Sample records for icebreaking

  1. Icebreaker: The Evaluation

    ERIC Educational Resources Information Center

    Peerbhoy, Denise; Bourke, Cathriona

    2007-01-01

    Objective: To document young people's and teachers' responses to "Icebreaker", a Theatre in Education (TIE) performance exploring themes of sexual health and relationships, in relation to "Healthy Arts"' objectives. Design: Data reported here were part of a wider evaluation of a government funded scheme. Setting: Data was…

  2. New U.S. icebreaker to advance Arctic Marine Science

    NASA Astrophysics Data System (ADS)

    Swift, Jim; Clough, Lisa; Berkson, Jonathan; DuPree, George; Falkner, Kelly

    The decades-long planning for a U.S. icebreaking vessel dedicated to Arctic marine science reached its goal with the entry into service of the UGCGC Healy, a polar research vessel operated by the U.S. Coast Guard for the U.S. science community. The ship is named for Captain Michael A. Healy, a legendary figure of Alaskan history who served as commanding officer of the U.S. Revenue Cutters Corwin (1884-1885) and Bear (1886-1895).Healy is 128 m long, 25 m wide, displaces 14,900 metric tons, and traverses up to 1.4 m ice at 1.65 m s-1, propelled by two 11.1-MW AC synchronous motors fed from DC diesel electric engines through cycloconverters. Thus, Healy is more powerful and somewhat larger than the German polar research vessel Polarstern or the Canadian icebreaker Louis S. St-Laurent. Healy's power system responds quickly to the load changes common in icebreaking. The ship has a conventional icebreaker bow. The hull provides a sea-kindly ride and more stable work conditions in open water than do the U.S. Coast Guard Polar-class icebreakers. The ship is designed to work in any Arctic season.

  3. Energizers and Icebreakers for All Ages and Stages.

    ERIC Educational Resources Information Center

    Foster, Elizabeth Sabrinsky

    This book is intended to assist group leaders, teachers, counselors, and peer helpers in the development of relationships and active learning. The first chapter, "Icebreakers," begins with an overview that explains the nature, purpose, and importance of these activities. Icebreakers are used to help group members learn about each other in a…

  4. Ice-Breaking as a Useful Teaching Policy for Both Genders

    ERIC Educational Resources Information Center

    Yeganehpour, Parisa

    2017-01-01

    These days focus of interest in English learning changes to productive skills, in Turkey. This research study assesses the teachers' point of view about using ice-breakers for adult Turkish EFL learners in upper-intermediate level. It also anticipates finding valuable information with applying ice-breaker activities as a useful teaching policy…

  5. Reaching 1 m deep on Mars: the Icebreaker drill.

    PubMed

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  6. Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress

    DTIC Science & Technology

    2014-02-11

    Efforts to Identify Arctic Requirements Are Ongoing, but More Communication about Agency Planning Efforts Would Be Beneficial, GAO-10- 870, September...icebreakers also have substantial command, control, and communications capabilities. The flexibility and mobility of polar icebreakers would assist...Fisheries enforcement in Bering Sea to prevent foreign fishing in U.S. waters and overfishing —Capability to conduct search and rescue in Beaufort Sea

  7. Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress

    DTIC Science & Technology

    2013-07-24

    but More Communication about Agency Planning Efforts Would Be Beneficial, GAO-10- 870, September 2010, p. 53. Coast Guard Polar Icebreaker...and helicopters. Polar icebreakers also have substantial command, control, and communications capabilities. The flexibility and mobility of polar...Coast Guard —Fisheries enforcement in Bering Sea to prevent foreign fishing in U.S. waters and overfishing —Capability to conduct search and rescue in

  8. Building Community in the Classroom through Ice-Breakers and Parting Ways

    ERIC Educational Resources Information Center

    Eggleston, Tami; Smith, Gabie

    2004-01-01

    Many instructors are concerned with creating a community in the classroom. Although there are numerous published "ice-breakers," many of these techniques are not specific to psychology courses or have been used so much that the students see them as redundant and cliche. Icebreakers are better if they have relevance to a specific class, are…

  9. Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress

    DTIC Science & Technology

    2016-11-10

    time between the end of Polar Star’s current intended service life and the entry into service of one or more new heavy polar icebreakers. There are...at least two options for bridging this time period: One would be to further extend the service life of Polar Star and/or repair and extend the...service life of Polar Sea. The other would be to charter (i.e., lease) one or more other icebreakers (perhaps foreign- owned ones), if such ships are

  10. Open-Water Resistance and Seakeeping Characteristics of Ships with Icebreaking Bows

    DTIC Science & Technology

    1991-05-13

    of a Knuckled Forefoot on a Typical Icebreaker ...... ................... . 19 3-2. Lines Plan, T-AGS OCEAN (ICE) . * * .... . 23 3-3. Curve of...the ice. As the stem strikes the ice, initial failure of the ice occurs by simple crushing. Then the raked stem of the icebreaker rides up onto the ice...bossings, skegs, rudders, 18 and special stem forefoot shapes were not included in the shapes tested. To ensure that the parent and its variants

  11. Designing a Maintainable and Sustainable Coast Guard Icebreaker for Arctic and Antarctic Operations

    DTIC Science & Technology

    2014-03-21

    03-2014 Technical June 2013-August 2013 Designing a Maintainable and Sustainable Coast Guard Icebreaker for Arctic and Antarctic Operations...of Engineering Designing a Maintainable and Sustainable Coast Guard Icebreaker for Arctic and Antarctic Operations Abstract The U.S. Coast Guard is...Pollution (MARPOL) of which Annex V prohibits the discharge of solid waste other than food refuge less than 25mm in diameter into the Antarctic Region [6

  12. Using Appreciative Intelligence for Ice-Breaking: A New Design

    ERIC Educational Resources Information Center

    Verma, Neena; Pathak, Anil Anand

    2011-01-01

    Purpose: The purpose of this paper is to highlight the importance of applying appreciative intelligence and appreciative inquiry concepts to design a possibly new model of ice-breaking, which is strengths-based and very often used in any training in general and team building training in particular. Design/methodology/approach: The design has…

  13. The Icebreaker Mission to Search for Life on Mars

    NASA Technical Reports Server (NTRS)

    Stoker, C.; Mckay, C.; Brinckerhoff, W.; Davila, A.; Parro, V.; Quinn, R.

    2015-01-01

    The search for evidence of life on Mars is the ultimate motivation for its scientific exploration. The results from the Phoenix mission indicate that the high N. latitude ice-rich regolith at low elevations is likely to be a recently habitable place on Mars [Stoker et al., 2010]. The near-surface ice likely provided adequate water activity during periods of high obliquity, 3 to 10 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Together with iron in basaltic rocks and perchlorate in the soil they provide carbon and energy sources, and oxidative power to drive metabolism. Furthermore, the presence of organics is possible, as thermally reactive perchlorate would have prevented their detection by Viking and Phoenix. The Mars Icebreaker Life mission [McKay et al., 2013] focuses on the following science goals: (1) Search for biomolecular evidence of life; (2) Search for organic matter from either exogeneous or endogeneous sources using methods that are not effected by the presence of perchlorate; (3) Characterize oxidative species that produced reactivity of soils seen by Viking; and 4) Assess the habitability of the ice bearing soils. The Icebreaker Life payload (Figure 1) includes a 1-m rotary percussive drill that brings cuttings samples to the surface where they are delivered to three instruments (Fig. 1), the Signs of Life Detector (SOLID) [Parro et al., 2011] for biomolecular analysis, Laser Desorption Mass Spectrometer (LDMS) [??? 2015]) for broad spectrum organic analysis, and Wet Chemistry Laboratory (WCL) [Hecht et al., 2009] for detecting soluble species of nutrients and reactive oxidants. The Icebreaker payload fits on the Phoenix spacecraft and can land at the well-characterized Phoe-nix landing site in 2020 in a Discovery-class mission.

  14. Kick-Start Your Class: Academic Icebreakers to Engage Students

    ERIC Educational Resources Information Center

    Johnson, LouAnne

    2012-01-01

    LouAnne Johnson's newest book is a collection of fun and simple educational icebreaker activities that get students excited and engaged from the very first minute of class. These activities are great to use with students at all levels, and many of the activities include variations and modifications for different groups. Research has shown that the…

  15. Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress

    DTIC Science & Technology

    2013-04-25

    Accountability Office, Coast Guard[:]Efforts to Identify Arctic Requirements Are Ongoing, but More Communication about Agency Planning Efforts Would...control, and communications capabilities. The flexibility and mobility of polar icebreakers would assist the Coast Guard in closing future mission...Sea to prevent foreign fishing in U.S. waters and overfishing —Capability to conduct search and rescue in Beaufort Sea for cruise line and natural

  16. The Icebreaker Life Mission to Mars: A Search for Biomolecular Evidence for Life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Stoker, Carol R.; Glass, Brian J.; Dave, Arwen I.; Davila, Alfonso F.; Heldmann, Jennifer L.; Marinova, Margarita M.; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A.; hide

    2012-01-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, 5 Myr ago. Carbon dioxide and nitrogen is present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground-ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: 1. Search for specific biomolecules that would be conclusive evidence of life. 2. A general search for organic molecules in the ground ice. 3. Determine the processes of ground ice formation and the role of liquid water. 4. Understand the mechanical properties of the Mars polar ice-cemented soil. 5. Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. And 6. Compare the elemental composition of the northern plains with mid-latitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at mid-latitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample

  17. The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life.

    PubMed

    McKay, Christopher P; Stoker, Carol R; Glass, Brian J; Davé, Arwen I; Davila, Alfonso F; Heldmann, Jennifer L; Marinova, Margarita M; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A; Paulsen, Gale; Smith, Peter H; Parro, Victor; Andersen, Dale T; Hecht, Michael H; Lacelle, Denis; Pollard, Wayne H

    2013-04-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ≈ 5 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: (1) Search for specific biomolecules that would be conclusive evidence of life. (2) Perform a general search for organic molecules in the ground ice. (3) Determine the processes of ground ice formation and the role of liquid water. (4) Understand the mechanical properties of the martian polar ice-cemented soil. (5) Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. (6) Compare the elemental composition of the northern plains with midlatitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at midlatitudes. Duplicate samples could be cached as a target for possible return by

  18. AURORA BOREALIS - Development of a New Research Icebreaker with Drilling Capability

    NASA Astrophysics Data System (ADS)

    Thiede, J.; Biebow, N.; Egerton, P.; Kunz-Pirrung, M.; Lembke-Jene, L.

    2007-12-01

    Polar research both on land and in the sea cannot achieve the needed progress without novel and state of the art technologies and infrastructure. In addition, we have the obligation to equip the upcoming young and courageous generation of polar researchers with the most modern and safest research platforms the 21st century can provide. This effort will require major investments, both in terms of generating new tools, as well as maintaining and renovating existing infrastructure. There are many different novel tools under development for polar research, we will concentrate on the presently largest one, the planning for a new type of research icebreaker, the AURORA BOREALIS with an all-season capability of operations in permanently ice-covered waters and with the possibility to carry out deep-sea drilling in ice-covered deep-sea basins. AURORA BOREALIS will be the most advanced Polar Research Vessel in the world with a multi-functional role of drilling in deep ocean basins and supporting climate and environmental research and decision support for stakeholder governments for the next 35 to 40 years. The vessel is planned as a large research icebreaker with 44,000 tons displacement and a length of up to 196 m, with about 50 Megawatt propulsion power. Advanced technological features will include azimuth propulsion systems, extensive instrumental and airborne ice- management support, and the routine operation of Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUVs) from two moon-pools. An unique feature of this icebreaker will be the drilling rig that will enable sampling of the ocean floor and sub-sea down to 5000 m water depth and 1000 m penetration at the most inhospitable places on earth. The possibility to flexibly equip the ship with laboratory and supply containers, and the variable arrangement of other modular infrastructure (in particular, winches, cranes, etc.), free deck- space, and separate protected deck areas, will allow the planned

  19. Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea.

    PubMed

    Erbe, C; Farmer, D M

    2000-09-01

    A software model estimating zones of impact on marine mammals around man-made noise [C. Erbe and D. M. Farmer, J. Acoust. Soc. Am. 108, 1327-1331 (2000)] is applied to the case of icebreakers affecting beluga whales in the Beaufort Sea. Two types of noise emitted by the Canadian Coast Guard icebreaker Henry Larsen are analyzed: bubbler system noise and propeller cavitation noise. Effects on beluga whales are modeled both in a deep-water environment and a near-shore environment. The model estimates that the Henry Larsen is audible to beluga whales over ranges of 35-78 km, depending on location. The zone of behavioral disturbance is only slightly smaller. Masking of beluga communication signals is predicted within 14-71-km range. Temporary hearing damage can occur if a beluga stays within 1-4 km of the Henry Larsen for at least 20 min. Bubbler noise impacts over the short ranges quoted; propeller cavitation noise accounts for all the long-range effects. Serious problems can arise in heavily industrialized areas where animals are exposed to ongoing noise and where anthropogenic noise from a variety of sources adds up.

  20. AURORA BOREALIS - European Research Icebreaker With Drilling Capability

    NASA Astrophysics Data System (ADS)

    Biebow, N.; Lembke-Jene, L.; Kunz-Pirrung, M.; Thiede, J.

    2008-12-01

    The polar oceans are the least known areas of the globe, in although they hold the key to many of our climate´s secrets. How does the sea ice coverage and the sea water properties change? How do plants and animals survive under the most extreme conditions of the earth? Which information of past climate change can be read from the sediments at the sea-floor and how can the future changing climate be predicted? In order to answer such and further questions, for the moment a hypermodern research vessel, the AURORA BOREALIS, is planned, which can handle the cool summers and freezing winters of the polar oceans and which can drill deep into the sea floor. AURORA BOREALIS will be the most advanced Research Icebreaker in the world with a multi-functional role of drilling in deep ocean basins and supporting climate/environmental research and decision support for stakeholder governments for the next 35-40 years. It will have a high icebreaking capacity to penetrate autonomously (single ship operation) into the central Arctic Ocean with more than 2.5 meters of ice cover, during all seasons of the year. The new technological features will include dynamic positioning in closed sea- ice cover, satellite navigation and ice-management support and the deployment and operation of Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUVs) from the twin moon-pools. A unique feature of the vessel is the deep-sea drilling rig, which will enable sampling of the ocean floor and sub-sea up to 5000 m water and 1000 m penetration at the most inhospitable places on earth. The drilling capability will be deployed in both Polar Regions on the long run and AURORA BOREALIS will be the only vessel worldwide that could undertake this type of scientific investigation.

  1. The sample handling system for the Mars Icebreaker Life mission: from dirt to data.

    PubMed

    Davé, Arwen; Thompson, Sarah J; McKay, Christopher P; Stoker, Carol R; Zacny, Kris; Paulsen, Gale; Mellerowicz, Bolek; Glass, Brian J; Willson, David; Bonaccorsi, Rosalba; Rask, Jon

    2013-04-01

    The Mars Icebreaker Life mission will search for subsurface life on Mars. It consists of three payload elements: a drill to retrieve soil samples from approximately 1 m below the surface, a robotic sample handling system to deliver the sample from the drill to the instruments, and the instruments themselves. This paper will discuss the robotic sample handling system. Collecting samples from ice-rich soils on Mars in search of life presents two challenges: protection of that icy soil--considered a "special region" with respect to planetary protection--from contamination from Earth, and delivery of the icy, sticky soil to spacecraft instruments. We present a sampling device that meets these challenges. We built a prototype system and tested it at martian pressure, drilling into ice-cemented soil, collecting cuttings, and transferring them to the inlet port of the SOLID2 life-detection instrument. The tests successfully demonstrated that the Icebreaker drill, sample handling system, and life-detection instrument can collectively operate in these conditions and produce science data that can be delivered via telemetry--from dirt to data. Our results also demonstrate the feasibility of using an air gap to prevent forward contamination. We define a set of six analog soils for testing over a range of soil cohesion, from loose sand to basalt soil, with angles of repose of 27° and 39°, respectively. Particle size is a key determinant of jamming of mechanical parts by soil particles. Jamming occurs when the clearance between moving parts is equal in size to the most common particle size or equal to three of these particles together. Three particles acting together tend to form bridges and lead to clogging. Our experiments show that rotary-hammer action of the Icebreaker drill influences the particle size, typically reducing particle size by ≈ 100 μm.

  2. The Sample Handling System for the Mars Icebreaker Life Mission: from Dirt to Data

    NASA Technical Reports Server (NTRS)

    Dave, Arwen; Thompson, Sarah J.; McKay, Christopher P.; Stoker, Carol R.; Zacny, Kris; Paulsen, Gale; Mellerowicz, Bolek; Glass, Brian J.; Wilson, David; Bonaccorsi, Rosalba; hide

    2013-01-01

    The Mars icebreaker life mission will search for subsurface life on mars. It consists of three payload elements: a drill to retrieve soil samples from approx. 1 meter below the surface, a robotic sample handling system to deliver the sample from the drill to the instruments, and the instruments themselves. This paper will discuss the robotic sample handling system.

  3. Computer Simulation of Great Lakes-St. Lawrence Seaway Icebreaker Requirements.

    DTIC Science & Technology

    1980-01-01

    of Run No. 1 for Taconite Task Command ... ....... 6-41 6.22d Results of Run No. I for Oil Can Task Command ........ ... 6-42 6.22e Results of Run No...Port and Period for Run No. 2 ... .. ... ... 6-47 6.23c Results of Run No. 2 for Taconite Task Command ... ....... 6-48 6.23d Results of Run No. 2 for...6-53 6.24b Predicted Icebreaker Fleet by Home Port and Period for Run No. 3 6-54 6.24c Results of Run No. 3 for Taconite Task Command. ....... 6

  4. Drilling Polar Oceans with the European Research Icebreaker AURORA BOREALIS: the IODP Context

    NASA Astrophysics Data System (ADS)

    Lembke-Jene, Lester; Wolff-Boenisch, Bonnie; Azzolini, Roberto; Thiede, Joern; Biebow, Nicole; Eldholm, Olav; Egerton, Paul

    2010-05-01

    Polar oceans are characterized by extreme environmental conditions for humans and materials, and have remained the least accessible regions to scientists of the IODP. DSDP and ODP have for long faced specific technical and logistical problems when attempting to drill in ice-covered polar deep-sea basins. The Arctic Ocean and large areas of the high-latitude Southern Ocean remained largely un-sampled by ODP and remain one of the major scientific and technological challenges for IODP. Drilling in these regions has been discussed and anticipated for decades and the scientific rationales are reflected in the science plans of the international Nansen Arctic Drilling Program (NAD) or the Arctic Program Planning Group (APPG) of ODP/IODP, amongst others. More recently, the rationale to investigate the polar oceans in a holistic approach has been outlined by workshops, leading to strategic assessments of the scientific potential and new drilling proposals. The European Polar Board took the initiative to develop a plan for a novel and dedicated research icebreaker with technical capabilities hitherto unrealised. This research icebreaker will enable autonomous operations in the central Arctic Ocean and the Southern Ocean, even during the severest ice conditions in the deep winter, serving all marine disciplines of polar research including scientific drilling: The European Research Icebreaker and Deep-Sea Drilling Vessel AURORA BOREALIS. AURORA BOREALIS is presently planned as a multi-purpose vessel. The ship can be deployed as a research icebreaker in all polar waters during any season of the year, as it shall meet the specifications of the highest ice-class attainable (IACS Polar Code 1) for icebreakers. During the times when it is not employed for drilling, it will operate as the most technically advanced multi-disciplinary research vessel in the Arctic or polar Southern Ocean. AURORA BOREALIS will be a "European scientific flagship facility" (fully open to non

  5. Collecting winter data on U.S. Coast Guard icebreakers

    NASA Astrophysics Data System (ADS)

    Oyserman, Ben O.; Woityra, William C.; Bullerjahn, George S.; Beall, Benjamin F. N.; McKay, Robert Michael L.

    2012-03-01

    Winter research and monitoring of icebound rivers, lakes, and coastal seas to date has usually involved seagoing civilian scientists leading survey efforts. However, because of poor weather conditions and a lack of safe research platforms, scientists collecting data during winter face some difficult and often insurmountable problems. To solve these problems and to further research and environmental monitoring goals, new partnerships can be formed through integrating efforts of the U.S. Coast Guard (USCG) with citizen science initiatives. USCG and a research group at Ohio's Bowling Green State University are entering the third year of such a partnership, in which icebreaking operations in Lake Erie using USCG Cutter Neah Bay support volunteer data collection. With two additional USCG vessels joining the program this winter season, the partnership serves as a timely and useful model for worldwide environmental research and monitoring through citizen science and government collaboration.

  6. Icebreaker-3 Drill Integration and Testing at Two Mars-Analog Sites

    NASA Technical Reports Server (NTRS)

    Glass, B.; Bergman, D.; Yaggi, B.; Dave, A.; Zacny, K.

    2016-01-01

    A decade of evolutionary development of integrated automated drilling and sample handling at analog sites and in test chambers has made it possible to go 1 meter through hard rocks and ice layers on Mars. The latest Icebreaker-3 drill has been field tested in 2014 at the Haughton Crater Marsanalog site in the Arctic and in 2015 with a Mars lander mockup in Rio Tinto, Spain, (with sample transfer arm and with a prototype life-detection instrument). Tests in Rio Tinto in 2015 successfully demonstrated that the drill sample (cuttings) was handed-off from the drill to the sample transfer arm and thence to the on-deck instrument inlet where it was taken in and analyzed ("dirt-to-data").

  7. Masked hearing thresholds of a beluga whale ( Delphinapterus leucas) in icebreaker noise

    NASA Astrophysics Data System (ADS)

    Erbe, C.; Farmer, D. M.

    An experiment is presented that measured masked hearing thresholds of a beluga whale at the Vancouver Aquarium. The masked signal was a typical beluga vocalization; the masking noise included two types of icebreaker noise and naturally occurring icecracking noise. Thresholds were measured behaviorally in a go/no-go paradigm. Results were that bubbler system noise exhibited the strongest masking effect with a critical noise-to-signal ratio of 15.4 dB. Propeller cavitation noise completely masked the vocalization for noise-to-signal ratios greater than 18.0 dB. Natural icecracking noise showed the least interference with a threshold at 29.0 dB. A psychophysical analysis indicated that the whale did not have a consistent decision bias.

  8. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements

    NASA Astrophysics Data System (ADS)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.

