was found that copper accumulation in lettuce grown in contaminated soils can be significantly reduced by the addition of humic substances.

  17. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  18. Germplasm Management in the Post-genomics Era-a case study with lettuce

    USDA-ARS?s Scientific Manuscript database

    High-throughput genotyping platforms and next-generation sequencing technologies revolutionized our ways in germplasm characterization. In collaboration with UC Davis Genome Center, we completed a project of genotyping the entire cultivated lettuce (Lactuca sativa L.) collection of 1,066 accessions ...

  19. A STUDY ON THE ACCUMULATION OF PERCHLORATE IN YOUNG HEAD LETTUCE

    EPA Science Inventory

    The overall objective of this study was to demonstrate in a greenhouse study the potential for incorporation of perchlorate from aqueous solutions of 10, 50, 100, 500, 1,000, 5,000, and 10,000 ppb into an agricultural food crop (lettuce; Lactuca sativa), which is typically grown ...

  20. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves.

    PubMed

    Keskinen, Lindsey A; Burke, Angela; Annous, Bassam A

    2009-06-30

    This study compared the efficacy of chlorine (20-200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20-200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20-200 ppm chlorite ion concentration, TriNova) washes in reducing populations of Escherichia coli O157:H7 on artificially inoculated lettuce. Fresh-cut leaves of Romaine or Iceberg lettuce were inoculated by immersion in water containing E. coli O157:H7 (8 log CFU/ml) for 5 min and dried in a salad spinner. Leaves (25 g) were then washed for 2 min, immediately or following 24 h of storage at 4 degrees C. The washing treatments containing chlorite ion concentrations of 100 and 200 ppm were the most effective against E. coli O157:H7 populations on Iceberg lettuce, with log reductions as high as 1.25 log CFU/g and 1.05 log CFU/g for TriNova and Sanova wash treatments, respectively. All other wash treatments resulted in population reductions of less than 1 log CFU/g. Chlorine (200 ppm), TriNova, Sanova, and acidic electrolyzed water were all equally effective against E. coli O157:H7 on Romaine, with log reductions of approximately 1 log CFU/g. The 20 ppm chlorine wash was as effective as the deionized water wash in reducing populations of E. coli O157:H7 on Romaine and Iceberg lettuce. Scanning electron microscopy indicated that E. coli O157:H7 that was incorporated into biofilms or located in damage lettuce tissue remained on the lettuce leaf, while individual cells on undamaged leaf surfaces were more likely to be washed away.

  1. Toxicity Effect of Cr Stress on Seed Germination and Seedling Growth in Lactuca Sativa

    NASA Astrophysics Data System (ADS)

    Ma, Wan Zheng; Ma, Wan Min; Du, Ying Ying; Dan, Qiong Peng; Yin, Bing; Dai, Shan Shan; Hao, Xiang

    2018-03-01

    The impact of Cr6+ on the growth of lactuca sativa in Greenhouse Cucumber was investigated. The seeds of lacuna sativa Italian bolting resistance lettuce were treated by different Cr6+ concentration to study the effects on its seed germination and seedling growth. The results showed that the seed germination rate, vigor index of seedlings decreased with increment of Cr6+ concentration to varying degrees, and vigor germination, vigor index, raw weight, root length significantly lower. The absorption of lettuce seedlings on different nutrient elements is impacted by the concentration of Cr6+.

  2. Biochemical study of leaf browning in minimally processed leaves of lettuce (Lactuca sativa L. var. acephala).

    PubMed

    Degl'Innocenti, E; Guidi, L; Pardossi, A; Tognoni, F

    2005-12-28

    A series of biochemical parameters, including the concentration of total ascorbic acid (ASA(tot)) and the activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidases (PODs), was investigated during cold storage (72 h at 4 degrees C in the dark) in fresh-cut (minimally processed) leaves of two lettuce (Lactuca sativa L. var. acephala) cultivars differing in the susceptibility to tissue browning: Green Salade Bowl (GSB), susceptible, and Red Salade Bowl (RSB), resistant. The two cultivars showed differences also at the biochemical level. The content in ASA(tot) increased in RSB, as a consequence of increased DHA concentration; conversely, ASA(tot) diminished in GSB, in which ASA was not detectable after 72 h of storage, thus suggesting a disappearance of ascorbate (both ASA and DHA) into nonactive forms. The antioxidant capacity (as determined by using FRAP analysis) decreased significantly during storage in RSB, while a strong increase was observed in GSB. PAL activity increased soon after processing reaching a maximum by 3 h, then it declined to a relatively constant value in RSB, while in GSB it showed a tendency to decrease in the first few hours from harvest and processing. POD activity, at least for chlorogenic acid, increased significantly during storage only in GSB.

  3. LETTUCE AND BROCCOLI RESPONSE AND SOIL PROPERTIES RESULTING FROM TANNERY WASTE APPLICATIONS

    EPA Science Inventory

    Broccoli (Brassica oleracea L. var. italica) and lettuce (Lactuca sativa L.) were grown on Willamette sil (Pachic Ultic Argixerolls) amended 1 and 2 yr earlier with chrome tannery wastes at rates up to 192 Mg ha to determine nutrient and trace element availability. Soils were sam...

  4. Banded cucumber beetle (Coleoptera: Chrysomelidae) resistance in romaine lettuce: understanding latex chemistry

    USDA-ARS?s Scientific Manuscript database

    Many plants subjected to herbivore damage exude latex, a rich source of biochemicals, which play important roles in host plant resistance. Our previous studies showed that fresh latex from Valmaine, a resistant cultivar of romaine lettuce Lactuca sativa L., applied to artificial diet is highly deter...

  5. Effect of 16 and 24 hours daily radiation (light) on lettuce growth

    NASA Technical Reports Server (NTRS)

    Koontz, H. V.; Prince, R. P.; Knott, W. M. (Principal Investigator)

    1986-01-01

    A 50% increase in total radiation by extending the photoperiod from 16 to 24 hr doubled the weight of all cultivars of loose-leaf lettuce (Lactuca sativa L.) 'Grand Rapids Forcing', 'Waldmanns Green', 'Salad Bowl', and 'RubyConn', but not a Butterhead cultivar, 'Salina'. When total daily radiation (moles of photons) was the same, plants under continuous radiation weighed 30% to 50% more than plants under a 16 hr photoperiod. By using continuous radiation on loose-leaf lettuce, fewer lamp fixtures were required and yield was increased.

  6. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.).

    PubMed

    Verwaaijen, Bart; Wibberg, Daniel; Kröber, Magdalena; Winkler, Anika; Zrenner, Rita; Bednarz, Hanna; Niehaus, Karsten; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2017-01-01

    The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1-symptomless, Zone 2-light brown discoloration, and Zone 3-dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited

  7. Modification of yield and chlorophyll content in leaf lettuce by HPS radiation and nitrogen treatments

    NASA Technical Reports Server (NTRS)

    Mitchell, Cary A.; Leakakos, Tina; Ford, Tameria L.

    1991-01-01

    The potential of realizing high photosynthetic photon flux from radiation by high-pressure sodium (HPS) lamp, alone or in combination with metal halide (MH) plus quartz iodide (QI) incandescent lamps, to support lettuce grow, with or without nitrogen supplement, was investigated. It was found that varying exposures to radiation from combined HPS, MH, and QI lamps influenced dry weight gain and photosynthetic pigment content of hydroponically grown lettuce (Lactuca sativa L.) seedlings.

  8. Evaluation and Quantitative trait loci mapping of resistance to powdery mildew in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. We mapped quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions in an interspecific population derived from a cross betw...

  9. Red leaf lettuce breeding line with resistance to corky root, 06-810

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture (USDA) announces the release of a breeding line of red leaf lettuce (Lactuca sativa L.), 06-810. The line may be suitable for commercial production, and is suitable for use as a source of resistance to corky root disease in t...

  10. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  11. MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.)

    PubMed Central

    Han, Yingyan; Chen, Zijing; Lv, Shanshan; Ning, Kang; Ji, Xueliang; Liu, Xueying; Wang, Qian; Liu, Renyi; Fan, Shuangxi; Zhang, Xiaolan

    2016-01-01

    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs. S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines. PMID:28018414

  12. Effect of storage temperature and duration on the behavior of Escherichia coli O157:H7 on packaged fresh-cut salad containing romaine and iceberg lettuce.

    PubMed

    Luo, Yaguang; He, Qiang; McEvoy, James L

    2010-09-01

    This study investigated the impact of storage temperature and duration on the fate of Escherichia coli O157:H7 on commercially packaged lettuce salads, and on product quality. Fresh-cut Romaine and Iceberg lettuce salads of different commercial brands were obtained from both retail and wholesale stores. The packages were cut open at one end, the lettuce salad inoculated with E. coli O157:H7 via a fine mist spray, and resealed with or without an initial N(2) flush to match the original package atmospheric levels. The products were stored at 5 and 12 °C until their labeled "Best If Used By" dates, and the microbial counts and product quality were monitored periodically. The results indicate that storage at 5 °C allowed E. coli O157:H7 to survive, but limited its growth, whereas storage at 12 °C facilitated the proliferation of E. coli O157:H7. There was more than 2.0 log CFU/g increase in E. coli O157:H7 populations on lettuce when held at 12 °C for 3 d, followed by additional growth during the remainder of the storage period. Although there was eventually a significant decline in visual quality of lettuce held at 12 °C, the quality of this lettuce was still fully acceptable when E. coli O157:H7 growth reached a statistically significant level. Therefore, maintaining fresh-cut products at 5 °C or below is critical for reducing the food safety risks as E. coli O157:H7 grows at a rapid, temperature-dependent rate prior to significant quality deterioration. Specific information regarding the effect of temperature on pathogen growth on leafy greens is needed to develop science-based food safety guidelines and practices by the regulatory agencies and produce industry. Temperature control is commonly thought to promote quality of leafy greens, not safety, based at least partially on a theory that product quality deterioration precedes pathogen growth at elevated temperatures. This prevalent attitude results in temperature abuse incidents being frequently overlooked

  13. Population biology of Verticillium dahliae isolates from lettuce in the Sallinas Valley of Californis.

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae is a soil borne fungus and the primary causal agent of Verticillium wilt, which affects many crops worldwide. Many crops grown in the Salinas Valley (SV) of California, including strawberry and lettuce (Lactuca sativa), are susceptible to V. dahliae and severe outbreaks are comm...

  14. Environmental modification of yield and food composition of cowpea and leaf lettuce

    NASA Technical Reports Server (NTRS)

    Mitchell, Cary A.; Nielsen, Suzanne S.; Bubenheim, David L.

    1990-01-01

    Cowpea (Vigna unguiculata (L.) Walp.) and leaf lettuce (Lactuca sativa L.) are candidate species to provide ligume protein and starch or serve as a salad base for a nutritionally balanced and psychologically satisfying vegetarian diet in the Controlled Ecology Life Support System (CELSS). Various nutritional parameters are reported. Hydroponic leaf lettuce grew best under CO2 enrichment and photosynthetic photon flux (PPF) enhancement. Leaf protein content reached 36 percent with NH4(+) + NO3 nutrition; starch and free sugar content was as high as 7 or 8.4 percent of DW, respectively, for high PPF/CO2 enriched environments.

  15. Photoprotection vs. Photoinhibition of Photosystem II in Transplastomic Lettuce (Lactuca sativa) Dominantly Accumulating Astaxanthin.

    PubMed

    Fujii, Ritsuko; Yamano, Nami; Hashimoto, Hideki; Misawa, Norihiko; Ifuku, Kentaro

    2016-07-01

    Transplastomic (chloroplast genome-modified; CGM) lettuce that dominantly accumulates astaxanthin grows similarly to a non-transgenic control with almost no accumulation of naturally occurring photosynthetic carotenoids. In this study, we evaluated the activity and assembly of PSII in CGM lettuce. The maximum quantum yield of PSII in CGM lettuce was <0.6; however, the quantum yield of PSII was comparable with that in control leaves under higher light intensity. CGM lettuce showed a lower ability to induce non-photochemical quenching (NPQ) than the control under various light intensities. The fraction of slowly recovering NPQ in CGM lettuce, which is considered to be photoinhibitory quenching (qI), was less than half that of the control. In fact, 1 O 2 generation was lower in CGM than in control leaves under high light intensity. CGM lettuce contained less PSII, accumulated mostly as a monomer in thylakoid membranes. The PSII monomers purified from the CGM thylakoids bound echinenone and canthaxanthin in addition to β-carotene, suggesting that a shortage of β-carotene and/or the binding of carbonyl carotenoids would interfere with the photophysical function as well as normal assembly of PSII. In contrast, high accumulation of astaxanthin and other carbonyl carotenoids was found within the thylakoid membranes. This finding would be associated with the suppression of photo-oxidative stress in the thylakoid membranes. Our observation suggests the importance of a specific balance between photoprotection and photoinhibition that can support normal photosynthesis in CGM lettuce producing astaxanthin. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Combined toxicity of microcystin-LR and copper on lettuce (Lactuca sativa L.).

    PubMed

    Cao, Qing; Steinman, Alan D; Wan, Xiang; Xie, Liqiang

    2018-05-10

    Microcystins and copper commonly co-exist in the natural environment, but their combined toxicity remains unclear, especially in terrestrial plants. The present study investigated the toxicity effects of microcystin-LR (0, 5, 50, 500, 1000 μg L -1 ) and copper (0, 50, 500, 1000, 2000 μg L -1 ), both individually and in mixture, on the germination, growth and oxidative response of lettuce. The bioaccumulation of microcystin-LR and copper was also evaluated. Results showed that the decrease in lettuce germination induced by copper alone was not significantly different from that induced by the mixture, and the combined toxicity assessment showed a simple additive effect. Lettuce growth was not significantly reduced by microcystin-LR alone, whereas it was significantly reduced by copper alone and the mixture when copper concentration was higher than 500 μg L -1 . High concentrations of microcystin-LR (1000 μg L -1 ) and copper (≥50 μg L -1 ),as well as their mixture (≥50 + 500 μg L -1 ), induced oxidative stress in lettuce. A synergistic effect on the growth and antioxidative system of lettuce was observed when exposed to low concentrations of the mixture (≤50 + 500 μg L -1 ), whereas an antagonistic effect was observed at high concentrations (≥1000 + 2000 μg L -1 ). Moreover, the interaction of microcystin-LR and copper can increase their accumulation in lettuce. Our results suggest that the toxicity effects of microcystin-LR and copper are exacerbated when they co-exist in the natural environment at low concentrations, which not only negatively affects plant growth but also poses a potential risk to human health via the food chain. Copyright © 2018. Published by Elsevier Ltd.

  17. Transformation of lettuce (Lactuca sativa) mediated by Agrobacterium tumefaciens.

    PubMed

    Michelmore, R; Marsh, E; Seely, S; Landry, B

    1987-12-01

    Lactuca sativa can be routinely transformed using Ti plasmids of Agrobacterium tumefaciens containing a chimeric kanamycin resistance gene (NOS.NPTII.NOS). Critical experimental variables were plant genotype, bacterial concentration, presence of a nurse culture and timing of transfers between tissue culture media. Transformation was confirmed by the ability to callus and root in the presence of kanamycin, nopaline production, and by hybridization in Southern blots. Transformation has been achieved with several Ti vectors. Several hundred transformed plants have been regenerated. Kanamycin resistance was inherited monogenically. Homozygotes can be selected by growing R2 seedlings on media containing G418.

  18. Automated thinning increases uniformity of in-row spacing and plant size in romaine lettuce

    USDA-ARS?s Scientific Manuscript database

    Low availability and high cost of farm hand labor make automated thinners a faster and cheaper alternative to hand thinning in lettuce (Lactuca sativa L.). However, the effects of this new technology on uniformity of plant spacing and size as well as crop yield are not proven. Three experiments wer...

  19. [Calcium distribution in the central cell of lettuce (Lactuca sativa L.) before and after pollination].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Ye, Lv; Tian, Hui

    2008-02-01

    Potassium antimonite precipitation was used to locate calcium in the central cell of lettuce (Lactuca sativa L.) before and after pollination. At 3d before anthesis, two polar nuclei of central cell separately located at two polarity of the cell, and few calcium precipitates (ppts) appeared in the polar nuclei and cytoplasm, but some ppts in its small vacuoles. At 2d before anthesis, two polar nuclei moved toward the middle of the cell and fused to form a secondary nucleus, and the ppts evidently increased in the nucleus and cytoplasm. At 1d before anthesis, secondary nucleus again moved toward micropylar end and located near the egg to prepare for fertilization. Calcium precipitates were mainly accumulated in the secondary nucleus. After pollination and before fertilization, the distribution of calcium ppts was similar to that before pollination. At 4h after pollination, the central cell was fertilized, and calcium ppts evidently increased in the cell and numerous were accumulated in its nucleus and cytoplasm. At 6h after pollination, the primary endosperm nucleus completed its first division and formed two dissociate endosperm nuclei, and still many calcium precipitates appeared in the nucleus and cytoplasm. With endosperm development, calcium ppts decreased in the endosperm cell. At 1d after emasculated and without pollination, the secondary nucleus of the cell still bordered on the egg and some calcium ppts appeared in the secondary nucleus. The results indicated that the temporal and spatial changes of calcium in the central cell may play an important physiological role during the development of the central cell and endosperm.

  20. Antimicrobial, antioxidant and sensory features of eugenol, carvacrol and trans-anethole in active packaging for organic ready-to-eat iceberg lettuce.

    PubMed

    Wieczyńska, Justyna; Cavoski, Ivana

    2018-09-01

    In this study, bio-based emitting sachets containing eugenol (EUG), carvacrol (CAR) and trans-anethole (ANT) were inserted into cellulose (CE) and polypropylene (PP) pillow packages of organic ready-to-eat (RTE) iceberg lettuce to investigate their functional features. EUG, CAR and ANT sachets in CE; and CAR in PP packages showed antimicrobial activities against coliforms (Δlog CFU g -1 of -1.38, -0.91, -0.93 and -0.93, respectively). EUG and ANT sachets in both packages reduced discoloration (ΔE of 9.5, 1.8, 9.4 and 5.6, respectively). ANT in both, and EUG only in PP packages induced biosynthesis of caffeoyl derivatives (C a T A , D i C a T A , D i C a Q A ), total phenolics and antioxidant activity (FRAP). Also, ANT and EUG in both packages improved overall freshness and odor. Principal component analysis separated ANT and EUG from CAR in both packages. The Pearson correlation confirmed that overall quality improvements were more pronounced by ANT inside the packages in comparison to EUG and CAR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Iceberg cometh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeks, W.F.; Mellor, M.

    1979-08-01

    The feasibility of melting icebergs to obtain supplies of liquid fresh water is, while still undemonstrated, worth considering in view of the nearly 30 million cubic kilometers of fresh water ice in the world. Most of the fresh water ice is in the Antarctic Ice Sheet, which has tabular icebergs of regular shape and comparatively easy access for towing to the Southern Hemisphere. Several development proposals have been made for Southern California, Australia, and the Middle East. The authors describe the nature of icebergs, some of the technical problems of towing (such as wind and ocean currents and the ratemore » of melting), and possible environmental impacts when the iceberg arrives at its destination. They suggest that time spent in selecting favorable icebergs will improve the economics. Innovative equipment for tugboats and a refrigerated drydock to retard melting could minimize some of the towing problems. Exploitation of the iceberg upon arrival could also include its use as an energy sink. 6 references.« less

  2. Green leaf lettuce breeding lines with resistance to corky root, 06-831 and 06-833.

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture (USDA) announces the release of two breeding lines of green leaf lettuce (Lactuca sativa L.). The lines 06-831 and 06-833 look similar to ‘Waldmann’s Green’ and related cultivars. The lines may be suitable for commercial pro...

  3. Potentiating Effects of Lactuca sativa on Pentobarbital-Induced Sleep.

    PubMed

    Ghorbani, Ahmad; Rakhshandeh, Hassan; Sadeghnia, Hamid Reza

    2013-01-01

    Traditionally, Lactuca sativa (lettuce) has been recommended for its hypnotic property. The present study was planned to investigate sleep-prolonging effect of this plant. The hydro-alcoholic extract (HAE) of lettuce and its water fraction (WF), ethyl acetate fraction (EAF), and n-butanol fraction (NBF) were administrated (IP) to mice 30 min before the pentobarbital injection. Moreover, both in-vivo and in-vitro toxicity of the extracts were determined. The quality of HAE and NBF was also evaluated using HPLC fingerprint. The HAE prolonged the pentobarbital-induced sleep duration at dose of 400 mg/Kg. The NBF was the only fraction which could increase the sleep duration and decrease sleep latency. The effects of NBF were comparable to those of induced by diazepam. The LD50-value for HAE was found to be 4.8 g/Kg. No neurotoxic effect was observed either by HAE or by its fractions in cultured PC12 neuron-like cells. The results suggest that lettuce potentiates pentobarbital hypnosis without major toxic effect. The main component(s) responsible for this effect is most likely to be non-polar agent(s) which found in NBF of this plant.

  4. Potentiating Effects of Lactuca sativa on Pentobarbital-Induced Sleep

    PubMed Central

    Ghorbani, Ahmad; Rakhshandeh, Hassan; Sadeghnia, Hamid Reza

    2013-01-01

    Traditionally, Lactuca sativa (lettuce) has been recommended for its hypnotic property. The present study was planned to investigate sleep-prolonging effect of this plant. The hydro-alcoholic extract (HAE) of lettuce and its water fraction (WF), ethyl acetate fraction (EAF), and n-butanol fraction (NBF) were administrated (IP) to mice 30 min before the pentobarbital injection. Moreover, both in-vivo and in-vitro toxicity of the extracts were determined. The quality of HAE and NBF was also evaluated using HPLC fingerprint. The HAE prolonged the pentobarbital-induced sleep duration at dose of 400 mg/Kg. The NBF was the only fraction which could increase the sleep duration and decrease sleep latency. The effects of NBF were comparable to those of induced by diazepam. The LD50-value for HAE was found to be 4.8 g/Kg. No neurotoxic effect was observed either by HAE or by its fractions in cultured PC12 neuron-like cells. The results suggest that lettuce potentiates pentobarbital hypnosis without major toxic effect. The main component(s) responsible for this effect is most likely to be non-polar agent(s) which found in NBF of this plant. PMID:24250615

  5. Effects of cadmium and zinc on ozone-induced phytotoxicity in cress and lettuce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czuba, M.; Ormrod, D.P.

    1973-01-01

    Cadmium or zinc solutions were applied to the foliage or roots of lettuce (Lactuca sativa L. cv. Grand Rapids) and cress (Lepidium sativum L. cv. Fine Curled) at concentrations of 100 parts per million (ppm) every four days for several weeks. Four weeks after sowing, plants were fumigated with 35 parts per hundred million (pphm) ozone, for 6 hours. Cress plants which had received root application of cadmium showed markedly increased ozone-induced phytotoxicity in terms of visible leaf damage and pigment degradation; in lettuce only pigment degradation was evident. There was less effect of zinc or foliar-applied cadmium on ozonemore » phytotoxicity.« less

  6. Low-cost multispectral imaging for remote sensing of lettuce health

    NASA Astrophysics Data System (ADS)

    Ren, David D. W.; Tripathi, Siddhant; Li, Larry K. B.

    2017-01-01

    In agricultural remote sensing, unmanned aerial vehicle (UAV) platforms offer many advantages over conventional satellite and full-scale airborne platforms. One of the most important advantages is their ability to capture high spatial resolution images (1-10 cm) on-demand and at different viewing angles. However, UAV platforms typically rely on the use of multiple cameras, which can be costly and difficult to operate. We present the development of a simple low-cost imaging system for remote sensing of crop health and demonstrate it on lettuce (Lactuca sativa) grown in Hong Kong. To identify the optimal vegetation index, we recorded images of both healthy and unhealthy lettuce, and used them as input in an expectation maximization cluster analysis with a Gaussian mixture model. Results from unsupervised and supervised clustering show that, among four widely used vegetation indices, the blue wide-dynamic range vegetation index is the most accurate. This study shows that it is readily possible to design and build a remote sensing system capable of determining the health status of lettuce at a reasonably low cost (lettuce growers.

  7. Modelling Greenland icebergs

    NASA Astrophysics Data System (ADS)

    Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin

    2017-04-01

    The Atlantic Meridional Overturning Circulation (AMOC) is well known for carrying heat from low to high latitudes, moderating local temperatures. Numerical studies have examined the AMOC's variability under the influence of freshwater input to subduction and deep convections sites. However, an important source of freshwater has often been overlooked or misrepresented: icebergs. While liquid runoff decreases the ocean salinity near the coast, icebergs are a gradual and remote source of freshwater - a difference that affects sea ice cover, temperature, and salinity distribution in ocean models. Icebergs originated from the Greenland ice sheet, in particular, can affect the subduction process in Labrador Sea by decreasing surface water density. Our study aims to evaluate the distribution of icebergs originated from Greenland and their contribution to freshwater input in the North Atlantic. To do that, we use an interactive iceberg module coupled with the Nucleus for European Modelling of the Ocean (NEMO v3.4), which will calve icebergs from Greenland according to rates established by Bamber et al. (2012). Details on the distribution and trajectory of icebergs within the model may also be of use for understanding potential navigation threats, as shipping increases in northern waters.

  8. Non-destructive prediction of pigment content in lettuce based on visible-NIR spectroscopy.

    PubMed

    Steidle Neto, Antonio José; Moura, Lorena de Oliveira; Lopes, Daniela de Carvalho; Carlos, Lanamar de Almeida; Martins, Luma Moreira; Ferraz, Leila de Castro Louback

    2017-05-01

    Lettuce (Lactuca sativa L.) is one of the most important salad vegetables in the world, with a number of head shapes, leaf types and colors. The lettuce pigments play important physiological functions, such as photosynthetic processes and light stress defense, but they also benefit human health because of their antioxidant action and anticarcinogenic properties. In this study three lettuce cultivars were grown under different farming systems, and partial least squares models were built to predict the leaf chlorophyll, carotenoid and anthocyanin content. The three proposed models resulted in high coefficients of determination and variable importance for the projection values, as well as low estimative errors for calibration and external validation datasets. These results confirmed that it is possible to accurately predict chlorophyll, carotenoid and anthocyanin content of green and red lettuces, grown in different farming systems, based on the spectral reflectance from 500 to 1000 nm. The proposed models were adequate for estimating lettuce pigments in a quick and non-destructive way, representing an alternative to conventional measurement methods. Prediction accuracies were improved by using the detrending, smoothing and first derivative pretreatments to the original spectral signatures prior to estimating lettuce chlorophyll, carotenoid and anthocyanin content, respectively. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Freshly characterization and storability of mini head lettuces at optimal and abusive temperatures.

    PubMed

    Viacava, Gabriela E; Ponce, Alejandra G; Goyeneche, Rosario; Carrozzi, Liliana; Yommi, Alejandra; Roura, Sara I

    2016-01-01

    Selection of lettuce varieties less sensitive to quality deterioration and more tolerant to abusive temperatures during handling, transportation, and storage is essential to minimize economical and quality losses that affect both producers and consumers. This work was focused on the quality changes of four baby head lettuces (Lactuca sativa L.), two butter (red and green) and two oak-leaf (red and green) types, during storage at 0 ℃ and 10 ℃ for 10 days. Lettuce quality was determined by measuring bioactive content (ascorbic acid, total phenolics), physicochemical (total chlorophyll, browning potential), and microbiological indices. At harvest, red varieties presented lower browning potential and higher bioactive compounds but no differences were observed in microbial populations. During storage, ascorbic acid underwent first order degradation for all varieties, with a degradation rate at 10 ℃ twice faster than at 0 ℃. At 0 ℃, only the red oak-leaf lettuce exhibited chlorophyll degradation, while at 10 ℃ all varieties presented degradation. No changes were observed in total phenolics and browning potential of butter lettuces during storage at both temperatures. Microbial population counts were significant affected by the storage temperature. Red butter baby lettuce presented slightly better bioactive content and microbiological characteristics and then better storability. © The Author(s) 2015.

  10. Assessment of contamination potential of lettuce by Salmonella enterica serovar Newport added to the plant growing medium.

    PubMed

    Bernstein, Nirit; Sela, Shlomo; Neder-Lavon, Sarit

    2007-07-01

    The capacity of Salmonella enterica serovar Newport to contaminate Romaine lettuce (Lactuca sativa L. cv. Nogal) via the root system was evaluated in 17-, 20-, and 33-day-old plants. Apparent internalization of Salmonella via the root to the above-ground parts was identified in 33- but not 17- or 20-day-old plants and was stimulated by root decapitation. Leaves of lettuce plants with intact and damaged roots harbored Salmonella at 500 +/- 120 and 5,130 +/- 440 CFU/g of leaf, respectively, at 2 days postinoculation but not 5 days later. These findings are first to suggest that Salmonella Newport can translocate from contaminated roots to the aerial parts of lettuce seedlings and propose that the process is dependent on the developmental stage of the plant.

  11. Antarctic icebergs distributions 1992-2014

    NASA Astrophysics Data System (ADS)

    Tournadre, J.; Bouhier, N.; Girard-Ardhuin, F.; Rémy, F.

    2016-01-01

    Basal melting of floating ice shelves and iceberg calving constitute the two almost equal paths of freshwater flux between the Antarctic ice cap and the Southern Ocean. The largest icebergs (>100 km2) transport most of the ice volume but their basal melting is small compared to their breaking into smaller icebergs that constitute thus the major vector of freshwater. The archives of nine altimeters have been processed to create a database of small icebergs (<8 km2) within open water containing the positions, sizes, and volumes spanning the 1992-2014 period. The intercalibrated monthly ice volumes from the different altimeters have been merged in a homogeneous 23 year climatology. The iceberg size distribution, covering the 0.1-10,000 km2 range, estimated by combining small and large icebergs size measurements follows well a power law of slope -1.52 ± 0.32 close to the -3/2 laws observed and modeled for brittle fragmentation. The global volume of ice and its distribution between the ocean basins present a very strong interannual variability only partially explained by the number of large icebergs. Indeed, vast zones of the Southern Ocean free of large icebergs are largely populated by small iceberg drifting over thousands of kilometers. The correlation between the global small and large icebergs volumes shows that small icebergs are mainly generated by large ones breaking. Drifting and trapping by sea ice can transport small icebergs for long period and distances. Small icebergs act as an ice diffuse process along large icebergs trajectories while sea ice trapping acts as a buffer delaying melting.

  12. Genome-wide association of 10 horticultural traits with expressed sequence tag-derived SNP markers in a collection of lettuce lines

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity, population structure, and genome-wide marker-trait association analyses were conducted on a special collection of 298 homozygous lettuce (Lactuca sativa L.) lines. Each of these lines was derived from a single plant that had been genotyped with 384 SNP makers using LSGermOPA. They...

  13. Iceberg Nursery

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Almost an iceberg 'nursery,' icebergs continue to break away from the Ross Ice Shelf in Antarctica. This image from the MODerate-resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft, shows the level of activity along the shelf near Ross Island on September 21, 2000. The B-15 fragments are remnants of the huge iceberg (nearly 4,250 sqare miles) which broke away from the Antarctic shelf in late March 2000. Slightly visible is the line where iceberg B-20 broke away from the shelf in the last week of September. Cracks in the Antarctic ice shelf are closely observed by satellite and are of interest to scientists studying the potential effects of global warming. This true-color image was produced using MODIS bands 1, 3, and 4. Image by Brian Montgomery, NASA GSFC; data courtesy MODIS Science Team

  14. Internalization of Murine Norovirus 1 by Lactuca sativa during Irrigation ▿

    PubMed Central

    Wei, Jie; Jin, Yan; Sims, Tom; Kniel, Kalmia E.

    2011-01-01

    Romaine lettuce (Lactuca sativa) was grown hydroponically or in soil and challenged with murine norovirus 1 (MNV) under two conditions: one mimicking a severe one-time contamination event and another mimicking a lower level of contamination occurring over time. In each condition, lettuce was challenged with MNV delivered at the roots. In the first case, contamination occurred on day one with 5 × 108 reverse transcriptase quantitative PCR (RT-qPCR) U/ml MNV in nutrient buffer, and irrigation water was replaced with virus-free buffer every day for another 4 days. In the second case, contamination with 5 × 105 RT-qPCR U/ml MNV (freshly prepared) occurred every day for 5 days. Virus had a tendency to adsorb to soil particles, with a small portion suspended in nutrient buffer; e.g., ∼8 log RT-qPCR U/g MNV was detected in soil during 5 days of challenge with virus inoculums of 5 × 108 RT-qPCR U/ml at day one, but <6 log was found in nutrient buffer on days 3 and 5. For hydroponically grown lettuce, ∼3.4 log RT-qPCR U of viral RNA/50 mg of plant tissue was detected in some lettuce leaf samples after 5 days at high MNV inoculums, significantly higher than the internalized virus concentration (∼2.6 log) at low inoculums (P < 0.05). For lettuce grown in soil, approximately 2 log RT-qPCR U of viral RNA/50 mg of plant tissue was detected in lettuce with both high and low inoculums, showing no significant difference. For viral infectivity, infectious MNV was found in lettuce samples challenged with high virus inoculums grown hydroponically and in soil but not in lettuce grown with low virus inoculums. Lettuce grown hydroponically was further incubated in 99% and 70% relative humidities (RH) to evaluate plant transpiration relative to virus uptake. More lettuce samples were found positive for MNV at a significantly higher transpiration rate at 70% RH, indicating that transpiration might play an important role in virus internalization into L. sativa. PMID:21296944

  15. Adaptability test of lettuce to soil-like substrate in bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Min, Yan; Liu, Professor Hong; Wenting, Fu

    Plant cultivation using soil-like substrate (SLS) is considered to be a feasible option for building up matter for biological turnover in bioregenerative life support system (BLSS) by many researchers. The characteristics of SLS are different from those of true soil therefore it is very important to study the adaptability of candidate crop to SLS in BLSS. This study was carried out in three successive steps to test the adaptability of lettuce (Lactuca sativa L.) to rice straw SLS in BLSS of China. First, six Chinese specific lettuce cultivars which were selected for Chinese advanced life support system were planted into the same rice straw SLS, which was to determine the more suitable plant cultivar to do the next experiment. The results showed that Sharp Leaf lettuce and Red lettuce were more suitable for SLS than other cultivars. Second, the possibility of increasing the crop yield on the SLS was conducted by changing the soil depth and plant density. Sharp Leaf lettuce and Red lettuce were used into this experiment in order to obtain the highest yield under the smallest soil volume and weight at the same light intensity. Crop edible biomass, crop nutrition content and photosynthetic characteristics were estimated during the experiment. Red lettuce obtained higher biomass and photosynthesis capacity. Lastly, the stability of planting system of lettuce and SLS was evaluated in the closed controlled system. Red lettuce would be the test plant. In this experiment different age lettuce groups would be planted together and gas exchange would be measured. In all of these experiments soil physical and chemical characteristics were also be measured which will be the basal data for further research.

  16. Production characteristics of lettuce Lactuca sativa L. in the frame of the first crop tests in the Higher Plant Chamber integrated into the MELiSSA Pilot Plant

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Lawson, Jamie; Stasiak, Michael; Dixon, Mike; Paille, Christel; Peiro, Enrique; Fossen, Arnaud; Godia, Francesc

    Micro-Ecological Life Support System Alternative (MELiSSA) is an artificial closed ecosystem that is considered a tool for the development of a bioregenerative life support system for manned space missions. One of the five compartments of MELiSSA loop -Higher Plant Chamber was recently integrated into the MELiSSA Pilot Plant facility at Universitat Aut`noma deo Barcelona. The main contributions expected by integration of this photosynthetic compartment are oxygen, water, vegetable food production and CO2 consumption. Production characteristics of Lactuca sativa L., as a MELiSSA candidate crop, were investigated in this work in the first crop experiments in the MELiSSA Pilot Plant facility. The plants were grown in batch culture and totaled 100 plants with a growing area 5 m long and 1 m wide in a sealed controlled environment. Several replicates of the experiments were carried out with varying duration. It was shown that after 46 days of lettuce cultivation dry edible biomass averaged 27, 2 g per plant. However accumulation of oxygen in the chamber, which required purging of the chamber, and decrease in the food value of the plants was observed. Reducing the duration of the tests allowed uninterrupted test without opening the system and also allowed estimation of the crop's carbon balance. Results of productivity, tissue composition, nutrient uptake and canopy photosynthesis of lettuce regardless of test duration are discussed in the paper.

  17. The colors of icebergs

    NASA Astrophysics Data System (ADS)

    Warren, S. G.

    2017-12-01

    Ordinary icebergs of meteoric glacier ice appear bluish-white, i.e. intermediate in color between the white of snow and the blue of pure ice, depending on the bubble content. However, clear dark bubble-free icebergs are occasionally seen in the Antarctic Ocean; they originate from freezing of seawater to the base of ice shelves. On parts of the Amery Ice Shelf, frozen seawater contributes up to one-third of the ice-shelf thickness. Many of the icebergs produced by the Amery are therefore composite icebergs; the upper part consists of meteoric glacier ice from snowfall, but the lower part is frozen seawater ("marine ice"). When these icebergs capsize, the marine ice is exposed to view; it can be accessed for study in springtime when the icebergs are embedded in shorefast sea ice. The marine ice varies in color from blue to green depending on the content of dissolved organic matter. The color is therefore an indicator of biological productivity in the seawater from which the ice froze. To infer processes at the ice-shelf base, these icebergs may be examined and cored for spectral reflectance, hydrogen and oxygen isotopes, organic matter, particles, and distribution of cracks and stripes. Seasonal and interannual variations may be quantified from samples collected along the marine ice-growth trajectory at the meteoric/marine-ice interface. The scale of small turbulent eddies at the ice-shelf base, which govern the transfer of heat between ocean and ice, can be inferred from the size of scallops in the iceberg surface (typically a few centimeters). Dark stripes within meteoric ice result from tension-cracks at the grounding line, forming basal crevasses that fill suddenly with seawater; their width, spacing, and salinity can give clues to processes at the grounding line. Results will be shown from icebergs sampled on Australian expeditions near Davis and Mawson stations. Marine ice is more readily accessed by sampling an iceberg than by drilling through an ice shelf

  18. High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of NCED4 in Lettuce (Lactuca sativa).

    PubMed

    Bertier, Lien D; Ron, Mily; Huo, Heqiang; Bradford, Kent J; Britt, Anne B; Michelmore, Richard W

    2018-05-04

    CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 ( 9-cis-EPOXYCAROTENOID DIOXYGENASE4) , a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4 , were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T 1 ) and 368 T 2 plants by deep amplicon sequencing revealed that 57% of T 1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T 1 and more than 100 T 2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature. Copyright © 2018 Bertier et al.

  19. High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of NCED4 in Lettuce (Lactuca sativa)

    PubMed Central

    Bertier, Lien D.; Ron, Mily; Huo, Heqiang; Bradford, Kent J.; Britt, Anne B.; Michelmore, Richard W.

    2018-01-01

    CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 (9-cis-EPOXYCAROTENOID DIOXYGENASE4), a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4, were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T1) and 368 T2 plants by deep amplicon sequencing revealed that 57% of T1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T1 and more than 100 T2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature. PMID:29511025

  20. Applicability of ERTS to Antarctic iceberg resources. [harvesting icebergs for fresh water

    NASA Technical Reports Server (NTRS)

    Hult, J. L.; Ostrander, N. C.

    1974-01-01

    This investigation explores the applicability of ERTS to: (1) determine the Antarctic sea ice and environmental behavior that may influence the harvesting of icebergs, and (2) monitor iceberg locations, characteristics, and evolution. Imagery sampling in the western Antarctic between the Peninsula and the Ross Sea is used in the analysis. It is found that the potential applicability of ERTS to the research, planning, and harvesting operations can contribute importantly to the glowing promise derived from broader scope studies for the use of Antarctic icebergs to relieve a growing global thirst for fresh water. Several years of comprehensive monitoring will be necessary to characterize sea-ice and environmental behavior and iceberg evolution. Live ERTS services will assist harvesting control and claiming operations and offer a means for harmonizing entitlements to iceberg resources.

  1. Chlorine stabilizer T-128 enhances efficacy of chlorine against cross-contamination by E. coli O157:H7 and Salmonella in fresh-cut lettuce processing.

    PubMed

    Nou, Xiangwu; Luo, Yaguang; Hollar, LaVonda; Yang, Yang; Feng, Hao; Millner, Patricia; Shelton, Daniel

    2011-04-01

    During fresh-cut produce processing, organic materials released from cut tissues can rapidly react with free chlorine in the wash solution, leading to the potential survival of foodborne bacterial pathogens, and cross-contamination when the free chlorine is depleted. A reported chlorine stabilizer, T-128, has been developed to address this problem. In this study, we evaluated the ability of T-128 to stabilize free chlorine in wash solutions in the presence of high organic loads generated by the addition of lettuce extract or soil. Under conditions used in this study, T-128 significantly (P<0.001) decreased the rate of free chlorine depletion at the presence of soil. T-128 also slightly decreased the rate of free chlorine depletion caused by the addition of lettuce extract in wash solution. Application of T-128 significantly reduced the survival of bacterial pathogens in wash solutions with high organic loads and significantly reduced the potential of cross-contamination, when contaminated and uncontaminated produce were washed together. However, T-128 did not enhance the efficacy of chlorinated wash solutions for microbial reduction on contaminated iceberg lettuce. Evaluation of several produce quality parameters, including overall visual appearance, package headspace O2 and CO2 composition, and lettuce electrolyte leakage, during 15 d of storage indicated that iceberg lettuce quality and shelf life were not negatively impacted by washing fresh-cut lettuce in chlorine solutions containing 0.1% T-128.   Reported chlorine stabilizer is shown to enhance chlorine efficacy against potential bacterial cross-contamination in the presence of high organic loads without compromising product quality and shelf life.

  2. An Implementation of Icebergs in CICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeau, Darin S.

    2012-06-25

    There is an estimated global iceberg calving flux of {approx} 2300 Gt yr{sup -1}, about 90% of which occurs in the Antarctic. Icebergs provide an important vehicle for freshwater injection into the polar oceans, an estimated 60-80% of net freshwater flux from land ice to oceans in the Antarctic. Icebergs interact dynamically with surrounding sea ice, potentially affecting marine eco systems. Icebergs lose mass primarily through three mechanisms, described by empirical relations: (1) Basal melting - turbulence due to differences in oceanic and iceberg motion (also function of difference in temperature between ocean and iceberg); (2) Lateral melting - buoyantmore » convection along sidewalls of iceberg (function of ocean temperature); and (3) Erosion due to waves (function of sea state and ocean temperature). We have incorporated an iceberg parameterization into the CICE model where sea ice responds to the icebergs, rather than being a static forcing term. Icebergs produce highly localized anomalies in sea ice concentration, thickness, and strength. Summer sea ice meltback limits these effects. Icebergs shed freshwater as they move, transporting freshwater away from the coast.« less

  3. Effect of CO2 levels on nutrient content of lettuce and radish.

    PubMed

    McKeehen, J D; Smart, D J; Mackowiak, C L; Wheeler, R M; Nielsen, S S

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  4. Effect of CO_2 levels on nutrient content of lettuce and radish

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO_2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar `Waldmann's Green' and radish (Raphanus sativus L.) cultivar `Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO_2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO_2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO_2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish roots and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO_2 level.

  5. Effect of CO2 levels on nutrient content of lettuce and radish

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  6. CaMV-35S promoter sequence-specific DNA methylation in lettuce.

    PubMed

    Okumura, Azusa; Shimada, Asahi; Yamasaki, Satoshi; Horino, Takuya; Iwata, Yuji; Koizumi, Nozomu; Nishihara, Masahiro; Mishiba, Kei-ichiro

    2016-01-01

    We found 35S promoter sequence-specific DNA methylation in lettuce. Additionally, transgenic lettuce plants having a modified 35S promoter lost methylation, suggesting the modified sequence is subjected to the methylation machinery. We previously reported that cauliflower mosaic virus 35S promoter-specific DNA methylation in transgenic gentian (Gentiana triflora × G. scabra) plants occurs irrespective of the copy number and the genomic location of T-DNA, and causes strong gene silencing. To confirm whether 35S-specific methylation can occur in other plant species, transgenic lettuce (Lactuca sativa L.) plants with a single copy of the 35S promoter-driven sGFP gene were produced and analyzed. Among 10 lines of transgenic plants, 3, 4, and 3 lines showed strong, weak, and no expression of sGFP mRNA, respectively. Bisulfite genomic sequencing of the 35S promoter region showed hypermethylation at CpG and CpWpG (where W is A or T) sites in 9 of 10 lines. Gentian-type de novo methylation pattern, consisting of methylated cytosines at CpHpH (where H is A, C, or T) sites, was also observed in the transgenic lettuce lines, suggesting that lettuce and gentian share similar methylation machinery. Four of five transgenic lettuce lines having a single copy of a modified 35S promoter, which was modified in the proposed core target of de novo methylation in gentian, exhibited 35S hypomethylation, indicating that the modified sequence may be the target of the 35S-specific methylation machinery.

  7. A system and methodology for measuring volatile organic compounds produced by hydroponic lettuce in a controlled environment

    NASA Technical Reports Server (NTRS)

    Charron, C. S.; Cantliffe, D. J.; Wheeler, R. M.; Manukian, A.; Heath, R. R.

