Sample records for icehouse astrobiological prospects

  1. Biological Feedbacks as Cause and Demise of Neoproterozoic Icehouse: Astrobiological Prospects for Faster Evolution and Importance of Cold Conditions

    PubMed Central

    Janhunen, Pekka; Kaartokallio, Hermanni; Oksanen, Ilona; Lehto, Kirsi; Lehto, Harry

    2007-01-01

    Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630–850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets. PMID:17299594

  2. Biological feedbacks as cause and demise of the Neoproterozoic icehouse: astrobiological prospects for faster evolution and importance of cold conditions.

    PubMed

    Janhunen, Pekka; Kaartokallio, Hermanni; Oksanen, Ilona; Lehto, Kirsi; Lehto, Harry

    2007-02-14

    Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630-850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets.

  3. Astrobiology, Sustainability and Ethical Perspectives

    NASA Astrophysics Data System (ADS)

    Arnould, Jacques

    2009-12-01

    Astrobiology, a new field of research associating the prospects and constraints of prebiotic chemistry, mineralogy, geochemistry, astrophysics, theoretical physics, microbial ecology, etc., is assessed in terms of sustainability through the scientific and social functions it fulfils, and the limits it encounters or strives to overcome. In the same way as sustainable development, astrobiology must also take into account the temporal dimension specific to its field of investigation and examine its underlying conception of Nature.

  4. Icehouse Effect: A Polar Autumn and Winter Cooling Trend

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.

    1999-01-01

    The icehouse effect is a hypothesized polar climate trend toward cooling (or lack of warming) in response to greenhouse warming of adjacent lower latitudes. When greenhouse warmed air from lower latitudes moves over ice and snow, it generates a stronger, more stable, cappino, inversion than in a parallel case without greenhouse warming. Because the degree of decoupling between vertically adjacent air masses is directly dependent on the strength of the inversion, the capping inversion acts somewhat analogously to the walls and roof of the icehouse of generations past. What is inside the icehouse, namely the cold polar atmospheric boundary layer (ABL) air, is preserved by the "insulation" or decoupling, provided by the warm air aloft. Observations over the Arctic Ocean have shown an unexpected lack of any detectable surface warming trend over the past 40 years. This finding strongly contradicts climate model predictions that polar regions should show the strongest effect of greenhouse warming. It also stands in contrast to the consensus reached by the Intergovernmental Panel on Climate Change (IPCC), that human caused greenhouse warming is now detectable globally. One might ask: Are these Arctic observations wrong? Or, if right, is there a plausible physical explanation for them? The published observations mentioned above used about 50,000 soundings over the Arctic Ocean. Here I present a novel analysis of ALL available Arctic rawinsonde data north of 65N--a total of more than 1.1 million soundings. The analysis confirms the previously published result: There is indeed a slight climate-cooling trend in the vast majority of the data. Importantly, there are also select conditions (very strong and very weak stability of the ABL) which show a consistent, strong Arctic warming trend. It is the juxtaposition of these warming and cooling trends which defines a unique "icehouse signature" for which an explanation can be sought.

  5. Robotic astrobiology - prospects for enhancing scientific productivity of mars rover missions

    NASA Astrophysics Data System (ADS)

    Ellery, A. A.

    2018-07-01

    Robotic astrobiology involves the remote projection of intelligent capabilities to planetary missions in the search for life, preferably with human-level intelligence. Planetary rovers would be true human surrogates capable of sophisticated decision-making to enhance their scientific productivity. We explore several key aspects of this capability: (i) visual texture analysis of rocks to enable their geological classification and so, astrobiological potential; (ii) serendipitous target acquisition whilst on the move; (iii) continuous extraction of regolith properties, including water ice whilst on the move; and (iv) deep learning-capable Bayesian net expert systems. Individually, these capabilities will provide enhanced scientific return for astrobiology missions, but together, they will provide full autonomous science capability.

  6. Sea-level Change during Hothouse, Cool Greenhouse, and Icehouse Worlds

    NASA Astrophysics Data System (ADS)

    Miller, K. G.; Browning, J. V.; Wright, J. D.