    2017-08-01

    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe <span class="hlt">icebreaker</span> Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26587241','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26587241"><span>The <span class="hlt">ice-breaker</span> effect: singing mediates fast social bonding.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pearce, Eiluned; Launay, Jacques; Dunbar, Robin I M</p> <p>2015-10-01</p> <p>It has been proposed that singing evolved to facilitate social cohesion. However, it remains unclear whether bonding arises out of properties intrinsic to singing or whether any social engagement can have a similar effect. Furthermore, previous research has used one-off singing sessions without exploring the emergence of social bonding over time. In this semi-naturalistic study, we followed newly formed singing and non-singing (crafts or creative writing) adult education classes over seven months. Participants rated their closeness to their group and their affect, and were given a proxy measure of endorphin release, before and after their class, at three timepoints (months 1, 3 and 7). We show that although singers and non-singers felt equally connected by timepoint 3, singers experienced much faster bonding: singers demonstrated a significantly greater increase in closeness at timepoint 1, but the more gradual increase shown by non-singers caught up over time. This represents the first evidence for an '<span class="hlt">ice-breaker</span> effect' of singing in promoting fast cohesion between unfamiliar individuals, which bypasses the need for personal knowledge of group members gained through prolonged interaction. We argue that singing may have evolved to quickly bond large human groups of relative strangers, potentially through encouraging willingness to coordinate by enhancing positive affect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616323A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616323A"><span>Arctic summer school onboard an <span class="hlt">icebreaker</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexeev, Vladimir A.; Repina, Irina A.</p> <p>2014-05-01</p> <p>The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the <span class="hlt">icebreaker</span> with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C41D0444B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C41D0444B"><span>Future Marine Polar Research Capacities - Science Planning and Research Services for a Multi-National Research <span class="hlt">Icebreaker</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biebow, N.; Lembke-Jene, L.; Wolff-Boenisch, B.; Bergamasco, A.; De Santis, L.; Eldholm, O.; Mevel, C.; Willmott, V.; Thiede, J.</p> <p>2011-12-01</p> <p>Despite significant advances in Arctic and Antarctic marine science over the past years, the polar Southern Ocean remains a formidable frontier due to challenging technical and operational requirements. Thus, key data and observations from this important region are still missing or lack adequate lateral and temporal coverage, especially from time slots outside optimal weather seasons and ice conditions. These barriers combined with the obligation to efficiently use financial resources and funding for expeditions call for new approaches to create optimally equipped, but cost-effective infrastructures. These must serve the international science community in a dedicated long-term mode and enable participation in multi-disciplinary expeditions, with secured access to optimally equipped marine platforms for world-class research in a wide range of Antarctic science topics. The high operational and technical performance capacity of a future joint European Research <span class="hlt">Icebreaker</span> and Deep-sea Drilling Vessel (the AURORA BOREALIS concept) aims at integrating still separately operating national science programmes with different strategic priorities into joint development of long-term research missions with international cooperation both in Arctic and Antarctica. The <span class="hlt">icebreaker</span> is planned to enable, as a worldwide first, autonomous year-round operations in the central Arctic and polar Southern Ocean, including severest ice conditions in winter, and serving all polar marine disciplines. It will facilitate the implementation of atmospheric, oceanographic, cryospheric or geophysical observatories for long-term monitoring of the polar environment. Access to the biosphere and hydrosphere e.g. beneath ice shelves or in remote regions is made possible by acting as advanced deployment platform for instruments, robotic and autonomous vehicles and ship-based air operations. In addition to a report on the long-term strategic science and operational planning objectives, we describe foreseen</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....16.7899A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....16.7899A"><span>Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard <span class="hlt">icebreaker</span> Amundsen from the Polar 6 aircraft platform</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aliabadi, Amir A.; Thomas, Jennie L.; Herber, Andreas B.; Staebler, Ralf M.; Leaitch, W. Richard; Schulz, Hannes; Law, Kathy S.; Marelle, Louis; Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Hoor, Peter M.; Köllner, Franziska; Schneider, Johannes; Levasseur, Maurice; Abbatt, Jonathan P. D.</p> <p>2016-06-01</p> <p>Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard <span class="hlt">icebreaker</span> Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using the Polar 6 aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercept by the research aircraft was carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercepts were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under <span class="hlt">ice-breaking</span> conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN), refractory black carbon (rBC), and cloud condensation nuclei (CCN). The results were compared to similar experimental studies in mid-latitudes. Plume expansion rates (γ) were calculated using the analytical model and found to be γ = 0.75 ± 0.81, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates were smaller than prior studies conducted at mid-latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid-latitudes. All emission factors were in agreement with prior</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P11E1881M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P11E1881M"><span><span class="hlt">IceBreaker</span>: Mars Drill and Sample Delivery System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mellerowicz, B. L.; Paulsen, G. L.; Zacny, K.; McKay, C.; Glass, B. J.; Dave, A.; Davila, A. F.; Marinova, M.</p> <p>2012-12-01</p> <p>We report on the development and testing of a one meter class prototype Mars drill and cuttings sample delivery system. The <span class="hlt">IceBreaker</span> drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sam-pling station for moving the augered ice shavings or soil cuttings into a sample cup. The drill is deployed from a 3 Degree of Freedom (DOF) robotic arm. The drill demonstrated drilling in ice-cemented ground, ice, and rocks at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This cor-responds to an average energy of 100 Whr. The drill has been extensively tested in the Mars chamber to a depth of 1 meter, as well as in the Antarctic and the Arctic Mars analog sites. We also tested three sample delivery systems: 1) 4 DOF arm with a custom soil scoop at the end; 2) Pneumatic based, and 3) Drill based enabled by the 3 (DOF) drill deployment boom. In all approaches there is an air-gap between the sterilized drill (which penetrates subsurface) and the sample transfer hardware (which is not going to be sterilized). The air gap satisfies the planetary protection requirements. The scoop acquires cuttings sample once they are augered to the surface, and drops them into an in-strument inlet port. The system has been tested in the Mars chamber and in the Arctic. The pneumatic sample delivery system uses compressed gas to move the sample captured inside a small chamber inte-grated with the auger, directly into the instrument. The system was tested in the Mars chamber. In the third approach the drill auger captures the sample on its flutes, the 3 DOF boom positions the tip of the auger above the instrument, and then the auger discharges the sample into an instrument. This approach was tested in the labolatory (at STP). The above drilling and sample delivery tests have shown that drilling</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT........50E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT........50E"><span>The masking of beluga whale (Delphinapterus leucas) vocalizations by <span class="hlt">icebreaker</span> noise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erbe, Christine</p> <p>1998-11-01</p> <p>This thesis examines the masking effect of underwater noise on beluga whale communication. As ocean water is greatly opaque for light but well conducting for sound, marine mammals rely primarily on their hearing for orientation and communication. Man-made underwater noise has the potential of interfering with sounds used by marine mammals. Masking to the point of incomprehensibility can have fatal results-for the individual, but ultimately for the entire species. As part of our understanding of whether marine mammals can cope with human impact on nature, this thesis is the first to study the interference of real ocean noises with complex animal vocalizations. At the Vancouver Aquarium, a beluga whale was trained for acoustic experiments, during which masked hearing thresholds were measured. Focus lay on noise created by <span class="hlt">icebreaking</span> ships in the Arctic. As experiments with trained animals are time and cost expensive, various techniques were examined for their ability to model the whale's response. These were human hearing tests, visual spectrogram discrimination, matched filtering, spectrogram cross-correlation, critical band cross-correlation, adaptive filtering and various types of artificial neural networks. The most efficient method with respect to similarity to the whale's data and speed, was a backpropagation neural net. Masked hearing thresholds would be of little use if they could not be related to accessible quantities in the wild. An ocean sound propagation model was applied to determine critical distances between a noise source, a calling whale and a listening whale. Colour diagrams, called maskograms, were invented to illustrate zones of masking in the wild. Results are that bubbler system noise with a source level of 194 dB re 1 μPa at 1 m has a maximum radius of masking of 15 km in a 3- dimensional ocean. Propeller noise with a source level of 203 dB re 1 μPa at 1 m has a maximum radius of masking of 22 km. A naturally occurring icecracking event</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29402107','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29402107"><span>Embracing life-the Bethlehem Schools' Project, an "<span class="hlt">icebreaker</span>" and "a foot in the door".</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hocking, Mary</p> <p>2018-01-01</p> <p>This workshop details a Partnership involving a High school, a Hospital (Calvary Health Care Bethlehem), La Trobe University and Palliative Care Victoria which seeks to support Community Capacity and resilience in dealing with Life-Limiting illness, death, dying and Loss. This alliance has produced an educational resource which may be used, not only as a tool to normalize death, but also as a means of exploring 'keys to well-being' at any stage of life, through any loss or challenge. This workshop features a template which has been trialled, adapted and evaluated in High School, workshop and Hospital induction settings within Australia. Responses thus far have been "overwhelmingly positive". Translating evidence of positive outcomes into Education & Health Care Systems, is a challenge-this workshop offers a means of approaching both. The conclusion of the workshop provides a number of insights: (I) engaging communities in discussions about well-being and harnessing the insights of youth is a palatable means of discussing well-being at end-of-life; (II) what we know, as a community about supporting people with life-limiting illness is applicable across the span of life-not just at the end; (III) just as it takes a village to raise a child-it takes a village to ensure a quality end-of life experience. What began as a one-off hospital immersion for Secondary School students has grown to become a sustainable educational resource, applicable across a number of domains-with the capacity to become an evidence-based means of increasing community EOL capacity. This workshop details the evolution of a community partnership, which produced an evaluated, sustainable, educational resource encouraging conversations about death and loss whilst emphasizing the essentials of well-being. It is a potential "foot in the door" of the education system and an "<span class="hlt">ice-breaker</span>" for new staff/students to Palliative care.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSA43A2132K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSA43A2132K"><span>Measurement of LF Standard-Frequency Waves JJY along the track of Shirase, the Japanese Antarctic Research <span class="hlt">Icebreaker</span>, during JARE53-JARE54</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kitauchi, H.; Nozaki, K.; Ito, H.; Tsuchiya, S.; Imamura, K.; Nagatsuma, T.</p> <p>2013-12-01</p> <p>We first obtained a strong evidence of reception of the low frequency (LF) radio waves, 40 kHz and 60 kHz, of the call sign JJY by use of a newly developed, highly sensitive receiving system on board the Japanese Antarctic research <span class="hlt">icebreaker</span> Shirase offshore East Ongul Island, East Antarctica--about 14,000 km away from those transmitting stations in Japan. The measured data sets of the electric field intensity and phase of those signals are to be analysed to examine and/or improve numerical prediction methods of field strength for long-distance propagation of LF radio waves, contributing to the Recommendation 'Prediction of field strength at frequencies below about 150 kHz' made by International Telecommunication Union Radiocommunication Sector (ITU-R). The call sign JJY of standard frequency and time signals (SFTS) of LF 40 kHz and 60 kHz are emitted from the transmitting stations, respectively, Ohtakadoya-yama 37° 22‧ 21″ N, 140° 50‧ 56″ E in Fukushima Prefecture (eastern Japan) and Hagane-yama 33° 27‧ 56″ N, 130° 10‧ 32″ E in Saga/Fukuoka Prefecture (western Japan) by NICT. Those are widely used for calibrating frequency standard oscillators and radio-controlled clocks in Japan. Since low signal attenuation in LF radio band allows long distance communication, kilometre waves have been utilized for operations such as SFTS and military communications around the world. Therefore, there is a need to give guidance to engineers for the planning of radio services in LF band so as to avoid interference. ITU-R recommends the guidance 'Prediction of field strength at frequencies below about 150 kHz', in which a numerical prediction method is proposed to compute the electric field intensity, up to 16,000 km of long-distance propagation, away from the transmitting station. Since reliable data sets are limited for the long-distance propagation, in this study we tried to measure the field strength and phase of the LF SFTS JJY of 40 kHz and 60 kHz over 14</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22535247-conceptual-solutions-concerning-decommissioning-dismantling-russian-civil-nuclear-powered-ships','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22535247-conceptual-solutions-concerning-decommissioning-dismantling-russian-civil-nuclear-powered-ships"><span>The conceptual solutions concerning decommissioning and dismantling of Russian civil nuclear powered ships</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.</p> <p></p> <p>From 1959 up to 1991 nine civil nuclear powered ships were built in Russia: eight <span class="hlt">ice-breakers</span> and one lash lighter carrier (cargo ship). At the present time three of them were taking out of service: <span class="hlt">ice-breaker</span> 'Lenin' is decommissioned as a museum and is set for storage in the port of Murmansk, nuclear <span class="hlt">ice-breakers</span> 'Arktika' and 'Sibir' are berthing. The <span class="hlt">ice-breakers</span> carrying rad-wastes appear to be a possible source of radiation contamination of Murmansk region and Kola Bay because the ship long-term storage afloat has the negative effect on hull's structures. As the result of this under the auspices ofmore » the Federal Targeted Program 'Nuclear and Radiation Safety of Russia for 2008 and the period until 2015' the conception and projects of decommissioning of nuclear-powered ships are developed by the State corporation Rosatom with the involvement of companies of United Shipbuilding Corporation. In developing the principal provisions of conception of decommissioning and dismantling of <span class="hlt">icebreakers</span> the technical and economic assessment of dismantling options in ship-repairing enterprises of North-West of Russia was performed. The paper contains description of options, research procedure, analysis of options of decommissioning and dismantling of nuclear <span class="hlt">ice-breakers</span>, taking into account the principle of optimization of potential radioactive effect to personnel, human population and environment. The report's conclusions contain the recommendations for selection of option for development of nuclear <span class="hlt">icebreaker</span> decommissioning and dismantling projects. (authors)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJNAO...7..708C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJNAO...7..708C"><span>A prediction method of ice breaking resistance using a multiple regression analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cho, Seong-Rak; Lee, Sungsu</p> <p>2015-07-01</p> <p>The two most important tasks of <span class="hlt">icebreakers</span> are first to secure a sailing route by breaking the thick sea ice and second to sail efficiently herself for purposes of exploration and transportation in the polar seas. The resistance of <span class="hlt">icebreakers</span> is a priority factor at the preliminary design stage; not only must their sailing efficiency be satisfied, but the design of the propulsion system will be directly affected. Therefore, the performance of <span class="hlt">icebreakers</span> must be accurately calculated and evaluated through the use of model tests in an ice tank before construction starts. In this paper, a new procedure is developed, based on model tests, to estimate a ship's ice breaking resistance during continuous <span class="hlt">ice-breaking</span> in ice. Some of the factors associated with crushing failures are systematically considered in order to correctly estimate her <span class="hlt">ice-breaking</span> resistance. This study is intended to contribute to the improvement of the techniques for ice resistance prediction with ice breaking ships.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA082175','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA082175"><span><span class="hlt">Icebreaking</span> Concepts.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-01-01</p> <p>Development, Report No 731343 Tests of 102 mm dia milling 160-190 1.1-1.3 Bonz, 1973 cutters 6n floating .ce Tesis of chain saw on floating ice 1430 9.9 tlonz... dia (urcular saws 140 (field) 2 3 Lecourt. I . I W Lewis. I Kotras and I C Roth (1973) Mechan- cutting floating ice 290-32) flab) 20-22 ical ire (utter...8217 3 . NUMBER OF PAGES 21 14. MONITORING AGENCY NAME & ADORESS(II different from Controlling Offlce) 1S. SECURITY CLASS. (of this report) Unclassified</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Bayes&pg=5&id=EJ869630','ERIC'); return false;" href="https://eric.ed.gov/?q=Bayes&pg=5&id=EJ869630"><span>Bayes <span class="hlt">Ice-Breaker</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Jessop, Alan</p> <p>2010-01-01</p> <p>Showing simply how statistical thinking can help in weighing evidence and reaching decisions can be useful both as an introduction to an extended presentation of statistical theory and as an introduction to a looser discussion of the nature and value of data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA535964','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA535964"><span>Environmental Activities of the U.S. Coast Guard</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-12-06</p> <p>scientific efforts of other groups. The Coast Guard operates three <span class="hlt">icebreakers</span> in the Arctic and Antarctic , and provides supplies to remote stations...and Atmospheric Administration (NOAA). The Coast Guard operates three <span class="hlt">icebreakers</span> in the Arctic and Antarctic , and provides supplies to remote...stations.17 The Coast Guard also participates in the International Ice Patrol, which monitors iceberg danger in the northwest Atlantic, particularly in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA463776','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA463776"><span>Environmental Activities of the U.S. Coast Guard</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-01-16</p> <p><span class="hlt">icebreakers</span> in the Arctic and Antarctic , and provides supplies to remote stations. These <span class="hlt">icebreakers</span> typically carry about 40 scientists from universities as...the International Ice Patrol, which monitors iceberg danger in the northwest Atlantic, particularly in the area of the Grand Banks of Newfoundland...The iceberg season is usually from February to July, but the Ice Patrol is logistically flexible and can commence operations when iceberg conditions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA472753','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA472753"><span>Environmental Activities of the U.S. Coast Guard</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-04-25</p> <p>Guard operates three <span class="hlt">icebreakers</span> in the Arctic and Antarctic , and provides supplies to remote stations. These <span class="hlt">icebreakers</span> typically carry about 40...USCG also participates in the International Ice Patrol, which monitors iceberg danger in the northwest Atlantic, particularly in the area of the Grand...Banks of Newfoundland. The iceberg season is usually from February to July, but the Ice Patrol is logistically flexible and can commence operations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5045510-major-safety-provisions-nuclear-powered-ships','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5045510-major-safety-provisions-nuclear-powered-ships"><span>Major safety provisions in nuclear-powered ships</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khlopkin, N.S.; Belyaev, V.M.; Dubrovin, A.M.</p> <p>1984-12-01</p> <p>Considerable experience has been accumulated in the Soviet Union on the design, construction and operation of nuclear-powered civilian ships: the <span class="hlt">icebreakers</span> Lenin, Leonid Brezhnev and Sibir. The nuclear steam plants (NSP) used on these as the main energy source have been found to be highly reliable and safe, and it is desirable to use them in the future not only in <span class="hlt">icebreakers</span> but also in transport ships for use in ice fields. The Soviet program for building and developing nuclear-powered ships has involved careful attention to safety in ships containing NSP. The experience with the design and operation of nuclearmore » <span class="hlt">icebreakers</span> in recent years has led to the revision of safety standards for the nuclear ships and correspondingly ship NSP and international guidelines have been developed. If one meets the requirements as set forth in these documents, one has a safe basis for future Soviet nuclear-powered ships. The primary safety provisions for NSP are presented in this paper.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160002244','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160002244"><span>Crater Morphology in the Phoenix Landing Ellipse: Insights Into Net Erosion and Ice Table Depth</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Noe Dobrea, E. Z.; Stoker, C. R.; McKay, C. P.; Davila, A. F.; Krco, M.</p> <p>2015-01-01</p> <p><span class="hlt">Icebreaker</span> [1] is a Discovery class mission being developed for future flight opportunities. Under this mission concept, the <span class="hlt">Icebreaker</span> payload is carried on a stationary lander, and lands in the same landing ellipse as Phoenix. Samples are acquired from the subsurface using a drilling system that penetrates into materials which may include loose or cemented soil, icy soil, pure ice, rocks, or mixtures of these. To avoid the complexity of mating additional strings, the drill is single-string, limiting it to a total length of 1 m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS12B..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS12B..03J"><span>Scientific Discoveries in the Central Arctic Ocean Based on Seafloor Mapping Carried out to Support Article 76 Extended Continental Shelf Claims (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jakobsson, M.; Mayer, L. A.; Marcussen, C.</p> <p>2013-12-01</p> <p>Despite the last decades of diminishing sea-ice cover in the Arctic Ocean, ship operations are only possible in vast sectors of the central Arctic using the most capable polar-class <span class="hlt">icebreakers</span>. There are less than a handful of these <span class="hlt">icebreakers</span> outfitted with modern seafloor mapping equipment. This implies either fierce competition between those having an interest in using these <span class="hlt">icebreakers</span> for investigations of the shape and properties of Arctic Ocean seafloor or, preferably, collaboration. In this presentation examples will be shown of scientific discoveries based on mapping data collected during Arctic Ocean <span class="hlt">icebreaker</span> expeditions carried out for the purpose of substantiating claims for an extended continental shelf under United Nations Convention of the Law of the Sea (UNCLOS) Article 76. Scientific results will be presented from the suite of Lomonosov Ridge off Greenland (LOMROG) expeditions (2007, 2009, and 2012), shedding new light on Arctic Ocean oceanography and glacial history. The Swedish <span class="hlt">icebreaker</span> Oden was used in collaboration between Sweden and Denmark during LOMROG to map and sample portions of the central Arctic Ocean; specifically focused on the Lomonosov Ridge north of Greenland. While the main objective of the Danish participation was seafloor and sub-seabed mapping to substantiate their Article 76 claim, LOMROG also included several scientific components, with scientists from both countries involved. Other examples to be presented are based on data collected using US Coast Guard Cutter Healy, which for several years has carried out mapping in the western Arctic Ocean for the US continental shelf program. All bathymetric data collected with Oden and Healy have been contributed to the International Bathymetric Chart of the Arctic Ocean (IBCAO). This is also the case for bathymetric data collected by Canadian Coast Guard Ship Louis S. St-Laurent for Canada's extended continental shelf claim. Together, the bathymetric data collected during these</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.congress.gov/bill/111th-congress/house-bill/1747?q=%7B%22search%22%3A%5B%22coal%22%5D%7D&r=59','CONGRESS-111'); return false;" href="https://www.congress.gov/bill/111th-congress/house-bill/1747?q=%7B%22search%22%3A%5B%22coal%22%5D%7D&r=59"><span>Great Lakes <span class="hlt">Icebreaker</span> Replacement Act</span></a></p> <p><a target="_blank" href="http://thomas.loc.gov/home/LegislativeData.php?&n=BSS&c=111">THOMAS, 111th Congress</a></p> <p>Rep. Oberstar, James L. [D-MN-8</p> <p>2009-03-26</p> <p>House - 10/23/2009 Provisions of measure incorporated in to Title IV of H.R. 3619. (All Actions) Notes: For further action, see H.R.3619, which became Public Law 111-281 on 10/15/2010. Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.congress.gov/bill/111th-congress/senate-bill/1024?q=%7B%22search%22%3A%5B%22coal%22%5D%7D&r=66','CONGRESS-111'); return false;" href="https://www.congress.gov/bill/111th-congress/senate-bill/1024?q=%7B%22search%22%3A%5B%22coal%22%5D%7D&r=66"><span>Great Lakes <span class="hlt">Icebreaker</span> Replacement Act</span></a></p> <p><a target="_blank" href="http://thomas.loc.gov/home/LegislativeData.php?&n=BSS&c=111">THOMAS, 111th Congress</a></p> <p>Sen. Levin, Carl [D-MI</p> <p>2009-05-12</p> <p>Senate - 05/12/2009 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Notes: For further action, see H.R.3619, which became Public Law 111-281 on 10/15/2010. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C13E0664H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C13E0664H"><span>FRAM-2012: Norwegians return to the High Arctic with a Hovercraft for Marine Geophysical Research</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, J. K.; Kristoffersen, Y.; Brekke, H.; Hope, G.</p> <p>2012-12-01</p> <p>After four years of testing methods, craft reliability, and innovative equipment, the R/H SABVABAA has embarked on its first FRAM-201x expedition to the highest Arctic. Named after the Inupiaq word for 'flows swiftly over it', the 12m by 6m hovercraft has been home-based in Longyearbyen, Svalbard since June 2008. In this, its fifth summer of work on the ice pack north of 81N, the craft is supported by the Norwegian Petroleum Directorate (NPD) via the Nansen Environmental and Remote Sensing Center (NERSC) in Bergen, and the Norwegian Scientific Academy for Polar Research. FRAM-2012 represents renewed Norwegian interest in returning to the highest Arctic some 116 years after the 1893-96 drift of Fridtjof Nansen's ship FRAM, the first serious scientific investigation of the Arctic. When replenished by air or <span class="hlt">icebreaker</span>, the hovercraft Sabvabaa offers a hospitable scientific platform with crew of two, capable of marine geophysical, geological and oceanographic observations over long periods with relative mobility on the ice pack. FRAM-2012 is the first step towards this goal, accompanying the Swedish <span class="hlt">icebreaker</span> ODEN to the Lomonosov Ridge, north of Greenland, as part of the LOMROG III expedition. The science plan called for an initial drive from the ice edge to Gakkel Ridge at 85N where micro-earthquakes would be monitored, and then to continue north to a geological sampling area on the Lomonosov Ridge at about 88N, 65W. The micro-earthquake monitoring is part of Gaute Hope's MSc thesis and entails five hydrophones in a WiFi-connected hydrophone array deployed over the Gakkel Rift Valley, drifting with the ice at up to 0.4 knots. On August 3 the hovercraft was refueled from <span class="hlt">icebreaker</span> ODEN at 84-21'N and both vessels proceeded north. The progress of the hovercraft was hampered by insufficient visibility for safe driving and time consuming maneuvering in and around larger fields of rubble ice impassable by the hovercraft, but of little concern to the <span class="hlt">icebreaker</span>. It</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA285943','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA285943"><span>Northern Sea Route and <span class="hlt">Icebreaking</span> Technology</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-06-01</p> <p>waterlines at the extreme forward end, extended beam, a low stem angle with an ice-clearing forefoot , and a high flare angle below the water- line. The ice...world. Reports of protests and labor strikes , stemming from poor wages sectors of the economy. The Gross and living conditions, are common. With</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPA23A1752L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPA23A1752L"><span>Breaking the Ice: Strategies for Future European Research in the Polar Oceans - The AURORA BOREALIS Concept</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lembke-Jene, L.; Biebow, N.; Wolff-Boenisch, B.; Thiede, J.; European Research Icebreaker Consortium</p> <p>2011-12-01</p> <p>Research vessels dedicated to work in polar ice-covered waters have only rarely been built. Their history began with Fritjof Nansen's FRAM, which he used for his famous first crossing of the Arctic Ocean 1893-1896. She served as example for the first generation of polar research vessels, at their time being modern instruments planned with foresight. Ice breaker technology has developed substantially since then. However, it took almost 80 years until this technical advance also reached polar research, when the Russian AKADEMIK FEDEROV, the German POLARSTERN, the Swedish ODEN and the USCG Cutter HEALY were built. All of these house modern laboratories, are <span class="hlt">ice-breakers</span> capable to move into the deep-Arctic during the summer time and represent the second generation of dedicated polar research vessels. Still, the increasing demand in polar marine research capacities by societies that call for action to better understand climate change, especially in the high latitudes is not matched by adequate facilities and resources. Today, no <span class="hlt">icebreaker</span> platform exists that is permanently available to the international science community for year-round expeditions into the central Arctic Ocean or heavily ice-infested waters of the polar Southern Ocean around Antarctica. The AURORA BOREALIS concept plans for a heavy research <span class="hlt">icebreaker</span>, which will enable polar scientists around the world to launch international research expeditions into the central Arctic Ocean and the Antarctic continental shelf seas autonomously during all seasons of the year. The European Research <span class="hlt">Icebreaker</span> Consortium - AURORA BOREALIS (ERICON-AB) was established in 2008 to plan the scientific, governance, financial, and legal frameworks needed for the construction and operation of this first multi-nationally owned and operated research <span class="hlt">icebreaker</span> and polar scientific drilling platform. By collaborating together and sharing common infrastructures it is envisioned that European nations make a major contribution to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70180860','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70180860"><span>Polar bear aerial survey in the eastern Chukchi Sea: A pilot study</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Evans, Thomas J.; Fischbach, Anthony S.; Schliebe, Scott L.; Manly, Bryan; Kalxdorff, Susanne B.; York, Geoff S.</p> <p>2003-01-01</p> <p>Alaska has two polar bear populations: the Southern Beaufort Sea population, shared with Canada, and the Chukchi/Bering Seas population, shared with Russia. Currently a reliable population estimate for the Chukchi/Bering Seas population does not exist. Land-based aerial and mark-recapture population surveys may not be possible in the Chukchi Sea because variable ice conditions, the limited range of helicopters, extremely large polar bear home ranges, and severe weather conditions may limit access to remote areas. Thus line-transect aerial surveys from <span class="hlt">icebreakers</span> may be the best available tool to monitor this polar bear stock. In August 2000, a line-transect survey was conducted in the eastern Chukchi Sea and western Beaufort Sea from helicopters based on a U.S. Coast Guard <span class="hlt">icebreaker</span> under the "Ship of Opportunity" program. The objectives of this pilot study were to estimate polar bear density in the eastern Chukchi and western Beaufort Seas and to assess the logistical feasibility of using ship-based aerial surveys to develop polar bear population estimates. Twenty-nine polar bears in 25 groups were sighted on 94 transects (8257 km). The density of bears was estimated as 1 bear per 147 km² (CV = 38%). Additional aerial surveys in late fall, using dedicated <span class="hlt">icebreakers</span>, would be required to achieve the number of sightings, survey effort, coverage, and precision needed for more effective monitoring of population trends in the Chukchi Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=operation+AND+management&id=EJ1106758','ERIC'); return false;" href="https://eric.ed.gov/?q=operation+AND+management&id=EJ1106758"><span>Operations Course <span class="hlt">Icebreaker</span>: Campus Club Cupcakes Exercise</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Snider, Brent; Southin, Nancy</p> <p>2016-01-01</p> <p>Campus Club Cupcakes is an in-class "introduction to operations management" experiential learning exercise which can be used within minutes of starting the course. After reading the one-page mini case, students are encouraged to meet each other and collaborate to determine if making and selling cupcakes to fellow business students would…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T43F..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T43F..02C"><span>Gridded Data in the Arctic; Benefits and Perils of Publicly Available Grids</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coakley, B.; Forsberg, R.; Gabbert, R.; Beale, J.; Kenyon, S. C.</p> <p>2015-12-01</p> <p>Our understanding of the Arctic Ocean has been hugely advanced by release of gridded bathymetry and potential field anomaly grids. The Arctic Gravity Project grid achieves excellent, near-isotropic coverage of the earth north of 64˚N by combining land, satellite, airborne, submarine, surface ship and ice set-out measurements of gravity anomalies. Since the release of the V 2.0 grid in 2008, there has been extensive <span class="hlt">icebreaker</span> activity across the Amerasia Basin due to mapping of the Arctic coastal nation's Extended Continental Shelves (ECS). While grid resolution has been steadily improving over time, addition of higher resolution and better navigated data highlights some distortions in the grid that may influence interpretation. In addition to the new ECS data sets, gravity anomaly data has been collected from other vessels; notably the Korean <span class="hlt">Icebreaker</span> Araon, the Japanese <span class="hlt">icebreaker</span> Mirai and the German <span class="hlt">icebreaker</span> Polarstern. Also the GRAV-D project of the US National Geodetic Survey has flown airborne surveys over much of Alaska. These data will be Included in the new AGP grid, which will result in a much improved product when version 3.0 is released in 2015. To make use of these measurements, it is necessary to compile them into a continuous spatial representation. Compilation is complicated by differences in survey parameters, gravimeter sensitivity and reduction methods. Cross-over errors are the classic means to assess repeatability of track measurements. Prior to the introduction of near-universal GPS positioning, positional uncertainty was evaluated by cross-over analysis. GPS positions can be treated as more or less true, enabling evaluation of differences due to contrasting sensitivity, reference and reduction techniques. For the most part, cross-over errors for racks of gravity anomaly data collected since 2008 are less than 0.5 mGals, supporting the compilation of these data with only slight adjustments. Given the different platforms used for various</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=lemons&pg=6&id=EJ454243','ERIC'); return false;" href="https://eric.ed.gov/?q=lemons&pg=6&id=EJ454243"><span>What Works for Me.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>McFarland, Ron; And Others</p> <p>1992-01-01</p> <p>Presents six teaching suggestions from classroom teachers regarding creative scenarios with literary figures, lemons in the classroom (to aid descriptive writing), conferences using a computer, organizational patterns in writing, an epistolary <span class="hlt">icebreaker</span> in composition, and using five-minute writings as review. (SR)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6571187','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6571187"><span>Review of technology for Arctic offshore oil and gas recovery</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sackinger, W. M.</p> <p>1980-08-01</p> <p>The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleummore » production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by <span class="hlt">ice-breaking</span> vessels in some cases; (4) during production, <span class="hlt">icebreaking</span> workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by <span class="hlt">icebreaking</span> tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=testing+AND+welding&pg=3&id=ED331322','ERIC'); return false;" href="https://eric.ed.gov/?q=testing+AND+welding&pg=3&id=ED331322"><span>Occupation-Specific VESL Teaching Techniques. A VESL Staff Development Training Resource Packet.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>West, Linda; Wilkinson, Betty</p> <p></p> <p>Materials for a workshop on teaching vocational English as a Second Language (VESL) are gathered. An annotated outline presents the content and sequence of the workshop, including an <span class="hlt">icebreaker</span> activity, general techniques for teaching occupation-specific vocabulary, sample lesson plans and accompanying instructional materials for teaching…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=hey&pg=2&id=EJ477787','ERIC'); return false;" href="https://eric.ed.gov/?q=hey&pg=2&id=EJ477787"><span>Tips from the Classroom.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>TESOL Journal, 1993</p> <p>1993-01-01</p> <p>Seven articles on classroom <span class="hlt">icebreakers</span> are compiled: "Picture Stories and Other Opportunities" (Joy Egbert, Deborah Hanley, Rosemary Delaney); "Hey, What's Your Name" (Janet Leamy); "Surprise!" (Lynne Burgess); "Memory Game" (Sally Winn); "Picturesque" (Margaret Beiter); "The Name Game" (Jeanne-Marie Garcia); "Exercise the Body--And the Mind…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=sex+AND+kids&pg=4&id=EJ475145','ERIC'); return false;" href="https://eric.ed.gov/?q=sex+AND+kids&pg=4&id=EJ475145"><span>Talking to Your Kids about Sex: Tips for Tongue-Tied Parents.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>PTA Today, 1993</p> <p>1993-01-01</p> <p>Tips to help parents discuss sex with their children include starting early, providing enough information, planning what to say, listening to the children, finding opportunities to discuss sexual roles and attitudes, discussing family values, nurturing self-esteem, avoiding lectures, using written materials as <span class="hlt">ice-breakers</span>, and starting a family…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=karaoke&id=EJ972978','ERIC'); return false;" href="https://eric.ed.gov/?q=karaoke&id=EJ972978"><span>Classroom Karaoke: A Social and Academic Transition Strategy to Enhance the First-Year Experience of Youth Studies Students</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Baker, Sarah</p> <p>2012-01-01</p> <p>An innovative <span class="hlt">icebreaker</span> initiative--"classroom karaoke"--was deployed at the beginning of a first-year undergraduate course in youth studies at an Australian university. The study used karaoke as a social and academic transition strategy to enhance students' first-year experience at university. Students responded positively to this…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=human+AND+communication&pg=5&id=ED545847','ERIC'); return false;" href="https://eric.ed.gov/?q=human+AND+communication&pg=5&id=ED545847"><span>Transforming Physical Educators through Adventure-Based Learning</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ressler, James Donald</p> <p>2012-01-01</p> <p>Adventure-based Learning (ABL) is the purposeful use of activities in sequence to improve personal and social development of participants (Cosgriff, 2000). ABL goes beyond instant activities (i.e. <span class="hlt">ice-breakers</span>, cooperative games) to create an environment in which students enjoy the challenge while developing emotional and social competencies…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Welding+AND+assessment&pg=3&id=ED331321','ERIC'); return false;" href="https://eric.ed.gov/?q=Welding+AND+assessment&pg=3&id=ED331321"><span>Occupation-Specific VESL Needs Assessment. A VESL Staff Development Training Resource Packet.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>West, Linda; Wilkinson, Betty</p> <p></p> <p>Materials for a teacher workshop on assessing student needs for vocational English as a Second Language (VESL) are gathered. An annotated workshop outline presents the content and sequence of the workshop. Masters are provided for handouts and transparencies, which include an <span class="hlt">icebreaker</span> activity, the workshop agenda, materials from the "Dictionary…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=care&pg=6&id=EJ1123548','ERIC'); return false;" href="https://eric.ed.gov/?q=care&pg=6&id=EJ1123548"><span>Cracker Jacks: "Finding the Prize" inside Each Adolescent Learner</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ellerbrock, Cheryl; DiCicco, Michael; Denmon, Jennifer M.; Parke, Erin; Mead, Sarah</p> <p>2017-01-01</p> <p>The purpose of this manuscript is to highlight several practical classroom examples of asset-driven acts of reciprocal care and content-driven community builders and <span class="hlt">icebreakers</span> that highlight ways to "find the prize" inside each student by fostering an adolescent-centered community of care that is committed to both relationships and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA562030','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA562030"><span>Great Lakes Demonstration 2</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-06-01</p> <p>A-8 Figure A-12. Laser fluorometer...District Response Advisory Team DRMM Dynamic Risk Management Model EPA Environmental Protection Agency FL Laser fluorometer FOSC Federal On-Scene...this tactic. During this evolution the Hollyhock experimented applying its <span class="hlt">ice-breaking</span> capabilities to cut channels and pockets into the ice for oil</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=ice&pg=4&id=EJ1086972','ERIC'); return false;" href="https://eric.ed.gov/?q=ice&pg=4&id=EJ1086972"><span>A Future Star: Challenging Stereotypes of Diversity</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hernandez, Paul; Loebickin, Karla</p> <p>2015-01-01</p> <p><span class="hlt">Ice-breaking</span> discussions around race and personal perspectives can be challenging in any classroom, they also are crucial to cultivating racial consciousness among those espousing that they know better. This provides the groundwork needed to implement--in a non-threatening manner--the creative, alternative methods that will combine students'…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title27-vol3/pdf/CFR-2014-title27-vol3-sec447-21.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title27-vol3/pdf/CFR-2014-title27-vol3-sec447-21.pdf"><span>27 CFR 447.21 - The U.S. Munitions Import List.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>...) Tankers (YO, YOG, YW) (3) Lighters (YC, YCF, YCV, YF, YFN, YFNB, YFNX, YFR, YFRN, YFU, YG, YGN, YOGN, YON, YOS, YSR, YWN) (4) Floating Dry Docks (AFDB, AFDL, AFDM, ARD, ARDM, YFD) (5) Miscellaneous (APL, DSRV..., WHEC, WMEC) (2) Patrol Craft (WPB) (3) <span class="hlt">Icebreakers</span> (WAGB) (4) Oceanography Vessels (WAGO) (5) Special...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA132510','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA132510"><span>Submarine Rescue. Mooring and Salvage Ships of the Soviet Navy,</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1983-07-13</p> <p>motion after they strike the surface of the water, because of which they are carried away from the ship and can no longer endanger the ship. Only four of...they have a characteristic <span class="hlt">icebreaker</span> bow, while the others have a protruding bulb at the forefoot . Above the waterline - aside from the completely</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C13E0658F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C13E0658F"><span>Under-Ice Operations with AUVS in High Latitudes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferguson, J.; Kaminski, C. D.</p> <p>2012-12-01</p> <p>In 2010 and 2011, ISE Explorer Autonomous Underwater Vehicles (AUV), built for Natural Resources Canada (NRCan), were deployed to Canada's high Arctic. The mission was to undertake under-ice bathymetric surveys supporting Canada's submission under the United Nations Convention on the Law of the Sea (UNCLOS). During these deployments several under-ice records were broken and several new technologies were demonstrated. The NRCan AUV is a 5000 meter depth rated vehicle, with several innovative additions to make it suitable for arctic survey work. Most notable are a depth rated variable ballast system, a 1300 Hz long-range homing system, and under-ice charging and data transfer capabilities. The Explorer's range was extended to approximately 450 km by adding a hull section to accommodate extra batteries. The scientific payload onboard included a Seabird SBE49 Conductivity-Temperature-Depth (CTD) sensor, Knudsen singlebeam echosounder, and a Kongsberg Simrad EM2000 multibeam echosounder. In 2010, operations were conducted from an ice camp near Borden Island (78°14'N, 112°39'W) operating through an ice hole. Following several test missions, the AUV spent 10 days surveying under ice before being successfully recovered. In total, close to 1100 km of under-ice survey was undertaken at depths to 3160 meters. A further set of operations was carried out in August and September 2011 from the Canadian <span class="hlt">Icebreaker</span> CCGS Louis St. Laurent operating with the American <span class="hlt">Icebreaker</span> USCGS Healy. Here the operations were much further north to latitudes of 88°30' N and to depths of 3500 meters. In this paper, the 2010 ice camp and the 2011 <span class="hlt">icebreaker</span> missions are described, with an outline of technology developments that were undertaken, the preparations that were necessary for the success of the missions and finally, the outcome of the missions themselves.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title27-vol3/pdf/CFR-2013-title27-vol3-sec447-21.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title27-vol3/pdf/CFR-2013-title27-vol3-sec447-21.pdf"><span>27 CFR 447.21 - The U.S. Munitions Import List.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>...) Support and Service Craft: (1) Tugs (YTB, YTL, YTM) (2) Tankers (YO, YOG, YW) (3) Lighters (YC, YCF, YCV, YF, YFN, YFNB, YFNX, YFR, YFRN, YFU, YG, YGN, YOGN, YON, YOS, YSR, YWN) (4) Floating Dry Docks (AFDB...) <span class="hlt">Icebreakers</span> (WAGB) (4) Oceanography Vessels (WAGO) (5) Special Vessels (WIX) (6) Buoy Tenders (WLB, WLM, WLI...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhyEd..38..273.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhyEd..38..273."><span>News</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2003-07-01</p> <p>Meetings: Physics Teachers@CERN 2003 Education Group Annual Conference: Observations by a first-time participant... Summer Workshop: Making Music Competition: Physics in the fast lane Bristol Festival of Physics: Ice cream <span class="hlt">ice-breakers</span> Online Resources: Old favourites go online UK Curriculum: What does society want? UK Curriculum: Assessment of Science Learning 14-19 Forthcoming Events</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA121528','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA121528"><span>Test and Evaluation of CGC POLAR STAR WAGB 10. Volume III. Background.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1978-09-01</p> <p>through Solid Ice," Problems of the Arctic and Antartic No. 5. Smith, N., (1969), "Determining the Dynamic Properties of Snow and Ice by Forced Valuation...Experiments," Thesis, Arctic and Antartic Institute, Leningrad. Voelker, R.P., and Koch, E., (1968), "The Design of a Ship’s Control Space in Polar <span class="hlt">Icebreakers</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=author+AND+name&pg=4&id=EJ1153817','ERIC'); return false;" href="https://eric.ed.gov/?q=author+AND+name&pg=4&id=EJ1153817"><span>Clock Buddies: An Accessible, Engaging Problem-Solving Activity with Rich Mathematical Content</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Borkovitz, Debra K.; Haferd, Thomas</p> <p>2017-01-01</p> <p>Clock Buddies is our favorite first-day-of-class activity. It starts as a nonthreatening <span class="hlt">icebreaker</span> activity that helps students learn one another's names, but it soon asks students to find their own strategies for solving a real-world scheduling problem. Even highly math phobic students work with others and succeed. Students gain insight from…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title47-vol5/pdf/CFR-2010-title47-vol5-sec80-379.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title47-vol5/pdf/CFR-2010-title47-vol5-sec80-379.pdf"><span>47 CFR 80.379 - Maritime frequencies assignable to aircraft stations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>....300 MHz (5) 156.375 MHz (5) 156.400 MHz (5) 156.425 MHz (5) 156.450 MHz (5) 156.625 MHz (5) 156.800... aircraft stations does not exceed 300 meters (1,000 feet), except for reconnaissance aircraft participating in <span class="hlt">icebreaking</span> operations where an altitude of 450 meters (1,500 feet) is allowed; (ii) The mean...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED314377.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED314377.pdf"><span>Dynamics of Effective Study. Bulletin 1825.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Louisiana State Dept. of Education, Baton Rouge.</p> <p></p> <p>This study skills curriculum addresses the problem of a lack of study skills demonstrated by students in grades 7-10. It focuses on 11 essential knowledge acquisition skills: (1) motivation and <span class="hlt">ice-breakers</span>; (2) outlining and mapping; (3) time management; (4) PQ5R (Preview, Question, Read, Record, Recite, Review, and Reflect); (5) notetaking; (6)…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4632513','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4632513"><span>The <span class="hlt">ice-breaker</span> effect: singing mediates fast social bonding</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pearce, Eiluned; Launay, Jacques; Dunbar, Robin I. M.