    1996-01-01

    A system and methodology were developed for the nondestructive qualitative and quantitative analysis of volatile emissions from hydroponically grown 'Waldmann's Green' leaf lettuce (Lactuca sativa L.). Photosynthetic photon flux (PPF), photoperiod, and temperature were automatically controlled and monitored in a growth chamber modified for the collection of plant volatiles. The lipoxygenase pathway products (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate were emitted by lettuce plants after the transition from the light period to the dark period. The volatile collection system developed in this study enabled measurements of volatiles emitted by intact plants, from planting to harvest, under controlled environmental conditions.

  8. A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (Lactuca sativa L.) and prickly lettuce (L. serriola L.) and the recent expansion of L. serriola in Europe.

    PubMed

    Uwimana, Brigitte; D'Andrea, Luigi; Felber, François; Hooftman, Danny A P; Den Nijs, Hans C M; Smulders, Marinus J M; Visser, Richard G F; Van De Wiel, Clemens C M

    2012-06-01

    Interspecific gene flow can lead to the formation of hybrid populations that have a competitive advantage over the parental populations, even for hybrids from a cross between crops and wild relatives. Wild prickly lettuce (Lactuca serriola) has recently expanded in Europe and hybridization with the related crop species (cultivated lettuce, L. sativa) has been hypothesized as one of the mechanisms behind this expansion. In a basically selfing species, such as lettuce, assessing hybridization in natural populations may not be straightforward. Therefore, we analysed a uniquely large data set of plants genotyped with SSR (simple sequence repeat) markers with two programs for Bayesian population genetic analysis, STRUCTURE and NewHybrids. The data set comprised 7738 plants, including a complete genebank collection, which provided a wide coverage of cultivated germplasm and a fair coverage of wild accessions, and a set of wild populations recently sampled across Europe. STRUCTURE analysis inferred the occurrence of hybrids at a level of 7% across Europe. NewHybrids indicated these hybrids to be advanced selfed generations of a hybridization event or of one backcross after such an event, which is according to expectations for a basically selfing species. These advanced selfed generations could not be detected effectively with crop-specific alleles. In the northern part of Europe, where the expansion of L. serriola took place, the fewest putative hybrids were found. Therefore, we conclude that other mechanisms than crop/wild gene flow, such as an increase in disturbed habitats and/or climate warming, are more likely explanations for this expansion. © 2012 Blackwell Publishing Ltd.

  9. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.).

    PubMed

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-04-22

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha⁻¹) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha⁻¹) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate.

  10. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.)

    PubMed Central

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-01-01

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha−1) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha−1) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate. PMID:24758896

  11. Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: influence of soil composition.

    PubMed

    Pinto, Edgar; Almeida, Agostinho A; Aguiar, Ana A R M; Ferreira, Isabel M P L V O

    2014-01-01

    Changes in macrominerals, trace elements and photosynthetic pigments were monitored at 5 stages of lettuce growth. Plants were grown in three experimental agriculture greenhouse fields (A1, A2 and A3). Soil composition was also monitored to understand its influence on lettuce composition. In general, the content of macrominerals, trace elements, chlorophylls and carotenoids decreased during lettuce growth and consequently, high nutritional value was observed at younger stages. A2 lettuces showed an increase of Fe, Al, Cr, V and Pb due to the different soil physicochemical parameters. Multiple linear regression analysis with stepwise variable selection, indicated that soil characteristics, namely, pH(CaCl2) for Fe and Cr, silt and fine-sand for Al and V, OM for Al and Pb, coarse-sand and CEC for Cr, had a key role determining element bioavailability and plant mineral content. Thus, lettuce nutritional value was strongly dependent of growth stage and soil characteristics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Icebergs Adrift

    Atmospheric Science Data Center

    2013-04-16

    article title:  Icebergs Adrift in the Amundsen Sea     ... is a large sheet of glacial ice extending from the West Antarctic mainland into the southern Amundsen Sea. A large crack in the ... bergs, both of which are visible to the right of B-22. Antarctic researchers have reported an increase in the frequency of iceberg ...

  13. Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts

    PubMed Central

    Kanagaraj, Anderson Paul; Verma, Dheeraj

    2012-01-01

    Dengue is an acute febrile viral disease with >100 million infections occurring each year and more than half of the world population is at risk. Global resurgence of dengue in many urban centers of the tropics is a major concern. Therefore, development of a successful vaccine is urgently needed that is economical and provide long-lasting protection from dengue virus infections. In this manuscript, we report expression of dengue-3 serotype polyprotein (prM/E) consisting of part of capsid, complete premembrane (prM) and truncated envelope (E) protein in an edible crop lettuce. The dengue sequence was controlled by endogenous Lactuca sativa psbA regulatory elements. PCR and Southern blot analysis confirmed transgene integration into the lettuce chloroplast genome via homologous recombination at the trnI/trnA intergenic spacer region. Western blot analysis showed expression of polyprotein prM/E in different forms as monomers (~65 kDa) or possibly heterodimers (~130 kDa) or multimers. Multimers were solubilized into monomers using guanidine hydrochloride. Transplastomic lettuce plants expressing dengue prM/E vaccine antigens grew normally and transgenes were inherited in the T1 progeny without any segregation. Transmission electron microscopy showed the presence of virus-like particles of ~20 nm diameter in chloroplast extracts of transplastomic lettuce expressing prM/E proteins, but not in untransformed plants. The prM/E antigens expressed in lettuce chloroplasts should offer a potential source for investigating an oral Dengue vaccine. PMID:21431782

  14. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment.

    PubMed

    de Oliveira, Letuzia M; Suchismita, Das; Gress, Julia; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-06-01

    Leaching of inorganic arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil As levels. Thus, an environmental concern arises regarding As accumulation in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to investigate the ability of As-hyperaccumulator P. vittata and organic amendments in reducing As uptake by lettuce (Lactuca sativa) from a soil contaminated from CCA-treated wood (63.9 mg kg -1 As). P. vittata was grown for 150 d in a CCA-contaminated soil amended with biochar, activated carbon or coffee grounds at 1%, followed by lettuce for another 55 d. After harvest, plant biomass and As concentrations in plant and soil were determined. The presence of P. vittata reduced As content in lettuce by 21% from 27.3 to 21.5 mg kg -1 while amendment further reduced As in lettuce by 5.6-18%, with activated C being most effective. Our data showed that both P. vittata and organic amendments were effective in reducing As concentration in lettuce. Though no health-based standard for As in vegetables exists in USA, care should be taken when growing lettuce in contaminated soils. Our data showed that application of organic amendments with P. vittata reduced As hazards in CCA-contaminated soils. Published by Elsevier Ltd.

  15. Association analysis of bacterial leaf spot resistance and SNP markers derived from expressed sequence tags (ESTs) in lettuce (Lactuca sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Bacterial leaf spot of lettuce, caused by Xanthomonas campestris pv. vitians, is a devastating disease of lettuce worldwide. Since there are no chemicals available for effective control of the disease, host-plant resistance is highly desirable to protect lettuce production. A total of 179 lettuce ge...

  16. Impact of phytopathogen infection and extreme weather stress on internalization of Salmonella Typhimurium in lettuce.

    PubMed

    Ge, Chongtao; Lee, Cheonghoon; Nangle, Ed; Li, Jianrong; Gardner, David; Kleinhenz, Matthew; Lee, Jiyoung

    2014-01-03

    Internalization of human pathogens, common in many types of fresh produce, is a threat to human health since the internalized pathogens cannot be fully inactivated/removed by washing with water or sanitizers. Given that pathogen internalization can be affected by many environmental factors, this study was conducted to investigate the influence of two types of plant stress on the internalization of Salmonella Typhimurium in iceberg lettuce during pre-harvest. The stresses were: abiotic (water stress induced by extreme weather events) and biotic (phytopathogen infection by lettuce mosaic virus [LMV]). Lettuce with and without LMV infection were purposefully contaminated with green fluorescence protein-labeled S. Typhimurium on the leaf surfaces. Lettuce was also subjected to water stress conditions (drought and storm) which were simulated by irrigating with different amounts of water. The internalized S. Typhimurium in the different parts of the lettuce were quantified by plate count and real-time quantitative PCR and confirmed with a laser scanning confocal microscope. Salmonella internalization occurred under the conditions outlined above; however internalization levels were not significantly affected by water stress alone. In contrast, the extent of culturable S. Typhimurium internalized in the leafy part of the lettuce decreased when infected with LMV under water stress conditions and contaminated with high levels of S. Typhimurium. On the other hand, LMV-infected lettuce showed a significant increase in the levels of culturable bacteria in the roots. In conclusion, internalization was observed under all experimental conditions when the lettuce surface was contaminated with S. Typhimurium. However, the extent of internalization was only affected by water stress when lettuce was infected with LMV. © 2013.

  17. An analytical model of iceberg drift

    NASA Astrophysics Data System (ADS)

    Eisenman, I.; Wagner, T. J. W.; Dell, R.

    2017-12-01

    Icebergs transport freshwater from glaciers and ice shelves, releasing the freshwater into the upper ocean thousands of kilometers from the source. This influences ocean circulation through its effect on seawater density. A standard empirical rule-of-thumb for estimating iceberg trajectories is that they drift at the ocean surface current velocity plus 2% of the atmospheric surface wind velocity. This relationship has been observed in empirical studies for decades, but it has never previously been physically derived or justified. In this presentation, we consider the momentum balance for an individual iceberg, which includes nonlinear drag terms. Applying a series of approximations, we derive an analytical solution for the iceberg velocity as a function of time. In order to validate the model, we force it with surface velocity and temperature data from an observational state estimate and compare the results with iceberg observations in both hemispheres. We show that the analytical solution reduces to the empirical 2% relationship in the asymptotic limit of small icebergs (or strong winds), which approximately applies for typical Arctic icebergs. We find that the 2% value arises due to a term involving the drag coefficients for water and air and the densities of the iceberg, ocean, and air. In the opposite limit of large icebergs (or weak winds), which approximately applies for typical Antarctic icebergs with horizontal length scales greater than about 12 km, we find that the 2% relationship is not applicable and that icebergs instead move with the ocean current, unaffected by the wind. The two asymptotic regimes can be understood by considering how iceberg size influences the relative importance of the wind and ocean current drag terms compared with the Coriolis and pressure gradient force terms in the iceberg momentum balance.

  18. Effect of a non-woven fabric covering on the residual activity of pendimethalin in lettuce and soil.

    PubMed

    Jursík, Miroslav; Kováčová, Jana; Kočárek, Martin; Hamouzová, Kateřina; Soukup, Josef

    2017-05-01

    Lettuce (Lactuca sativa L.) is a crop that is very sensitive to herbicide contamination owing to its short growing season. The use of long-residual herbicides and non-woven fabric coverings could therefore influence pendimethalin concentrations in soil and lettuce. The pendimethalin half-life in soil ranged between 18 and 85 days and was mainly affected by season (i.e. weather), and especially by soil moisture. Pendimethalin degradation in soil was slowest under dry conditions. A longer pendimethalin half-life was observed under the non-woven fabric treatment, but the effect of varying application rate was not significant. Pendimethalin residue concentrations in lettuce heads were significantly influenced by pendimethalin application rate and by non-woven fabric cover, especially at the lettuce's early growth stages. The highest pendimethalin concentration at final harvest was determined in lettuce grown on uncovered plots treated with pendimethalin at an application rate of 1200 g ha -1 (7-38 µg kg -1 ). Depending on growing season duration and weather conditions, pendimethalin concentrations in lettuce grown under non-woven fabric ranged from 0 to 21 µg kg -1 . Use of transparent non-woven fabric cover with lettuce can help to reduce application rates of soil herbicides and diminish the risk of herbicide contamination in the harvested vegetables. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Guo, Shuangsheng; Dong, Wenping; Qin, Lifeng; Ai, Weidang; Lin, Shan

    2010-09-01

    The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce ( Lactuca sativa L . cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa p) or 101 kPa total pressure (20.9 kPa p) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.

  20. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1987-01-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  1. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application.

    PubMed

    Abu-Reidah, I M; Contreras, M M; Arráez-Román, D; Segura-Carretero, A; Fernández-Gutiérrez, A

    2013-10-25

    Lettuce (Lactuca sativa), a leafy vegetal widely consumed worldwide, fresh cut or minimally processed, constitutes a major dietary source of natural antioxidants and bioactive compounds. In this study, reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry (ESI-QTOF-MS) was applied for the comprehensive profiling of polar and semi-polar metabolites from three lettuce cultivars (baby, romaine, and iceberg). The UHPLC systems allowed the use of a small-particle-size C18 column (1.8 μm), with very fine resolution for the separation of up to seven isomers, and the QTOF mass analyzer enabled sensitive detection with high mass resolution and accuracy in full scan. Thus, a total of 171 compounds were tentatively identified by matching their accurate mass signals and suggested molecular formula with those previously reported in family Asteraceae. Afterwards, their structures were also corroborated by the MS/MS data provided by the QTOF analyzer. Well-known amino acids, organic acids, sesquiterpene lactones, phenolic acids and flavonoids were characterized, e.g. lactucin, lactucopicrin, caftaric acid, chlorogenic acid, caffeoylmalic acid, chicoric acid, isochlorogenic acid A, luteolin, and quercetin glycosides. For this plant species, this is the first available report of several isomeric forms of the latter polyphenols and other types of components such as nucleosides, peptides, and tryptophan-derived alkaloids. Remarkably, 10 novel structures formed by the conjugation of known amino acids and sesquiterpene lactones were also proposed. Thus, the methodology applied is a useful option to develop an exhaustive metabolic profiling of plants that helps to explain their potential biological activities and folk uses. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Fate and Phytotoxicity of CeO2 Nanoparticles on Lettuce Cultured in the Potting Soil Environment

    PubMed Central

    Gui, Xin; Zhang, Zhiyong; Liu, Shutong; Ma, Yuhui; Zhang, Peng; He, Xiao; Li, Yuanyuan; Zhang, Jing; Li, Huafen; Rui, Yukui; Liu, Liming; Cao, Weidong

    2015-01-01

    Cerium oxide nanoparticles (CeO2 NPs) have been shown to have significant interactions in plants. Previous study reported the specific-species phytotoxicity of CeO2 NPs by lettuce (Lactuca sativa), but their physiological impacts and vivo biotransformation are not yet well understood, especially in relative realistic environment. Butterhead lettuce were germinated and grown in potting soil for 30 days cultivation with treatments of 0, 50, 100, 1000 mg CeO2 NPs per kg soil. Results showed that lettuce in 100 mg·kg-1 treated groups grew significantly faster than others, but significantly increased nitrate content. The lower concentrations treatment had no impact on plant growth, compared with the control. However, the higher concentration treatment significantly deterred plant growth and biomass production. The stress response of lettuce plants, such as Superoxide dismutase (SOD), Peroxidase (POD), Malondialdehyde(MDA) activity was disrupted by 1000 mg·kg-1 CeO2 NPs treatment. In addition, the presence of Ce (III) in the roots of butterhead lettuce explained the reason of CeO2 NPs phytotoxicity. These findings demonstrate CeO2 NPs modification of nutritional quality, antioxidant defense system, the possible transfer into the food chain and biotransformation in vivo. PMID:26317617

  3. Fate and Phytotoxicity of CeO2 Nanoparticles on Lettuce Cultured in the Potting Soil Environment.

    PubMed

    Gui, Xin; Zhang, Zhiyong; Liu, Shutong; Ma, Yuhui; Zhang, Peng; He, Xiao; Li, Yuanyuan; Zhang, Jing; Li, Huafen; Rui, Yukui; Liu, Liming; Cao, Weidong

    2015-01-01

    Cerium oxide nanoparticles (CeO2 NPs) have been shown to have significant interactions in plants. Previous study reported the specific-species phytotoxicity of CeO2 NPs by lettuce (Lactuca sativa), but their physiological impacts and vivo biotransformation are not yet well understood, especially in relative realistic environment. Butterhead lettuce were germinated and grown in potting soil for 30 days cultivation with treatments of 0, 50, 100, 1000 mg CeO2 NPs per kg soil. Results showed that lettuce in 100 mg·kg-1 treated groups grew significantly faster than others, but significantly increased nitrate content. The lower concentrations treatment had no impact on plant growth, compared with the control. However, the higher concentration treatment significantly deterred plant growth and biomass production. The stress response of lettuce plants, such as Superoxide dismutase (SOD), Peroxidase (POD), Malondialdehyde(MDA) activity was disrupted by 1000 mg·kg-1 CeO2 NPs treatment. In addition, the presence of Ce (III) in the roots of butterhead lettuce explained the reason of CeO2 NPs phytotoxicity. These findings demonstrate CeO2 NPs modification of nutritional quality, antioxidant defense system, the possible transfer into the food chain and biotransformation in vivo.

  4. Lactucaxanthin - a potential anti-diabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats.

    PubMed

    Gopal, Sowmya Shree; Lakshmi, Magisetty Jhansi; Sharavana, Gurunathan; Sathaiah, Gunaseelan; Sreerama, Yadahally N; Baskaran, Vallikannan

    2017-03-22

    Intestinal and pancreatic α-amylase and α-glucosidase inhibitors offer an approach to lower the levels of post-prandial hyperglycemia through the control of dietary starch breakdown in digestion. This study hypothesized that lactucaxanthin (Lxn) in lettuce (Lactuca sativa) inhibits the activity of α-amylase and α-glucosidase. In this study, the interaction of Lxn with α-amylase and α-glucosidase in silico and its inhibitory effect on these enzymes were studied using in vitro and STZ-induced diabetic rat models. Lxn was isolated from lettuce with 96% purity confirmed by HPLC and LCMS. The in silico analysis showed that Lxn has a lower binding energy (-6.05 and -6.34 kcal mol -1 ) with α-amylase and α-glucosidase compared to their synthetic inhibitors, acarbose (-0.21 kcal mol -1 ) and miglitol (-2.78 kcal mol -1 ), respectively. In vitro α-amylase and α-glucosidase inhibition assays revealed that Lxn had IC 50 values of 435.5 μg mL -1 and 1.84 mg mL -1 , but acarbose has values of 2.5 and 16.19 μg mL -1 . The in vivo results showed an increased activity for α-amylase and α-glucosidase in the intestine (4.7 and 1.30 fold, p < 0.05) and pancreas (1.3 and 1.48 fold, p < 0.05) of STZ induced diabetic rats compared to normal rats. Whereas the activity decreased (p < 0.05) in the Lxn fed diabetic rats, except for the intestinal α-glucosidase activity (1.69 ± 0.12 PNP per min per mg protein). This was confirmed by the low blood glucose level (239.4 ± 18.2 mg dL -1 ) in diabetic rats fed Lxn compared to the diabetic group (572.2 ± 30.5 mg dL -1 , p < 0.05). Lxn significantly inhibited (p < 0.05) the activity of α-amylase and α-glucosidase and could be of medical and nutritional relevance in the treatment of diabetes.

  5. The effects of nutrient solution sterilization on the growth and yield of hydroponically grown lettuce

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.; Dudzinski, D.; Minners, R. S.

    1987-01-01

    Two methods of removing bacteria from hydroponic nutrient solution [ultraviolet (UV) radiation and submicronic filter] were evaluated for efficiency and for their effects on lettuce (Lactuca sativa L.) production. Both methods were effective in removing bacteria; but, at high intensity, the ultraviolet sterilizer significantly inhibited the production of plants grown in the treated solution. Bacterial removal by lower intensity UV or a submicronic filter seemed to promote plant growth slightly, but showed no consistent, statistically significant effect.

  6. Assessment of microbiological contamination of fresh, minimally processed, and ready-to-eat lettuces (Lactuca sativa), Rio de Janeiro State, Brazil.

    PubMed

    Brandão, Marcelo L L; Almeida, Davi O; Bispo, Fernanda C P; Bricio, Silvia M L; Marin, Victor A; Miagostovich, Marize P

    2014-05-01

    This study aimed to assess the microbiological contamination of lettuces commercialized in Rio de Janeiro, Brazil, in order to investigate detection of norovirus genogroup II (NoV GII), Salmonella spp., total and fecal coliforms, such as Escherichia coli. For NoV detection samples were processed using the adsorption-elution concentration method associated to real-time quantitative polymerase chain reaction (qPCR). A total of 90 samples of lettuce including 30 whole fresh lettuces, 30 minimally processed (MP) lettuces, and 30 raw ready-to-eat (RTE) lettuce salads were randomly collected from different supermarkets (fresh and MP lettuce samples), food services, and self-service restaurants (RTE lettuce salads), all located in Rio de Janeiro, Brazil, from October 2010 to December 2011. NoV GII was not detected and PP7 bacteriophage used as internal control process (ICP) was recovered in 40.0%, 86.7%, and 76.7% of those samples, respectively. Salmonella spp. was not detected although fecal contamination has been observed by fecal coliform concentrations higher than 10(2) most probable number/g. E. coli was detected in 70.0%, 6.7%, and 30.0% of fresh, MP, and RTE samples, respectively. This study highlights the need to improve hygiene procedures at all stages of vegetable production and to show PP7 bacteriophage as an ICP for recovering RNA viruses' methods from MP and RTE lettuce samples, encouraging the evaluation of new protocols that facilitate the establishment of methodologies for NoV detection in a greater number of food microbiology laboratories. The PP7 bacteriophage can be used as an internal control process in methods for recovering RNA viruses from minimally processed and ready-to-eat lettuce samples. © 2014 Institute of Food Technologists®

  7. Growth of plants in solution culture containing low levels of chromium. [Tomato, lettuce, duckweed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffman, E.W.D. Jr.; Allaway, W.H.

    1973-01-01

    Chromium was not required for normal growth of romaine lettuce (Lactuca sativa L. subsp. longifolia), tomato (Lycopersicon esculentum Mill.), wheat (Triticum aestivum L.), or bean (Phaseolus vulgaris L.) in solution culture containing 3.8 X 10/sup -4/ ..mu..M Cr. Plants grown on this purified nutrient solution contained an average of 22 ng Cr/g dry weight. Duckweed (Lemna sp.) grew and reproduced normally on a dilute nutrient solution containing 3.8 X 20/sup -5/ ..mu..M Cr.

  8. Influence of growing system on nitrate accumulation in two varieties of lettuce and red radicchio of Treviso.

    PubMed

    Lucarini, Massimo; D'Evoli, Laura; Tufi, Sara; Gabrielli, Paolo; Paoletti, Sara; Di Ferdinando, Sandra; Lombardi-Boccia, Ginevra

    2012-11-01

    Green leafy vegetables contribute greatly to the total intake of nitrates from the daily diet. This study evaluates the influence of different cultivation systems on nitrate accumulation in leafy vegetables. Two varieties of lettuce (Lactuca sativa L.) (Lattuga Romana, Foglia di Quercia) and two varieties of red radicchio of Treviso (Cychorium intibus L.) (Early, Late) were selected. Lettuce varieties were both organically and biodynamically grown; red radicchio varieties were conventionally grown both in the field and in spring water. Both lettuce varieties biodynamically grown accumulated 1.3-2 times less nitrate than the respective organically grown plants. The two lettuce varieties showed differences in nitrate accumulating capacity: Foglia di Quercia was almost three times richer in nitrate than Lattuga Romana. The traditional growing systems applied to the red radicchio of Treviso varieties strongly influenced nitrate accumulation in leaves, the Early variety having up to 15 times higher nitrate than the Late variety. Our findings on nitrate levels in both lettuce and red radicchio of Treviso varieties suggest that both genetic factors and cultivation systems strongly affect the nitrate accumulation capacity. This study also highlights how the cultivation strategy can reduce nitrate levels in leafy vegetables, suggesting the possibility of modulating the N supply along the harvesting time. Copyright © 2011 Society of Chemical Industry.

  9. Growth of wheat and lettuce and enzyme activities of soils under garlic stalk decomposition for different durations.

    PubMed

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2017-07-01

    Garlic (Allium sativum L.) stalk is a byproduct of garlic production that is normally thought of as waste but is now considered a useful biological resource. It is necessary to utilize this resource efficiently and reasonably to reduce environmental pollution and achieve sustainable agricultural development. The effect of garlic stalk decomposed for different durations was investigated in this study using wheat (Triticum aestivum L.) and lettuce (Lactuca sativa var. crispa L.) as test plants. Garlic stalk in early stages of decomposition inhibited the shoot and root lengths of wheat and lettuce, but it promoted the shoot and root lengths in later stages; longer durations of garlic stalk decomposition significantly increased the shoot and root fresh weights of wheat and lettuce, whereas shorter decomposing durations significantly decreased the shoot and root fresh weights; and garlic stalk at different decomposition durations increased the activities of urease, sucrase and alkaline phosphatase in soil where wheat or lettuce was planted. Garlic stalk decomposed for 30 or 40 days could promote the growth of wheat and lettuce plants as well as soil enzyme activities. These results may provide a scientific basis for the study and application of garlic stalk. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Existence of vigorous lineages of crop-wild hybrids in Lettuce under field conditions.

    PubMed

    Hooftman, Danny A P; Hartman, Yorike; Oostermeijer, J Gerard B; Den Nijs, Hans J C M

    2009-01-01

    Plant to plant gene flow is a route of environmental exposure for GM plants specifically since crosses with wild relatives could lead to the formation of more vigorous hybrids, which could increase the rate of introgression and the environmental impact. Here, we test the first step in the process of potential transgene introgression: whether hybrid vigor can be inherited to the next generation, which could lead to fixation of altered, i.e., elevated, quantitative traits. The potential for a permanent elevated fitness was tested using individual autogamous progeny lineages of hybrids between the crop Lactuca sativa (Lettuce) and the wild species Lactuca serriola (Prickly Lettuce). We compared progeny from motherplants grown under either greenhouse or field conditions. The survival of young plants depended strongly on maternal environment. Furthermore, we observed that offspring reproductive fitness components were correlated with maternal fitness. Our study demonstrates that post-zygotic genotypic sorting at the young plants stage reduces the number of genotypes non-randomly, leading to inheritance of high levels of reproductive traits in the surviving hybrid lineages, compared to the pure wild relatives. Consequently, directional selection could lead to displacement of the pure wild relative and fixation of more vigorous genome segments originating from crops, stabilizing plant traits at elevated levels. Such information can be used to indentify segments which are less likely to introgress into wild relative populations as a target for transgene insertion. © ISBR, EDP Sciences, 2010.

  11. Modeling tabular icebergs submerged in the ocean

    NASA Astrophysics Data System (ADS)

    Stern, A. A.; Adcroft, A.; Sergienko, O.; Marques, G.

    2017-08-01

    Large tabular icebergs calved from Antarctic ice shelves have long lifetimes (due to their large size), during which they drift across large distances, altering ambient ocean circulation, bottom-water formation, sea-ice formation, and biological primary productivity in the icebergs' vicinity. However, despite their importance, the current generation of ocean circulation models usually do not represent large tabular icebergs. In this study, we develop a novel framework to model large tabular icebergs submerged in the ocean. In this framework, tabular icebergs are represented by pressure-exerting Lagrangian elements that drift in the ocean. The elements are held together and interact with each other via bonds. A breaking of these bonds allows the model to emulate calving events (i.e., detachment of a tabular iceberg from an ice shelf) and tabular icebergs breaking up into smaller pieces. Idealized simulations of a calving tabular iceberg, its drift, and its breakup demonstrate capabilities of the developed framework.

  12. Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils.

    PubMed

    Christiansen, Karen S; Borggaard, Ole K; Holm, Peter E; Vijver, Martina G; Hauschild, Michael Z; Peijnenburg, Willie J G M

    2015-04-01

    Accurate knowledge about factors and conditions determining copper (Cu) toxicity in soil is needed for predicting plant growth in various Cu-contaminated soils. Therefore, effects of Cu on growth (biomass production) of lettuce (Lactuca sativa) were tested on seven selected, very different soils spiked with Cu and aged for 2 months at 35 °C. Cu toxicity was expressed as pEC50(Cu(2+)), i.e., the negative logarithm of the EC50(Cu(2+)) activity to plant growth. The determined pEC50(Cu(2+)) was significantly and positively correlated with both the analytically readily available soil pH and concentration of dissolved organic carbon [DOC] which together could explain 87% of the pEC50(Cu(2+)) variation according to the simple equation: pEC50(Cu(2+)) = 0.98 × pH + 345 × [DOC] - 0.27. Other soil characteristics, including the base cation concentrations (Na(+), K(+), Ca(2+), Mg(2+)), the cation exchange capacity at soil pH (ECEC), and at pH 7 (CEC7), soil organic carbon, clay content, and electric conductivity as well as the distribution coefficient (Kd) calculated as the ratio between total soil Cu and water-extractable Cu did not correlate significantly with pEC50(Cu(2+)). Consequently, Cu toxicity, expressed as the negative log of the Cu(2+) activity, to plant growth increases at increasing pH and DOC, which needs to be considered in future management of plant growth on Cu-contaminated soils. The developed regression equation allows identification of soil types in which the phytotoxicity potential of Cu is highest.

  13. Uptake and phytotoxic effect of benzalkonium chlorides in Lepidium sativum and Lactuca sativa.

    PubMed

    Khan, Adnan Hossain; Libby, Mark; Winnick, Daniel; Palmer, John; Sumarah, Mark; Ray, Madhumita B; Macfie, Sheila M

    2018-01-15

    Cationic surfactants such as benzalkonium chlorides (BACs) are used extensively as biocides in hospitals, food processing industries, and personal care products. BACs have the potential to reach the rooting zone of crop plants and BACs might thereby enter the food chain. The two most commonly used BACs, benzyl dimethyl dodecyl ammonium chloride (BDDA) and benzyl dimethyl tetradecyl ammonium chloride (BDTA), were tested in a hydroponic system to assess the uptake by and phytotoxicity to lettuce (Lactuca sativa L.) and garden cress (Lepidium sativum L.). Individually and in mixture, BACs at concentrations up to 100 mg L -1 did not affect germination; however, emergent seedlings were sensitive at 1 mg L -1 for lettuce and 5 mg L -1 for garden cress. After 12 d exposure to 0.25 mg L -1 BACs, plant dry weight was reduced by 68% for lettuce and 75% for garden cress, and symptoms of toxicity (necrosis, chlorosis, wilting, etc.) were visible. High performance liquid chromatography-mass spectroscopy analysis showed the presence of BACs in the roots and shoots of both plant species. Although no conclusive relationship was established between the concentrations of six macro- or six micro-nutrients, growth inhibition or BAC uptake, N and Mg concentrations in BAC-treated lettuce were 50% lower than that of control, indicating that BACs might induce nutrient deficiency. Although bioavailability of a compound in hydroponics is significantly higher than that in soil, these results confirm the potential of BACs to harm vascular plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Selection for resistance to Verticillium wilt caused by race 2 isolates of Verticillium dahliae in accessions of lettuce (Lactuca sativa L.).

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt of lettuce caused by Verticillium dahliae can cause severe economic damage to lettuce producers. The pathogen exists as two races (races 1 and 2) in lettuce, and complete resistance to race 1 is known. Resistance to race 2 isolates has not been reported, and production of race 1 re...

  15. A Coupled Ocean-Iceberg Model Over The 20th Century: Iceberg Flux At 48°N As A Proxy For Greenland Iceberg Discharge

    NASA Astrophysics Data System (ADS)

    Bigg, G. R.; Wilton, D.; Hanna, E.

    2013-12-01

    Grant R. Bigg1 , David J. Wilton1 and Edward Hanna1 1Department of Geography, The University of Sheffield, Sheffield, S10 2TN We have used a coupled ocean-iceberg model, the Fine Resolution Greenland and Labrador ocean model [1], to study the variation in, and trajectory of, icebergs over the twentieth century, focusing particularly on Greenland and surrounding areas. The model is forced with daily heat, freshwater and wind fluxes derived from the Twentieth Century Reanalysis Project [2]. We use the observed iceberg flux at 48°N off Newfoundland (I48N) from 1900 to 2008 [3] to assess the iceberg component of the model. Model I48N is calculated with both a variable and constant annual calving rate. The results show that ocean and atmosphere changes alone do not account for the variation in observed I48N and suggests that this series can be used as a proxy for iceberg discharge from west Greenland tidewater glaciers. The implication of this proxy is that there is significant interannual variability in Greenland iceberg discharge over the whole twentieth century. Our model results suggest that in the early decades of the twentieth century I48N was dominated by icebergs originating from south Greenland (below latitude 65°N) with west Greenland becoming the main source of I48N from the late 1930s onwards. Modeled icebergs from the east of Greenland very rarely reach 48°N. We also present results from the ocean model showing the variation of ocean transport fluxes over the course of the twentieth and early twenty first century. References 1. M. R. Wadley, and G. R. Bigg, (2002), Q. J. R. Meteorol. Soc., 128, 2187-2203 2. G. P. Compo, et al. (2011), Q. J. R. Meteorol. Soc., 137, 1-28 3. D. L. Murphy (2011) http://www.navcen.uscg.gov/?pageName=IIPIcebergCounts

  16. Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.)

    PubMed Central

    Kerbiriou, Pauline J.; Maliepaard, Chris A.; Stomph, Tjeerd Jan; Koper, Martin; Froissart, Dorothee; Roobeek, Ilja; Lammerts Van Bueren, Edith T.; Struik, Paul C.

    2016-01-01

    Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth. PMID:27064203

  17. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 Is Essential for Thermoinhibition of Lettuce Seed Germination but Not for Seed Development or Stress Tolerance[C][W

    PubMed Central

    Huo, Heqiang; Dahal, Peetambar; Kunusoth, Keshavulu; McCallum, Claire M.; Bradford, Kent J.

    2013-01-01

    Thermoinhibition, or failure of seeds to germinate at warm temperatures, is common in lettuce (Lactuca sativa) cultivars. Using a recombinant inbred line population developed from a lettuce cultivar (Salinas) and thermotolerant Lactuca serriola accession UC96US23 (UC), we previously mapped a quantitative trait locus associated with thermoinhibition of germination to a genomic region containing a gene encoding a key regulated enzyme in abscisic acid (ABA) biosynthesis, 9-cis-EPOXYCAROTENOID DIOXYGENASE4 (NCED4). NCED4 from either Salinas or UC complements seeds of the Arabidopsis thaliana nced6-1 nced9-1 double mutant by restoring germination thermosensitivity, indicating that both NCED4 genes encode functional proteins. Transgenic expression of Salinas NCED4 in UC seeds resulted in thermoinhibition, whereas silencing of NCED4 in Salinas seeds led to loss of thermoinhibition. Mutations in NCED4 also alleviated thermoinhibition. NCED4 expression was elevated during late seed development but was not required for seed maturation. Heat but not water stress elevated NCED4 expression in leaves, while NCED2 and NCED3 exhibited the opposite responses. Silencing of NCED4 altered the expression of genes involved in ABA, gibberellin, and ethylene biosynthesis and signaling pathways. Together, these data demonstrate that NCED4 expression is required for thermoinhibition of lettuce seeds and that it may play additional roles in plant responses to elevated temperature. PMID:23503626

  18. The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce mosaic virus1

    PubMed Central

    Nicaise, Valérie; German-Retana, Sylvie; Sanjuán, Raquel; Dubrana, Marie-Pierre; Mazier, Marianne; Maisonneuve, Brigitte; Candresse, Thierry; Caranta, Carole; LeGall, Olivier

    2003-01-01

    The eIF4E and eIF(iso)4E cDNAs from several genotypes of lettuce (Lactuca sativa) that are susceptible, tolerant, or resistant to infection by Lettuce mosaic virus (LMV; genus Potyvirus) were cloned and sequenced. Although Ls-eIF(iso)4E was monomorphic in sequence, three types of Ls-eIF4E differed by point sequence variations, and a short in-frame deletion in one of them. The amino acid variations specific to Ls-eIF4E1 and Ls-eIF4E2 were predicted to be located near the cap recognition pocket in a homology-based tridimensional protein model. In 19 lettuce genotypes, including two near-isogenic pairs, there was a strict correlation between these three allelic types and the presence or absence of the recessive LMV resistance genes mo11 and mo12. Ls-eIF4E1 and mo11 cosegregated in the progeny of two separate crosses between susceptible genotypes and an mo11 genotype. Finally, transient ectopic expression of Ls-eIF4E restored systemic accumulation of a green fluorescent protein-tagged LMV in LMV-resistant mo12 plants and a recombinant LMV expressing Ls-eIF4E° from its genome, but not Ls-eIF4E1 or Ls-eIF(iso)4E, accumulated and produced symptoms in mo11 or mo12 genotypes. Therefore, sequence correlation, tight genetic linkage, and functional complementation strongly suggest that eIF4E plays a role in the LMV cycle in lettuce and that mo11 and mo12 are alleles coding for forms of eIF4E unable or less effective to fulfill this role. More generally, the isoforms of eIF4E appear to be host factors involved in the cycle of potyviruses in plants, probably through a general mechanism yet to be clarified. PMID:12857809

  19. Penetration of Escherichia coli O157:H7 into lettuce as influenced by modified atmosphere and temperature.

    PubMed

    Takeuchi, K; Hassan, A N; Frank, J F

    2001-11-01

    The effects of temperature and atmospheric oxygen concentration on the respiration rate of iceberg lettuce and Escherichia coli O157:H7 cells attachment to and penetration into damaged lettuce tissues were evaluated. Respiration rate of lettuce decreased as the temperature was reduced from 37 to 10 degrees C. Reducing the temperature further to 4 degrees C did not affect the respiration rate of lettuce. Respiration rate was also reduced by lowering the atmospheric oxygen concentration. Lettuce was submerged in E. coli O157:H7 inoculum at 4, 10, 22, or 37 degrees C under 21 or 2.7% oxygen. Attachment and penetration of E. coli O157:H7 were not related to the respiration rate. The greatest numbers of E. coli O157:H7 cells attached to damaged lettuce tissues at 22 degrees C at both oxygen concentrations. More cells were attached under 21% oxygen than under 2.7% oxygen at each temperature, but this difference was small. Penetration of E. coli O157:H7 into lettuce tissue was determined by immunostaining with a fluorescein isothiocyanate-labeled antibody. Under 21% oxygen, E. coli O157:H7 cells showed greatest penetration when lettuce was held at 4 degrees C, compared to 10, 22. or 37 degrees C, and were detected at an average of 101 microm below the surfaces of cut tissues. However, under 2.7% oxygen, there were no differences in degree of penetration among four incubation temperatures. The degree of E. coli O157:H7 penetration into lettuce tissue at 4 or 22 degrees C was greater under 21% oxygen than under 2.7% oxygen; however, no difference was observed at 37 degrees C. Conditions that promote pathogen penetration into tissue could decrease the effectiveness of decontamination treatments.

  20. Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio.

    PubMed

    Zivcak, Marek; Brückova, Klaudia; Sytar, Oksana; Brestic, Marian; Olsovska, Katarina; Allakhverdiev, Suleyman I

    2017-06-01

    Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique. The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre

  1. Nonlinear Influence of Background Rotation on Iceberg Melting

    NASA Astrophysics Data System (ADS)

    Meroni, A. N.; McConnochie, C. D.; Cenedese, C.; Sutherland, B. R.; Snow, K.

    2017-12-01

    The Antarctic and Greenland Ice Sheets lose mass through direct melting from ice shelves and from the calving of icebergs. Once icebergs have calved they will drift in ocean currents and gradually melt. Where and how rapidly they melt will determine where the freshwater and nutrients contained in the iceberg will be released which can then affect sea ice formation and biological activity. Standard parameterizations of iceberg melting consider the fluid velocity and temperature but not the effect of planetary rotation. Particularly for large icebergs, such as that which recently calved from the Larson C ice shelf, rotation may also be important due to the formation of Taylor columns.We present the results of laboratory experiments investigating the effect of rotation on the melting of icebergs. In particular, the possible formation of Taylor columns underneath an iceberg is investigated. At high Rossby numbers, when rotation is weak compared to advection, iceberg melting is unaffected by the background rotation rate. However, as the Rossby number is decreased, the melt rate initially increases before decreasing as the Rossby number is further decreased.This non-monotonic dependence of iceberg melting on the Rossby number is explained by considering the integrated horizontal velocity under the iceberg. For moderate Rossby numbers the Taylor column that forms only occupies a small fraction of the iceberg bottom area. Although there is near-zero relative flow in the Taylor column, which reduces the melt rate, the effective blocking by the Taylor column causes an acceleration of the flow under the remainder of the iceberg and increases the total melt rate. However, for low Rossby numbers the Taylor column occupies a larger fraction of the iceberg bottom area and the flow acceleration no longer occurs underneath the iceberg, hence it is unable to increase the melt rate. We suggest an improved parameterization of iceberg melt that includes the effects of rotation.

  2. Ultrastructural and developmental evidence of phytotoxicity on cos lettuce (Lactuca sativa) associated with nonylphenol exposure.

    PubMed

    de Bruin, Willeke; van der Merwe, Chris; Kritzinger, Quenton; Bornman, Riana; Korsten, Lise

    2017-02-01

    It has long been understood that the presence of endocrine disrupter chemicals (EDCs) in water can affect the reproductive, behavioural and regulatory systems of different types of mammals. Thus far, only a handful of studies have examined its impact on plant systems. Present research is limited to the potential uptake of these chemicals by plants and the general phytotoxic effects it can elicit. The aim of this study was to determine what effect an EDC has on developing plant and cell organelles and how it affects it. In this study, cos lettuce plants were exposed to different concentrations of nonylphenol (NP), an EDC, in a static hydroponic system. Changes in plant morphology, mass and length, chlorophyll content, as well as electrolyte leakage were examined. Furthermore an in-depth investigation of the plant cell ultrastructure was carried out with transmission electron microscopy. Results indicated that cos lettuce growth was severely restricted, chlorophyll content was reduced, leakage of electrolytes increased and roots were stunted especially after ≥3200 μg/l NP exposures. The structure of the rough endoplasmic reticulum, vacuole and chloroplast were also changed. This study emphasizes the importance of water quality management, since the presence of an EDC, like NP, can negatively impact the yield and internal structure of one of the world's most significant salad crops, namely lettuce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Protective effects of Lactuca sativa ethanolic extract on carbon tetrachloride induced oxidative damage in rats

    PubMed Central

    Hefnawy, Hefnawy Taha M.; Ramadan, Mohamed Fawzy

    2013-01-01

    Objective To study the protective effects of the ethanolic extract of lettuce (Lactuca sativa L. var. longifolia) leaves against the toxicity caused by carbon tetrachloride (CCl4) in reproductive system of rats. Methods Lettuce leaves were dried and extracted with ethanol (plant: solvent, 1:10, w/v). The extract was filtered and evaporated to yield dried lettuce extract. Animals were divided into seven groups and treated with CCl4 and different concentrations of lettuce extract. At the end of the experimental period, the animals were sacrificed and blood was collected and centrifuged for serum separation. Body weights, testis size, histopathology of testis and liver, catalase (CAT) activity, superoxide dismutase (SOD) activity, peroxidase (POD) activity, reduced glutathione (GSH), glutathione peroxidase activity (GSH-Px), thiobarbituric acid reactive substances (TBARS), nitrite level, and serum hormones were determined. Results Oxidative stress induced by CCl4 (2 mL/kg body weight) in rat decreases the increase in body weight and relative testis weight. It also markedly increases the level of TBARS and nitrites along with corresponding decrease in reduced glutathione and various antioxidant enzymes in testis (i.e., CAT, POD, SOD and GSH-Px). Serum level of testosterone, luteinizing hormone and follicle stimulating hormone was decreased while estradiol and prolactin were increased during CCl4 treatment. Histopathology of CCl4-treated rats indicated the partial degeneration of germ and leydig cells along with deformities in spermatogenesis. Supplementation of lettuce extract (100, 150, 200 mg/kg body weight orally) once a week for 10 weeks results in decrease of TBARS and nitrite, while increase in antioxidant enzymes; CAT, POD, SOD, GSH-Px and GSH contents. Serum level of testosterone, luteinizing hormone, follicle stimulating hormone, estradiol, prolactin, histology, body weight and relative testis weight was also concomitantly restored to near normal level by

  4. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp.

    PubMed

    Lee, Min-Jeong; Son, Jung Eek; Oh, Myung-Min

    2014-01-30

    The production of high-quality crops based on phytochemicals is a strategy for accelerating the practical use of plant factories. Previous studies have demonstrated that ultraviolet (UV) light is effective in improving phytochemical production. This study aimed to determine the effect of various UV wavelengths on growth and phenolic compound accumulation in lettuce (Lactuca sativa L.) grown in a closed-type plant production system. Seven days, 1 day and 0.25 day were determined as the upper limit of the irradiation periods for UV-A, -B, and -C, respectively, in the lettuce based on physiological disorders and the fluorescence parameter F(v)/F(m). Continuous UV-A treatment significantly induced the accumulation of phenolic compounds and antioxidants until 4 days of treatment without growth inhibition, consistent with an increase in phenylalanine ammonia lyase (PAL) gene expression and PAL activity. Repeated or gradual UV-B exposure yielded approximately 1.4-3.6 times more total phenolics and antioxidants, respectively, than the controls did 2 days after the treatments, although both treatments inhibited lettuce growth. Repeated UV-C exposure increased phenolics but severely inhibited the growth of lettuce plants. Our data suggest that UV irradiation can improve the accumulation of phenolic compounds with antioxidant properties in lettuce cultivated in plant factories. © 2013 Society of Chemical Industry.