    2015-12-01

    Comparison of sea level and climate proxies shows fundamentally different causes and responses (periods, amplitudes, rates) for Myr scale sea-level changes in Hothouse, Cool Greenhouse, and Icehouse worlds. Peak warmth of the past 100 million years was achieved in the Hothouse intervals of the Cenomanian-Santonian (ca. 100-80 Ma) and early Eocene (56-50 Ma). Hothouse global average sea level falls of ~15 m are associated with d18O increases that reflect primarily high latitude cooling and may reflect the growth of small ice sheets in elevated regions of Antarctica. However, these purported Hothouse ice sheets are at or below the detection level of the d18O proxy (15 m ≤ 0.15‰), and it is possible that changes in groundwater storage ('limnoeustasy') could have caused these falls. Cool greenhouse (Campanian to Paleocene, middle to late Eocene) sea-level changes of 15-25 m were caused by growth and decay of small (25-35% of modern) ice sheets, pacing sea-level change on an apparent 2.4 Myr long eccentricity cycle, likely modulating 405 and 100 kyr cycles. Icehouse (past 33.8 Myr) sea-level and ice-volume changes were paced by the 1.2 Myr tilt cycle, with alternating states of 41 and 100 kyr dominance. Warm periods in the Icehouse displayed different sea-level responses. During the largely unipolar Icehouse of the Oligocene to early Miocene, the East Antarctic Ice Sheet (EAIS) was not permanently developed, with intervals of large-scale (~40-55 m sea level equivalent) growth and collapse. During peak warmth of the Miocene Climate Optimum (MCO; ~17-15 Ma) ice volume changes were small (generally <20 m) and paced by the 100 kyr cycle. A permanent EAIS developed following 3 middle Miocene d18O increases (14.7, 13.8, and 13.2 Ma) that were largely cooling events associated with <40 m sea-level falls; the subsequent late Miocene EAIS displayed lower amplitude (~20-30 m) sea-level variations. Despite only moderate atmospheric CO2 levels (400±50 ppm), during the peak

  7. UK Astrobiology : Vanguard: a new development in experimental astrobiology

    NASA Astrophysics Data System (ADS)

    Ellery, Alex; Wynn-Williams, David

    2002-04-01

    Alex Ellery and David Wynn-Williams propose a new UK astrobiology project, in which a micro-rover would deploy ground-penetrating moles to burrow into the Martian subsurface. One of the linchpins of the UK's contribution to the burgeoning field of astrobiology is the Beagle 2 mission, due to fly to Mars in 2003 on the Mars Express bus. Given that NASA has declared its intention to focus on ``whole planet'' geological investigation in its future Mars missions, beginning with the Mars Exploration Rovers which are due to fly in 2003/2004, the UK is well placed to consider post-Beagle 2 astrobiology-focused Mars missions to ensure its leadership in the future in astrobiology. In this paper we present such a proposal - Vanguard.

  8. Data Sharing in Astrobiology: The Astrobiology Habitable Environments Database (AHED)

    NASA Technical Reports Server (NTRS)

    Lafuente, B.; Bristow, T.; Stone, N.; Pires, A.; Keller, R.; Downs, Robert; Blake, D.; Fonda, M.

    2017-01-01

    Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. NASA uses the results of Astrobiology research to help define targets for future missions that are searching for life elsewhere in the universe. The understanding of complex questions in Astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for Astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. The Astrobiology Habitable Environments Database (AHED), developed with a consolidated group of astrobiologists from different active research teams at NASA Ames Research Center, is designed to help to address these issues. AHED is a central, high-quality, long-term data repository for mineralogical, textural, morphological, inorganic and organic chemical, isotopic and other information pertinent to the advancement of the field of Astrobiology.

  9. Data Sharing in Astrobiology: the Astrobiology Habitable Environments Database (AHED)

    NASA Technical Reports Server (NTRS)

    Lafuente, B.; Bristow, T.; Stone, N.; Pires, A.; Keller, R. M.; Downs, R. T.; Blake, D.; Fonda, M.

    2017-01-01

    Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. NASA uses the results of Astrobiology research to help define targets for future missions that are searching for life elsewhere in the universe. The understanding of complex questions in Astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for Astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. The Astrobiology Habitable Environments Database (AHED), developed with a consolidated group of astrobiologists from different active research teams at NASA Ames Research Center, is designed to help to address these issues. AHED is a central, high-quality, long-term data repository for mineralogical, textural, morphological, inorganic and organic chemical, isotopic and other information pertinent to the advancement of the field of Astrobiology.