</p> <p>2015-01-01</p> <p>It has been proposed that singing evolved to facilitate social cohesion. However, it remains unclear whether bonding arises out of properties intrinsic to singing or whether any social engagement can have a similar effect. Furthermore, previous research has used one-off singing sessions without exploring the emergence of social bonding over time. In this semi-naturalistic study, we followed newly formed singing and non-singing (crafts or creative writing) adult education classes over seven months. Participants rated their closeness to their group and their affect, and were given a proxy measure of endorphin release, before and after their class, at three timepoints (months 1, 3 and 7). We show that although singers and non-singers felt equally connected by timepoint 3, singers experienced much faster bonding: singers demonstrated a significantly greater increase in closeness at timepoint 1, but the more gradual increase shown by non-singers caught up over time. This represents the first evidence for an ‘ice-breaker effect’ of singing in promoting fast cohesion between unfamiliar individuals, which bypasses the need for personal knowledge of group members gained through prolonged interaction. We argue that singing may have evolved to quickly bond large human groups of relative strangers, potentially through encouraging willingness to coordinate by enhancing positive affect. PMID:26587241</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996EOSTr..77R.242C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996EOSTr..77R.242C"><span>Friends in need</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlowicz, Michael</p> <p></p> <p>With supplies of food and fuel set to run out within days, scientists at the Russian Antarctic station at Mirny received some welcome relief on June 13. The National Science Foundation's <span class="hlt">icebreaking</span> vessel, Nathaniel B. Palmer, delivered four tons of emergency food supplies to the 38 researchers wintering over at the station, which has not seen a supply ship in nearly a year.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA401625','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA401625"><span>Satellite Communications for Coast Guard Homeland Defense</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2002-03-01</p> <p>WAN Wide Area Network WHEC High Endurance Cutter WIX Training Cutter WLB Seagoing Buoy Tenders WLI Inland Buoy Tenders WLIC...WMEC), <span class="hlt">Icebreakers</span> (WAGB), and the Training Cutter ( WIX ) 9 MILSATCOM (UHF) Secure Voice, Record Message Traffic, Tactical data (OTIXICS...onboard CG vessels. [Ref. 3, p.19] By supporting different platforms throughout the CG fleet, we increase the complexity of the network, and thus</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6650429','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6650429"><span>Review of technology for Arctic offshore oil and gas recovery. Appendices</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sackinger, W. M.</p> <p>1980-06-06</p> <p>This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, <span class="hlt">icebreakers</span>, Arctic seafloor conditions, ice-structures, frost heave and structure icing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA584023','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA584023"><span>Implementation of U.S. Policy in the Arctic</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-05-23</p> <p>additional <span class="hlt">icebreakers</span> in order to conduct more research, project power and assert sovereignty, gain Arctic domain awareness, ensure safety of Arctic...most of the year create obstructions or exceptional hazards to navigation, and pollution of the marine environment could cause major harm to or...oversight of safety and security of 36 Arctic Council, The Ilulissat Declaration (Ilulissat, Greenland, 2008), 1. 37 US cases will be discussed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA564217','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA564217"><span>Technical Report on DOMICE Simulation Model</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-04-01</p> <p>Branch GPS Global Positioning System HHO home heating oil LCA Lake Carriers’ Association MAR USCG Domestic <span class="hlt">Icebreaking</span> Mission Analysis...cargo types considered in the module. The module groups the four types of cargo into two broader categories, namely, Home Heating Oil ( HHO ) shipments...or Non- HHO shipments. Table 11. Cargo types. Types of Cargo Cargo Group Dry Bulk Non- HHO Liquid Bulk Perishable / Food Home Heating Oil HHO</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA526839','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA526839"><span>Calibration of Hydrophone Stations: Lessons Learned from the Ascension Island Experiment</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-09-01</p> <p>source based on the implosion of a glass sphere for future long-range calibrations. RESEARCH ACCOMPLISHED The J.C. Ross, an <span class="hlt">icebreaker</span> class...waters around Ascension Island. The blow - ups show the track in the immediate vicinity of the three hydrophones and plots their nominal location. The...used has practical and cost-driven limitations. Small implosive sources such as lightbulbs have been used from ships as hydrophone calibration sources</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA510373','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA510373"><span>Coast Guard Deepwater Acquisition Programs: Background, Oversight Issues, and Options for Congress</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-10-23</p> <p>NUMBER 5e . TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Congressional Research Service,The Library of...role to Integrated Coast Guard Systems (ICGS)—an industry team led by Lockheed Martin and Northrop Grumman Ship Systems ( NGSS ). ICGS was awarded an...<span class="hlt">icebreaker</span> sustainment is not a Deepwater program but is displayed to align with the FY2009 Consolidated Security, Disaster Assistance, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA115525','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA115525"><span>European Scientific Notes. Volume 36, Number 4,</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-04-30</p> <p>and building an <span class="hlt">icebreaking</span> research and resupply ship (1982). R.W. Booker 79 ESN 36-4 (1982) Powder Compaction: Fundamentals and MATERIAL Recent...Developments SCIENCES The 18th John Player Lecture, Powder Compaction: Fundamentals and Recent Developments by Prof. II.F. Fischmeister, Max-Planck...directions) power consumption. The design that operates was used to position the cladded input and at the highest speed uses a depletion-mode output</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9299E..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9299E..03J"><span>Development of sea ice monitoring with aerial remote sensing technology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei</p> <p>2014-11-01</p> <p>In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, <span class="hlt">icebreaker</span> monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The <span class="hlt">icebreaker</span> monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013812','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013812"><span>Coast Guard Polar <span class="hlt">Icebreaker</span> Modernization: Background and Issues for Congress</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-05-27</p> <p>stating that Polar Star and Polar Sea “were built to take a beating. They were built with very thick special steel , so you might be able to do a...renovation on them and keep going…. I think there are certain types of steel that, if properly maintained, they can go on for an awful long time. What the...the service develop an acquisition strategy, it says. 52 Valerie Insinna, “Coast Guard to Finalize</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA621103','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA621103"><span>Coast Guard Polar <span class="hlt">Icebreaker</span> Modernization: Background and Issues for Congress</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-02</p> <p>China 1 (+0 +1) 1 Japan 1 1 Australia 1 1 Chile 1 1 Latvia 1 1 South Korea 1 1 South Africa 1 1 Argentina...Than Requested for FY 2013,” HSToday.us, May 10, 2012, accessed May 31, 2012, at http://www.hstoday.us/focused-topics/customs- immigration /single</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA057410','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA057410"><span>Projected Commercial Maritime Activity in the Western Arctic</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1977-10-01</p> <p>for Polar <span class="hlt">Icebreaking</span> 1967. Coast GuarC, U.S., Office of Engineering, Life Cycle Costs of Diesel Electric Propulsion Plants for a 20,000 SHP Polar...Dynamics, Electric Boat Division, Program Plan for Arctic Offshore Drilling System. 1970. Geological Survey, U.S., Mineral and Water Resources of Alaska...Port and Ocean EngineerLng under Arctic Conditions, Vol. I, Trondheim, Norway: Terhnical Institute of ’Norway, Page 37 Weeks, W. F. and Frankenstein</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA501197','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA501197"><span>Coast Guard Deepwater Acquisition Programs: Background, Oversight Issues, and Options for Congress</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-05-29</p> <p>NUMBER 5e . TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Congressional Research Service,Library of Congress,101...Guard awarded the role to Integrated Coast Guard Systems (ICGS)—an industry team led by Lockheed Martin and Northrop Grumman Ship Systems ( NGSS ...states that “Polar <span class="hlt">icebreaker</span> sustainment is not a Deepwater program but is displayed to align with the FY2009 Consolidated Security, Disaster</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1042094','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1042094"><span>Can We Just Get Along Already Canadian Arctic Sovereignty is American Security</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-06-01</p> <p>and assesses new security problems such as organized crime, environmental threats, drugs and human smuggling.26 This, in turn, leads to an even... News | News and Insight | Lloyd’s Register,” accessed March 23, 2017, http://www.lr.org/en/ news -and-insight/ news /lr-to- class -versatile-<span class="hlt">icebreaker</span>...Canada, the Arctic, and NORAD: Status Quo or New Ball Game ?,” International Journal 70, no. 2 (2015): 215–231. 29 Brian Flemming, “Canada-U.S</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA266369','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA266369"><span>The U.S. Coast Guard’s National Security Role in the Twenty First Century</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-09-01</p> <p>SUPPORT AT MAJOR OIL SPILL. O ANTARCTICA: <span class="hlt">ICEBREAKER</span> ENROUTE. PUGET SOUND : STRIKE TEAM ON SCENE OF Q IDWAY: CUTTER CONDUCTS ASW EXERCISE CHOUNDED TANKER...respondents indicate that the Coast Guard’s future national security role will continue to reside in its current area of expertise. As one respondent...above about it being time to break rice bowls? The explanation that, "The Coast Guard is not in DoD" sounds more like an excuse. It is difficult not to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA543831','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA543831"><span>Coast Guard Polar <span class="hlt">Icebreaker</span> Modernization: Background, Issues, and Options for Congress</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-04-14</p> <p>entirely in some other part of the federal budget, such as the Department of Defense (DOD) budget, the National Science Foundation (NSF) budget, or...4 One National Science Foundation Ship............................................................................5 Summary...Alaska. Operations to support National Science Foundation (NSF) research activities in the Arctic and Antarctic has accounted in the past for a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA204754','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA204754"><span>Fire Safety Analysis of the Polar <span class="hlt">Icebreaker</span> Replacement Design. Volume 2</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-10-01</p> <p>report. ; iote : At t tne -3f incident only five or sx men were aboard: therefore, they could not atterrot to attack a fire of this intensmtp t hemse I...fire extinguisher (PKP) AUTOMATIC: A1301 Halon 1301 total flooding system - remotely actuated AF AFFF (3%) sprinkler system - remotely actuated AFM...simulate wind effects, we have found that its judicious use along with the vent and shaft routines allows for the modelling of simple HVAC systems</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160011350','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160011350"><span>Determining the Water Ice Content of Martian Regolith by Nonlinear Spectral Mixture Modeling</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gyalay, S.; Noe Dobrea, E. Z.</p> <p>2015-01-01</p> <p>In the search for evidence of life, <span class="hlt">Icebreaker</span> will drill in to the Martian ice-rich regolith to collect samples, which will then be analyzed by an array of instruments designed to identify biomarkers. In addition, drilling into the subsurface will provide the opportunity to assess the vertical distribution of ice to a depth of 1 meter. The purpose of this particular project was to understand the uncertainties involved in the use of the imaging system to constrain the water ice content in regolith samples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790015142','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790015142"><span>VHF downline communication system for SLAR data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schertler, R. J.; Chase, T. L.; Mueller, R. A.; Kramarchuk, I.; Jirberg, R. J.; Gedney, R. T.</p> <p>1979-01-01</p> <p>A real time VHF downlink communication system is described for transmitting side-looking airborne radar (SLAR) data directly from an aircraft to a portable ground/shipboard receiving station. Use of this receiving station aboard the U.S. Coast Guard <span class="hlt">icebreaker</span> Mackinaw for generating real-time photographic quality radar images is discussed. The system was developed and demonstrated in conjunction with the U.S Coast Guard and NOAA National Weather Service as part of the Project Icewarn all weather ice information system for the Great Lakes Winter Navigation Program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...87h2026K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...87h2026K"><span>Application of Computer Simulation to Identify Erosion Resistance of Materials of Wet-steam Turbine Blades</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korostelyov, D. A.; Dergachyov, K. V.</p> <p>2017-10-01</p> <p>A problem of identifying the efficiency of using materials, coatings, linings and solderings of wet-steam turbine rotor blades by means of computer simulation is considered. Numerical experiments to define erosion resistance of materials of wet-steam turbine blades are described. Kinetic curves for erosion area and weight of the worn rotor blade material of turbines K-300-240 LMP and atomic <span class="hlt">icebreaker</span> “Lenin” have been defined. The conclusion about the effectiveness of using different erosion-resistant materials and protection configuration of rotor blades is also made.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Ice+AND+review&pg=4&id=EJ509756','ERIC'); return false;" href="https://eric.ed.gov/?q=Ice+AND+review&pg=4&id=EJ509756"><span>How's the Weather?: <span class="hlt">Ice-Breaking</span> and Fog-Lifting in Your Written Messages.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Vassallo, Philip</p> <p>1994-01-01</p> <p>Describes two ways to combat "bad tone" and "unclear thinking" in writing. Describes "breaking the ice" as being aware of a written message's appearance--the message's readability. Explains that "fog-lifting" is accomplished by writing clearly, and by paying particular attention to the verb "to…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.T11B0860K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.T11B0860K"><span>Lomonosov Ridge, Arctic Ocean: New MCS Data for the Definition of Targets for Scientific Drilling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kristoffersen, Y.; Coakley, B.; Hall, J. K.</p> <p>2001-12-01</p> <p>The 1500 km long and 50-150 km wide Lomonosov Ridge rises more than 3000 m above the adjacent abyssal plains, separating the Mesozoic-aged Amerasian basin from the Cenozoic-Recent Eurasian basin. Multichannel seismic reflection data collected from <span class="hlt">icebreakers</span> on four cruises together with swath bathymetry and high resolution chirp sonar data collected by nuclear submarines across the central ridge show a cap of hemipelagic drape (c. 450 m thick) on top of normal faulted and peneplained sedimentary sequences, the remnants of the Mesozoic Barents margin, which pre-dates the opening of the Eurasian Basin. A new multichannel seismic survey to augment the site survey data base for ODP proposal 533 was carried out on the Lomonosov Ridge under difficult ice conditions in late July 2001 from the Swedish <span class="hlt">icebreaker</span> Oden. The primary objectives of ODP Proposal 533 are to obtain continuous paleoceanographic records for most of the Cenozoic from the hemipelagic sequence and to sample the underlying passive margin sequence below the regional unconformity, which would provide the first direct constraints on the early tectonic history of the ridge. Of particular interest is the extent of mass wasting along the ridge perimeter. This regional unconformity offers an opportunity for implementing a strategy of offset shallow drill holes to obtain a complete hemi-pelagic section as well as to penetrate the regional unconformity. The new data, which will, in conjunction with the existing MCS data base, provide the first 3-D control on the passive margin structures and overlying unconformity, will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhyW...21i..10K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhyW...21i..10K"><span>Monitoring the melting of the Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalaugher, Liz</p> <p>2008-09-01</p> <p>Standing on the deck of the <span class="hlt">icebreaker</span> Amundsen in the Arctic Ocean, I am bathed in blazing June sunshine. The weather has been like this all week since I joined the ship - a research vessel that set sail from Quebec in Canada last summer - as a visiting science journalist. It would be tempting to think that such conditions are typical, but most areas of the Arctic are in fact cloudy for 80% of the time in the spring and summer due to moisture in the air from melting ice and from exposed areas of the ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000206','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000206"><span>Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Karcz, John S.; Davis, Sanford S.; Allen, Gary A.; Glass, Brian J.; Gonzales, Andrew; Heldmann, Jennifer Lynne; Lemke, Lawrence G.; McKay, Chris; Stoker, Carol R.; Wooster, Paul Douglass; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140000206'); toggleEditAbsImage('author_20140000206_show'); toggleEditAbsImage('author_20140000206_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140000206_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140000206_hide"></p> <p>2013-01-01</p> <p>A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the <span class="hlt">Icebreaker</span> Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the <span class="hlt">Icebreaker</span> mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA110560','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA110560"><span>Comparative Analysis of Potential Auxiliary <span class="hlt">Icebreaking</span> Devices/Systems for Great Lakes. Volume I.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-06-01</p> <p>Archimedes Screw Vehicle Mechanical Impact Device Water Hull Lubrication Systems Low Friction Hull Coatings Stem Knives Bow Ramp A harbor tug with...direct mounting on ships but rather on bow attachments or specialized material handling concepts. Archimedes Screw Vehicle (Figure A-il) The Archimedes ...or pull ships through ice and water. The Archimedes screw works better in a soft pliable terrain than in water or on a hard material such as sheet</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA017403','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA017403"><span>The Design of a Propeller for a U.S. Coast Guard <span class="hlt">Icebreaker</span> Tugboat</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1975-10-01</p> <p>series as investigated by Van Lammeren, Van Manen , and Oosterveld . This propeller series, commonly referred to as the K’jgeningen B-screw series...RtFEKENCES Van Lammeren, W.P.A., Van Manen , J.D., and Oosterveld, M.W.C., "The Wageningen B-Screw Series," Transactions of the Society of Naval Architects...forces has been reported by Van Gunsteren and Pronk . They investigated both single and twin screw ships of various types and the results are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-201007040003HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-201007040003HQ.html"><span>ICESCAPE Mission</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-07-03</p> <p>Teams of scientists set up equipment on sea ice not far from the U.S. Coast Guard <span class="hlt">icebreaker</span> Healy in the Chukchi Sea on July 4, 2010, where they spent the day collecting data. The research is part of NASA's ICESCAPE oceanographic mission to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AAS...21811602M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AAS...21811602M"><span>Discovering Astronomy Through Poetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mannone, John C.</p> <p>2011-05-01</p> <p>The literature is replete with astronomical references. And much of that literature is poetry. Using this fact, not only can the teacher infuse a new appreciation of astronomy, but also, the student has the opportunity to rediscover history through astronomy. Poetry can be an effective <span class="hlt">icebreaker</span> in the introduction of new topics in physics and astronomy, as well as a point of conclusion to a lecture. This presentation will give examples of these things from the ancient literature (sacred Hebraic texts), classical literature (Homer's Iliad and Odyssey), traditional poetry (Longfellow, Tennyson and Poe) and modern literature (Frost, Kooser, and others, including the contemporary work of this author).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004EOSTr..85Q.160S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004EOSTr..85Q.160S"><span>Young Solid Earth Researchers of the World Unite!</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simons, Frederik J.; Becker, Thorsten W.; Kellogg, James B.; Billen, Magali; Hardebeck, Jeanne; Lee, Cin-Ty A.; Montési, Laurent G. J.; Panero, Wendy; Zhong, Shijie</p> <p>2004-04-01</p> <p>In early January 2004, one of us attended a workshop on ``science priorities and educational opportunities that can be addressed using ocean observatories.'' The attendees constituted a broad group-men and women, scientists, engineers, educators, representatives from the private and public sector-but lacked diversity in at least one important aspect: age. A well-known marine geophysicist (with a published record stretching over 30 years) came to me at the <span class="hlt">ice-breaker</span> party and said (and I paraphrase): ``I'm glad you're here: you're young, you might actually see this project flourish before you retire. There're not enough young people here.`` At some point or another, every young scientist may have a similar experience.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-201007040001HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-201007040001HQ.html"><span>ICESCAPE Mission</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-07-03</p> <p>Scientists on the sea ice in the Chukchi Sea off the north coast of Alaska disperse equipment on July 4, 2010, as they prepare to collect data on and below the ice. The research is part of NASA's ICESCAPE mission onboard the U.S. Coast Guard <span class="hlt">icebreaker</span> Healy to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-201007090001HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-201007090001HQ.html"><span>ICESCAPE Mission</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-07-08</p> <p>Scientists and Coast Guard swimmers test the integrity a melt pond on sea ice in the Chukchi Sea on July 9, 2010, before drilling holes through which instruments can be deployed to collect data. The research is part of NASA's ICESCAPE mission onboard the U.S. Coast Guard <span class="hlt">icebreaker</span> Healy to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-201007090003HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-201007090003HQ.html"><span>ICESCAPE Mission</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-07-08</p> <p>Dartmouth College's Chris Polashenski cuts a block of ice from below a melt pond on sea ice in the Chukchi Sea on July 9, 2010, for analysis upon return from the mission. The research is part of NASA's ICESCAPE mission onboard the U.S. Coast Guard <span class="hlt">icebreaker</span> Healy to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4070948','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4070948"><span>Emperors in Hiding: When <span class="hlt">Ice-Breakers</span> and Satellites Complement Each Other in Antarctic Exploration</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ancel, André; Cristofari, Robin; Fretwell, Peter T.; Trathan, Phil N.; Wienecke, Barbara; Boureau, Matthieu; Morinay, Jennifer; Blanc, Stéphane; Le Maho, Yvon; Le Bohec, Céline</p> <p>2014-01-01</p> <p>Evaluating the demographic trends of marine top predators is critical to understanding the processes involved in the ongoing rapid changes in Antarctic ecosystems. However, the remoteness and logistical complexity of operating in Antarctica, especially during winter, make such an assessment difficult. Satellite imaging is increasingly recognised as a valuable method for remote animal population monitoring, yet its accuracy and reliability are still to be fully evaluated. We report here the first ground visit of an emperor penguin colony first discovered by satellite, but also the discovery of a second one not indicated by satellite survey at that time. Several successive remote surveys in this coastal region of East Antarctica, both before and after sudden local changes, had indeed only identified one colony. These two colonies (with a total of ca. 7,400 breeding pairs) are located near the Mertz Glacier in an area that underwent tremendous habitat change after the glacier tongue broke off in February 2010. Our findings therefore suggest that a satellite survey, although offering a major advance since it allows a global imaging of emperor penguin colonies, may miss certain colony locations when challenged by certain features of polar ecosystems, such as snow cover, evolving ice topology, and rapidly changing habitat. Moreover our survey shows that this large seabird has considerable potential for rapid adaptation to sudden habitat loss, as the colony detected in 2009 may have moved and settled on new breeding grounds. Overall, the ability of emperor penguin colonies to relocate following habitat modification underlines the continued need for a mix of remote sensing and field surveys (aerial photography and ground counts), especially in the less-frequented parts of Antarctica, to gain reliable knowledge about the population demography and dynamics of this flagship species of the Antarctic ecosystem. PMID:24963661</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24963661','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24963661"><span>Emperors in hiding: when <span class="hlt">ice-breakers</span> and satellites complement each other in Antarctic exploration.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ancel, André; Cristofari, Robin; Fretwell, Peter T; Trathan, Phil N; Wienecke, Barbara; Boureau, Matthieu; Morinay, Jennifer; Blanc, Stéphane; Le Maho, Yvon; Le Bohec, Céline</p> <p>2014-01-01</p> <p>Evaluating the demographic trends of marine top predators is critical to understanding the processes involved in the ongoing rapid changes in Antarctic ecosystems. However, the remoteness and logistical complexity of operating in Antarctica, especially during winter, make such an assessment difficult. Satellite imaging is increasingly recognised as a valuable method for remote animal population monitoring, yet its accuracy and reliability are still to be fully evaluated. We report here the first ground visit of an emperor penguin colony first discovered by satellite, but also the discovery of a second one not indicated by satellite survey at that time. Several successive remote surveys in this coastal region of East Antarctica, both before and after sudden local changes, had indeed only identified one colony. These two colonies (with a total of ca. 7,400 breeding pairs) are located near the Mertz Glacier in an area that underwent tremendous habitat change after the glacier tongue broke off in February 2010. Our findings therefore suggest that a satellite survey, although offering a major advance since it allows a global imaging of emperor penguin colonies, may miss certain colony locations when challenged by certain features of polar ecosystems, such as snow cover, evolving ice topology, and rapidly changing habitat. Moreover our survey shows that this large seabird has considerable potential for rapid adaptation to sudden habitat loss, as the colony detected in 2009 may have moved and settled on new breeding grounds. Overall, the ability of emperor penguin colonies to relocate following habitat modification underlines the continued need for a mix of remote sensing and field surveys (aerial photography and ground counts), especially in the less-frequented parts of Antarctica, to gain reliable knowledge about the population demography and dynamics of this flagship species of the Antarctic ecosystem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA100990','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA100990"><span>Arctic Alaska and <span class="hlt">Icebreaking</span>: An Assessment of Future Requirements for the United States Coast Guard.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-03-01</p> <p>Extraction in the Arctic," Polar Record, v. 19, January 1978. 96. Mohl, Bertel, " Marine Mammals and Noise ," Canadian Arctic Resources Committee...unnatural sound can adversely affect wildlife. Research indicates that marine mammals rely exclusively on auditory sensations for long range...seriously disrupt the lives of a variety of marine mammal species (Ref. 961. The problem is exacerbated by a lack of reliable information. It is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/10471','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/10471"><span>Field Tests of In-Service Modifications to Improve Performance of An <span class="hlt">Icebreaker</span> Main Diesel Engine</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1977-08-01</p> <p>Field tests of in-service modifications to improve engine efficiency and lower the emissions were performed on the no. 3 main diesel engine of the USCGC Mackinaw (WAGB-83). This engine is a model 38D8-1/8 manufactured by Colt Industries, Fairbanks Mo...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1210/of2012-1210_text.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1210/of2012-1210_text.pdf"><span>2008 Joint United States-Canadian program to explore the limits of the Extended Continental Shelf aboard the U.S. Coast Guard cutter Healy--Cruise HLY0806</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Childs, Jonathan R.; Triezenberg, Peter J.; Danforth, William W.</p> <p>2012-01-01</p> <p>In September 2008, the U.S. Geological Survey (USGS), in cooperation with Natural Resources Canada, Geological Survey of Canada (GSC), conducted bathymetric and geophysical surveys in the Arctic Beaufort Sea aboard the U.S. Coast Guard cutter USCGC Healy. The principal objective of this mission to the high Arctic was to acquire data in support of delineation of the outer limits of the U.S. and Canadian Extended Continental Shelf (ECS) in the Arctic Ocean in accordance with the provisions of Article 76 of the Law of the Sea Convention. The Healy was accompanied by the Canadian Coast Guard <span class="hlt">icebreaker</span> Louis S. St- Laurent. The science parties on the two vessels consisted principally of staff from the USGS (Healy), and the GSC and the Canadian Hydrographic Service (Louis). The crew included marine mammal and Native-community observers, ice observers, and biologists conducting research of opportunity in the Arctic Ocean. The joint survey proved an unqualified success. The Healy collected 5,528 km of swath (multibeam) bathymetry (38,806 km2) and CHIRP subbottom profile data, with accompanying marine gravity measurements. The Louis acquired 2,817 km of multichannel seismic (airgun) deep-penetration reflection-profile data along 12 continuous lines, as well as 35 sonobuoy refraction stations and accompanying single-beam bathymetry. The coordinated efforts of the two vessels resulted in seismic-reflection profile data of much higher quality and continuity than if the data had been acquired with a single vessel alone. Equipment failure rate of the seismic equipment gear aboard the Louis was greatly improved with the advantage of having a leading <span class="hlt">icebreaker</span>. When ice conditions proved too severe to deploy the seismic system, the Louis led the Healy, resulting in much improved quality of the swath bathymetry and CHIRP sub-bottom data in comparison with data collected by the Healy in the lead or working alone. Ancillary science objectives, including ice observations, deployment</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990084033&hterms=divergent+series&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddivergent%2Bseries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990084033&hterms=divergent+series&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddivergent%2Bseries"><span>C-Band Backscatter Measurements of Winter Sea-Ice in the Weddell Sea, Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drinkwater, M. R.; Hosseinmostafa, R.; Gogineni, P.</p> <p>1995-01-01</p> <p>During the 1992 Winter Weddell Gyre Study, a C-band scatterometer was used from the German <span class="hlt">ice-breaker</span> R/V Polarstern to obtain detailed shipborne measurement scans of Antarctic sea-ice. The frequency-modulated continuous-wave (FM-CW) radar operated at 4-3 GHz and acquired like- (VV) and cross polarization (HV) data at a variety of incidence angles (10-75 deg). Calibrated backscatter data were recorded for several ice types as the <span class="hlt">icebreaker</span> crossed the Weddell Sea and detailed measurements were made of corresponding snow and sea-ice characteristics at each measurement site, together with meteorological information, radiation budget and oceanographic data. The primary scattering contributions under cold winter conditions arise from the air/snow and snow/ice interfaces. Observations indicate so e similarities with Arctic sea-ice scattering signatures, although the main difference is generally lower mean backscattering coefficients in the Weddell Sea. This is due to the younger mean ice age and thickness, and correspondingly higher mean salinities. In particular, smooth white ice found in 1992 in divergent areas within the Weddell Gyre ice pack was generally extremely smooth and undeformed. Comparisons of field scatterometer data with calibrated 20-26 deg incidence ERS-1 radar image data show close correspondence, and indicate that rough Antarctic first-year and older second-year ice forms do not produce as distinctively different scattering signatures as observed in the Arctic. Thick deformed first-year and second-year ice on the other hand are clearly discriminated from younger undeformed ice. thereby allowing successful separation of thick and thin ice. Time-series data also indicate that C-band is sensitive to changes in snow and ice conditions resulting from atmospheric and oceanographic forcing and the local heat flux environment. Variations of several dB in 45 deg incidence backscatter occur in response to a combination of thermally-regulated parameters</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P42B..02Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P42B..02Z"><span>Testing of the Prototype Mars Drill and Sample Acquisition System in the Mars Analog Site of the Antarctica's Dry Valleys</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zacny, K.; Paulsen, G.; McKay, C.; Glass, B. J.; Marinova, M.; Davila, A. F.; Pollard, W. H.; Jackson, A.</p> <p>2011-12-01</p> <p>We report on the testing of the one meter class prototype Mars drill and cuttings sampling system, called the <span class="hlt">IceBreaker</span> in the Dry Valleys of Antarctica. The drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sampling station for moving the augered ice shavings or soil cuttings into a sample cup. In November/December of 2010, the <span class="hlt">IceBreaker</span> drill was tested in the Uni-versity Valley (within the Beacon Valley region of the Antarctic Dry Valleys). University Valley is a good analog to the Northern Polar Regions of Mars because a layer of dry soil lies on top of either ice-cemeted ground or massive ice (depending on the location within the valley). That is exactly what the 2007 Phoenix mission discovered on Mars. The drill demonstrated drilling in ice-cemented ground and in massive ice at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This corresponds to an average energy of 100 Whr. At the same time, the bit temperature measured by the bit thermocouple did not exceed more than 10 °C above the formation temperature. The temperature also never exceeded freezing, which minimizes chances of getting stuck and also of altering the materials that are being sampled and analyzed. The samples in the forms of cuttings were acquired every 10 cm intervals into sterile bags. These tests have shown that drilling on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in discrete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27492296','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27492296"><span>[Exploring the Experience of Dysmenorrhea and Life Adjustments of Women Undergoing Traditional Chinese Medicine Treatment].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsai, Min-Min; Yang, Fu-Chi; Lee, Shih-Min; Huang, Chiu-Mieh</p> <p>2016-08-01</p> <p>Previous studies of women with dysmenorrhea have focused on menstrual attitudes, the characteristics of menstrual pain, and self-care behavior. Traditional Chinese Medicine (TCM) studies on dysmenorrhea, on the other hand, have focused on the efficacy and safety of TCM treatments. Few studies have investigated how women perceive their own TCM-treatment experience of dysmenorrhea. The objective of this study was to explore the experience of dysmenorrhea and life adjustments of women undergoing TCM treatment. A semi-structured interviewing guide was used to collect data. A total of 40 dysmenorrheal women participated in the study. Individual, in-depth interviews were conducted for about 60-90 minutes with each participant. Their speech tone, facial expressions, and gestures during the interview process were also observed and recorded. The findings were analyzed using content analysis via ATLAS. ti 5.2 software. The process that the participants used to adjust to dysmenorrhea were distinguished into four progressive stages: "tip of the iceberg", "<span class="hlt">ice-breaking</span>", "tug-of-war", and "blending-in". Initially, the participants perceived the symptoms of dysmenorrhea as the "tip of the iceberg". They attempted to hide / ignore the initial pain until the problem gradually worsened to the point that the symptoms began to significantly affect various aspects of life. It was only then that the participants began to pay attention to the problem and to seek help from TCM practitioners, which we defined as the "<span class="hlt">ice-breaking</span>" stage. If they encountered unexpected situations with regard to the treatment regimen, the participants entered the "tug-of-war" stage, during which they struggled over whether to continue with TCM treatments. Afterward, the participants gradually achieved a "blending-in" of new ideas, which allowed them to identify the strategies that best facilitated adjustment and rebalancing. Eventually, the participants achieved a new life balance. The outcomes of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JMS....27..267J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JMS....27..267J"><span>Summer at-sea distribution of seabirds and marine mammals in polar ecosystems: a comparison between the European Arctic seas and the Weddell Sea, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joiris, Claude R.</p> <p>2000-12-01</p> <p>The summer at-sea distribution of seabirds and marine mammals was quantitatively established both in Antarctica (Weddell Sea) and in the European Arctic: Greenland, Norwegian and Barents seas. Data can directly be compared, since the same transect counts were applied by the same team from the same <span class="hlt">icebreaking</span> ship in both regions. The main conclusion is that densities of seabirds and marine mammals are similar in open water and at the ice edge from both polar regions, while the presence of Adélie penguins, minke whales and crabeater seals in densities more than one order of magnitude higher in Antarctic pack-ice must reflect a major ecological difference between both polar systems. The ecological implications of these observations are discussed, especially concerning important primary and secondary (krill) productions under the Weddell Sea pack-ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA024847','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA024847"><span>Low Friction Hull Coatings for <span class="hlt">Icebreakers</span>. Phase II, Parts I and II. Laboratory and Field Tests</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1976-02-01</p> <p>is a hybrid of the above systems . It contains no solvent, can cure at room temperature, is flexible and exhibits good wear characteristics. This...31 Figure I-12 Schematic of Humidity Control System Figure I-13 Effect of Velocity on the Friction Coefficient of...Application of a Conventional Epoxy System and a Vinyl Antifoul Photographs of the USCG Cutter Mackinaw during and after Application of Polyurethane Coating</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1435170','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1435170"><span>DE-EE0006714 Final Report-Project Icebreaker™</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wagner, Lorry; Karpinski, David; Nagusky, Beth</p> <p></p> <p>Project <span class="hlt">Icebreaker</span>, a 20 Megawatt offshore wind project 8 miles north of Cleveland, OH in Lake Erie, has been under development by the Lake Erie Energy Development Corporation since 2009. Significant development efforts were completed prior to the award of DE-EE0006714 (December 2014). This report describes the status of the work performed under award DE-EE0006714. The work was organized into several categories or tasks. The report presents the status of that work in each of eleven (11) main tasks: 1) State and Federal Permits; 2) Mono Bucket Foundation Engineering; 3) Construction and Installation Engineering; 4) Cable Route Survey; 5) Electricalmore » System Design; 6) Power Off-take; 7) Project Costs and Risk Management; 8) Operations and Maintenance Planning; 9) Domestic Supply Chain Development; 10) Instrumentation Planning; and 11) Department of Energy Review.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150003874','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150003874"><span>JARE Syowa Station 11-m Antenna, Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aoyama, Yuichi; Doi, Koichiro; Shibuya, Kazuo</p> <p>2013-01-01</p> <p>In 2012, the 52nd and the 53rd Japanese Antarctic Research Expeditions (hereinafter, referred to as JARE-52 and JARE-53, respectively) participated in five OHIG sessions - OHIG76, 78, 79, 80, and 81. These data were recorded on hard disks through the K5 terminal. Only the hard disks for the OHIG76 session have been brought back from Syowa Station to Japan, in April 2012, by the <span class="hlt">icebreaker</span>, Shirase, while those of the other four sessions are scheduled to arrive in April 2013. The data obtained from the OHIG73, 74, 75, and 76 sessions by JARE-52 and JARE-53 have been transferred to the Bonn Correlator via the servers of National Institute of Information and Communications Technology (NICT). At Syowa Station, JARE-53 and JARE-54 will participate in six OHIG sessions in 2013.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/292702','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/292702"><span>Use of {sup 59}Ni, {sup 99}Tc, and {sup 236}U to monitor the release of radionuclides from objects containing spent nuclear fuel dumped in the Kara Sea</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mount, M.E.; Layton, D.W.; Lynn, N.M.</p> <p>1998-04-01</p> <p>Between 1965 and 1981, five objects - six naval reactor pressure vessels (RPVs) from four former Soviet Union submarines and a special containers from the <span class="hlt">icebreaker</span> Lenin, each of which contained damaged spent nuclear fuel (SNF) - were dumped in a variety of containments, using a number of sealing methods, at four sites in the Kara Sea. All objects were dumped at sites that varied in depth from 12 to 300 m. This paper examines the use of the long-lived radionuclides {sup 59}Ni, {sup 99}Tc, and {sup 236}U encased within these objects to monitor the breakdown of the containments duemore » to corrosion. Included are discussions of the radionuclide inventory and their release rate model, the estimated radionuclide mass in a typical seawater sample, and the potential for radionuclide measurement via Accelerator Mass Spectrometry (AMS).« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810834S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810834S"><span>Amphibian Seismological Studies in the Ross Sea, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt-Aursch, Mechita; Kuk Hong, Jong; Lee, Won Sang; Geissler, Wolfram; Yun, Sukyoung; Gohl, Karsten; Park, Yongcheol; Yoo, Hyun Jae</p> <p>2016-04-01</p> <p>The Antarctic Ross Sea is one of the key regions for polar research activities. Research stations from several countries located at the coast are the base for inland expeditions. Even in the austral summer, the Ross Sea is party covered with drifting ice fields; this requires an <span class="hlt">icebreaker</span> for all marine explorations. Therefore, large geophysical surveys in the Ross Sea are difficult. But the area is of special interest for seismologists: The Terror Rift in the western Ross Sea is a prominent neotectonic structure of the West Antarctic Rift System (WARS). It is located near the coast in the Victoria Land Basin and extends parallel to the Transantarctic Mountains. The rifting processes and the accompanying active onshore volcanism lead to increased seismicity in the region. The annual waxing and waning of the sea-ice and the dynamics of the large Ross Ice Shelf and nearby glaciers generate additional seismic signals. Investigation on seismological activities associated with the WARS and the cryogenic signals simultaneously would give us an unprecedented opportunity to have a better understanding of the Evolution of the WARS (EWARS) and the rapid change in the cryospheric environment nearby. The Korea Polar Research Institute (KOPRI) and the Alfred-Wegener-Institut (AWI) have conducted a pilot study off the Korean Jang Bogo research station in the Terra Nova Bay by developing a collaborative research program (EWARS) since 2011 to explore seismicity and seismic noise in this region. Four broadband ocean-bottom seismometers (OBS) from the German DEPAS pool were deployed in January 2012 with the Korean research <span class="hlt">icebreaker</span> RV Araon. Three instruments could successfully be recovered after 13 months, the fourth OBS was not accessible due to local sea-ice coverage. We have successfully completed a second recovery operation in January 2014. All stations recorded data of good quality, one station stopped after 8 months due to a recorder error. The OBS recovered in 2014</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770014844','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770014844"><span>All-weather ice information system for Alaskan arctic coastal shipping</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gedney, R. T.; Jirberg, R. J.; Schertler, R. J.; Mueller, R. A.; Chase, T. L.; Kramarchuk, I.; Nagy, L. A.; Hanlon, R. A.; Mark, H.</p> <p>1977-01-01</p> <p>A near real-time ice information system designed to aid arctic coast shipping along the Alaskan North Slope is described. The system utilizes a X-band Side Looking Airborne Radar (SLAR) mounted aboard a U.S. Coast Guard HC-130B aircraft. Radar mapping procedures showing the type, areal distribution and concentration of ice cover were developed. In order to guide vessel operational movements, near real-time SLAR image data were transmitted directly from the SLAR aircraft to Barrow, Alaska and the U.S. Coast Guard <span class="hlt">icebreaker</span> Glacier. In addition, SLAR image data were transmitted in real time to Cleveland, Ohio via the NOAA-GOES Satellite. Radar images developed in Cleveland were subsequently facsimile transmitted to the U.S. Navy's Fleet Weather Facility in Suitland, Maryland for use in ice forecasting and also as a demonstration back to Barrow via the Communications Technology Satellite.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11209079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11209079"><span>Migration along orthodromic sun compass routes by arctic birds.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alerstam, T; Gudmundsson, G A; Green, M; Hedenstrom, A</p> <p>2001-01-12</p> <p>Flight directions of birds migrating at high geographic and magnetic latitudes can be used to test bird orientation by celestial or geomagnetic compass systems under polar conditions. Migration patterns of arctic shorebirds, revealed by tracking radar studies during an <span class="hlt">icebreaker</span> expedition along the Northwest Passage in 1999, support predicted sun compass trajectories but cannot be reconciled with orientation along either geographic or magnetic loxodromes (rhumb lines). Sun compass routes are similar to orthodromes (great circle routes) at high latitudes, showing changing geographic courses as the birds traverse longitudes and their internal clock gets out of phase with local time. These routes bring the shorebirds from high arctic Canada to the east coast of North America, from which they make transoceanic flights to South America. The observations are also consistent with a migration link between Siberia and the Beaufort Sea region by way of sun compass routes across the Arctic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMED31D3453A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMED31D3453A"><span>Student involvement in the Geospace Environment Modeling (GEM) workshop</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, R. C.; Cohen, I. J.</p> <p>2014-12-01</p> <p>The Geospace Environment Modeling (GEM) workshop is a unique venue for students to begin to integrate into the magnetospheric community. GEM, an annual workshop funded by the NSF, allows students to present their research in a collaborative atmosphere and to engage with senior scientists as peers. This builds confidence in the students, while also allowing them to share ideas and strengthen their research. Each GEM workshop starts with a student-run and organized "student day", in which older students volunteer to present tutorials on different magnetospheric systems and processes. These tutorials strive to put the upcoming week of talks and posters in context while providing an overarching base understanding of the magnetospheric system. By starting the week with student taught tutorials, as well as <span class="hlt">icebreaker</span> activities, the students become comfortable with asking questions and set the tone for the less formal student and discussion-oriented workshop.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3952195','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3952195"><span>Counting whales in a challenging, changing environment</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Williams, R.; Kelly, N.; Boebel, O.; Friedlaender, A. S.; Herr, H.; Kock, K.-H.; Lehnert, L. S.; Maksym, T.; Roberts, J.; Scheidat, M.; Siebert, U.; Brierley, A. S.</p> <p>2014-01-01</p> <p>Estimating abundance of Antarctic minke whales is central to the International Whaling Commission's conservation and management work and understanding impacts of climate change on polar marine ecosystems. Detecting abundance trends is problematic, in part because minke whales are frequently sighted within Antarctic sea ice where navigational safety concerns prevent ships from surveying. Using <span class="hlt">icebreaker</span>-supported helicopters, we conducted aerial surveys across a gradient of ice conditions to estimate minke whale density in the Weddell Sea. The surveys revealed substantial numbers of whales inside the sea ice. The Antarctic summer sea ice is undergoing rapid regional change in annual extent, distribution, and length of ice-covered season. These trends, along with substantial interannual variability in ice conditions, affect the proportion of whales available to be counted by traditional shipboard surveys. The strong association between whales and the dynamic, changing sea ice requires reexamination of the power to detect trends in whale abundance or predict ecosystem responses to climate change. PMID:24622821</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AAS...199.2314G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AAS...199.2314G"><span>Analysis of a Constellation Lab Cooperative Learning Activity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gauthier, A. J.