  5. Production of Dwarf Lettuce by Overexpressing a Pumpkin Gibberellin 20-Oxidase Gene

    PubMed Central

    Niki, Tomoya; Nishijima, Takaaki; Nakayama, Masayoshi; Hisamatsu, Tamotsu; Oyama-Okubo, Naomi; Yamazaki, Hiroko; Hedden, Peter; Lange, Theo; Mander, Lewis N.; Koshioka, Masaji

    2001-01-01

    We investigated the effect of overexpressing a pumpkin gibberellin (GA) 20-oxidase gene encoding an enzyme that forms predominantly biologically inactive products on GA biosynthesis and plant morphology in transgenic lettuce (Lactuca sativa cv Vanguard) plants. Lettuce was transformed with the pumpkin GA 20-oxidase gene downstream of a strong constitutive promoter cassette (El2–35S-Ω). The transgenic plants in which the pumpkin gene was detected by polymerase chain reaction were dwarfed in the T2 generation, whereas transformants with a normal growth phenotype did not contain the transgene. The result of Southern-blot analysis showed that the transgene was integrated as a single copy; the plants segregated three dwarfs to one normal in the T2 generation, indicating that the transgene was stable and dominant. The endogenous levels of GA1 and GA4 were reduced in the dwarfs, whereas large amounts of GA17 and GA25, which are inactive products of the pumpkin GA 20-oxidase, accumulated in these lines. These results indicate that a functional pumpkin GA 20-oxidase is expressed in the transgenic lettuce, resulting in a diversion of the normal pathway of GA biosynthesis to inactive products. Furthermore, this technique may be useful for controlling plant stature in other agricultural and horticultural species. PMID:11457947

  6. Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: evidence for homologous recombination of a cDNA intermediate.

    PubMed

    Geiss, K T; Abbas, G M; Makaroff, C A

    1994-04-01

    The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.

  7. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.)

    PubMed Central

    Argyris, Jason; Truco, María José; Ochoa, Oswaldo; McHale, Leah; Dahal, Peetambar; Van Deynze, Allen; Michelmore, Richard W.

    2010-01-01

    Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC3S2 near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2–3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1425-3) contains supplementary material, which is available to authorized users. PMID:20703871

  8. Phytochrome Regulates Gibberellin Biosynthesis during Germination of Photoblastic Lettuce Seeds1

    PubMed Central

    Toyomasu, Tomonobu; Kawaide, Hiroshi; Mitsuhashi, Wataru; Inoue, Yasunori; Kamiya, Yuji

    1998-01-01

    Germination of lettuce (Lactuca sativa L.) seed is regulated by phytochrome. The requirement for red light is circumvented by the application of gibberellin (GA). We have previously shown that the endogenous content of GA1, the main bioactive GA in lettuce seeds, increases after red-light treatment. To clarify which step of GA1 synthesis is regulated by phytochrome, cDNAs encoding GA 20-oxidases (Ls20ox1 and Ls20ox2, for L. sativa GA 20-oxidase) and 3β-hydroxylases (Ls3h1 and Ls3h2 for L. sativa GA 3β-hydroxylase) were isolated from lettuce seeds by reverse-transcription polymerase chain reaction. Functional analysis of recombinant proteins expressed in Escherichia coli confirmed that the Ls20ox and Ls3h encode GA 20-oxidases and 3β-hydroxylases, respectively. Northern-blot analysis showed that Ls3h1 expression was dramatically induced by red-light treatment within 2 h, and that this effect was canceled by a subsequent far-red-light treatment. Ls3h2 mRNA was not detected in seeds that had been allowed to imbibe under any light conditions. Expression of the two Ls20ox genes was induced by initial imbibition alone in the dark. The level of Ls20ox2 mRNA decreased after the red-light treatment, whereas that of Ls20ox1 was unaffected by light. These results suggest that red light promotes GA1 synthesis in lettuce seeds by inducing Ls3h1 expression via phytochrome action. PMID:9847128

  9. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination.

    PubMed

    Chen, Bingxian; Ma, Jun; Xu, Zhenjiang; Wang, Xiaofeng

    2016-10-01

    The purpose of this study was to investigate the role of cellulase in endosperm cap weakening and radicle elongation during lettuce (Lactuca sativa L.) seed germination. The application of abscisic acid (ABA) or ethephon inhibits or promotes germination, respectively, by affecting endosperm cap weakening and radicle elongation. Cellulase activities, and related protein and transcript abundances of two lettuce cellulase genes, LsCEL1 and LsCEL2, increase in the endosperm cap and radicle prior to radicle protrusion following imbibition in water. ABA or ethephon reduce or elevate, respectively, cellulase activity, and related protein and transcript abundances in the endosperm cap. Taken together, these observations suggest that cellulase plays a role in endosperm cap weakening and radicle elongation during lettuce seed germination, and that the regulation of cellulase in the endosperm cap by ABA and ethephon play a role in endosperm cap weakening. However, the influence of ABA and ethephon on radicle elongation may not be through their effects on cellulase. © 2016 Institute of Botany, Chinese Academy of Sciences.

  10. Combination of peracetic acid and ultrasound reduces Salmonella Typhimurium on fresh lettuce (Lactuca sativa L. var. crispa).

    PubMed

    Silveira, Luiza Oliveira; do Rosário, Denes Kaic Alves; Giori, Ana Carolina Garcia; Oliveira, Syllas Borburema Silva; da Silva Mutz, Yhan; Marques, Clara Suprani; Coelho, Jussara Moreira; Bernardes, Patrícia Campos

    2018-04-01

    Salmonella outbreaks related to fruits and vegetables have been reported being lettuce one of the most contaminated. Peracetic acid (PA) at 50 mg/L, sodium dichloroisocyanurate (SD) at 100 mg/L, and the combination of SD at 100 mg/L and babaçu coconut ( Attalea speciosa ) oil detergent at 100 mg/L were applied to fresh lettuce. Natural contaminant microbiota, physicochemical characteristics, and sensory attributes were evaluated. PA and SD reduced mesophilic aerobic counts by 2.1 and 1.5 log cfu/g, respectively. The most efficient treatment in reducing natural microbiota (i.e., PA) was applied alone and in combination with ultrasound (US). It reduced Salmonella enterica Typhimurium counts to undetectable levels (< 1 log cfu/g). US further reduced S. Typhimurium counts by 0.6 log cfu/g in relation to PA, treatment which lessened the pH but increased the titratable acidity of lettuce, but did not cause total color difference. Therefore, the combination of PA and US holds a potential industrial application for sanitization purposes.

  11. Calving seismicity from iceberg-sea surface interactions

    USGS Publications Warehouse

    Bartholomaus, T.C.; Larsen, C.F.; O'Neel, S.; West, M.E.

    2012-01-01

    Iceberg calving is known to release substantial seismic energy, but little is known about the specific mechanisms that produce calving icequakes. At Yahtse Glacier, a tidewater glacier on the Gulf of Alaska, we draw upon a local network of seismometers and focus on 80 hours of concurrent, direct observation of the terminus to show that calving is the dominant source of seismicity. To elucidate seismogenic mechanisms, we synchronized video and seismograms to reveal that the majority of seismic energy is produced during iceberg interactions with the sea surface. Icequake peak amplitudes coincide with the emergence of high velocity jets of water and ice from the fjord after the complete submergence of falling icebergs below sea level. These icequakes have dominant frequencies between 1 and 3 Hz. Detachment of an iceberg from the terminus produces comparatively weak seismic waves at frequencies between 5 and 20 Hz. Our observations allow us to suggest that the most powerful sources of calving icequakes at Yahtse Glacier include iceberg-sea surface impact, deceleration under the influence of drag and buoyancy, and cavitation. Numerical simulations of seismogenesis during iceberg-sea surface interactions support our observational evidence. Our new understanding of iceberg-sea surface interactions allows us to reattribute the sources of calving seismicity identified in earlier studies and offer guidance for the future use of seismology in monitoring iceberg calving.

  12. RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa).

    PubMed

    Ibrahim, Abdulrazak B; Monteiro, Tatiane R; Cabral, Glaucia B; Aragão, Francisco J L

    2017-10-01

    RNA interference (RNAi)-based transgenic technologies have evolved as potent biochemical tools for silencing specific genes of plant pathogens and pests. The approach has been demonstrated to be useful in silencing genes in insect species. Here, we report on the successful construction of RNAi-based plasmid containing an interfering cassette designed to generate dsRNAs that target a novel v-ATPase transcript in whitefly (Bemisia tabaci), an important agricultural pest in tropical and sub-tropical regions. The presence of the transgene was confirmed in T 0 and T 1 generations of transgenic lettuce lines, segregating in a Mendelian fashion. Seven lines were infested with whiteflies and monitored over a period of 32 days. Analysis of mortality showed that within five days of feeding, insects on transgenic plants showed a mortality rate of 83.8-98.1%. In addition, a reduced number of eggs (95 fold less) was observed in flies feeding on transgenic lettuce plants than insects on control lines. Quantitative reverse transcription PCR showed decreased expression level of endogenous v-ATPase gene in whiteflies feeding on transgenic plants. This technology is a foundation for the production of whitefly-resistant commercial crops, improving agricultural sustainability and food security, reducing the use of more environmentally aggressive methods of pest control.

  13. An iceberg model implementation in ACME.

    NASA Astrophysics Data System (ADS)

    Comeau, D.; Turner, A. K.; Hunke, E. C.

    2017-12-01

    Icebergs represent approximately half of the mass flux from the Antarctic ice sheet, transporting freshwater and nutrients away from the coast to the Southern Ocean. Icebergs impact the surrounding ocean and sea ice environment, and serve as nutrient sources for biogeochemical activity, yet these processes are typically not resolved in current climate models. We have implemented a parameterization for iceberg drift and decay into the Department of Energy's Accelerated Climate Model for Energy (ACME), where the ocean, sea ice, and land ice components are based on the unstructured grid modeling framework Multiple Prediction Across Scales (MPAS), to improve the representation of Antarctic mass flux to the Southern Ocean and its impacts on ocean stratification and circulation, sea ice, and biogeochemical processes in a fully coupled global climate model. The iceberg model is implemented in two frameworks: Lagrangian and Eulerian. The Lagrangian framework embeds individual icebergs into the ocean and sea ice grids, and will be useful in modeling `giant' (>10 nautical miles) iceberg events, which may have highly localized impacts on ocean and sea ice. The Eulerian framework allows us to model a realistic population of Antarctic icebergs without the computational expense of individual particle tracking to simulate the aggregate impact on the Southern Ocean climate system. This capability, together with under ice-shelf ocean cavities and dynamic ice-shelf fronts, will allow for extremely high fidelity simulation of the southern cryosphere within ACME.

  14. Oxidative Phosphorylation in Germinating Lettuce Seeds (Lactuca sativa) during the First Hours of Imbibition

    PubMed Central

    Hourmant, Annick; Pradet, Alain

    1981-01-01

    Experiments with lettuce seeds during the first hours of imbibition showed that oxygen is necessary to sustain high adenine nucleotide ratios and consequently, energy charge values are higher than 0.8 as is usually the case in normally metabolizing tissues. The energy charge value (0.2) of dry seeds soaked in aerated water increased to normal values (0.8) within 30 minutes. The energy charge value of seeds imbibed under cyanide or nitrogen stayed at low values, about 0.3 for 30 minutes. Nitrogen and cyanide treatment of seeds imbibed in aerated water produced a decrease of energy charge to low values within 3 minutes. During the first minutes of imbibition, the oxygen uptake is cyanide-sensitive. The effect of the uncoupler carbonyl cyanide p-trifluoromethoxyphenyl hydrazone was not as clear-cut. However, results were obtained which agree with the occurrence of oxidative phosphorylation during the first hours of imbibition. These results indicate that a normal cytochromic pathway synthesizes ATP during the first minutes and hours following the imbibition of lettuce seeds. PMID:16661970

  15. Produce Sanitation System Evaluation

    DTIC Science & Technology

    2011-05-01

    the  amount in each product’s case.     Table 2: Produce Packaging  Product  Amount  Tomatoes  25 lb  Broccoli   20 lb  Iceberg lettuce  6 heads...on  the  four  leafy green and rooted  type  FF&V  (i.e.,  broccoli ,  iceberg  lettuce,  romaine  lettuce,  and  potatoes)  to  assess  the  effect...X‐Green Soak Cycle Times  Item  Min  Tomatoes  2  Broccoli   3  Iceberg lettuce  3  Romaine lettuce  3  Potatoes  8  *Pears  2  *Pears were not

  16. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Zharare, Godfrey Elijah

    2015-09-01

    Phytotoxic effect of diesel contaminated soil was investigated on growth and dry matter partitioning in Lactuca sativa and Ipomoea batatas in greenhouse pot experiment at two concentration range (0-30 ml and 0-6 ml diesel kg(-1) soil) for 14 weeks. The results indicated thatwhole plant biomass, stem length, root length, number of leaves and leaf chlorophyll in two plants were negatively correlated with increasing diesel concentrations. The critical concentration of diesel associated with 10% decrease in plant growth was 0.33 ml for lettuce and 1.50 ml for sweet potato. Thus, growth of lettuce in diesel contaminated soil was more sensitive than sweet potato. The pattern of dry matter partitioning between root and shoot in both plants were similar. In 0-6 ml diesel contamination range, allocation of dry matter to shoot system was favoured resulting in high shoot: root ratio of 4.54 and 12.91 for lettuce and sweet potato respectively. However, in 0-30 ml diesel contamination range, allocation of dry matter to root was favoured, which may have been an adaptive mechanism in which the root system was used for storage in addition to increasing the capacity for foraging for mineral nutrients and water. Although lettuce accumulated more metals in its tissue than sweet potato, the tissue mineral nutrients in both species did not vary to great extent. The critical diesel concentration for toxicity suggested that the cause of mortality and poor growth of sweet potato and lettuce grown in diesel contaminated soil was due to presence of hydrocarbons in diesel.

  17. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing.

    PubMed

    Huo, Heqiang; Henry, Isabelle M; Coppoolse, Eric R; Verhoef-Post, Miriam; Schut, Johan W; de Rooij, Han; Vogelaar, Aat; Joosen, Ronny V L; Woudenberg, Leo; Comai, Luca; Bradford, Kent J

    2016-11-01

    Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single-nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild-type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    PubMed

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Physical and mechanical properties of icebergs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammon, P.H.; Bobby, W.; Gagnon, R.E.

    1983-05-01

    Physical and mechanical characteristics of iceberg ice were studied from samples collected near the shores of eastern Newfoundland. Although the physical characteristics show considerable diversity, iceberg ice has some common features and is generally porous, lacks significant concentrations of dissolved materials, contains internal cracks and has an irregular interlocking grain structure. A review of mechanical testing of ice was carried out and an experimental setup was devised to reduce effects of improper contact between specimen and loading apparatus. Uniaxial compressive strength for iceberg ice was determined and compared with that for lake ice. The strength of iceberg ice was highermore » than that of lake ice but Young's Modulus for lake ice was higher.« less

  20. Molecular Mapping of High Resistance to Bacterial Leaf Spot in Lettuce PI 358001-1.

    PubMed

    Wang, Yunwen; Lu, Huangjun; Hu, Jinguo

    2016-11-01

    Lettuce (Lactuca sativa L.) is a diploid (2n = 18) with a genome size of 2,600 Mbp, and belongs to the family Compositae. Bacterial leaf spot (BLS), caused by Xanthomonas campestris pv. vitians, is a major disease of lettuce worldwide. Leaf lettuce PI 358001-1 has been characterized as an accession highly resistant to BLS and has white seed. In order to understand inheritance of the high resistance in this germplasm line, an F 3 population consisting of 163 families was developed from the cross PI 358001-1 × 'Tall Guzmaine' (a susceptible Romaine lettuce variety with black seed). The segregation ratio of reaction to disease by seedling inoculation with X. campestris pv. vitians L7 strain in the F 3 families was shown to be 32:82:48 homozygous resistant/heterozygous/homozygous susceptible, fitting to 1:2:1 (n = 162, χ 2 = 3.19, P = 0.20). The segregation ratio of seed color by checking F 2 plants was 122:41 black/white, fitting to 3:1 (n = 163, χ 2 = 0.002, P = 0.96). The results indicated that both BLS resistance and seed color were inherited as a dominant gene mode. A genetic linkage map based on 124 randomly selected F 2 plants was developed to enable molecular mapping of the BLS resistance and the seed color trait. In total, 199 markers, comprising 176 amplified fragment length polymorphisms, 16 simple-sequence repeats, 5 resistant gene candidate markers, and 2 cleaved amplified polymorphic sequences (CAPS) markers were assigned to six linkage groups. The dominant resistance gene to BLS (Xcvr) was mapped on linkage group 2 and the gene locus y for seed color was identified on linkage group 5. Due to the nature of a single gene inheritance, the high-resistance gene should be readily transferred to adapted lettuce cultivars to battle against the devastating disease of lettuce.

  1. [Enteroparasite determination in Lactuca sativa from farms dedicated to its production in Pasto, Colombia].

    PubMed

    Polo, Giovanni Andrés; Benavides, Carmenza Janneth; Astaiza, Juan Manuel; Vallejo, Dario Antonio; Betancourt, Patricia

    2016-12-01

    Currently, vegetables like lettuce are widely recommended as part of the daily diet given their high nutritional value; however, while consumers feel attracted to the benefits provided by the vegetable, they may also be exposed to parasitic intestinal infections. To determine the presence or absence of enteroparasites in lettuce (Lactuca sativa) grown in the rural area in the municipality of Pasto, and to analyze associated factors based on the characterization of the lands. We conducted a descriptive double blind cross-sectional study. We took a total of 105 samples from 21 properties from June to December, 2013, and we processed them by sedimentation and flotation tests. Additionally, the owners were surveyed in order to obtain information about the possible variables influencing the occurrence of enteroparasites. We detected contamination in 100% of the lettuce samples and we found parasite eggs and larvae as follows: 95.25% with Entamoeba spp. cysts; 71.43% with Isospora spp. oocysts; 61.90% with Strongyloides stercoralis larvae (L3); 28.57% with Toxocara spp. eggs, and 4.76% with Eimeria spp. oocysts. Using the chi-square test we found association between Entamoeba spp. and ditches (p=0.008), dogs (p=0.008) and septic tanks (p=0.029); between Isospora spp. and compost (p=0.0001), dogs (p=0.0001) and slugs (p=0.002); between S. stercoralis and handling (p=0.003), and between Toxocara spp. and no use of biodigesters (p= 0.002). We found contamination with enteroparasites in lettuce samples from growing areas in the municipality of Pasto with animal and human sources as their main reservoirs, although others were present in the environment.

  2. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.

    1992-01-01

    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  3. Expression analysis of polyphenol oxidase isozymes by active staining method and tissue browning of head lettuce (Lactuca sativa L.).

    PubMed

    Noda, Takahiro; Iimure, Kazuhiko; Okamoto, Shunsuke; Saito, Akira

    2017-08-01

    Browning of plant tissue is generally considered attributable to enzymatic oxidation by polyphenol oxidase (PPO). Electrophoresis followed by activity staining has been used as an effective procedure to visually detect and isolate isozymes; however, it has not been applied for examination of various PPO isozymes in lettuce. Our study demonstrated that different lettuce PPO isozymes could be detected at different pH in active staining, and multiple isozymes were detected only under alkaline conditions. As a result, we concluded that activity staining with approximately pH 8 enabled to detect various PPO isozymes in lettuce. By expression analysis of the PPO isozymes after wounding, PPO isozymes that correlated with time-course of tissue browning were detected. The wound-induced PPO may play a key role in enzymatic browning.

  4. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae)

    PubMed Central

    Rossi, Eliandra M.; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H.; Tondo, Eduardo C.

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves’ stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves. PMID:26834727

  5. Icebergs Melting in Uniform and Vertically Sheared Flows

    NASA Astrophysics Data System (ADS)

    Cenedese, Claudia; Fitzmaurice, Anna; Straneo, Fiammetta

    2017-11-01

    Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg on the melt plumes generated along the iceberg sides is not fully captured by existing melt parameterizations. A series of novel laboratory experiments showed that side melting of icebergs subject to relative velocities is controlled by two distinct regimes, which depend on the melt plume behavior (side-attached or side-detached). These two regimes produce a nonlinear dependence of melt rate on velocity, and different distributions of meltwater in the water column. Iceberg meltwater may either be confined to a thin surface layer, when the melt plumes are side-attached, or mixed down to the iceberg draft, when the melt plumes are side-detached. In a two-layer vertically sheared flow, the average flow speed in existing melt parameterizations gives an underestimate of the submarine melt rate, in part due to the nonlinearity of the dependence of melt rate on flow speed, but also because vertical shear in the velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. Including this nonlinear velocity dependence in melting parameterizations applied to observed icebergs increases iceberg side melt in the side-attached regime, improving agreement with observations of iceberg submarine melt rates. AF was supported by NA14OAR4320106, CC by NSF OCE-1434041 and OCE-1658079, and FS by NSF PLR-1332911 and OCE-1434041.

  6. Effect of proline on biochemical and molecular mechanisms in lettuce (Lactuca sativa L.) exposed to UV-B radiation.

    PubMed

    Aksakal, Ozkan; Tabay, Dilruba; Esringu, Aslıhan; Icoglu Aksakal, Feyza; Esim, Nevzat

    2017-02-15

    The purpose of the present study was to evaluate the role of proline (Pro) in relieving UV-B radiation-induced oxidative stress in lettuce. Lettuce seedlings were exposed to 3.3 W m -2 UV-B radiation for 12 h after pre-treatment sprayed with 20 mM Pro. The data for malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), endogenous Pro level, the activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD)], total phenolic concentration, antioxidant capacity, expression of phenylalanine ammonia lyase (PAL), γ-tocopherol methyltransferase (γ-TMT) and proline dehydrogenase (ProDH) genes, phytohormone levels such as abscisic acid (ABA), gibberellic acid (GA), indole acetic acid (IAA) and salicylic acid (SA), soluble sugars and organic acids were recorded. It was found that Pro alleviated the oxidative damage in the seedlings of lettuce as demonstrated by lower lipid peroxidation and H 2 O 2 content, increasing the endogenous Pro level, the activity of antioxidant enzymes, total phenolic concentration and the antioxidant capacity. Additionally, it was revealed that exogenous application of Pro enhanced the levels of GA, IAA, the concentrations of soluble sugars and organic acids and expressions of PAL, γ-TMT and ProDH genes as compared to the control. The results obtained in this study suggest that pre-treatment with exogenous Pro provides important contributions to the increase in the UV-B tolerance of lettuce by regulating the biochemical mechanisms of UV-B response.

  7. Large Tabular Iceberg, South Atlantic Ocean

    NASA Image and Video Library

    1991-09-18

    This large tabular iceberg, broken off from the Antarctic Ice Sheet, was spotted in the South Atlantic Ocean (57.0S, 57.0W) southeast of the tip of South America as it was slowly being moved north and east by wind, current and tidal influences. This type of iceberg, never to be seen in the northern hemisphere, is typical for Antarctica. Although some such icebergs are as large as 100 km in length, this one measures about 35 by 69 km.

  8. Large Tabular Iceberg, South Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This large tabular iceberg, broken off from the Antarctic Ice Sheet, was spotted in the South Atlantic Ocean (57.0S, 57.0W) southeast of the tip of South America as it was slowly being moved north and east by wind, current and tidal influences. This type of iceberg, never to be seen in the northern hemisphere, is typical for Antarctica. Although some such icebergs are as large as 100 km in length, this one measures about 35 by 69 km.

  9. Applicability of ERTS for surveying Antarctic iceberg resources

    NASA Technical Reports Server (NTRS)

    Hult, J. L. (Principal Investigator); Ostrander, N. C.

    1973-01-01

    The author has identified the following significant results. This investigation explores the applicability of ERTS to (1) determine the Antarctic sea ice and environmental behavior that may influence the harvesting of icebergs, and (2) monitor iceberg locations, characteristics, and evolution. From image sampling, it is found that the potential applicability of ERTS to the research, planning, and harvesting operations can contribute importantly to the promise derived from broader scope studies for the use of Antarctic iceberg to relieve fresh Thermal sensor bands will provide coverage in daylight and darkness. Several years of comprehensive monitoring will be necessary to characterize sea ice and environmental behavior and iceberg evolution. Live ERTS services will assist harvesting control and claming operations and offer a means for harmonizing entitlements to iceberg resources. The valuable ERTS services will be more cost effective than other means and will be easily justified and borne by the iceberg harvesting operation.

  10. Massive subtropical icebergs and freshwater forcing of climate

    NASA Astrophysics Data System (ADS)

    Condron, Alan; Hill, Jenna

    2014-05-01

    High resolution seafloor mapping shows incredible evidence that massive (>300m thick) icebergs drifted more than 5,000 km along the United States continental margin to southern Florida during the last deglaciation. Here we discuss how the discovery of icebergs in this location highlights a previously unknown ocean circulation pathway capable of transporting icebergs and meltwater from the Northern Hemisphere ice sheets directly to the subtropical North Atlantic. This pathway questions the classical idea that freshwater forcing from meltwater floods and icebergs occurred primarily over the subpolar North Atlantic (50N - 70N), with little penetration to subtropical latitudes, south of 40N. Using a sophisticated, high-resolution (1/6 deg.) ocean model, capable of resolving the circulation of the coastal ocean in detail, we show that icebergs off the coast of Florida likely calved from ice streams in the Gulf of St Lawrence and Hudson Bay. We find that icebergs can only drift south of Cape Hatteras, and overcome the northward flow of the Gulf Stream, when they are entrained in a narrow, southward-flowing, coastal meltwater flood originating from the Laurentide Ice Sheet. This cold meltwater increases iceberg survival in the warm subtropics and flows in the opposite direction to the Gulf Stream along the coast, allowing icebergs to drift to southern Florida in less than 4 months. We conclude that during the last deglaciation, icebergs drifted south in massive meltwater floods that delivered freshwater to the subtropical North Atlantic. Our findings have important implications for understanding how changes in freshwater forcing triggered past abrupt climate change.

  11. Nonlinear Response of Iceberg Melting to Ocean Currents

    NASA Astrophysics Data System (ADS)

    Cenedese, C.; FitzMaurice, A.; Straneo, F.

    2017-12-01

    Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg on the melt plumes generated along the iceberg sides is not fully captured by existing parameterizations. We present a series of novel laboratory experiments to determine the dependence of side submarine melt rates on a background flow. We show, for the first time, that two distinct regimes of melting exist depending on the melt plume behavior (side-attached or side-detached). These two regimes produce a nonlinear dependence of melt rate on velocity, and different distributions of meltwater in the water column. Iceberg meltwater may either be confined to a thin surface layer, when the melt plumes are side-attached, or mixed down to the iceberg draft, when the melt plumes are side-detached. In a two-layer vertically sheared flow the average flow speed in existing melt parameterizations gives an underestimate of the submarine melt rate, in part due to the nonlinearity of the dependence of melt rate on flow speed, but also because vertical shear in the velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. Including this nonlinear velocity dependence in melting parameterizations applied to observed icebergs increases iceberg side melt in the attached regime, improving agreement with observations of iceberg submarine melt rates. We show that both attached and detached plume regimes are relevant to icebergs observed in a Greenland fjord.

  12. Influence of the temporal and spatial variation of nitrate reductase, glutamine synthetase and soil composition in the N species content in lettuce (Lactuca sativa).

    PubMed

    Pinto, Edgar; Fidalgo, Fernanda; Teixeira, Jorge; Aguiar, Ana A; Ferreira, Isabel M P L V O

    2014-04-01

    The variation of nitrate reductase (NR), glutamine synthetase (GS) and N content in lettuce was evaluated at 5 stages of lettuce growth. Soil physicochemical properties and its N content were also assessed to elucidate the soil-to-plant transfer of inorganic N and potential leaching to groundwater. A decrease of NR activity and an increase of NO3(-) and N-Kjeldahl content in lettuces were observed during plant growth, whereas GS activity and NH4(+) increased during the first few weeks of lettuce growth and then decreased. Although the temporal variation was similar in lettuces grown in different soils, quantitative differences were observed, indicating that high NO3(-) content in soil caused a higher NO3(-) accumulation in lettuce despite the higher NR activity during the initial stage of plant growth. Higher levels of NO3(-) and NH4(+) were correlated with higher levels of N-Kjeldahl in lettuce suggesting a positive effect of these N species in the biosynthesis of organic forms of N. Soil physicochemical properties influenced the mobility of inorganic N within the groundwater-soil-plant system. Sandy soils with low OM content allowed NO3(-) leaching, which was confirmed by higher NO3(-) levels in groundwater. Therefore, lettuces grown in those soils presented lower N content and the inputs of N to the environment were higher. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Greenland iceberg melt variability from high-resolution satellite observations

    NASA Astrophysics Data System (ADS)

    Enderlin, Ellyn M.; Carrigan, Caroline J.; Kochtitzky, William H.; Cuadros, Alexandra; Moon, Twila; Hamilton, Gordon S.

    2018-02-01

    Iceberg discharge from the Greenland Ice Sheet accounts for up to half of the freshwater flux to surrounding fjords and ocean basins, yet the spatial distribution of iceberg meltwater fluxes is poorly understood. One of the primary limitations for mapping iceberg meltwater fluxes, and changes over time, is the dearth of iceberg submarine melt rate estimates. Here we use a remote sensing approach to estimate submarine melt rates during 2011-2016 for 637 icebergs discharged from seven marine-terminating glaciers fringing the Greenland Ice Sheet. We find that spatial variations in iceberg melt rates generally follow expected patterns based on hydrographic observations, including a decrease in melt rate with latitude and an increase in melt rate with iceberg draft. However, we find no longitudinal variations in melt rates within individual fjords. We do not resolve coherent seasonal to interannual patterns in melt rates across all study sites, though we attribute a 4-fold melt rate increase from March to April 2011 near Jakobshavn Isbræ to fjord circulation changes induced by the seasonal onset of iceberg calving. Overall, our results suggest that remotely sensed iceberg melt rates can be used to characterize spatial and temporal variations in oceanic forcing near often inaccessible marine-terminating glaciers.

  14. Effect of soil cadmium on growth, photosynthesis and quality of Raphanus sativus and Lactuca sativa.

    PubMed

    Kaur, Navjyot; Jhanji, Shalini

    2016-09-01

    Cadmium (Cd) raises serious concerns as its accumulation in the plant not only affect the growth and quality of plant but also threaten the health of consumers. In this research, two vegetables, i.e., radish (Raphanus sativus L.) and lettuce (Lactuca sativa L), were planted in pots having soil treated with Cd as Cd (NO3)2 at different doses (25, 50, 100 and 200 mg Cd kg-1 soil ) to investigate the influence of cadmium on their growth, photosynthetic attributes and quality. Cadmium retarded plant growth as dry weight of radish roots decline by 87% and leaves by 83% following 200 mg Cd kg-1 soil application and the corresponding values for lettuce were 64 and 69% respectively. Significant reductions in various photosynthetic parameters viz., leaf area per plant, total chlorophyll, Chl a and Chl b content were also recorded with Cd applications. The Cd treatments resulted in loss of membrane integrity as revealed by significant increase in electrolyte leakage in leaves of both vegetables. There was significant increase in Cd accumulation in radish and lettuce with all applications but no visual symptoms of Cd toxicity were noticed with 25 and 50 mg Cd kg-1 soil application except for yield differences, illustrating that Cd accumulate in this crop without visual evidence of its presence. However, toxicity symptoms in the form of interveinal chlorosis of the leaf lamina, followed by necrosis and leaf rolling, were clearly evident with 100 and 200 mg Cd kg-1 soil application. Apparently, Cd causes harm due to its phytotoxic effects and high accumulation in edible parts of radish and lettuce without any visible symptoms that constitutes a substantial hazard to human health.

  15. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce.

    PubMed

    Samuolienė, Giedrė; Sirtautas, Ramūnas; Brazaitytė, Aušra; Duchovskis, Pavelas

    2012-10-01

    We report on the application of supplementary light-emitting diode (LED) lighting within a greenhouse for cultivation of red, green and light green leaf baby lettuces (Lactuca sativa L.) grown under natural illumination and high-pressure sodium (HPS) lamps (16-h; PPFD-170 μmol m(-2)s(-1)) during different growing season. Supplementary lighting from blue 455/470 nm and green 505/530 nm LEDs was applied (16-h; PPFD-30 μmol m(-2)s(-1)). Our results showed that to achieve solely a positive effect is complicated, because metabolism of antioxidant properties in lettuce depended on multicomponent exposure of variety, light quality or seasonality. The general trend of a greater positive effect of supplemental LED components on the vitamin C and tocopherol contents was in order: 535>505>455>470 nm; on the total phenol content: 505>535=470>455 nm; on the DPPH free-radical scavenging capacity: 535=470>505>455 nm; on the total anthocyanins: 505>455>470>535 nm. Further investigations are needed for understanding the mechanism and interaction between antioxidants and light signal transduction pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Survey of vesicular-arbuscular mycorrhizae in lettuce production in relation to management and soil factors

    USGS Publications Warehouse

    Miller, R.L.; Jackson, L.E.

    1998-01-01

    The occurrence of vesicular-arbuscular mycorrhizae (VAM) root colonization and spore number in soil was assessed for 18 fields under intensive lettuce (Lactuca sativa L.) production in California during July and August of 1995. Data on management practices and soil characteristics were compiled for each field, and included a wide range of conditions. The relationship between these factors and the occurrence of VAM in these fields was explored with multivariate statistical analysis. VAM colonization of lettuce tended to decrease with the use of chemical inputs, such as pesticides and high amounts of P and N fertilizers. Addition of soil organic matter amendments, the occurrence of other host crops in the rotation, and soil carbon:phosphorus and carbon:nitrogen ratios, were positively associated with VAM colonization of lettuce roots. The number of VAM spores in soil was strongly correlated with the number of other host crops in the rotation, the occurrence of weed hosts and sampling date, but was more affected by general soil conditions than by management inputs. Higher total soil N, C and P, as well as CEC, were inversely related to soil spore number. A glasshouse study of the two primary lettuce types sampled in the field showed no significant differences in the extent of root colonization under similar growing conditions. The results of this study are compared with other studies on the effects of management and soil conditions on mycorrhizal occurrence in agriculture.

  17. Metabolic Reprogramming in Leaf Lettuce Grown Under Different Light Quality and Intensity Conditions Using Narrow-Band LEDs.

    PubMed

    Kitazaki, Kazuyoshi; Fukushima, Atsushi; Nakabayashi, Ryo; Okazaki, Yozo; Kobayashi, Makoto; Mori, Tetsuya; Nishizawa, Tomoko; Reyes-Chin-Wo, Sebastian; Michelmore, Richard W; Saito, Kazuki; Shoji, Kazuhiro; Kusano, Miyako

    2018-05-21

    Light-emitting diodes (LEDs) are an artificial light source used in closed-type plant factories and provide a promising solution for a year-round supply of green leafy vegetables, such as lettuce (Lactuca sativa L.). Obtaining high-quality seedlings using controlled irradiation from LEDs is critical, as the seedling health affects the growth and yield of leaf lettuce after transplantation. Because key molecular pathways underlying plant responses to a specific light quality and intensity remain poorly characterised, we used a multi-omics-based approach to evaluate the metabolic and transcriptional reprogramming of leaf lettuce seedlings grown under narrow-band LED lighting. Four types of monochromatic LEDs (one blue, two green and one red) and white fluorescent light (control) were used at low and high intensities (100 and 300 μmol·m -2 ·s -1 , respectively). Multi-platform mass spectrometry-based metabolomics and RNA-Seq were used to determine changes in the metabolome and transcriptome of lettuce plants in response to different light qualities and intensities. Metabolic pathway analysis revealed distinct regulatory mechanisms involved in flavonoid and phenylpropanoid biosynthetic pathways under blue and green wavelengths. Taken together, these data suggest that the energy transmitted by green light is effective in creating a balance between biomass production and the production of secondary metabolites involved in plant defence.

  18. The morphology, physiology and nutritional quality of lettuce grown under hypobaria and hypoxia

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2015-07-01

    The objectives of this research were to investigate the morphological, physiological and nutritional characteristics of lettuce plants (Lactuca sativa L. cv. Rome) under hypobaric and hypoxic conditions. Plants were grown under two levels of total pressures (101 and 30 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) for 20 days. Hypoxia (6 or 2 kPa) not only significantly inhibited the growth of lettuce plants by decreasing biomass, leaf area, root/shoot ratio, water content, the contents of minerals and organic compounds (vitamin C, crude protein and crude fat), but also destroyed the ultrastructure of mitochondria and chloroplast. The activities of catalase and total superoxide dismutase, the contents of glutathione and the total antioxidant capacity significantly decreased due to hypoxia. Hypobaria (30 kPa) did not markedly enhance the biomass, but it increased leaf area, root/shoot ratio and relative water content. Hypobaria also decreased the contents of total phenols, malondialdehyde and total carbohydrate and protected the ultrastructure of mitochondria and chloroplast under hypoxia. Furthermore, the activities of catalase and total superoxide dismutase, the contents of minerals and organic compounds markedly increased under hypobaria. This study demonstrates that hypobaria (30 kPa) does not increase the growth of lettuce plants, but it enhances plant's stress resistance and nutritional quality under hypoxia.

  19. Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa.

    PubMed

    Trinh, Cao Son; Lee, Hyeri; Lee, Won Je; Lee, Seok Jin; Chung, Namhyun; Han, Juhyeong; Kim, Jongyun; Hong, Suk-Whan; Lee, Hojoung

    2018-06-01

    Pseudomonas nitroreducens: strain IHB B 13561 (PnIHB) enhances the growth of Arabidopsis thaliana and Lactuca sativa via the stimulation of cell development and nitrate absorption. Plant growth-promoting rhizobacteria (PGPR) enhance plant development through various mechanisms; they improve the uptake of soil resources by plants to greatly promote plant growth. Here, we used Arabidopsis thaliana seedlings and Lactuca sativa to screen the growth enhancement activities of a purified PGPR, Pseudomonas nitroreducens strain IHB B 13561 (PnIHB). When cocultivated with PnIHB, both species of plants exhibited notably improved growth, particularly in regard to biomass. Quantitative reverse transcription polymerase chain reaction analysis indicated high expression levels of the nitrate transporter genes, especially NRT2.1, which plays a major role in the high-affinity nitrate transport system in roots. Moreover, enhanced activity of the cyclin-B1 promoter was observed when wild-type 'Columbia-0' Arabidopsis seedlings were exposed to PnIHB, whereas upregulation of cyclin-B also occurred in the inoculated lettuce seedlings. Overall, these results suggest that PnIHB improves A. thaliana and L. sativa growth via specific pathways involved in the promotion of cell development and enhancement of nitrate uptake.

  20. Modeling dynamics of large tabular icebergs submerged in the ocean

    NASA Astrophysics Data System (ADS)

    Adcroft, A.; Stern, A. A.; Sergienko, O. V.

    2017-12-01

    Large tabular icebergs account for a major fraction of the ice calved from the Antarctic ice shelves, and have long lifetimes due to their size. They drift for long distances, interacting with the local ocean circulation, impacting bottom-water formation, sea-ice formation, and biological productivity in the vicinity of the icebergs. However, due to their large horizontal extent and mass, it is challenging to consistently represent large tabular icebergs in global ocean circulation models and so large tabular icebergs are not currently represented in climate models. In this study we develop a novel framework to model large tabular icebergs submerged in the ocean. In this framework, a tabular iceberg is represented by a collection of Lagrangian elements that are linked through rigid bonds. The Lagrangian elements are finite-area modifications of the point-particles used in previous studies to represent small icebergs. These elements interact with the ocean by exerting pressure on the ocean surface, and through melt water and momentum exchange. A breaking of the rigid bonds allows the model to emulate calving events (i.e. detachment of a tabular iceberg from an ice shelf), and to emulate the breaking up of tabular icebergs into smaller pieces. Idealized simulations of the calving of a tabular iceberg, subsequent drift and breakup, demonstrate the capabilities of the new framework with a promise that climate models may soon be able to represent large tabular icebergs.

  1. Human Norovirus and Its Surrogates Induce Plant Immune Response in Arabidopsis thaliana and Lactuca sativa.

    PubMed

    Markland, Sarah M; Bais, Harsh; Kniel, Kalmia E

    2017-08-01

    Human norovirus is the leading cause of foodborne illness worldwide with the majority of outbreaks linked to fresh produce and leafy greens. It is essential that we thoroughly understand the type of relationship and interactions that take place between plants and human norovirus to better utilize control strategies to reduce transmission of norovirus in the field onto plants harvested for human consumption. In this study the expression of gene markers for the salicylic acid (SA) and jasmonic acid (JA) plant defense pathways was measured and compared in romaine lettuce (Lactuca sativa) and Arabidopsis thaliana Col-0 plants that were inoculated with Murine Norovirus-1, Tulane Virus, human norovirus GII.4, or Hank's Balanced Salt Solution (control). Genes involving both the SA and JA pathways were expressed in both romaine lettuce and A. thaliana for all three viruses, as well as controls. Studies, including gene expression of SA- and JA-deficient A. thaliana mutant lines, suggest that the JA pathway is more likely involved in the plant immune response to human norovirus. This research provides the first pieces of information regarding how foodborne viruses interact with plants in the preharvest environment.

  2. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils.

    PubMed

    Woldetsadik, Desta; Drechsel, Pay; Keraita, Bernard; Marschner, Bernd; Itanna, Fisseha; Gebrekidan, Heluf

    2016-01-01

    To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated. Ammonium nitrate extraction results indicated that faecal matter biochar, cow manure biochar and lime significantly reduced bioavailable Cd by 84-87, 65-68 and 82-91 %, respectively, as compared to the spiked controls. Unpredictably, coffee husk biochar induced significant increment of Cd in NH4NO3 extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue concentrations of lettuce plants were induced by faecal matter and cow manure biochar treatments in both soils. Additionally, the greatest Cd phytoavailability reduction for lettuce was induced by poultry litter and cow manure biochars in the silty loam soil. Our results indicate that faecal matter and animal manure biochars have shown great potential to promote Cd immobilization and lettuce growth response in heavily contaminated agricultural fields.

  3. Role of ascorbic acid in the inhibition of polyphenol oxidase and the prevention of browning in different browning-sensitive Lactuca sativa var. capitata (L.) and Eruca sativa (Mill.) stored as fresh-cut produce.

    PubMed

    Landi, Marco; Degl'Innocenti, Elena; Guglielminetti, Lorenzo; Guidi, Lucia

    2013-06-01

    Polyphenol oxidase (PPO) and, to a minor extent, peroxidase (POD) represent the key enzymes involved in enzymatic browning, a negative process induced by cutting fresh-cut produce such as lettuce (Lactuca sativa) and rocket salad (Eruca sativa). Although ascorbic acid is frequently utilised as an anti-browning agent, its mechanism in the prevention of the browning phenomenon is not clearly understood. The activity of PPO and POD and their isoforms in lettuce (a high-browning and low-ascorbic acid species) and rocket salad (a low-browning and high-ascorbic species) was characterised. The kinetic parameters of PPO and in vitro ascorbic acid-PPO inhibition were also investigated. In rocket salad, PPO activity was much lower than that in lettuce and cutting induced an increase in PPO activity only in lettuce. Exogenous ascorbic acid (5 mmol L(-1)) reduced PPO activity by about 90% in lettuce. POD did not appear to be closely related to browning in lettuce. PPO is the main enzyme involved in the browning phenomenon; POD appears to play a minor role. The concentration of endogenous ascorbic acid in rocket salad was related to its low-browning sensitivity after cutting. In lettuce, the addition of ascorbic acid directly inhibited PPO activity. The results suggest that the high ascorbic acid content found in rocket salad plays an effective role in reducing PPO activity. © 2012 Society of Chemical Industry.

  4. Regenerative Life Support Systems Test Bed performance - Lettuce crop characterization

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Eckhardt, Bradley D.

    1992-01-01

    System performance in terms of human life support requirements was evaluated for two crops of lettuce (Lactuca sative cv. Waldmann's Green) grown in the Regenerative Life Support Systems Test Bed. Each crop, grown in separate pots under identical environmental and cultural conditions, was irrigated with half-strength Hoagland's nutrient solution, with the frequency of irrigation being increased as the crop aged over the 30-day crop tests. Averaging over both crop tests, the test bed met the requirements of 2.1 person-days of oxygen production, 2.4 person-days of CO2 removal, and 129 person-days of potential potable water production. Gains in the mass of water and O2 produced and CO2 removed could be achieved by optimizing environmental conditions to increase plant growth rate and by optimizing cultural management methods.

  5. Lettuce (Lactuca sativa L.) leaf-proteome profiles after exposure to cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture: a concentration-dependent response.

    PubMed

    Freitas, Marisa; Campos, Alexandre; Azevedo, Joana; Barreiro, Aldo; Planchon, Sébastien; Renaut, Jenny; Vasconcelos, Vitor

    2015-02-01

    The intensification of agricultural productivity is an important challenge worldwide. However, environmental stressors can provide challenges to this intensification. The progressive occurrence of the cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of eutrophication and climate change is of increasing concern in the agricultural sector because it has been reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been shown to be a suitable tool for the detection and identification of the primary responses of organisms exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants were exposed to 1, 10, and 100 μg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce leaves were separated by two-dimensional electrophoresis (2-DE), and those that were differentially abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN experiment. Although distinct protein abundance patterns were observed in both experiments, the effects appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 100 μg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 μg/l) stimulated a significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the increase in abundance of a high number of proteins. In

  6. Direct Measurements of Iceberg Melt in Greenland Tidewater Glacier Fjords

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Sutherland, D.; Straneo, F.; Elosegui, P.

    2017-12-01

    The increasing input of freshwater to the subpolar North Atlantic, both through glacier meltwater runoff and the melting of calved icebergs, has significant implications for the Atlantic meridional overturning circulation and regional scale circulation. However, the magnitude and timing of this meltwater input has been challenging to quantify because iceberg melt rates are largely unknown. Here we use data from a simultaneous glaciological and oceanographic field campaign conducted in Sermilik Fjord, southeast Greenland, during July 2017 to map the surface and submarine geometry of large icebergs and use repeat surveys to directly measure iceberg melt rates. We use a combination of coincident ship-based multibeam submarine scans, ocean hydrography measurements, aerial drone mapping, and high precision iceberg-mounted GPS measurements to construct a detailed picture of iceberg geometry and melt. This synthesis of in situ iceberg melt measurements is amongst the first of its kind. Here, we will discuss the results of the 2017 field campaign, the implications of variable iceberg meltwater input throughout the water column, and comparisons to standard melt rate parameterizations and tidewater glacier submarine melt rate calculations.

  7. Use of Propolis in the Sanitization of Lettuce

    PubMed Central

    Feás, Xesús; Pacheco, Lazaro; Iglesias, Antonio; Estevinho, Leticia M.

    2014-01-01

    The present study aimed to determine the effectiveness of propolis in reducing the microbial load in ready-to-eat (RTE) and fresh whole head (FWH) lettuces (Lactuca sativa L.) type Batavia. Two sanitizing solutions were employed: sodium hypochlorite (SH) and propolis (PS), during 15 and 30 min. Tap water (TW) was used as a control. Regarding the mean reduction on aerobic mesophiles, psychrotrophic and fecal coliforms, the SH and PS treatments showed the same pattern of variation. In all cases, PS was slightly more effective in the microbiological reduction in comparison with commercial SH. Reductions between two and three log cycles were obtained with PS on aerobic mesophiles and psychrotrophic counts. The information obtained in the present study can be used to evaluate the potential use of propolis as product for sanitizing other vegetables and for developing other food preservation technologies, with impact on human health. PMID:25007823

  8. Effect of a sheared flow on iceberg motion and melting

    NASA Astrophysics Data System (ADS)

    FitzMaurice, A.; Straneo, F.; Cenedese, C.; Andres, M.

    2016-12-01

    Icebergs account for approximately half the freshwater flux into the ocean from the Greenland and Antarctic ice sheets and play a major role in the distribution of meltwater into the ocean. Global climate models distribute this freshwater by parameterizing iceberg motion and melt, but these parameterizations are presently informed by limited observations. Here we present a record of speed and draft for 90 icebergs from Sermilik Fjord, southeastern Greenland, collected in conjunction with wind and ocean velocity data over an 8 month period. It is shown that icebergs subject to strongly sheared flows predominantly move with the vertical average of the ocean currents. If, as typical in iceberg parameterizations, only the surface ocean velocity is taken into account, iceberg speed and basal melt may have errors in excess of 60%. These results emphasize the need for parameterizations to consider ocean properties over the entire iceberg draft.

  9. Evidence of Protaphorura fimata (Collembola: Poduromorpha: Onychiuridae) feeding on germinating lettuce in the Salinas Valley of California.

    PubMed

    Joseph, Shimat V; Bettiga, Christopher; Ramirez, Christian; Soto-Adames, Felipe N

    2015-02-01

    A series of experiments were conducted to determine the impact of Protaphorura fimata Gisin (Family: Onychiuridae) feeding on seeds and germinating seedlings of lettuce, Lactuca sativa L. (Asteraceae). First, various densities of P. fimata were incubated with 25 lettuce seeds for 7 d and feeding injury was evaluated in three soilless arena experiments. As a second step, 100 P. fimata were incubated with 25 lettuce seeds in three arena experiments with soil media. Finally, in a commercial field the incidence and impact of P. fimata on recently planted lettuce was assessed following applications of pyrethroid-insecticides: 2 d before planting, at planting, and 20 d later. In experiments without soil, the number of ungerminated seeds, feeding injury sites, and plants with injury were significantly greater in arenas with P. fimata than without. Similarly, the number of germinated seedlings, shoot fresh, and dry weights, and the length and width of fully opened-leaves were greater in arenas without than with P. fimata in assays with soil. In the field, P. fimata densities were significantly lower in beds that received insecticides at 2 d before and at planting than in untreated beds. Also, the fresh and dry weights of lettuce plants were significantly greater in the beds that received insecticide than in untreated. The results clearly show that P. fimata is a pest of lettuce and can cause severe feeding injury to germinating seeds or seedlings, thereby reducing their growth rate. The potential implications of P. fimata feeding and feeding injury characteristics are discussed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Highly abundant and stage-specific mRNAs in the obligate pathogen Bremia lactucae.

    PubMed

    Judelson, H S; Michelmore, R W

    1990-01-01

    Germinating spores of the obligate pathogen Bremia lactucae (lettuce downy mildew) contain several unusually abundant species of mRNA. Thirty-nine cDNA clones corresponding to prevalent transcripts were isolated from a library synthesized using poly(A)+ RNA from germinating spores; these clones represented only five distinct classes. Each corresponding mRNA accounted for from 0.4 to 9 percent by mass of poly(A)+ RNA from germinating spores and together represented greater than 20 percent of the mRNA. The expression of the corresponding genes, and a gene encoding Hsp70, was analyzed in spores during germination and during growth in planta. The Hsp70 mRNA and mRNA from one abundant cDNA clone (ham34) were expressed constitutively. Two clones (ham9 and ham12) hybridized only to mRNA from spores and germinating spores. Two clones (ham37 and ham27) showed hybridization specific to germinating spores. Quantification of the number of genes homologous to each cDNA clone indicated that four clones corresponded to one or two copies per haploid genome, and one hybridized to an approximately 11-member family of genes. A sequence of the gene corresponding to ham34 was obtained to investigate its function and to identify sequences conferring high levels of gene expression for use in constructing vectors for the transformation of B. lactucae.

  11. Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems

    NASA Technical Reports Server (NTRS)

    Dougher, Tracy A. O.; Bugbee, Bruce

    2004-01-01

    Blue light (320 to 496 nm) alters hypocotyl and stem elongation and leaf expansion in short-term, cell-level experiments, but histological effects of blue light in long-term studies of whole plants have not been described. We measured cell size and number in stems of soybean (Glycine max L.) and leaves of soybean and lettuce (Lactuca sativa L.), at two blue light fractions. Short-term studies have shown that cell expansion in stems is rapidly inhibited when etiolated tissue is exposed to blue light. However, under long-term light exposure, an increase in the blue light fraction from less than 0.1% to 26% decreased internode length, specifically by inhibiting soybean cell division in stems. In contrast, an increase in blue light fraction from 6% to 26% reduced soybean leaf area by decreasing cell expansion. Surprisingly, lettuce leaf area increased with increasing blue light fraction (0% to 6%), which was attributed to a 3.1-fold increase in cell expansion and a 1.6-fold increase in cell division.

  12. Using Icebergs to Constrain Fjord Circulation and Link to Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Straneo, F.; Hamilton, G. S.; Stearns, L. A.; Roth, G.

    2014-12-01

    The importance of icebergs is increasingly being recognized in the ocean-glacier interactions community. Icebergs are ubiquitous in Greenland's outlet glacial fjords and provide a physical link between the glacier and the ocean into which they melt. The iceberg shape is influenced by glacier size and calving mechanics, while the amount of melt produced depends on ambient water properties and the residence time of the iceberg in the fjord. Here, we use hourly positions of icebergs tracked with helicopter deployed GPS sensors to calculate velocities in the Sermilik Fjord/Helheim Glacier system. Data comes from three summertime deployments in 2012-2014, where icebergs were tagged in the ice mélange and moved through the fjord and onto the continental shelf. The iceberg-derived velocities provide information on ice mélange movement, fjord variability, and coastal currents on the shelf. Using simple melt rate parameterizations, we estimate the total freshwater input due to iceberg melt in Sermilik Fjord based on the observed residence times and satellite-derived iceberg distributions. These observations complement conventional oceanographic and glaciological data, and can quickly, and relatively inexpensively, characterize circulation throughout any given glacier-ocean system.

  13. Stimulation of lettuce productivity by manipulation of diurnal temperature and light

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1983-01-01

    Salad Bowl and Waldmann's Green leaf lettuce (Lactuca sativa L.) were exposed to photosynthetic photon flux densities (PPFDs) of 444 or 889 micromol/s per sq m for 20 hrs/day under a diurnal temperature regime of 25-C days/15-C nights or 20-C days/15-C nights. Leaf dry weight of both cultivars was highest under the high PPFD/warm temperature regime and lowest under the low PPFD/cool temperature regime. Waldmann's Green yielded more than did Salad Bowl at 889 micromol/s per sq m and 25-C days/20-C nights. Under high PPFD, both cultivars yielded better with 25-C days/25-C nights than with 25-C days/20-C nights, although relative growth rates were the same under both temperature regimes.

  14. Effect of supplemental ultraviolet radiation on the concentration of phytonutrients in green and red leaf lettuce (Lactuca sativa) cultivars

    NASA Astrophysics Data System (ADS)

    Britz, Steven; Caldwell, Charles; Mirecki, Roman; Slusser, James; Gao, Wei

    2005-08-01

    Eight cultivars each of red and green leaf lettuce were raised in a greenhouse with supplemental UV radiation, either UV-A (wavelengths greater than ca. 315 nm) or UV-A+UV-B (wavelengths greater than ca. 290 nm; 6.4 kJ m-2 daily biologically effective UV-B), or no supplemental UV (controls). Several phytonutrients were analyzed in leaf flours to identify lines with large differences in composition and response to UV-B. Red leaf lettuce had higher levels of phenolic acid esters, flavonols and anthocyanins than green lines. Both green and red lines exposed to UV-B for 9 days showed 2-3-fold increases in flavonoids compared to controls, but only 45% increases in phenolic acid esters, suggesting these compounds may be regulated by different mechanisms. There were large differences between cultivars in levels of phenolic compounds under control conditions and also large differences in UV-B effects. Among red varieties, cv. Galactic was notable for high levels of phenolics and a large response to UV-B. Among green varieties, cvs. Black-Seeded Simpson and Simpson Elite had large increases in phenolics with UV-B exposure. Photosynthetic pigments were also analyzed. Green leaf lettuce had high levels of pheophytin, a chlorophyll degradation product. Total chlorophylls (including pheophytin) were much lower in green compared to red varieties. Lutein, a carotenoid, was similar for green and red lines. Total chlorophylls and lutein increased 2-fold under supplemental UV-B in green lines but decreased slightly under UV-B in red lines. Lettuce appears to be a valuable crop to use to study phytochemical-environment interactions.

  15. Inhibitory effect of marine green algal extracts on germination of Lactuca sativa seeds.

    PubMed

    Choi, Jae-Suk; Choi, In Soon

    2016-03-01

    The allelopathic potential of nine green seaweed species was examined based on germination and seedling growth of lettuce (Lactuca sativa L.). Out of nine methanol extracts, Capsosiphon fulvescens and Monostroma nitidum extracts completely inhibited germination of L. sativa at 4 mg/filter paper after 24 hr of treatment. Water extracts of these seaweeds generally showed low anti-germination activities than methanol extracts. Of the nine water extracts, Enteromorpha linza extract completely inhibited L. sativa germination at 16 mg/filter paper after 24 hrs. To identify the primary active compounds, C. fulvescens. powder was successively fractionated according to polarity, and the main active agents against L. sativa were determined to be lipids (0.0% germination at 0.5 mg of lipids/paper disc). According to these results, extracts of C. fulvescens can be used to develop natural herbicidal agents and manage terrestrial weeds.

  16. Carrot, Corn, Lettuce and Soybean Nutrient Contents are ...

    EPA Pesticide Factsheets

    Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from some feedstocks also could adversely affect crop quality by changing soil pH and reducing nutrients (e.g., Ca, K, Mg, N, Na, and P) in plant tissues. To evaluate effects of biochar on the nutrient quality of four crops, we conducted a greenhouse study using pots with: carrot (Daucus carota cv. Tendersweet), corn (Zea mays, cv. Golden Bantam), lettuce (Lactuca sativa, cv. Black-Seeded Simpson) and soybean (Glycine max cv. Viking 2265). Plants were grown in one of two South Carolina sandy Coastal Plain soils (Norfolk and Coxville Soil Series), along with biochar (1% by weight) produced from pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG), and two blends of pine chips plus poultry litter (PC/PL, 50/50% and 80/20%). Each of the feedstocks and feedstock blends was pyrolyzed at 350, 500, and 700 ̊ C to produce the biochar used to amend the Norfolk and Coxville soils. Effects of biochar on leaf nutrients (% dry weight) statistically varied with species, soil, feedstock and temperature and nutrient. For carrot and lettuce, the PL, PL/PC, and SS biochars generally decreased leaf N, Ca, Mg, and P; while PL and PL/PC increased K and Na. Biochars had little effect on lea

  17. Filth fly transmission of Escherichia coli O157:H7 and Salmonella enterica to lettuce, Lactuca sativa

    USDA-ARS?s Scientific Manuscript database

    Filth flies have been implicated in the dispersal of human disease pathogens; however, fly transmission parameters of human pathogens to plants are largely undescribed. The capacity of the black blow fly, Phormia regina, to acquire and subsequently release bacteria onto baby lettuce leaves was comp...

  18. Giant Icebergs and Biological Productivity on Early Mars

    NASA Astrophysics Data System (ADS)

    Uceda, E.; Fairen, A. G.; Woodworth-Lynas, C.

    2016-12-01

    We have previously presented evidence for furrows, dump structures and chains of craters that we interpret as indication for giant iceberg transport and grounding on very cold oceans on early Mars, both in the northern plains and in the Hellas basin. Structures include: 1. Furrows: The furrows are located in elevated areas or on local topographic highs, particularly on the Hellas basin. We interpret these features in terms of iceberg rafting and grounding. 2. Chains of craters: High-resolution images of Utopia and Isidis Basins reveal chains of crater-like structures several hundred meters wide and 1 to 5 km long. 3. Dump structures: Dark boulder clusters are revealed at large scales by their slightly darker tonality with respect to the surrounding terrain. These clusters have sizes ranging from several hundred meters to 1-2 km. On Earth's oceans, giant icebergs release melting water containing nanoparticulate iron and other micronutrients, which support biological metabolism and growth to the near-coastal euphotic ecosystems, many of which are iron limited. This iron limitation of primary producers has been documented in large regions of the Earth's oceans, most notably in polar areas proximal to significant glacial activity, and is counterbalanced by the substantial enrichment of terrigenous material supplied by icebergs. The biological productivity extends hundreds of kilometres from the giant icebergs, and persists for over one month after the iceberg passes. Here we propose that giant iceberg activity on early Mars could have promoted a similar enhancing of biological productivity on the planet's oceans. The identification of specific biosignatures in icebergs trails on Earth could give clues as to what kind of biosignatures could be expected on the ancient Mars ocean floors, and where to look for them. In particular, assuming that life existed on Mars coeval to glacial activity, enhanced concentrations of organic carbon could be anticipated near giant iceberg

  19. The breakup of large tabular icebergs - direct observations and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Wadhams, P.

    2013-12-01

    Peter Wadhams and Till Wagner Dept. of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge. We review the factors governing the stability, dynamics and decay of icebergs and describe areas where current models are inadequate. These include questions such as draft changes in capsizing icebergs; iceberg trajectory modelling; the melt rate of the ice underside and ways of reducing it; and wave-induced flexure and its role in the break-up of tabular icebergs. In July 2012 the authors worked on a very large (42 sq km) tabular iceberg in Baffin Bay, which had calved from the Petermann Glacier in NW Greenland. We measured incoming swell spectrum and the iceberg response; also the role of buoyancy forces due to erosion of a waterline wave cut and the creation of an underwater ram. The iceberg broke up while we were on it, allowing an instrumental measurement of the calving event. The experiments were included in the BBC-2 film 'Operation Iceberg' shown on Nov 1 2012 and repeated on Nov 18. We conclude that two processes interacted in the break-up event: increased bending stress due to buoyancy of underwater rams; and direct flexural strain due to incidence of ocean swell. Implications for icebergs in the open sea are estimated.

  20. Iceberg B-15, Ross Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Iceberg B-15 broke from the Ross Ice Shelf in Antarctica in late March. Among the largest ever observed, the new iceberg is approximately 170 miles long x 25 miles wide. Its 4,250 square-mile area is nearly as large as the state of Connecticut. The iceberg was formed from glacial ice moving off the Antarctic continent and calved along pre-existing cracks in the Ross Ice Shelf near Roosevelt Island. The calving of the iceberg essentially moves the northern boundary of the ice shelf about 25 miles to the south, a loss that would normally take the ice shelf as long as 50-100 years to replace. This infrared image was acquired by the DMSP (Defense Meteorological Satellite Program) F-13 satellite on April 13, 2000. For more images see Antarctic Meteorological Research Center Image courtesy of the University of Wisconsin - Madison, Space Science and Engineering Center, Antarctic Meteorological Research Center

  1. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin.

    PubMed

    Gonai, Takeru; Kawahara, Shusuke; Tougou, Makoto; Satoh, Shigeru; Hashiba, Teruyoshi; Hirai, Nobuhiro; Kawaide, Hiroshi; Kamiya, Yuji; Yoshioka, Toshihito

    2004-01-01

    Germination of lettuce (Lactuca sativa L. cv. 'Grand Rapids') seeds was inhibited at high temperatures (thermoinhibition). Thermoinhibition at 28 degrees C was prevented by the application of fluridone, an inhibitor of abscisic acid (ABA) biosynthesis. At 33 degrees C, the sensitivity of the seeds to ABA increased, and fluridone on its own was no longer effective. However, a combined application of fluridone and gibberellic acid (GA3) was able to restore the germination. Exogenous GA3 lowered endogenous ABA content in the seeds, enhancing catabolism of ABA and export of the catabolites from the intact seeds. The fluridone application also decreased the ABA content. Consequently, the combined application of fluridone and GA3 decreased the ABA content to a sufficiently low level to allow germination at 33 degrees C. There was no significant temperature-dependent change in endogenous GA1 contents. It is concluded that ABA is an important factor in the regulation of thermoinhibition of lettuce seed germination, and that GA affects the temperature responsiveness of the seeds through ABA metabolism.

  2. Iceberg from Pine Island Glacier, Antarctica

    NASA Image and Video Library

    2014-01-14

    The voyage of Iceberg B-31 continued in January, 2014 as the giant iceberg drifted over the frigid waters of Pine Island Bay and widened the gap between the newly-calved iceberg and the “mother” glacier. Between November 9 and 11, 20143 a giant crack in the Pine Island Glacier gave completely away, liberating Iceberg B-31 from the end of the glacial tongue. The new iceberg was estimated to be 35 km by 20 km (21 mi by 12 mi) in size – or roughly the size of Singapore. On January 5, 2014 the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image of B-31 floating in the center of Pine Island Bay on an approach to the Amundsen Sea. Pine Island Glacier can be seen on the upper right coast of the bay, and is marked by parallel lines in the ice. According to measurements reported by the National U.S. Ice Center, on January 10, B-31 was maintaining its size, and was located at 74°24'S and 104°33'W. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Lettuce breeding

    USDA-ARS?s Scientific Manuscript database

    In the 2016-2017 period, major efforts targeted resistance to lettuce drop caused by Sclerotinia species, Verticillium wilt, Fusarium wilt, bacterial leaf spot, corky root, downy mildew, drought tolerance, lettuce aphid, tipburn, shelf-life of salad-cut lettuce, and multiple disease resistance. Resi...

  4. A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates

    NASA Astrophysics Data System (ADS)

    Rackow, Thomas; Wesche, Christine; Timmermann, Ralph; Hellmer, Hartmut H.; Juricke, Stephan; Jung, Thomas

    2017-04-01

    We present a simulation of Antarctic iceberg drift and melting that includes small, medium-sized, and giant tabular icebergs with a realistic size distribution. For the first time, an iceberg model is initialized with a set of nearly 7000 observed iceberg positions and sizes around Antarctica. The study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. We simulate drift and lateral melt using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's bottom. Climatology estimates of Antarctic iceberg melting based on simulations of small (≤2.2 km), "small-to-medium-sized" (≤10 km), and small-to-giant icebergs (including icebergs >10 km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.

  5. Operation Plan 14-44 ICEBERG

    DTIC Science & Technology

    1944-12-31

    report of de struction is required. C. H. McMOHKCS Chief of Staff 258 DISTRIBUTION : Same as Op- Plan 14-44 1. E. KEETOW Asst. Flag Secretary...w by author*/ oficLIss OPERATION PLAN 14—44 ICEBERG \\. CiNcPOA BRIG GEN W.A.DUMAS FORC6S UNCLAES1FO Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE Operation Plan 14-44 Iceberg 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  6. Green Icebergs: a Problem in Geophysics and Atmospheric Optics

    NASA Astrophysics Data System (ADS)

    Lee, Raymond L., Jr.

    The curious phenomenon of green icebergs has intrigued polar travelers for centuries. Although some researchers have speculated that this ice contains colorants, an investigator who has actually examined a green iceberg sample found very little intrinsically green material. This supports our idea that at least some green icebergs are due to the combined effects of reddened sunlight illuminating intrinsically blue-green ice. In this case, "intrinsic" refers to the blue-green absorption minimum of pure ice. Naturally occurring ice containing a few inclusions that scatter light with little or no spectral selectivity also exhibits this same absorption minimum. Artists' and travelers' accounts of colored ice tell us that, while remarkable, it is not uncommon. The few 20th-century scientific reports on green icebergs agree with the earlier accounts on the unusual denseness and translucence of highly colored ice. We see the same correlation between ice colors and ice denseness in accounts of glacier ice. When we examine the optical properties of dense, relatively bubble-free ice, we find that we can nearly match its reflectance spectra with either of two multiple -scattering models for ice optics. If we pair these models' reflectance spectra with estimates of polar daylight spectra, we can duplicate the observed colors of green icebergs. Our psychophysical model of human color perception is the 1931 CIE chromaticity space. Although this form of colorimetry has some perceptual faults, we may nonetheless use it as a means of comparing the observed and theoretical colors of green icebergs. In the absence of in situ spectral reflectance measurements, we use video digitizing and spectrodensitometry to extract colorimetric information from color photographs of green icebergs. However, before using these remote sensing techniques, first we must solve the intricate problem of calibrating them against known color standards. After doing this, we find that our analyses of green

  7. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    PubMed

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

  8. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light

    PubMed Central

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m−2⋅s−1 irradiance for a 16 h⋅d−1 photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (Amax) and photosynthetic rate (Pn) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. Pn and Amax under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between Pn and shoot dry weight accumulation. PMID:27014285

  9. Lettuce dieback

    USDA-ARS?s Scientific Manuscript database

    Two related viruses, Tomato bushy stunt virus (TBSV) and Moroccan pepper virus (MPV) cause a disease known as lettuce dieback in California and Arizona. Lettuce dieback is characterized by yellowing, necrosis, stunting and death of lettuce plants, and often occurs in low lying areas with poor drain...

  10. Successful Gene Tagging in Lettuce Using the Tnt1 Retrotransposon from Tobacco

    PubMed Central

    Mazier, Marianne; Botton, Emmanuel; Flamain, Fabrice; Bouchet, Jean-Paul; Courtial, Béatrice; Chupeau, Marie-Christine; Chupeau, Yves; Maisonneuve, Brigitte; Lucas, Hélène

    2007-01-01

    The tobacco (Nicotiana tabacum) element Tnt1 is one of the few identified active retrotransposons in plants. These elements possess unique properties that make them ideal genetic tools for gene tagging. Here, we demonstrate the feasibility of gene tagging using the retrotransposon Tnt1 in lettuce (Lactuca sativa), which is the largest genome tested for retrotransposon mutagenesis so far. Of 10 different transgenic bushes carrying a complete Tnt1 containing T-DNA, eight contained multiple transposed copies of Tnt1. The number of transposed copies of the element per plant was particularly high, the smallest number being 28. Tnt1 transposition in lettuce can be induced by a very simple in vitro culture protocol. Tnt1 insertions were stable in the progeny of the primary transformants and could be segregated genetically. Characterization of the sequences flanking some insertion sites revealed that Tnt1 often inserted into genes. The progeny of some primary transformants showed phenotypic alterations due to recessive mutations. One of these mutations was due to Tnt1 insertion in the gibberellin 3β-hydroxylase gene. Taken together, these results indicate that Tnt1 is a powerful tool for insertion mutagenesis especially in plants with a large genome. PMID:17351058

  11. Using Vertically Integrated Ocean Fields to Characterize Greenland Icebergs' Distribution and Lifetime

    NASA Astrophysics Data System (ADS)

    Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin; Le Sommer, Julien

    2018-05-01

    Icebergs represent approximately half of Greenland's yearly mass loss, having important implications for biological productivity, freshwater fluxes in the ocean, and navigation. This study applies an iceberg model that uses integrated ocean fields (from surface to iceberg keel) to simulate the drift and decay of Greenland icebergs. This version of iceberg model (VERT) is compared with a more widely adopted version (SURF) which only uses surface ocean fields in its equations. We show that icebergs in VERT tend to drift along the shelf break, while in SURF they concentrate along the coastline. Additionally, we show that Greenland's southeast coast is the source of ˜60% of the icebergs that cross the interior of the Labrador Sea—a region that stages buoyancy-driven convection and is, therefore, sensitive to freshwater input.

  12. Assembly of the Lactuca sativa, L. cv. Tizian draft genome sequence reveals differences within major resistance complex 1 as compared to the cv. Salinas reference genome.

    PubMed

    Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2018-02-10

    Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The effects of Antarctic iceberg calving-size distribution in a global climate model

    NASA Astrophysics Data System (ADS)

    Stern, A. A.; Adcroft, A.; Sergienko, O.

    2016-08-01

    Icebergs calved from the Antarctic continent act as moving sources of freshwater while drifting in the Southern Ocean. The lifespan of these icebergs strongly depends on their original size during calving. In order to investigate the effects (if any) of the calving size of icebergs on the Southern Ocean, we use a coupled general circulation model with an iceberg component. Iceberg calving length is varied from 62 m up to 2.3 km, which is the typical range used in climate models. Results show that increasing the size of calving icebergs leads to an increase in the westward iceberg freshwater transport around Antarctica. In simulations using larger icebergs, the reduced availability of meltwater in the Amundsen and Bellingshausen Seas suppresses the sea-ice growth in the region. In contrast, the increased iceberg freshwater transport leads to increased sea-ice growth around much of the East Antarctic coastline. These results suggest that the absence of large tabular icebergs with horizontal extent of tens of kilometers in climate models may introduces systematic biases in sea-ice formation, ocean temperatures, and salinities around Antarctica.

  14. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates

    NASA Astrophysics Data System (ADS)

    Rackow, Thomas; Wesche, Christine; Timmermann, Ralph; Hellmer, Hartmut H.; Juricke, Stephan; Jung, Thomas

    2017-04-01

    We present a simulation of Antarctic iceberg drift and melting that includes small (<2.2 km), medium-sized, and giant tabular icebergs with lengths of more than 10km. The model is initialized with a realistic size distribution obtained from satellite observations. Our study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. Taking iceberg modeling a step further, we simulate drift and melting using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's keel. The climatology estimates of Antarctic iceberg melting based on simulations of small, 'small-to-medium'-sized, and small-to-giant icebergs (including icebergs > 10km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.

  15. Roles of MPBQ-MT in Promoting α/γ-Tocopherol Production and Photosynthesis under High Light in Lettuce

    PubMed Central

    Tang, Yueli; Fu, Xueqing; Shen, Qian; Tang, Kexuan

    2016-01-01

    2-methyl-6-phytyl-1, 4-benzoquinol methyltransferase (MPBQ-MT) is a vital enzyme catalyzing a key methylation step in both α/γ-tocopherol and plastoquinone biosynthetic pathway. In this study, the gene encoding MPBQ-MT was isolated from lettuce (Lactuca sativa) by rapid amplification of cDNA ends (RACE), named LsMT. Overexpression of LsMT in lettuce brought about a significant increase of α- and γ-tocopherol contents with a reduction of phylloquinone (vitamin K1) content, suggesting a competition for a common substrate phytyl diphosphate (PDP) between the two biosynthetic pathways. Besides, overexpression of LsMT significantly increased plastoquinone (PQ) level. The increase of tocopherol and plastoquinone levels by LsMT overexpression conduced to the improvement of plants’ tolerance and photosynthesis under high light stress, by directing excessive light energy toward photosynthetic production rather than toward generation of more photooxidative damage. These findings suggest that the role and function of MPBQ-MT can be further explored for enhancing vitamin E value, strengthening photosynthesis and phototolerance under high light in plants. PMID:26867015

  16. Melting icebergs to produce fresh water and mechanical energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camirand, W.M.; Hautala, E.; Randall, J.M.

    1981-10-20

    Fresh water and mechanical energy are obtained from melting of icebergs. Warm surface seawater is contacted with a fluid, which is vaporized. The resulting vapor is used to generate mechanical energy and then is condensed by contacting it with cold melt water from the iceberg. The fluid is regenerated with a concomitant elevation in the temperature of the melt water. The warmer melt water is cycled to the body of the iceberg to facilitate its melting and produce additional cold melt water, which is apportioned as fresh water and water cycled to condense the aforesaid vapor. In an alternate embodimentmore » of the invention warm seawater is evaporated at reduced pressure. Mechanical energy is generated from the vapor, which is then condensed by direct and intimate contact with cold melt water from the iceberg. The resultant fresh water is a mixture of condensed vapor and melt water from the iceberg and has a temperature greater than the cold melt water. This fresh water mixture is contacted with the body of the iceberg to further melt it; part of the cold melt water is separated as fresh water and the remainder is cycled for use in condensing the vapor from the warm surface seawater.« less

  17. Subsurface iceberg melt key to Greenland fjord freshwater budget

    NASA Astrophysics Data System (ADS)

    Moon, T.; Sutherland, D. A.; Carroll, D.; Felikson, D.; Kehrl, L.; Straneo, F.

    2018-01-01

    Liquid freshwater fluxes from the Greenland ice sheet affect ocean water properties and circulation on local, regional and basin-wide scales, with associated biosphere effects. The exact impact, however, depends on the volume, timing and location of freshwater releases, which are poorly known. In particular, the transformation of icebergs, which make up roughly 30-50% of the loss of the ice-sheet mass to liquid freshwater, is not well understood. Here we estimate the spatial and temporal distribution of the freshwater flux for the Helheim-Sermilik glacier-fjord system in southeast Greenland using an iceberg-melt model that resolves the subsurface iceberg melt. By estimating seasonal variations in all the freshwater sources, we confirm quantitatively that iceberg melt is the largest annual freshwater source in this system type. We also show that 68-78% of the iceberg melt is released below a depth of 20 m and, seasonally, about 40-100% of that melt is likely to remain at depth, in contrast with the usual model assumptions. Iceberg melt also peaks two months after all the other freshwater sources peak. Our methods provide a framework to assess individual freshwater sources in any tidewater system, and our results are particularly applicable to coastal regions with a high solid-ice discharge in Greenland.

  18. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks

    PubMed Central

    Fleming, Andrew; Sands, Chester J.; Quartino, Maria Liliana; Deregibus, Dolores

    2018-01-01

    Sea ice, including icebergs, has a complex relationship with the carbon held within animals (blue carbon) in the polar regions. Sea-ice losses around West Antarctica's continental shelf generate longer phytoplankton blooms but also make it a hotspot for coastal iceberg disturbance. This matters because in polar regions ice scour limits blue carbon storage ecosystem services, which work as a powerful negative feedback on climate change (less sea ice increases phytoplankton blooms, benthic growth, seabed carbon and sequestration). This resets benthic biota succession (maintaining regional biodiversity) and also fertilizes the ocean with nutrients, generating phytoplankton blooms, which cascade carbon capture into seabed storage and burial by benthos. Small icebergs scour coastal shallows, whereas giant icebergs ground deeper, offshore. Significant benthic communities establish where ice shelves have disintegrated (giant icebergs calving), and rapidly grow to accumulate blue carbon storage. When 5000 km2 giant icebergs calve, we estimate that they generate approximately 106 tonnes of immobilized zoobenthic carbon per year (t C yr−1). However, their collisions with the seabed crush and recycle vast benthic communities, costing an estimated 4 × 104 t C yr−1. We calculate that giant iceberg formation (ice shelf disintegration) has a net potential of approximately 106 t C yr−1 sequestration benefits as well as more widely known negative impacts. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’. PMID:29760118

  19. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks.

    PubMed

    Barnes, David K A; Fleming, Andrew; Sands, Chester J; Quartino, Maria Liliana; Deregibus, Dolores

    2018-06-28

    Sea ice, including icebergs, has a complex relationship with the carbon held within animals (blue carbon) in the polar regions. Sea-ice losses around West Antarctica's continental shelf generate longer phytoplankton blooms but also make it a hotspot for coastal iceberg disturbance. This matters because in polar regions ice scour limits blue carbon storage ecosystem services, which work as a powerful negative feedback on climate change (less sea ice increases phytoplankton blooms, benthic growth, seabed carbon and sequestration). This resets benthic biota succession (maintaining regional biodiversity) and also fertilizes the ocean with nutrients, generating phytoplankton blooms, which cascade carbon capture into seabed storage and burial by benthos. Small icebergs scour coastal shallows, whereas giant icebergs ground deeper, offshore. Significant benthic communities establish where ice shelves have disintegrated (giant icebergs calving), and rapidly grow to accumulate blue carbon storage. When 5000 km 2 giant icebergs calve, we estimate that they generate approximately 10 6 tonnes of immobilized zoobenthic carbon per year (t C yr -1 ). However, their collisions with the seabed crush and recycle vast benthic communities, costing an estimated 4 × 10 4  t C yr -1 We calculate that giant iceberg formation (ice shelf disintegration) has a net potential of approximately 10 6  t C yr -1 sequestration benefits as well as more widely known negative impacts.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Authors.

  20. Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L.).

    PubMed

    Złotek, Urszula; Świeca, Michał

    2016-05-01

    This paper presents a study on changes in the main phytochemical levels and antioxidant and anti-inflammatory activity of lettuce caused by different doses and times of application of yeast extracts. Elicitation with yeast extract caused an increase in the total phenolic compounds and chlorophyll content, which varied according to the dose and time of spraying, but it did not have a positive impact on vitamin C, flavonoid and carotenoid content in lettuce. The best effect was achieved by double spraying with 1% yeast extract and by single spraying with 0.1% yeast extract. The increase in phytochemical content was positively correlated with the antioxidant and anti-inflammatory activity of the studied lettuce leaves. Chicoric acid seems to be the major contributor to these antioxidant activities. Yeast extract may be used as a natural, environmentally friendly and safe elicitor for improving the health-promoting qualities of lettuce. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QToF/MS using MSE scan mode.

    PubMed

    Viacava, Gabriela E; Roura, Sara I; Berrueta, Luis A; Iriondo, Carmen; Gallo, Blanca; Alonso-Salces, Rosa M

    2017-12-01

    Lettuce (Lactuca sativa) is one of the most popular leafy vegetables in the world and constitutes a major dietary source of phenolic compounds with health-promoting properties. In particular, the demand for green and red oak-leaf lettuces has considerably increased in the last years but few data on their polyphenol composition are available. Moreover, the usage of analytical edge technology can provide new structural information and allow the identification of unknown polyphenols. In the present study, the phenolic profiles of green and red oak-leaf lettuce cultivars were exhaustively characterized by ultrahigh-performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI), and quadrupole time-of-flight mass spectrometry (QToF/MS), using the MS E instrument acquisition mode for recording simultaneously exact masses of precursor and fragment ions. One hundred fifteen phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried lettuce leaves. Forty-eight of these compounds were tentatively identified for the first time in lettuce, and only 20 of them have been previously reported in oak-leaf lettuce cultivars in literature. Both oak-leaf lettuce cultivars presented similar phenolic composition, except for apigenin-glucuronide and dihydroxybenzoic acid, only detected in the green cultivar; and for luteolin-hydroxymalonylhexoside, an apigenin conjugate with molecular formula C 40 H 54 O 19 (monoisotopic MW = 838.3259 u), cyanidin-3-O-glucoside, cyanidin-3-O-(3″-O-malonyl)glucoside, cyanidin-3-O-(6″-O-malonyl)glucoside, and cyanidin-3-O-(6″-O-acetyl)glucoside, only found in the red cultivar. The UHPLC-DAD-ESI-QToF/MS E approach demonstrated to be a useful tool for the characterization of phenolic compounds in complex plant matrices. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Modeling the drift of massive icebergs to the subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Condron, A.; Hill, J. C.

    2013-12-01

    New evidence from high-resolution seafloor bathymetry data indicates that massive (>300m thick) icebergs from the Laurentide Ice Sheet (LIS) drifted south to the tip of Florida during the last deglaciation. This finding is particularly exciting as it contradicts evidence from marine sediments that icebergs were mainly confined to the subpolar North Atlantic (50 - 70N) at this time. Indeed, the freshwater released from icebergs melting in the subpolar gyre is repeatedly cited as a main trigger for a slow-down of the Atlantic MOC in the past, and the possible cause of any climate cooling related to the melting of the Greenland Ice Sheet in the future. Using a sophisticated iceberg model (MITberg), coupled to a high (18-km; 1/6 deg.) resolution ocean model (MITgcm), we investigate the ocean circulation dynamics required to allow icebergs to drift to the southern tip of Florida. We find that icebergs only reach this location if they turn right at the Grand Banks of Newfoundland, and stay inshore of the Gulf Stream all the way to Florida. Modern-day circulation dynamics do not readily allow this to happen as cold, southward flowing, Labrador Current Water (important for iceberg survival) has little penetration south of Cape Hatteras. However, when a liquid meltwater flood is released from Hudson Bay at the same time, icebergs are rapidly transported (inshore of the Gulf Stream) in a narrow, buoyant, coastal current all the way to southern Florida. The meltwater and icebergs result in a significant freshening of the subtropical North Atlantic and weaken the strength of the Gulf Stream, suggesting such an event would have a large cooling effect on climate. We are only able to simulate the flow of meltwater and icebergs to the subtropics by modeling ocean circulation at a resolution that is 5 - 10 times higher than the majority of existing paleoclimate models; at lower resolutions the narrow, coastal boundary currents important for iceberg transport to the subtropics are

  3. Modification of yield and chlorophyll content in leaf lettuce by HPS radiation and nitrogen treatments.

    PubMed

    Mitchell, C A; Leakakos, T; Ford, T L

    1991-11-01

    This study evaluated the potential of high photosynthetic photon flux (PPF) from high-pressure sodium (HPS) lamps, alone or in combination with metal halide (MH) plus quartz iodide (QI) incandescent lamps, to support lettuce growth, with or without N supplementation. Varying exposures to radiation from combined HPS, MH, and QI lamps influenced dry weight gain and photosynthetic pigment content of hydroponically grown Black-Seeded Simpson' lettuce (Lactuca sativa L.) seedlings. Cumulative leaf dry weight declined with increasing exposure, up to 20 hours per day, to 660 micromoles m-2 s-1 of photosynthetically active radiation (PAR) from HPS lamps concomitant with constant 20 hours per day of 400 micromoles m-2 s-1 from MH + QI lamps. Leaves progressively yellowed with increasing exposure to radiation from the three-lamp combination, corresponding to lower specific chlorophyll content but not to specific carotenoid content. Lettuce grown under 20-hour photoperiods of 400, 473, or 668 micromoles m-2 s-1 from HPS radiation alone had the highest leaf dry weight at a PPF of 473 micromoles m-2 s-1. Chlorophyll, but not carotenoid specific content, decreased with each incremental increase in PPF from HPS lamps. Doubling the level of N in nutrient solution and supplying it as a combination of NH4+ and NO3- partially ameliorated adverse effects of high PPF on growth and pigment content relative to treatments using single-strength N as NO3-.

  4. Noisy Icebergs: Low Frequency Acoustic Noise Levels Observed off Palmyra Atoll

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Wiggins, S. M.; Sirovic, A.; Tournadre, J.; Oleson, E.; Haxel, J. H.; Dziak, R. P.

    2016-12-01

    Annually tens of thousands of icebergs from Antarctica drift into the open ocean. In late 2007, two unusually large icebergs, B15a and C19a, entered the Pacific region of the Southern Ocean, and began rapidly disintegrating. Approximately 1.5 years later in April 2009, both icebergs had completely fragmented. An unappreciated aspect of the destructive processes that occur while these large icebergs break apart is the high acoustic source levels that are generated and the contribution of those signals to the ocean soundscape throughout the southern hemisphere. Matsumoto et al. (2014) found evidence of B15a and C19a affecting low-frequency noise levels below 36 Hz at 8°N, 110°W in the eastern equatorial Pacific at a range of 7,500 km. Similar evidence for disintegrating icebergs affecting soundscapes at a similar range was observed in data from 2007-2009 High-frequency Acoustic Recording Package recordings by Scripps Institution of Oceanography near Palmyra atoll in the central equatorial Pacific. Noise levels rose in 2007 as the icebergs entered the Pacific and decreased as the destructive processes declined and the icebergs disintegrated in 2009. This suggests that iceberg sounds are a significant natural noise source in the global ocean, and the area affected by the destructive processes during their decomposition can be as large as the entire southern hemisphere.

  5. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang

    2013-02-01

    Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (<5000 ppm) for NaCl recycle while lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.

  6. Effect of modified atmosphere packaging on the persistence and expression of virulence factors of Escherichia coli O157:H7 on shredded iceberg lettuce.

    PubMed

    Sharma, Manan; Lakshman, Sudesna; Ferguson, Sean; Ingram, David T; Luo, Yaguang; Patel, Jitu

    2011-05-01

    Fresh-cut leafy greens contaminated with Escherichia coli O157:H7 have caused foodborne outbreaks. Packaging conditions, coupled with abusive storage temperatures of contaminated lettuce, were evaluated for their effect on the potential virulence of E. coli O157:H7. Shredded lettuce was inoculated with 5.58 and 3.98 log CFU E. coli O157:H7 per g and stored at 4 and 15°C, respectively, for up to 10 days. Lettuce was packaged under treatment A (modified atmosphere packaging conditions used for commercial fresh-cut produce, in gas-permeable film with N(2)), treatment B (near-ambient air atmospheric conditions in a gas-permeable film with microperforations), and treatment C (high-CO(2) and low-O(2) conditions in a gas-impermeable film). E. coli O157:H7 populations from each treatment were determined by enumeration of numbers on MacConkey agar containing nalidixic acid. RNA was extracted from packaged lettuce for analysis of expression of virulence factor genes stx(2), eae, ehxA, iha, and rfbE. E. coli O157:H7 populations on lettuce at 4°C under all treatments decreased, but most considerably so under treatment B over 10 days. At 15°C, E. coli O157:H7 populations increased by at least 2.76 log CFU/g under all treatments. At 15°C, expression of eae and iha was significantly greater under treatment B than it was under treatments A and C on day 3. Similarly, treatment B promoted significantly higher expression of stx(2), eae, ehxA, and rfbE genes on day 10, compared with treatments A and C at 15°C. Results indicate that storage under near-ambient air atmospheric conditions can promote higher expression levels of O157 virulence factors on lettuce, and could affect the severity of E. coli O157:H7 infections associated with leafy greens.

  7. Changes in hyperspectral reflectance signatures of lettuce leaves in response to macronutrient deficiencies

    NASA Astrophysics Data System (ADS)

    Pacumbaba, R. O.; Beyl, C. A.

    2011-07-01

    The adaptation of specific remote sensing and hyperspectral analysis techniques for the determination of incipient nutrient stress in plants could allow early detection and precision supplementation for remediation, important considerations for minimizing mass of advanced life support systems on space station and long term missions. This experiment was conducted to determine if hyperspectral reflectance could be used to detect nutrient stress in Lactuca sativa L. cv. Black Seeded Simpson. Lettuce seedlings were grown for 90 days in a greenhouse or growth chamber in vermiculite containing modified Hoagland's nutrient solution with key macronutrient elements removed in order to induce a range of nutrient stresses, including nitrogen, phosphorus, potassium, calcium, and magnesium. Leaf tissue nutrient concentrations were compared with corresponding spectral reflectances taken at the end of 90 days. Spectral reflectances varied with growing location, position on the leaf, and nutrient deficiency treatment. Spectral responses of lettuce leaves under macronutrient deficiency conditions showed an increase in reflectance in the red, near red, and infrared wavelength ranges. The data obtained suggest that spectral reflectance shows the potential as a diagnostic tool in predicting nutrient deficiencies in general. Overlapping of spectral signatures makes the use of wavelengths of narrow bandwidths or individual bands for the discrimination of specific nutrient stresses difficult without further data processing.