</p> <p>2001-12-01</p> <p>A cooperative learning activity was designed for use in the undergraduate laboratory course Introduction to Astronomical Observation. This group exercise enhances the student's learning of constellations and will hopefully increase retention of the material throughout the semester. It also serves as an "<span class="hlt">ice-breaker</span>" during the first week of lab, promoting student involvement and vested interest in the course. To gain some insight into the student mind, a survey was conducted to evaluate the usefulness and overall opinion of this method. The students who completed the survey had previously been enrolled in a pre-requisite astronomy course that also required a constellation lab. In this previous course they "learned" the constellations from an instructor and a flashlight beam, studied them on their own, and then promptly took a quiz. Both methods are analyzed from an instructional designer's point of view and suggestions for future activities are presented. The preliminary results and accompanying activity will be discussed in poster and hand-out medium.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28918981','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28918981"><span>Potential impacts of shipping noise on marine mammals in the western Canadian Arctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Halliday, William D; Insley, Stephen J; Hilliard, R Casey; de Jong, Tyler; Pine, Matthew K</p> <p>2017-10-15</p> <p>As the Arctic warms and sea ice decreases, increased shipping will lead to higher ambient noise levels in the Arctic Ocean. Arctic marine mammals are vulnerable to increased noise because they use sound to survive and likely evolved in a relatively quiet soundscape. We model vessel noise propagation in the proposed western Canadian Arctic shipping corridor in order to examine impacts on marine mammals and marine protected areas (MPAs). Our model predicts that loud vessels are audible underwater when >100km away, could affect marine mammal behaviour when within 2km for <span class="hlt">icebreakers</span> vessels, and as far as 52km for tankers. This vessel noise could have substantial impacts on marine mammals during migration and in MPAs. We suggest that locating the corridor farther north, use of marine mammal observers on vessels, and the reduction of vessel speed would help to reduce this impact. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21294784-regulatory-supervision-radiological-protection-russian-federation-applied-facility-decommissioning-site-remediation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21294784-regulatory-supervision-radiological-protection-russian-federation-applied-facility-decommissioning-site-remediation"><span>Regulatory Supervision of Radiological Protection in the Russian Federation as Applied to Facility Decommissioning and Site Remediation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sneve, M.K.; Shandala, N.K.</p> <p>2007-07-01</p> <p>The Russian Federation is carrying out major work to manage the legacy of exploitation of nuclear power and use of radioactive materials. This paper describes work on-going to provide enhanced regulatory supervision of these activities as regards radiological protection. The scope includes worker and public protection in routine operation; emergency preparedness and response; radioactive waste management, including treatment, interim storage and transport as well as final disposal; and long term site restoration. Examples examined include waste from facilities in NW Russia, including remediation of previous shore technical bases (STBs) for submarines, spent fuel and radioactive waste management from <span class="hlt">ice-breakers</span>, andmore » decommissioning of Radio-Thermal-Generators (RTGs) used in navigational devices. Consideration is given to the identification of regulatory responsibilities among different regulators; development of necessary regulatory instruments; and development of regulatory procedures for safety case reviews and compliance monitoring and international cooperation between different regulators. (authors)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900011210','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900011210"><span>Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.</p> <p>1989-01-01</p> <p>Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and <span class="hlt">ice-breakers</span>. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004BAMS...85.1305T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004BAMS...85.1305T"><span>The Summertime Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean Experiment 2001.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tjernström, Michael; Leck, Caroline; Persson, P. Ola G.; Jensen, Michael L.; Oncley, Steven P.; Targino, Admir</p> <p>2004-09-01</p> <p>An atmospheric boundary layer experiment into the high Arctic was carried out on the Swedish <span class="hlt">ice-breaker</span> Oden during the summer of 2001, with the primary boundary layer observations obtained while the <span class="hlt">icebreaker</span> drifted with the ice near 89°N during 3 weeks in August. The purposes of the experiment were to gain an understanding of atmospheric boundary layer structure and transient mixing mechanisms, in addition to their relationships to boundary layer clouds and aerosol production. Using a combination of in situ and remote sensing instruments, with temporal and spatial resolutions previously not deployed in the Arctic, continuous measurements of the lower-troposphere structure and boundary layer turbulence were taken concurrently with atmospheric gas and particulate chemistry, and marine biology measurements.The boundary layer was strongly controlled by ice thermodynamics and local turbulent mixing. Near-surface temperatures mostly remained between near the melting points of the sea- and freshwater, and near-surface relative humidity was high. Low clouds prevailed and fog appeared frequently. Visibility outside of fog was surprisingly good even with very low clouds, probably due to a lack of aerosol particles preventing the formation of haze. The boundary layer was shallow but remained well mixed, capped by an occasionally very strong inversion. Specific humidity often increased with height across the capping inversion.In contrast to the boundary layer, the free troposphere often retained its characteristics from well beyond the Arctic. Elevated intrusions of warm, moist air from open seas to the south were frequent. The picture that the Arctic atmosphere is less affected by transport from lower latitudes in summer than the winter may, thus, be an artifact of analyzing only surface measurements. The transport of air from lower latitudes at heights above the boundary layer has a major impact on the Arctic boundary layer, even very close to the North Pole. During a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997EOSTr..78...93C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997EOSTr..78...93C"><span>New data from cold war treasure trove</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlowicz, Michael</p> <p></p> <p>For half a century, the Russian and United States navies competed for tactical advantage in the Arctic Ocean, mapping seafloor and floating ice sheets, measuring temperatures and reckoning chemistry. But with old enemies becoming new friends, data once collected for the sake of war now are being shared in the name of scientific cooperation.In mid-January, the U.S. and Russian governments announced the release of the first of four volumes of a new atlas of the Arctic Ocean. The previously classified data it contains will effectively double the amount of Arctic data that is available to the scientific community. The set includes more than 1.3 million temperature and salinity observations collected from 1948 to 1993 by drifting ice camps and stations, <span class="hlt">icebreaking</span> ships, land—and airborne expeditions, and buoys. Approximately 70% of the observations for the Arctic Ocean and shelf seas were derived from Russian archives of formerly restricted data, with the other 30% coming from comparable sources in the U.S., Canada, and other Western nations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12113502','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12113502"><span>Radioactive contamination in the marine environment adjacent to the outfall of the radioactive waste treatment plant at ATOMFLOT, northern Russia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, J E; Nikitin, A; Valetova, N K; Chumichev, V B; Katrich, I Yu; Berezhnoy, V I; Pegoev, N N; Kabanov, A I; Pichugin, S N; Vopiyashin, Yu Ya; Lind, B; Grøttheim, S; Sickel, M; Strand, P</p> <p>2002-01-01</p> <p>RTP "ATOMFLOT" is a civilian nuclear <span class="hlt">icebreaker</span> base located on the Kola Bay of northwest Russia. The objectives of this study were to determine the distributions of man-made radionuclides in the marine environment adjacent to the base, to explain the form of the distributions in sediments and to derive information concerning the fate of radionuclides discharged from ATOMFLOT. Mean activity concentrations (d.w.) for surface sediment, of 63 Bq kg(-1 137Cs, 5.8 Bq kg(-1) 90Sr and 0.45 Bq kg(-1 239,240)Pu were measured. Filtered seawater activity levels were in the range of 3--6.9 Bq m(-3) 137Cs, 2.0-11.2 Bq m(-3) 90Sr, and 16-40 m Bq m(-3), 239,240Pu. Short-lived radionuclides were present at sediment depths in excess of 10cm indicating a high degree of sediment mixing. Correlations of radionuclide activity concentrations with grain-size appear to be absent; instead, the presence of relatively contaminated sediment appears to be related to the existence of radioactive particles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019019','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019019"><span>Modern benthic foraminifer distribution in the Amerasian Basin, Arctic Ocean</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ishman, S.E.; Foley, K.M.</p> <p>1996-01-01</p> <p>A total of 38 box cores were collected from the Amerasian Basin, Arctic Ocean during the U.S. Geological Survey 1992 (PI92-AR) and 1993 (PI93-AR) Arctic Cruises aboard the U.S. Coast Guard <span class="hlt">Icebreaker</span> Polar Star. In addition, the cruises collected geophysical data, piston cores and hydrographic data to address the geologic and oceanographic history of the western Arctic Ocean. This paper reports the results of the quantitative analyses of benthic foraminifer distribution data of the total (live + dead) assemblages derived from 22 box core-top samples. The results show that a distinct depth distribution of three dominant benthic foraminifer assemblages, the Textularia spp. - Spiroplectammina biformis, Cassidulina teretis and Oridorsalis tener - Eponides tumidulus Biofacies are strongly controlled by the dominant water masses within the Canada Basin: the Arctic Surface Water, Arctic Intermediate Water and Canada Basin Deep Water. The faunal distributions and their oceanographic associations in the Canada Basin are consistent with observations of benthic foraminifer distributions from other regions within the Arctic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28549743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28549743"><span>Intensive care nursing students' perceptions of simulation for learning confirming communication skills: A descriptive qualitative study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karlsen, Marte-Marie Wallander; Gabrielsen, Anita Kristin; Falch, Anne Lise; Stubberud, Dag-Gunnar</p> <p>2017-10-01</p> <p>The aim of this study was to explore intensive care nursing students experiences with confirming communication skills training in a simulation-based environment. The study has a qualitative, exploratory and descriptive design. The participants were students in a post-graduate program in intensive care nursing, that had attended a one day confirming communication course. Three focus group interviews lasting between 60 and 80min were conducted with 14 participants. The interviews were transcribed verbatim. Thematic analysis was performed, using Braun & Clark's seven steps. The analysis resulted in three main themes: "awareness", "<span class="hlt">ice-breaker</span>" and "challenging learning environment". The participants felt that it was a challenge to see themselves on the video-recordings afterwards, however receiving feedback resulted in better self-confidence in mastering complex communication. The main finding of the study is that the students reported improved communication skills after the confirming communication course. However; it is uncertain how these skills can be transferred to clinical practice improving patient outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED11A0118C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED11A0118C"><span>The AGU Hydrology Student Subcommittee (H3S) - fostering the Fall Meeting experience for young hydrologists</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Claes, N.; Beria, H.; Brown, M. R. M.; Kumar, A.; Goodwell, A. E.; Preziosi-Ribero, A.; Morris, C. K.; Cheng, F. Y.; Gootman, K. S.; Welsh, M.; Khatami, S.; Knoben, W.</p> <p>2017-12-01</p> <p>The AGU Hydrology Section Student Subcommittee (H3S), the student body of the AGU hydrology section, caters to the needs of students and early career scientists whose research interests contain a hydrological component. The past two years, H3S organized a Student and Early Career Scientist conference addressing both the technical and research needs of young hydrologists. Over the past several years, H3S organized pop-up sessions in Water Sciences and Social Dimensions of Geosciences which allowed young hydrologists to share and learn from their collective experiences. Social events like the early career social mixer, co-organized with CUAHSI, led to increased networking opportunities among peers. Continuous social media engagement led to a general dialogue within the community over varied issues including research productivity, gender equality, etc. <span class="hlt">Ice-breaker</span> events between junior and senior academics encouraged young hydrologists to talk with their academic crushes and continuously seek out mentorship opportunities. Collating our past experiences, we ponder over our accomplishments, failures, and opportunities to improve representation of early career hydrologists within the community.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43F..08Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43F..08Z"><span>Development and Testing of The Lunar Resource Prospector Drill</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zacny, K.; Paulsen, G.; Kleinhenz, J.; Smith, J. T.; Quinn, J.</p> <p>2017-12-01</p> <p>The goal of the Lunar Resource Prospector (RP) mission is to capture and identify volatiles species within the top one meter layer of the lunar surface. The RP drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RP drill is based on the TRL4 Mars <span class="hlt">Icebreaker</span> drill and TRL5 LITA drill developed for capturing samples of ice and ice cemented ground on Mars, and represents over a decade of technology development effort. The TRL6 RP drill weighs approximately 15 kg and is rated at just over 500 Watt. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing Station, 4. Feed Stage, and 5. Deployment Stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in 10 cm depth intervals. The first generation, TRL4 <span class="hlt">Icebreaker</span> drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation, TRL5 LITA drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama, Antarctica, the Arctic, and Greenland. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The modified LITA drill was tested in NASA GRC's lunar vacuum chamber at <10^-5 torr and <200 K. It demonstrated successful capture and transfer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/757029','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/757029"><span>Radionuclides in the Arctic seas from the former Soviet Union: Potential health and ecological risks</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Layton, D W; Edson, R; Varela, M</p> <p>1999-11-15</p> <p>The primary goal of the assessment reported here is to evaluate the health and environmental threat to coastal Alaska posed by radioactive-waste dumping in the Arctic and Northwest Pacific Oceans by the FSU. In particular, the FSU discarded 16 nuclear reactors from submarines and an <span class="hlt">icebreaker</span> in the Kara Sea near the island of Novaya Zemlya, of which 6 contained spent nuclear fuel (SNF); disposed of liquid and solid wastes in the Sea of Japan; lost a {sup 90}Sr-powered radioisotope thermoelectric generator at sea in the Sea of Okhotsk; and disposed of liquid wastes at several sites in the Pacificmore » Ocean, east of the Kamchatka Peninsula. In addition to these known sources in the oceans, the RAIG evaluated FSU waste-disposal practices at inland weapons-development sites that have contaminated major rivers flowing into the Arctic Ocean. The RAIG evaluated these sources for the potential for release to the environment, transport, and impact to Alaskan ecosystems and peoples through a variety of scenarios, including a worst-case total instantaneous and simultaneous release of the sources under investigation. The risk-assessment process described in this report is applicable to and can be used by other circumpolar countries, with the addition of information about specific ecosystems and human life-styles. They can use the ANWAP risk-assessment framework and approach used by ONR to establish potential doses for Alaska, but add their own specific data sets about human and ecological factors. The ANWAP risk assessment addresses the following Russian wastes, media, and receptors: dumped nuclear submarines and <span class="hlt">icebreaker</span> in Kara Sea--marine pathways; solid reactor parts in Sea of Japan and Pacific Ocean--marine pathways; thermoelectric generator in Sea of Okhotsk--marine pathways; current known aqueous wastes in Mayak reservoirs and Asanov Marshes--riverine to marine pathways; and Alaska as receptor. For these waste and source terms addressed, other pathways, such as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMED43C3472G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMED43C3472G"><span>Promoting Scientist Communications Through Graduate Summer School in Heliophysics and Space Physics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gross, N. A.; Schrijver, K.; Bagenal, F.; Sojka, J. J.; Wiltberger, M. J.</p> <p>2014-12-01</p> <p>edagogical tools that promote student interaction can be applied successfully during graduate workshops to enhance community and communication among the participants and instructors. The NASA/LWS funded Heliophysics Summer School and the NSF funded Space Weather Summer School provide graduate students starting research in the field, and others who are involved in space physics, an opportunity to learn from and interact with leaders in the field and each other. These interactions can happen casually, but there are a number of programatic aspects that foster the interaction so that they can be as fruitful as possible during the short period. These include: specific "<span class="hlt">ice-breaker</span>" activities, practicing "elevator speeches", embedded lecture questions, question cards, discussion questions, interactive lab activities, structured lab groups, and use of social media. We are continuing to develop new ways to foster profession interaction during these short courses. Along with enhancing their own learning, the inclusion of these strategies provides both the participants and the instructors with models of good pedagogical tools and builds community among the students. Our specific implementation of these strategies and evidence of success will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AnGla..44..253U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AnGla..44..253U"><span>Ship-borne electromagnetic induction sounding of sea-ice thickness in the southern Sea of Okhotsk</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uto, Shotaro; Toyota, Takenobu; Shimoda, Haruhito; Tateyama, Kazutaka; Shirasawa, Kunio</p> <p></p> <p>Recent observations have revealed that dynamical thickening is dominant in the growth process of sea ice in the southern Sea of Okhotsk. That indicates the importance of understanding the nature of thick deformed ice in this area. The objective of the present paper is to establish a ship-based method for observing the thickness of deformed ice with reasonable accuracy. Since February 2003, one of the authors has engaged in the core sampling using a small basket from the <span class="hlt">icebreaker</span> Soya. Based on these results, we developed a new model which expressed the internal structure of pack ice in the southern Sea of Okhotsk, as a one-dimensional multilayered structure. Since 2004, the electromagnetic (EM) inductive sounding of sea-ice thickness has been conducted on board Soya. By combining the model and theoretical calculations, a new algorithm was developed for transforming the output of the EM inductive instrument to ice + snow thickness (total thickness). Comparison with total thickness by drillhole observations showed fair agreement. The probability density functions of total thickness in 2004 and 2005 showed some difference, which reflected the difference of fractions of thick deformed ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17164851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17164851"><span>Polarization of 'water-skies' above arctic open waters: how polynyas in the ice-cover can be visually detected from a distance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hegedüs, Ramón; Akesson, Susanne; Horváth, Gábor</p> <p>2007-01-01</p> <p>The foggy sky above a white ice-cover and a dark water surface (permanent polynya or temporary lead) is white and dark gray, phenomena called the 'ice-sky' and the 'water-sky,' respectively. Captains of <span class="hlt">icebreaker</span> ships used to search for not-directly-visible open waters remotely on the basis of the water sky. Animals depending on open waters in the Arctic region may also detect not-directly-visible waters from a distance by means of the water sky. Since the polarization of ice-skies and water-skies has not, to our knowledge, been studied before, we measured the polarization patterns of water-skies above polynyas in the arctic ice-cover during the Beringia 2005 Swedish polar research expedition to the North Pole region. We show that there are statistically significant differences in the angle of polarization between the water-sky and the ice-sky. This polarization phenomenon could help biological and man-made sensors to detect open waters not directly visible from a distance. However, the threshold of polarization-based detection would be rather low, because the degree of linear polarization of light radiated by water-skies and ice-skies is not higher than 10%.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29440667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29440667"><span>Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro</p> <p>2018-02-13</p> <p>We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an <span class="hlt">icebreaker</span> moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28100418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28100418"><span>Persistent organic pollutants in the Atlantic and southern oceans and oceanic atmosphere.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luek, Jenna L; Dickhut, Rebecca M; Cochran, Michele A; Falconer, Renee L; Kylin, Henrik</p> <p>2017-04-01</p> <p>Persistent organic pollutants (POPs) continue to cycle through the atmosphere and hydrosphere despite banned or severely restricted usages. Global scale analyses of POPs are challenging, but knowledge of the current distribution of these compounds is needed to understand the movement and long-term consequences of their global use. In the current study, air and seawater samples were collected Oct. 2007-Jan. 2008 aboard the <span class="hlt">Icebreaker</span> Oden en route from Göteborg, Sweden to McMurdo Station, Antarctica. Both air and surface seawater samples consistently contained α-hexachlorocyclohexane (α-HCH), γ-HCH, hexachlorobenzene (HCB), α-Endosulfan, and polychlorinated biphenyls (PCBs). Sample concentrations for most POPs in air were higher in the northern hemisphere with the exception of HCB, which had high gas phase concentrations in the northern and southern latitudes and low concentrations near the equator. South Atlantic and Southern Ocean seawater had a high ratio of α-HCH to γ-HCH, indicating persisting levels from technical grade sources. The Atlantic and Southern Ocean continue to be net sinks for atmospheric α-, γ-HCH, and Endosulfan despite declining usage. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070018931','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070018931"><span>Waterway Ice Thickness Measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1978-01-01</p> <p>-pulse radar measurements of ice thickness. The radar data was relayed by a NOAA satellite to a ground station where NOAA analyzed it and created picture maps, such as the one shown at lower left, showing where <span class="hlt">icebreakers</span> can cut paths easily or where shipping can move through thin ice without the aid of <span class="hlt">icebreakers</span>. The ice charts were then relayed directly to the wheelhouses of ships operating on the Lakes. Following up the success of the Great Lakes program, the icewarn team applied its system in another demonstration, this one a similarly successful application designed to aid Arctic coast shipping along the Alaskan North Slope. Further improvement of the ice-monitoring system is planned. Although aircraft-mounted radar is effective, satellites could provide more frequent data. After the launch this year of Seasat, an ocean-monitoring satellite, NASA will conduct tests to determine the ice-mapping capability and accuracy of satellite radar images.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70006451','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70006451"><span>The reproductive success of lake herring in habitats near shipping channels and <span class="hlt">ice-breaking</span> operations in the St. Marys River, Michigan, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Blouin, Marc A.; Kostich, M.M.; Todd, T.N.; Savino, J.F.</p> <p>1998-01-01</p> <p>A study of the reproductive success of lake herring (Coregonus artedi) in the St. Marys River was conducted in the winters and springs of 1994, 1995, and 1996. The St. Marys River connects Lake Superior to the lower Great Lakes making it an important route for ship traffic. Recent pressure by commercial carriers to extend the shipping season by breaking ice earlier in spring, has raised concerns over the possible adverse effects on lake herring reproduction in the river caused by increased turbidity associated with vessel passage. Lake herring spawn in fall and their eggs overwinter under ice cover on the bottom of the St. Marys River. Hatching occurs in the spring after ice-out when water temperatures rise. Specialized incubators were used to hold fertilized lake herring eggs at four experimental sites, chosen to represent the range of various bottom substrate types of the St. Marys River from boulder rock reefs to soft sediments. In winter, incubators were placed under the ice on the bottom of the river at three sites each year. After ice-out, sites were relocated, and the incubators were retrieved and opened to determine the number of live and dead lake herring eggs and larvae. Survival was consistent from year to year at each site with the lowest survival percentage found at the site with the softest sediments, directly adjacent to the St. Marys River channel and downstream of the mouth of the Charlotte River. River bottom type and geographic location were the most important factors in determining egg survival. Sampling for indigenous larval lake herring was done throughout the spring hatching season in the areas adjacent to the incubator sites using nets and a diver-operated suction sampler. Result indicate that a small population (3) of larval lake herring was present throughout the sampling areas during the springs of 1994, 1995, and 1996 in the St. Marys River.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9982G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9982G"><span>A new seepage site south of Svalbard? Results from Eurofleets-2 BURSTER cruise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giulia Lucchi, Renata; Morigi, Caterina; Sabbatini, Anna; Mazzini, Adriano; Krueger, Martin; de Vittor, Cinzia; Kovacevic, Vedrana; Deponte, Davide; Stefano, Graziani; Bensi, Manuel; Langone, Leonardo; Eurofleets2-Burster*, Scientific Party Of</p> <p>2017-04-01</p> <p>The oceanographic and environmental characteristics of the Kveithola Glacial Trough, located south of Svalbard, have been investigated during the Eurofleets2-BURSTER project onboard the German <span class="hlt">icebreaker</span> Polarstern (expedition PS99-1a, June, 19-20, 2016). The inner part of the glacial trough contains a complex sediment drift that deposited under persistent bottom currents, active in the area after Last Glacial Maximum. Notwithstanding the highly dynamic environment depicted from the morphological and structural characteristics of the Kveithola sediment drift, previous studies indicated the presence of an apparently "stagnant" environment with black anoxic sediments and absence of bottom current related sediment features. We present the preliminary results from the new dataset that includes micropaleontological, geochemical and microbial analyses of multi-core sediments; morphological analyses of sea floor sediments with benthic camera (Ocean Floor Observatory System); acoustic analyses of the sub-bottom record, and oceanographic analyses of CTD-Rosette sampling, all together indicating the possible presence of a new seepage site in the Arctic area south of 75°N Latitude. *Bazzaro, M., Biebow, N., Carbonara, K., Caridi, F., Dominiczak, A., Gamboa Sojo, V.M., Laterza R., Le Gall, C., Musco, M.E., Povea, P., Relitti, F., Ruggiero, L., Rui, L., Sánchez Guillamón, O., Tagliaferro, M., Topchiy, M., Wiberg, D., Zoch, D.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13B0521N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13B0521N"><span>Magnetic anomalies in the Cosmonauts Sea, off East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nogi, Y.; Hanyu, T.; Fujii, M.</p> <p>2017-12-01</p> <p>Identification of magnetic anomaly lineations and fracture zone trends in the Southern Indian Ocean, are vital to understanding the breakup of Gondwana. However, the magnetic spreading anomalies and fracture zones are not clear in the Southern Indian Ocean. Magnetic anomaly lineations in the Cosmonauts Sea, off East Antarctica, are key to elucidation of separation between Sri Lanka/India and Antarctica. No obvious magnetic anomaly lineations are observed from a Japanese/German aerogeophysical survey in the Cosmonauts Sea, and this area is considered to be created by seafloor spreading during the Cretaceous Normal Superchron. Vector magnetic anomaly measurements have been conducted on board the <span class="hlt">Icebreaker</span> Shirase mainly to understand the process of Gondwana fragmentation in the Indian Ocean. Magnetic boundary strikes are derived from vector magnetic anomalies obtained in the Cosmonauts Sea. NE-SW trending magnetic boundary strikes are mainly observed along the several NW-SE oriented observation lines with magnetic anomaly amplitudes of about 200 nT. These NE-SW trending magnetic boundary strikes possibly indicate M-series magnetic anomalies that can not be detected from the aerogeophysical survey with nearly N-S observation lines. We will discuss the magnetic spreading anomalies and breakup process between Sri Lanka/India and Antarctica in the Cosmonauts Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17654155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17654155"><span>"It's a funny old game". Football as an educational metaphor within induction to practice-based interprofessional learning.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stephens, John; Abbott-Brailey, Hilary; Pearson, Pauline</p> <p>2007-08-01</p> <p>The Common Learning Programme in the North East of England (CLPNE) sought to introduce interprofessional education into the practice setting for pre-registration health and social care students. Students, clinical educators/mentors, and facilitators met within groups over a period of 3 - 6 weeks to explore interprofessional working and learning together. This paper evaluates the use of a game, the Football Stadium, to stimulate participants' exploration of practice-based interprofessional working and learning at CLPNE induction sessions. Data consisting of verbal and written feedback from students and clinical educators/mentors, and field notes from facilitators covering 22 CLPNE pilot sites (February 2003 - July 2005) was supplemented by researcher observation at 12 sites. Two themes emerged from the data: the use of the Football Stadium as an "<span class="hlt">ice-breaker</span>" at team induction and, the use of the Football Stadium as a vehicle to facilitate reflective learning. Key issues included personal identity and role within a novice--expert continuum, creating and developing the team environment and, enhancing and developing learning communities. Although recognized as requiring careful, sensitive facilitation, the Football Stadium is a simple means to present learning opportunities for interprofessional education within a non-threatening learning environment that facilitates active participation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/757138','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/757138"><span>Furfural-based polymers for the sealing of reactor vessels dumped in the Arctic Kara Sea</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>HEISER,J.H.; COWGILL,M.G.; SIVINTSEV,Y.V.</p> <p>1996-10-07</p> <p>Between 1965 and 1988, 16 naval reactor vessels were dumped in the Arctic Kara Sea. Six of the vessels contained spent nuclear fuel that had been damaged during accidents. In addition, a container holding {approximately} 60% of the damaged fuel from the No. 2 reactor of the atomic <span class="hlt">icebreaker</span> Lenin was dumped in 1967. Before dumping, the vessels were filled with a solidification agent, Conservant F, in order to prevent direct contact between the seawater and the fuel and other activated components, thereby reducing the potential for release of radionuclides into the environment. The key ingredient in Conservant F ismore » furfural (furfuraldehyde). Other constituents vary, depending on specific property requirements, but include epoxy resin, mineral fillers, and hardening agents. In the liquid state (prior to polymerization) Conservant F is a low viscosity, homogeneous resin blend that provides long work times (6--9 hours). In the cured state, Conservant F provides resistance to water and radiation, has high adhesion properties, and results in minimal gas evolution. This paper discusses the properties of Conservant F in both its cured and uncured states and the potential performance of the waste packages containing spent nuclear fuel in the Arctic Kara Sea.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EOSTr..90..197H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EOSTr..90..197H"><span>Acquiring Marine Data in the Canada Basin, Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hutchinson, Deborah R.; Jackson, H. Ruth; Shimeld, John W.; Chapman, C. Borden; Childs, Jonathan R.; Funck, Thomas; Rowland, Robert W.</p> <p>2009-06-01</p> <p>Despite the record minimum ice extent in the Arctic Ocean for the past 2 years, collecting geophysical data with towed sensors in ice-covered regions continues to pose enormous challenges. Significant parts of the Canada Basin in the western Arctic Ocean have remained largely unmapped because thick multiyear ice has limited access even by research vessels strengthened against ice [Jackson et al., 1990]. Because of the resulting paucity of data, the western Arctic Ocean is one of the few areas of ocean in the world where major controversies still exist with respect to its origin and tectonic evolution [Grantz et al., 1990; Lawver and Scotese, 1990; Lane, 1997; Miller et al., 2006]. This article describes the logistical challenges and initial data sets from geophysical seismic reflection, seismic refraction, and hydrographic surveys in the Canada Basin conducted by scientists with U.S. and Canadian government agencies (Figure 1a) to fulfill the requirements of the United Nations Convention on the Law of the Sea to determine sediment thickness, geological origin, and basin evolution in this unexplored part of the world. Some of these data were collected using a single ship, but the heaviest ice conditions necessitated using two <span class="hlt">icebreakers</span>, similar to other recent Arctic surveys [e.g., Jokat, 2003].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1418810','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1418810"><span>MITAS - 2009 Expedition US Beaufort Shelf Slope of Alaska - Lithostratigraphy</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Kelly Rose; Joel Johnson; Stephen Phillips; Joe Smith; Alan Reed; Corinne Disenhof; Jennifer Presley</p> <p>2012-01-01</p> <p>The volume of methane released through the Arctic Ocean to the atmosphere and its potential role in the global climate cycle has increasingly become the focus of studies seeking to understand the source and origin of this methane. In 2009, an international, multi-disciplinary science party aboard the U.S. Coast Guard <span class="hlt">icebreaker</span> Polar Sea successfully completed a trans-U.S. Beaufort shelf expedition aimed at understanding the sources and volumes of methane across this region. Following more than a year of preliminary cruise planning and a thorough site evaluation, the Methane in the Arctic Shelf/Slope (MITAS) expedition departed from the waters off the coast of Barrow, Alaska in September 2009. The expedition, led by researchers with the U.S. Naval Research Laboratory (NRL), the Royal Netherlands Institute for Sea Research (NIOZ), and the U.S. Department of Energys National Energy Technology Laboratory (NETL), was organized with an international shipboard science team consisting of 33 scientists with the breadth of expertise necessary to meet the expedition goals. NETL researchers led the expeditions initial core processing and lithostratigraphic evaluations, which are the focus of this report. A full expedition summary is available at in First Trans-Shelf-Slope Climate Study in the U.S. Beaufort Sea Completed by Coffin et al.,( 2010).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC13C1092S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC13C1092S"><span>Impacts of projected sea ice changes on trans-Arctic navigation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephenson, S. R.; Smith, L. C.</p> <p>2012-12-01</p> <p>Reduced Arctic sea ice continues to be a palpable signal of global change. Record lows in September sea ice extent from 2007 - 2011 have fueled speculation that trans-Arctic navigation routes may become physically viable in the 21st century. General Circulation Models project a nearly ice-free Arctic Ocean in summer by mid-century; however, how reduced sea ice will realistically impact navigation is not well understood. Using the ATAM (Arctic Transportation Accessibility Model) we present simulations of 21st-century trans-Arctic voyages as a function of climatic (ice) conditions and vessel class. Simulations are based on sea ice projections for three climatic forcing scenarios (RCP 4.5, 6.0, and 8.5 W/m^2) representing present-day and mid-century conditions, assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no <span class="hlt">ice-breaking</span> capability, respectively. Optimal least-cost routes (minimizing travel time while avoiding ice impassible to a given vessel class) between the North Atlantic and the Bering Strait were calculated for summer months of each time window. While Arctic navigation depends on other factors besides sea ice including economics, infrastructure, bathymetry, current, and weather, these projections should be useful for strategic planning by governments, regulatory and environmental agencies, and the global maritime industry to assess potential changes in the spatial and temporal ranges of Arctic marine operations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24164471','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24164471"><span>Seasonal changes in microbial community structure and activity imply winter production is linked to summer hypoxia in a large lake.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilhelm, Steven W; LeCleir, Gary R; Bullerjahn, George S; McKay, Robert M; Saxton, Matthew A; Twiss, Michael R; Bourbonniere, Richard A</p> <p>2014-02-01</p> <p>Carbon and nutrient cycles in large temperate lakes such as Lake Erie are primarily driven by phototrophic and heterotrophic microorganisms, although our understanding of these is often constrained to late spring through summer due to logistical constraints. During periods of > 90% ice cover in February of 2008, 2009, and 2010, we collected samples from an <span class="hlt">icebreaker</span> for an examination of bacterial production as well as microbial community structure. In comparison with summer months (August 2002 and 2010), we tested hypotheses concerning seasonal changes in microbial community diversity and production. Bacterial production estimates were c. 2 orders of magnitude higher (volume normalized) in summer relative to winter. Our observations further demonstrate that the microbial community, including single-celled phototrophs, varied in composition between August and February. Sediment traps deployed and collected over a 3 year period (2008-2011) confirmed that carbon export was ongoing and not limiting winter production. The results support the notion that active primary producers in winter months export carbon to the sediments that is not consumed until the warmer seasons. The establishment of this linkage is a critical observation in efforts to understand the extent and severity of annual summertime formations of a zone of regional hypoxia in Lake Erie. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6795444','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6795444"><span>Carbon dioxide in Arctic and subarctic regions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gosink, T. A.; Kelley, J. J.</p> <p>1981-03-01</p> <p>A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish <span class="hlt">icebreaker</span>, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, themore » hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176625','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176625"><span>Submarine landslides in Arctic sedimentation: Canada Basin</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.</p> <p>2016-01-01</p> <p>Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American <span class="hlt">icebreakers</span>. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..343G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..343G"><span>Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gegiuc, Alexandru; Similä, Markku; Karvonen, Juha; Lensu, Mikko; Mäkynen, Marko; Vainio, Jouni</p> <p>2018-01-01</p> <p>For ship navigation in the Baltic Sea ice, parameters such as ice edge, ice concentration, ice thickness and degree of ridging are usually reported daily in manually prepared ice charts. These charts provide <span class="hlt">icebreakers</span> with essential information for route optimization and fuel calculations. However, manual ice charting requires long analysis times, and detailed analysis of large areas (e.g. Arctic Ocean) is not feasible. Here, we propose a method for automatic estimation of the degree of ice ridging in the Baltic Sea region, based on RADARSAT-2 C-band dual-polarized (HH/HV channels) SAR texture features and sea ice concentration information extracted from Finnish ice charts. The SAR images were first segmented and then several texture features were extracted for each segment. Using the random forest method, we classified them into four classes of ridging intensity and compared them to the reference data extracted from the digitized ice charts. The overall agreement between the ice-chart-based degree of ice ridging and the automated results varied monthly, being 83, 63 and 81 % in January, February and March 2013, respectively. The correspondence between the degree of ice ridging reported in the ice charts and the actual ridge density was validated with data collected during a field campaign in March 2011. In principle the method can be applied to the seasonal sea ice regime in the Arctic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C51B..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C51B..01S"><span>Impacts of Declining Arctic Sea Ice: An International Challenge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serreze, M.</p> <p>2008-12-01</p> <p>As reported by the National Snow and Ice Data Center in late August of 2008, Arctic sea ice extent had already fallen to its second lowest level since regular monitoring began by satellite. As of this writing, we were closing in on the record minimum set in September of 2007. Summers may be free of sea ice by the year 2030. Recognition is growing that ice loss will have environmental impacts that may extend well beyond the Arctic. The Arctic Ocean will in turn become more accessible, not just to tourism and commercial shipping, but to exploitation of oil wealth at the bottom of the ocean. In recognition of growing accessibility and oil operations, the United States Coast Guard set up temporary bases this summer at Barrow and Prudhoe Bay, AK, from which they conducted operations to test their readiness and capabilities, such as for search and rescue. The Canadians have been busy showing a strong Arctic presence. In August, a German crew traversed the Northwest Passage from east to west in one of their <span class="hlt">icebreakers</span>, the Polarstern. What are the major national and international research efforts focusing on the multifaceted problem of declining sea ice? What are the areas of intersection, and what is the state of collaboration? How could national and international collaboration be improved? This talk will review some of these issues.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/757140','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/757140"><span>Leaching of radionuclides from furfural-based polymers used to solidify reactor compartments and components disposed of in the Arctic Kara Sea</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>HEISER,J.H.; SIVINTSEV,Y.; ALEXANDROV,V.P.</p> <p>1999-09-01</p> <p>Within the course of operating its nuclear navy, the former Soviet Union (FSU) disposed of reactor vessels and spent nuclear fuel (SNF) in three fjords on the east coast of Novaya Zemlya and in the open Kara Sea within the Novaya Zemlya Trough during the period 1965 to 1988. The dumping consisted of 16 reactors, six of which contained SNF and one special container that held ca. 60% of the damaged SNF and the screening assembly from the No. 2 reactor of the atomic <span class="hlt">icebreaker</span> Lenin. At the time, the FSU considered dumping of decommissioned nuclear submarines with damaged coresmore » in the bays of and near by the Novaya Zemlya archipelago in the Arctic Kara Sea to be acceptable. To provide an additional level of safety, a group of Russian scientists embarked upon a course of research to develop a solidification agent that would provide an ecologically safe barrier. The barrier material would prevent direct contact of seawater with the SNF and the resultant leaching and release of radionuclides. The solidification agent was to be introduced by flooding the reactors vessels and inner cavities. Once introduced the agent would harden and form an impermeable barrier. This report describes the sample preparation of several ``Furfurol'' compositions and their leach testing using cesium 137 as tracer.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESSD....9..211D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESSD....9..211D"><span>From pole to pole: 33 years of physical oceanography onboard R/V Polarstern</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Driemel, Amelie; Fahrbach, Eberhard; Rohardt, Gerd; Beszczynska-Möller, Agnieszka; Boetius, Antje; Budéus, Gereon; Cisewski, Boris; Engbrodt, Ralph; Gauger, Steffen; Geibert, Walter; Geprägs, Patrizia; Gerdes, Dieter; Gersonde, Rainer; Gordon, Arnold L.; Grobe, Hannes; Hellmer, Hartmut H.; Isla, Enrique; Jacobs, Stanley S.; Janout, Markus; Jokat, Wilfried; Klages, Michael; Kuhn, Gerhard; Meincke, Jens; Ober, Sven; Østerhus, Svein; Peterson, Ray G.; Rabe, Benjamin; Rudels, Bert; Schauer, Ursula; Schröder, Michael; Schumacher, Stefanie; Sieger, Rainer; Sildam, Jüri; Soltwedel, Thomas; Stangeew, Elena; Stein, Manfred; Strass, Volker H.; Thiede, Jörn; Tippenhauer, Sandra; Veth, Cornelis; von Appen, Wilken-Jon; Weirig, Marie-France; Wisotzki, Andreas; Wolf-Gladrow, Dieter A.; Kanzow, Torsten</p> <p>2017-03-01</p> <p>Measuring temperature and salinity profiles in the world's oceans is crucial to understanding ocean dynamics and its influence on the heat budget, the water cycle, the marine environment and on our climate. Since 1983 the German research vessel and <span class="hlt">icebreaker</span> Polarstern has been the platform of numerous CTD (conductivity, temperature, depth instrument) deployments in the Arctic and the Antarctic. We report on a unique data collection spanning 33 years of polar CTD data. In total 131 data sets (1 data set per cruise leg) containing data from 10 063 CTD casts are now freely available at <a href="http://dx.doi.org/10.1594/PANGAEA.860066" target="_blank">doi:10.1594/PANGAEA.860066</a>. During this long period five CTD types with different characteristics and accuracies have been used. Therefore the instruments and processing procedures (sensor calibration, data validation, etc.) are described in detail. This compilation is special not only with regard to the quantity but also the quality of the data - the latter indicated for each data set using defined quality codes. The complete data collection includes a number of repeated sections for which the quality code can be used to investigate and evaluate long-term changes. Beginning with 2010, the salinity measurements presented here are of the highest quality possible in this field owing to the introduction of the OPTIMARE Precision Salinometer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMIN31D..08C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMIN31D..08C"><span>Operational Use of Near Real Time Remote sensing Data at the U.S. National Ice Center (NIC)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clemente-Colon, P.</p> <p>2012-12-01</p> <p>The National Ice Center (NIC) is a U.S. Government agency that brings together the Department of Defense - Navy, Department of Commerce - National Oceanic and Atmospheric Administration (NOAA), and the Department of Homeland Security - U.S. Coast Guard (USCG) to support coastal and marine sea ice operations and research in the Polar Regions. The NIC provides specialized strategic and tactical ice analyses to meet the operational needs of the U.S. government and is the only operational ice service in the world that monitors sea ice in both the Arctic, Antarctic regions as well as in other ice infested waters. NIC utilizes multiple sources of near real time satellite and in-situ observations as well as NWP and ocean-sea ice model output to produce sea ice analyses. Key users of NIC products in the Arctic include the Navy submarine force, National Weather Service, USCG and Canadian Coast Guard <span class="hlt">icebreakers</span>, Military Sealift Command on re-supply missions to Antarctica and Greenland, and NOAA research vessels operating near sea ice cover in both hemispheres as well. Time series of NIC weekly or bi-weekly ice analysis charts, daily marginal ice zone and ice edge routine products, as well as tactical support annotated imagery are generated by expert analysts with wide access to near real time satellite imagery from VIS/IR to passive and active microwave sensors. The status of these satellite data streams and the expected availability of new capabilities in the near future will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4085K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4085K"><span>Agglutinated Foraminifera indicate a deep bottom current over the Hovgaard Ridge, West of Spitsbergen</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaminski, Michael; Frank, Niessen</p> <p>2015-04-01</p> <p>The Hovgård Ridge is situated in Fram Strait, west of Spitsbergen. The ridge either represents a submerged fragment of continental crust or an upwarped fragmant of ocean crust within the Fram Strait. Its crest rises to a water depth of approx. 1170 m. During Expedition 87 of the <span class="hlt">Icebreaker</span> POLARSTERN in August 2014, a sediment-echosounding profile was recorded and a boxcore station was collected from the crest of Hovgård Ridge at 1169 m water depth. The surficial sediment at this station consists of dark yellowish brown pebbly-sandy mud with a minor admixture of biogenic components in the coarse fraction. Patches of large tubular foraminifera and isolated pebbles were clearly visible on the sediment surface. The sediment surface of the boxcore was covered with patches of large (>1 mm diameter) large tubular astrorhizids belonging mostly to the species Astrorhiza crassatina Brady, with smaller numbers of Saccorhiza, Hyperammina, and Psammosiphonella. Non-tubular species consist mainly of opportunistic forms such as Psammosphaera and Reophax. The presence of large suspension-feeding tubular genera as well as opportunistic forms, as well as sediment winnowing, point to the presence of a deep current at this locality that is strong enough to disturb the benthic fauna. This is confirmed by data obtained from sediment echosounding, which exhibit lateral variation of relative sedimentation rates within the Pleistocene sedimentary drape covering the ridge indicative of winnowing in a south-easterly direction.