  8. Climate Process Team "Representing calving and iceberg dynamics in global climate models"

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.; Adcroft, A.; Amundson, J. M.; Bassis, J. N.; Hallberg, R.; Pollard, D.; Stearns, L. A.; Stern, A. A.

    2016-12-01

    Iceberg calving accounts for approximately 50% of the ice mass loss from the Greenland and Antarctic ice sheets. By changing a glacier's geometry, calving can also significantly perturb the glacier's stress-regime far upstream of the grounding line. This process can enhance discharge of ice across the grounding line. Once calved, icebergs drift into the open ocean where they melt, injecting freshwater to the ocean and affecting the large-scale ocean circulation. The spatial redistribution of the freshwater flux have strong impact on sea-ice formation and its spatial variability. A Climate Process Team "Representing calving and iceberg dynamics in global climate models" was established in the fall 2014. The major objectives of the CPT are: (1) develop parameterizations of calving processes that are suitable for continental-scale ice-sheet models that simulate the evolution of the Antarctic and Greenland ice sheets; (2) compile the data sets of the glaciological and oceanographic observations that are necessary to test, validate and constrain the developed parameterizations and models; (3) develop a physically based iceberg component for inclusion in the large-scale ocean circulation model. Several calving parameterizations based suitable for various glaciological settings have been developed and implemented in a continental-scale ice sheet model. Simulations of the present-day Antarctic and Greenland ice sheets show that the ice-sheet geometric configurations (thickness and extent) are sensitive to the calving process. In order to guide the development as well as to test calving parameterizations, available observations (of various kinds) have been compiled and organized into a database. Monthly estimates of iceberg distribution around the coast of Greenland have been produced with a goal of constructing iceberg size distribution and probability functions for iceberg occurrence in particular regions. A physically based iceberg model component was used in a GFDL

  9. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.)

    PubMed Central

    Koronowicz, Aneta A.; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław

    2016-01-01

    Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment. PMID:26799209

  10. Effects of stacked quantitative resistances to downy mildew in lettuce do not simply add up.

    PubMed

    den Boer, Erik; Pelgrom, Koen T B; Zhang, Ningwen W; Visser, Richard G F; Niks, Rients E; Jeuken, Marieke J W

    2014-08-01

    In a stacking study of eight resistance QTLs in lettuce against downy mildew, only three out of ten double combinations showed an increased resistance effect under field conditions. Complete race nonspecific resistance to lettuce downy mildew, as observed for the nonhost wild lettuce species Lactuca saligna, is desired in lettuce cultivation. Genetic dissection of L. saligna's complete resistance has revealed several quantitative loci (QTL) for resistance with field infection reductions of 30-50 %. To test the effect of stacking these QTL, we analyzed interactions between homozygous L. saligna CGN05271 chromosome segments introgressed into the genetic background of L. sativa cv. Olof. Eight different backcross inbred lines (BILs) with single introgressions of 30-70 cM and selected predominately for quantitative resistance in field situations were intercrossed. Ten developed homozygous lines with stacked introgression segments (double combinations) were evaluated for resistance in the field. Seven double combinations showed a similar infection as the individual most resistant parental BIL, revealing epistatic interactions with 'less-than-additive' effects. Three double combinations showed an increased resistance level compared to their parental BILs and their interactions were additive, 'less-than-additive' epistatic and 'more-than-additive' epistatic, respectively. The additive interaction reduced field infection by 73 %. The double combination with a 'more-than-additive' epistatic effect, derived from a combination between a susceptible and a resistant BIL with 0 and 30 % infection reduction, respectively, showed an average field infection reduction of 52 %. For the latter line, an attempt to genetically dissect its underlying epistatic loci by substitution mapping did not result in smaller mapping intervals as none of the 22 substitution lines reached a similar high resistance level. Implications for breeding and the inheritance of L. saligna's complete

  11. Diversity and evolutionary history of lettuce necrotic yellows virus in Australia and New Zealand.

    PubMed

    Higgins, Colleen M; Chang, Wee-Leong; Khan, Subuhi; Tang, Joe; Elliott, Carol; Dietzgen, Ralf G

    2016-02-01

    Lettuce necrotic yellows virus (LNYV) is the type member of the genus Cytorhabdovirus, family Rhabdoviridae, and causes a severe disease of lettuce (Lactuca sativa L.). This virus has been described as endemic to Australia and New Zealand, with sporadic reports of a similar virus in Europe. Genetic variability studies of plant-infecting rhabdoviruses are scarce. We have extended a previous study on the variability of the LNYV nucleocapsid gene, comparing sequences from isolates sampled from both Australia and New Zealand, as well as analysing symptom expression on Nicotiana glutinosa. Phylogenetic and BEAST analyses confirm separation of LNYV isolates into two subgroups (I and II) and suggest that subgroup I is slightly older than subgroup II. No correlation was observed between isolate subgroup and disease symptoms on N. glutinosa. The origin of LNYV remains unclear; LNYV may have moved between native and weed hosts within Australia or New Zealand before infecting lettuce or may have appeared as a result of at least two incursions, with the first coinciding with the beginning of European agriculture in the region. The apparent extinction of subgroup I in Australia may have been due to less-efficient dispersal than that which has occurred for subgroup II - possibly a consequence of suboptimal interactions with plant and/or insect hosts. Introduction of subgroup II to New Zealand appears to be more recent. More-detailed epidemiological studies using molecular tools are needed to fully understand how LNYV interacts with its hosts and to determine where the virus originated.

  12. Applicability of ERTS for surveying Antarctic iceberg resources

    NASA Technical Reports Server (NTRS)

    Hult, J. L. (Principal Investigator); Ostrander, N. C.

    1973-01-01

    The author has identified the following significant results. Recognition and interpretation of icebergs proves to be easy when they are locked in sea or fast ice. They stand out in relief, particularly well in band 7. Recongition of isolated icebergs is much more difficult. Size, shape, interaction with sea ice, and change over time must then be used to help in positive identification. There seems to be much less current and relative motion between icebergs and sea in much of the test sector than had been believed from avialable exploration information. However, most of this type of assessment must await the accumulation and analysis of the full season data.

  13. Impact of icebergs on net primary productivity in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Ye; Hou, Shugui

    2017-03-01

    Productivity in the Southern Ocean (SO) is iron-limited, and supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine environment. However, recent studies show that icebergs could provide a comparable amount of bioavailable iron to the SO as aeolian dust. In addition, small-scale areal studies suggest increased concentrations of chlorophyll, krill, and seabirds surrounding icebergs. Based on previous research, this study aims to examine whether iceberg occurrence has a significant impact on marine productivity at the scale of the SO, using remote sensing data of iceberg occurrences and ocean net primary productivity (NPP) covering the period 2002-2014. The impacts of both large and small icebergs are examined in four major ecological zones of the SO: the continental shelf zone (CSZ), the seasonal ice zone (SIZ), the permanent open ocean zone (POOZ), and the polar front zone (PFZ). We found that the presence of icebergs is associated with elevated levels of NPP, but the differences vary in different zones. Grid cells with small icebergs on average have higher NPP than other cells in most iron-deficient zones: 21 % higher for the SIZ, 16 % for the POOZ, and 12 % for the PFZ. The difference is relatively small in the CSZ where iron is supplied from meltwater and sediment input from the continent. In addition, NPP of grid cells adjacent to large icebergs on average is 10 % higher than that of control cells in the vicinity. The difference is larger at higher latitudes, where most large icebergs are concentrated. From 1992 to 2014, there is a significant increasing trend for both small and large icebergs. The increase was most rapid in the early 2000s and has leveled off since then. As the climate continues to warm, the Antarctic Ice Sheet is expected to experience increased mass loss as a whole, which could lead to more icebergs in the region. Based on our study, this could result in a higher level of NPP in the SO as a whole

  14. Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection.

    PubMed

    Ribas-Agustí, Albert; Gratacós-Cubarsí, Marta; Sárraga, Carmen; García-Regueiro, José-Antonio; Castellari, Massimo

    2011-01-01

    Lettuce is a widely consumed vegetable and a good source of phenolic compounds. Several factors (genetic, agronomical and environmental) can influence the lettuce composition; their effects are not completely defined and more studies are needed on this topic. To develop an improved ultra-high-performance liquid chromatography (UHPLC) method to quantify the main target intact phenolic compounds in lettuce. UHPLC identification of the compounds was supported by PAD spectra and MS(n) analyses. Quantification was carried out by PAD, by creating matrix-matched calibration curves at the specific wavelength for each compound. Sample pretreatment was simplified, with neither purification nor hydrolysis steps. Chromatographic conditions were chosen to minimise matrix interferences and to give a suitable separation of the major phenolic compounds within 27 min. The method allowed the quantification of 11 intact phenolic compounds in Romaine lettuces, including phenolic acids (caffeoyl and p-coumaroyl esters) and flavonoids (quercetin glycosides). Four p-coumaroyl esters were tentatively identified and quantified for the first time in lettuce. The main intact phenolic compounds, including four novel p-coumaroyl esters, were simultaneously quantified in lettuce with optimal performances and a reduced total time of analysis. These findings make headway in the understanding of the lettuce phytochemicals with potential nutritional relevance. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves

    PubMed Central

    Liu, Yan; Moore, John C.; Cheng, Xiao; Gladstone, Rupert M.; Bassis, Jeremy N.; Liu, Hongxing; Wen, Jiahong; Hui, Fengming

    2015-01-01

    Iceberg calving from all Antarctic ice shelves has never been directly measured, despite playing a crucial role in ice sheet mass balance. Rapid changes to iceberg calving naturally arise from the sporadic detachment of large tabular bergs but can also be triggered by climate forcing. Here we provide a direct empirical estimate of mass loss due to iceberg calving and melting from Antarctic ice shelves. We find that between 2005 and 2011, the total mass loss due to iceberg calving of 755 ± 24 gigatonnes per year (Gt/y) is only half the total loss due to basal melt of 1516 ± 106 Gt/y. However, we observe widespread retreat of ice shelves that are currently thinning. Net mass loss due to iceberg calving for these ice shelves (302 ± 27 Gt/y) is comparable in magnitude to net mass loss due to basal melt (312 ± 14 Gt/y). Moreover, we find that iceberg calving from these decaying ice shelves is dominated by frequent calving events, which are distinct from the less frequent detachment of isolated tabular icebergs associated with ice shelves in neutral or positive mass balance regimes. Our results suggest that thinning associated with ocean-driven increased basal melt can trigger increased iceberg calving, implying that iceberg calving may play an overlooked role in the demise of shrinking ice shelves, and is more sensitive to ocean forcing than expected from steady state calving estimates. PMID:25733856

  16. Impact of Icebergs on Net Primary Productivity in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Ye; Hou, Shugui

    2017-04-01

    Productivity in the Southern Ocean (SO) is iron-limited, and supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine environment. However, recent studies show that icebergs could provide comparable amount of bioavailable iron to the SO as aeolian dust. In addition, small scale areal studies suggest increased concentrations of chlorophyll, krill, and seabirds surrounding icebergs. Based on previous research, this study aims to examine whether iceberg occurrence has a significant impact on marine productivity at the scale of the SO, using remote sensing data of iceberg occurrences and ocean net primary productivity (NPP) covering the period 2002-2014. The impacts of both large and small icebergs are examined in four major ecological zones of the SO: the continental shelf zone (CSZ), the seasonal ice zone (SIZ), the permanent open ocean zone (POOZ) and the polar front zone (PFZ). We found that both large and small icebergs have an observable positive impact on NPP, but their impacts vary in different zones. Small icebergs on average increase NPP in most iron deficient zones: by 21% for the SIZ, 16% for the POOZ, and 12% for the PFZ, but have relatively small effect in the CSZ where iron is supplied from melt water and sediment input from the continent. Large icebergs on average increase the NPP by about 10%. Their impacts are stronger at higher latitudes, where they are more concentrated. From 1992-2014, there is a significant increasing trend for both small and large icebergs. The increase was most rapid in the early 2000s, and has levelled off since then. As the climate continues to warm, the Antarctic Ice Sheet is expected to experience increased mass loss as a whole, which could lead to more icebergs in the region. Based on our study, this could result in higher level of NPP in the SO as a whole, providing a negative feedback for global warming.

  17. Comparative Infection Progress Analysis of Lettuce big-vein virus and Mirafiori lettuce virus in Lettuce Crops by Developed Molecular Diagnosis Techniques.

    PubMed

    Navarro, Jose A; Botella, Francisco; Maruhenda, Antonio; Sastre, Pedro; Sánchez-Pina, M Amelia; Pallas, Vicente

    2004-05-01

    ABSTRACT Nonisotopic molecular dot blot hybridization technique and multiplex reverse transcription-polymerase chain reaction assay for the specific detection of Lettuce big-vein virus (LBVV) and Mirafiori lettuce virus (MiLV) in lettuce tissue were developed. Both procedures were suitable for the specific detection of both viruses in a range of naturally infected lettuce plants from various Spanish production areas and seven different cultivars. The study of the distribution of both viruses in the plant revealed that the highest concentration of LBVV and MiLV occurred in roots and old leaves, respectively. LBVV infection progress in a lettuce production area was faster than that observed for MiLV. In spite of different rates of virus infection progress, most lettuce plants became infected with both viruses about 100 days posttransplant. The appearance of both viruses in lettuce crops was preceded by a peak in the concentration of resting spores and zoosporangia of the fungus vector Olpidium brassicae in lettuce roots.

  18. Enhancement of lettuce yield by manipulation of light and nitrogen nutrition

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1983-01-01

    Several levels of photosynthetic photon flux density (PPFD) were tested for effects on growth of 4 cultivars of lettuce (Lactuca sativa L.) under controlled-environment conditions. Growth of 'Salad Bowl', 'Bibb', and 'Ruby' was greater at 932 micromoles s-1 m-2 than at < or = 644 micromoles s-1 m-2 under a 16-hour photoperiod. Thirty mM NO3- or 5 mM NH4+ + 25 mM NO3- increased leaf dry weight while reducing leaf chlorosis in 'Salad Bowl' and 'Grand Rapids' relative to that with 15 mM NO3-, and reduced leaf purpling in 'Bibb' and 'Ruby' with little or no effect on yield. Continuous illumination with 455 or 918 micromoles s-1 m-2 stimulated yield of 'Salad Bowl' and 'Bibb' when 30 mM N as NH4+ + NO3- was used relative to that with 15 mM NO3-.

  19. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce).

    PubMed

    Suzuki, Wakako; Sugawara, Masayuki; Miwa, Kyoko; Morikawa, Masaaki

    2014-07-01

    Acinetobacter calcoaceticus P23 is a plant growth-promoting bacterium that was isolated from the surface of duckweed (Lemna aoukikusa). The bacterium was observed to colonize on the plant surfaces and increase the chlorophyll content of not only the monocotyledon Lemna minor but also the dicotyledon Lactuca sativa in a hydroponic culture. This effect on the Lactuca sativa was significant in nutrient-poor (×1/100 dilution of H2 medium) and not nutrient-rich (×1 or ×1/10 dilutions of H2 medium) conditions. Strain P23 has the potential to play a part in the future development of fertilizers and energy-saving hydroponic agricultural technologies. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts

    PubMed Central

    Crozier, Louise; Hedley, Pete E.; Morris, Jenny; Wagstaff, Carol; Andrews, Simon C.; Toth, Ian; Jackson, Robert W.; Holden, Nicola J.

    2016-01-01

    Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 ‘Sakai,’ to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant–microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate

  1. The record of iceberg roll generated waves from sediments and seismics

    NASA Astrophysics Data System (ADS)

    Rosser, N. J.; Szczucinski, W.; Strzelecki, M.; Long, A. J.; Norman, E. C.; Dunning, S.; Drewniak, M.

    2013-12-01

    Iceberg-roll tsunamis in coastal settings have been observed to generate significant local waves, that hold potential to be recorded in coastal depositional records. Capturing the past magnitude and frequency of such events remains challenging, hindered by a lack of a good understanding of the nature, recurrence and scale of iceberg rolls, and more specifically those rolls that generate waves. Here we consider the sedimentary evidence for iceberg rolls in West Central Greenland, based upon survey of depositional environments in a range of open and confined coastal environments. We examine both an open 80 km fjord setting, and a series of confined ice-marginal beaches. We combine a detailed interpretation of sediment deposits from shore-normal transects with wider-scale high-resolution terrestrial laser scanning of sediments. Our sites - Vaigat, which separates Disko Island from the Nussuaq Peninsular, and the northern shore of Icefjord - both have a recent history of tsunamis, triggered variously by large rock avalanches, landslides and iceberg rolls. Icebergs in Vaigat and Icefjord are observed to undergo frequent failure and roll, generating - where circumstances permit - nearshore waves of meter-scale. To obtain a more detailed understanding of the likely recurrence of such iceberg roll waves and to consider their influence upon the preserved sedimentary record, we undertook an intensive 2-month monitoring campaign during sea-ice free conditions in summer 2013 to determine the patterns in the location, magnitude, frequency and timing of iceberg roll waves. Innovatively, using microseismic monitoring combined with time-lapse photography and weather monitoring, we derive a first-order model of the occurrence of iceberg roll waves. We then use this to inform our interpretation of deposits in these two environments, and consider the presence and absence of records of iceberg roll deposits in such settings. The study was funded by Polish National Science Centre grant

  2. The Rest of the C2 Iceberg

    DTIC Science & Technology

    2014-08-01

    Iceberg Feature ones—another documented cognitive bias that is largely subconscious . A final opportunity lost by not having a forward geographic presence...leading to a subtle bias towards the tip-of-the-iceberg systems that most individuals have more famil- iarity with from their tactical backgrounds...as soon as possible to maintain career viability in a system biased more towards tactical achievement. Acknowledge That the Heart of Operational C2 Is

  3. Occurrence and Partial Characterization of Lettuce big vein associated virus and Mirafiori lettuce big vein virus in Lettuce in Iran.

    PubMed

    Alemzadeh, E; Izadpanah, K

    2012-12-01

    Mirafiori lettuce big vein virus (MiLBVV) and lettuce big vein associated virus (LBVaV) were found in association with big vein disease of lettuce in Iran. Analysis of part of the coat protein (CP) gene of Iranian isolates of LBVaV showed 97.1-100 % nucleotide sequence identity with other LBVaV isolates. Iranian isolates of MiLBVV belonged to subgroup A and showed 88.6-98.8 % nucleotide sequence identity with other isolates of this virus when amplified by PCR primer pair MiLV VP. The occurrence of both viruses in lettuce crop was associated with the presence of resting spores and zoosporangia of the fungus Olpidium brassicae in lettuce roots under field and greenhouse conditions. Two months after sowing lettuce seed in soil collected from a lettuce field with big vein affected plants, all seedlings were positive for LBVaV and MiLBVV, indicating soil transmission of both viruses.

  4. Laboratory investigations of seismicity caused by iceberg calving and capsize

    NASA Astrophysics Data System (ADS)

    Cathles, L. M. M., IV; Kaluzienski, L. M.; Burton, J. C.

    2015-12-01

    The calving and capsize of cubic kilometer-sized icebergs in both Greenland and Antarctica are known to be the source of long-period seismic events classified as glacial earthquakes. The ability to monitor both calving events and the mass of ice calved using the Global Seismographic Network is quite attractive, however, the basic physics of these large calving events must be understood to develop a robust relationship between seismic magnitude and mass of ice calved. The amplitude and duration of the seismic signal is expected to be related to the mass of the calved iceberg and the magnitude of the acceleration of the iceberg's center of mass, yet a simple relationship between these quantities has proved difficult to develop from in situ observations or numerical models. To address this, we developed and carried out a set of experiments on a laboratory scale model of iceberg calving. These experiments were designed to measure several aspects of the post-fracture calving process. Our results show that a combination of mechanical contact forces and hydrodynamic pressure forces are generated by the capsize of an iceberg adjacent to a glacier's terminus. These forces combine to produce the net horizontal centroid single force (CSF) which is often used to model glacial earthquake sources. We find that although the amplitude and duration of the force applied to the terminus generally increases with the iceberg mass, the details depend on the geometry of the iceberg and the depth of the water. The resulting seismic signal is thus crucially dependent on hydrodynamics of the capsize process.

  5. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes.

    PubMed

    Argyris, Jason; Dahal, Peetambar; Hayashi, Eiji; Still, David W; Bradford, Kent J

    2008-10-01

    Lettuce (Lactuca sativa 'Salinas') seeds fail to germinate when imbibed at temperatures above 25 degrees C to 30 degrees C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37 degrees C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.

  6. Iceberg Ploughmarks Indicate Past Rapid Iceberg Calving and Retreat of Pine Island-Thwaites Ice Stream due to Marine Ice-Cliff Instability Processes

    NASA Astrophysics Data System (ADS)

    Wise, M.; Dowdeswell, J. A.; Larter, R. D.; Jakobsson, M.

    2016-12-01

    Seafloor ploughmarks provide evidence of past and present iceberg dimensions and drift direction. Today, Pine Island and Thwaites glaciers, which account for 35% of mass loss from the West Antarctic Ice Sheet (WAIS), calve mainly large, tabular icebergs, which, when grounded, produce `toothcomb-like' multi-keeled ploughmarks. High-resolution multi-beam swath bathymetry of the mid-shelf Pine Island Trough and adjacent banks, reveals many linear-curvilinear depressions interpreted as iceberg-keel ploughmarks, the majority of which are single-keeled in form. From measurements of ploughmark planform and cross-sections, we find iceberg calving from the palaeo-Pine Island-Thwaites Ice Stream was not characterised by small numbers of large, tabular icebergs, but instead, by a large number of `smaller' icebergs with v-shaped keels. Geological evidence of ploughmark form and water-depth distribution indicates calving-margin thicknesses ( 950 m) and subaerial ice-cliff elevations ( 100 m) equivalent to the theoretical threshold recently predicted to trigger ice-cliff structural collapse through Marine Ice Cliff Instability (MICI) processes. Significantly, our proposed period of iceberg ploughing predates the early Holocene climate optimum, and likely occurred in an absence of widespread surface melt. We therefore provide the first observational evidence of rapid retreat of the Palaeo-Pine Island-Thwaites ice stream from the crest of a large, mid-shelf sedimentary depocentre or grounding-zone wedge, to a restabilising position 112 km offshore of the December 2013 calving line, driven by MICI processes commencing 12.3 cal. ka BP. We emphasise the effective operation of MICI processes without extensive surface melt and induced hydrofracture, and conclude that such processes are unlikely to be confined to the past, given the steep, retrograde bed-slope which the modern grounding lines of Pine Island and Thwaites Glaciers are approaching, and the absence of any discernible

  7. Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture.

    PubMed

    Voogt, Wim; Holwerda, Harmen T; Khodabaks, Rashied

    2010-04-15

    Iodine is an essential trace element for humans. Two billion individuals have insufficient iodine intake. Biofortification of vegetables with iodine offers an excellent opportunity to increase iodine intake by humans. The main aim was to study the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce, grown in water culture. In both a winter and summer trial, dose rates of 0, 13, 39, 65, and 90 or 129 microg iodine L(-1), applied as iodate (IO(3)(-)) or iodide (I(-)), did not affect plant biomass, produce quality or water uptake. Increases in iodine concentration significantly enhanced iodine content in the plant. Iodine contents in plant tissue were up to five times higher with I(-) than with IO(3)(-). Iodine was mainly distributed to the outer leaves. The highest iodide dose rates in both trials resulted in 653 and 764 microg iodine kg(-1) total leaf fresh weight. Biofortification of lettuce with iodine is easily applicable in a hydroponic growing system, both with I(-) and IO(3)(-). I(-) was more effective than IO(3)(-). Fifty grams of iodine-biofortified lettuce would provide, respectively, 22% and 25% of the recommended daily allowance of iodine for adolescents and adults. (c) 2010 Society of Chemical Industry.

  8. Seeing from Space: What Icebergs Can Tell Us About Ice-ocean Interactions

    NASA Astrophysics Data System (ADS)

    Scheick, J.; Enderlin, E. M.; Hamilton, G. S.

    2017-12-01

    Icebergs are an important component of the ice-ocean system, yet until recently they have remained the focus of relatively few studies. Icebergs are an important distributed freshwater and nutrient source and can pose significant hazards for navigation and infrastructure, warranting further study. Importantly, icebergs are also easily observable en masse using satellite imagery and other remote sensing platforms, allowing for the collection of large datasets from already existing archives. Here we present some of the many ways that remotely sensed icebergs can be used to inform our understanding of ice-ocean interactions, as well as some of the limitations of these methods and what information is still needed. We will explore the size and spatial distribution of icebergs through time and what that can tell us about the calving behavior of the parent glacier and/or ocean-driven melting below the waterline. We will also explore the use of icebergs as depth finders and drifters to infer bathymetry and components of fjord circulation, respectively.

  9. Effect of Different Elicitors and Preharvest Day Application on the Content of Phytochemicals and Antioxidant Activity of Butterhead Lettuce (Lactuca sativa var. capitata) Produced under Hydroponic Conditions.

    PubMed

    Moreno-Escamilla, Jesús Omar; Alvarez-Parrilla, Emilio; de la Rosa, Laura A; Núñez-Gastélum, José Alberto; González-Aguilar, Gustavo A; Rodrigo-García, Joaquín

    2017-07-05

    The effect of four elicitors on phytochemical content in two varieties of lettuce was evaluated. The best preharvest day for application of each elicitor was chosen. Solutions of arachidonic acid (AA), salicylic acid (SA), methyl jasmonate (MJ), and Harpin protein (HP) were applied by foliar aspersion on lettuce leaves while cultivating under hydroponic conditions. Application of elicitors was done at 15, 7, 5, 3, or 1 day before harvest. Green lettuce showed the highest increase in phytochemical content when elicitors (AA, SA, and HP) were applied on day 7 before harvest. Similarly, antioxidant activity rose in all treatments on day 7. In red lettuce, the highest content of bioactive molecules occurred in samples treated on day 15. AA, SA, and HP were the elicitors with the highest effect on phytochemical content for both varieties, mainly on polyphenol content. Antioxidant activity also increased in response to elicitation. HPLC-MS showed an increase in the content of phenolic acids in green and red lettuce, especially after elicitation with SA, suggesting activation of the caffeic acid pathway due to elicitation.

  10. Can δ(15)N in lettuce tissues reveal the use of synthetic nitrogen fertiliser in organic production?

    PubMed

    Sturm, Martina; Kacjan-Maršić, Nina; Lojen, Sonja

    2011-01-30

    The nitrogen isotopic fingerprint (δ(15)N) is reported to be a promising indicator for differentiating between organically and conventionally grown vegetables. However, the effect on plant δ(15)N of split nitrogen fertilisation, which could enable farmers to cover up the use of synthetic fertiliser, is not well studied. In this study the use of δ(15)N in lettuce as a potential marker for identifying the use of synthetic nitrogen fertiliser was tested on pot-grown lettuce (Lactuca sativa L.) treated with synthetic and organic nitrogen fertilisers (single or split application). The effect of combined usage of synthetic and organic fertilisers on δ(15)N was also investigated. The δ(15)N values of whole plants treated with different fertilisers differed significantly when the fertiliser was applied in a single treatment. However, additional fertilisation (with isotopically the same or different fertiliser) did not cause a significant alteration of plant δ(15)N. The findings of the study suggest that the δ(15)N value of lettuce tissues could be used as a rough marker to reveal the history of nitrogen fertilisation, but only in the case of single fertiliser application. However, if the difference in δ(15)N between the applied synthetic and organic nitrogen fertilisers was > 9.1 ‰, the detection of split and combined usage of the fertilisers would have greater discriminatory power. 2010 Society of Chemical Industry.

  11. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce.

    PubMed

    Radhakrishnan, Ramalingam; Lee, In-Jung

    2016-12-01

    The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA 1 , GA 3 , GA 7 , GA 8 , GA 9 , GA 12 , GA 19 , GA 20 , GA 24 , GA 34 and GA 53 ) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Esringu, Aslıhan; Aksakal, Ozkan; Tabay, Dilruba; Kara, Ayse Aydan

    2016-01-01

    Ultraviolet-B (UV-B) radiation is one of the most important abiotic stress factors that could influence plant growth, development, and productivity. Nitric oxide (NO) is an important plant growth regulator involved in a wide variety of physiological processes. In the present study, the possibility of enhancing UV-B stress tolerance of lettuce seedlings by the exogenous application of sodium nitroprusside (SNP) was investigated. UV-B radiation increased the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and total phenolic concentrations, antioxidant capacity, and expression of phenylalanine ammonia lyase (PAL) gene in seedlings, but the combination of SNP pretreatment and UV-B enhanced antioxidant enzyme activities, total phenolic concentrations, antioxidant capacity, and PAL gene expression even more. Moreover, UV-B radiation significantly inhibited chlorophylls, carotenoid, gibberellic acid (GA), and indole-3-acetic acid (IAA) contents and increased the contents of abscisic acid (ABA), salicylic acid (SA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radical (O2•(-)) in lettuce seedlings. When SNP pretreatment was combined with the UV-B radiation, we observed alleviated chlorophylls, carotenoid, GA, and IAA inhibition and decreased content of ABA, SA, MDA, H2O2, and O2•(-) in comparison to non-pretreated stressed seedlings.

  13. The Intensity, Directionality, and Statistics of Underwater Noise From Melting Icebergs

    NASA Astrophysics Data System (ADS)

    Glowacki, Oskar; Deane, Grant B.; Moskalik, Mateusz

    2018-05-01

    Freshwater fluxes from melting icebergs and glaciers are important contributors to both sea level rise and anomalies of seawater salinity in polar regions. However, the hazards encountered close to icebergs and glaciers make it difficult to quantify their melt rates directly, motivating the development of cryoacoustics as a remote sensing technique. Recent studies have shown a qualitative link between ice melting and the accompanying underwater noise, but the properties of this signal remain poorly understood. Here we examine the intensity, directionality, and temporal statistics of the underwater noise radiated by melting icebergs in Hornsund Fjord, Svalbard, using a three-element acoustic array. We present the first estimate of noise energy per unit area associated with iceberg melt and demonstrate its qualitative dependence on exposure to surface current. Finally, we show that the analysis of noise directionality and statistics makes it possible to distinguish iceberg melt from the glacier terminus melt.

  14. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa.

  15. Effects of PSAG12-IPT Gene Expression on Development and Senescence in Transgenic Lettuce1

    PubMed Central

    McCabe, Matthew S.; Garratt, Lee C.; Schepers, Frank; Jordi, Wilco J.R.M.; Stoopen, Geert M.; Davelaar, Evert; van Rhijn, J. Hans A.; Power, J. Brian; Davey, Michael R.

    2001-01-01

    An ipt gene under control of the senescence-specific SAG12 promoter from Arabidopsis (PSAG12-IPT) significantly delayed developmental and postharvest leaf senescence in mature heads of transgenic lettuce (Lactuca sativa L. cv Evola) homozygous for the transgene. Apart from retardation of leaf senescence, mature, 60-d-old plants exhibited normal morphology with no significant differences in head diameter or fresh weight of leaves and roots. Induction of senescence by nitrogen starvation rapidly reduced total nitrogen, nitrate, and growth of transgenic and azygous (control) plants, but chlorophyll was retained in the lower (outer) leaves of transgenic plants. Harvested PSAG12-IPT heads also retained chlorophyll in their lower leaves. During later development (bolting and preflowering) of transgenic plants, the decrease in chlorophyll, total protein, and Rubisco content in leaves was abolished, resulting in a uniform distribution of these components throughout the plants. Homozygous PSAG12-IPT lettuce plants showed a slight delay in bolting (4–6 d), a severe delay in flowering (4–8 weeks), and premature senescence of their upper leaves. These changes correlated with significantly elevated concentrations of cytokinin and hexoses in the upper leaves of transgenic plants during later stages of development, implicating a relationship between cytokinin and hexose concentrations in senescence. PMID:11598225

  16. Applicability of ERTS to Antarctic iceberg resources. [harvesting sea ice for fresh water

    NASA Technical Reports Server (NTRS)

    Hult, J. L. (Principal Investigator); Ostrander, N. C.

    1973-01-01

    The author has identified the following significant results. This investigation explorers the applicability of ERTS to (1) determine the Antarctic sea ice and environmental behavior that may influence the harvesting of icebergs, and (2) monitor iceberg locations, characteristics, and evolution. Imagery has shown that the potential applicability of ERTS to the research, planning, and harvesting operations can contribute importantly to the glowing promise derived from broader scope studies for the use of Antarctic icebergs to relieve a growing global thirst for fresh water. Several years of comprehensive monitoring will be necessary to characterize sea ice and environmental behavior and iceberg evolution. Live ERTS services will assist harvesting control and claiming operations and offer a means of harmonizing entitlements of iceberg resources. The valuable ERTS services will be more cost effective than other means will be easily justified and borne by the iceberg harvesting operations.

  17. Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulphur nutrition.

    PubMed

    Matraszek, Renata; Hawrylak-Nowak, Barbara; Chwil, Stanisław; Chwil, Mirosława

    2016-09-15

    Lettuce (Lactuca sativa L.) is moderately sensitive to cadmium (Cd) and shows high accumulation of this metal. Thus, this species is considered to be a good model for both identifying determinants controlling Cd accumulation in plant tissues and for developing breeding strategies aimed at limiting the accumulation of this metal in edible tissues. Simultaneously, lettuce is characterised by medium requirements for sulphur (S) - a macronutrient whose role is associated not only with proper growth and development, but also with stress tolerance. The common use of NPK fertilizers without sulphates (S-SO4) together with the progressive process of reducing emissions of S compounds to the natural environment may lead to deficiency of this element in plants. The present study evaluated the changes in macronutrient content and accumulation in Cd-stressed lettuce 'Justyna' supplied with different S doses. Four concentrations of Cd (0, 0.0002, 0.02 or 0.04 mM) and three levels of S applied in the form of S-SO4 (2, 6 or 9 mM S) were used. Cd exposure impaired the macronutrient balance and accumulation in lettuce. Intensive S nutrition to some extent alleviated Cd-induced toxicity. High S doses, especially 6 mM S, partially improved macronutrient status and restored the macronutrient balance. In Cd-stressed plants supplemented with additional S, an increase in root and shoot biomass and in the content of N, K and Mg was found, without significant changes in the Ca content. Simultaneously, the P and S contents in the biomass of both above- and underground organs remained unchanged. In the leaves, as opposite to the roots, intensive S nutrition reduced the accumulation of Cd. However, the foliar Cd concentration still exceeded the acceptable limits established for consumption. All the obtained results concerning the content of macronutrients and their ratios were referred, inter alia, to the standards i.e. the Diagnosis and Recommendation Integrated System (DRIS) norms

  18. Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.).

    PubMed

    Mirzaee, Malihe; Jalali-Javaran, Mokhtar; Moieni, Ahmad; Zeinali, Sirous; Behdani, Mahdi

    2018-05-01

    This research has shown, for the first time, that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins and the transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. Angiogenesis refers to the formation of new blood vessels, which resulted in the growth, invasion and metastasis of cancer. The vascular endothelial growth factor receptor 2 (VEGFR2) plays a major role in angiogenesis and blocking of its signaling inhibits neovascularization and tumor metastasis. Immunotoxins are promising therapeutics for targeted cancer therapy. They consist of an antibody linked to a protein toxin and are designed to specifically kill the tumor cells. In our previous study, VGRNb-PE immunotoxin protein containing anti-VEGFR2 nanobody fused to the truncated form of Pseudomonas exotoxin A has been established. Here, we expressed this immunotoxin in lettuce chloroplasts. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, multigene engineering in a single transformation event and maternal inheritance of the transgenes. Site specific integration of transgene into chloroplast genomes, and homoplasmy were confirmed. Immunotoxin levels reached up to 1.1% of total soluble protein or 33.7 µg per 100 mg of leaf tissue (fresh weight). We demonstrated that transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. These results indicate that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins.

  19. Enhanced Proton Translocating Pyrophosphatase Activity Improves Nitrogen Use Efficiency in Romaine Lettuce1[C][W][OA

    PubMed Central

    Paez-Valencia, Julio; Sanchez-Lares, Jonathan; Marsh, Ellen; Dorneles, Liane T.; Santos, Mirella P.; Sanchez, Diego; Winter, Alexander; Murphy, Sean; Cox, Jennifer; Trzaska, Marcin; Metler, Jason; Kozic, Alex; Facanha, Arnoldo R.; Schachtman, Daniel; Sanchez, Charles A.; Gaxiola, Roberto A.

    2013-01-01

    Plant nitrate (NO3−) acquisition depends on the combined activities of root high- and low-affinity NO3− transporters and the proton gradient generated by the plasma membrane H+-ATPase. These processes are coordinated with photosynthesis and the carbon status of the plant. Here, we present the characterization of romaine lettuce (Lactuca sativa ‘Conquistador’) plants engineered to overexpress an intragenic gain-of-function allele of the type I proton translocating pyrophosphatase (H+-PPase) of Arabidopsis (Arabidopsis thaliana). The proton-pumping and inorganic pyrophosphate hydrolytic activities of these plants are augmented compared with control plants. Immunohistochemical data show a conspicuous increase in H+-PPase protein abundance at the vasculature of the transgenic plants. Transgenic plants displayed an enhanced rhizosphere acidification capacity consistent with the augmented plasma membrane H+-ATPase proton transport values, and ATP hydrolytic capacities evaluated in vitro. These transgenic lines outperform control plants when challenged with NO3− limitations in laboratory, greenhouse, and field scenarios. Furthermore, we report the characterization of a lettuce LsNRT2.1 gene that is constitutive up-regulated in the transgenic plants. Of note, the expression of the LsNRT2.1 gene in control plants is regulated by NO3− and sugars. Enhanced accumulation of 15N-labeled fertilizer by transgenic lettuce compared with control plants was observed in greenhouse experiments. A negative correlation between the level of root soluble sugars and biomass is consistent with the strong root growth that characterizes these transgenic plants. PMID:23307651

  20. Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead.

    PubMed

    Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2010-10-01

    The tolerance of wild flora to heavy-metal exposure has received very little research. In this study, the tolerance of four native tree species, four native grass species, and lettuce to copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) was investigated in a root-elongation study using Petri dishes. The results of these studies show a diverse range of responses to Cu, Zn, Cd, and Pb amongst the tested plant species. Toxicity among metals decreased in the following order: Cd ~ Cu > Pb > Zn. Metal concentrations resulting in a 50% reduction in growth (EC(50)) varied considerably, ranging from (microM) 30 (Dichanthium sericeum) to >2000 (Acacia spp.) for Cu; from 260 (Lactuca sativa) to 2000 (Acacia spp.) for Zn; from 27 (L. sativa) to 940 (Acacia holosericea) for Cd; and from 180 (L. sativa) to >1000 (Acacia spp.) for Pb. Sensitive native plant species identified included D. sericeum, Casuarina cunninghamiana, and Austrodanthonia caespitosa. However, L. sativa (lettuce) was also among the most sensitive to all four metals. Acacia species showed a high tolerance to metal exposure, suggesting that the Acacia genus shows potential for use in contaminated-site revegetation.

  1. Stomatal conductance of lettuce grown under or exposed to different light qualities

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.

    2004-01-01

    BACKGROUND AND AIMS: The objective of this research was to examine the effects of differences in light spectrum on the stomatal conductance (Gs) and dry matter production of lettuce plants grown under a day/night cycle with different spectra, and also the effects on Gs of short-term exposure to different spectra. METHODS: Lettuce (Lactuca sativa) plants were grown with 6 h dark and 18 h light under four different spectra, red-blue (RB), red-blue-green (RBG), green (GF) and white (CWF), and Gs and plant growth were measured. KEY RESULTS AND CONCLUSIONS: Conductance of plants grown for 23 d under CWF rose rapidly on illumination to a maximum in the middle of the light period, then decreased again before the dark period when it was minimal. However, the maximum was smaller in plants grown under RB, RGB and GF. This demonstrates that spectral quality during growth affects the diurnal pattern of stomatal conductance. Although Gs was smaller in plants grown under RGB than CWF, dry mass accumulation was greater, suggesting that Gs did not limit carbon assimilation under these spectral conditions. Temporarily changing the spectral quality of the plants grown for 23 d under CWF, affected stomatal responses reversibly, confirming studies on epidermal strips. This study provides new information showing that Gs is responsive to spectral quality during growth and, in the short-term, is not directly coupled to dry matter accumulation.

  2. Spatial distirbution of Antarctic mass flux due to iceberg transport

    NASA Astrophysics Data System (ADS)

    Comeau, Darin; Hunke, Elizabeth; Turner, Adrian

    Under a changing climate that sees amplified warming in the polar regions, the stability of the West Antarctic ice sheet and its impact on sea level rise is of great importance. Icebergs are at the interface of the land-ice, ocean, and sea ice systems, and represent approximately half of the mass flux from the Antarctic ice sheet to the ocean. Calved icebergs transport freshwater away from the coast and exchange heat with the ocean, thereby affecting stratification and circulation, with subsequent indirect thermodynamic effects to the sea ice system. Icebergs also dynamically interact with surrounding sea ice pack, as well as serving as nutrient sources for biogeochemical activity. The spatial pattern of these fluxes transported from the continent to the ocean is generally poorly represented in current global climate models. We are implementing an iceberg model into the new Accelerated Climate Model for Energy (ACME) within the MPAS-Seaice model, which uses a variable resolution, unstructured grid framework. This capability will allow for full coupling with the land ice model to inform calving fluxes, and the ocean model for freshwater and heat exchange, giving a complete representation of the iceberg lifecycle and increasing the fidelity of ACME southern cryosphere simulations.

  3. Assessing biochar and compost from the organic fraction of municipal solid waste on nutrient availability and plant growth of lettuce

    NASA Astrophysics Data System (ADS)

    Regkouzas, Panagiotis; Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    Biochars have a high variability in chemical composition, which is determined by types of feedstock and pyrolysis conditions. Inorganic compounds, such as N, P, K and Ca, retained in biochar could be released and become available to plants. The aim of this study was to understand the effect of biochar and compost addition, derived from the organic fraction of municipal solid wastes at two different pyrolysis temperatures 3000C (BC300) and 6000C (BC600), on phosphorus availability and plant growth of lettuce (Lactuca sativa L.) grown in an alkaline loam soil. This type of soil is widely available in Greece, leading us to investigate ways to increase its fertility. A 39 d growth period of lettuce was studied in a greenhouse in triplicate. Treatments comprised of control soils (no addition of biochar or compost), soils treated only with compost (5%) or biochar (5%), and combinations of biochar (5%) plus compost (5%). No fertilization was added to any of the treatments. One biomass cut was obtained. Plant shoot yield and height were determined along with elemental concentration (N, P, K, Ca, Mg, Mn, Fe, Zn, Cu) and uptake of shoots. Results showed that BC300 combined with compost significantly increased P uptake of lettuce. On the other hand, BC600 plus compost, along with the two biochar-only treatments, significantly decreased Ca and Mg uptake of lettuce. N, K, Fe, Zn, Mn and Cu uptakes were not affected by the application of biochar, compost or the combined treatments. Despite the significant increase of P uptake, plant height and shoot yield were not significantly influenced by any of the treatments.

  4. Calculating Freshwater Input from Iceberg Melt in Greenlandic Fjords by Combining In Situ Observations of Iceberg Movement with High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sulak, D. J.; Sutherland, D.; Stearns, L. A.; Hamilton, G. S.

    2015-12-01

    Understanding fjord circulation in Greenland's outlet glacial fjords is crucial to explaining recent temporal and spatial variability in glacier dynamics, as well as freshwater transport on the continental shelf. The fjords are commonly assumed to exhibit a plume driven circulation that draws in warmer and saltier Atlantic-origin water toward the glacier at depth. Freshwater input at glacier termini directly drives this circulation and significantly influences water column stratification, which indirectly feeds back on the plume driven circulation. Previous work has focused on freshwater inputs from surface runoff and submarine melting, but the contribution from iceberg melt, a potentially important freshwater source, has not been quantified. Here, we develop a new technique combining in situ observations of movement from iceberg-mounted GPS units with multispectral satellite imagery from Landsat 8. The combination of datasets allows us to examine the details of iceberg movement and quantify mean residence times in a given fjord. We then use common melt rate parameterizations to estimate freshwater input for a given iceberg, utilizing novel satellite-derived iceberg distributions to scale up to a fjord-wide freshwater contribution. We apply this technique to Rink Isbræ and Kangerlussuup Sermia in west Greenland, and Helheim Glacier in southeast Greenland. The analysis can be rapidly expanded to look at other systems as well as seasonal and interannual changes in how icebergs affect the circulation and stratification of Greenland's outlet glacial fjords. Ultimately, this work will lead to a more complete understanding of the wide range of factors that control the observed regional variability in Greenland's glaciers.

  5. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season

    PubMed Central

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (Gs) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved PN of lettuce plants in a high-temperature season by both improvement of Gs to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation. PMID:27047532

  6. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season.

    PubMed

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (G s) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved P N of lettuce plants in a high-temperature season by both improvement of G s to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation.

  7. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays.

    PubMed

    Andrade-Vieira, Larissa F; Botelho, Carolina M; Laviola, Bruno G; Palmieri, Marcel J; Praça-Fontes, Milene M

    2014-03-01

    Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.

  8. In Vivo Tracking of Copper-64 Radiolabeled Nanoparticles in Lactuca sativa.

    PubMed

    Davis, Ryan A; Rippner, Devin A; Hausner, Sven H; Parikh, Sanjai J; McElrone, Andrew J; Sutcliffe, Julie L

    2017-11-07

    Engineered nanoparticles (NPs) are increasingly used in commercial products including automotive lubricants, clothing, deodorants, sunscreens, and cosmetics and can potentially accumulate in our food supply. Given their size it is difficult to detect and visualize the presence of NPs in environmental samples, including crop plants. New analytical tools are needed to fill the void for detection and visualization of NPs in complex biological and environmental matrices. We aimed to determine whether radiolabeled NPs could be used as a noninvasive, highly sensitive analytical tool to quantitatively track and visualize NP transport and accumulation in vivo in lettuce (Lactuca sativa) and to investigate the effect of NP size on transport and distribution over time using a combination of autoradiography, positron emission tomography (PET)/computed tomography (CT), scanning electron microscopy (SEM), and transition electron microscopy (TEM). Azide functionalized NPs were radiolabeled via a "click" reaction with copper-64 ( 64 Cu)-1,4,7-triazacyclononane triacetic acid (NOTA) azadibenzocyclooctyne (ADIBO) conjugate ([ 64 Cu]-ADIBO-NOTA) via copper-free Huisgen-1,3-dipolar cycloaddition reaction. This yielded radiolabeled [ 64 Cu]-NPs of uniform shape and size with a high radiochemical purity (>99%), specific activity of  2.2 mCi/mg of NP, and high stability (i.e., no detectable dissolution) over 24 h across a pH range of 5-9. Both PET/CT and autoradiography showed that [ 64 Cu]-NPs entered the lettuce seedling roots and were rapidly transported to the cotyledons with the majority of the accumulation inside the roots. Uptake and transport of intact NPs was size-dependent, and in combination with the accumulation within the roots suggests a filtering effect of the plant cell walls at various points along the water transport pathway.

  9. Development of marker-free transgenic lettuce resistant to Mirafiori lettuce big-vein virus.

    PubMed

    Kawazu, Yoichi; Fujiyama, Ryoi; Imanishi, Shunsuke; Fukuoka, Hiroyuki; Yamaguchi, Hirotaka; Matsumoto, Satoru

    2016-10-01

    Lettuce big-vein disease caused by Mirafiori lettuce big-vein virus (MLBVV) is found in major lettuce production areas worldwide, but highly resistant cultivars have not yet been developed. To produce MLBVV-resistant marker-free transgenic lettuce that would have a transgene with a promoter and terminator of lettuce origin, we constructed a two T-DNA binary vector, in which the first T-DNA contained the selectable marker gene neomycin phosphotransferase II, and the second T-DNA contained the lettuce ubiquitin gene promoter and terminator and inverted repeats of the coat protein (CP) gene of MLBVV. This vector was introduced into lettuce cultivars 'Watson' and 'Fuyuhikari' by Agrobacterium tumefaciens-mediated transformation. Regenerated plants (T0 generation) that were CP gene-positive by PCR analysis were self-pollinated, and 312 T1 lines were analyzed for resistance to MLBVV. Virus-negative plants were checked for the CP gene and the marker gene, and nine lines were obtained which were marker-free and resistant to MLBVV. Southern blot analysis showed that three of the nine lines had two copies of the CP gene, whereas six lines had a single copy and were used for further analysis. Small interfering RNAs, which are indicative of RNA silencing, were detected in all six lines. MLBVV infection was inhibited in all six lines in resistance tests performed in a growth chamber and a greenhouse, resulting in a high degree of resistance to lettuce big-vein disease. Transgenic lettuce lines produced in this study could be used as resistant cultivars or parental lines for breeding.

  10. Isolation of Salmonella spp. from lettuce and evaluation of its susceptibility to novel bacteriocins of Bacillus thuringiensis and antibiotics.

    PubMed

    Castañeda-Ramírez, Cristobal; Cortes-Rodríguez, Viridiana; de la Fuente-Salcido, Norma; Bideshi, Dennis K; del Rincón-Castro, M Cristina; Barboza-Corona, J Eleazar

    2011-02-01

    In this study, 13% of fresh lettuce (Lactuca sativa) samples collected from markets and supermarkets in two cities of Mexico were contaminated with Salmonella spp. From those samples, amplicons of ∼300 base pairs (bp) were amplified, corresponding to the expected size of the invasion (invA) and internal transcribed spacer regions of the 16S and 23S rRNA genes of Salmonella spp. Additionally, Salmonella strains were isolated and harbored plasmids ranging from ∼9 to 16 kbp. From these strains, 91% were resistant to ampicillin and nitrofurantoin, whereas 55% were resistant to cephalothin and chloramphenicol. No resistance was detected to amikacin, carbenicillin, cefotaxime, gentamicin, netilmicin, norfloxacin, and sulfamethoxazole-trimethoprim. When Salmonella isolates were tested against novel bacteriocins (morricin 269, kurstacin 287, kenyacin 404, entomocin 420, and tolworthcin 524) produced by five Mexican strains of Bacillus thuringiensis, 50% were susceptible to these antimicrobial peptides. This is the first report showing that Salmonella strains isolated from lettuce are susceptible to bacteriocins produced by the most important bioinsecticide worldwide, suggesting the potential use of these antibacterial peptides as therapeutic agents or food preservatives to reduce or destroy populations of Salmonella spp. Copyright ©, International Association for Food Protection

  11. Icebergs Adrift in the Amundsen Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Thwaites Ice Tongue is a large sheet of glacial ice extending from the West Antarctic mainland into the southern Amundsen Sea. A large crack in the Thwaites Tongue was discovered in imagery from Terra's Moderate Resolution Imaging Spectroradiometer (MODIS). Subsequent widening of the crack led to the calving of a large iceberg. The development of this berg, designated B-22 by the National Ice Center, can be observed in these images from the Multi-angle Imaging SpectroRadiometer, also aboard Terra. The two views were acquired by MISR's nadir (vertical-viewing) camera on March 10 and 24, 2002. The B-22 iceberg, located below and to the left of image center, measures approximately 82 kilometers long x 62 kilometers wide. Comparison of the two images shows the berg to have drifted away from the ice shelf edge. The breakup of ice near the shelf edge, in the area surrounding B-22, is also visible in the later image. These natural-color images were acquired during Terra orbits 11843 and 12047, respectively. At the right-hand edge is Pine Island Bay, where the calving of another large iceberg (B-21) occurred in November 2001. B-21 subsequently split into two smaller bergs, both of which are visible to the right of B-22. Antarctic researchers have reported an increase in the frequency of iceberg calvings in recent years. Whether this is the result of a regional climate variation, or connected to the global warming trend, has not yet been established. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.

  12. Icebergs Adrift in the Amundsen Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Thwaites Ice Tongue is a large sheet of glacial ice extending from the West Antarctic mainland into the southern Amundsen Sea. A large crack in the Thwaites Tongue was discovered in imagery from Terra's Moderate Resolution Imaging SpectroRadiometer (MODIS). Subsequent widening of the crack led to the calving of a large iceberg. The development of this berg, designated B-22 by the National Ice Center, can be observed in these images from the Multi-angle Imaging SpectroRadiometer, also aboard Terra. The two views were acquired by MISR's nadir (vertical-viewing)camera on March 10 and 24, 2002.

    The B-22 iceberg, located below and to the left of image center, measures approximately 82 kilometers long x 62 kilometers wide. Comparison of the two images shows the berg to have drifted away from the ice shelf edge. The breakup of ice near the shelf edge, in the area surrounding B-22, is also visible in the later image.

    These natural-color images were acquired during Terra orbits 11843 and 12047, respectively. At the right-hand edge is Pine Island Bay, where the calving of another large iceberg (B-21) occurred in November 2001. B-21 subsequently split into two smaller bergs, both of which are visible to the right of B-22.

    Antarctic researchers have reported an increase in the frequency of iceberg calvings in recent years. Whether this is the result of a regional climate variation, or connected to the global warming trend, has not yet been established.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. Genetic Variation for Lettuce Seed Thermoinhibition Is Associated with Temperature-Sensitive Expression of Abscisic Acid, Gibberellin, and Ethylene Biosynthesis, Metabolism, and Response Genes1[C][W][OA

    PubMed Central

    Argyris, Jason; Dahal, Peetambar; Hayashi, Eiji; Still, David W.; Bradford, Kent J.

    2008-01-01

    Lettuce (Lactuca sativa ‘Salinas’) seeds fail to germinate when imbibed at temperatures above 25°C to 30°C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37°C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis. PMID:18753282

  14. Joint Staff Study, ICEBERG

    DTIC Science & Technology

    1944-12-21

    il UARINE OIVISION ltNMINE DIVISION 165- 170- «™., iig *™,^, . f .?ao-124-jh ICEBERG Appendix D Submarine. Operations 1. DISCUSSION. Commencing about...tender in the area, will continue in circulation and will b© inter—changeable at par with the . Supplementary Military Yen. Transaction in any other

  15. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  16. Effects of sewage sludge on Di-(2-ethylhexyl) phthalate uptake by plants. [Lactuca sativa L. ; Daucus carota L. ; Capsicum annuum L. ; Festuca arundinacea Schreb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranda, J.M.; O'Connor, G.A.; Eiceman, G.A.

    Di-(2-ethylhexyl) phthalate (DEHP) is a priority organic pollutant frequently found in municipal sludges. A greenhouse study was conducted to determine the effect of sludge on plant uptake of {sup 14}C-DEHP (carbonyl labeled). Plants grown included three food chain crops, lettuce (Lactuca sativa L.), carrot (Daucus carota L.) and chile pepper (Capsicum annuum L.) and tall fescue (Festuca arundinacea Schreb.). Net {sup 14}C concentration in plants grown in soil amended with {sup 14}C-DEHP-contaminated sludge was independent of sludge rate (at the same DEHP loading) for lettuce, chile fruit, and carrot roots. Net {sup 14}C concentration, however, was inversely related to sludgemore » rate in carrot tops, fescue, and chile plants. Intact DEHP was not detected in plants by gas chromatography/mass spectrometry analysis. Calculated plant DEHP concentrations (based on measured net {sup 14}C concentrations and DEHP specific activities) were generally correlated better with DEHP soil solution concentrations than with total DEHP soil concentrations. Net {sup 14}C-DEHP bioconcentration factors were calculated from initial soil DEHP concentration and plant fresh weights. Bioconcentration factors ranged from 0.01 to 0.03 for fescue, lettuce, carrots, and chile, suggesting little DEHP uptake. Additionally, because intact DEHP was not detected in any plants, DEHP uptake by plants was of minor importance and would not limit sludge additions to soils used to grow these crops.« less

  17. Massive Iceberg Breaks Off from Antarctica

    NASA Image and Video Library

    2017-12-08

    Sometime between July 10 and July 12, an iceberg about the size of Delaware split off from Antarctica’s Larsen C ice shelf. Now that nearly 5,800 square kilometers (2,200 square miles) of ice has broken away, the Larsen C shelf area has shrunk by approximately 10 percent. This false-color image was captured by Landsat’s Thermal Infrared Sensor (TIRS). It shows the relative warmth or coolness of the landscape. Orange indicates where the surface is the warmest, most notably the mélange between the new berg and the ice shelf. Light blues and whites are the coldest areas, including the ice shelf and the iceberg. On July 13, the U.S. National Ice Center issued a press release confirming the new iceberg and officially naming it A-68. Credit: NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Ocean glider observations of iceberg-enhanced biological production in the northwestern Weddell Sea

    NASA Astrophysics Data System (ADS)

    Biddle, Louise C.; Kaiser, Jan; Heywood, Karen J.; Thompson, Andrew F.; Jenkins, Adrian

    2015-01-01

    Icebergs affect local biological production around Antarctica. We used an ocean glider to observe the effects of a large iceberg that was advected by the Antarctic Slope Current along the continental slope in the northwestern Weddell Sea in early 2012. The high-resolution glider data reveal a pronounced effect of the iceberg on ocean properties, with oxygen concentrations of (13 ± 4) μmol kg-1 higher than levels in surrounding waters, which are most likely due to positive net community production. This response was confined to three areas of water in the direct vicinity of the iceberg track, each no larger than 2 km2. Our findings suggest that icebergs have an impact on Antarctic production presumably through local micronutrient injections, on a scale smaller than typical satellite observations of biological production in the Southern Ocean.

  19. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity

    PubMed Central

    Rouphael, Youssef; Colla, Giuseppe; Bernardo, Letizia; Kane, David; Trevisan, Marco; Lucini, Luigi

    2016-01-01

    Abiotic stresses such as salinity and metal contaminations are the major environmental stresses that adversely affect crop productivity worldwide. Crop responses and tolerance to abiotic stress are complex processes for which “-omic” approaches such as metabolomics is giving us a newest view of biological systems. The aim of the current research was to assess metabolic changes in lettuce (Lactuca sativa L.), by specifically probing the root metabolome of plants exposed to elevated isomolar concentrations of NaCl and ZnSO4. Most of the metabolites that were differentially accumulated in roots were identified for stress conditions, however the response was more intense in plants exposed to NaCl. Compounds identified in either NaCl or ZnSO4 conditions were: carbohydrates, phenolics, hormones, glucosinolates, and lipids. Our findings suggest that osmotic stress and the consequent redox imbalance play a major role in determining lettuce root metabolic response. In addition, it was identified that polyamines and polyamine conjugates were triggered as a specific response to ZnSO4. These findings help improve understanding of how plants cope with abiotic stresses. This information can be used to assist decision-making in breeding programs for improving crop tolerance to salinity and heavy metal contaminations. PMID:27375675

  20. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders.

    PubMed

    Cottyn, Bart; Heylen, Kim; Heyrman, Jeroen; Vanhouteghem, Katrien; Pauwelyn, Ellen; Bleyaert, Peter; Van Vaerenbergh, Johan; Höfte, Monica; De Vos, Paul; Maes, Martine

    2009-05-01

    Bacterial midrib rot of greenhouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) is an emerging disease in Flanders (Belgium) and fluorescent pseudomonads are suspected to play an important role in the disease. Isolations from infected lettuces, collected from 14 commercial greenhouses in Flanders, yielded 149 isolates that were characterized polyphasically, which included morphological characteristics, pigmentation, pathogenicity tests by both injection and spraying of lettuce, LOPAT characteristics, FAME analysis, BOX-PCR fingerprinting, 16S rRNA and rpoB gene sequencing, as well as DNA-DNA hybridization. Ninety-eight isolates (66%) exhibited a fluorescent pigmentation and were associated with the genus Pseudomonas. Fifty-five of them induced an HR+ (hypersensitive reaction in tobacco leaves) response. The other 43 fluorescent isolates were most probably saprophytic bacteria and about half of them were able to cause rot on potato tuber slices. BOX-PCR genomic fingerprinting was used to assess the genetic diversity of the Pseudomonas midrib rot isolates. The delineated BOX-PCR patterns matched quite well with Pseudomonas morphotypes defined on the basis of colony appearance and variation in fluorescent pigmentation. 16S rRNA and rpoB gene sequence analyses allowed most of the fluorescent isolates to be allocated to Pseudomonas, and they belonged to either the Pseudomonas fluorescens group, Pseudomonas putida group, or the Pseudomonas cichorii/syringae group. In particular, the isolates allocated to this latter group constituted the vast majority of HR+ isolates and were identified as P. cichorii by DNA-DNA hybridization. They were demonstrated by spray-inoculation tests on greenhouse-grown lettuce to induce the midrib rot disease and could be re-isolated from lesions of inoculated plants. Four HR+ non-fluorescent isolates associated with one sample that showed an atypical midrib rot were identified as Dickeya sp.

  1. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  2. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSRE Microwave Brightness Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Peterson, Craig

    2006-01-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: Is The Number of Antarctic Icebergs Really Increasing? [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, Transactions of the American Geophysical Union 83 (42): 469 & 474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E s 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I s comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with nearglobal coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC

  3. A Model of Icebergs and Sea Ice in a Joint Continuum Framework

    NASA Astrophysics Data System (ADS)

    VaÅková, Irena; Holland, David M.

    2017-11-01

    The ice mélange, a mixture of sea ice and icebergs, often present in front of outlet glaciers in Greenland or ice shelves in Antarctica, can have a profound effect on the dynamics of the ice-ocean system. The current inability to numerically model the ice mélange motivates a new modeling approach proposed here. A continuum sea-ice model is taken as a starting point and icebergs are represented as thick and compact pieces of sea ice held together by large tensile and shear strength, selectively introduced into the sea-ice rheology. In order to modify the rheology correctly, an iceberg tracking procedure is implemented within a semi-Lagrangian time-stepping scheme, designed to exactly preserve iceberg shape through time. With the proposed treatment, sea ice and icebergs are considered a single fluid with spatially varying rheological properties. Mutual interactions are thus automatically included without the need for further parametrization. An important advantage of the presented framework for an ice mélange model is its potential to be easily included within sea-ice components of existing climate models.

  4. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    USDA-ARS?s Scientific Manuscript database

    We investigated the combined antimicrobial effects of plant essential oils and olive extract against antibiotic resistant Salmonella enterica serovar Newport on organic leafy greens. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with S. Newport and dip-t...

  5. Mutations in Lettuce Improvement

    PubMed Central

    Mou, Beiquan

    2011-01-01

    Lettuce is a major vegetable in western countries. Mutations generated genetic variations and played an important role in the domestication of the crop. Many traits derived from natural and induced mutations, such as dwarfing, early flowering, male sterility, and chlorophyll deficiency, are useful in physiological and genetic studies. Mutants were also used to develop new lettuce products including miniature and herbicide-tolerant cultivars. Mutant analysis was critical in lettuce genomic studies including identification and cloning of disease-resistance genes. Mutagenesis combined with genomic technology may provide powerful tools for the discovery of novel gene alleles. In addition to radiation and chemical mutagens, unconventional approaches such as tissue or protoplast culture, transposable elements, and space flights have been utilized to generate mutants in lettuce. Since mutation breeding is considered nontransgenic, it is more acceptable to consumers and will be explored more in the future for lettuce improvement. PMID:22287955

  6. Icebergs Adrift in the Amundsen Sea

    NASA Image and Video Library

    2002-03-27

    The Thwaites Ice Tongue is a large sheet of glacial ice extending from the West Antarctic mainland into the southern Amundsen Sea. A large crack in the Thwaites Tongue was discovered in imagery from Terra's Moderate Resolution Imaging SpectroRadiometer (MODIS). Subsequent widening of the crack led to the calving of a large iceberg. The development of this berg, designated B-22 by the National Ice Center, can be observed in these images from the Multi-angle Imaging SpectroRadiometer, also aboard Terra. The two views were acquired by MISR's nadir (vertical-viewing) camera on March 10 and 24, 2002. The B-22 iceberg, located below and to the left of image center, measures approximately 82 kilometers long x 62 kilometers wide. Comparison of the two images shows the berg to have drifted away from the ice shelf edge. The breakup of ice near the shelf edge, in the area surrounding B-22, is also visible in the later image. These natural-color images were acquired during Terra orbits 11843 and 12047, respectively. At the right-hand edge is Pine Island Bay, where the calving of another large iceberg (B-21) occurred in November 2001. B-21 subsequently split into two smaller bergs, both of which are visible to the right of B-22. http://photojournal.jpl.nasa.gov/catalog/PIA03700

  7. Iceberg severity off eastern North America: Its relationship to sea ice variability and climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marko, J.R.; Fissel, D.B.; Wadhams, P.

    1994-09-01

    Iceberg trajectory, deterioration (mass loss), and sea ice data are reviewed to identify the sources of observed interannual and seasonal variations in the numbers of icebergs passing south of 48[degrees]N off eastern North America. The results show the dominant role of sea ice in the observed variations. Important mechanisms involved include both seasonal modulation of the southerly iceberg flow by ice cover control of probabilities for entrapment and decay in shallow water, and the suppression of iceberg melt/deterioration rates by high concentrations of sea ice. The Labrador spring ice extent, shown to be the critical parameter in interannual iceberg numbermore » variability, was found to be either determined by or closely correlated with midwinter Davis Strait ice extents. Agreement obtained between observed year-to-year and seasonal number variations with computations based upon a simple iceberg dissipation model suggests that downstream iceberg numbers are relatively insensitive to iceberg production rates and to fluctuations in southerly iceberg fluxes in areas north of Baffin Island. Past variations in the Davis Strait ice index and annual ice extents are studied to identify trends and relationships between regional and larger-scale global climate parameters. It was found that, on decadal timescales in the post-1960 period of reasonable data quality, regional climate parameters have varied, roughly, out of phase with corresponding global and hemispheric changes. These observations are compared with expectations in terms of model results to evaluate current GCM-based capabilities for simulating recent regional behavior. 64 refs., 11 figs., 3 tabs.« less

  8. Composition and structure of macrozooplankton and micronekton communities in the vicinity of free-drifting Antarctic icebergs

    NASA Astrophysics Data System (ADS)

    Kaufmann, Ronald S.; Robison, Bruce H.; Sherlock, Rob E.; Reisenbichler, Kim R.; Osborn, Karen J.

    2011-06-01

    Recent warming in the Antarctic has led to increased production of icebergs; however, the ecological effects of icebergs on pelagic communities within the Southern Ocean have not been well-studied. We used a 10 m 2 MOCNESS to collect macrozooplankton and micronekton in the upper 300 m of the water column near free-drifting icebergs in the Atlantic sector of the Southern Ocean during three seasons: December 2005 (late spring), June 2008 (late fall) and March-April 2009 (late summer). Communities were dominated in all three seasons by Antarctic krill ( Euphausia superba) and salps ( Salpa thompsoni), which collectively comprised 60-95% of the community wet biomass in most cases. During our spring and summer cruises, mean biomass was elevated by 3.1-4.3x at a distance of 0.37 km from large icebergs vs. 9.26 km away. These differences were not statistically significant, and no trend in biomass with distance was apparent in samples from fall 2008, when total biomass was an order of magnitude lower. Biomass levels near icebergs during Dec 2005 and Mar-Apr 2009 were comparable to values reported from marginal ice zones, suggesting that waters around icebergs support macrozooplankton and micronekton communities comparable in magnitude to those in some of the most productive areas of the Southern Ocean. Sample variance also was significantly higher within 1.85 km of icebergs during Dec 2005 and Mar-Apr 2009, reflecting increased patchiness on scales sampled by the MOCNESS (20-40×10 3 m 3 filtered per sample). This pattern was not significant during Jun 2008. Large predatory medusae were observed within 1.85 km of icebergs and in Iceberg Alley, an area through which icebergs pass frequently, but were virtually absent in areas remote from icebergs. Small euphausiids showed an inverse distribution, with low densities in areas populated by large medusae. A shift in community composition from a near-iceberg assemblage dominated by herbivores to a carnivore-dominated community

  9. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    USDA-ARS?s Scientific Manuscript database

    We investigated the combined antimicrobial effects of plant essential oils and olive extract. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with the pathogen and then dip-treated in phosphate buffered saline (PBS) control, 3.0% hydrogen peroxide, a 0.1% ...

  10. Seismology on drifting icebergs: Catching earthquakes, tsunamis, swell, and iceberg music

    NASA Astrophysics Data System (ADS)

    Okal, E. A.; Macayeal, D. R.

    2006-12-01

    For the past 3 years, we have operated seismometers on large icebergs either parked or drifting in the Ross Sea, with an additional station at Nascent, where the next section of the Ross Ice Shelf is expected to calf. Apart from their primary goal of studying in situ tremor generated inside the ice, presumed to arise during collisions and fragmentation, our stations have functioned as teleseismic observatories, despite a noisy environment in the 20-100 mHz frequency band, corresponding to the free bobbing and rolling of the icebergs. As expected, both P and Rayleigh waves from distant earthquakes are recorded on the vertical channels as unperturbed ground motion, with acceptable values of energy flux (P) or magnitude (Rayleigh); however, due to noise level at mantle periods, only Rayleigh waves from the largest events (Sumatra 2004; Nias 2005) could be quantified meaningfully. T waves from distant earthquakes along the EPR can be recorded, but the acoustic-to-seismic transition at the ice boundary is less effcient than at typical island stations. The 2004 Sumatra tsunami was recorded on all 3 components at the 3 stations; the inferred amplitudes (about 15 cm vertical and 1.3 m horizontal, peak-to-peak) are in general agreement with global simulations, and suggest that the bergs rode the tsunami without intrinsic deformation; a small tsunami is also detected for the Macquarie earthquake of 23 Dec. 2004. Our stations regularly recorded long wavetrains in the 40-60 mHz range, dispersed under the deep-water approximation, and corresponding to sea swell propagating across the entire ocean from major storms in the Northern and Equatorial Pacific. In the case of a major depression in the Gulf of Alaska in Late October 2005, recorded on the ice 6 days later, Iceberg B-15A underwent at the same time a severe fragmentation, leading to legitimate speculation on the role of storm waves in triggering its break-up. Finally, our stations recorded a large number of local signals

  11. Effects of glucose and ethylene on root hair initiation and elongation in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Harigaya, Wakana; Takahashi, Hidenori

    2018-05-01

    Root hair formation occurs in lettuce seedlings after transfer to an acidic medium (pH 4.0). This process requires cortical microtubule (CMT) randomization in root epidermal cells and the plant hormone ethylene. We investigated the interaction between ethylene and glucose, a new signaling molecule in plants, in lettuce root development, with an emphasis on root hair formation. Dark-grown seedlings were used to exclude the effect of photosynthetically produced glucose. In the dark, neither root hair formation nor the CMT randomization preceding it occurred, even after transfer to the acidic medium (pH 4.0). Adding 1-aminocyclopropane-1-carboxylic-acid (ACC) to the medium rescued the induction, while adding glucose did not. Although CMT randomization occurred when glucose was applied together with ACC, it was somewhat suppressed compared to that in ACC-treated seedlings. This was not due to a decrease in the speed of randomization, but due to lowering of the maximum degree of randomization. Despite the negative effect of glucose on ACC-induced CMT randomization, the density and length of ACC-induced root hairs increased when glucose was also added. The hair-cell length of the ACC-treated seedlings was comparable to that in the combined-treatment seedlings, indicating that the increase in hair density caused by glucose results from an increase in the root hair number. Furthermore, quantitative RT-PCR revealed that glucose suppressed ethylene signaling. These results suggest that glucose has a negative and positive effect on the earlier and later stages of root hair formation, respectively, and that the promotion of the initiation and elongation of root hairs by glucose may be mediated in an ethylene-independent manner.

  12. Influence of Interval Between Postharvest Lettuce Residue Management and Subsequent Seeding of Broccoli on Cabbage Maggot (Diptera: Anthomyiidae) Infestation on Broccoli.

    PubMed

    Joseph, Shimat V; Godfrey, Larry D; Bettiga, Christopher

    2017-10-01

    Larval stages of cabbage maggot, Delia radicum (L.) (Diptera: Anthomyiidae), attack the roots of Brassica crops and cause severe economic damage. In the Salinas Valley of California, Brassica crops are often planted after successive lettuce (Lactuca sativa L.) crops. The interval between postharvest soil incorporation of lettuce residue and the subsequent Brassica crop can be as short as 7 d, which could influence D. radicum infestation on broccoli (Brassica oleracea var. italica Plenck). In 2014 and 2015, the effect of intervals between crops (IBC) on D. radicum infestation was evaluated. The treatments were 7, 20, 33, and 48 d IBC, and NL (no lettuce), 7, 21, 36, and 49 d IBC in 2014 and 2015, respectively. Insect counts and feeding damage on broccoli was assessed during 3-6 wk after planting. Adult Delia fly captures were significantly greater at 7 d than 36-49 d IBC in both years. In both years, D. radicum eggs collected were significantly greater at 7 d than at 33 d or 36 d IBC plots. Larvae collected were significantly greater at 7 d IBC than all other treatments in 2014, but not in 2015. Similarly, severity of feeding injury was significantly greater in 7 d than 33 d or 48 d IBC in 2014, but not in 2015. In 2015, broccoli with no prior lettuce had significantly lower Delia flies and D. radicum egg densities than 7 d or 21 d IBC. The implication of these results as a cultural control tactic for D. radicum infestation is discussed. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. From Glaciers to Icebergs

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy

    I will describe works from a collaboration between physics and glaciology that grew out of interactions at the Computations in Science seminar Leo Kadanoff organized at the University of Chicago. The first project considers the interaction between ocean waves and Antarctic ice shelves, large floating portions of ice formed by glacial outflows. Back-of-envelop calculation and seismic sensor data suggest that crevasses may be distributed within an ice shelf to shield it from wave energy. We also examine numerical scenarios in which changes in environmental forcing causes the ice shelf to fail catastrophically. The second project investigates the aftermath of iceberg calving off glacier terminus in Greenland using data recorded via time-lapse camera and terrestrial radar. Our observations indicate that the mélange of icebergs within the fjord experiences widespread jamming during a calving event and therefore is always close to being in a jammed state during periods of terminus quiescence. Joint work with Jason Amundson, Ivo R. Peters, Julian Freed Brown, Nicholas Guttenberg, Justin C Burton, L. Mac Cathles, Ryan Cassotto, Mark Fahnestock, Kristopher Darnell, Martin Truffer, Dorian S. Abbot and Douglas MacAyeal. Kadanoff Session DCMP.

  14. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce

    PubMed Central

    Reyes-Chin-Wo, Sebastian; Wang, Zhiwen; Yang, Xinhua; Kozik, Alexander; Arikit, Siwaret; Song, Chi; Xia, Liangfeng; Froenicke, Lutz; Lavelle, Dean O.; Truco, María-José; Xia, Rui; Zhu, Shilin; Xu, Chunyan; Xu, Huaqin; Xu, Xun; Cox, Kyle; Korf, Ian; Meyers, Blake C.; Michelmore, Richard W.

    2017-01-01

    Lettuce (Lactuca sativa) is a major crop and a member of the large, highly successful Compositae family of flowering plants. Here we present a reference assembly for the species and family. This was generated using whole-genome shotgun Illumina reads plus in vitro proximity ligation data to create large superscaffolds; it was validated genetically and superscaffolds were oriented in genetic bins ordered along nine chromosomal pseudomolecules. We identify several genomic features that may have contributed to the success of the family, including genes encoding Cycloidea-like transcription factors, kinases, enzymes involved in rubber biosynthesis and disease resistance proteins that are expanded in the genome. We characterize 21 novel microRNAs, one of which may trigger phasiRNAs from numerous kinase transcripts. We provide evidence for a whole-genome triplication event specific but basal to the Compositae. We detect 26% of the genome in triplicated regions containing 30% of all genes that are enriched for regulatory sequences and depleted for genes involved in defence. PMID:28401891

  15. Accumulation of contaminants of emerging concern in food crops-part 1: Edible strawberries and lettuce grown in reclaimed water.

    PubMed

    Hyland, Katherine C; Blaine, Andrea C; Dickenson, Eric R V; Higgins, Christopher P

    2015-10-01

    Contaminants of emerging concern present in domestic waste streams include a highly diverse group of potentially biologically active compounds that can be detected at trace levels in wastewater. Concerns about potential uptake into crops arise when reclaimed water is used in food crop production. The present study investigated how 9 contaminants of emerging concern in reclaimed water are taken up into edible portions of two food crops. Two flame retardant chemicals, tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) and several polar pharmaceuticals (carbamazepine, diphenhydramine, sulfamethoxazole, and trimethoprim) accumulated in a linear, concentration-dependent manner in lettuce (Lactuca sativa) irrigated with reclaimed water, suggesting passive uptake of both neutral and ionizable chemical contaminants in lettuce. Furthermore, concentration-dependent accumulation of TCEP and TCPP from reclaimed water was also observed in strawberry fruits (Fragaria ananassa). Collectively, these data suggest that highly polar or charged contaminants can be taken up by crops from water bearing contaminants of emerging concern and can be accumulated in the edible portions. Using these data, however, estimates of human exposure to these contaminants from reclaimed water food crop accumulation suggest that exposure to the contaminants of emerging concern examined in the present study is likely substantially lower than current exposure guidelines. © 2015 SETAC.

  16. Sea lettuces: culinary uses and nutritional value.

    PubMed

    Kim, Se-Kwon; Pangestuti, Ratih; Rahmadi, Puji

    2011-01-01

    In many countries, sea lettuces are commonly consumed as food by human since the beginning of times. Sea lettuces contain significant amount of nutrients which are essential for human body. Moreover, several studies have provided insight into biological activities and health promoting effects of sea lettuces. Despite having so much health beneficial effects, sea lettuces are still identified as an underexploited plant resources for food purposes. Hence, sea lettuces have a great potential for further development as products in foods and pharmaceutical areas. Further, potential applications of polysaccharides, protein and amino acid, lipid and fatty acid, mineral and vitamin contents may increase the sea lettuces value. This contributions presents information on the currently culinary use of sea lettuces worldwide and nutritional aspects of sea lettuces. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds.

    PubMed

    Rede, Diana; Santos, Lúcia H M L M; Ramos, Sandra; Oliva-Teles, Filipe; Antão, Cristina; Sousa, Susana R; Delerue-Matos, Cristina

    2016-09-01

    Pharmaceuticals have been identified as environmental emerging pollutants and are present in different compartments, including soils. Chemical remediation showed to be a good and suitable approach for soil remediation, though the knowledge in their impact for terrestrial organisms is still limited. Therefore, in this work, two different chemical remediation treatments (Fenton oxidation and nanoremediation) were applied to a soil contaminated with an environmental representative concentration of ibuprofen (3 ng g(-1)). The phytotoxic impact of a traditional soil remediation treatment (Fenton oxidation) and of a new and more sustainable approach for soil remediation (nanoremediation using green nano-scale zero-valent iron nanoparticles (nZVIs)) was evaluated in Lactuca sativa seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of the soil remediation treatments as well as of the ibuprofen contaminated soil. Both chemical remediation treatments showed to have a negative impact in the germination and development of lettuce seeds, exhibiting a reduction up to 45% in the percentage of seed germination and a decrease around 80% in root elongation comparatively to the contaminated soil. These results indicate that chemical soil remediation treatments could be more prejudicial for terrestrial organisms than contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Transcriptomic analysis reveals the roles of gibberellin-regulated genes and transcription factors in regulating bolting in lettuce (Lactuca sativa L.).

    PubMed

    Liu, Xueying; Lv, Shanshan; Liu, Ran; Fan, Shuangxi; Liu, Chaojie; Liu, Renyi; Han, Yingyan

    2018-01-01

    A cool temperature is preferred for lettuce cultivation, as high temperatures cause premature bolting. Accordingly, exploring the mechanism of bolting and preventing premature bolting is important for agriculture. To explore this relationship in depth, morphological, physiological, and transcriptomic analyses of the bolting-sensitive line S39 at the five-leaf stage grown at 37°C were performed in the present study. Based on paraffin section results, we observed that S39 began bolting on the seventh day at 37°C. During bolting in the heat-treated plants, GA3 and GA4 levels in leaves and the indoleacetic acid (IAA) level in the stem reached a maximum on the sixth day, and these high contents were maintained. Additionally, bolting begins in the fifth day after GA3 treatment in S39 plants, GA3 and GA4 increased and then decreased, reaching a maximum on the fourth day in leaves. Similarly, IAA contents reached a maximum in the stem on the fifth day. No bolting was observed in the control group grown at 25°C, and significant changes were not observed in GA3 and GA4 levels in the controls during the observation period. RNA-sequencing data implicated transcription factors (TFs) in regulating bolting in lettuce, suggesting that the high GA contents in the leaves and IAA in the stem promote bolting. TFs possibly modulate the expression of related genes, such as those encoding hormones, potentially regulating bolting in lettuce. Compared to the control group, 258 TFs were identified in the stem of the treatment group, among which 98 and 156 were differentially up- and down-regulated, respectively; in leaves, 202 and 115 TFs were differentially up- and down-regulated, respectively. Significant changes in the treated group were observed for C2H2 zinc finger, AP2-EREBP, and WRKY families, indicating that these TFs may play important roles in regulating bolting.

  19. Quantifying the Reduction in Potential Health Risks by Determining the Sensitivity of Poliovirus Type 1 Chat Strain and Rotavirus SA-11 to Electron Beam Irradiation of Iceberg Lettuce and Spinach

    PubMed Central

    Espinosa, Ana Cecilia; Jesudhasan, Palmy; Arredondo, René; Cepeda, Martha; Mazari-Hiriart, Marisa; Mena, Kristi D.

    2012-01-01

    Fresh produce, such as lettuce and spinach, serves as a route of food-borne illnesses. The U.S. FDA has approved the use of ionizing irradiation up to 4 kGy as a pathogen kill step for fresh-cut lettuce and spinach. The focus of this study was to determine the inactivation of poliovirus and rotavirus on lettuce and spinach when exposed to various doses of high-energy electron beam (E-beam) irradiation and to calculate the theoretical reduction in infection risks that can be achieved under different contamination scenarios and E-beam dose applications. The D10 value (dose required to reduce virus titers by 90%) (standard error) of rotavirus on spinach and lettuce was 1.29 (± 0.64) kGy and 1.03 (± 0.05) kGy, respectively. The D10 value (standard error) of poliovirus on spinach and lettuce was 2.35 (± 0.20) kGy and 2.32 (± 0.08) kGy, respectively. Risk assessment of data showed that if a serving (∼14 g) of lettuce was contaminated with 10 PFU/g of poliovirus, E-beam irradiation at 3 kGy will reduce the risk of infection from >2 in 10 persons to approximately 6 in 100 persons. Similarly, if a serving size (∼0.8 g) of spinach is contaminated with 10 PFU/g of rotavirus, E-beam irradiation at 3 kGy will reduce infection risks from >3 in 10 persons to approximately 5 in 100 persons. The results highlight the value of employing E-beam irradiation to reduce public health risks but also the critical importance of adhering to good agricultural practices that limit enteric virus contamination at the farm and in packing houses. PMID:22179244

  20. Automatic, Satellite-Linked "Webcams" as a Tool in Ice-Shelf and Iceberg Research.

    NASA Astrophysics Data System (ADS)

    Ross, R.; Okal, M. H.; Thom, J. E.; Macayeal, D. R.

    2004-12-01

    Important dynamic events governing the behavior of ice shelves and icebergs are episodic in time and small in scale, making them difficult to observe. Traditional satellite imagery is acquired on a rigid schedule with coarse spatial resolution and this means that collisions between icebergs or the processes which create ice "mélange" that fills detachment rifts leading to ice-shelf calving, to give examples, cannot be readily observed. To overcome the temporal and spatial gaps in traditional remote sensing, we have deployed cameras at locations in Antarctica where research is conducted on the calving and subsequent evolution of icebergs. One camera is located at the edge of iceberg C16 in the Ross Sea, and is positioned to capture visual imagery of collisions between C16 and neighboring B15A. The second camera is located within the anticipated detachment rift of a "nascent" iceberg on the Ross Ice Shelf. The second camera is positioned to capture visual imagery of the rift's propagation and the in-fill of ice mélange, which constrains the mechanical influence of such rifts on the surrounding ice shelf. Both cameras are designed for connection to the internet (hence are referred to as "webcams") and possess variable image qualities and image-control technology. The cameras are also connected to data servers via the Iridium satellite telephone network and produce a daily image that is transmitted to the internet through the Iridium connection. Results of the initial trial deployments will be presented as a means of assessing both the techniques involved and the value of the scientific information acquired by these webcams. In the case of the iceberg webcam, several collisions between B15A and C16 were monitored over the period between January, 2003 and December, 2004. The time-lapse imagery obtained through this period showed giant "push mounds" of damaged firn on the edge and surface of the icebergs within the zones of contact as a consequence of the collisions

  1. Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Warren, Stephen G.; Roesler, Collin S.; Morgan, Vincent I.; Brandt, Richard E.; Goodwin, Ian D.; Allison, Ian

    1993-01-01

    Although most icebergs are blue, green icebergs are seen occasionally in the Antarctic ocean. Chemical and isotopic analysis of samples from green icebergs indicate that the ice consists of desalinated frozen seawater, as does the basal ice from the Amery Ice Shelf. Spectral reflectance of a green iceberg measured near 67°S, 62°E, confirms that the color is inherent to the ice, not an artifact of the illumination. Pure ice appears blue owing to its absorption of red photons. Addition of a constituent that absorbs blue photons can shift the peak reflectance from blue to green. Such a constituent was identified by spectrophotometric analysis of core samples from this iceberg and from the Amery basal ice, and of seawater samples from Prydz Bay off the Amery Ice Shelf. Analysis of the samples by fluorescence spectroscopy indicates that the blue absorption, and hence the inherent green color, is due to the presence of marine-derived organic matter in the green iceberg, basal ice, and seawater. Thick accumulations of green ice, in icebergs and at the base of ice shelves, indicate that high concentrations of organic matter exist in seawater for centuries at the depth of basal freezing.

  2. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa.

    PubMed

    Wargent, Jason J; Elfadly, Eslam M; Moore, Jason P; Paul, Nigel D

    2011-08-01

    Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent. © 2011 Blackwell Publishing Ltd.

  3. NASA Snaps Nighttime View of Massive Iceberg Split

    NASA Image and Video Library

    2017-07-25

    As Antarctica remains shrouded in darkness during the Southern Hemisphere winter, the Thermal Infrared Sensor (TIRS) on Landsat 8 captured a new snap of the 2,240-square-mile iceberg that split off from the Antarctic Peninsula’s Larsen C ice shelf on July 10-12. The satellite imagery is a composite of Landsat 8 as it past on July 14 and July 21 and shows that the main berg, A-68, has already lost several smaller pieces. The A-68 iceberg is being carried by currents northward out of its embayment on the Larsen C ice shelf. The latest imagery also details a group of three small, not yet released icebergs at the north end of the embayment. Credits: NASA Goddard/UMBC JCET, Christopher A. Shuman NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Evaluation of a Modified Atmosphere Packaging System to Increase Fresh Fruit and Vegetable Shelf Life for Extended Military Supply Chains

    DTIC Science & Technology

    2012-02-24

    Three key items – iceberg lettuce, romaine lettuce, and broccoli crowns – were tested in the Pacific Region Guam supply chain. Due to longer total...7 2.1.1 Extra Apio Broccoli for Test Shipments 2 and 3 ................................................8 2.2 Test...49 3.3 Broccoli Crowns .............................................................................................................49 3.3.1

  5. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa

    PubMed Central

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. “Batavia” (green) and cv. “Lollo Rossa” (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m−2 s−1 for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m−2 s−1 from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m−2 s−1 from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m−2 s−1 from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m−2 s−1 from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent. PMID:25767473

  6. Oil palm waste and synthetic zeolite: an alternative soil-less growth substrate for lettuce production as a waste management practice.

    PubMed

    Jayasinghe, Guttila Y; Tokashiki, Yoshihiro; Kitou, Makato; Kinjo, Kazutoshi

    2008-12-01

    A study was conducted to assess the characteristics and the prospective utilization of oil palm waste (OP) and synthetic zeolite (SZ) developed by coal fly ash, as an alternative substrate to peat and commercial perlite for lettuce (Lactuca sativa L.) production. The SZ, OP, sphagnum peat (PE), perlite (PL) and two different SZ-OP mixtures (v/v) at the ratio of 1 : 3 and 1 : 10 were utilized as the substrates under this study. The substrates formulated by mixing SZ with OP at the ratio of 1 : 3 and 1 : 10 showed improved substrate physical and chemical properties such as air space, bulk density, particle density, water-holding capacity, pH and electrical conductivity (EC), which were in the ideal substrate range when compared with PL. Furthermore, the water-holding capacity of the substrate having a 1 : 10 mixing ratio of SZ with OP was higher than that of the PL by 28.23%, whereas the bulk density was lower than that of PL by 35%. A greenhouse experiment was carried out to assess the influence of the substrates on the growth and development of lettuce. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and number of leaves per plant of the lettuce grown in the 1 : 10 mixing ratio of SZ and OP were the highest, which showed increased values compared with that of PL by 11.56, 9.77, 3.48, 17.35 and 16.53%, respectively. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and number of leaves per plant of the lettuce grown in the 1 : 10 mixing ratio of SZ and OP showed increased percentages compared with that of PE by 12.12, 11.37, 3.74, 23.66 and 17.50%, respectively. In addition, the growth and yield parameters of lettuce grown in the 1 : 3 mixing ratio and the OP did not show any significant difference with PL and PE but differed from the 1 : 10 mixing ratio. The results of the study suggest that the SZ-OP-based substrates and OP can be successfully utilized as alternatives to the commercial perlite and to

  7. Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves

    NASA Technical Reports Server (NTRS)

    Warren, Stephen G.; Roesler, Collin S.; Morgan, Vincent I.; Brandt, Richard E.; Goodwin, Ian D.; Allison, Ian

    1993-01-01

    Samples of Antarctic seawater, basal ice, and green ice from ice cliffs and green icebergs are analyzed in order to examine green icebergs formed by the freezing of organic-rich seawater to the base of Antarctic ice shelves. Spectral reflectance of a green iceberg measured near 67 deg S, 62 deg E confirms that the color is inherent in the ice, not an artifact of the illumination. A constituent that absorbs blue photons is identified by spectrophotometric analysis of core samples from this iceberg and from the Amery basal ice, and of seawater samples from Prydz Bay off the Amery Ice Shelf. Analysis of the samples by fluorescence spectroscopy indicates that the blue absorption, and hence the inherent green color, is due to the presence of marine-derived organic matter in the green iceberg, basal ice, and seawater. Thick accumulations of green ice, in icebergs, and at the base of ice shelves indicate that high concentrations of organic matter exist in seawater for centuries at the depth of basal freezing.