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C13C0683H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C13C0683H"><span>Operation of a Hovercraft Scientific Platform Over Sea Ice in the Arctic Ocean Transpolar Drift (81 - 85N): The FRAM-2012 Experience</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, J. K.; Kristoffersen, Y.</p> <p>2013-12-01</p> <p>We have tested the feasibility of hovercraft travel through predominantly first year ice of the Transpolar Drift between 81°N - 85°N north of Svalbard. With 2-9 ridges per kilometer, our hovercraft (Griffon TD2000 Mark II), with an effective hover height of about 0.5 m, had to travel a distance 1.3 times the great circle distance between the point of origin and the final destination. Instantaneous speeds were mostly 5-7 knots. Two weeks later <span class="hlt">icebreaker</span> Oden completed the same transit under conditions with no significant pressure in the ice at a speed mostly 1 knot higher than the hovercraft and travelled 1.2 times the great circle distance. The hovercraft spent 25 days monitoring micro-earthquake activity of the Arctic Mid-Ocean Ridge at a section of the spreading center where no seismicity has been recorded by the global seismograph network. More than ten small earthquake events per day were recorded. Visibility appears to be the most critical factor to hovercraft travel in polar pack ice. Improved control of hovercraft motion would substantially increase the potential usefulness of hovercraft in the sea ice environment. University of Bergen graduate student Gaute Hope emplacing one of the hydrophones in the triangular array used to locate small earthquakes over the Gakkel Ridge rift valley around 85N during FRAM-2012. The research hovercraft R/H SABVABAA is in the background.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GRC-1973-C-00948.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GRC-1973-C-00948.html"><span>Grumman OV-1B Mohawk Maps the Ice over the Great Lakes</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1973-03-21</p> <p>A Grumman OV-1B Mohawk maps Great Lakes’ ice flows for the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The regular freezing of large portions of the Great Lakes during the winter frequently stalled the region’s shipping industry. Lewis developed two complementary systems to monitor the ice. The Side Looking Airborne Radar (SLAR) system used microwaves to measure the ice distribution, and electromagnetic systems employed noise modulation to determine the thickness of the ice. Once this dual system was in place, the information could be generated during a single pass of a research aircraft and quickly distributed to ship captains planning their routes. The SLAR was superior to aerial photography for this task because it was able to penetrate cloud cover. The SLAR system used pulsed microwaves to examine a band of ice or water on either side of the aircraft up to 31 miles wide. The Lewis ice mapping devices were first tested during the winter of 1972 and 1973. The system was installed on the tail of the Coast Guard’s OV-1B aircraft. An infrared thermal mapping instrument was installed on Lewis’ DC-3 to determine the ice temperature and estimate its thickness. The team created 160 ice charts that were sent to 28 ships and 2 <span class="hlt">icebreakers</span>. Shipping was able to continue throughout the season for the first time that winter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5573L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5573L"><span>Temporal variatiions of Sea ice cover in the Baltic Sea derived from operational sea ice products used in NWP.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lange, Martin; Paul, Gerhard; Potthast, Roland</p> <p>2014-05-01</p> <p>Sea ice cover is a crucial parameter for surface fluxes of heat and moisture over water areas. The isolating effect and the much higher albedo strongly reduces the turbulent exchange of heat and moisture from the surface to the atmosphere and allows for cold and dry air mass flow with strong impact on the stability of the whole boundary layer and consequently cloud formation as well as precipitation in the downstream regions. Numerical weather centers as, ECMWF, MetoFrance or DWD use external products to initialize SST and sea ice cover in their NWP models. To the knowledge of the author there are mainly two global sea ice products well established with operational availability, one from NOAA NCEP that combines measurements with satellite data, and the other from OSI-SAF derived from SSMI/S sensors. The latter one is used in the Ostia product. DWD additionally uses a regional product for the Baltic Sea provided by the national center for shipping and hydrografie which combines observations from ships (and <span class="hlt">icebreakers</span>) for the German part of the Baltic Sea and model analysis from the hydrodynamic HIROMB model of the Swedish meteorological service for the rest of the domain. The temporal evolution of the three different products are compared for a cold period in Februar 2012. Goods and bads will be presented and suggestions for a harmonization of strong day to day jumps over large areas are suggested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/982049','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/982049"><span>Highlights of the 2009 SEG summer research workshop on"CO2 Sequestration Geophysics"</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lumley, D.; Sherlock, D.; Daley, T.</p> <p></p> <p>The 2009 SEG Summer Research Workshop on CO2 Sequestration Geophysics was held August 23-27, 2009 in Banff, Canada. The event was attended by over 100 scientists from around the world, which proved to be a remarkably successful turnout in the midst of the current global financial crisis and severe corporate travel restrictions. Attendees included SEG President Larry Lines (U. Calgary), and CSEG President John Downton (CGG Veritas), who joined SRW Chairman David Lumley (UWA) in giving the opening welcome remarks at the Sunday <span class="hlt">Icebreaker</span>. The workshop was organized by an expert technical committee (see side bar) representing a good mixmore » of industry, academic, and government research organizations. The format consisted of four days of technical sessions with over 60 talks and posters, plus an optional pre-workshop field trip to the Columbia Ice Fields to view firsthand the effects of global warming on the Athabasca glacier (Figures 1-2). Group technical discussion was encouraged by requiring each presenter to limit themselves to 15 minutes of presentation followed by a 15 minute open discussion period. Technical contributions focused on the current and future role of geophysics in CO2 sequestration, highlighting new research and field-test results with regard to site selection and characterization, monitoring and surveillance, using a wide array of geophysical techniques. While there are too many excellent contributions to mention all individually here, in this paper we summarize some of the key workshop highlights in order to propagate new developments to the SEG community at large.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/973177','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/973177"><span>Highlights of the 2009 SEG summer research workshop on ""CO2 sequestration geophysics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Huang, Lianjie; Lumley, David; Sherlock, Don</p> <p></p> <p>The 2009 SEG Summer Research Workshop on 'CO{sub 2} Sequestration Geophysics' was held August 23-27, 2009 in Banff, Canada. The event was attended by over 100 scientists from around the world, which proved to be a remarkably successful turnout in the midst of the current global financial crisis and severe corporate travel restrictions. Attendees included SEG President Larry Lines (U. Calgary), and CSEG President John Downton (CGG Veritas), who joined SRW Chairman David Lumley (UWA) in giving the opening welcome remarks at the Sunday <span class="hlt">Icebreaker</span>. The workshop was organized by an expert technical committee representing a good mix of industry,more » academic, and government research organizations. The format consisted of four days of technical sessions with over 60 talks and posters, plus an optional pre-workshop field trip to the Columbia Ice Fields to view firsthand the effects of global warming on the Athabasca glacier. Group technical discussion was encouraged by requiring each presenter to limit themselves to 15 minutes of presentation followed by a 15 minute open discussion period. Technical contributions focused on the current and future role of geophysics in CO{sub 2} sequestration, highlighting new research and field-test results with regard to site selection and characterization, monitoring and surveillance, using a wide array of geophysical techniques. While there are too many excellent contributions to mention all individually here, in this paper we summarize some of the key workshop highlights in order to propagate new developments to the SEG community at large.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10923893','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10923893"><span>Detection of whale calls in noise: performance comparison between a beluga whale, human listeners, and a neural network.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Erbe, C</p> <p>2000-07-01</p> <p>This article examines the masking by anthropogenic noise of beluga whale calls. Results from human masking experiments and a software backpropagation neural network are compared to the performance of a trained beluga whale. The goal was to find an accurate, reliable, and fast model to replace lengthy and expensive animal experiments. A beluga call was masked by three types of noise, an <span class="hlt">icebreaker</span>'s bubbler system and propeller noise, and ambient arctic ice-cracking noise. Both the human experiment and the neural network successfully modeled the beluga data in the sense that they classified the noises in the same order from strongest to weakest masking as the whale and with similar call-detection thresholds. The neural network slightly outperformed the humans. Both models were then used to predict the masking of a fourth type of noise, Gaussian white noise. Their prediction ability was judged by returning to the aquarium to measure masked-hearing thresholds of a beluga in white noise. Both models and the whale identified bubbler noise as the strongest masker, followed by ramming, then white noise. Natural ice-cracking noise masked the least. However, the humans and the neural network slightly overpredicted the amount of masking for white noise. This is neglecting individual variation in belugas, because only one animal could be trained. Comparing the human model to the neural network model, the latter has the advantage of objectivity, reproducibility of results, and efficiency, particularly if the interference of a large number of signals and noise is to be examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/270706','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/270706"><span>Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dyer, R.S.; Diamante, J.M.; Duffey, R.B.</p> <p>1996-07-01</p> <p>The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian <span class="hlt">icebreaker</span> fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to processmore » high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930016861','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930016861"><span>Radar backscatter measurements from Arctic sea ice during the fall freeze-up</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beaven, S.; Gogineni, S. P.; Shanableh, M.; Gow, A.; Tucker, W.; Jezek, K.</p> <p>1993-01-01</p> <p>Radar backscatter measurements from sea ice during the fall freeze-up were performed by the United States Coast Guard <span class="hlt">Icebreaker</span> Polar Star as a part of the International Arctic Ocean Expedition (IAOE'91) from Aug. to Sep. 1991. The U.S. portion of the experiment took place on board the Polar Star and was referred to as TRAPOLEX '91 (Transpolar expedition) by some investigators. Before prematurely aborting its mission because of mechanical failure of her port shaft, the Polar Star reached 84 deg 57 min N latitude at 35 deg E longitude. The ship was in the ice (greater than 50 percent coverage) from 14 Aug. until 3 Sep. and was operational for all but 6 days due to two instances of mechanical problems with the port shaft. The second was fatal to the ship's participation in the expedition. During the expedition, radar backscatter was measured at C-band under a variety of conditions. These included measurements from young ice types as well as from multiyear and first-/second-year sea ice during the fall freeze-up. The sea ice types were determined by measurement of the ice properties at several of the stations and by visual inspection on others. Radar backscatter measurements were performed over a large portion of the ship's transit into the Arctic ice pack. These were accompanied by in situ sea ice property characterization by the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) at several stations and, when snow was present, its properties were documented by The Microwave Group, Ottawa River (MWG).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25272281','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25272281"><span>Working together: Expanding the availability of naloxone for peer administration to prevent opioid overdose deaths in the Australian Capital Territory and beyond.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lenton, Simon; Dietze, Paul; Olsen, Anna; Wiggins, Nicole; McDonald, David; Fowlie, Carrie</p> <p>2015-07-01</p> <p>Since the mid-1990s, there have been calls to make naloxone, a prescription-only medicine in many countries, available to heroin and other opioid users and their peers and family members to prevent overdose deaths. In Australia there were calls for a trial of peer naloxone in 2000, yet at the end of that year, heroin availability and harm rapidly declined, and a trial did not proceed. In other countries, a number of peer naloxone programs have been successfully implemented. Although a controlled trial had not been conducted, evidence of program implementation demonstrated that trained injecting drug-using peers and others could successfully administer naloxone to reverse heroin overdose, with few, if any, adverse effects. In 2009 Australian drug researchers advocated the broader availability of naloxone for peer administration in cases of opioid overdose. Industrious local advocacy and program development work by a number of stakeholders, notably by the Canberra Alliance for Harm Minimisation and Advocacy, a drug user organisation, contributed to the rollout of Australia's first prescription naloxone program in the Australian Capital Territory (ACT). Over the subsequent 18 months, prescription naloxone programs were commenced in four other Australian states. The development of Australia's first take-home naloxone program in the ACT has been an '<span class="hlt">ice-breaker</span>' for development of other Australian programs. Issues to be addressed to facilitate future scale-up of naloxone programs concern scheduling and cost, legal protections for lay administration, prescribing as a barrier to scale-up; intranasal administration, administration by service providers and collaboration between stakeholders. © 2014 Australasian Professional Society on Alcohol and other Drugs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28147295','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28147295"><span>Characteristics of the horizontal and vertical distributions of dimethyl sulfide throughout the Amundsen Sea Polynya.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Intae; Hahm, Doshik; Park, Keyhong; Lee, Youngju; Choi, Jung-Ok; Zhang, Miming; Chen, Liqi; Kim, Hyun-Cheol; Lee, SangHoon</p> <p>2017-04-15</p> <p>We investigated horizontal and vertical distributions of DMS in the upper water column of the Amundsen Sea Polynya and Pine Island Polynya during the austral summer (January-February) of 2016 using a membrane inlet mass spectrometer (MIMS) onboard the Korean <span class="hlt">icebreaker</span> R/V Araon. The surface water concentrations of DMS varied from <1 to 400nM. The highest DMS (up to 300nM) were observed in sea ice-polynya transition zones and near the Getz ice shelf, where both the first local ice melting and high plankton productivity were observed. In other regions, high DMS concentration was generally accompanied by higher chlorophyll and ΔO 2 /Ar. The large spatial variability of DMS and primary productivity in the surface water of the Amundsen Sea seems to be attributed to melting conditions of sea ice, relative dominance of Phaeocystis Antarctica as a DMS producer, and timing differences between bloom and subsequent DMS productions. The depth profiles of DMS and ΔO 2 /Ar were consistent with the horizontal surface data, showing noticeable spatial variability. However, despite the large spatial variability, in contrast to the previous results from 2009, DMS concentrations and ΔO 2 /Ar in the surface water were indistinct between the two major domains: the sea ice zone and polynya region. The discrepancy may be associated with inter-annual variations of phytoplankton assemblages superimposed on differences in sea-ice conditions, blooming period, and spatial coverage along the vast surface area of the Amundsen Sea. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993rpsa.agarQ....L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993rpsa.agarQ....L"><span>VLF propagation measurements in the Canadian Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lauber, Wilfred R.; Bertrand, Jean M.</p> <p>1993-05-01</p> <p>For the past three years, during a period of high sun spot numbers, propagation measurements were made on the reception of VLF signals in the Canadian Arctic. Between Aug. and Dec. 1989, the received signal strengths were measured on the Canadian Coast Guard <span class="hlt">icebreaker</span>, John A. MacDonald in the Eastern Canadian Arctic. Between Jul. 1991 and Jun. 1992, the received signal strengths were measured at Nanisivik, Baffin Island. The purposes of this work were to check the accuracy and estimate variances of the Naval Ocean Systems Center's (NOSC) Long Wave Propagation Capability (LWPC) predictions in the Canadian Arctic and to gather ionospheric storm data. In addition, the NOSC data taken at Fort Smith and our data at Nanisivik were used to test the newly developed Longwave Noise Prediction (LNP) program and the CCIR noise predictions, at 21.4 and 24.0 kHz. The results of the work presented and discussed in this paper show that in general the LWPC predicts accurate values of received signal strength in the Canadian Arctic with standard deviations of 1 to 2 dB over several months. Ionospheric storms can gauge the received signal strengths to decrease some 10 dB for a period of several hours or days. However, the effects of these storms are highly dependent on the propagation path. Finally the new LNP atmospheric noise model predicts lower values of noise in the Arctic than the CCIR model and our limited measurements tend to support these lower values.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C54B..01J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C54B..01J"><span>Research Activity and Infrastructure of Korea Polar Research Institute: Current and Future Perspectives</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, D.; Kim, S.; Lee, H.</p> <p>2011-12-01</p> <p>The Korea Polar Research Institute (KOPRI) opened the Antarctic King Sejong research station in 1988 at the King George Island off the Antarctic Peninsula and started the polar research mainly in the fields of biology and geology with some atmosphere observations. To extend the view of polar research, the KOPRI opened the Arctic Dasan research station at Ny-Alesund, Spitsbergen Island in 2002 and has studied the rapid climate change diagnostics and some microbiological observation. The KOPRI is now expanding the Arctic research into Alaska and Canada under the international collaboration, and planning to outreach to Russia to monitor the change in permafrost and to understand its impact on global warming. To deepen the views of polar research including the ice covered oceans in both poles, the <span class="hlt">ice-breaking</span> vessel, the ARAON of about 7000 ton, was launched recently and successfully finished the Arctic and Antarctic cruises for research activity on all perspectives of ocean sciences and support for the King Sejong station. The KOPRI is now building another Antarctic research station, called Jangbogo, at the Terra Nova Bay off the Ross Sea and plan to open the station at the March of 2014. By building the second Antarctic station together with the ARAON, the KOPRI will focus its research on understanding the rapid climate change in west Antarctica such as to monitor the calving of the Larsen Ice shelf, rapid melting of Pine Island Glacier, and upper atmosphere, to study the sea ice and ecosystem change in the Amundsen Sea and the role of the southern annular mode in the west Antarctic warming, upper atmosphere and climate change, to reconstruct paleoclimate records from ice and sediment cores.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13A2038R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13A2038R"><span>Late Holocene glacial history of Petermann Fjord, Northwest Greenland: Non-destructive CT, XRF, and magnetic results from OD1507 sediment cores</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.; Cheseby, M.; Albert, S. W.; Wiest, J.</p> <p>2016-12-01</p> <p>An international and interdisciplinary expedition to Nares Strait and Petermann Fjord, Northwest Greenland, onboard the Swedish <span class="hlt">Icebreaker</span> Oden July-September 2015 (OD1507) sought to understand the Holocene history of the Petermann glacial system among other research objectives. Petermann Glacier, which terminates as a floating ice-tongue in Petermann Fjord, is thought to be especially sensitive to ice-ocean interactions. While limited historical observations dating back to 1876 suggest the Petermann Ice Tongue extends about 70-90 km from the grounding-line, large calving events in 2010 and 2012 reduced the ice-tongue extent to about 45 km from the grounding-line. A suite of 14 marine sediment cores recovered a range of glacio-marine facies that form an along fjord (15-80 km from the grounding-line) and an across fjord depth (473-1041 meters water depth) transect. CT scans clearly identify four primary fjord facies, including bioturbated, IRD-rich, laminated and mud with stratified graded sand layers. The latter of these occurs near the modern grounding-line. Additionally, a new MATLAB routine is used to quantify clasts >2 mm in size from the CT scans. XRF sediment geochemical changes mirror magnetic mineral concentrations and are driven by varying contribution of Ca-rich and Ca-poor sources, which we interpret as a reflection of the mixing of the local carbonate rocks and crystalline basement excavated by the ice sheet. Initial paleomagnetic results isolate a strong and stable characteristic remanent magnetization which show remarkable similarity to paleosecular variation (PSV) recorded in nearby mid-late Holocene varved lakes on Ellesmere Island. This non-destructive dataset provides robust correlations, indicating a coherent and dynamic record of changes in the Petermann glacial system during the late Holocene, including evidence for a significant grounding-line retreat followed by the growth and relative paleo-extent of the modern Petermann Ice Tongue.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041484','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041484"><span>Linkages between sea-ice coverage, pelagic-benthic coupling, and the distribution of spectacled eiders: observations in March 2008, 2009 and 2010, northern Bering Sea</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cooper, L.W.; Sexson, M.G.; Grebmeier, J.M.; Gradinger, R.; Mordy, C.W.; Lovvorn, J.R.</p> <p>2013-01-01</p> <p><span class="hlt">Icebreaker</span>-based sampling in the northern Bering Sea south of St. Lawrence Island in March of 2008, 2009, and 2010 has provided new data on overall ecosystem function early in the annual productive cycle. While water-column chlorophyll concentrations (−2 integrated over the whole water column) are two orders of magnitude lower than observed during the spring bloom in May, sea-ice algal inventories of chlorophyll are high (up to 1 g m−3 in the bottom 2-cm of sea-ice). Vertical fluxes of chlorophyll as measured in sediment traps were between 0.3 to 3.7 mg m−2 d−1 and were consistent with the recent deposition (days to weeks time scale) of chlorophyll to the surface sediments (0–25 mg m−2 present at 0–1 cm). Sediment oxygen respiration rates were lower than previous measurements that followed the spring bloom, but were highest in areas of known high benthic biomass. Early spring release of sedimentary ammonium occurs, particularly southeast of St. Lawrence Island, leading to bottom-water ammonium concentrations of >5 µM. These data, together with other physical, biological, and nutrient data are presented here in conjunction with observed sea-ice dynamics and the distribution of an apex predator, the Spectacled Eider (Somateria fischeri). Sea-ice dynamics in addition to benthic food availability, as determined by sedimentation processes, play a role in the distribution of spectacled eiders, which cannot always access the greatest biomass of their preferred bivalve prey. Overall, the data and observations indicate that the northern Bering Sea is biologically active in late winter, but with strong atmospheric and hydrographic controls. These controls pre-determine nutrient and chlorophyll distributions, water-column mixing, as well as pelagic-benthic coupling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41A0636N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41A0636N"><span>First results from a new interdisciplinary robotic vehicle for under-ice research</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicolaus, M.; Katlein, C.; Schiller, M.</p> <p>2016-12-01</p> <p>Research at the ice-water interface below drifting sea-ice is crucial for the investigation of the fluxes of energy, momentum and matter across the atmosphere-ice-ocean boundary. Transmission of solar energy through the ice and snow layers causes warming of the upper ocean and melting of the ice itself. It is also a key factor for in and under-ice primary production, supplying the ice associated food-chain and causing carbon export to deeper water layers and the sea floor. The complex geometry of sea ice does not only cause a large spatial variability in optical properties of the ice cover, but also influences biomass accumulations and especially the hydrodynamic interaction between the ice cover and the uppermost layers of the ocean. Access to the ice underside is however still sparse, as diving operations are risky and logistically challenging. In the last decade, robotic underwater technologies have evolved significantly and enabled the first targeted large-scale observations by remotely operated and autonomous underwater vehicles. A new remotely operated vehicle was commissioned for under ice research at the Alfred Wegener Institute supported by the FRAM infrastructure program of the Helmholtz-Society. Apart from proven under-ice navigation and operation capabilities, the vehicle provides an extended interdisciplinary sensor platform supporting oceanographic, biological, biogeochemical and physical sea-ice research. Here we present the first preliminary data obtained with the new vehicle during the PS101 expedition of the German <span class="hlt">icebreaker</span> RV Polarstern to the Central Arctic in September and October 2016. Apart from measurements of spectral light transmittance of sea ice during the autumn freeze-up, we show vertical profiles of the bio-optical and oceanographic properties of the upper water column. This data is combined with under-ice topography obtained from upward-looking multibeam sonar, still imagery and HD-video material.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS53C1056K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS53C1056K"><span>Geophysical Characteristics of the Australian-Antarctic Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, S. S.; Lin, J.; Park, S. H.; Choi, H.; Lee, S. M.</p> <p>2014-12-01</p> <p>Between 2011 and 2013, the Korea Polar Research Institute (KOPRI) conducted three consecutive geologic surveys at the little explored eastern ends of the Australian-Antarctic Ridge (AAR) to characterize the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. Using the Korean <span class="hlt">icebreaker</span> R/V Araon, the multi-disciplinary research team collected bathymetry, gravity, magnetics, and rock and water column samples. In addition, Miniature Autonomous Plume Recorders (MAPRs) were deployed at wax-core rock sampling sites to detect the presence of active hydrothermal vents. Here we present a detailed analysis of a 300-km-long supersegment of the AAR to quantify the spatial variations in ridge morphology and robust axial and off-axis volcanisms. The ridge axis morphology alternates between rift valleys and axial highs within relatively short ridge segments. To obtain a geological proxy for regional variations in magma supply, we calculated residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography for seven sub-segments. The results of the analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle than the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the KR1 supersegment of the AAR. The axial topography of the KR1 supersegment exhibits a sharp transition from axial highs at the western end to rift valleys at the eastern end, with regions of axial highs being associated with more magma supply as indicated by more negative RMBA. We also compare and contrast the characteristics of the AAR supersegment with that of other ridges of intermediate spreading rates, including the Juan de Fuca Ridge, Galápagos Spreading Center, and Southeast Indian Ridge west of the Australian-Antarctic Discordance, to investigate the influence of ridge-hotspot interaction on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....16.2185H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....16.2185H"><span>Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.</p> <p>2016-02-01</p> <p>Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the <span class="hlt">icebreaker</span> Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP54A..02J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP54A..02J"><span>The Deglacial to Holocene Paleoceanography of Bering Strait: Results From the SWERUS-C3 Program</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jakobsson, M.; Anderson, L. G.; Backman, J.; Barrientos, N.; Björk, G. M.; Coxall, H.; Cronin, T. M.; De Boer, A. M.; Gemery, L.; Jerram, K.; Johansson, C.; Kirchner, N.; Mayer, L. A.; Mörth, C. M.; Nilsson, J.; Noormets, R. R. N. N.; O'Regan, M.; Pearce, C.; Semiletov, I. P.; Stranne, C.</p> <p>2017-12-01</p> <p>The climate-carbon-cryosphere (C3) interactions in the East Siberian Arctic Ocean and related ocean, river and land areas of the Arctic have been the focus for the SWERUS-C3 Program (Swedish - Russian - US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions). This multi-investigator, multi-disciplinary program was carried out on a two-leg 90-day long expedition in 2014 with Swedish <span class="hlt">icebreaker</span> Oden. One component of the expedition consisted of geophysical mapping and coring of Herald Canyon, located on the Chukchi Sea shelf north of the Bering Strait in the western Arctic Ocean. Herald Canyon is strategically placed to capture the history of the Pacific-Arctic Ocean connection and related changes in Arctic Ocean paleoceanography. Here we present a summary of key results from analyses of the marine geophysical mapping data and cores collected from Herald Canyon on the shelf and slope that proved to be particularly well suited for paleoceanographic reconstruction. For example, we provide a new age constraint of 11 cal ka BP on sediments from the uppermost slope for the initial flooding of the Bering Land Bridge and reestablishment of the Pacific-Arctic Ocean connection following the last glaciation. This age corresponds to meltwater pulse 1b (MWP1b) known as a post-Younger Dryas warming in many sea level and paleoclimate records. In addition, high late Holocene sedimentation rates that range between about 100 and 300 cm kyr-1, in Herald Canyon permitted paleoceanographic reconstructions of ocean circulation and sea ice cover at centennial scales throughout the late Holocene. Evidence suggests varying influence from inflowing Pacific water into the western Arctic Ocean including some evidence for quasi-cyclic variability in several paleoceanographic parameters, e.g. micropaleontological assemblages, isotope geochemistry and sediment physical properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27780582','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27780582"><span>External nutrient loading from land, sea and atmosphere to all 656 Swedish coastal water bodies.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bryhn, Andreas C; Dimberg, Peter H; Bergström, Lena; Fredriksson, Ronny E; Mattila, Johanna; Bergström, Ulf</p> <p>2017-01-30</p> <p>Identifying the main sources of nutrient loading is a key factor for efficient mitigation of eutrophication. This study has investigated the pathways of external nutrient loading to 656 coastal water bodies along the entire Swedish coastline. The studied water bodies have been delineated to meet requirements in the European Union's Water Framework Directive, and recent status assessments have shown that 57% of them fail to attain good or high ecological status with respect to nutrients. The analysis in the study was performed on data from mass-balance based nutrient budgets computed using the modelling framework Vattenwebb. The external nutrient contribution from the sea to the water bodies was highly variable, ranging from about 1% to nearly 100%, but the median contribution was >99% of the total external loading regarding both nitrogen and phosphorus. External loading from the atmosphere and local catchment area played a minor role in general. However, 45 coastal water bodies received >25% of the external nitrogen and phosphorus from their catchments. Loading from land typically peaked in April following <span class="hlt">ice-break</span> and snow melting and was comparatively low during summer. The results indicate that for many eutrophicated Swedish coastal water bodies, nutrient abatement is likely to be optimally effective when potential measures in all of the catchment area of the concerned sea basin are considered. Local-scale mitigation in single water bodies will likely be locally effective only in the small proportion of areas where water and thereby also nutrient input from the catchment is high compared to the influx from the sea. Future studies should include nutrient reduction scenarios in order to refine these conclusions and to identify relevant spatial scales for coastal eutrophication mitigation measures from a water body perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A54D..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A54D..04M"><span>The "Physical feedbacks of Arctic PBL, Sea ice, Cloud and AerosoL (PASCAL)" campaign during the Arctic POLARSTERN expedition PS106 in spring 2017.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macke, A.</p> <p>2017-12-01</p> <p>The Polar regions are important components in the global climate system. The widespread surface snow and ice cover strongly impacts the surface energy budget, which is tightly coupled to global atmospheric and oceanic circulations. The coupling of sea ice, clouds and aerosol in the transition zone between Open Ocean and sea ice is the focus of the PASCAL investigations to improve our understanding of the recent dramatic reduction in Arctic sea-ice. A large variety of active/passive remote sensing, in-situ-aerosol observation, and spectral irradiance measurements have been obtained during the German research <span class="hlt">icebreaker</span> POLARSTERN expedition PS106, and provided detailed information on the atmospheric spatiotemporal structure, aerosol and cloud chemical and microphysical properties as well as the resulting surface radiation budget. Nearly identical measurements at the AWIPEV Base (German - French Research Base) in Ny-Ålesund close to the Open Ocean and collocated airborne activities of the POLAR 5 and POLAR 6 AWI aircraft in the framework of the ACLOUD project have been carried out in parallel. The airborne observations have been supplemented by observations of the boundary layer structure (mean and turbulent quantities) from a tethered balloon reaching up to 1500 m, which was operated at an ice floe station nearby POLARSTERN for two weeks. All observational activities together with intense modelling at various scales are part of the German Collaborative Research Cluster TR 172 "Arctic Amplification" that aims to provide an unprecedented picture of the complex Arctic weather and climate system. The presentation provides an overview of the measurements on-board POLARSTERN and on the ice floe station during PASCAL from May 24 to July 21 2017. We conclude how these and future similar measurements during the one-year ice drift of POLARSTERN in the framework of MOSAiC help to reduce uncertainties in Arctic aerosol-cloud interaction, cloud radiative forcing, and surface</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcDyn..66.1379H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcDyn..66.1379H"><span>Meteorology and oceanography of the Atlantic sector of the Southern Ocean—a review of German achievements from the last decade</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hellmer, Hartmut H.; Rhein, Monika; Heinemann, Günther; Abalichin, Janna; Abouchami, Wafa; Baars, Oliver; Cubasch, Ulrich; Dethloff, Klaus; Ebner, Lars; Fahrbach, Eberhard; Frank, Martin; Gollan, Gereon; Greatbatch, Richard J.; Grieger, Jens; Gryanik, Vladimir M.; Gryschka, Micha; Hauck, Judith; Hoppema, Mario; Huhn, Oliver; Kanzow, Torsten; Koch, Boris P.; König-Langlo, Gert; Langematz, Ulrike; Leckebusch, Gregor C.; Lüpkes, Christof; Paul, Stephan; Rinke, Annette; Rost, Bjoern; van der Loeff, Michiel Rutgers; Schröder, Michael; Seckmeyer, Gunther; Stichel, Torben; Strass, Volker; Timmermann, Ralph; Trimborn, Scarlett; Ulbrich, Uwe; Venchiarutti, Celia; Wacker, Ulrike; Willmes, Sascha; Wolf-Gladrow, Dieter</p> <p>2016-11-01</p> <p>In the early 1980s, Germany started a new era of modern Antarctic research. The Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) was founded and important research platforms such as the German permanent station in Antarctica, today called Neumayer III, and the research <span class="hlt">icebreaker</span> Polarstern were installed. The research primarily focused on the Atlantic sector of the Southern Ocean. In parallel, the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) started a priority program `Antarctic Research' (since 2003 called SPP-1158) to foster and intensify the cooperation between scientists from different German universities and the AWI as well as other institutes involved in polar research. Here, we review the main findings in meteorology and oceanography of the last decade, funded by the priority program. The paper presents field observations and modelling efforts, extending from the stratosphere to the deep ocean. The research spans a large range of temporal and spatial scales, including the interaction of both climate components. In particular, radiative processes, the interaction of the changing ozone layer with large-scale atmospheric circulations, and changes in the sea ice cover are discussed. Climate and weather forecast models provide an insight into the water cycle and the climate change signals associated with synoptic cyclones. Investigations of the atmospheric boundary layer focus on the interaction between atmosphere, sea ice and ocean in the vicinity of polynyas and leads. The chapters dedicated to polar oceanography review the interaction between the ocean and ice shelves with regard to the freshwater input and discuss the changes in water mass characteristics, ventilation and formation rates, crucial for the deepest limb of the global, climate-relevant meridional overturning circulation. They also highlight the associated storage of anthropogenic carbon as well as the cycling of carbon, nutrients and trace metals</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2108C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2108C"><span>A new Arctic seepage site? Preliminary evidence from benthic community</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caridi, Francesca; Sabbatini, Anna; Morigi, Caterina; Giulia Lucchi, Renata</p> <p>2017-04-01</p> <p>The Kveithola Trough is an abrupt and narrow sedimentary system located in the NW Barents Sea. The hydrographic, bio-geochemical conditions and the possible existence of gas seepage activity of the area have been investigated during the Eurofleets 2- BURSTER cruise, conducted on board the German <span class="hlt">icebreaker</span> RV Polarstern. The aim of our work is to characterize the benthic biota and more specifically the macrofaunal community structure coupled to the study of benthic foraminiferal meiofauna. Preliminary qualitative results revealed that in the inner Kveithola Trough, the macrofaunal community is composed by abundant black worm tubes (Chaetopteridae worms and Siboglinidae-like taxa) with presence of Thyasiridae bivalve species. The occurrence of these macrofaunal taxa is usually associated to oxygen-reduced environments, hydrothermal vents and cold seeps. The living benthic foraminiferal assemblage in the same stations is characterized by the presence of typically oxygen-depleted environmental taxa including the calcareous species Nonionellina labradorica and Globobulimina spp.. Conversely, in the outer Kveithola trough, both benthic macrofauna and foraminiferal meiofauna assemblages are characterized by less opportunistic taxa with a higher biodiversity suggesting very distinct oceanographic sea bottom conditions. The organic matter richness plays a large role in the Kveithola Trough environmental setting and may bring anoxic conditions that could affect the biota of the area. In fact, the benthic community structure of this area inhabits suboxic, anoxic and organic-enriched sediments and disturbed environments, forming assemblages with low diversity and high abundances of a few tolerant and/or specialized species. This preliminary finding could be consistent with other studies examining benthic community structure around Svalbard and in particular cold seep and vents habitats where faunal characteristics are patchy, suggesting small-scale heterogeneity in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ACPD...11.8801M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ACPD...11.8801M"><span>Cloud condensation nuclei closure study on summer arctic aerosol</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, M.; Chang, R. Y.-W.; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J. P. D.; Leck, C.; Lohmann, U.</p> <p>2011-03-01</p> <p>We present an aerosol - cloud condensation nuclei CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in summer 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the <span class="hlt">icebreaker</span> Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration is then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory and an internally mixed aerosol. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one. One possible explanation is that the smaller particles that activate at these supersaturations have a relative larger insoluble organic mass fraction and thus are less good CCN than the larger particles. At 0.20, 0.15 and 0.10% supersaturation, the measured CCN number can be represented with different parameters for the hygroscopicity and density of the particles. For the best agreement of the calculated CCNnumber concentration with the measured one the organic fraction of the aerosol needs to be nearly insoluble (қorg=0.02). However, this is not unambigious and қorg=0.2 is found as an upper limit at 0.1% supersaturation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22103582','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22103582"><span>Distribution and air-sea exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf</p> <p>2012-01-03</p> <p>Surface seawater and marine boundary layer air samples were collected on the <span class="hlt">ice-breaker</span> R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from <MDL to 111 pg/L. Latitudinal trends of α-endosulfan, chlorpyrifos, and dicofol in seawater were roughly consistent with their latitudinal trends in air. Trifluralin in seawater was relatively high in the Sea of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi Sea. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi Sea and in East Asia. The air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (<40° N) to equilibrium or net deposition in the North Pacific and the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24182602','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24182602"><span>Development and preliminary evaluation of communication skills training program for oncologists based on patient preferences for communicating bad news.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fujimori, Maiko; Shirai, Yuki; Asai, Mariko; Akizuki, Nobuya; Katsumata, Noriyuki; Kubota, Kaoru; Uchitomi, Yosuke</p> <p>2014-10-01</p> <p>The purposes of this study were to develop a communication skills training (CST) workshop program based on patient preferences, and to evaluate preliminary feasibility of the CST program on the objective performances of physicians and the subjective ratings of their confidence about the communication with patients at the pre- and post-CST. The CST program was developed, based on the previous surveys on patient preferences (setting up the supporting environment of the interview, making consideration for how to deliver bad news, discussing about additional information, and provision of reassurance and emotional support) and addressing the patient's emotion with empathic responses, and stressing the oncologists' emotional support. The program was participants' centered approach, consisted a didactic lecture, role plays with simulated patients, discussions and an <span class="hlt">ice-breaking</span>; a total of 2-days. To evaluate feasibility of the newly developed CST program, oncologists who participated it were assessed their communication performances (behaviors and utterances) during simulated consultation at the pre- and post-CST. Participants also rated their confidence communicating with patients at the pre-, post-, and 3-months after CST, burnout at pre and 3 months after CST, and the helpfulness of the program at post-CST. Sixteen oncologists attended a newly developed CST. A comparison of pre-post measures showed improvement of oncologists' communication performances, especially skills of emotional support and consideration for how to deliver information. Their confidence in communicating bad news was rated higher score at post-CST than at pre-CST and was persisted at 3-months after the CST. Emotional exhaustion scores decreased at 3-months after CST. In addition, oncologists rated high satisfaction with all components of the program. This pilot study suggests that the newly developed CST program based on patient preferences seemed feasible and potentially effective on improving</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20949052','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20949052"><span>Stranger to familiar: wild strepsirhines manage xenophobia by playing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Antonacci, Daniela; Norscia, Ivan; Palagi, Elisabetta</p> <p>2010-10-07</p> <p>The power of play in limiting xenophobia is a well-known phenomenon in humans. Yet, the evidence in social animals remains meager. Here, we aim to determine whether play promotes social tolerance toward strangers in one of the most basal group of primates, the strepsirhines. We observed two groups of wild lemurs (Propithecus verreauxi, Verreaux's sifaka) during the mating season. Data were also collected on nine visiting, outgroup males. We compared the distribution of play, grooming, and aggressive interactions across three conditions: OUT (resident/outgroup interactions), IN (resident/resident interactions in presence of outgroups) and BL-IN (baseline of resident/resident interactions in absence of outgroups). Play frequency between males was higher in OUT than in IN and BL-IN conditions; whereas, grooming was more frequent in IN than in OUT and BL-IN conditions. Aggression rates between resident and outgroup males were significantly higher than those between residents. However, aggressions between resident and outgroup males significantly decreased after the first play session and became comparable with resident-resident aggression levels. The presence of strangers in a well-established group implies the onset of novel social circumstances, which sifaka males cope with by two different tactics: grooming with ingroup males and playing with outgroup ones. The grooming peak, concurrently with the visit of outgroups, probably represents a social shield adopted by resident males to make their pre-existing affiliation more evident to the stranger "audience". Being mostly restricted to unfamiliar males, adult play in sifaka appears to have a role in managing new social situations more than in maintaining old relationships. In particular, our results indicate not only that play is the interface between strangers but also that it has a specific function in reducing xenophobia. In conclusion, play appears to be an <span class="hlt">ice-breaker</span> mechanism in the critical process that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B31D0588K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B31D0588K"><span>Velocity models and images using full waveform inversion and reverse time migration for the offshore permafrost in the Canadian shelf of Beaufort Sea, Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kang, S. G.; Hong, J. K.; Jin, Y. K.; Kim, S.; Kim, Y. G.; Dallimore, S.; Riedel, M.; Shin, C.</p> <p>2015-12-01</p> <p>During Expedition ARA05C (from Aug 26 to Sep 19, 2014) on the Korean <span class="hlt">icebreaker</span> RV ARAON, the multi-channel seismic (MCS) data were acquired on the outer shelf and slope of the Canadian Beaufort Sea to investigate distribution and internal geological structures of the offshore ice-bonded permafrost and gas hydrates, totaling 998 km L-km with 19,962 shots. The MCS data were recorded using a 1500 m long solid-type streamer with 120 channels. Shot and group spacing were 50 m and 12.5 m, respectively. Most MCS survey lines were designed perpendicular and parallel to the strike of the shelf break. Ice-bonded permafrost or ice-bearing sediments are widely distributed under the Beaufort Sea shelf, which have formed during periods of lower sea level when portions of the shelf less than ~100m water depth were an emergent coastal plain exposed to very cold surface. The seismic P-wave velocity is an important geophysical parameter for identifying the distribution of ice-bonded permafrost with high velocity in this area. Recently, full waveform inversion (FWI) and reverse time migration (RTM) are commonly used to delineate detailed seismic velocity information and seismic image of geological structures. FWI is a data fitting procedure based on wave field modeling and numerical analysis to extract quantitative geophysical parameters such as P-, S-wave velocities and density from seismic data. RTM based on 2-way wave equation is a useful technique to construct accurate seismic image with amplitude preserving of field data. In this study, we suggest two-dimensional P-wave velocity model (Figure.1) using the FWI algorithm to delineate the top and bottom boundaries of ice-bonded permafrost in the Canadian shelf of Beaufort Sea. In addition, we construct amplitude preserving migrated seismic image using RTM to interpret the geological history involved with the evolution of permafrost.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMED13A..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMED13A..03L"><span>IPY Storytelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Linder, C. A.; Lippsett, L.; Carlowicz, M.</p> <p>2007-12-01</p> <p>"Live from the Poles" tells the stories of science on ice. This NSF-sponsored education and outreach project (polardiscovery.whoi.edu) aims to go beyond results and sound bites to convey the full experience of polar research with all its trials, triumphs, and nuances. It uses a multimedia approach, including online photo essays posted daily during expeditions, along with videos, interviews, podcasts, animations, and audio clips-plus live satellite phone calls to audiences in major museums and science centers throughout the country. Our media team, typically a science writer and photographer, are embedded into the research program for the duration of the project. They live in the polar environment with the science party, bolstering their ability to convey the "human side" of the story that engages the public: What inspired the researchers to study the Arctic? What do they eat for dinner? How do they cope with the environment and being away from home? What other unexpected challenges will arise and how will they be overcome? The first expedition, in April 2007, shared the excitement of working in Nunavut, Canada, as researchers prepared to deploy instruments at the North Pole Environmental Observatory. The second followed an international scientific team's search for hydrothermal vents aboard the Swedish <span class="hlt">icebreaker</span> Oden in July-August 2007. The Polar Discovery Web site has attracted more than 74,000 online visitors in its first eight months of operation. During the first two expeditions, the project facilitated 15 live audio talks to museum audiences, media outlets, and teacher workshops. This presentation will focus on lessons learned from the first two expeditions, with perspectives on science reporting and writing in the field from a science writer at AGU, and on the art of documentary photography, from photographer and project manager Chris Linder, who will speak via satellite phone from the third Polar Discovery expedition in Antarctica.