  8. Foliar lead uptake by lettuce exposed to atmospheric fallouts.

    PubMed

    Uzu, Gaëlle; Sobanska, Sophie; Sarret, Géraldine; Muñoz, Manuel; Dumat, Camille

    2010-02-01

    Metal uptake by plants occurs by soil-root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce ( Lactuca sativa ) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 +/- 50 mg Pb kg(-1) (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination.

  9. A model of icebergs and sea ice in a joint continuum framework

    NASA Astrophysics Data System (ADS)

    Vaňková, Irena; Holland, David M.

    2017-04-01

    The ice mélange, a mixture of sea ice and icebergs, often present in front of tidewater glaciers in Greenland or ice shelves in Antarctica, can have a profound effect on the dynamics of the ice-ocean system. The current inability to numerically model the ice mélange motivates a new modeling approach proposed here. A continuum sea-ice model is taken as a starting point and icebergs are represented as thick and compact pieces of sea ice held together by large tensile and shear strength selectively introduced into the sea ice rheology. In order to modify the rheology correctly, a semi-Lagrangian time stepping scheme is introduced and at each time step a Lagrangian grid is constructed such that iceberg shape is preserved exactly. With the proposed treatment, sea ice and icebergs are considered a single fluid with spatially varying rheological properties, mutual interactions are thus automatically included without the need of further parametrization. An important advantage of the presented framework for an ice mélange model is its potential to be easily included in existing climate models.

  10. Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A.

    PubMed

    Kreslavski, Vladimir D; Lyubimov, Valery Yu; Shirshikova, Galina N; Shmarev, Alexander N; Kosobryukhov, Anatoly A; Schmitt, Franz-Josef; Friedrich, Thomas; Allakhverdiev, Suleyman I

    2013-05-05

    Seedlings of 10-day-old lettuce (Lactuca sativa L., cultivar Berlin) were preilluminated by low intensity red light (λmax=660 nm, 10 min, 5 μmol quanta m(-2) s(-1)) and far-red light (λmax=730 nm, 10 min, 5 μmol quanta m(-2) s(-1)) to study the effect of pre-treatment on photosynthesis, photochemical activity of photosystem II (PSII), the contents of photosynthetic and UV-A-absorbing pigments (UAPs) and H2O2, as well as total and ascorbate peroxidase activities in cotyledonary leaves of seedlings exposed to UV-A. UV radiation reduced the photosynthetic rate (Pn), the activity of PSII, and the contents of Chl a and b, carotenoids and UAPs in the leaves, but increased the content of H2O2 and the total peroxidase activity. Preillumination with red light removed these effects of UV. In turn, the illumination with red light, then far-red light removed the effect of the red light. Illumination with red light alone increased the content of UAPs, as well as peroxidase activity. It is suggested that higher resistance of the lettuce photosynthetic apparatus to UV-A radiation is associated with involvement of the active form of phytochrome B, thereby increasing peroxidase activities as well as UAPs and saving preservation of photosynthetic pigment contents due to pre-illumination with red light. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Lettuce and spinach breeding

    USDA-ARS?s Scientific Manuscript database

    Lettuce and spinach production is beset by numerous biotic an abiotic challenges. This report to the California Leafy Greens Research Program annual meeting provides an update by the ‘Genetic Enhancement of Lettuce, Spinach, Melon, and Related Species’ project at Salinas on the genetics and breeding...

  12. Prevention of microbial hazard on fresh-cut lettuce through adoption of food safety and hygienic practices by lettuce farmers.

    PubMed

    Oyinlola, Lateefah A; Obadina, Adewale O; Omemu, Adebukunola M; Oyewole, Olusola B

    2017-01-01

    Lettuce is consumed raw in salads and is susceptible to microbial contamination through environment, agricultural practices, and its morphology, thus, a potential vehicle for food-borne illness. This study investigated the effect of adoption of food safety and hygienic practices by lettuce farmers on the microbial safety of field sourced lettuce in Lagos State, Nigeria. Ten structured questionnaires were administered randomly to 10 lettuce farmers to assess food safety and hygienic practices (FSH). Two farmers who practice FSH and two farmers who do not practice NFSH were finally used for this study. Samples of ready-to-harvest lettuce, manure applied, and irrigation water were obtained for a period of five months (August - December 2013) and analyzed for total plate count (TPC), total coliform count (TCC), Escherichia coli, Listeria spp., Salmonella spp., and Shigella spp . counts. Result of microbial analyses of lettuce samples was compared with international microbiological specification for ready-to-eat foods. Results showed that the range of TPC on lettuce was 6.00 to 8.11 LogCFU/g from FSH farms and TPC of lettuce samples from NFSH farms ranged from 6.66 to 13.64 LogCFU/g. 1.49 to 4.85LogCFU/g were TCC ranges from lettuce samples obtained from FSH farms while NFSH farms had TCC ranging between 3.95 and 10.86 LogCFU/g, respectively. The range of isolated pathogen count on lettuce from FSH and NFSH farms exceeded the international safety standard; there was a significant difference in the microbial count of lettuce from FSH farms and NFSH farms. This study concludes that the lettuce samples obtained did not pass the international microbial safety standards. FSH compliance is a major determinant of the microbial safety of lettuce. Hence, the institution of FSH on farm to improve microbial safety of lettuce produced for public consumption is emphasized.

  13. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman.

    PubMed

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-05-01

    To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases.

  14. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman

    PubMed Central

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-01-01

    Objective To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). Methods The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. Results About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. Conclusions The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases. PMID:23646297

  15. Incorporation of temperature and solar radiation thresholds to modify a lettuce downy mildew warning system.

    PubMed

    Wu, B M; van Bruggen, A H C; Subbarao, K V; Scherm, H

    2002-06-01

    ABSTRACT The effect of temperature on infection of lettuce by Bremia lactucae was investigated in controlled environment studies and in the field. In controlled conditions, lettuce seedlings inoculated with B. lactucae were incubated at 15, 20, 25, or 30 degrees C during a 4-h wet period immediately after inoculation or at the same temperatures during an 8-h dry period after the 4-h postinoculation wet period at 15 degrees C. High temperatures during wet and dry periods reduced subsequent disease incidence. Historical data from field studies in 1991 and 1992, in which days with or without infection had been identified, were analyzed by comparing average air temperatures during 0600 to 1000 and 1000 to 1400 Pacific standard time (PST) between the two groups of days. Days without infection had significantly higher temperatures (mean 21.4 degrees C) than days with infection (20.3 degrees C) during 1000 to 1400 PST (P < 0.01) but not during 0600 to 1000 PST. Therefore, temperature thresholds of 20 and 22 degrees C for the 3-h wet period after sunrise and the subsequent 4-h postpenetration period, respectively, were added to a previously developed disease warning system that predicts infection when morning leaf wetness lasts >/=4 h from 0600 PST. No infection was assumed to occur if average temperature during these periods exceeded the thresholds. Based on nonlinear regression and receiver operating characteristic curve analysis, the leaf wetness threshold of the previous warning system was also modified to >/=3-h leaf wetness (>/=0900 PST). Furthermore, by comparing solar radiation on days with infection and without infection, we determined that high solar radiation during 0500 to 0600 PST in conjunction with leaf wetness ending between 0900 and 1000 PST was associated with downy mildew infection. Therefore, instead of starting at 0600 PST, the calculation of the 3-h morning leaf wetness period was modified to start after sunrise, defined as the hour when measured

  16. Iceberg and ice-keel ploughmarks on the Gdansk-Gotland Sill (south-eastern Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Dorokhov, D. V.; Dorokhova, E. V.; Sivkov, V. V.

    2018-02-01

    New interpretation of the undulating moraine relief of the Gdansk-Gotland Sill, Baltic Sea is proposed. Relict iceberg and ice-keel ploughmarks were observed based on the integration of recently acquired side-scan sonar, multi-beam, single-beam and lithological data. The most likely time of their formation is the period of fast Scandinavian sheet retreat occurring from approximately 13.2 to 11.7 ka. Weak erosional-accumulative processes on the sill from 11.7 ka until the present favoured preservation of the iceberg ploughmarks. The predominant directions of the ploughmarks (north-south and northwest-southeast) coincide with the major iceberg (ice) drift direction from the Scandinavian ice sheet. Furrow width varies from 1 to 300 m with a main width of 20-60 m in a depth range of 1 to 10 m (mostly 2-4 m depth). The ploughmarks are flanked by side ridges 0.5-2 m high, and there is a push mound at the end of some furrows. Three types of cross-sectional furrow profiles have been distinguished: V-shaped cross-section profiles would have been formed by a peaked iceberg keel, U-shaped profiles by a flat keel, and W-shaped profiles by double-keel icebergs (ice ridges). The wide local depressions at the end of ploughmarks could have been formed during periods of fast falling of the Baltic Ice Lake water level, when the ice ridges (stamukhi) or icebergs could ground into the seafloor.

  17. South American monsoon response to iceberg discharge in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Stríkis, Nicolás M.; Cruz, Francisco W.; Barreto, Eline A. S.; Naughton, Filipa; Vuille, Mathias; Cheng, Hai; Voelker, Antje H. L.; Zhang, Haiwei; Karmann, Ivo; Edwards, R. Lawrence; Auler, Augusto S.; Ventura Santos, Roberto; Reis Sales, Hamilton

    2018-04-01

    Heinrich Stadials significantly affected tropical precipitation through changes in the interhemispheric temperature gradient as a result of abrupt cooling in the North Atlantic. Here, we focus on changes in South American monsoon precipitation during Heinrich Stadials using a suite of speleothem records covering the last 85 ky B.P. from eastern South America. We document the response of South American monsoon precipitation to episodes of extensive iceberg discharge, which is distinct from the response to the cooling episodes that precede the main phase of ice-rafted detritus deposition. Our results demonstrate that iceberg discharge in the western subtropical North Atlantic led to an abrupt increase in monsoon precipitation over eastern South America. Our findings of an enhanced Southern Hemisphere monsoon, coeval with the iceberg discharge into the North Atlantic, are consistent with the observed abrupt increase in atmospheric methane concentrations during Heinrich Stadials.

  18. The role of cooperative iceberg capsize during ice-shelf disintegration

    NASA Astrophysics Data System (ADS)

    Wilder, W. G.; Burton, J. C.; Amundson, J. M.; Cathles, L. M.; Zhang, W. W.

    2011-12-01

    The physical processes responsible for the sudden, rapid collapse of Antarctic ice-shelves (Larsen B, in 2002; Wilkins, in 2008) are poorly understood. Observations are limited to a handful of satellite images. Thus we have undertaken a series of laboratory-scale experiments using a water-filled tank and "ice" made from buoyant plastic blocks to investigate these processes. Previous experiments have quantified how gravitational potential energy of single-iceberg capsize is converted to other forms of energy [described in Burton et al., submitted], including hydrodynamic forms that may feed back on the ice shelf to cause additional calving. The new experiments reported here examine the energetics of hydrodynamically coupled icebergs that exhibit collective behaviors qualitatively similar to features observed in satellite imagery. Our results suggest that there is a critical proximity at which icebergs will capsize in the same direction an overwhelming majority of the time (cooperative capsize), and a significant part of the gravitational potential energy is converted into translational kinetic energy. We speculate that the residual translational energy observed in our experiments may explain the significant expansion rate (~1 meter/second) of collapsing Antarctic ice-shelves. Burton, J. C., J. M. Amundson, D. S. Abbot, A. Boghosian, L. M. Cathles, S. Correa-Legisos, K. N. Darnell, N. Guttenberg, D. M. Holland, and D. R. MacAyeal. submitted. Laboratory investigations of iceberg-capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res.

  19. Iceberg capsize hydrodynamics and the source of glacial earthquakes

    NASA Astrophysics Data System (ADS)

    Kaluzienski, Lynn; Burton, Justin; Cathles, Mac

    2014-03-01

    Accelerated warming in the past few decades has led to an increase in dramatic, singular mass loss events from the Greenland and Antarctic ice sheets, such as the catastrophic collapse of ice shelves on the western antarctic peninsula, and the calving and subsequent capsize of cubic-kilometer scale icebergs in Greenland's outlet glaciers. The latter has been identified as the source of long-period seismic events classified as glacial earthquakes, which occur most frequently in Greenland's summer months. The ability to partially monitor polar mass loss through the Global Seismographic Network is quite attractive, yet this goal necessitates an accurate model of a source mechanism for glacial earthquakes. In addition, the detailed relationship between iceberg mass, geometry, and the measured seismic signal is complicated by inherent difficulties in collecting field data from remote, ice-choked fjords. To address this, we use a laboratory scale model to measure aspects of the post-fracture calving process not observable in nature. Our results show that the combination of mechanical contact forces and hydrodynamic pressure forces generated by the capsize of an iceberg adjacent to a glacier's terminus produces a dipolar strain which is reminiscent of a single couple seismic source.

  20. Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks

    NASA Astrophysics Data System (ADS)

    Wise, Matthew G.; Dowdeswell, Julian A.; Jakobsson, Martin; Larter, Robert D.

    2017-10-01

    Marine ice-cliff instability (MICI) processes could accelerate future retreat of the Antarctic Ice Sheet if ice shelves that buttress grounding lines more than 800 metres below sea level are lost. The present-day grounding zones of the Pine Island and Thwaites glaciers in West Antarctica need to retreat only short distances before they reach extensive retrograde slopes. When grounding zones of glaciers retreat onto such slopes, theoretical considerations and modelling results indicate that the retreat becomes unstable (marine ice-sheet instability) and thus accelerates. It is thought that MICI is triggered when this retreat produces ice cliffs above the water line with heights approaching about 90 metres. However, observational evidence confirming the action of MICI has not previously been reported. Here we present observational evidence that rapid deglacial ice-sheet retreat into Pine Island Bay proceeded in a similar manner to that simulated in a recent modelling study, driven by MICI. Iceberg-keel plough marks on the sea-floor provide geological evidence of past and present iceberg morphology, keel depth and drift direction. From the planform shape and cross-sectional morphologies of iceberg-keel plough marks, we find that iceberg calving during the most recent deglaciation was not characterized by small numbers of large, tabular icebergs as is observed today, which would produce wide, flat-based plough marks or toothcomb-like multi-keeled plough marks. Instead, it was characterized by large numbers of smaller icebergs with V-shaped keels. Geological evidence of the form and water-depth distribution of the plough marks indicates calving-margin thicknesses equivalent to the threshold that is predicted to trigger ice-cliff structural collapse as a result of MICI. We infer rapid and sustained ice-sheet retreat driven by MICI, commencing around 12,300 years ago and terminating before about 11,200 years ago, which produced large numbers of icebergs smaller than the

  1. Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo.

    PubMed

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Sajid, Moniba; Kayani, Waqas Khan; Mirza, Bushra

    2016-12-01

    Lettuce is an important edible crop which possesses various medicinal properties. In this study Lactuca sativa L. (cv Grand Rapids) was transformed by Agrobacterium-mediated transformation with rol C gene. Transgene integration and expression was confirmed through PCR and semiquantitative RT-PCR. The transformed extracts were evaluated for their in vitro antioxidant and in vivo analgesic, anti-inflammatory and antidepressant activities in rats. The transformed plants showed 53-98 % increase in total phenolic and 45-58 % increase in total flavonoid contents compared with untransformed plants. Results of total reducing power and total antioxidant capacity exhibited 90-118 and 61-75 % increase in transformed plants, respectively. In contrast to control, DPPH, lipid peroxidation and DNA protection assay showed up to 37, 20 and 50 % enhancement in transformed plants, respectively. The extracts showed similar but significant enhancement behavior in hot plate analgesic and carrageenan-induced hind paw edema test. The transformed extracts showed 72.1 and 78.5 % increase for analgesic and anti-inflammatory activities, respectively. The transformants of rol C gene exhibited prominent antidepressant activity with 64-73 % increase compared with untransformed plants. In conclusion, the present work suggests that transformation with rol C gene can be used to generate lettuce with enhanced medicinally important properties, such as antioxidant, analgesic, anti-inflammatory and antidepressant potential.

  2. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC

    PubMed Central

    Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K.; Bhojaraju, P.

    2014-01-01

    Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance. PMID:24497744

  3. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt.

    PubMed

    Raiswell, Rob; Benning, Liane G; Tranter, Martyn; Tulaczyk, Slawek

    2008-05-30

    Productivity in the Southern Oceans is iron-limited, and the supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine reservoir. Glacial sediment sources of iron have rarely been considered, as the iron has been assumed to be inert and non-bioavailable. This study demonstrates the presence of potentially bioavailable Fe as ferrihydrite and goethite in nanoparticulate clusters, in sediments collected from icebergs in the Southern Ocean and glaciers on the Antarctic landmass. Nanoparticles in ice can be transported by icebergs away from coastal regions in the Southern Ocean, enabling melting to release bioavailable Fe to the open ocean. The abundance of nanoparticulate iron has been measured by an ascorbate extraction. This data indicates that the fluxes of bioavailable iron supplied to the Southern Ocean from aeolian dust (0.01-0.13 Tg yr(-1)) and icebergs (0.06-0.12 Tg yr(-1)) are comparable. Increases in iceberg production thus have the capacity to increase productivity and this newly identified negative feedback may help to mitigate fossil fuel emissions.

  4. Breeding lettuce for improved fresh-cut processing

    USDA-ARS?s Scientific Manuscript database

    Lettuce is a widely grown vegetable that is used to make fresh-cut salads, which are popular with consumers due to their convenience. Production and processing of fresh-cut lettuce is continually evolving, offering more products and becoming more efficient. Breeding new lettuce cultivars specialized...

  5. The effect of modified atmosphere packaging on the persistence and expression of virulence factors of Escherichia coli O157:H7 on shredded iceberg lettuce

    USDA-ARS?s Scientific Manuscript database

    Fresh-cut leafy greens contaminated with Escherichia coli O157:H7 have been associated with multiple foodborne outbreaks. Modified atmospheric packaging (MAP) conditions, coupled with abusive storage temperatures of contaminated lettuce which may affect the persistence and expression of E. coli O1...

  6. Characterization of lettuce big-vein associated virus and Mirafiori lettuce big-vein virus infecting lettuce in Saudi Arabia.

    PubMed

    Umar, M; Amer, M A; Al-Saleh, M A; Al-Shahwan, I M; Shakeel, M T; Zakri, A M; Katis, N I

    2017-07-01

    During 2014 and 2015, 97 lettuce plants that showed big-vein-disease-like symptoms and seven weed plants were collected from the Riyadh region. DAS-ELISA revealed that 25% and 9% of the lettuce plants were singly infected with LBVaV and MiLBVV, respectively, whereas 63% had a mixed infection with both viruses. The results were confirmed by multiplex reverse transcription polymerase chain reaction using primers specific for LBVaV and MiLBVV. LBVaV and MiLBVV were also detected in Sonchus oleraceus and Eruca sativa, respectively. The nucleotide sequence of LBVaV and MiLBVV Saudi isolates ranged from 94.3-100%, and their similarities to isolates with sequences in the GenBank database ranged from 93.9 to 99.6% and 93.8 to 99.3%, respectively. Olpidium sp. was present in the roots of lettuce plants with big-vein disease and it was shown to facilitate transmission of both viruses.

  7. Nitrates and nitrites in selected vegetables purchased at supermarkets in Siedlce, Poland.

    PubMed

    Raczuk, Jolanta; Wadas, Wanda; Głozak, Katarzyna

    2014-01-01

    Vegetables constitute a vital part of the human diet, being the main source of minerals, vitamins, dietary fibre and phytochemicals. They however, also contain nitrates and nitrites, which adversely affect human health. To determine nitrate and nitrite content in selected vegetables purchased at supermarket chains in Siedlce and to assess their impact on consumer health. Vegetable samples were purchased from local supermarkets in Siedlce, town situated in the Mazovian province (Voivodeship) of Poland. These consisted of 116 samples of nine vegetables types including butterhead and iceberg lettuce, beetroot, white cabbage, carrot, cucumber, radish, tomato and potato collected between April and September 2011. Concentrations of nitrate and nitrite were determined by standard colorimetric methods used in Poland, with results expressed as mg per kg fresh weight of vegetables. Nitrate concentrations varied between 10 mg x kg(-1) to 4800 mg x kg(-1). The highest mean nitrate concentrations were found in radishes (2132 mgkg(-1)), butterhead lettuce (1725 mg x kg(-1)), beetroots (1306 mg x kg(-1)) and iceberg lettuce (890 mg x kg(-1)), whereas the lowest were found in cucumber (32 mg x kg(-1)) and tomato (35 mg x kg(-1)). Nitrite levels were also variable; the highest concentrations measured were in beetroot (mean 9.19 mg x kg(-1)) whilst much smaller amounts were present in carrot, cucumbers, iceberg lettuce, white cabbage, tomatoes and potatoes. The daily adult consumption of 100 g amounts of the studied vegetables were found not exceed the ADI for both nitrates and nitrites. Findings indicated the need for monitoring nitrate and nitrite content in radishes, butterhead lettuce and beetroot due to consumer health concerns.

  8. Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake Efficiency, Yield, and Nutritional Quality of Leafy Vegetables

    PubMed Central

    Fiorentino, Nunzio; Ventorino, Valeria; Woo, Sheridan L.; Pepe, Olimpia; De Rosa, Armando; Gioia, Laura; Romano, Ida; Lombardi, Nadia; Napolitano, Mauro; Colla, Giuseppe; Rouphael, Youssef

    2018-01-01

    Microbial inoculants such as Trichoderma-based products are receiving great interest among researchers and agricultural producers for their potential to improve crop productivity, nutritional quality as well as resistance to plant pathogens/pests and numerous environmental stresses. Two greenhouse experiments were conducted to assess the effects of Trichoderma-based biostimulants under suboptimal, optimal and supraoptimal levels of nitrogen (N) fertilization in two leafy vegetables: Iceberg lettuce (Lactuca sativa L.) and rocket (Eruca sativa Mill.). The yield, nutritional characteristics, N uptake and mineral composition were analyzed for each vegetable crop after inoculation with Trichoderma strains T. virens (GV41) or T. harzianum (T22), and results were compared to non-inoculated plants. In addition, the effect of the Trichoderma-based biostimulants on microbes associated with the rhizosphere in terms of prokaryotic and eukaryotic composition and concentration using DGGE was also evaluated. Trichoderma-based biostimulants, in particular GV41, positively increased lettuce and rocket yield in the unfertilized plots. The highest marketable lettuce fresh yield was recorded with either of the biostimulant inoculations when plants were supplied with optimal levels of N. The inoculation of rocket with GV41, and to a lesser degree with T22, elicited an increase in total ascorbic acid under both optimal and high N conditions. T. virens GV41 increased N-use efficiency of lettuce, and favored the uptake of native N present in the soil of both lettuce and rocket. The positive effect of biostimulants on nutrient uptake and crop growth was species-dependent, being more marked with lettuce. The best biostimulation effects from the Trichoderma treatments were observed in both crops when grown under low N availability. The Trichoderma inoculation strongly influenced the composition of eukaryotic populations in the rhizosphere, in particularly exerting different effects with low

  9. Spawning of Massive Antarctic Iceberg Captured by NASA

    NASA Image and Video Library

    2017-07-14

    Between July 10 and 12, 2017, the Larsen C Ice Shelf in West Antarctica calved one of the largest icebergs in history (named "A-68"), weighing approximately one trillion tons. The rift in the ice shelf that spawned the iceberg has been present on the shelf since at least the beginning of the Landsat era (approximately the 1970s), but remained relatively dormant until around 2012, when it was observed actively moving through a suture zone in the ice shelf (Jansen et al., 2015). Suture zones are wide bands of ice that extend from glacier grounding lines (the boundary between a floating ice shelf and ice resting on bedrock) to the sea comprised of a frozen mixture of glacial ice and sea water, traditionally considered to be stabilizing features in ice shelves. When the Antarctic entered its annual dark period in late April, scientists knew the rift only had a few more miles to go before it completely calved the large iceberg. However, due to the lack of sunlight during the Antarctic winter, visible imagery is generally not available each year between May and August. This frame is from an animation that shows the ice shelf as imaged by the NASA/NOAA satellite Suomi NPP, which features the VIIRS (Visible Infrared Imaging Radiometer Suite) instrument. VIIRS has a day/night panchromatic band capable of collecting nighttime imagery of Earth with a spatial resolution of 2,460 feet (750 meters). An image from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite shows the last cloud-free, daytime image of the ice shelf on April 6; the MODIS thermal imagery band is shown on April 29. The images from May 9 to July 14 show available cloud-free imagery from Suomi NPP. Luckily, despite several cloudy days leading up to the break, the weather mostly cleared on July 11, allowing scientists to see the newly formed iceberg on July 12. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21785

  10. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases.

    PubMed Central

    Meyers, B C; Chin, D B; Shen, K A; Sivaramakrishnan, S; Lavelle, D O; Zhang, Z; Michelmore, R W

    1998-01-01

    At least 10 Dm genes conferring resistance to the oomycete downy mildew fungus Bremia lactucae map to the major resistance cluster in lettuce. We investigated the structure of this cluster in the lettuce cultivar Diana, which contains Dm3. A deletion breakpoint map of the chromosomal region flanking Dm3 was saturated with a variety of molecular markers. Several of these markers are components of a family of resistance gene candidates (RGC2) that encode a nucleotide binding site and a leucine-rich repeat region. These motifs are characteristic of plant disease resistance genes. Bacterial artificial chromosome clones were identified by using duplicated restriction fragment length polymorphism markers from the region, including the nucleotide binding site-encoding region of RGC2. Twenty-two distinct members of the RGC2 family were characterized from the bacterial artificial chromosomes; at least two additional family members exist. The RGC2 family is highly divergent; the nucleotide identity was as low as 53% between the most distantly related copies. These RGC2 genes span at least 3.5 Mb. Eighteen members were mapped on the deletion breakpoint map. A comparison between the phylogenetic and physical relationships of these sequences demonstrated that closely related copies are physically separated from one another and indicated that complex rearrangements have shaped this region. Analysis of low-copy genomic sequences detected no genes, including RGC2, in the Dm3 region, other than sequences related to retrotransposons and transposable elements. The related but divergent family of RGC2 genes may act as a resource for the generation of new resistance phenotypes through infrequent recombination or unequal crossing over. PMID:9811791

  11. Overexpression of KNAT1 in lettuce shifts leaf determinate growth to a shoot-like indeterminate growth associated with an accumulation of isopentenyl-type cytokinins.

    PubMed

    Frugis, G; Giannino, D; Mele, G; Nicolodi, C; Chiappetta, A; Bitonti, M B; Innocenti, A M; Dewitte, W; Van Onckelen, H; Mariotti, D

    2001-08-01

    Leaves are specialized organs characterized by defined developmental destiny and determinate growth. The overexpression of Knotted1-like homeobox genes in different species has been shown to alter leaf shape and development, but a definite role for this class of genes remains to be established. Transgenics that overexpress Knotted1-like genes present some traits that are characteristic of altered cytokinin physiology. Here we show that lettuce (Lactuca sativa) leaves that overexpress KNAT1, an Arabidopsis kn1-like gene, acquire characteristics of indeterminate growth typical of the shoot and that this cell fate change is associated with the accumulation of specific types of cytokinins. The possibility that the phenotypic effects of KNAT1 overexpression may arise primarily from the modulation of local ratios of different cytokinins is discussed.

  12. Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop-wild hybrids under drought, salinity and nutrient deficiency conditions.

    PubMed

    Uwimana, Brigitte; Smulders, Marinus J M; Hooftman, Danny A P; Hartman, Yorike; van Tienderen, Peter H; Jansen, Johannes; McHale, Leah K; Michelmore, Richard W; van de Wiel, Clemens C M; Visser, Richard G F

    2012-10-01

    With the development of transgenic crop varieties, crop-wild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F(2:3) families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency. Using single nucleotide polymorphism markers, we mapped quantitative trait loci associated with plant vigour in the F(2:3) families and determined the allelic contribution of the two parents. Seventeen QTLs (quantitative trait loci) associated with vigour and six QTLs associated with the accumulation of ions (Na(+), Cl(-) and K(+)) were mapped on the nine linkage groups of lettuce. Seven of the vigour QTLs had a positive effect from the crop allele and six had a positive effect from the wild allele across treatments, and four QTLs had a positive effect from the crop allele in one treatment and from the wild allele in another treatment. Based on the allelic effect of the QTLs and their location on the genetic map, we could suggest genomic locations where transgene integration should be avoided when aiming at the mitigation of its persistence once crop-wild hybridization takes place.

  13. NASA Spacecraft Images One of Earth Iceberg Incubators

    NASA Image and Video Library

    2012-04-13

    Acquired by NASA Terra spacecraft, this image shows the west coast of Greenland, one of Earth premiere incubators for icebergs -- large blocks of land ice that break off from glaciers or ice shelves and float in the ocean.

  14. Iceberg Ahead: The Effect of Bands and Ridges During Chaos Formation on Europa.

    NASA Astrophysics Data System (ADS)

    Hedgepeth, J. E.; Schmidt, B. E.

    2016-12-01

    Europa presents a dynamic and varied surface, but the most enticing component is arguably its chaos structures. With it, the surface and subsurface can interact, but in order to fully understand if this is occurring we have to properly parameterize the surface structural integrity. We consider the Schmidt et al. (2011) method of classifying icebergs by feature type to study what features remained intact in the chaos matrix. In this work we expand on this idea. We hypothesize that the ice that forms ridges and bands exhibit higher structural strengths than plains. Subsequently, this ice is more likely to remain during chaos formation in the form of icebergs. We begin by mapping the surface around Murias chaos and other prominent chaos features. Maps are used to infer what paleo-topographic features existed before chaos formation by using the features surrounding the chaos regions as blueprints for what existed before. We perform a multivariate regression to correlate the amount of icebergs present to the amount of surface that was covered by either bands, plains, or ridges. We find ridges play the biggest role in the production of icebergs with a weighted value of 40%. Bands may play a smaller role (13%), but plains show little to no correlation (5%). Further mapping will better reveal if this trend holds true in other regions. This statistical analysis supports our hypothesis, and further work will better quantify what is occurring. We will address the energy expended in the chaos regions via movement and rotation of icebergs during the formation event and through ice-melt.

  15. Characterization of icebergs and floating sea ice in the Yung Sund fjord in Greenland from satellite radar and optical images.

    NASA Astrophysics Data System (ADS)

    Guillaso, Stephane; Gay, Michel; Gervaise, Cedric

    2017-04-01

    At the Zackenberg site, sea ice starts to move between June and September resulting in icebergs flowing freely on the sea. Splitting into smaller parts, they reduce in size. Icebergs represent a risk for maritime transport and needs to be studied. In order to determine iceberg density per surface unit, size distribution, and movement of icebergs, we need to observe, detect, range and track them. The use of SAR images is particularly well adapted in regions where cloud cover is very present. We focused our study on the Yung Sund fjord in Greenland, where lots of icebergs and sea ice are generated during the summer. In the beginning of July, sea ice breaks up first, followed by icebergs created by the different glaciers based in the ocean. During our investigation, we noticed that the iceberg and sea ice were drifting very fast and thus, we needed to adapt our methodology. To achieve our goal, we collected all remote sensing data available in the region, principally Sentinel 1/2 and LandSAT 8 during one ice free season (from July 1st 2016 to September 30th, 2016). We developed an original approach in order to detect, characterize and track icebergs and sea ice independently from data. The iceberg detection was made using a watershed technique. The advantage of this technique is that it can be applied to both optical and radar images. For the latter, calibrated intensity is transformed into an image using a scaling function, in order to make ice brighter. Land data is masked using a topographic map. When data is segmented, a statistical test derived from the CFAR approach is performed to isolate an iceberg and floating sea ice from the ocean. Finally, a method, such SIFT or BRISK is used to identify and track the different segmented object. These approaches give a representation of the object and make the tracking easier and independent of the scale and rotation, which can occur because icebergs are dependent on ocean currents and wind. Finally, to fill in the gap

  16. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics.

    PubMed

    Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin

    2016-08-01

    Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce ( Lactuca sativa L . cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.

  17. Effects of prolonged exposure of lettuce seeds to HZE particles on orbital stations

    NASA Astrophysics Data System (ADS)

    Nevzgodina, L. V.; Maksimova, E. N.; Kaminskaya, E. V.

    In a study of the biological effects of cosmic HZE particles, lettuce (Lactuca sativa) seeds were flown on the orbital stations Salyut 6 and 7 for varying periods of time (from 40 to 457 days). The dependence of the biological damage on flight duration, physical parameters and the fact of passage of an HZE particle through the seed was estimated using the criterion of the frequency of aberrant cells. The arrangement of the flight biological container Biobloc made it possible to trace the location of tracks of individual HZE particles with Z>=6 and LET 200 keV/um. In seeds hit by HZE particles, for all exposure times, a statistically significant much higher yield of aberrant cells and also of cells containing multiple chromosome aberrations was observed than in the control material. The frequency of aberrant cells is markedly higher (by a factor of 1,5) in seeds hit than in non-hit ones. The changes of the yield of aberrant cells as a function of the absorbed dose (3.2-63.4 mGy) and the fluence (4.8-44.2 particles/cm2) are linear for the exposure duration ranging from 40 to 457 days.

  18. Development and Phytochemical Characterization of High Polyphenol Red Lettuce with Anti-Diabetic Properties

    PubMed Central

    Cheng, Diana M.; Pogrebnyak, Natalia; Kuhn, Peter; Krueger, Christian G.; Johnson, William D.; Raskin, Ilya

    2014-01-01

    Polyphenol-rich Rutgers Scarlet Lettuce (RSL) (Lactuca sativa L.) was developed through somaclonal variation and selection in tissue culture. RSL may contain among the highest reported contents of polyphenols and antioxidants in the category of common fruits and vegetables (95.6 mg/g dry weight and 8.7 mg/g fresh weight gallic acid equivalents and 2721 µmol/g dry weight and 223 µmol/g fresh weight Trolox equivalents). Three main compounds accumulate at particularly high levels in RSL: chlorogenic acid, up to 27.6 mg/g dry weight, cyanidin malonyl-glucoside, up to 20.5 mg/g dry weight, and quercetin malonyl-glucoside, up to 35.7 mg/g dry weight. Major polyphenolic constituents of RSL have been associated with health promotion as well as anti-diabetic and/or anti-inflammatory activities. Daily oral administration of RSL (100 or 300 mg/kg) for up to eight days acutely reduced hyperglycemia and improved insulin sensitivity in high fat diet-induced obese hyperglycemic mice compared to vehicle (water) control. Data presented here support possible use of RSL as a functional food for the dietary management of diabetes. PMID:24637790

  19. Overexpression of KNAT1 in Lettuce Shifts Leaf Determinate Growth to a Shoot-Like Indeterminate Growth Associated with an Accumulation of Isopentenyl-Type Cytokinins1

    PubMed Central

    Frugis, Giovanna; Giannino, Donato; Mele, Giovanni; Nicolodi, Chiara; Chiappetta, Adriana; Bitonti, Maria Beatrice; Innocenti, Anna Maria; Dewitte, Walter; Van Onckelen, Harry; Mariotti, Domenico

    2001-01-01

    Leaves are specialized organs characterized by defined developmental destiny and determinate growth. The overexpression of Knotted1-like homeobox genes in different species has been shown to alter leaf shape and development, but a definite role for this class of genes remains to be established. Transgenics that overexpress Knotted1-like genes present some traits that are characteristic of altered cytokinin physiology. Here we show that lettuce (Lactuca sativa) leaves that overexpress KNAT1, an Arabidopsis kn1-like gene, acquire characteristics of indeterminate growth typical of the shoot and that this cell fate change is associated with the accumulation of specific types of cytokinins. The possibility that the phenotypic effects of KNAT1 overexpression may arise primarily from the modulation of local ratios of different cytokinins is discussed. PMID:11500537

  20. Antarctic Tabular Iceberg A-24 Movement and Decay Via Satellite Remote Sensing

    DTIC Science & Technology

    1993-04-02

    Austraia. Pulished by ft Amencan Meteormogicat Society. Bost:o, MA. P7.27 ANTARCTIC TABULAR ICEBERG A-24 MOVEMENT AND DECAY VIA SATELLITE REMOTE SENSING AD...2. REMOTE SENSING DATA SOURCES 85 GHz imagery verified that the iceberg began to indicate more than The vis/IR imagery from the one berg existed in...SSM/I Instrument Evaluation, conditions. The corresponding IR data IEEE Trans. Geosci. Remote Sensing , was also of particular interest due Vol. 28, pp

  1. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation

    NASA Technical Reports Server (NTRS)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.

    2001-01-01

    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  2. Utility of bioassays (lettuce, red clover, red fescue, Microtox, MetSTICK, Hyalella, bait lamina) in ecological risk screening of acid metal (Zn) contaminated soil.

    PubMed

    Chapman, E Emily V; Hedrei Helmer, Stephanie; Dave, Göran; Murimboh, John D

    2012-06-01

    The objective of this study was to assess selected bioassays and ecological screening tools for their suitability in a weight of evidence risk screening process of acidic metal contaminated soil. Intact soil cores were used for the tests, which minimizes changes in pH and metal bioavailability that may result from homogenization and drying of the soil. Soil cores were spiked with ZnCl(2) or CaCl(2). Leachate collected from the soil cores was used to account for the exposure pathways through pore water and groundwater. Tests assessed included MetSTICK in soil cores and Microtox in soil leachate, lettuce (Lactuca sativa), red fescue (Festuca rubra) and red clover (Trifolium pratense) in the soil cores and lettuce and red clover in soil leachate, Hyallella azteca in soil leachate, and an ecological soil function test using Bait Lamina in soil cores. Microtox, H. azteca, lettuce and red fescue showed higher sensitivity to low pH than to Zn concentrations and are therefore not recommended as tests on intact acidic soil cores and soil leachate. The Bait Lamina test appeared sensitive to pH levels below 3.7 but should be investigated further as a screening tool in less acidic soils. Among the bioassays, the MetSTICK and the T. pratense bioassays in soil cores were the most sensitive to Zn, with the lowest nominal NOEC of 200 and 400mg Zn/kg d.w., respectively. These bioassays were also tolerant of low pH, which make them suitable for assessing hazards of metal contaminated acid soils. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Velocity measurements and changes in position of Thwaites Glacier/iceberg tongue from aerial photography, Landsat images and NOAA AVHRR data

    USGS Publications Warehouse

    Ferrigno, Jane G.; Lucchitta, Baerbel K.; Mullinsallison, A. L.; Allen, Robert J.; Gould, W. G.

    1993-01-01

    The Thwaites Glacier/iceberg tongue complex has been a significant feature of the Antarctic coastline for at least 50 years. In 1986, major changes began to occur in this area. Fast ice melted and several icebergs calved from the base of the iceberg tongue and the terminus of Thwaites Glacier. The iceberg tongue rotated to an east-west orientation and drifted westward. Between 1986 and 1992, a total of 140 km of drift has occurred. Remote digital velocity measurements were made on Thwaites Glacier using sequential Landsat images to try to determine if changes in velocity had occurred in conjunction with the changes in ice position. Examination of the morphology of the glacier/iceberg tongue showed no evidence of surge activity.

  4. Ability to protect oil/gas pipelines and subsea installations from icebergs in the Hibernia area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, F.V.

    1981-01-01

    Mobil Oil Canada has examined 2 pipeline routes from Hibernia to the Newfoundland coast. The Northern Route is from Hibernia to the Bay of Bulls, a distance of ca 200 miles. The Southern Route is from Hibernia to Trepassey Bay, a distance of ca 225 miles. Both these routes go through the Avalon channel which has water depths of 200 m, or over 600 ft, with very steep slopes on both sides of the channel. To protect pipelines from icebergs and iceberg scour, there is really only one obvious solution and that is to bury the pipeline several feet belowmore » the deepest known iceberg scour depth.« less

  5. Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa.

    PubMed

    Tigre, R C; Silva, N H; Santos, M G; Honda, N K; Falcão, E P S; Pereira, E C

    2012-10-01

    Responses to germination and initial growth of Lactuca sativa (lettuce) submitted to organic extracts and purified compounds of Cladonia verticillaris ("salambaia") were analyzed in this work. The experiments were conducted in laboratory conditions using extracts and pure compounds at different concentrations. None of the assays showed any influence on the germination of L. sativa seeds using C. verticillaris extracts; however, modifications in leaf area and seedling hypocotyl and root development occurred. In the growth experiments, seedlings exposed to ether or acetone extract showed diminished hypocotyl growth in detriment to the root stimulus, compared to controls. Increases in extract concentrations led to the formation of abnormal seedlings. To determine the allelochemicals of C. verticillaris, its principal components, fumarprotocetraric and protocetraric acids, were isolated and then analyzed by high performance liquid chromatography (HPLC). When the seedlings were exposed to the two acids separately, presented increased leaf area at all concentrations. In contrast, hypocotyl and root stimulus was observed only in the presence of protocetraric acid at different concentrations. Fumarprotocetraric as well as protocetraric acids, isolated and purified from C. verticillaris and Parmotrema dilatatum respectively, influenced the development of L. sativa seedlings at high concentrations, indicating a possible bioherbicide potential of these acids. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  6. Calcium localization and tipburn development in lettuce leaves during early enlargement

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Tibbitts, T. W.

    2000-01-01

    Tissue concentrations of Ca, Mg, and K were determined across immature leaves of lettuce (Lactuca sativa L. 'Buttercrunch') at different stages of enlargement using electron microprobe x-ray analysis. The analysis was with a wavelength dispersive spectrometer to permit detection of low concentrations of Ca. Patterns of mineral accumulation in immature leaves that were exposed were compared to patterns of accumulation in leaves that were enclosed within a developing head. The leaves developing without enclosure were free to transpire and developed normally whereas leaves developing with enclosure were restricted in transpiration and developed an injury that was characteristic of Ca deficiency. In the exposed leaves, Ca concentrations increased from an average of 1.0 to 2.1 mg g-1 dry weight (DW) as the leaves enlarged from 5 to 30 mm in length. In the enclosed leaves, Ca concentrations decreased from 1.0 to 0.7 mg g-1 DW as the leaves enlarged from 5 to 30 mm in length. At the tips of these enclosed leaves a larger decrease was found, from 0.9 to 0.3 mg g-1 DW during enlargement. Necrotic injury first became apparent in this tip area when the concentration was approximate to 0.4 mg g-1 DW. Magnesium concentrations across the exposed leaves were similar to concentrations across the enclosed leaves, and did not change with enlargement. Magnesium concentrations averaged 3.5. mg g-1 DW in both enclosed and exposed leaves during enlargement from 5 to 30 mm. In both exposed and enclosed leaves, K concentrations increased during enlargement from 40 to approximate to 60 mg g-1 DW. Potassium concentrations were highest toward the leaf apex and upper margin where injury symptoms occurred, and this may have enhanced injury development. This research documents the critical low levels of Ca (0.2 to 0.4 mg g-1 DW) that can occur in enclosed leaves of plants and which apparently leads to the marginal apex necrosis of developing leaves seen frequently on lettuce and other crops.

  7. Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice.

    PubMed

    Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan

    2013-01-01

    Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the "open-arm" were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity.

  8. Quantitative proteomic analysis of the Salmonella-lettuce interaction

    PubMed Central

    Zhang, Yuping; Nandakumar, Renu; Bartelt-Hunt, Shannon L; Snow, Daniel D; Hodges, Laurie; Li, Xu

    2014-01-01

    Human pathogens can internalize food crops through root and surface uptake and persist inside crop plants. The goal of the study was to elucidate the global modulation of bacteria and plant protein expression after Salmonella internalizes lettuce. A quantitative proteomic approach was used to analyse the protein expression of Salmonella enterica serovar Infantis and lettuce cultivar Green Salad Bowl 24 h after infiltrating S. Infantis into lettuce leaves. Among the 50 differentially expressed proteins identified by comparing internalized S. Infantis against S. Infantis grown in Luria Broth, proteins involved in glycolysis were down-regulated, while one protein involved in ascorbate uptake was up-regulated. Stress response proteins, especially antioxidant proteins, were up-regulated. The modulation in protein expression suggested that internalized S. Infantis might utilize ascorbate as a carbon source and require multiple stress response proteins to cope with stresses encountered in plants. On the other hand, among the 20 differentially expressed lettuce proteins, proteins involved in defense response to bacteria were up-regulated. Moreover, the secreted effector PipB2 of S. Infantis and R proteins of lettuce were induced after bacterial internalization into lettuce leaves, indicating human pathogen S. Infantis triggered the defense mechanisms of lettuce, which normally responds to plant pathogens. PMID:24512637

  9. Spatial analysis of lettuce downy mildew using geostatistics and geographic information systems.

    PubMed

    Wu, B M; van Bruggen, A H; Subbarao, K V; Pennings, G G

    2001-02-01

    ABSTRACT The epidemiology of lettuce downy mildew has been investigated extensively in coastal California. However, the spatial patterns of the disease and the distance that Bremia lactucae spores can be transported have not been determined. During 1995 to 1998, we conducted several field- and valley-scale surveys to determine spatial patterns of this disease in the Salinas valley. Geostatistical analyses of the survey data at both scales showed that the influence range of downy mildew incidence at one location on incidence at other locations was between 80 and 3,000 m. A linear relationship was detected between semivariance and lag distance at the field scale, although no single statistical model could fit the semi-variograms at the valley scale. Spatial interpolation by the inverse distance weighting method with a power of 2 resulted in plausible estimates of incidence throughout the valley. Cluster analysis in geographic information systems on the interpolated disease incidence from different dates demonstrated that the Salinas valley could be divided into two areas, north and south of Salinas City, with high and low disease pressure, respectively. Seasonal and spatial trends along the valley suggested that the distinction between the downy mildew conducive and nonconducive areas might be determined by environmental factors.