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008454','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008454"><span>Freeboard, Snow Depth and Sea-Ice Roughness in East Antarctica from In Situ and Multiple Satellite Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Markus, Thorsten; Masson, Robert; Worby, Anthony; Lytle, Victoria; Kurtz, Nathan; Maksym, Ted</p> <p>2011-01-01</p> <p>In October 2003 a campaign on board the Australian <span class="hlt">icebreaker</span> Aurora Australis had the objective to validate standard Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. Additionally, the satellite laser altimeter on the Ice, Cloud and land Elevation Satellite (ICESat) was in operation. To capture the large-scale information on the sea-ice conditions necessary for satellite validation, the measurement strategy was to obtain large-scale sea-ice statistics using extensive sea-ice measurements in a Lagrangian approach. A drifting buoy array, spanning initially 50 km 100 km, was surveyed during the campaign. In situ measurements consisted of 12 transects, 50 500 m, with detailed snow and ice measurements as well as random snow depth sampling of floes within the buoy array using helicopters. In order to increase the amount of coincident in situ and satellite data an approach has been developed to extrapolate measurements in time and in space. Assuming no change in snow depth and freeboard occurred during the period of the campaign on the floes surveyed, we use buoy ice-drift information as well as daily estimates of thin-ice fraction and rough-ice vs smooth-ice fractions from AMSR-E and QuikSCAT, respectively, to estimate kilometer-scale snow depth and freeboard for other days. The results show that ICESat freeboard estimates have a mean difference of 1.8 cm when compared with the in situ data and a correlation coefficient of 0.6. Furthermore, incorporating ICESat roughness information into the AMSR-E snow depth algorithm significantly improves snow depth retrievals. Snow depth retrievals using a combination of AMSR-E and ICESat data agree with in situ data with a mean difference of 2.3 cm and a correlation coefficient of 0.84 with a negligible bias.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1117/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1117/"><span>Environmental Assessment for a Marine Geophysical Survey of Parts of the Arctic Ocean, August-September 2010</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haley, Beth; Ireland, Darren; Childs, Jonathan R.</p> <p>2010-01-01</p> <p>According to the United Nations Convention on the Law of the Sea (UNCLOS), individual nations? sovereign rights extend to 200 nautical miles (n.mi.) (370 km) offshore or to a maritime boundary in an area called the continental shelf. These rights include jurisdiction over all resources in the water column and on and beneath the seabed. Article 76 of UNCLOS also establishes the criteria to determine areas beyond the 200 n.mi. (370 km) limit that could be defined as ?extended continental shelf,? where a nation could extend its sovereign rights over the seafloor and sub-seafloor (As used in UNCLOS, ?continental shelf? refers to a legally defined region of the sea floor rather than a morphological shallow-water area adjacent to continents commonly used by geologists and hydrographers.). This jurisdiction provided in Article 76 includes resources on and below the seafloor but not in the water column. The United States has been acquiring data to determine the outer limits of its extended continental shelf in the Arctic and has a vested interest in declaring and receiving international recognition of the reach of its extended continental shelf. The U.S. collaborated with Canada in 2008 and 2009 on extended continental shelf studies in the Arctic Ocean. The U.S. Coast Guard (USCG) Cutter Healy worked with the Canadian Coast Guard ship Louis S. St. Laurent to map the continental shelf beyond 200 n.mi. (370 km) in the Arctic. Each <span class="hlt">icebreaking</span> vessel contributed different capabilities in order to collect data needed by both nations more efficiently in order to save money, avoid redundancy, and foster cooperation. Generally, the Healy collects bathymetric (sea-floor topography) data and the Louis S. St. Laurent collects seismic reflection profile data. The vessels work in concert when ice conditions are heavy, with one vessel breaking ice for the ship collecting data. The Canadian Environmental Assessments for these projects are available on line at http://www.ceaa.gc.ca/052</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP12C..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP12C..02M"><span>Towards the Complete Characterization of Marine-Terminating Glacier Outlet Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mayer, L. A.; Jakobsson, M.; Mix, A. C.; Jerram, K.; Hogan, K.; Heffron, E.; Muenchow, A.</p> <p>2016-12-01</p> <p>The Petermann Glacier Experiment was aimed at understanding past variations in Petermann Glacier and their relationship to changes in climatic and oceanographic conditions. A critical component of the experiment was a comprehensive program conducted on the <span class="hlt">icebreaker</span> Oden to map submarine glacial landforms, offering insight into past ice dynamics and establishing the overall geomorphological context of the region. Concurrent water-column mapping provided remarkable insight into modern glacial, oceanographic, and biological processes suggesting that a carefully designed experiment could provide a near-complete characterization of marine-terminating glacier outlet systems. Water-column mapping revealed seeps emanating from several seafloor regions. These features appeared along common depth zones and may represent fresh water emanating from a submerged aquifer; initial pore water analyses of cores also imply a fresh water flux into the fjord system. Water-column data also show a spatially consistent but variable distribution of a strong mid-water scattering layer, a biological response possibly tracing the inflow of Atlantic water into the fjord and enhanced by input from local outlet glaciers. The continuous nature of these acoustic records over 30 days offers a complete 4-D picture of the distribution of the scattering layer (and perhaps internal circulation patterns and water-mass interactions) with a spatial and temporal distribution far beyond that achievable by traditional oceanographic stations. Additional, higher-resolution water-column imaging around local outlet glaciers presents a clear picture of subglacial sediment-laden meltwater plumes. Thus in addition to the paleoceanographic information they provided, the acoustic systems deployed captured a 4D-view of many of the modern geological, oceanographic and ecological processes within and adjacent to the Petermann Glacier marine system. With the addition of seafloor and water-column sampling, long</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918342H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918342H"><span>Glacimarine sedimentation in Petermann Fjord and Nares Strait, NW Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hogan, Kelly; Jakobsson, Martin; Mayer, Larry; Mix, Alan; Nielsen, Tove; Kamla, Elina; Reilly, Brendan; Heirman, Katrina An; Stranne, Christian; Mohammed, Rezwan; Eriksson, Bjorn; Jerram, Kevin</p> <p>2017-04-01</p> <p>Here we build on preliminary results from 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) acquired in Petermann Fjord and Nares Strait during the Petermann 2015 Expedition of the Swedish <span class="hlt">icebreaker</span> Oden. We map the unlithified sediment cover in Peterman Fjord, which consists of up to 3 conformable "drape" units and calculate volumes of this assumed "post-glacial" fill. In Nares Strait we have mapped sediment volumes in local basins just beyond the sill at the Petermann Fjord-mouth: do these sediments represent material flushed out from the grounding zone of Petermann Glacier when it was grounded at the sill? In this vein, and interestingly, some of the thickest sediments that we observe are found close to a grounding-zone wedge (GZW) in Nares Strait that represents a former grounding zone of ice retreating southwards through the strait. We also map conformable units across Nares Strait and consider the similarities between these and the sediment units in the fjord. Do the strong reflections between the units represent the same climatic, oceanographic or process-shift both inside and outside the fjord? We also aim to tie our new acoustic stratigraphy to sediment-core data (lithofacies, dates) and, therefore, to comment on the age of the mapped sediment units and present ideas on the glacimarine flux of material to the Petermann-Nares system. Primary sediment delivery to the seafloor in this environment is thought to be predominantly through sedimentation from meltwater plumes but also of iceberg-rafted debris (IRD). However, sediment redeposition by slope failures on a variety of scales also occurs and has focussed sediments into discrete basins where the seafloor is rugged. This work - which aims to relate past sediment, meltwater and iceberg fluxes to changes in climate - will help us to identify how the system has responded to a past global warming event, namely the last deglaciation. This is particularly relevant in light of the recent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12699914','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12699914"><span>Measurements of mercury in the near-surface layer of the atmosphere of the Russian Arctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Golubeva, N; Burtseva, L; Matishov, G</p> <p>2003-05-01</p> <p>A series of measurements of gaseous elemental mercury concentrations in near-surface air of the Russian Arctic Region were carried out from 1994 to 1997. The measurements were conducted in Murmansk at a stationary site in April-May 1994, on a cruise in Motovsky Bay and Kola Bay during May-June 1996, and along the Russian Northern Sea Route in April-May 1997 on board the nuclear <span class="hlt">icebreaker</span> 'Soviet Union'. Silver absorption was used for trapping of mercury and the mass of mercury was determined by cold vapour atomic absorption spectrophotometery. Detection limits were approximately 0.3 ng/m(3) (+/- error 46%). Sixty samples were selected and analysed. Sample volumes were 2.2 m(3) ashore, and up to 6.6 m(3) over water. The meteorological conditions, including a wind speed and direction, during the sampling period were typical of the spring-summer period of year, and therefore the concentrations of atmospheric mercury are regarded as representative for this season. The mean concentrations of mercury ranged from 2.2 ng/m(3) for Murmansk city, 1.7 ng/m(3) for Kola Bay, 1.6 ng/m(3) for Motovsky Bay, 1.1 ng/m(3) for the eastern part of the Barents Sea and 0.7 ng/m(3) for the western part of the Kara Sea. The levels of mercury in Murmansk, and over Kola and Motovsky Bays were associated with a primary direction of a near-surface wind from the nearest sources of mercury emission located in the Russian North region. These are the non-ferrous metallurgical plants in Nickel in the case of Motovsky Bay and Murmansk garbage-disposal plant, for sampling points in Murmansk and over Kola Bay. These concentrations of mercury, measured in the spring-summer season, in near-surface air of the Russian North, are more than two-fold lower than the concentrations that are typical of continental background regions in western Russia, and are comparable to the concentrations measured in the Arctic regions of other countries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/877535','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/877535"><span>Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Janet Intrieri; Mathhew Shupe</p> <p>2005-01-01</p> <p>Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an <span class="hlt">icebreaker</span> frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cyclesmore » of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/828460','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/828460"><span>The NSA/SHEBA Cloud & Radiation Comparison Study</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Janet M. Intrieri; Matthew D. Shupe</p> <p>2004-08-23</p> <p>Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from 1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and 2) the SHEBA field program, which was conducted from an <span class="hlt">icebreaker</span> frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cyclesmore » of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1121635','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1121635"><span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wissemann, Chris; White, Stanley M</p> <p></p> <p>The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo <span class="hlt">Icebreaker</span> Project (FOA DE-EE0005989) geotechnical programmore » to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project; Developed a cost model and “baseline” LCOE; Documented Site Conditions within Lake Erie; Developed Fabrication, Installation and Foundations Innovative Concept Designs; Evaluated LCOE Impact of Innovations; Developed Assembly line “Rail System” for GBF Construction and Staging; Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System; Developed GBF with “Penetration Skirt”; Developed Integrated GBF with Turbine Tower; Developed Turbine, Plant Layout and O</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....11410J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....11410J"><span>JEODI Workshop: Arctic site survey challenges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jokat, W.; Backman, J.; Kristoffersen, Y.; Mikkelsen, N.; Thiede, J.</p> <p>2003-04-01</p> <p>In past decades the geoscientific activities in the High Arctic were rather low compared to other areas on the globe. The remoteness of the region and the difficult logistical conditions made Arctic research very expensive and the results unpredictable. In the late 80's this situation changed to the better since modern research <span class="hlt">icebreaker</span> became available to the scientific community. These research platforms provided opportunities in terms of equipment, which was standard in other regions. Where necessary techniques were adapted allowing to conduct the experiments even in difficult ice conditions, e.g. multi-channel seismic. In the last decade the Arctic Ocean were identified to play a key role in our understanding of the Earth's climate. An urgent need for scientific deep drill holes in the central Arctic was obvious to better understand the climate evolution of the past in a regional and global sense. However, to select and prepare the drilling experiments sufficient site survey data, especially seismic data, are needed. These problems were addressed during a recent JEODI workshop in Copenhagen. The participants recommended dedicated expeditions tothe Alpha-Mendeleev Ridge, the Lomonosov Ridge and the Gakkel Ridge to provide a critical amount of geophysical data for future drilling efforts. An international expedition to the Alpha-Mendeleev Ridge was proposed as part of the International Geophysical Polar Year 2006/07 to investigate the least known oceanic ridge of the world's ocean. Besides scientific targets in the High Arctic it became obvious during the workshop that in the marginal seas and plateaux sufficient geophysical data exist to submit drilling proposals like for the Yermak Plateau, the Chukchi Plateau/Northwind Ridge and Laptew Sea continental margin. These proposals would perfectly complement the highly ranked drilling proposal on Lomonosov Ridge, which hopefully can be drilled in 2004 within the ODP/IODP programme. This presentation will provide</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2004/1243','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2004/1243"><span>Seismic reflection and refraction data acquired in Canada Basin, Northwind Ridge and Northwind Basin, Arctic Ocean in 1988, 1992 and 1993</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grantz, Arthur; Hart, Patrick E.; May, Steven D.</p> <p>2004-01-01</p> <p>Seismic reflection and refraction data were collected in generally ice-covered waters of the Canada Basin and the eastern part of the Chukchi Continental Borderland of the Amerasia Basin, Arctic Ocean, during the late summers of 1988, 1992, and 1993. The data were acquired from a Polar class <span class="hlt">icebreaker</span>, the U.S. Coast Guard Cutter Polar Star, using a seismic reflection system designed by the U.S. Geological Survey (USGS). The northernmost data extend to 78? 48' N latitude. In 1988, 155 km of reflection data were acquired with a prototype system consisting of a single 195 cubic inch air gun seismic source and a two-channel hydrophone streamer with a 150-m active section. In 1992 and 1993, 500 and 1,900 km, respectively, of seismic reflection profile data were acquired with an improved six air gun, 674 to 1303 cubic inch tuned seismic source array and the same two-channel streamer. In 1993, a 12-channel streamer with a 150-m active section was used to record five of the reflection lines and one line was acquired using a three air gun, 3,000 cubic inch source. All data were recorded with a DFS-V digital seismic recorder. Processed sections feature high quality vertical incidence images to more than 6 km of sub-bottom penetration in the Canada Basin. Refraction data were acquired with U.S. Navy sonobuoys recorded simultaneously with the seismic reflection profiles. In 1988 eight refraction profiles were recorded with the single air gun, and in 1992 and 1993 a total of 47 refraction profiles were recorded with the six air gun array. The sonobuoy refraction records, with offsets up to 35 km, provide acoustic velocity information to complement the short-offset reflection data. The report includes trackline maps showing the location of the data, as well as both digital data files (SEG-Y) and images of all of the profiles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11601536','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11601536"><span>Radioactive waste disposal in seas adjacent to the territory of the Russian Federation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yablokov, A V</p> <p>2001-01-01</p> <p>The former USSR illegally dumped into the ocean liquid and solid radioactive wastes (RW) originating from nuclear-powered vessels and ships. The Russian President created a special Commission to analyse both the scale and consequences of this activity. According to documentary data and expert estimates at the Commission's disposal, the maximum activity of RW that entered the seas adjacent to Russian territory could have been as much as 2,500 kCi at the time of disposal. The greatest radio-ecological hazard comes from reactors from nuclear submarines and core plates of the nuclear <span class="hlt">icebreaker</span> 'Lenin', which had spent nuclear fuel in place and which were dumped in shallow water in the Kara Sea near Novaya Zemlya. Editor's note: This article extracts material from a Commission which published a report produced in Russia in 1993. Numerous sources in many Ministries and other government agencies, noted in the text, formed the basis for the final draft. The authors of the draft report were A. Yablokov, V. Karasev, V. Rumyantsev, M. Kokeev, O. Petrov, V. Lystsov, A. Yemelyanenkov and P. Rubtsov. After approving the draft report, the Commission submitted the report to the President of the Russian Federation in February 1993. By Presidential decision, this report (after several technical corrections) was open to the public: it is known variously as 'the Yablokov Commission report, or more simply the 'Yablokov Report', the 'White Book' or 'Yablokov White Paper'. During April-May 1993, 500 copies were distributed among governmental agencies inside Russia, and abroad through a net of Russian Embassies. This article was later sent to Dr Mike Champ as part of the ongoing collections of papers on the Arctic published in this journal (edited by Champ et al.: 1997 'Contaminants in the Arctic', Marine Pollution Bulletin 35, pp. 203-385 and in Marine Pollution Bulletin 2000, vol. 40, pp. 801-868, and continued with the present collection).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2951354','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2951354"><span>Stranger to Familiar: Wild Strepsirhines Manage Xenophobia by Playing</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Antonacci, Daniela; Norscia, Ivan; Palagi, Elisabetta</p> <p>2010-01-01</p> <p>The power of play in limiting xenophobia is a well-known phenomenon in humans. Yet, the evidence in social animals remains meager. Here, we aim to determine whether play promotes social tolerance toward strangers in one of the most basal group of primates, the strepsirhines. We observed two groups of wild lemurs (Propithecus verreauxi, Verreaux's sifaka) during the mating season. Data were also collected on nine visiting, outgroup males. We compared the distribution of play, grooming, and aggressive interactions across three conditions: OUT (resident/outgroup interactions), IN (resident/resident interactions in presence of outgroups) and BL-IN (baseline of resident/resident interactions in absence of outgroups). Play frequency between males was higher in OUT than in IN and BL-IN conditions; whereas, grooming was more frequent in IN than in OUT and BL-IN conditions. Aggression rates between resident and outgroup males were significantly higher than those between residents. However, aggressions between resident and outgroup males significantly decreased after the first play session and became comparable with resident-resident aggression levels. The presence of strangers in a well-established group implies the onset of novel social circumstances, which sifaka males cope with by two different tactics: grooming with ingroup males and playing with outgroup ones. The grooming peak, concurrently with the visit of outgroups, probably represents a social shield adopted by resident males to make their pre-existing affiliation more evident to the stranger “audience”. Being mostly restricted to unfamiliar males, adult play in sifaka appears to have a role in managing new social situations more than in maintaining old relationships. In particular, our results indicate not only that play is the interface between strangers but also that it has a specific function in reducing xenophobia. In conclusion, play appears to be an <span class="hlt">ice-breaker</span> mechanism in the critical process that </p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ACPD...1529125H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ACPD...1529125H"><span>Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.</p> <p>2015-10-01</p> <p>The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the <span class="hlt">ice-breaker</span> Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811770L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811770L"><span>Visualizing landscape hydrology as a means of education - The water cycle in a box</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehr, Christian; Rauneker, Philipp; Fahle, Marcus; Hohenbrink, Tobias; Böttcher, Steven; Natkhin, Marco; Thomas, Björn; Dannowski, Ralf; Schwien, Bernd; Lischeid, Gunnar</p> <p>2016-04-01</p> <p>We used an aquarium to construct a physical model of the water cycle. The model can be used to visualize the movement of the water through the landscape from precipitation and infiltration via surface and subsurface flow to discharge into the sea. The model consists of two aquifers that are divided by a loamy aquitard. The 'geological' setting enables us to establish confining groundwater conditions and to demonstrate the functioning of artesian wells. Furthermore, small experiments with colored water as tracer can be performed to identify flow paths below the ground, simulate water supply problems like pollution of drinking water wells from inflowing contaminated groundwater or changes in subsurface flow direction due to changes in the predominant pressure gradients. Hydrological basics such as the connectivity of streams, lakes and the surrounding groundwater or the dependency of groundwater flow velocity from different substrates can directly be visualized. We used the model as an instructive tool in education and for public relations. We presented the model to different audiences from primary school pupils to laymen, students of hydrology up to university professors. The model was presented to the scientific community as part of the "Face of the Earth" exhibition at the EGU general assembly 2014. Independent of the antecedent knowledge of the audience, the predominant reactions were very positive. The model often acted as <span class="hlt">icebreaker</span> to get a conversation on hydrological topics started. Because of the great interest, we prepared video material and a photo documentation on 1) the construction of the model and 2) the visualization of steady and dynamic hydrological situations. The videos will be published soon under creative common license and the collected material will be made accessible online. Accompanying documents will address professionals in hydrology as well as non-experts. In the PICO session, we will present details about the construction of the model</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A23I..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A23I..03M"><span>Sources of Dimethyl Sulfide in the Canadian Arctic Archipelago and Baffin Bay</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mungall, E. L.; Croft, B.; Lizotte, M.; Thomas, J. L.; Murphy, J. G.; Levasseur, M.; Martin, R.; Wentzell, J. J. B.; Liggio, J.; Abbatt, J.</p> <p>2015-12-01</p> <p>Dimethyl sulfide plays a major role in the global sulfur cycle, meaning that it is important to the formation of sulfate aerosol and thus to cloud condensation nuclei populations and cloud formation. The summertime Arctic atmosphere sometimes resides in a cloud condensation nuclei limited regime, making it very susceptible to changes in their number. Despite the interest generated by this situation, dimethyl sulfide has only rarely been measured in the summertime Arctic. This work presents the first high time resolution (10 Hz) DMS mixing ratio measurements for the Eastern Canadian Archipelago and Baffin Bay in summer performed on an <span class="hlt">icebreaker</span> cruise as one component of the Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments (NETCARE). Measured mixing ratios ranged from below the detection limit of 4 pptv to 1155 pptv with a median value of 186 pptv. We used transfer velocity parameterizations from the literature to generate the first flux estimates for this region in summer, which ranged from 0.02-12 μmol m-2 d-1. DMS has a lifetime against OH oxidation of 1-2 days, allowing both local sources and transport to play roles in its atmospheric mixing ratio. Through air mass trajectory analysis using FLEXPART-WRF and chemical transport modeling using GEOS-Chem, we have identified the relative contributions of local sources (Lancaster Sound and Baffin Bay) as well as transport from further afield (the Hudson Bay System and the Beaufort Sea) and find that the local sources dominate. GEOS-Chem is able to reproduce the major features of the measured time series, but is biased low overall (median 72 pptv). We discuss non-marine sources that could account for this low bias and estimate the possible contributions to DMS mixing ratios from lakes, biomass burning, melt ponds and coastal tundra. Our results show that local marine sources of DMS dominate the summer Arctic atmosphere, but that non-local and possibly non</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53E0942K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53E0942K"><span>Evaporative fractionation of marine water isotopes in the Arctic Ocean help understand a changing Arctic water cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, E. S.; Welker, J. M.</p> <p>2017-12-01</p> <p>Most of the global hydrologic cycle occurs in oceanic waters. This oceanic derived moisture is critical to the precipitation and evapotranspiration regimes that influence terrestrial Earth systems. Thus understanding oceanic water processes has important global implications for our knowledge of modern and past hydrologic cycles. As they are influenced by environmental variables such as sea surface temperature and atmospheric humidity, water isotope ratios (e.g., δ18O, δ2H) can help understand the patterns driving the water cycle. However, our knowledge of marine isotopes is relatively limited. In particular, the fractionation of water isotopes during evaporation of oceanic water, essentially the start of the hydrologic cycle, is largely based on theoretical relationships derived from spatially and temporally limited data sets. This constrained understanding of oceanic evaporation fractionation patterns is especially pronounced in the rapidly changing Arctic Ocean. These changes are associated with reduced sea ice coverage, which is increasing the amount of local Artic Ocean sourced moisture in atmospheric and terrestrial systems and amplifying the Arctic hydrologic cycle. Here we present new data revealing the nuances of evaporative fractionation of Arctic Ocean water isotopes with the first collection of continuous, contemporaneous sea water and vapor isotopes. These data, collected in situ aboard the <span class="hlt">icebreaker</span> Healy, show that the difference between actual ocean vapor isotope values and vapor values estimated by the closure equation increases progressively with latitude (especially beyond 70°) and varies between δ18O and δ2H. These differences are likely due to more isotopic mixing in the troposphere and/or closure equation assumptions inapplicable to Arctic regions. Moreover, we find: 1) a positive relationship between fractionation magnitude and latitude; and 2) the influence of evaporative fractionation from environmental variables such as wind and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A23I..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A23I..01A"><span>Insights into aerosols, chemistry, and clouds from NETCARE: Observations from the Canadian Arctic in summer 2014</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbatt, J.</p> <p>2015-12-01</p> <p>The Canadian Network on Aerosols and Climate: Addressing Key Uncertainties in Remote Canadian Regions (or NETCARE) was established in 2013 to study the interactions between aerosols, chemistry, clouds and climate. The network brings together Canadian academic and government researchers, along with key international collaborators. Attention is being given to observations and modeling of Arctic aerosol, with the goal to understand underlying processes and so improve predictions of aerosol climate forcing. Motivation to understand the summer Arctic atmosphere comes from the retreat of summer sea ice and associated increase in marine influence. To address these goals, a suite of measurements was conducted from two platforms in summer 2014 in the Canadian Arctic, i.e. an aircraft-based campaign on the Alfred Wegener Institute POLAR 6 and an ocean-based campaign from the CGCS Amundsen <span class="hlt">icebreaker</span>. NETCARE-POLAR was based out of Resolute Bay, Nunavut during an initial period of little transport and cloud-free conditions and a later period characterized by more transport with potentially biomass burning influence. Measurements included particle and cloud droplet numbers and size distributions, aerosol composition, cloud nuclei, and levels of gaseous tracers. Ultrafine particle events were more frequently observed in the marine boundary layer than above, with particle growth observed in some cases to cloud condensation nucleus sizes. The influence of biological processes on atmospheric constituents was also assessed from the ship during NETCARE-AMUNDSEN, as indicated by high measured levels of gaseous ammonia, DMS and oxygenated VOCs, as well as isolated particle formation and growth episodes. The cruise took place in Baffin Bay and through the Canadian archipelago. Interpretation of the observations from both campaigns is enhanced through the use of chemical transport and particle dispersion models. This talk will provide an overview of NETCARE Arctic observational and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMED23B1253C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMED23B1253C"><span>Broader Impact and the Arctic Coring Expedition of Summer 2004: A Science Teacher Brings the Pole to the Public</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Couchon, K. M.</p> <p>2006-12-01</p> <p>The ARMADA Project, funded by NSF and administered through the University of Rhode Island Office of Marine Programs, pairs 12-14 teachers with ocean, polar, and environmental scientists each year, affording these teachers an authentic research experience. One middle-school science teacher, Kathleen Couchon of Narragansett, Rhode Island, participated in the IODP Arctic Coring Expedition (ACEX) in the summer of 2004. Sailing for 6 weeks aboard the Swedish <span class="hlt">Icebreaker</span> Oden, Kathleen participated in many aspects of the polar ocean-drilling expedition and was accepted by scientists and crew alike as part of the international science party. Upon return to the classroom, Kathleen found multiple opportunities to share her Arctic research experiences through effective public outreach both within and outside of the educational community. In the classroom, she has developed and implemented inquiry-based activities, allowing her students the opportunity to function as scientists themselves. Mentoring new science teachers within the district and presenting multi- media presentations to other teachers and students at the Narragansett Pier Middle School and Narragansett High School in Rhode Island, provided a wider audience for this important polar geoscience enterprise. An expanded circle of impact was gained through presentations at local district, state, and national teacher gatherings, including two National Science Teacher Association annual conventions and a high school audience at Arcadia High School in Phoenix, Arizona. Within the community-at-large, Kathleen has impacted diverse audiences including the Girl Scouts, the Rotary Club, and senior citizen groups - all enthusiastically receptive and appreciative of hearing the scientific news of research from the North Pole. These experiences have served to establish a linkage between the scientific community and the public, with a teacher-researcher sharing and interpreting the scientific research goals and methodologies, as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMED21D0603R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMED21D0603R"><span>Mapping the Arctic: Online Undergraduate Education Using Scientific Research in International Policy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reed, D. L.; Edwards, B. D.; Gibbons, H.</p> <p>2011-12-01</p> <p>Ocean science education has the opportunity to span traditional academic disciplines and undergraduate curricula because of its interdisciplinary approach to address contemporary issues on a global scale. Here we report one such opportunity, which involves the development of a virtual oceanographic expedition to map the seafloor in the Arctic Ocean for use in the online Global Studies program at San Jose State University. The U.S. Extended Continental Shelf Project provides an extensive online resource to follow the activities of the third joint U.S. and Canada expedition in the Arctic Ocean, the 2010 Extended Continental Shelf survey, involving the <span class="hlt">icebreakers</span> USCGC Healy and CCGS Louis S. St-Laurent. In the virtual expedition, students join the work of scientists from the U.S. Geological Survey and the Canadian Geological Survey by working through 21 linked web pages that combine text, audio, video, animations and graphics to first learn about the U.N. Convention on the Law of the Sea (UNCLOS). Then, students gain insight into the complexity of science and policy interactions by relating the UNCLOS to issues in the Arctic Ocean, now increasingly accessible to exploration and development as a result of climate change. By participating on the virtual expedition, students learn the criteria contained in Article 76 of UNCLOS that are used to define the extended continental shelf and the scientific methods used to visualize the seafloor in three-dimensions. In addition to experiencing life at sea aboard a research vessel, at least virtually, students begin to interpret the meaning of seafloor features and the use of seafloor sediment samples to understand the application of ocean science to international issues, such as the implications of climate change, national sovereign rights as defined by the UNCLOS, and marine resources. The virtual expedition demonstrates that ocean science education can extend beyond traditional geoscience courses by taking advantage of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.C21A0064F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.C21A0064F"><span>Measurements of Turbulent Fluxes over Sea Ice Region in the Sea of Okhotsk.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujisaki, A.; Yamaguchi, H.; Toyota, T.; Futatsudera, A.; Miyanaga, M.</p> <p>2007-12-01</p> <p>The measurements of turbulent fluxes over sea ice area were done in the southern part of the Sea of Okhotsk, during the cruises of the <span class="hlt">ice-breaker</span> P/V 'Soya' in 2000-2005. The air-ice drag coefficients CDN were 3.57×10-3 over small floes \\left(diameter:φ=20- 100m\\right), 3.38×10-3 over medium floes \\left(φ=100-500m\\right), and 2.12×10-3 over big floes \\left( φ=500m-2km\\right), which showed a decrease with the increase of floe size. This is because the smaller floes contribue to the roughness of sea-ice area by their edges more than the larger ones. The average CDN values showed a gradual upslope with ice concentration, which is simply due to the rougher surface of sea ice than that of open water, while they showed a slight decline at ice concentration 100%, which is possibly due to the lack of freeboard effect of lateral side of floes. We also compared the relation between the roughness length zM and the friction velocity u* with the model developed in the previous study. The zM-u* relation well corresponded with the model results, while the range of zM we obtained was larger than those obtained at the Ice Station Weddell and during the Surface Heat Budget of the Arctic Ocean project. The sensible heat transfer coefficients CHN were 1.35×10-3 at 80-90% ice concentration, and 0.95×10-3 at 100% ice concentration, which are comparable with the results of the past reaserches. On the other hand, we obtained a maximum CHN value of 2.39×10-3at 20-50% ice concentration, and 2.35×10-3 over open water, which are more than twice as the typical value of 1.0×10-3 over open water. These large CHN values are due to the significant upward sensible heat flux during the measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP24A..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP24A..03R"><span>Past collapse and late Holocene reestablishment of the Petermann Ice Tongue, Northwest Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.</p> <p>2017-12-01</p> <p>Petermann Glacier, Northwest Greenland, has been a stable outlet glacier of the Greenland Ice Sheet on historical timescales. Yet, anomalous calving events in 2010 and 2012 and oceanographic studies over the last decade indicate that Petermann Glacier and its ice tongue are especially sensitive to ice-ocean interactions, leading many to speculate on its future stability. To place these observations in the context of a longer timeframe and better understand the sensitivity of Petermann Glacier to future climate change, a 2015 international and interdisciplinary expedition of the <span class="hlt">Icebreaker</span> Oden collected a suite of sediment cores from Petermann Fjord, spanning the mid to late Holocene and forming a transect from beneath the modern ice tongue to the mouth of the fjord (25 - 80 km from the modern grounding line). We characterize the stratigraphy ( 5.5 - 6.5 m at piston core sites) using a combination of X-ray fluorescence (XRF) scanning geochemistry, computed tomography (CT) scanning, and particle-size specific magnetic measurements on these cores and nearby terrestrial samples. Age-depth modeling, based on radiocarbon dated benthic foraminifera, is in progress with reservoir age corrections assessed using paleomagnetic comparisons to regional and global records. We observe changes in the composition and spatial pattern of ice rafted debris (IRD) and sediment fabric that reveal a dynamic history. Following early Holocene deglaciation of the region, a paleo-ice tongue broke up and an extended period of seasonally open marine conditions ensued through the middle Holocene. This ice-tongue collapse was followed by a large increase in the relative abundance of Petermann sourced IRD of non-local granitic composition. This granitic IRD component steadily declined through the middle Holocene, reaching negligible contributions when the ice tongue was reestablished in the late Holocene. Regional paleoenvironmental studies suggest warmer oceanographic and atmospheric conditions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....1713119C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....1713119C"><span>Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collins, Douglas B.; Burkart, Julia; Chang, Rachel Y.-W.; Lizotte, Martine; Boivin-Rioux, Aude; Blais, Marjolaine; Mungall, Emma L.; Boyer, Matthew; Irish, Victoria E.; Massé, Guillaume; Kunkel, Daniel; Tremblay, Jean-Éric; Papakyriakou, Tim; Bertram, Allan K.; Bozem, Heiko; Gosselin, Michel; Levasseur, Maurice; Abbatt, Jonathan P. D.</p> <p>2017-11-01</p> <p>The source strength and capability of aerosol particles in the Arctic to act as cloud condensation nuclei have important implications for understanding the indirect aerosol-cloud effect within the polar climate system. It has been shown in several Arctic regions that ultrafine particle (UFP) formation and growth is a key contributor to aerosol number concentrations during the summer. This study uses aerosol number size distribution measurements from shipboard expeditions aboard the research <span class="hlt">icebreaker</span> CCGS Amundsen in the summers of 2014 and 2016 throughout the Canadian Arctic to gain a deeper understanding of the drivers of UFP formation and growth within this marine boundary layer. UFP number concentrations (diameter > 4 nm) in the range of 101-104 cm-3 were observed during the two seasons, with concentrations greater than 103 cm-3 occurring more frequently in 2016. Higher concentrations in 2016 were associated with UFP formation and growth, with events occurring on 41 % of days, while events were only observed on 6 % of days in 2014. Assessment of relevant parameters for aerosol nucleation showed that the median condensation sink in this region was approximately 1.2 h-1 in 2016 and 2.2 h-1 in 2014, which lie at the lower end of ranges observed at even the most remote stations reported in the literature. Apparent growth rates of all observed events in both expeditions averaged 4.3 ± 4.1 nm h-1, in general agreement with other recent studies at similar latitudes. Higher solar radiation, lower cloud fractions, and lower sea ice concentrations combined with differences in the developmental stage and activity of marine microbial communities within the Canadian Arctic were documented and help explain differences between the aerosol measurements made during the 2014 and 2016 expeditions. These findings help to motivate further studies of biosphere-atmosphere interactions within the Arctic marine environment to explain the production of UFP and their growth to sizes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED41A0823N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED41A0823N"><span>Carbon Sinks in a Changing Climate: Relative Buoyancy and Sinking Potentials of Various Antarctic Phytoplankton and Ice Algae</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nirmel, S.; Selz, V.</p> <p>2016-12-01</p> <p>Polar phytoplankton play instrumental roles in global biogeochemical cycles, sometimes serving as massive carbon sinks via the biological pump. In addition to phytoplankton, sea ice supports a significant amount of ice algae, the essential primary producers for the ecosystem in winter and early spring. While sea ice habitat declines on regional scales, the fate of sea ice algae post-ice melt remains relatively unknown, despite its importance in understanding how the biological pump might be affected by sea ice loss. Through a series of settling column experiments on the <span class="hlt">icebreaker</span> Nathaniel B. Palmer, we aimed to address the question: What controls the fate of the carbon-rich ice algae across the Western Antarctic Peninsula (WAP) during ice melt? We focused on whether species composition affects the sinking potential of ice algal communities. Using FlowCAM imagery, we classified samples collected from the buoyant, neutral, and negatively buoyant portions of the settling columns into genus-level taxonomic classes. We used image parameters and geometric shape equations to calculate the biovolume of each taxonomic group. We further explored relationships between taxa-specific sinking potentials, environmental parameters (temperature and nutrients), and physiological properties of associated algal communities (as described by Fast Rate Repetition fluorometry). Results indicate that colonial Phaeocystis antarctica tends to dominate lower regions of the settling column. Moreover, we observe strong correlations between geographic location and both nutrients and phytoplankton physiology. We found that these three factors are indeed related to taxa-specific buoyancy and sinking indices. An understanding of these relationships sheds more light on the role P. antarctica (a carbon-rich bloom-forming genus) plays in the biological pump; higher sinking rates suggest greater carbon export to depth, while lower sinking rates increase the likelihood of carbon being respired back</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24417125','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24417125"><span>[Distribution pattern of microphytoplankton in the Bering Sea during the summer of 2010].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Geng-Ming; Yang, Qing-Liang; Wang, Yu</p> <p>2013-09-01</p> <p>Based on the analysis of 70 water samples collected by the Chinese <span class="hlt">icebreaker</span> Xuelong in the areas of 52 degrees 42.29'-65 degrees 30.23' N and 169 degrees 20.85' E-179 degrees 30.37' W in the Bering Sea during the Chinese Arctic Research Expedition on July 10-19, 2010, a total of 143 phytoplankton species were identified, including 95 diatom species belonging to 37 genera, 44 dinoflagellate species belonging to 15 genera, 2 Chlorophyta species belonging to 2 genera, 1 Euglenophyta belonging to 1 genus, and 1 Chrysophyta species belonging to 1 genus. The cluster analysis revealed that the phytoplankton in the study areas could be divided as oceanic and shallow water groups. The oceanic group found in the western North Pacific Ocean and the Bering Basin was dominated by the boreal oceanic species such as Neodenticula seminae and Chaetoceros atlanticus and the cosmopolitan species such as Thalassionema nitzschioides and Chaetoceros compressus, with the characteristics of low abundance and high evenness of diversified species. The shallow water group found in the continental shelf and slope of Bering Sea was mostly composed of the pan-arctic neritic species such as Thalassiosira nordenskioldi and Chaetoceros furcellatus and the cosmopolitan species such as Leptocylindrus danicus and Chaetoceros curvisetus, with the characteristics of low species diversity and evenness index due to the high abundance in certain species. The phytoplankton abundance in the surface water layer distributed unevenly among the stations, ranging from 950 to 192400 cells x L(-1) and with an average of 58722 cells x L(-1). Horizontally, the abundance distribution trend was decreased in the order of the Bering Sea shelf, the Bering Sea slope, the Bering Sea basin, and the western North Pacific Ocean. Vertically, the abundance was lower in surface layer and maximized in the thermocline, suggesting that the phytoplankton abundance in vertical distribution varied with the regional thermocline.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC21A1041N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC21A1041N"><span>The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicolaus, M.; Rex, M.; Dethloff, K.; Shupe, M.; Sommerfeld, A.</p> <p>2016-12-01</p> <p>The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is a key international flagship initiative under the auspices of the International Arctic Science Committee (IASC). The main aim of MOSAiC is to improve our understanding of the functioning of the Arctic coupled system with a complex interplay between processes in the atmosphere, ocean, sea ice and ecosystem coupled through bio-geochemical interactions. The main objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Observations covering a full annual cycle over the Arctic Ocean of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The main scientific goals focus on data assimilation for numerical weather prediction models, improved sea ice forecasts and climate models, ground truth for satellite remote sensing, energy budget and fluxes through interfaces, sources, sinks and cycles of chemical species, boundary layer processes, habitat conditions and primary productivity and stakeholder services. The MOSAiC Observatory will be deployed in, and drift with, the Arctic sea-ice pack for a full annual cycle, starting in fall 2019 and ending in fall 2020. Initial drift plans are to start in the newly forming fall sea-ice in the East Siberian Sea and follow the Transpolar Drift. The German Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research will made a huge contribution with the <span class="hlt">icebreaker</span> Polarstern to serve as the central drifting observatory for this year long drift, and the US Department of Energy has committed a comprehensive atmospheric measurement suite. Many other</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP12C..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP12C..01M"><span>The Petermann Glacier Experiment, NW Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mix, A. C.; Jakobsson, M.; Andrews, J. T.; Jennings, A. E.; Mayer, L. A.; Marcott, S. A.; Muenchow, A.; Stoner, J. S.; Andresen, C. S.; Nicholls, K. W.; Anderson, S. T.; Brook, E.; Ceperley, E. G.; Cheseby, M.; Clark, J.; Dalerum, F.; Dyke, L. M.; Einarsson, D.; Eriksson, B.; Frojd, C.; Glueder, A.; Hedman, U.; Heirman, K.; Heuzé, C.; Hogan, K.; Holden, R.; Holm, C.; Jerram, K.; Krutzfeldt, J.; Nicolas, L.; Par, L.; Lomac-MacNair, K.; Madlener, S.; McKay, J. L.; Meijer, T.; Meiton, A.; Brian, M.; Mohammed, R.; Molin, M.; Moser, C.; Normark, E.; Padman, J.; Pecnerova, P.; Reilly, B.; Reusche, M.; Ross, A.; Stranne, C.; Trinhammer, P.; Walczak, M. H.; Walczak, P.; Washam, P.; Karasti, M.; Anker, P.</p> <p>2016-12-01</p> <p>The Petermann Glacier Experiment is a comprehensive study on land, ocean, and ice in Northwest Greenland, staged from Swedish <span class="hlt">Icebreaker</span> Oden in 2015 as a collaboration between the US, Sweden, UK, and Denmark. This talk introduces the strategic goals of the experiment and connects the various scientific results. Petermann Glacier drains a significant marine-based sector of the northern Greenland Ice Sheet and terminates in a floating ice tongue, one of the largest remaining systems of its kind in the northern hemisphere. Records of the modern state of Petermann Glacier and its past variations are of interest to understand the sensitivity of marine terminating outlet glaciers to change, and to constrain the rates and extent of changes that have actually occurred. With this case study we are learning the rules of large scale dynamics that cannot be understood from modern observations alone. Although past behavior is not an simple analog for the future, and no single system captures all possible behaviors, insights from these case studies can be applied through models to better project how similar systems may change in the future. The Petermann Expedition developed the first comprehensive bathymetric maps of the region, drilled through the floating ice tongue to obtain sub-shelf sediment cores near the grounding line and to monitor sub-ice conditions, recovered a broad array of sediment cores documenting changing oceanic conditions in Petermann Fjord, Hall Basin, and Nares Strait, measured watercolumn properties to trace subsurface watermasses that bring heat from the Arctic Ocean into deep Petermann Fjord to melt the base of the floating ice tongue, developed a detailed record of relative sealevel change on land to constrain past ice loads, and recovered pristine boulders for cosmogenic exposure dating of areal ice retreat on land. Together, these studies are shedding new light on the dynamics of past glaciation in Northwest Greenland, and contributing to fundamental</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13A2040J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13A2040J"><span>The glacimarine sediment budget of the Nares Strait-Petermann Fjord area since the Last Glacial Maximum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Nielsen, T.; Kamla, E.; Stranne, C.; Eriksson, B.; Jerram, K.</p> <p>2016-12-01</p> <p>During the Petermann 2015 Expedition of the Swedish <span class="hlt">icebreaker</span> Oden more than 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) were acquired in Petermann Fjord and Nares Strait in the area immediately outside of the fjord. The sub-bottom profiles reveal a highly-variable distribution of post-glacial sediment that appears to be largely controlled by the rugged relief of the underlying bedrock. Sediment thicknesses are between 0-60 m above bedrock and comprise predominantly acoustically-stratified, homogeneous to transparent acoustic facies. In Petermann Fjord itself unlithified sediment cover typically comprises two units: an underlying acoustically-transparent unit overlain by an acoustically-stratified unit. Both of these units are conformable over scoured and fairly flat bedrock terrain; small basins are present only locally. Outside of the fjord are a few local sedimentary basins containing up to 40 m of stratified basin-fill deposits, and several areas of stacked mass-flow deposits. Glacial lineations both in the fjord and Nares Strait are formed in an acoustically-homogenous unit that underlies stratified and transparent units. In addition to the sub-bottom profiles, approximately 780 line-km of 2D seismic reflection profiles were acquired using an airgun (210 cu in.) and a 300-m long streamer. These profiles have allowed us to map full unlithified sediment thicknesses down to basement in the area. Here we present the results of this mapping and we calculate the volumes of a prominent grounding-zone wedge at the mouth of Petermann Fjord, and smaller GZWs in Kennedy Channel. These features demarcate former still-stand positions of grounded ice retreating through this system, both towards the present-day grounding line of Petermann Glacier and southwards through Nares Strait. Post-glacial sediment volumes are also calculated and the sedimentary processes responsible for their distribution examined. These data, when combined with chronological</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMED53A0510P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMED53A0510P"><span>The ARMADA Project: Bringing Oceanography and the Arctic to the Midwest</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pazol, J.</p> <p>2010-12-01</p> <p>In the fall of 2009, I spent 6 weeks aboard the Coast Guard <span class="hlt">Icebreaker</span> Healy on a mapping expedition in the Arctic Ocean, through participation in the University of Rhode Island's ARMADA Project. Because I grew up in the Midwest, went to college here, and teach in the Chicago suburbs, I had limited first-hand experience in oceanography, as did most of my students. During my time aboard the ship, I primarily served as a member of the mapping team, collecting bathymetric and seismic data. My other science activities included aiding geologists and acoustic engineers in dredging projects and deployment of under-ice recording devices. I collected water data, sent off weather balloons, and assisted marine mammal observers. For the ARMADA Project I kept an on-line journal, which had a far-reaching impact. Students in many schools kept track of my activities and communicated with me via e-mail. Colleagues and friends shared the journal through other media, such as Facebook. Several of my entries were published in blogs belonging to NOAA and the USGS. I received a grant for renting a satellite phone, and through it was able to make "Live from the Arctic" phone calls. After introductory PowerPoints I communicated with more than 420 students in 5 schools in 3 states. When I returned, I made a series of presentations about the Arctic and my adventures to hundreds of people and was featured in an educational magazine with a circulation of more than 90,000. I also participated in an in-depth mentoring program with a new teacher to help her succeed during the first years of her career. The results: My students and I now have a direct connection to the Arctic and to the fields of oceanography, acoustic engineering, and geology. On their own initiative, students have developed individual projects exploring aspects of my research. They have attended presentations from the Extreme Ice Center and have become involved in drilling issues in the Chukchi Sea. A group of students is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...1310395K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...1310395K"><span>Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.</p> <p>2013-04-01</p> <p>Unique measurements of vertical size resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, <a href="http://www.ascos.se"target="_blank">http://www.ascos.se</a>), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from onboard the Swedish <span class="hlt">icebreaker</span> Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Near the surface (lowermost couple hundred meters), transport from the marginal ice zone (MIZ), if sufficiently short (less than ca. 2 days), condensational growth and cloud-processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore they are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, long-range transport plumes can influence the radiative balance of the PBL by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles can be from biological processes, both primary and secondary</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACP....1312405K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACP....1312405K"><span>Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.</p> <p>2013-12-01</p> <p>Unique measurements of vertical size-resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, <a href="http://www.ascos.se"target="_blank"> www.ascos.se</a>), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from on board the Swedish <span class="hlt">icebreaker</span> Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Within the lowermost couple hundred metres, transport from the marginal ice zone (MIZ), condensational growth and cloud processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore long-range transport plumes are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, such plumes can influence the radiative balance of the planetary boundary layer (PBL) by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles could be in biological processes, both primary and secondary, within the open leads between</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1191R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1191R"><span>The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rex, M.; Shupe, M.; Dethloff, K.</p> <p>2017-12-01</p> <p>MOSAiC is an international initiative under the umbrella of the International Arctic Science Committee (IASC) designed by an international consortium of leading polar research institutes. Rapid changes in the Arctic lead to an urgent need for reliable information about the state and evolution of the Arctic climate system. This requires more observations and improved modelling over various spatial and temporal scales, and across a wide variety of disciplines. Observations of many critical parameters were never made in the central Arctic for a full annual cycle. MOSAiC will be the first year-around expedition into the central Arctic exploring the coupled climate system. The research vessel Polarstern will drift with the sea ice across the central Arctic during the years 2019 to 2020. The drift starts in the Siberian sector of the Arctic in late summer. A distributed regional network of observational sites will be established on the sea ice in an area of up to 50 km distance from Polarstern, representing a grid cell of climate models. The ship and the surrounding network will drift with the natural sea ice drift across the polar cap towards the Atlantic. The focus of MOSAiC lies on in-situ observations of the climate processes that couple atmosphere, ocean, sea ice, biogeochemistry and ecosystem. These measurements will be supported by weather and sea ice predictions and remote sensing operations to make the expedition successful. The expedition includes aircraft operations and cruises by <span class="hlt">icebreakers</span> from MOSAiC partners. All these observations will be used for the main scientific goals of MOSAiC, enhancing the understanding of the regional and global consequences of Arctic climate change and sea ice loss and improve weather and climate prediction. More precisely, the results are needed to advance the data assimilation for numerical weather prediction models, sea ice forecasts and climate models and ground truth for satellite remote sensing. Additionally, the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13A2037J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13A2037J"><span>The history of retreat dynamics of Petermann Glacier inferred from submarine glacial landforms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Jerram, K.; Mohammad, R.; Stranne, C.; Eriksson, B.</p> <p>2016-12-01</p> <p>Preserved submarine glacial landforms produced at the base and margin of ice sheets and outlet glaciers comprise records of past ice dynamics complementary to modern glaciological process studies. The Petermann 2015 Expedition on the Swedish <span class="hlt">icebreaker</span> Oden systematically mapped approximately 3100 km2 of the seafloor in Petermann Fjord and the adjacent Hall Basin of Nares Strait, northwest Greenland, with an EM122 (12 kHz) multibeam and SBP120 (2-7 kHz) chirp sub-bottom profiler. Complete, overlapping mapping coverage permitted compilation of a high-quality (15x15m) digital terrain model (DTM). In addition, the seafloor at the margin of one of the smaller outlet glaciers draining into the Petermann Fjord and selected shallow areas along the coast were mapped using a small survey boat (RV Skidbladner), equipped with an EM2040 (200-300 kHz) multibeam. High-resolution (2 x 2 m) DTMs were compiled from the RV Skidbladner surveys. The seafloor morphology of Petermann Fjord and adjacent Hall Basin is dominated by a stunning glacial landform record comprising the imprints of Petermann Glacier's retreat dynamics since the Last Glacial Maximum (LGM). The entrance to Petermann Fjord consists of a prominent bathymetric sill formed by a large well-develop grounding zone wedge that undoubtedly represents a stability point during the glacier's retreat history. The deepest entrance to the fjord is 443 m and located on the southern side of this grounding zone wedge. Outside of this grounding zone wedge in Hall Basin, less well developed grounding zones appears to be present. The landform assemblage in between the grounding zones, in particular the lack of retreat ridges, may signify a leap-frog behavior of the glacier's retreat; rapid break-up and disintegration of the outlet glacier causing retreat back to the next stability point dictated by the local bedrock geology. While numerous classical glacial landforms characteristic for fast flowing ice streams are identified, the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24367466','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24367466"><span>Itinerant vending of medicines inside buses in Nigeria: vending strategies, dominant themes and medicine-related information provided.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yusuff, Kazeem B; Wassi Sanni, Abd'</p> <p>2011-07-01</p> <p>To determine vending strategies and marketing themes employed by itinerant bus vendors, and assess the accuracy and completeness of information provided on medicines being sold in an urban setting in Nigeria. Cross-sectional study and content analysis of itinerant vending of medicines inside buses recorded with a mobile telephone on purposively selected routes in a mega city with an estimated 18 million residents in southwestern Nigeria over a 2-month period. Two coders independently assessed 192 vending episodes by 56 vendors for 147 OTC and prescription medicines. Inter-rater reliability (Gwet AC1 =0.924; p<0.0001). Fourteen thousands and four hundred potential consumers encountered 192 recorded episodes of vending of medicines inside 192 buses within the study periods. Forty-four (78•5%) of the 56 vendors were females in the 30-45 years age bracket, were mostly (75%) attired in the local 'Iro and Buba' Ankara fabric and showed laminated identity cards (97.5%) issued by the local association for 'marketers' of medicines inside buses, markets, and motor parks. Of the 14400 consumers encountered inside buses during the study period, between 6.7% and 48.3% purchased the medicines promoted. Prayers against death from road traffic accidents and diseases of physical and / or meta-physical origins were the most frequently used (76•8%) <span class="hlt">ice-breaking</span> opening statement / strategy to gain consumers' attention. Hematinics, multi-vitamins, simple analgesic, NSAIDs and corticosteroids were the most frequently vended medicines. Consumers' enquiries were related to dosing for children (51.8%), elderly (28.6%), and pregnancy (52.7%); and contra-indications during pregnancy (8.9%). Factual medicines information such as dose, frequency, potential side effects and contra-indications were not provided in majority of vending episodes. Itinerant vending of medicines and the use of misleading and melodramatic themes to secure high consumer patronage appear considerable in Nigeria</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMED41A0667N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMED41A0667N"><span>GeoMapApp as a platform for visualizing marine data from Polar Regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nitsche, F. O.; Ryan, W. B.; Carbotte, S. M.; Ferrini, V.; Goodwillie, A. M.; O'hara, S. H.; Weissel, R.; McLain, K.; Chinhong, C.; Arko, R. A.; Chan, S.; Morton, J. J.; Pomeroy, D.</p> <p>2012-12-01</p> <p>To maximize the investment in expensive fieldwork the resulting data should be re-used as much as possible. In addition, unnecessary duplication of data collection effort should be avoided. This becomes even more important if access to field areas is as difficult and expensive as it is in Polar Regions. Making existing data discoverable in an easy to use platform is key to improve re-use and avoid duplication. A common obstacle is that use of existing data is often limited to specialists who know of the data existence and also have the right tools to view and analyze these data. GeoMapApp is a free, interactive, map based tool that allows users to discover, visualize, and analyze a large number of data sets. In addition to a global view, it provides polar map projections for displaying data in Arctic and Antarctic areas. Data that have currently been added to the system include Arctic swath bathymetry data collected from the USCG <span class="hlt">icebreaker</span> Healy. These data are collected almost continuously including from cruises where bathymetry is not the main objective and for which existence of the acquired data may not be well known. In contrast, existence of seismic data from the Antarctic continental margin is well known in the seismic community. They are archived at and can be accessed through the Antarctic Seismic Data Library System (SDLS). Incorporating these data into GeoMapApp makes an even broader community aware of these data and the custom interface, which includes capabilities to visualize and explore these data, allows users without specific software or knowledge of the underlying data format to access the data. In addition to investigating these datasets, GeoMapApp provides links to the actual data sources to allow specialists the opportunity to re-use the original data. Important identification of data sources and data references are achieved on different levels. For access to the actual Antarctic seismic data GeoMapApp links to the SDLS site, where users have</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1212244W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1212244W"><span>AURORA BOREALIS: a polar-dedicated European Research Platform</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolff-Boenisch, Bonnie; Egerton, Paul; Thiede, Joern; Roberto, Azzolini; Lembke-Jene, Lester</p> <p>2010-05-01</p> <p>Polar research and in particular the properties of northern and southern high latitude oceans are currently a subject of intense scientific debate and investigations, because they are subject to rapid and dramatic climatic variations. Polar regions react more rapidly and intensively to global change than other regions of the earth. A shrinking of the Arctic sea-ice cover, potentially leading to an opening of sea passages to the north of North America and Eurasia, on the long to a "blue" Arctic Ocean would additionally have a strong impact on transport, commerce and tourism bearing potential risk for humans and complex ecosystems in the future. In spite of their critical role processes and feedbacks, especially in winter but not exclusively, are virtually unknown: The Arctic Ocean for example, it is the only basin of the world's oceans that has essentially not been sampled by the drill ships of the Deep-Sea Drilling Project (DSDP) or the Ocean Drilling Program (ODP) and its long-term environmental history and tectonic structure is therefore poorly known. Exceptions are the ODP Leg 151 and the more recent very successful ACEX-expedition of the Integrated Ocean Drilling Program (IODP) in 2004. To help to address the most pressing questions regarding climate change and related processes, a Pan-European initiative in the field of Earth system science has been put in place: AURORA BOREALIS is the largest environmental research infrastructure on the ESFRI roadmap of the European Community. AURORA BOREALIS is a very powerful research <span class="hlt">icebreaker</span>, which will enable year-round operations in the Arctic and the Antarctic as well as in the adjacent ocean basins. Equipped with its drilling rig, the vessel is also capable to explore the presently completely unknown Arctic deep-sea floor. Last but not least, the ship is a floating observatory and mobile monitoring platform that permits to measure on a long-term basis comprehensive time series in all research fields relevant to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P53C2149Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P53C2149Z"><span>Sample Acqusition Drilling System for the the Resource Prospector Mission</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zacny, K.; Paulsen, G.; Quinn, J.; Smith, J.; Kleinhenz, J.</p> <p>2015-12-01</p> <p>The goal of the Lunar Resource Prospector Mission (RPM) is to capture and identify volatiles species within the top meter of the lunar regolith. The RPM drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RPM drill is based on the Mars <span class="hlt">Icebreaker</span> drill developed for capturing samples of ice and ice cemented ground on Mars. The drill weighs approximately 10 kg and is rated at ~300 Watt. It is a rotary-percussive, fully autonomous system designed to capture cuttings for analysis. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing station, 4. Z-stage, 5. Deployment stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in ~10 cm intervals. The first generation drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama in 2012. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The third generation drill was tested in NASA GRC's vacuum chamber, VF13, at 10-5 torr and approximately 200 K. It demonstrated successful capture and transfer of icy samples to a crucible. The drill has been modified and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22225041-preparation-recovery-spent-nuclear-fuel-snf-andreeva-bay-north-west-russia','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22225041-preparation-recovery-spent-nuclear-fuel-snf-andreeva-bay-north-west-russia"><span>Preparation for the Recovery of Spent Nuclear Fuel (SNF) at Andreeva Bay, North West Russia - 13309</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Field, D.; McAtamney, N.</p> <p></p> <p>Andreeva Bay is located near Murmansk in the Russian Federation close to the Norwegian border. The ex-naval site was used to de-fuel nuclear-powered submarines and <span class="hlt">icebreakers</span> during the Cold War. Approximately 22,000 fuel assemblies remain in three Dry Storage Units (DSUs) which means that Andreeva Bay has one of the largest stockpiles of highly enriched spent nuclear fuel (SNF) in the world. The high contamination and deteriorating condition of the SNF canisters has made improvements to the management of the SNF a high priority for the international community for safety, security and environmental reasons. International Donors have, since 2002, providedmore » support to projects at Andreeva concerned with improving the management of the SNF. This long-term programme of work has been coordinated between the International Donors and responsible bodies within the Russian Federation. Options for the safe and secure management of SNF at Andreeva Bay were considered in 2004 and developed by a number of Russian Institutes with international participation. This consisted of site investigations, surveys and studies to understand the technical challenges. A principal agreement was reached that the SNF would be removed from the site altogether and transported to Russia's reprocessing facility at Mayak in the Urals. The analytical studies provided the information necessary to develop the construction plan for the site. Following design and regulatory processes, stakeholders endorsed the technical solution in April 2007. This detailed the processes, facilities and equipment required to safely remove the SNF and identified other site services and support facilities required on the site. Implementation of this strategy is now well underway with the facilities in various states of construction. Physical works have been performed to address the most urgent tasks including weather protection over one of the DSUs, installation of shielding over the cells, provision of radiation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3870171','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3870171"><span>Itinerant vending of medicines inside buses in Nigeria: vending strategies, dominant themes and medicine-related information provided</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yusuff, Kazeem B.; Wassi Sanni, Abd’</p> <p></p> <p>Objective To determine vending strategies and marketing themes employed by itinerant bus vendors, and assess the accuracy and completeness of information provided on medicines being sold in an urban setting in Nigeria. Methods Cross-sectional study and content analysis of itinerant vending of medicines inside buses recorded with a mobile telephone on purposively selected routes in a mega city with an estimated 18 million residents in southwestern Nigeria over a 2-month period. Two coders independently assessed 192 vending episodes by 56 vendors for 147 OTC and prescription medicines. Inter-rater reliability (Gwet AC1 =0.924; p<0.0001). Results Fourteen thousands and four hundred potential consumers encountered 192 recorded episodes of vending of medicines inside 192 buses within the study periods. Forty-four (78•5%) of the 56 vendors were females in the 30-45 years age bracket, were mostly (75%) attired in the local ‘Iro and Buba’ Ankara fabric and showed laminated identity cards (97.5%) issued by the local association for ‘marketers’ of medicines inside buses, markets, and motor parks. Of the 14400 consumers encountered inside buses during the study period, between 6.7% and 48.3% purchased the medicines promoted. Prayers against death from road traffic accidents and diseases of physical and / or meta-physical origins were the most frequently used (76•8%) <span class="hlt">ice-breaking</span> opening statement / strategy to gain consumers’ attention. Hematinics, multi-vitamins, simple analgesic, NSAIDs and corticosteroids were the most frequently vended medicines. Consumers’ enquiries were related to dosing for children (51.8%), elderly (28.6%), and pregnancy (52.7%); and contra-indications during pregnancy (8.9%). Factual medicines information such as dose, frequency, potential side effects and contra-indications were not provided in majority of vending episodes. Conclusions Itinerant vending of medicines and the use of misleading and melodramatic themes to secure high</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA......143M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA......143M"><span>Stationary spiraling eddies in presence of polar amplification of global warming as a governing factor of ecology of Greenland seals White Sea population: results of verification study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melentyev, K.; Chernook, V.; Melentyev, V.</p> <p>2003-04-01</p> <p>Ice-associated forms of marine mammals are representatives of a high level of fodder chains in the ocean and taxation of population number for different group, as assessment of ecology and animal welfare are the important tasks for marine biology, ecology, fishery and other application uses. Many problems create a global warming and antropogenical impact on marine and coastal ecosystem. In order to investigate ice covered Arctic Ocean and charting the number of seals were performed annual inspections onboard research aircraft PINRO "Arktika". Multi-spectral airborne and satellite observations were fulfilled regularly from Barents and White Sea to the Bering and Okhotsk Sea (1996-2002). A contemporary status of different group of sea mammals was evaluated, where number of adults and pups were checked separately. In situ observations were provided with using helicopter and <span class="hlt">icebreaker</span> for gathering a water samples and ice cores (with following biochemical and toxicological analysis). A prevailing part of life cycle of Greenland seals (harp seal) is strongly depended from winter hydrology (water masses, stable currents, meandering fronts, stationary eddies) and closely connected with type of ice (pack, fast ice) and other parameters of ice (age, origin, salinity, ice edge.). First-year ice floes which has a specific properties and distinctive features are used by harp seals for pupping, lactation, molting, pairing and resting. Ringed seals, inversely, use for corresponding purposes only fast-ice. Different aspects of ecology, and migration features of harp seals were analyzed in frame of verification study. It was revealed a scale of influence of winter severity and wind regime, but stationary eddies in the White Sea is most effective governing factor (novelty). Following relationship " eddies - ecology of Greenland seal White Sea population " will be discussed: A) regularities of eddies formation and their spatial arrangement, temporal (seasonal and annual</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS51E1931C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS51E1931C"><span>Rolling the dice on the ice; New modes for underway data acquisition in the Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coakley, B.; Dove, D.</p> <p>2012-12-01</p> <p>Exploration of the Arctic Ocean has always depended on the sea ice. It has been a platform supporting drifting ice stations and an obstacle to be over come by force (<span class="hlt">icebreakers</span>) or finesse (US Navy fast attack submarines). Reduced seasonal sea ice cover has made it possible to work more freely in the peripheral Arctic Ocean, opening relatively unknown regions to scientific exploration and study. In September 2011, the RV Marcus G. Langseth set sail from Dutch Harbor, Alaska bound through Bering Strait for the Arctic Ocean. This was the first Arctic Ocean trip for MGG data acquisition by a US academic research vessel since 1994, when the RV Maurice Ewing collected a 2-D MCS profile across the Bering Shelf, through the Strait and along the Beaufort Shelf, stopping near Barrow, Alaska. RV Langseth arrived on the mid-Chukchi shelf and streamed gear just south of the "Crackerjack" well, drilled by Shell Exploration in the late eighties. The ship sailed north, crossing the "Popcorn" well and then set a course to the NW, setting the baseline for the survey parallel to the Beaufort Shelf edge. Sailing through almost entirely ice-free waters, approximately 5300 km of multi-channel seismic reflection data were acquired on a NW-SE oriented grid, which straddled the transition from Chukchi Shelf to the Chukchi Borderland. It would not have been possible for Langseth, which is not ice reinforced, to acquire these data prior to 2007. The dramatic expansion of late Summer open water in the western Arctic Ocean made it possible to use this ship effectively across a broad swath of the shelf and the periphery of the deep central basin. While the survey region was almost entirely ice free during this cruise, which straddled the ice minimum for 2011, it was not possible to predict this a priori, despite expectations set by the previous five years of ice edge retreat. For this reason, the Canadian Ice Service was engaged to provide interpreted ice imagery, multiple times per day</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ThEng..61..327R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ThEng..61..327R"><span>From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.</p> <p>2014-05-01</p> <p>Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered <span class="hlt">icebreaker</span>, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED31B0281R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED31B0281R"><span>Murals as Models: Supporting NGSS three-dimensional teaching in climate change educator professional learning</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rogers, M. J. B.; Petrone, C.; Merrick, B. A.; Drewes, A.</p> <p>2017-12-01</p> <p>The current shift in K-12 science education is towards a teaching and learning approach in which students actively do and experience science in a deep, meaningful way while being fully active in their learning. For students and teachers who have not experienced this approach, this shift is difficult without scaffolding. Professional learning for educators must allow teachers to experience this approach and reflect on their experience. We share an example from our 2017 K-12 Climate Change Academy in which educators created and modified murals of Earth's climate system while investigating ecosystem interactions, the carbon cycle, energy flow, and human impacts. The Academy constituted an online component followed by three consecutive in person days. The mural activity served as a framework. The first mural modeling occurred online. A1: Take a photo of an outdoor landscape. Annotate it with elements of Earth's atmosphere, biosphere, geosphere, hydrosphere and indicate energy flow, carbon cycling, and the processes driving these. Activities 2-6 were employed throughout the in person days. A2: Small groups create 2D, mural sized models of Earth's climate system. A3: Groups use carbon themed cards to document naturally occurring and human-influenced aspects of the carbon cycle on their models. A4-5: Teams add climate change impacts and possible mitigation/adaptation responses to murals. A6: Ongoing throughout, team members modify models as needed based on learning. Throughout the Academy, participants were able to experience the activities as students. As Academy facilitators, we modeled how educators could use these models in their classrooms. We used A1 submissions as a formative assessment tool and also as a guide for forming groups for the first in person mural. A2 was used as a small group <span class="hlt">icebreaker</span>, serving as a bridge between the online and in person sessions both for community building and for providing peer support in knowledge building. A3-A5 allowed for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.279...59B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.279...59B"><span>Interannual kinetics (2010-2013) of large wood in a river corridor exposed to a 50-year flood event and fluvial ice dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boivin, Maxime; Buffin-Bélanger, Thomas; Piégay, Hervé</p> <p>2017-02-01</p> <p>% early). It is fairly probable that the wood export peak observed in 2012 at the river mouth, where no flood occurred and which is similar to the 1-in 10-year flood of 2010, is mainly linked to such <span class="hlt">ice-break</span> events that occurred in March 2012.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130009021','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130009021"><span>Microradiometers Reveal Ocean Health, Climate Change</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2013-01-01</p> <p>When NASA researcher Stanford Hooker is in the field, he pays close attention to color. For Hooker, being in the field means being at sea. On one such research trip to the frigid waters of the Arctic, with a Coast Guard <span class="hlt">icebreaker</span> looming nearby and the snow-crusted ice shelf a few feet away, Hooker leaned over the edge of his small boat and lowered a tethered device into the bright turquoise water, a new product devised by a NASA partner and enabled by a promising technology for oceanographers and atmospheric scientists alike. Color is a function of light. Pure water is clear, but the variation in color observed during a visit to the beach or a flight along a coastline depends on the water s depth and the constituents in it, how far down the light penetrates and how it is absorbed and scattered by dissolved and suspended material. Hooker cares about ocean color because of what it can reveal about the health of the ocean, and in turn, the health of our planet. "The main thing we are interested in is the productivity of the water," Hooker says. The seawater contains phytoplankton, microscopic plants, which are the food base for the ocean s ecosystems. Changes in the water s properties, whether due to natural seasonal effects or human influence, can lead to problems for delicate ecosystems such as coral reefs. Ocean color can inform researchers about the quantities and distribution of phytoplankton and other materials, providing clues as to how the world ocean is changing. NASA s Coastal Zone Color Scanner, launched in 1978, was the first ocean color instrument flown on a spacecraft. Since then, the Agency s ocean color research capabilities have become increasingly sophisticated with the launch of the SeaWiFS instrument in 1997 and the twin MODIS instruments carried into orbit on NASA s Terra (1999) and Aqua (2002) satellites. The technology provides sweeping, global information on ocean color on a scale unattainable by any other means. One issue that arises from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001951.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001951.html"><span>Bloom in the Ross Sea</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-01-29</p> <p>NASA image acquired January 22, 2011 To see a detail of this image go to: www.flickr.com/photos/gsfc/5398237910 Every southern spring and summer, after the Sun has risen into its 24-hour circuit around the skies of Antarctica, the Ross Sea bursts with life. Floating, microscopic plants, known as phytoplankton, soak up the sunlight and the nutrients stirring in the Southern Ocean and grow into prodigious blooms. Those blooms become a great banquet for krill, fish, penguins, whales, and other marine species who carve out a living in the cool waters of the far south. This true-color image captures such a bloom in the Ross Sea on January 22, 2011, as viewed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite. Bright greens of plant-life have replaced the deep blues of open ocean water. The Ross Sea is a relatively shallow bay in the Antarctic coastline and due south from New Zealand. As the spring weather thaws the sea ice around Antarctica, areas of open water surrounded by ice—polynyas—open up on the continental shelf. In this open water, sunlight provides the fuel and various current systems provide nutrients from deeper waters to form blooms that can stretch 100 to 200 kilometers (60 to 120 miles). These blooms are among the largest in extent and abundance in the world. Scientists have hypothesized that the Modified Circumpolar Deep Water is the engine behind the blooms, stirring up just the right mix of trace metals and minerals from the deep to sustain plankton growth. This month, researchers aboard the U.S. <span class="hlt">icebreaking</span> ship Nathaniel B. Palmer are cruising in the Ross Sea in search of the signatures of this current system. NASA image courtesy Norman Kuring, Ocean Color Team at NASA Goddard Space Flight Center. Caption by Mike Carlowicz, with information from Hugh Powell, COSEE-NOW. Instrument: Aqua - MODIS Credit: NASA Earth Observatory earthobservatory.nasa.gov/IOTD/view.php?id=48949 NASA Goddard Space Flight Center</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001781.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001781.html"><span>Bloom in the Ross Sea</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>NASA image acquired January 22, 2011 Every southern spring and summer, after the Sun has risen into its 24-hour circuit around the skies of Antarctica, the Ross Sea bursts with life. Floating, microscopic plants, known as phytoplankton, soak up the sunlight and the nutrients stirring in the Southern Ocean and grow into prodigious blooms. Those blooms become a great banquet for krill, fish, penguins, whales, and other marine species who carve out a living in the cool waters of the far south. This true-color image captures such a bloom in the Ross Sea on January 22, 2011, as viewed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite. Bright greens of plant-life have replaced the deep blues of open ocean water. The Ross Sea is a relatively shallow bay in the Antarctic coastline and due south from New Zealand. As the spring weather thaws the sea ice around Antarctica, areas of open water surrounded by ice—polynyas—open up on the continental shelf. In this open water, sunlight provides the fuel and various current systems provide nutrients from deeper waters to form blooms that can stretch 100 to 200 kilometers (60 to 120 miles). These blooms are among the largest in extent and abundance in the world. Scientists have hypothesized that the Modified Circumpolar Deep Water is the engine behind the blooms, stirring up just the right mix of trace metals and minerals from the deep to sustain plankton growth. This month, researchers aboard the U.S. <span class="hlt">icebreaking</span> ship Nathaniel B. Palmer are cruising in the Ross Sea in search of the signatures of this current system. NASA image courtesy Norman Kuring, Ocean Color Team at NASA Goddard Space Flight Center. Caption by Mike Carlowicz, with information from Hugh Powell, COSEE-NOW. Instrument: Aqua - MODIS Go here to download the full high res file: earthobservatory.nasa.gov/IOTD/view.php?id=48949 Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001950.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001950.html"><span>Bloom in the Ross Sea [detail</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>NASA image acquired January 22, 2011 To view the full image go to: www.flickr.com/photos/gsfc/5397636843 Every southern spring and summer, after the Sun has risen into its 24-hour circuit around the skies of Antarctica, the Ross Sea bursts with life. Floating, microscopic plants, known as phytoplankton, soak up the sunlight and the nutrients stirring in the Southern Ocean and grow into prodigious blooms. Those blooms become a great banquet for krill, fish, penguins, whales, and other marine species who carve out a living in the cool waters of the far south. This true-color image captures such a bloom in the Ross Sea on January 22, 2011, as viewed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite. Bright greens of plant-life have replaced the deep blues of open ocean water. The Ross Sea is a relatively shallow bay in the Antarctic coastline and due south from New Zealand. As the spring weather thaws the sea ice around Antarctica, areas of open water surrounded by ice—polynyas—open up on the continental shelf. In this open water, sunlight provides the fuel and various current systems provide nutrients from deeper waters to form blooms that can stretch 100 to 200 kilometers (60 to 120 miles). These blooms are among the largest in extent and abundance in the world. Scientists have hypothesized that the Modified Circumpolar Deep Water is the engine behind the blooms, stirring up just the right mix of trace metals and minerals from the deep to sustain plankton growth. This month, researchers aboard the U.S. <span class="hlt">icebreaking</span> ship Nathaniel B. Palmer are cruising in the Ross Sea in search of the signatures of this current system. NASA image courtesy Norman Kuring, Ocean Color Team at NASA Goddard Space Flight Center. Caption by Mike Carlowicz, with information from Hugh Powell, COSEE-NOW. Instrument: Aqua - MODIS For more info go to: earthobservatory.nasa.gov/IOTD/view.php?id=48949 Credit: NASA Earth Observatory NASA Goddard Space</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C41D0429L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C41D0429L"><span>Multiscale Observation System for Sea Ice Drift and Deformation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lensu, M.; Haapala, J. J.; Heiler, I.; Karvonen, J.; Suominen, M.</p> <p>2011-12-01</p> <p>The drift and deformation of sea ice cover is most commonly followed from successive SAR images. The time interval between the images is seldom less than one day which provides rather crude approximation of the motion fields as ice can move tens of kilometers per day. This is particulary so from the viewpoint of operative services, seeking to provide real time information for ice navigating ships and other end users, as leads are closed and opened or ridge fields created in time scales of one hour or less. The ice forecast models are in a need of better temporal resolution for ice motion data as well. We present experiences from a multiscale monitoring system set up to the Bay of Bothnia, the northernmost basin of the Baltic Sea. The basin generates difficult ice conditions every winter while the ports are kept open with the help of an <span class="hlt">icebreaker</span> fleet. The key addition to SAR imagery is the use of coastal radars for the monitoring of coastal ice fields. An independent server is used to tap the radar signal and process it to suit ice monitoring purposes. This is done without interfering the basic use of the radars, the ship traffic monitoring. About 20 images per minute are captured and sent to the headquarters for motion field extraction, website animation and distribution. This provides very detailed real time picture of the ice movement and deformation within 20 km range. The real time movements are followed in addition with ice drifter arrays, and using AIS ship identification data, from which the translation of ship cannels due to ice drift can be found out. To the operative setup is associated an extensive research effort that uses the data for ice drift model enhancement. The Baltic ice models seek to forecast conditions relevant to ship traffic, especilly hazardous ones like severe ice compression. The main missing link here is downscaling, or the relation of local scale ice dynamics and kinematics to the ice model scale behaviour. The data flow when</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMED23A0615M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMED23A0615M"><span>On the Cutting Edge: Face-to-Face and Virtual Professional Development for Current and Future Geoscience Faculty</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macdonald, H.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.; Iverson, E. A.; Kirk, K. B.; Beane, R. J.; McConnell, D.; Wiese, K.; Wysession, M. E.</p> <p>2011-12-01</p> <p>On the Cutting Edge, a comprehensive, discipline-wide professional development program for current and future geoscience faculty, aims to develop a geoscience professoriate committed to high-quality instruction based on currency in scientific knowledge, good pedagogic practice, and research on learning. Our program provides an integrated workshop series and online teaching resources. Since 2002, we have offered more than 80 face-to-face workshops, virtual workshops and webinars, and hybrid events. Participants come from two-year colleges and four-year colleges and universities. The workshop series is designed to address the needs of faculty in all career stages at the full spectrum of institutions and covering the breadth of the geoscience curriculum. We select timely and compelling topics and create opportunities of interest to faculty. We offer workshops on course design, new geoscience research and pedagogical topics, core geoscience curriculum topics, and introductory courses as well as workshops for early career faculty and for future faculty. Our workshops are designed to model good teaching practice. We set workshop goals that guide workshop planning and evaluation. Workshops are interactive, emphasize participant learning, provide opportunities for participants to interact and share experience/knowledge, provide good resources, give participants time to reflect and to develop action plans, and help transform their ideas about teaching. We emphasize the importance of adaptation in the context of their specific situations. For virtual workshops and webinars we use <span class="hlt">icebreakers</span> and other structured interactions to build a comfortable workshop community; promote interaction through features on webinar software, chat-aided question and answer, small-group synchronous interactions, and/or discussion boards; plan detailed schedules for workshop events; use asynchronous discussions and recordings of synchronous events given that participants are busy with their</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACPD...14..593S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACPD...14..593S"><span>Single-particle characterization of the High Arctic summertime aerosol</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.</p> <p>2014-01-01</p> <p>Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the <span class="hlt">icebreaker</span> Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ACP....1111335M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ACP....1111335M"><span>Cloud condensation nuclei closure study on summer arctic aerosol</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, M.; Chang, R. Y.-W.; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J. P. D.; Leck, C.; Lohmann, U.</p> <p>2011-11-01</p> <p>We present an aerosol - cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the <span class="hlt">icebreaker</span> Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles >70 nm. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACP....14.7409S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACP....14.7409S"><span>Single-particle characterization of the high-Arctic summertime aerosol</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.</p> <p>2014-07-01</p> <p>Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the <span class="hlt">icebreaker</span> Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C21A0693M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C21A0693M"><span>Ocean observations from below Petermann Gletscher</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muenchow, A.; Nicholls, K. W.; Heuzé, C.; Wahlin, A.; Mix, A. C.</p> <p>2015-12-01</p> <p>Petermann Gletscher drains 4% of the Greenland ice sheet via a floating ice shelf that has shrunk from 1,300 to 900 km^2 in area via two calving events in 2010 and 2012. The glacier is thinning by about 10 vertical meters per year when integrated over 45 km from the grounding zone to the terminus. Most of this mass loss is caused by ocean melting, but only a single vertical ocean profile taken in 2002 exists. The fjord was mostly free of sea ice in August when we visited in 2003, 2006, 2007, 2009, and 2012 and noticed a small warming trend of bottom waters. During a 2-day survey of Petermann Fjord and adjacent Nares Strait in 2012 we documented a large intrusion of warmer Atlantic waters spilling over the 400 m deep sill and sinking to more than 800 m depth. These waters fill the deep basin of the fjord and move towards the grounding zone of glacier at 550 m below the sea surface. In August 2015 the Swedish <span class="hlt">icebreaker</span> I/B Oden is scheduled to enter Nares Strait and Petermann Fjord to support field work on land, on water, and on the floating glacier. We here report preliminary results from both ocean surveys and ice shelf moorings. The moored observations from under the ice shelf extend synoptic survey data from Oden. The ice shelf moorings are designed to resolve tidal to interannual variations of water properties under the floating glacier. More specifically, we plan to install a total 13 discrete sensors to measure ocean temperature, salinity, and pressure at five locations distributed both along and across the floating glacier. Hot water drilling provides the holes through the 200 to 500 m thick glacier ice to collect sediment cores, take a profile of temperature and salinity, and deploy two to five cabled sensors per mooring. If successful, data from these cabled instruments will be distributed via surface Iridium connections and posted on the web in near real time. We will discuss successes and failures of this ambitious and high risk program that was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMIN41A0875J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMIN41A0875J"><span>Data Processing, Visualization and Distribution for Support of Science Programs in the Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, P. D.; Edwards, M. H.; Wright, D.</p> <p>2006-12-01</p> <p>For the past two years the Hawaii Mapping Research Group (HMRG) and Oregon State University researchers have been building an on-line archive of geophysical data for the Arctic Basin. This archive is known as AAGRUUK - the Arctic Archive for Geophysical Research: Unlocking Undersea Knowledge (http://www.soest.hawaii.edu/hmrg/Aagruuk). It contains a wide variety of data including bathymetry, sidescan and subbottom data collected by: 1) U.S. Navy nuclear-powered submarines during the Science Ice Exercises (SCICEX), 2) <span class="hlt">icebreakers</span> such as the USCGC Healy, R/V Nathaniel B. Palmer, and CCGS Amundsen, and 3) historical depth soundings from the T3 ice camp and pre-1990 nuclear submarine missions. Instead of simply soliciting data, reformatting it, and serving it to the community, we have focused our efforts on producing and serving an integrated dataset. We pursued this path after experimenting with dataset integration and discovering a multitude of problems including navigational inconsistencies and systemic offsets produced by acquiring data in an ice-covered ocean. Our goal in addressing these problems, integrating the processed datasets and producing a data compilation was to prevent the myriad researchers interested in these datasets, many of whom have less experience processing geophysical data than HMRG personnel, from having to repeat the same data processing efforts. For investigators interested in pursuing their own data processing approaches, AAGRUUK also serves most of the raw data that was included in the data compilation, as well as processed versions of individual datasets. The archive also provides downloadable static chart sets for users who desire derived products for inclusion in reports, planning documents, etc. We are currently testing a prototype mapserver that allows maps of the cleaned datasets to be accessed interactively as well as providing access to the edited files that make up the datasets. Previously we have documented the types of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53B0776L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53B0776L"><span>Dynamics of landfast sea ice near Jangbogo Antarctic Research Station observed by SAR interferometry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, H.; Han, H.</p> <p>2015-12-01</p> <p>Landfast sea ice is a type of sea ice adjacent to the coast and immobile for a certain period of time. It is important to analyze the temporal and spatial variation of landfast ice because it has significant influences on marine ecosystem and the safe operation of <span class="hlt">icebreaker</span> vessels. However, it has been a difficult task for both remote sensing and in situ observation to discriminate landfast ice from other types of sea ice, such as pack ice, and also to understand the dynamics and internal strss-strain of fast ice. In this study, we identify landfast ice and its annual variation in Terra Nova Bay (74° 37' 4"S, 164° 13' 7"E), East Antarctica, where Jangbogo Antarctic Research Station has recently been constructed in 2014, by using Interferometric Synthetic Aperture Radar (InSAR) technology. We generated 38 interferograms having temporal baselines of 1-9 days out of 62 COSMO-SkyMed SAR images over Terra Nova Bay obtained from December 2010 to January 2012. Landfast ice began to melt in November 2011 when air temperature raised above freezing point but lasted more than two month to the end of the study period in January 2012. No meaningful relationship was found between sea ice extent and wind and current. Glacial strain (~67cm/day) is similar to tidal strain (~40 cm) so that they appear similar in one-day InSAR. As glacial stress is cumulative while tidal stress is oscillatory, InSAR images with weekly temporal baseline (7~9 days) revealed that a consistent motion of Campbell Glacier Tongue (CGT) is pushing the sea ice continuously to make interferometric fringes parallel to the glacier-sea ice contacts. Glacial interferometric fringe is parallel to the glacier-sea ice contact lines while tidal strain should be parallel to the coastlines defined by sea shore and glacier tongue. DDInSAR operation removed the consistent glacial strain leaving tidal strain alone so that the response of fast ice to tide can be used to deduce physical properties of sea ice in various</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMED31B0629K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMED31B0629K"><span>Outreach to Inspire Girls in Geology: A Recipe for Success (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kekelis, L.</p> <p>2010-12-01</p> <p> to overcome them. Participants will receive a copy of our role model outreach guide and CD toolkit, Get Involved. Make a Difference, developed by the Techbridge team. This guide includes practical tips and suggestions as well as successful case studies in outreach to K-12. These materials include sample <span class="hlt">icebreakers</span> and hands-on activities, biographies of students and role models, questions to facilitate conversations between role models and students, scavenger hunts for tours, suggested schedule and timeline, evaluations, tips for success, and more.