  10. Environmental modification of yield and nutrient composition of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Chun, C.; Brandt, W. E.; Nielsen, S. S.

    1997-01-01

    Leaf number, dry weight, and nutrient composition of Lactuca sativa L. cv. Waldmann's Green leaves were compared following 9 days of treatment in a controlled environment room under various combinations of photosynthetic photon flux (PPF:350 vs 800 micromoles m-2 s-1), atmospheric CO2 level (ambient vs 1500 micromoles mol-1), and single-strength (1X:15 mM) vs double-strength (2X:30 mM) nitrogen (N) as NO3- alone or as NH4(+) + NO3- (1:5 molar ratio). CO2 enrichment greatly enhanced leaf number under all PPF and N conditions, but increased leaf dry weight only at high PPF. Conditions favoring high photosynthesis enhanced leaf starch content 3-fold, and protein content increased as much as 64% with 2X NH4(+)+NO3-. Free sugar content was 6 to 9% of leaf dry weight for all treatment combinations, while fat was 1.5 to 3.5%. Ash content varied from 15 to 20% of leaf dry weight. Modified controlled environments can be used to enhance the nutritional content as well as the yield of crops to be used for life support in space-deployed, self-sustaining human habitats. Leaf lettuce is a useful model crop for demonstrating the potential of nutritional value added by environmental manipulation.

  11. Folates in lettuce: a pilot study

    PubMed Central

    Johansson, Madelene; Jägerstad, Margaretha; Frølich, Wenche

    2007-01-01

    Background Leafy vegetables are good sources of folates and food shops nowadays offer an increasing number of lettuce varieties. Objective To obtain data on the folate content and forms in common lettuce varieties and spinach sold in the Nordic countries, and to investigate effects of different storage conditions and preparations in the consumer's home or at lunchtime restaurants. Design Folate was analysed in eight different lettuce varieties and spinach using a validated high-performance liquid chromatographic method and the detected forms of folates were confirmed by a mass spectrometric detector [liquid chromatography–mass spectrometry (LC-MS)] following heat extraction, deconjugation with rat serum and purification by solid-phase extraction. Results Folate content, expressed in folic acid equivalents, in the lettuce samples varied six-fold, from 30 to 198 µg 100 g−1 on a fresh weight basis. The folate content was decreased by 14% after storage at 4°C for 8 days and by 2–40% after storage at 22°C for 2–4 h, depending on whether samples were stored as whole leaves, or small torn or cut pieces. LC-MS confirmed the identity of the folate forms: H4folate, 5-CH3-H4folate, 5-HCO-H4folate and 10-HCO-H4folate. Conclusion The considerable variation in folate content between varieties of lettuce in this pilot study, with one variety reaching the level found in spinach, indicates the potential to increase folate intake considerably by choosing folate-rich varieties of lettuce and storing at low temperatures.

  12. Diverging Histories of the Liberty Creek and Iceberg Lake Blueschist Bodies, south central Alaska

    NASA Astrophysics Data System (ADS)

    Day, E. M.; Pavlis, T. L.; Amato, J. M.

    2011-12-01

    New studies of the Liberty Creek and Iceberg Lake blueschist bodies of south central Alaska indicate that despite structural similarities, these blueschist bodies are derived from a different protolith and were metamorphosed to blueschist facies at distinctly different times. Both blueschists are located just south of the Border Ranges Fault (BRF) within outcrop belts of the McHugh Complex, a low-grade mélange assemblage that is now known from detrital zircon studies to consist of two distinct assemblages: a Jurassic to Earliest Cretaceous assemblage and a Late Cretaceous assemblage. The BRF is a megathrust system that represents the Late Triassic-Early Jurassic initiation of southern Alaskan subduction. Large scale (1:24,000) mapping revealed similar fabric overprint histories, epitomized by a previously undescribed youngest vertical N-S trending crenulation cleavage in both blueschist bodies which implies a structural correlation despite their separation of ~100 kilometers along strike. Despite structural similarities detrital zircon studies show that the Liberty Creek and Iceberg Lake blueschists do not have a similar maximum age of deposition. Thirteen samples from the Iceberg Lake blueschist were processed, none of which produced detrital zircons. Samples from the McHugh Complex greenschists that surround the Iceberg Lake blueschist produced numerous zircons indicating a Late Jurassic (~160 Ma) maximum age of deposition. Three out of sixteen samples from the Liberty creek blueschist produced detrital zircons indicating maximum depositional ages ranging from Late Jurassic (~160.1 Ma, n=64 grains; ~152.25 Ma, n=68 grains) to Early Cretaceous (~137.1 Ma, n=95 grains). The Late Jurassic dates are consistent with maximum depositional ages determined by Amato and Pavlis (2010) for McHugh Complex rocks along Turnagain Arm near Anchorage, AK. Sisson and Onstott (1986) reported a metamorphic cooling age of 185 Ma for the Iceberg Lake blueschist, thus, although no

  13. Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice

    PubMed Central

    Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan

    2013-01-01

    Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the “open-arm” were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity. PMID:23554792

  14. Iceberg ploughmark features on bottom surface of the South-Eastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dorokhov, Dmitry; Sivkov, Vadim; Dorokhova, Evgenia; Krechik, Viktor

    2016-04-01

    A detail swath bathymetry, side-scan sonar and acoustic profiling combined with sediment sampling during the 64th cruise of RV "Academic Mstislav Keldysh" (October 2015) allowed to identify new geomorphological features of the South-Eastern Baltic Sea bottom surface. The extended chaotic ploughmarks (furrows) in most cases filled with thin layer of mud were discovered on surface of the Gdansk-Gotland sill glacial deposits. They are observed on the depth of more than 70 m and have depth and width from 1 to 10 m. Most of them are v- or u-shaped stepped depressions. The side-scan records of similar geomorpholoical features are extensively reported from Northern Hemisphere and Antarctica (Goodwin et al., 1985; Dowdeswell et al., 1993). Ploughmarks are attributed to the action of icebergs scouring into the sediment as they touch bottom. We are suggest that furrows discovered in the South-Eastern Baltic Sea are also the result of iceberg scouring during the Baltic Ice Lake stage (more than 11 600 cal yr BP (Bjorck, 2008)). This assumption confirmed by occurrence of fragmental stones and boulders on the sea bottom surface which are good indicators of iceberg rafting (Lisitzin, 2003). Ice ploughmarks at sea bottom surface were not occurred before in the South-Eastern Baltic Sea. The study was financed by Russian Scientific Fund, grant number 14-37-00047. References Bjorck S. The late Quaternary development of the Baltic Sea Basin. In: The BACC Author Team (eds) Assessment of climate change for the Baltic Sea Basin. Springer, Berlin, Heidelberg. 2008. Dowdeswell J. A., Villinger H., Whittington R. J., Marienfeld P. Iceberg scouring in Scoresby Sund and on the East Greenland continental shelf // Marine Geology. V. 111. N. 1-2. 1993. P. 37-53. Goodwin C. R., Finley J. C., Howard L. M. Ice scour bibliography. Environmental Studies Revolving Funds Report No. 010. Ottawa. 1985. 99 pp. Lisitzin A. P. Sea-Ice and Iceberg Sedimentation in the Ocean: Recent and Past. Springer

  15. Iceberg in sea ice

    NASA Image and Video Library

    2017-12-08

    An iceberg embedded in sea ice as seen from the IceBridge DC-8 over the Bellingshausen Sea on Oct. 19, 2012. Credit: NASA / James Yungel NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. 3-Chlorotyrosine formation in ready-to-eat vegetables due to hypochlorite treatment and its dietary exposure and risk assessment.

    PubMed

    Bao Loan, Huynh Nguyen; Jacxsens, Liesbeth; Kurshed, Ali Abbas Mohammad; De Meulenaer, Bruno

    2016-12-01

    Washing of iceberg lettuce with HOCl solutions in concentrations ranging from 1.41 to 141mg/L resulted in 0.69 to 2.05μg3-chlorotyrosine/g vegetable. As also six commercial ready-to-eat iceberg lettuces from different producers contained 3-chlorotyrosine from 1.00 to 2.24μg/g vegetable, a total of 122 ready-to-eat vegetable samples purchased in Belgian supermarkets were further screened for their 3-chlorotyrosine content. 3-chlorotyrosine was detected above the detection limit (0.19μg/g sample) in 97, 24 and 14% of the lettuce mixes, vegetable mixes and frozen vegetables, respectively. In combination with consumption data of ready-to-eat vegetables by Belgian and Spanish consumers, a quantitative exposure assessment was performed, exemplifying a lower and higher ready-to-eat vegetables consuming population. Exposure to 3-chlorotyrosine from the frozen vegetables and vegetable mixes was lower compared to the lettuce mixes due to the combination of lower contamination and lower consumption. 3-chlorotyrosine exposure via lettuce mixes could be considered as a public health concern, especially in higher consuming populations represented by the Spanish population, with 17% of consumers (>4.2 million people) and 8.5% of the total population (>2,6 million people) exceeding the threshold of toxicological concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 7 CFR 319.56-24 - Lettuce and peppers from Israel.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Lettuce and peppers from Israel. 319.56-24 Section 319... Lettuce and peppers from Israel. (a) Lettuce may be imported into the United States from Israel without... protected with sticky traps and prophylactic sprays approved for the crop by Israel; (v) The lettuce must be...

  18. 7 CFR 319.56-24 - Lettuce and peppers from Israel.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Lettuce and peppers from Israel. 319.56-24 Section 319... Lettuce and peppers from Israel. (a) Lettuce may be imported into the United States from Israel without... protected with sticky traps and prophylactic sprays approved for the crop by Israel; (v) The lettuce must be...

  19. 7 CFR 319.56-24 - Lettuce and peppers from Israel.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Lettuce and peppers from Israel. 319.56-24 Section 319... Lettuce and peppers from Israel. (a) Lettuce may be imported into the United States from Israel without... protected with sticky traps and prophylactic sprays approved for the crop by Israel; (v) The lettuce must be...

  20. Conductor shears as iceberg encroaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-10-01

    Operators in the Arctic regions must protect wellheads from encroaching icebergs and icepack sheets. Diverting ice masses and excavating large holes below scour depth is expensive. Now an alternate approach allows the conductor to shear, shuts in the well, and provides a method of re-entering the well. The new system has been successfully used by Mobil on two exploratory wells in the Hibernia field off eastern Canada. The wells used 18 3/4-in. wellheads rated at 10,000 psi with 36-in. conductor pipe. The performance of the system is discussed.

  1. Mixing of water masses caused by a drifting iceberg affects bacterial activity, community composition and substrate utilization capability in the Southern Ocean.

    PubMed

    Dinasquet, Julie; Richert, Inga; Logares, Ramiro; Yager, Patricia; Bertilsson, Stefan; Riemann, Lasse

    2017-06-01

    The number of icebergs produced from ice-shelf disintegration has increased over the past decade in Antarctica. These drifting icebergs mix the water column, influence stratification and nutrient condition, and can affect local productivity and food web composition. Data on whether icebergs affect bacterioplankton function and composition are scarce, however. We assessed the influence of iceberg drift on bacterial community composition and on their ability to exploit carbon substrates during summer in the coastal Southern Ocean. An elevated bacterial production and a different community composition were observed in iceberg-influenced waters relative to the undisturbed water column nearby. These major differences were confirmed in short-term incubations with bromodeoxyuridine followed by CARD-FISH. Furthermore, one-week bottle incubations amended with inorganic nutrients and carbon substrates (a mix of substrates, glutamine, N-acetylglucosamine, or pyruvate) revealed contrasting capacity of bacterioplankton to utilize specific carbon substrates in the iceberg-influenced waters compared with the undisturbed site. Our study demonstrates that the hydrographical perturbations introduced by a drifting iceberg can affect activity, composition, and substrate utilization capability of marine bacterioplankton. Consequently, in a context of global warming, increased frequency of drifting icebergs in polar regions holds the potential to affect carbon and nutrient biogeochemistry at local and possibly regional scales. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Ocean Fertilization from Giant Icebergs on Earth and Early Mars

    NASA Astrophysics Data System (ADS)

    Uceda, E. R.; Fairen, A. G.; Rodriguez, J. A. P.; Woodworth-Lynas, C.

    2016-05-01

    Assuming that life existed on Mars coeval to glacial activity, enhanced concentrations of organic carbon could be anticipated near iceberg trails, analogous to what is observed in polar oceans on Earth.

  3. Salads and nutrients

    MedlinePlus

    ... calories and fat. Try to use a darker lettuce. Light green Iceberg has fiber but not as ... JE, ed. Guyton and Hall Textbook of Medical Physiology . 13th ed. Philadelphia, PA: Elsevier; 2016:chap 72. ...

  4. Summer Decay Processes in a Large Tabular Iceberg

    NASA Astrophysics Data System (ADS)

    Wadhams, P.; Wagner, T. M.; Bates, R.

    2012-12-01

    Summer Decay Processes in a Large Tabular Iceberg Peter Wadhams (1), Till J W Wagner(1) and Richard Bates(2) (1) Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK (2) Scottish Oceans Institute, School of Geography and Geosciences, University of St Andrews, St. Andrews, Scotland KY16 9AL We present observational results from an experiment carried out during July-August 2012 on a giant grounded tabular iceberg off Baffin Island. The iceberg studied was part of the Petermann Ice Island B1 (PIIB1) which calved off the Petermann Glacier in NW Greenland in 2010. Since 2011 it has been aground in 100 m of water on the Baffin Island shelf at 69 deg 06'N, 66 deg 06'W. As part of the project a set of high resolution GPS sensors and tiltmeters was placed on the ice island to record rigid body motion as well as flexural responses to wind, waves, current and tidal forces, while a Waverider buoy monitored incident waves and swell. On July 31, 2012 a major breakup event was recorded, with a piece of 25,000 sq m surface area calving off the iceberg. At the time of breakup, GPS sensors were collecting data both on the main berg as well as on the newly calved piece, while two of us (PW and TJWW) were standing on the broken-out portion which rose by 0.6 m to achieve a new isostatic equilibrium. Crucially, there was no significant swell at the time of breakup, which suggests a melt-driven decay process rather than wave-driven flexural break-up. The GPS sensors recorded two disturbances during the hour preceding the breakup, indicative of crack growth and propagation. Qualitative observation during the two weeks in which our research ship was moored to, or was close to, the ice island edge indicates that an important mechanism for summer ablation is successive collapses of the overburden from above an unsupported wave cut, which creates a submerged ram fringing the berg. A model of buoyancy stresses induced by

  5. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1989-01-01

    Effects of different ratios incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce (Lactuca sativa L.) in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16% of total irradiance (82 W m-2) from ln lamps. Although leaf dry weight and area were 12-17% greater at 84% ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84% ln was compared with 50% ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84% ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50% ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50% ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84% ln for 8 days continuously.

  6. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    PubMed Central

    2012-01-01

    Background After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F1 hybrid was backcrossed to L. serriola to generate BC1 and BC2 populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC1S1 and BC2S1). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Results Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC1S1 and BC2S1 hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC1 and BC2 hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. Conclusion As it was shown that the crop contributed QTLs with either a

  7. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations.

    PubMed

    Uwimana, Brigitte; Smulders, Marinus J M; Hooftman, Danny A P; Hartman, Yorike; van Tienderen, Peter H; Jansen, Johannes; McHale, Leah K; Michelmore, Richard W; Visser, Richard G F; van de Wiel, Clemens C M

    2012-03-26

    After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F(1) hybrid was backcrossed to L. serriola to generate BC(1) and BC(2) populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC(1)S(1) and BC(2)S(1)). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC(1)S(1) and BC(2)S(1) hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC(1) and BC(2) hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. As it was shown that the crop contributed QTLs with either a positive

  8. [Analysis of essential oil extracted from Lactuca sativa seeds growing in Xinjiang by GC-MS].

    PubMed

    Xu, Fang; Wang, Qiang; Haji, Akber Aisa

    2011-12-01

    To analyze the components of essential oil from Lactuca sativa seeds growing in Xinjiang. The components of essential oil from Lactuca sativa seeds were analyzed by gas chromatography-mass spectrometry (GC-MS). 62 components were identified from 71 separated peaks,amounting to total mass fraction 95.07%. The dominant compounds were n-Hexanol (36.31%), n-Hexanal (13.71%), trans-2-Octen-l-ol (8.09%) and 2-n-Pentylfuran (4.41%). The research provides a theoretical basis for the exploitation and use of Lactuca sativa seeds resource.

  9. In-Network Processing of an Iceberg Join Query in Wireless Sensor Networks Based on 2-Way Fragment Semijoins

    PubMed Central

    Kang, Hyunchul

    2015-01-01

    We investigate the in-network processing of an iceberg join query in wireless sensor networks (WSNs). An iceberg join is a special type of join where only those joined tuples whose cardinality exceeds a certain threshold (called iceberg threshold) are qualified for the result. Processing such a join involves the value matching for the join predicate as well as the checking of the cardinality constraint for the iceberg threshold. In the previous scheme, the value matching is carried out as the main task for filtering non-joinable tuples while the iceberg threshold is treated as an additional constraint. We take an alternative approach, meeting the cardinality constraint first and matching values next. In this approach, with a logical fragmentation of the join operand relations on the aggregate counts of the joining attribute values, the optimal sequence of 2-way fragment semijoins is generated, where each fragment semijoin employs a Bloom filter as a synopsis of the joining attribute values. This sequence filters non-joinable tuples in an energy-efficient way in WSNs. Through implementation and a set of detailed experiments, we show that our alternative approach considerably outperforms the previous one. PMID:25774710

  10. Persistence and Dissipation of Chlorpyrifos in Brassica Chinensis, Lettuce, Celery, Asparagus Lettuce, Eggplant, and Pepper in a Greenhouse

    PubMed Central

    Lu, Meng-Xiao; Jiang, Wayne W.; Wang, Jia-Lei; Jian, Qiu; Shen, Yan; Liu, Xian-Jin; Yu, Xiang-Yang

    2014-01-01

    The residue behavior of chlorpyrifos, which is one of the extensively used insecticides all around the world, in six vegetable crops was assessed under greenhouse conditions. Each of the vegetables was subjected to a foliar treatment with chlorpyrifos. Two analytical methods were developed using gas chromatography equipped with a micro-ECD detector (LOQ = 0.05 mg kg−1) and liquid chromatography with a tandem mass spectrometry (LOQ = 0.01 mg kg−1). The initial foliar deposited concentration of chlorpyrifos (mg kg−1) on the six vegetables followed the increasing order of brassica chinensis<lettucelettucelettuce), 0.97 (brassica chinensis), 1.47 (asparagus lettuce), and 3.50 mg kg−1 (celery), respectively. The half-lives of chlorpyrifos were found to be 7.79 (soil), 2.64 (pepper plants), 3.90 (asparagus lettuce), 3.92 (lettuce), 5.81 (brassica chinensis), 3.00 (eggplant plant), and 5.45 days (celery), respectively. The dissipation of chlorpyrifos in soil and the six selected plants was different, indicating that the persistence of chlorpyrifos residues strongly depends upon leaf characteristics of the selected vegetables. PMID:24967589

  11. Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging

    PubMed Central

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S.; Cho, Hyunjeong; Cho, Byoung-Kwan

    2015-01-01

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400–1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557–701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce. PMID:26610510

  12. Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging.

    PubMed

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S; Cho, Hyunjeong; Cho, Byoung-Kwan

    2015-11-20

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400-1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557-701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce.

  13. Physiological mechanisms to cope with Cr(VI) toxicity in lettuce: can lettuce be used in Cr phytoremediation?

    PubMed

    Dias, Maria Celeste; Moutinho-Pereira, José; Correia, Carlos; Monteiro, Cristina; Araújo, Márcia; Brüggemann, Wolfgang; Santos, Conceição

    2016-08-01

    This research aims at identifying the main deleterious effects of Cr(VI) on the photosynthetic apparatus and at selecting the most sensitive endpoints related to photosynthesis. To achieve this goal, we used lettuce (Lactuca sativa), a sensible ecotoxicological crop model. Three-week-old plants were exposed to 0, 50, 150 and 200 mg L(-1) of Cr(VI). These concentrations ranged from levels admitted in irrigation waters to values found in several Cr industry effluents and heavily contaminated environments. After 30 days of exposure, plants accumulated Cr preferably in roots and showed nutritional impairment, with decreases of K, Mg, Fe and Zn in both roots and leaves. Cr(VI)-exposed plants showed decreased levels of chlorophyll (Chl) a and anthocyanins, as well as decreased effective quantum yield of photostystem II (ΦPSII) and photochemical Chl fluorescence quenching (qp), but increases in the non-photochemical Chl fluorescence quenching (NPQ) and in the de-epoxidation state (DEP) of the xanthophyll cycle. Net CO2 assimilation rate (P N ) and RuBisCO activity were mostly impaired in the highest Cr(VI) concentration tested. Concerning the final products of photosynthesis, starch content was not affected, while soluble sugar contents increased. These alterations were accompanied by a reduction in protein content and in plant growth. Our results support that endpoints related to the photosynthesis photochemical processes (ΦPSII and the qp) and the content of anthocyanins are sensitive predictors of Cr(VI) toxicity. The advantages of using these parameters as biomarkers for Cr toxicity in plants are discussed. Finally, we report that, despite showing physiological disorders, L. sativa plants survived and accumulated high doses of Cr, and their use in environmental/decontamination studies is open to debate.

  14. Hydroacoustic signals generated by parked and drifting icebergs in the Southern Indian and Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Talandier, Jacques; Hyvernaud, Olivier; Reymond, Dominique; Okal, Emile A.

    2006-06-01

    We report the detection, principally by the French Polynesian seismic network, of hydroacoustic signals generated inside large icebergs, either `parked' along the Wilkes coast of Antarctica in the Indian Ocean, or drifting in the Southern Pacific Ocean between latitudes of 55° and 65°S, during the years 2002-2004. The signals can be classified into two very broad families, based on the nature of their spectra. A first group features prominently monochromatic signals, whose frequency can, however, fluctuate with time during a single sequence of emission (typically lasting a few to a few tens of minutes). Such signals are generally reminiscent of those detected in 2000 in the Ross Sea and are generated principally in the Indian Ocean `iceberg parking lot', between longitudes 144°E and 156°E. A new family of signals features a much broader spectrum, superimposed on a number of preferential frequencies suggesting the background activation of a number of resonators; these signals occur both in the parking lot and in the Southern Pacific. Further variations in spectra are documented inside each family. On the basis of similar in situ observations on Ross Sea icebergs under project SOUTHBERG, the first family is generally interpreted as expressing a stick-and-slip process during collisions between large iceberg masses. The second family of signals are observed during exceptional episodes of the otherwise silent drift of the icebergs in the deep Pacific Basin, some of which correlate with their passage over the various fronts defining the oceanographic southern convergence zone. Finally, a most recent episode of activity, generally similar to the above first family, was detected on 2004 December 3-4, at the ocean entry of the Dibble Ice Tongue, 600 km west of the parking lot along the coast of Antarctica. It is interpreted as resulting from collisions between large drifting icebergs and fragments of the ice tongue calved off during its disintegration, as documented by

  15. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach.

    PubMed

    McNabb, Robert W; Womble, Jamie N; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E

    2016-01-01

    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with

  16. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach

    PubMed Central

    McNabb, Robert W.; Womble, Jamie N.; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E.

    2016-01-01

    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice (x¯ = 45.2%, SD = 41.5%), water (x¯ = 52.7%, SD = 42.3%), and icebergs (x¯ = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between

  17. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    PubMed Central

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P < 0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  18. A Simple Laboratory Scale Model of Iceberg Dynamics and its Role in Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; MacAyeal, D. R.; Nakamura, N.

    2011-12-01

    Lab-scale models of geophysical phenomena have a long history in research and education. For example, at the University of Chicago, Dave Fultz developed laboratory-scale models of atmospheric flows. The results from his laboratory were so stimulating that similar laboratories were subsequently established at a number of other institutions. Today, the Dave Fultz Memorial Laboratory for Hydrodynamics (http://geosci.uchicago.edu/~nnn/LAB/) teaches general circulation of the atmosphere and oceans to hundreds of students each year. Following this tradition, we have constructed a lab model of iceberg-capsize dynamics for use in the Fultz Laboratory, which focuses on the interface between glaciology and physical oceanography. The experiment consists of a 2.5 meter long wave tank containing water and plastic "icebergs". The motion of the icebergs is tracked using digital video. Movies can be found at: http://geosci.uchicago.edu/research/glaciology_files/tsunamigenesis_research.shtml. We have had 3 successful undergraduate interns with backgrounds in mathematics, engineering, and geosciences perform experiments, analyze data, and interpret results. In addition to iceberg dynamics, the wave-tank has served as a teaching tool in undergraduate classes studying dam-breaking and tsunami run-up. Motivated by the relatively inexpensive cost of our apparatus (~1K-2K dollars) and positive experiences of undergraduate students, we hope to serve as a model for undergraduate research and education that other universities may follow.

  19. Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce.

    PubMed

    Zhang, Yanzhao; Xu, Shuzhen; Cheng, Yanwei; Peng, Zhengfeng; Han, Jianming

    2018-01-01

    Red leaf lettuce ( Lactuca sativa L.) is popular due to its high anthocyanin content, but poor leaf coloring often occurs under low light intensity. In order to reveal the mechanisms of anthocyanins affected by light intensity, we compared the transcriptome of L. sativa L. var. capitata under light intensities of 40 and 100 μmol m -2 s -1 . A total of 62,111 unigenes were de novo assembled with an N50 of 1,681 bp, and 48,435 unigenes were functionally annotated in public databases. A total of 3,899 differentially expressed genes (DEGs) were detected, of which 1,377 unigenes were up-regulated and 2,552 unigenes were down-regulated in the high light samples. By Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the DEGs were significantly enriched in 14 pathways. Using gene annotation and phylogenetic analysis, we identified seven anthocyanin structural genes, including CHS , CHI , F3H , F3'H , DFR , ANS , and 3GT , and two anthocyanin transport genes, GST and MATE . In terms of anthocyanin regulatory genes, five MYBs and one bHLH gene were identified. An HY5 gene was discovered, which may respond to light-signaling and regulate anthocyanin structural genes. These genes showed a log2FC of 2.7-9.0 under high irradiance, and were validated using quantitative real-time-PCR. In conclusion, our results indicated transcriptome variance in red leaf lettuce under low and high light intensity, and observed a anthocyanin biosynthesis and regulation pattern. The data should further help to unravel the molecular mechanisms of anthocyanins influenced by light intensity.

  20. Modelling growth of Escherichia coli O157:H7 in fresh-cut lettuce submitted to commercial process conditions: chlorine washing and modified atmosphere packaging.

    PubMed

    Posada-Izquierdo, Guiomar D; Pérez-Rodríguez, Fernando; López-Gálvez, Francisco; Allende, Ana; Selma, María V; Gil, María I; Zurera, Gonzalo

    2013-04-01

    Fresh-cut iceberg lettuce inoculated with Escherichia coli O157:H7 was submitted to chlorine washing (150 mg/mL) and modified atmosphere packaging on laboratory scale. Populations of E. coli O157:H7 were assessed in fresh-cut lettuce stored at 4, 8, 13 and 16 °C using 6-8 replicates in each analysis point in order to capture experimental variability. The pathogen was able to grow at temperatures ≥8 °C, although at low temperatures, growth data presented a high variability between replicates. Indeed, at 8 °C after 15 days, some replicates did not show growth while other replicates did present an increase. A growth primary model was fitted to the raw growth data to estimate lag time and maximum growth rate. The prediction and confidence bands for the fitted growth models were estimated based on Monte-Carlo method. The estimated maximum growth rates (log cfu/day) corresponded to 0.14 (95% CI: 0.06-0.31), 0.55 (95% CI: 0.17-1.20) and 1.43 (95% CI: 0.82-2.15) for 8, 13 and 16 °C, respectively. A square-root secondary model was satisfactorily derived from the estimated growth rates (R(2) > 0.80; Bf = 0.97; Af = 1.46). Predictive models and data obtained in this study are intended to improve quantitative risk assessment studies for E. coli O157:H7 in leafy green products. Copyright © 2012. Published by Elsevier Ltd.

  1. Birth of a Large Iceberg in Pine Island Bay, Antarctica

    NASA Image and Video Library

    2001-11-14

    A large tabular iceberg (42 kilometers x 17 kilometers) broke off Pine Island Glacier, West Antarctica (75ºS latitude, 102ºW longitude) sometime between November 4 and 12, 2001. Images of the glacier were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra spacecraft. This event was preceded by the formation of a large crack across the glacier in mid 2000. Data gathered by other imaging instruments revealed the crack to be propagating through the shelf ice at a rate averaging 15 meters per day, accompanied by a slight rotation of about one percent per year at the seaward margin of the rift. The image set shows three views of Pine Island Glacier acquired by MISR's vertical-viewing (nadir) camera. The first was captured in late 2000, early in the development of the crack. The second and third views were acquired in November 2001, just before and just after the new iceberg broke off. The existence of the crack took the glaciological community by surprise, and the rapid rate at which the crack propagated was also not anticipated. Glaciologists predicted that the rift would reach the other side of the glacier sometime in 2002. However, the iceberg detached much sooner than anticipated, and the last 10-kilometer segment that was still attached to the ice shelf snapped off in a matter of days. http://photojournal.jpl.nasa.gov/catalog/PIA03431

  2. Genetic characterization of resistance to Sclerotinia in lettuce cultivar Eruption

    USDA-ARS?s Scientific Manuscript database

    Lettuce drop caused by the fungal pathogens Sclerotinia minor and S. sclerotiorum is a serious disease of lettuce. The use of genetic resistance as part of an integrated lettuce drop management strategy should have a significant economic advantage in mitigating yield loss. Sclerotinia resistance is ...

  3. Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei.

    PubMed

    Elizondo-González, Regina; Quiroz-Guzmán, Eduardo; Escobedo-Fregoso, Cristina; Magallón-Servín, Paola; Peña-Rodríguez, Alberto

    2018-01-01

    Two experimental feeding trials were conducted during four weeks to evaluate the use of Ulva lactuca in shrimp culture: (1) for wastewater bioremediation, and (2) using different inclusion levels of U. lactuca meal in shrimp feed. In feeding trial 1, shrimp reared under seaweed U. lactuca water exchange in a re-circulation system (SWE) resulted in similar growth and feed utilization as shrimp reared with clean water exchange (CWE). Shrimp under no water exchange (NWE) resulted in significant lower growth and higher feed conversion rate (FCR) compared to the other treatments ( p  < 0.05). Nitrogen compounds and phosphate in water from SWE and CWE treatments did not present significant differences during the experimental trial ( p  > 0.05). In feeding trial 2, U. lactuca biomass produced by wastewater bioremediation in SWE treatment were dried and ground to formulate diets containing 0, 1, 2, and 3% U. lactuca meal (0UL, 1UL, 2UL, and 3UL). Shrimp fed the 3 UL diet resulted in a significant ( p  < 0.05) improvement of growth and FCR, and enhanced whole shrimp lipid and carotenoid content by 30 and 60%, respectively, compared to control diet. Seaweed U. lactuca is suggested as a desirable species for wastewater bioremediation in integrated aquaculture systems, and its meal as a good feed additive for farmed shrimp.

  4. Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei

    PubMed Central

    Elizondo-González, Regina; Quiroz-Guzmán, Eduardo; Escobedo-Fregoso, Cristina; Magallón-Servín, Paola

    2018-01-01

    Two experimental feeding trials were conducted during four weeks to evaluate the use of Ulva lactuca in shrimp culture: (1) for wastewater bioremediation, and (2) using different inclusion levels of U. lactuca meal in shrimp feed. In feeding trial 1, shrimp reared under seaweed U. lactuca water exchange in a re-circulation system (SWE) resulted in similar growth and feed utilization as shrimp reared with clean water exchange (CWE). Shrimp under no water exchange (NWE) resulted in significant lower growth and higher feed conversion rate (FCR) compared to the other treatments (p < 0.05). Nitrogen compounds and phosphate in water from SWE and CWE treatments did not present significant differences during the experimental trial (p > 0.05). In feeding trial 2, U. lactuca biomass produced by wastewater bioremediation in SWE treatment were dried and ground to formulate diets containing 0, 1, 2, and 3% U. lactuca meal (0UL, 1UL, 2UL, and 3UL). Shrimp fed the 3 UL diet resulted in a significant (p < 0.05) improvement of growth and FCR, and enhanced whole shrimp lipid and carotenoid content by 30 and 60%, respectively, compared to control diet. Seaweed U. lactuca is suggested as a desirable species for wastewater bioremediation in integrated aquaculture systems, and its meal as a good feed additive for farmed shrimp. PMID:29527414

  5. Efficacy of Neutral pH Electrolyzed Water in Reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on Fresh Produce Items using an Automated Washer at Simulated Food Service Conditions.

    PubMed

    Afari, George K; Hung, Yen-Con; King, Christopher H

    2015-08-01

    The objective of this study was to determine the efficacy of neutral pH electrolyzed (NEO) water (155 mg/L free chlorine, pH 7.5) in reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on romaine lettuce, iceberg lettuce, and tomatoes washed in an automated produce washer for different times and washing speeds. Tomatoes and lettuce leaves were spot inoculated with 100 μL of a 5 strain cocktail mixture of either pathogen and washed with 10 or 8 L of NEO water, respectively. Washing lettuce for 30 min at 65 rpm led to the greatest reductions, with 4.2 and 5.9 log CFU/g reductions achieved for E. coli O157:H7 and S. Typhimurium respectively on romaine, whereas iceberg lettuce reductions were 3.2 and 4.6 log CFU/g for E. coli O157:H7 and S. Typhimurium respectively. Washing tomatoes for 10 min at 65 rpm achieved reductions greater than 8 and 6 log CFU/tomato on S. Typhimurium and E. coli O157:H7 respectively. All pathogens were completely inactivated in NEO water wash solutions. No detrimental effects on the visual quality of the produce studied were observed under all treatment conditions. Results show the adoption of this washing procedure in food service operations could be useful in ensuring produce safety. © 2015 Institute of Food Technologists®

  6. A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change.

    PubMed

    Bigg, G R; Wei, H L; Wilton, D J; Zhao, Y; Billings, S A; Hanna, E; Kadirkamanathan, V

    2014-06-08

    Iceberg calving is a major component of the total mass balance of the Greenland ice sheet (GrIS). A century-long record of Greenland icebergs comes from the International Ice Patrol's record of icebergs (I48N) passing latitude 48° N, off Newfoundland. I48N exhibits strong interannual variability, with a significant increase in amplitude over recent decades. In this study, we show, through a combination of nonlinear system identification and coupled ocean-iceberg modelling, that I48N's variability is predominantly caused by fluctuation in GrIS calving discharge rather than open ocean iceberg melting. We also demonstrate that the episodic variation in iceberg discharge is strongly linked to a nonlinear combination of recent changes in the surface mass balance (SMB) of the GrIS and regional atmospheric and oceanic climate variability, on the scale of the previous 1-3 years, with the dominant causal mechanism shifting between glaciological (SMB) and climatic (ocean temperature) over time. We suggest that this is a change in whether glacial run-off or under-ice melting is dominant, respectively. We also suggest that GrIS calving discharge is episodic on at least a regional scale and has recently been increasing significantly, largely as a result of west Greenland sources.

  7. Effect of salicylhydroxamic acid on endosperm strength and embryo growth of Lactuca sativa L. cv Waldmann's Green seeds

    NASA Technical Reports Server (NTRS)

    Brooks, C. A.; Mitchell, C. A.

    1988-01-01

    Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm of SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.

  8. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels.

    PubMed

    Bikker, Paul; van Krimpen, Marinus M; van Wikselaar, Piet; Houweling-Tan, Bwee; Scaccia, Nazareno; van Hal, Jaap W; Huijgen, Wouter J J; Cone, John W; López-Contreras, Ana M

    2016-01-01

    The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically feasible value chain. In this study, such a biorefinery approach is presented for the green seaweed Ulva lactuca containing 225 g protein ( N  × 4.6) kg -1 dry matter (DM). The sugars in the biomass were solubilised by hot water treatment followed by enzymatic hydrolysis and centrifugation resulting in a sugar-rich hydrolysate (38.8 g L -1 sugars) containing glucose, rhamnose and xylose, and a protein-enriched (343 g kg -1 in DM) extracted fraction. This extracted fraction was characterised for use in animal feed, as compared to U. lactuca biomass. Based on the content of essential amino acids and the in vitro N (85 %) and organic matter (90 %) digestibility, the extracted fraction seems a promising protein source in diets for monogastric animals with improved characteristics as compared to the intact U. lactuca . The gas production test indicated a moderate rumen fermentation of U. lactuca and the extracted fraction, about similar to that of alfalfa. Reduction of the high content of minerals and trace elements may be required to allow a high inclusion level of U. lactuca products in animal diets. The hydrolysate was used successfully for the production of acetone, butanol, ethanol and 1,2-propanediol by clostridial fermentation, and the rhamnose fermentation pattern was studied.

  9. Thermal Imagery Details Larsen C Iceberg Calving

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.; Scambos, T. A.; Schmaltz, J. E.; Melocik, K. A.; Klinger, M. J.

    2017-12-01

    The final calving of the 5800 km2 iceberg, initially named A-68, from the Larsen C ice shelf took place in darkness during Antarctica's austral winter. Landsat 8 special acquisitions by the Thermal Infrared Sensor (TIRS) on June 19th and July 21st showed the near-final extent of the rift as well as the iceberg after it had released. Such thermal imagery was a critical tool for seeing changes during this period of winter darkness. The completion of the rift across the Larsen C was first announced by Project MIDAS on 12 July based on thermal imagery from Aqua's Moderate Resolution Imaging Spectroradiometer (MODIS). The thermal contrast between the ocean and ice surfaces made it clear that the iceberg had released before Sentinel-1's radar and Landsat 8's thermal data confirmed that later on the same day. In addition to TIRS on Landsat 8 (Band 10) and the MODIS sensors on the Terra and Aqua satellites (Bands 31/32), the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite also acquires thermal imagery at a similar wavelength ( 11.5 microns) with its I5 Band. The advantage to these data relative to MODIS is that they are at a higher resolution, 375 m vs 1 km. This, along with multiple passes per day has enabled a detailed temporal study of the early drift movement of A68, followed by visible-band tracking and structural analysis using MODIS band 1 (Aqua and Terra; 250 m resolution) and Landsat 8 panchromatic band (15 m). Along with constraining the timing of the rift's breakthrough to a small time window on July 11th, these data allow tracking of the major pieces of A-68 as they formed, and of the intact area behind the deep embayment in the Larsen C's ice front. Further, we will track the movement of these large ice masses, and monitor summer melt and effects of further calving and thinning as they move northward in the circulation of the Weddell Gyre.

  10. Detection of lettuce discoloration using hyperspectral reflectance imaging

    USDA-ARS?s Scientific Manuscript database

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to classify the discoloration of lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectra...

  11. 7a-hydroxfriedelan-3one-26-OL-29-OIC acid and other constituents from Pileostegia Viburnoids VAR. Glabrescens

    USDA-ARS?s Scientific Manuscript database

    The preliminary phytotoxic evaluations of a n-BuOH extract from traditional Chinese medicinal plant Pileostegia viburnoides var. glabrescens showed herbicidal activity against dicot Lactuca sativa (lettuce) and monocot Agrostis stolonifera (bentgrass). In order to identify the phytotoxic constituent...

  12. 7 CFR 319.56-24 - Lettuce and peppers from Israel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Lettuce and peppers from Israel. 319.56-24 Section 319... Lettuce and peppers from Israel. (a) Lettuce may be imported into the United States from Israel without... section have been met. (b) Peppers (fruit) (Capsicum spp.) from Israel may be imported into the United...

  13. Apple, carrot, and hibiscus edible films containing the plant antimicrobials carvacrol and cinnamaldehyde inactivate Salmonella Newport on organic leafy greens in sealed plastic bags

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to investigate the antimicrobial effects of carvacrol and cinnamaldehyde incorporated into apple, carrot and hibiscus based edible films against Salmonella Newport in contaminated organic leafy greens. The leafy greens tested included romaine and iceberg lettuce, and ...

  14. Toxicity evaluation of the process effluent streams of a petrochemical industry.

    PubMed

    Reis, J L R; Dezotti, M; Sant'Anna, G L

    2007-02-01

    The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.

  15. USE OF PELLETED LETTUCE SEEDS IN BIOAVAILABILITY STUDIES

    EPA Science Inventory

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  16. USE OF PELLETED LETTUCE SEEDS IN BIOABAILABILITY STUDIES

    EPA Science Inventory

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  17. Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: Field and greenhouse studies

    EPA Science Inventory

    The presence of perfluoroalkyl acids (PFAAs) in biosolids destined for use in agriculture has raised concerns about their potential to enter the terrestrial food chain via bioaccumulation in edible plants. Uptake of PFAAs by greenhouse lettuce ( Lactuca sativa) and tomato (Lycope...

  18. The Toxicity of Mustard and Mustard Lewisite to Terrestrial Organisms

    DTIC Science & Technology

    1998-09-24

    developed by Green et al. (1989) and presented by standards organizations (OECD 1993, ASTM 1996b). The test species included lettuce ( Lactuca ... sativa ), alfalfa (Medicago sativa ) and northern wheat grass (Agropyron dasystachyum) selected in order to provide a representative commercial

  19. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata)

    PubMed Central

    Smoleń, Sylwester; Kowalska, Iwona; Czernicka, Małgorzata; Halka, Mariya; Kęska, Kinga; Sady, Włodzimierz

    2016-01-01

    Iodine (I) and selenium (Se) are included in the group of beneficial elements. They both play important roles in humans and other animals, particularly in the regulation of thyroid functioning. A substantial percentage of people around the world suffer from health disorders related to the deficiency of these elements in the diet. Salicylic acid (SA) is a compound similar to phytohormones and is known to improve the efficiency of I biofortification of plants. The influence of SA on Se enrichment of plants has not, however, been recognized together with its effect on simultaneous application of I and Se to plants. Two-year studies (2014–2015) were conducted in a greenhouse with hydroponic cultivation of lettuce in an NFT (nutrient film technique) system. They included the application of I (as KIO3), Se (as Na2SeO3) and SA into the nutrient solution. KIO3 was used at a dose of 5 mg I⋅dm-3 (i.e., 39.4 μM I), while Na2SeO3 was 0.5 mg Se⋅dm-3 (i.e., 6.3 μM Se). SA was introduced at three doses: 0.1, 1.0, and 10.0 mg⋅dm-3 nutrient solutions, equivalent to 0.724, 7.24, and 72.4 μM SA, respectively. The tested combinations were as follows: (1) control, (2) I + Se, (3) I + Se + 0.1 mg SA⋅dm-3, (4) I + Se + 1.0 mg SA⋅dm-3 and (5) I + Se + 10.0 mg SA⋅dm-3. The applied treatments had no significant impact on lettuce biomass (leaves and roots). Depending on the dose, a diverse influence of SA was noted with respect to the efficiency of I and Se biofortification; chemical composition of leaves; and mineral nutrition of lettuce plants, including the content of macro- and microelements and selenocysteine methyltransferase (SMT) gene expression. SA application at all tested doses comparably increased the level of selenomethionine (SeMet) and decreased the content of SA in leaves. PMID:27803709

  20. Microbiological quality and safety assessment of lettuce production in Brazil.

    PubMed

    Ceuppens, Siele; Hessel, Claudia Titze; de Quadros Rodrigues, Rochele; Bartz, Sabrina; Tondo, Eduardo César; Uyttendaele, Mieke

    2014-07-02

    The microbiological quality and safety of lettuce during primary production in Brazil were determined by enumeration of hygiene indicators Escherichia coli, coliforms and enterococci and detection of enteric pathogens Salmonella and E. coli O157:H7 in organic fertilizers, soil, irrigation water, lettuce crops, harvest boxes and worker's hands taken from six different lettuce farms throughout the crop growth cycle. Generic E. coli was a suitable indicator for the presence of Salmonella and E. coli O157:H7, while coliforms and enterococci were not. Few pathogens were detected: 5 salmonellae and 2 E. coli O157:H7 from 260 samples, of which only one was lettuce and the others were manure, soil and water. Most (5/7) pathogens were isolated from the same farm and all were from organic production. Statistical analysis revealed the following environmental and agro-technical risk factors for increased microbial load and pathogen prevalence in lettuce production: high temperature, flooding of lettuce fields, application of contaminated organic fertilizer, irrigation with water of inferior quality and large distances between the field and toilets. Control of the composting process of organic fertilizers and the irrigation water quality appear most crucial to improve and/or maintain the microbiological quality and safety during the primary production of lettuce. Copyright © 2014 Elsevier B.V. All rights reserved.