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PrOce..58..263H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PrOce..58..263H"><span>Development of the Southern Ocean Continuous Plankton Recorder survey [review article</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hosie, G. W.; Fukuchi, M.; Kawaguchi, S.</p> <p>2003-08-01</p> <p>The Continuous Plankton Recorder (CPR) Type I was first used in Antarctic waters during the 1925-1927 Discovery Expedition, and has been used successfully for 70 years to monitor plankton in the North Sea and North Atlantic Ocean. Sixty-five years later the CPR as a Type II version returned to Antarctic waters when the Australian Antarctic Division initiated a survey of the Southern Ocean on RSV Aurora Australis south of Australia and west to Mawson. The objectives are to study regional, seasonal, interannual and long-term variability in zooplankton abundance, species composition and community patterns, as well as the annual abundance and distribution of krill larvae. The survey covers a large area from 60°E to 160°E, and south from about 48°S to the Antarctic coast-an area of more than 14 million km 2. Tows are conducted throughout the shipping season, normally September to April, but occasionally as early as July (midwinter). The large areal and temporal scale means that it is difficult to separate temporal and geographical variation in the data. Hence, CPRs are now also towed on the Japanese <span class="hlt">icebreaker</span> Shirase in collaboration with the Japanese Antarctic programme. Shirase has a fixed route and time schedule, travelling south on 110°E in early December and north on 150°E in mid-March each year, and will serve as an important temporal reference for measuring long-term interannual variability and to help interpret the Australian data. Since 1991, over 90 tows have been made, providing over 36,000 nautical miles of records. The most successful seasons to date have been the 1997/1998, 1999/2000 and 2000/2001 austral summers with 20, 31 and 26 tows, respectively. The 1999/2000 season included a unique, nearly simultaneous three-ship crossing of the Southern Ocean along 25° 30’E, 110°E and 157°E. Typical CPR tows show very high abundance of zooplankton in the uppermost 20 m of the permanently open ocean zone between the sea-ice zone and the Sub</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://portals.iucn.org/library/node/8136','USGSPUBS'); return false;" href="https://portals.iucn.org/library/node/8136"><span>Polar bear management in Alaska 1997-2000</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schliebe, Scott L.; Bridges, John W.; Evans, Thomas J.; Fischbach, Anthony S.; Kalxdorff, Susanne B.; Lierheimer, Lisa J.; Lunn, Nicholas J.; Schliebe, Scott L.; Born, Erik W.; Lunn, Nicholas J.; Schliebe, Scott L.; Born, Erik W.</p> <p>2002-01-01</p> <p> the harvest of polar bears in Alaska and collect and analyze specimens for presence and level of organochlorine compounds and trace elements. A paper on genetic assessment of hunter reported sex of harvested bears was recently published (Schliebe et al. 1999). Population status and trend assessment efforts continued. An aerial survey of polar bears in the Eastern Chukchi Sea and western portions of the Southern Beaufort Sea was conducted from the U.S. Coast Guard <span class="hlt">icebreaker</span> “Polar Star” in August 2000. The first year of a multi-year survey of barrier islands and coastlines during the open water and freeze-up phase was conducted in the central Southern Beaufort Sea during fall 2000.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T13A2499K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T13A2499K"><span>Ridge Tectonics, Magma Supply, and Ridge-Hotpot Interaction at the Eastern End of the Australian-Antarctic Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, S.; Lin, J.; Park, S.; Choi, H.; Lee, S.</p> <p>2013-12-01</p> <p>During 2011-2013 the Korea Polar Research Institute (KOPRI) conducted three successive expeditions to the eastern end of the Australian-Antarctic Ridge (AAR) to investigate the tectonics, geochemistry, and hydrothermal activity of this intermediate fast spreading system. On board the Korean <span class="hlt">icebreaker</span> R/V Araon, the science party collected multiple types of data including multibeam bathymetry, gravity, magnetics, as well as rock and water column samples. In addition, Miniature Autonomous Plume Recorders (MAPRs) were deployed at each of the wax-core rock sampling sites to detect the presence of active hydrothermal vents. In this study, we present a detailed analysis of a 360-km-long super-segment at the eastern end of the AAR to quantify the spatial variations in ridge morphology and investigate its respond to changes in melt supply. The study region contains several intriguing bathymetric features including (1) abrupt changes in the axial topography, alternating between rift valleys and axial highs within relatively short ridge segments; (2) overshooting ridge tips at the ridge-transform intersections; (3) systematic migration patterns of hooked ridges; (4) a 350-km-long mega-transform fault; and (5) robust axial and off-axis volcanisms. To obtain a proxy for regional variations in magma supply, we calculated residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography for seven sub-segments. The results of the analyses revealed that the southern flank of the AAR is associated with a shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle than the conjugate northern flank. Furthermore, this N-S asymmetry becomes more prominent toward the super-segment of the AAR. Such regional variations in seafloor topography and RMBA are consistent with the hypothesis that ridge segments in the study area have interacted with the Balleny hotspot, currently lies southwest of the AAR. However, the influence of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS33D..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS33D..06H"><span>Fram-2014/2015: A 400 Day Investigation of the Arctic's Oldest Sediments over the Alpha Ridge with a Research Hovercraft</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, J. K.; Kristoffersen, Y.</p> <p>2014-12-01</p> <p>The thickest multi-year ice in the Arctic covers a secret. Four short cores raised from the Alpha Ridge in the 1970s and 1980s from drift stations T-3 and CESAR showed ages between 45 and 76 my. The reason for these old ages became clear when examination of legacy seismic data from T-3 showed that in some places up to 500 m of sediments had been removed within an area of some 200 by 600 km, presumably by an impact of asteroid fragments. To investigate the impact area, the authors conceived an innovative research platform in 2007. Named the R/H SABVABAA, this 12m by 6m hovercraft has been home-based in Svalbard since June 2008. During the following 6 years the craft and its evolving innovative light-weight equipment have made 18 trips to the summer ice pack, traveling some 4410 km over ice during some six months of scientific investigations. An opportunity to get a lift to this area, some 1500 km from Svalbard, came in a 2011 invitation to join AWI's <span class="hlt">icebreaker</span> POLARSTERN in its ARK-XXVIII/4 expedition departing Tromsö August 5, 2014. The 400 day drift will be the first wintering over, ever, of a mobile research platform with geophysical, geological, and oceanographic capabilities. The Arctic ice pack continually moves due to winds and currents. While at the main camp, observations will consist of marine geophysics (seismic profiling with four element CHIRP, a 20 in³ airgun with single hydrophone, as well as 12 kHz bathymetry and 200 kHz sounding of the deep scattering layer), marine geology (coring with a hydrostatically-boosted 3 or 6 m corer; bottom photography; and two rock dredges), and oceanography. Deployed away from the camp, four sonobuoys will allow 3-D seismic acquisition. Access to the depths below the ice is via a hydraulic capstan winch, with 6500 m of Kevlar aramid fiber rope with 2.8 ton breaking strength. Ice thickness monitoring of the local 100 km² will be made with the craft's EM-31 probe when away from the camp, moving to choice locations for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JMS....50..113B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JMS....50..113B"><span>Effects of lead structure in Bering Sea pack ice on the flight costs of wintering spectacled eiders</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bump, Joseph K.; Lovvorn, James R.</p> <p>2004-10-01</p> <p>In polar regions, sea ice is critical habitat for many marine birds and mammals. The quality of pack ice habitat depends on the duration and spacing of leads (openings in the ice), which determine access to water and air for diving endotherms, and how often and how far they must move as leads open and close. Recent warming trends have caused major changes in the extent and nature of sea ice at large scales used in climate models. However, no studies have analyzed lead structure in terms of habitat for ice-dependent endotherms, or effects of climate on ice habitat at scales relevant to their daily movements. Based on observations from an <span class="hlt">icebreaker</span> and synthetic aperture radar (SAR) images, we developed methods to describe the dynamics and thermodynamics of lead structure relative to use by spectacled eiders ( Somateria fischeri) wintering in pack ice of the Bering Sea. By correlating lead structure with weather variables, we then used these methods to estimate changes in lead dynamics from 1945 to 2002, and effects of such changes on flight costs of the eiders. For 1991-1992, when images were available about every 3 days throughout winter, SAR images were divided among five weather regimes defined by wind speed, wind direction, and air temperature. Based on 12.5-m pixels, lead shape, compass orientation, and fetch across leads did not differ among the weather regimes. However, the five regimes differed in total area of open water, leads per unit area, and distance between leads. Lead duration was modeled based on air temperature, wind, and fetch. Estimates of mean daily flight time for eiders, based on lead duration and distance between neighboring leads, differed among regimes by 0 to 15 min. Resulting flight costs varied from 0 to 158 kJ day -1, or from 0% to 11% of estimated field metabolic rate. Over 57 winters (1945-2002), variation among years in mean daily flight time was most influenced by the north-south wind component, which determined pack divergence</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMOS43A0984J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMOS43A0984J"><span>Version 2.0 of the International Bathymetric Chart of the Arctic Ocean: A new Database for Oceanographers and Mapmakers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jakobsson, M.; Macnab, R.; Edwards, M.; Schenke, H.; Hatzky, J.</p> <p>2007-12-01</p> <p>The International Bathymetric Chart of the Arctic Ocean (IBCAO) was first released to the public after its introduction at the American Geophysical Union (AGU) Fall Meeting in 1999 (Jakobsson et al., 2000). This first release consisted of a Digital Bathymetric Model (DBM) on a Polar stereographic projection with grid cell spacing of 2.5 x 2.5 km derived from an accumulated database of all available bathymetric data at the time of compilation. The IBCAO bathymetric database included soundings collected during past and modern expeditions as well as digitized isobaths and depth soundings from published maps. Compared to previous bathymetric maps of the Arctic Ocean, the first released IBCAO compilation was based upon a significantly enhanced database, particularly in the high Arctic. For example, de-classified echo soundings acquired during US and British submarine cruises between 1958 and 1988 were included as well as soundings from <span class="hlt">icebreaker</span> cruises conducted by Sweden and Germany at the end of the last century. Despite the newly available data in 1999, there were still large areas of the Arctic Ocean where publicly available data were completely absent. Some of these areas had been mapped by Russian agencies, and since these observations were not available to IBCAO, depth contours from the bathymetric contour map published by the Head Department of Navigation and Hydrography (HDNO) (Naryshkin, 1999) were digitized and incorporated in the database. The new IBCAO Version 2.0 comprises the largest update since the first release; moreover, the grid spacing has been decreased to 2 x 2 km. Numerous multibeam data sets that were collected by ice breakers, e.g. USCGC Healy, R/V James Clarke Ross, R/V Polarstern, IB Oden, now form part of the database, as do the swath bathymetric observations acquired during the 1999 SCICEX expedition. The portrayal of the Eastern Arctic Basin is vastly improved due to e.g. the Arctic Mid Ocean Ridge Expedition 2001 (AMORE) and Arctic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.P52A..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.P52A..02R"><span>The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic Ice Cap</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.</p> <p>2007-12-01</p> <p>Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the <span class="hlt">icebreaker</span> Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22225048-decommissioning-dismantling-floating-maintenance-base-lepse','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22225048-decommissioning-dismantling-floating-maintenance-base-lepse"><span>Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Field, D.; Mizen, K.</p> <p></p> <p>The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (<span class="hlt">ice-breakers</span>) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been usedmore » to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412797H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412797H"><span>Teaching Science in Engineering Freshman Class in Private University in Jordan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hawarey, M. M.; Malkawi, M. I.</p> <p>2012-04-01</p> <p> Engineer covers vast concepts relevant to Newton's Laws and Work-Energy Theorem, while originally aimed at 3-year old kids), and YouTube has become so rich in it scientific content that it has not been hard to find any experiment or simulation there so that the students connect the dry blackboard and chalk to real life. As freshmen are still immature and sensing their way through, wondering if they will be able to get the title of Engineer or not, the usage of such familiar mediums and tools such as movies, toys, videos and simulations to illustrate basics to them has proved efficient and is regarded as an ideal <span class="hlt">ice-breaker</span> towards a challenging journey of engineering classes. As long as the scientific content is not compromised, we believe that more mediums should be tested. This paper will highlight these affairs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3643Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3643Y"><span>Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamanouchi, Takashi</p> <p>2016-04-01</p> <p>We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other <span class="hlt">icebreakers</span> belonging to other</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616396V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616396V"><span>New view on tectonic structure of Siberian Sector of the Amerasian Basin (Arctic Ocean)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vinokurov, Yu. I.</p> <p>2014-05-01</p> <p>In 2012, JSC Sevmorgeo with assistance of several research institutions of Federal Agency of Mineral Resources (Rosnedra) and Ministry of Defense carried out a unique set of offshore seismic and geological studies in the Mendeleev Rise area and adjacent areas of the Amerasia Basin. Two specially re-equipped <span class="hlt">icebreakers</span> ("Kapitan Dranitsin" and "Dixon") were used in this campaign. The main results of the expedition were 5315 km of multichannel seismic profiles both with long and short streamers (4500 m and 600 m, respectively), 480 km long refraction profile crossing Mendeleev Rise. Seismic acquisition with short streamers was accompanied by deployment of sonobuoys. Geological studies included deep-water drilling and sea-bottom sampling by dredge, gravity corer, grab and by specially equipped research submarine. The newly acquired geological and geophysical data allowed for the following conclusions: 1. The Mendeleev Rise, the adjacent Lomonosov Ridge and Chukchi Plateau are the direct continuations of the East Siberian Sea tectonic structures. It is confirmed by direct tracking of some morphostructures, faults, gravity and magnetic anomalies from the shelf to deep-water highs. 2. The East Arctic Shelf and the adjacent Arctic Ocean represent offshore extent of the Verkhoyansk-Kolyma crustal domain constituted by a mosaic of separate blocks of the Pre-Cambrian basement (Okhotsk, Omulevka, Omolon, Wrangel-Gerald and Central Arctic) and Late Mesozoic orogens. This area differs significantly from the Ellesmerian crustal domain located to the east (including the Northwind Ridge, which coincides with inferred eastern boundary of the Mesozoides). The Central Arctic domain includes structures of the Mendeleev Ridge and the Chukchi Plateau. Western boundary of this block is inferred along the Spur of Geophysicists, which separates the Podvodnikov Basin into two unequal parts with different basement structure. From the south, southwest and west, the Central Arctic domain is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812879K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812879K"><span>Remotely Operated Vehicles under sea ice - Experiences and results from five years of polar operations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katlein, Christian; Arndt, Stefanie; Lange, Benjamin; Belter, Hans Jakob; Schiller, Martin; Nicolaus, Marcel</p> <p>2016-04-01</p> <p>The availability of advanced robotic technologies to the Earth Science community has largely increased in the last decade. Remotely operated vehicles (ROV) enable spatially extensive scientific investigations underneath the sea ice of the polar oceans, covering a larger range and longer diving times than divers with significantly lower risks. Here we present our experiences and scientific results acquired from ROV operations during the last five years in the Arctic and Antarctic sea ice region. Working under the sea ice means to have all obstacles and investigated objects above the vehicle, and thus changes several paradigms of ROV operations as compared to blue water applications. Observations of downwelling spectral irradiance and radiance allow a characterization of the optical properties of sea ice and the spatial variability of the energy partitioning across the atmosphere-ice-ocean boundary. Our results show that the decreasing thickness and age of the sea ice have led to a significant increase in light transmission during summer over the last three decades. Spatially extensive measurements from ROV surveys generally provide more information on the light field variability than single spot measurements. The large number of sampled ice conditions during five cruises with the German research <span class="hlt">icebreaker</span> RV Polarstern allows for the investigations of the seasonal evolution of light transmittance. Both, measurements of hyperspectral light transmittance through sea ice, as well as classification of upward-looking camera images were used to investigate the spatial distribution of ice-algal biomass. Buoyant ice-algal aggregates were found to be positioned in the stretches of level ice, rather than pressure ridges due to a physical interaction of aggregate-buoyancy and under-ice currents. Synchronous measurements of sea ice thickness by upward looking sonar provides crucial additional information to put light-transmittance and biological observations into context</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ACPD....920913S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ACPD....920913S"><span>Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sommar, J.; Andersson, M. E.; Jacobi, H.-W.</p> <p>2009-10-01</p> <p>Using the Swedish <span class="hlt">icebreaker</span> Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent mercury HgII(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July-September, 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska - Chukchi Penninsula - Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0} pulse in the water was spilled with some time-delay into the air samples collected 20 m a.s.l. Several episodes of elevated Hg0(g) were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m-3) compared to the marine boundary layer over ice-free oceanic waters (1.55±0.21 ng m-3). In addition, an overall majority of the variance in the temporal series of Hg0 concentrations was observed during July. Atmospheric boundary layer {O3} mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15-20 ppbv was observed during summer (July-August). Alongside the polar transect during the beginning of autumn, a steady trend of increasing O3 mixing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ACP....10.5031S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ACP....10.5031S"><span>Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sommar, J.; Andersson, M. E.; Jacobi, H.-W.</p> <p>2010-06-01</p> <p>Using the Swedish <span class="hlt">icebreaker</span> Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent gaseous mercury species HgIIX2(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July-September 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska - Chukchi Penninsula - Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0 pulse in the water was transferred with some time-delay into the air samples collected ~20 m above sea level. Several episodes of elevated Hg0 in air were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m-3) compared to the marine boundary layer over ice-free Arctic oceanic waters (1.55±0.21 ng m-3). In addition, the bulk of the variance in the temporal series of Hg0 concentrations was observed during July. The Oden Hg0 observations compare in this aspect very favourably with those at the coastal station Alert. Atmospheric boundary layer O3 mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15-20 ppbV was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V11D2807P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V11D2807P"><span>Geochemistry of lavas from the Australian-Antarctic Ridge, easternmost Southeast Indian Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, S.; Langmuir, C. H.; Lin, J.; Kim, S.; Hahm, D.; Michael, P. J.; Baker, E. T.</p> <p>2012-12-01</p> <p>The intermediate spreading Australian-Antarctic Ridge (AAR), an easternmost extension of the South East Indian Ridge located in the south of Tasmania, is one of the largest unexplored regions of the global mid-ocean ridge system, owing to its remote location and a very limited workable weather window. In early and late 2011, the Korea Polar Research Institute (KOPRI) conducted two surveys of two segments at 160°E (KR1) and 152.5°E (KR2) using the <span class="hlt">icebreaker</span> Araon, producing a multi-beam map, 48 rock core samples and a MAPR (Miniature Autonomous Plume Recorder) hydrothermal survey. The full spreading rate of the spreading center in this area is 68 mm/yr. The axial depth of KR1 is relatively shallow (~2,000m) and is a first-order segment bounded by two large offset transform faults. The axial morphology of KR1 varies substantially from an axial high plateau (Segment 1) in the west, to a small rift valley (Segment 2), to an axial high with graben (Segment 3), and to a substantial rift valley (Segment 4) in the east. These changes occur in the absence of marked offsets in the ridge, such as overlapping spreading centers. Even so, these segments can be divided still further into shorter scale segments based on small discontinuities in the linearity of the axis and variations in rock chemistry. Small offsets in bathymetry can be associated with large chemical changes, such as between Segments 2 and 3, where incompatible element abundances change by almost a factor of ten. Incompatible trace element ratios for basalts show a regular pattern that is nonetheless not a single gradient. Along Segments 1 and 2, an axial high changes to a modest rift, (La/Sm)N of basalts decreases from 0.9 to 0.5. Then there is an abrupt step in enrichment to (La/Sm)N of 1.5, associated with a shallower depths and the appearance of an off-axis seamount south of the axis. This enrichment persists eastwards and then declines progressively to values of (La/Sm)N of 0.7 in the pronounced rift</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMGC51D1084C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMGC51D1084C"><span>Data Modeling, Development, Installation and Operation of the ACEX Offshore Drilling Information System for the Mission Specific Platform Expedition to the Lomonosov Ridge, Arctic Ocean.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Conze, R.; Krysiak, F.; Wallrabe-Adams, H.; Graham, C. C.</p> <p>2004-12-01</p> <p> expedition. Onboard samples were registered in a corresponding sample archive on both vessels. The ACEX-OffshoreDIS used a local area network covering the two ships of the three <span class="hlt">icebreaker</span> fleet by wireless LAN between the ships and partly wired LAN on the ships. A DIS-server was installed on each ship. These were synchronized by database replication and linked to a total of 10 client systems and label printers across both ships. The ACEX-OffshoreDIS will also be used for the scientific measurement and analysis phase of the expedition during the post-field operations `shore-party' in November 2004 at the Bremen Core Repository (BCR). The data management system employed in the Arctic will be reconfigured and deployed at the BCR. In addition, an eXtended DIS (XDIS) Web interface will be available. This will allow controlled sample distribution (core curation, sub-sampling) as well as sharing of data (registration, upload and download) with other laboratories which will be undertaking additional sampling and analyses. The OffshoreDIS data management system will be of long-term benefit to both IODP and ICDP, being deployed in forthcoming MSP offshore projects, ICDP lake projects and joint IODP-ICDP projects such as the New Jersey Coastal Plain Drilling Project.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3064D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3064D"><span>Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dethloff, Klaus; Rex, Markus; Shupe, Matthew</p> <p>2016-04-01</p> <p> be used to identify specific gaps and parameterization needs. Preliminary modeling and operational forecasting will also be necessary to directly guide field planning and optimal implementation of field resources, and to support the safety of the project. The MOSAiC Observatory will be deployed in, and drift with, the Arctic sea-ice pack for at least a full annual cycle, starting in fall 2019 and ending in autumn 2020. Initial plans are for the drift to start in the newly forming autumn sea-ice in, or near, the East Siberian Sea. The specific location will be selected to allow for the observatory to follow the Transpolar Drift towards the North Pole and on to the Fram Strait. IASC has adopted MOSAiC as a key international activity, the German Alfred Wegener Institute has made the huge contribution of the <span class="hlt">icebreaker</span> Polarstern to serve as the central drifting observatory for this year long endeavor, and the US Department of Energy has committed a comprehensive atmospheric measurement suite. Many other nations and agencies have expressed interest in participation and in gaining access to this unprecedented observational dataset. International coordination is needed to support this groundbreaking endeavor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A44D..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A44D..06L"><span>Production and Cycling of Methylated Mercury Species in Arctic Marine Waters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehnherr, I.; St. Louis, V. L.; Hintelmann, H.</p> <p>2009-12-01</p> <p>Monomethyl mercury (MMHg), a vertebrate neurotoxin which bioaccumulates through foodwebs, is found in some Arctic marine mammals at levels that may be harmful to northern peoples consuming them as food. Unfortunately, sources of MMHg to polar marine food webs remain unknown, in part due to the complex nature of Hg cycling in polar marine waters. Since 2005, we have been sampling the marine waters of the Canadian Arctic Archipelago from the Canadian Coast Guard research <span class="hlt">icebreaker</span> CCGS Amundsen. Early results demonstrated that elevated concentrations of both MMHg and dimethyl mercury (DMHg, a toxic, gaseous Hg species) are found in sub-surface Arctic marine waters (89±36 pg L-1 and 73±37 pg L-1, respectively) despite low total Hg (THg) concentrations (290±220 pg L-1), suggesting an internal source of methylated Hg. We tested the hypothesis that methylated Hg species are produced directly in the marine water column using stable-isotope Hg tracers. Seawater samples were amended with 198Hg(II) and incubated for 0, 8, 16 or 24 hours to measure the production of MM198Hg, DM198Hg and gaseous elemental 198Hg(0) (GEM) over time. A second tracer, MM199Hg, was also added to quantify MMHg methylation (formation of DM199Hg), demethylation (loss of MM199Hg) and reduction (formation of 199Hg(0)). Preliminary analysis of the data indicates that Hg(II) is methylated in polar marine waters to form both MMHg (first order rate-constant km1 ~6x10-4 d-1) and DMHg (km2 ~5x10-6 d-1). We also found that DMHg production from MMHg is ~50x faster than with Hg(II) as the substrate. Furthermore, at a small number of sites, we measured methylation rates that were elevated by almost a full order of magnitude compared to the average, suggesting that methylation hotspots may exist in Arctic marine waters. However, during the less productive fall season when the CCGS Amundsen cruises were conducted, demethylation of MMHg generally appears to dominate in the water column and can occur via a number</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1067/pdf/ofr20131067.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1067/pdf/ofr20131067.pdf"><span>2010 Joint United States-Canadian Program to explore the limits of the Extended Continental Shelf aboard U.S. Coast Guard Cutter Healy--Cruise HLY1002</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Edwards, Brian D.; Childs, Jonathan R.; Triezenberg, Peter J.; Danforth, William W.; Gibbons, Helen</p> <p>2013-01-01</p> <p>In August and September 2010, the U.S. Geological Survey, in cooperation with Natural Resources Canada, Geological Survey of Canada, conducted bathymetric and geophysical surveys in the Beaufort Sea and eastern Arctic Ocean aboard the U.S. Coast Guard Cutter Healy. The principal objective of this mission to the high Arctic was to acquire data in support of a delineation of the outer limits of the U.S. and Canadian Extended Continental Shelf in the Arctic Ocean, in accordance with the provisions of Article 76 of the United Nations Convention on the Law of the Sea. The Healy was accompanied by the Canadian Coast Guard <span class="hlt">icebreaker</span> Louis S. St-Laurent. The scientific parties on board the two vessels consisted principally of staff from the U.S. Geological Survey (Healy), and the Geological Survey of Canada and the Canadian Hydrographic Service (Louis). The crew also included marine-mammal observers, Native-community observers, ice observers, and biologists conducting research of opportunity in the Arctic Ocean. Despite interruptions necessitated by three medical emergencies, the joint survey proved largely successful. The Healy collected 7,201 trackline-kilometers of swath (multibeam) bathymetry (47,663 square kilometers) and CHIRP subbottom data, with accompanying marine gravity measurements, and expendable bathythermograph data. The Louis acquired 3,673 trackline-kilometers of multichannel seismic (airgun) deep-penetration reflection data along 25 continuous profiles, as well as 34 sonobuoy refraction stations and 9,500 trackline-kilometers of single-beam bathymetry. The coordinated efforts of the two vessels resulted in seismic-reflection-profile data that were of much higher quality and continuity than if the data had been acquired with a single vessel alone. The equipment-failure rate of the seismic equipment aboard the Louis was greatly reduced when the Healy led as the ice breaker. When ice conditions proved too severe to deploy the seismic system, the Louis led</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C44A..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C44A..05S"><span>MOSAiC - Multidisciplinary drifting Observatory for the Study of Arctic Climate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shupe, M.; Persson, O. P.; Tjernstrom, M. K.; Dethloff, K.</p> <p>2012-12-01</p> <p> Arctic become more biologically productive and what are the consequences of this to other components of the system? *How do the different scales of heterogeneity within the atmosphere ice and ocean interact to impact the linkages or feedbacks within the system? *How do interfacial exchange rates, biology and chemistry couple to regulate the major elemental cycles? MOSAiC will address these multi-disciplinary questions using intensive observations and modeling of processes that transfer energy, mass, and momentum through the atmosphere-ice-ocean system. The centerpiece of the observatory will be an <span class="hlt">icebreaker</span>-based station to serve as a hub for intensive and comprehensive observations of climatically-significant physical, chemical, and biological processes through the vertical column. To provide important spatial context and horizontal variability, this facility will be the focal point for a constellation of coordinated observations made by drifting buoys, unmanned aerial and underwater vehicles, aircraft, ships, and satellites. These MOSAiC observational activities will serve as a testbed for evaluation and development of models at scales ranging from high-resolution, process models to regional and global climate models. MOSAiC observational and modeling activities will be linked at the outset, such that model needs will be integral in observational design, implementation, and analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110200G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110200G"><span>Field performance and identification capability of the Innsbruck PTR-TOF</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graus, M.; Müller, M.; Hansel, A.</p> <p>2009-04-01</p> <p>Over the last one and a half decades Proton Transfer Reaction Mass Spectrometry (PTR-MS) [1, 2] has gained recognition as fast on-line sensor for monitoring volatile organic compounds (VOC) in the atmosphere. Sample collection is very straight forward and the fact that no pre-concentration is needed is of particular advantage for compounds that are notoriously difficult to pre-concentrate and/or analyze by gas chromatographic (GC) methods. Its ionization method is very versatile, i.e. all compounds that perform exothermic proton transfer with hydronium ions - and most VOCs do so - are readily ionized, producing quasi-molecular ions VOC.H+. In the quasi-molecular ion the elemental composition of the analyte compound is conserved and allows, in combination with some background knowledge of the sample, conclusions about the identity of that compound. De Gouw and Warneke (2007) [3] summarized the applicability of PTR-MS in atmospheric chemistry but they also pointed out shortcomings in the identification capabilities. Goldstein and Galbally (2007) [4] addressed the multitude of VOCs potentially present in the atmosphere and they emphasized the gasphase-to-aerosol partitioning of organic compounds (volatile and semi-volatile) in dependence of carbon-chain length and oxygen containing functional groups. In collaboration with Ionicon and assisted by TOFWERK we developed a PTR time-of-flight (PTR-TOF) instrument that allows for the identification of the atomic composition of oxygenated hydrocarbons by exact-mass determination. A detection limit in the low pptv range was achieved at a time resolution of one minute, one-second detection limit is in the sub-ppbv range. In 2008 the Innsbruck PTR-TOF was field deployed in the <span class="hlt">icebreaker</span>- and helicopter based Arctic Summer Cloud Ocean Study (ASCOS) to characterize the organic trace gas composition of the High Arctic atmosphere. During the six-week field campaign the PTR-TOF was run without problems even under harsh conditions in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C53B..07A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C53B..07A"><span>Summer Sea ice in the Pacific Arctic sector from the CHINARE-2010 cruise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ackley, S. F.; Xie, H.; Lei, R.; Huang, W.; Chinare 2010 Arctic Sea Ice Group</p> <p>2010-12-01</p> <p>The Fourth Chinese National Arctic Research Expedition (CHINARE) from July 1 to Sep. 23, 2010, the last Chinese campaign in Arctic Ocean contributing to the fourth International Polar Year (IPY), conducted comprehensive scientific studies on ocean-ice-atmosphere interaction and the marine ecosystem’s response to climatic change in Arctic. This paper presents an overview on sea ice (ice concentration, floe size, melt pond coverage, sea ice and snow thickness) of the Pacific Arctic sector, in particular between 150°W to 180°W to 86°N, based on: (1) underway visual observations of sea ice at half-hourly and automatic cameras recording (both side looking from the <span class="hlt">icebreaker</span> R.V. Xuelong) every 10 to 15 seconds; (2) a downward-looking video mounted on the left side of the vessel at a height of 7 m above waterline recording overturning of ice floes; (3) on-site measurements of snow and ice thickness using drilling and electromagnetic instrument EM31 (9.8 kHz) at eight short-term (~3 hours each) and one 12-day ice stations; (4) six flights of aerial photogrammetry from helicopter, and (5) Satellite data (AMSE-E ice concentration and ENVISAT ASAR) and NIC ice charts) that extended the observations/measurements along beyond the ship track and airborne flights. In the northward leg, the largest ice concentration zone was in the area starting from ~75°N (July 29), with ice concentration of 60-90% (mean ~80%), ice thickness of 1.5-2m, melt ponds of 10-50% of ice, ridged ice of 10-30% of ice, and floe size of 100’s meters to kms. The 12-day ice station (from Aug 7-19), started at 86.92°N/178.88°W and moved a total of 175.7km, was on an ice floe over 100 km2 in size and ~2 m in mean thickness. There were two heavy and several slight snowfall events in the period (July 29 to Aug 19). Snow thickness varies from 5cm to 15 cm, and melted about 5cm during the 12-day ice camp. In the southward leg, the largest sea ice concentration zone was in the area between 87°N to 80</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....4215S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....4215S"><span>The Northeast Greenland Shelf - Evidence of the existence of a pronounced salt-province</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmitz, T.; Jokat, W.</p> <p>2003-04-01</p> <p>The Northeast Greenland shelf (NEGS) is the part of the continental margin of east Greenland located between the Jan Mayen Fracture Zone at about 72°N in the south and the Spitzbergen Fracture Zone at 81°N in the north. The eastern boundary, at the shelf edge, is the approximate position of the boundary between continental and oceanic crust and the western boundary is the coastline of Greenland. The shelf has a N-S orientation, is about 1000 km long, and between 125 km (southern part) and 380 km (at 78°N) wide. Based on present data the NEGS can be subdivided into a southern part influenced by Tertiary tectonism and volcanism (approx. 72°N to 75°N) and a northern, nonvolcanic, part (approx. 75°N to 81°N). Today the sedimentary history, stratigraphy, structure and origin of the basement below the sedimentary shelf south of 74°N are reasonable known, but only sparse information exists about the northern part of the shelf. Until 1990 there weren't any seismic lines north of 74°N, and all interpretations of stratigraphy and basin structures of the northern part of the NEGS were based on aeromagnetic data. During the last decade, the first seismic lines were shot over the northern part of the shelf to give more detailed information about sediment thickness, stratigraphy, and the structure of the sedimentary shelf. The area under investigation lies on the nonvolcanic northern part of the shelf between 78°30'N and 81°N. The sea floor topography indicates some submarine banks with water depth as shallow as 30 m, which are separated by valleys up to 500 m deep. These valleys were formed through erosion processes caused by cyclic movements of big grounded glacier tongues during the last ice-ages with a maximum expansion during the Wisconsin-Weichselian glaciation. During two scientific expeditions with the German research <span class="hlt">icebreaker</span> Polarstern in 1997 and 1999, more than 1100 km of multichannel seismic data were collected. The cruise tracks during seismic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001118.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001118.html"><span>Persistent Ice on Lake Superior</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p> reported at 59.9 percent; Lake Huron was nearly 30.4 percent. News outlets noted that as many as 70 ships have been backed up in Lakes Michigan, Huron, and Erie, waiting for passage into ports on Lake Superior. The U.S. Coast Guard has been grouping ships together into small convoys after they pass through locks at Sault Ste. Marie, in order to maximize <span class="hlt">ice-breaking</span> efficiency and to protect ships from damage. Superior is the world’s largest freshwater lake by area (82,100 square kilometers or 31,700 square miles) and the third largest by volume. The waters average 147 meters (483 feet) in depth, and the basin is believed to hold about 10 percent of the world’s liquid fresh water. NASA image courtesy Jeff Schmaltz LANCE/EOSDIS MODIS Rapid Response Team, GSFC. Caption by Mike Carlowicz. Read more: earthobservatory.nasa.gov/IOTD/view.php?id=83541&eocn... Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMED22A..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMED22A..07R"><span>Connections in the Field and Beyond: A Case Study of Successful Teacher Research Experiences at the Poles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosenberger, D.</p> <p>2007-12-01</p> <p>Successful and lasting partnerships between scientists and teachers can be established through Teacher Research Experiences (TRE). The documented benefits of the TRE include increased teacher retention in addition to renewed instructional practices in veteran teachers. The reality and excitement of field science is very difficult to convey to students if the teacher has never personally experienced it, and a TRE can transfer this interest into the classroom. With the field research experience as the centerpiece of the TRE relationship, much should be done before, during, and after the TRE to ensure a positive and lasting connection that meets the needs of both the teacher and researcher. This presentation focuses, from a teacher's first-hand perspective, on the critical issues that scientists must consider to ensure successful collaborations with teachers in the field. I have participated in two TRE's and have learned a great deal from both. In 2001, through the National Science Foundation sponsored program Teachers Experiencing Antarctica and the Arctic (TEA) I was able to participate in biochemical oceanographic science on-board the <span class="hlt">Icebreaker</span> Oden in the Arctic Ocean. In 2005, I did biogeochemical research at Pony Lake/McMurdo Station in Antarctica as a participant in Teachers and Researchers Exploring and Collaborating (TREC), a program of the Arctic Research Consortium of the United States (ARCUS). On both research experiences, I was a working member of the science team. I was responsible for numerous teaching and outreach activities including: uploading daily journals and photos to a website, answering email from students and the public, and managing live communications with schools. Both research experiences were very successful and have resulted in lasting relationships with scientists and other teachers interested in polar science. My participation in these experiences also influenced my teaching by increasing student enthusiasm in the classroom and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5379G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5379G"><span>Peculiarities of CO2 sequestration in the Permafrost area</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guryeva, Olga; Chuvilin, Evgeny; Moudrakovski, Igor; Lu, Hailong; Ripmeester, John; Istomin, Vladimir</p> <p>2010-05-01</p> <p>Natural gas and gas-condensate accumulations in North of Western Siberia contain an admixture of CO2 (about 0.5-1.0 mol.%). Recently, the development and transportation of natural gas in the Yamal peninsula has become of interest to Russian scientists. They suggest liquifaction of natural gas followed by delivery to consumers using <span class="hlt">icebreaking</span> tankers. The technique of gas liquefaction requires CO2 to be absent from natural gas, and therefore the liquefaction technology includes the amine treatment of gas. This then leads to a problem with utilization of recovered CO2. It is important to note, that gas reservoirs in the northern part of Russia are situated within the Permafrost zone. The thickness of frozen sediment reaches 500 meters. That is why one of the promising places for CO2 storage can be gas-permeable collectors in under-permafrost horizons. The favorable factors for preserving CO2 in these places are as follows: low permeability of overlying frozen sediments, low temperatures, the existence of a CO2 hydrate stability zone, and the possibility of sequestration at shallow depths (less then 800-1000 meters). When CO2 (in liquid or gas phase) is pumped into the under-permafrost collectors it is possible that some CO2 migrates towards the hydrate stability zone and hydrate-saturated horizons can be formed. This can result on the one hand in the increase of effective capacity of the collector, and on the other hand, in the increase of isolating properties of cap rock. Therefore, CO2 injection sometimes can be performed without a good cap rock. In connection with the abovementioned, to elaborate an effective technology for CO2 injection it is necessary to perform a comprehensive experimental investigation with computer simulation of different utilization schemes, including the process of CO2 hydrate formation in porous media. There are two possible schemes of hydrate formation in pore medium of sediments: from liquid CO2 or the gas. The pore water in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.4021M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.4021M"><span>White Sea's Severe Winter Hydrological Hazard and Its Effect On Decrease of Population of Greenland Seals (1998/99 Winter Ecological Catastrophe)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melentyev, Konstantin V.; Chernook, Vladimir I.</p> <p></p> <p> soundig with resolution 20-25 m, changed situation. High transparency of snow and relatively deep penetration of signals in ice is basis of sub-surface sounding. SAR images allow fix documentary different ice parameters: development and arrangement, ice type, shape of floes, ice concentration and compactness. Unfortunately time being resolution couldn't resolve individual sea mammal. In order to investigate the ice regime, estimate number of seals at the different winter conditions and forecast the future tendency of population decrease we perform regularly ice reconnaissance. Accomplish these observations and computations more precisely could be done at the time of mass accumulation of seals, that is whelping and moulting period. Aerial inspection is difficult task: weather conditions and masking coloration obstructs the problems, sometimes mammals couldn't be quite founded. Comprehensive study of ERS SAR signatures for diagnosis type of winter hydrology of the Arctic seas and ice conditions produced by severe winter , assessment of possibility forecast of future development of ice and studying ice as non-biotic factor of ecology of Pagophilus groenladicus and other ice-associated forms of sea mammals is a new interdisciplinary approach in marine biology. First experience of such application SAR data for diagnosis of hydrological hazard produced by severe winter has been undertaken in the White Sea and contiguous seas in 1996. Sub-satellite experiments onboard nuclear <span class="hlt">icebreaker</span> "Taymir" provided validation program, ice cores and water samples were gathered and evaluated using chemi-luminiscent methods in connection with seal' behavior patterns. Since then aircraft Antonov-26 «Arktika» provided ice and seals investigations systematically. Helicopter is employed for in situ observations, ice cores and water samples are investigated in laboratory for measurement of different pollutant , dissolved organic matter and other hydro-chemical and radio-physical paramet ers</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhyEd..33..336.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhyEd..33..336."><span>Japan - UK Conference: Trends in Physics and Chemistry Education in Secondary Schools</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>1998-11-01</p> <p> always benefits from gaining a wider view. Whether this is a need to see a classroom other than your own, a school other than your own or a country other than your own, the result is the same: setting challenges and discussions in context and helping to provide a sense of perspective. What we had to give to the conference During the conference the British contingent reviewed the present state of science education in Britain, particularly giving information on the Institute of Physics 16-19 Initiative and National Curriculum consultation, concentrating rather more on the principles than the detail, which by nature was not immediately relevant to the audience. To this was added a research perspective on Children's Learning in Science, focusing on the importance of discussion and conversation in reaching understanding. The central day was dominated by workshops attempting to argue why we undertake some experimental work in physics education. Four possible purposes of practical work were identified and then demonstrated by a hands-on practical circus. An investigative practical, necessarily open-ended and probably empirically messy, possibly not yielding clean results. A clearly illustrative practical intended to readily allow observation and discussion of a phenomenon with the ability to alter appropriate parameters and stimulating discussion. Practical work intended to produce clear, reproducible, reliable results if good care is taken: the `can-do' aspect of physics giving pride in obtaining a result. The demonstration intended to stimulate teacher-led class discussion. The abiding memory of this practical circus was of its role as the ultimate international <span class="hlt">ice-breaker</span>. Previously formal conference discussion became animated and language difficulties became less important as teachers engaged in the truly international business of playing with and becoming fascinated with practical apparatus. What we gained from the conference On the Saturday evening we were treated to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21290850-development-conditioning-system-dual-purpose-transport-storage-cask-spent-nuclear-fuel-from-decommissioned-russian-submarines','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21290850-development-conditioning-system-dual-purpose-transport-storage-cask-spent-nuclear-fuel-from-decommissioned-russian-submarines"><span>Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dyer, R.S.; Barnes, E.; Snipes, R.L.</p> <p>2007-07-01</p> <p>Russia, stores large quantities of spent nuclear fuel (SNF) from submarine and <span class="hlt">ice-breaker</span> nuclear powered naval vessels. This high-level radioactive material presents a significant threat to the Arctic and marine environments. Much of the SNF from decommissioned Russian nuclear submarines is stored either onboard the submarines or in floating storage vessels in Northwest and Far East Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. In many cases, the existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing all of this fuelmore » from remote locations. Additional transport and storage options are required. Some of the existing storage facilities being used in Russia do not meet health and safety and physical security requirements. The U.S. has assisted Russia in the development of a new dual-purpose metal-concrete transport and storage cask (TUK-108/1) for their military SNF and assisted them in building several new facilities for off-loading submarine SNF and storing these TUK-108/1 casks. These efforts have reduced the technical, ecological, and security challenges for removal, handling, interim storage, and shipment of this submarine fuel. Currently, Russian licensing limits the storage period of the TUK-108/1 casks to no more than two years before the fuel must be shipped for reprocessing. In order to extend this licensed storage period, a system is required to condition the casks by removing residual water and creating an inert storage environment by backfilling the internal canisters with a noble gas such as argon. The U.S. has assisted Russia in the development of a mobile cask conditioning system for the TUK-108/1 cask. This new conditioning system allows the TUK 108/1 casks to be stored for up to five years after which the license may be considered for renewal for an additional five years or the fuel will be shipped</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_14");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>