  10. Astrobiology Workshop: Leadership in Astrobiology

    NASA Technical Reports Server (NTRS)

    DeVincenzi, D. (Editor); Briggs, G.; Cohen, M.; Cuzzi, J.; DesMarais, D.; Harper, L.; Morrison, D.; Pohorille, A.

    1996-01-01

    Astrobiology is defined in the 1996 NASA Strategic Plan as 'The study of the living universe.' At NASA's Ames Research Center, this endeavor encompasses the use of space to understand life's origin, evolution, and destiny in the universe. Life's origin refers to understanding the origin of life in the context of the origin and diversity of planetary systems. Life's evolution refers to understanding how living systems have adapted to Earth's changing environment, to the all-pervasive force of gravity, and how they may adapt to environments beyond Earth. Life's destiny refers to making long-term human presence in space a reality, and laying the foundation for understanding and managing changes in Earth's environment. The first Astrobiology Workshop brought together a diverse group of researchers to discuss the following general questions: Where and how are other habitable worlds formed? How does life originate? How have the Earth and its biosphere influenced each other over time? Can terrestrial life be sustained beyond our planet? How can we expand the human presence to Mars? The objectives of the Workshop included: discussing the scope of astrobiology, strengthening existing efforts for the study of life in the universe, identifying new cross-disciplinary programs with the greatest potential for scientific return, and suggesting steps needed to bring this program to reality. Ames has been assigned the lead role for astrobiology by NASA in recognition of its strong history of leadership in multidisciplinary research in the space, Earth, and life sciences and its pioneering work in studies of the living universe. This initial science workshop was established to lay the foundation for what is to become a national effort in astrobiology, with anticipated participation by the university community, other NASA centers, and other agencies. This workshop (the first meeting of its kind ever held) involved life, Earth, and space scientists in a truly interdisciplinary sharing

  11. The Astrobiological Landscape

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.

    2012-06-01

    Introduction; Acknowledgements; 1. Astrobiology: the colour out of space?; 2. Cosmology, life, and duration of the past; 3. Cosmology, life, and selection effects; 4. Cosmology, life, and the archipelago; 5. Astrobiology as a natural extension of Darwinism; 6. Rare Earths and the continuity thesis; 7. SETI and its discontents; 8. Natural and artificial: cosmic domain of Arnheim; 9. Astrobiology as the neo-Copernican synthesis?; Index.

  12. The NASA astrobiology program

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  13. The NASA astrobiology program.

    PubMed

    Morrison, D

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  14. The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011-2016.

    PubMed

    Cockell, Charles S; Biller, Beth; Bryce, Casey; Cousins, Claire; Direito, Susana; Forgan, Duncan; Fox-Powell, Mark; Harrison, Jesse; Landenmark, Hanna; Nixon, Sophie; Payler, Samuel J; Rice, Ken; Samuels, Toby; Schwendner, Petra; Stevens, Adam; Nicholson, Natasha; Wadsworth, Jennifer

    2018-02-01

    The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities. Key Words: Astrobiology-Centre-Education-Subsurface-Analog research. Astrobiology 18, 224-243.

  15. Rapid Swings between Greenhouse and Icehouse Climate States near the Oligocene - Miocene Boundary

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Fraass, A.; Ruan, J.; Jin, X.; D'haenens, S.; Gasson, E.; Deconto, R. M.; Pearson, A.; Leckie, R. M.; Liu, C.; Liebrand, D.; Hull, P. M.; Pagani, M.

    2017-12-01

    The Earth's Cenozoic climate is conventionally portrayed as either being in a greenhouse or an icehouse conditions. Greenhouse climates are characterized by warm temperatures, high CO2 concentrations, low continental ice volume and reduced meridional temperature gradients, whereas icehouse climates are the opposite. The transition between greenhouse and icehouse primarily is achieved through stepwise and unidirectional cooling, ice sheet growth and increases in the meridional temperature gradients. Various feedbacks in the climate system and the global carbon cycle as well as the ice sheet hysteresis effect seem to preclude substantial fluctuations in the meridional temperature gradients, atmospheric CO2 concentrations and the volume of the East Antarctic Ice Sheet (EAIS) on a high frequency (orbital timescales). For example, relative to the Holocene, the last glacial maximum (LGM) is characterized by relatively small pCO2 changes (80-100 parts per million, ppm), similar cooling between the mid- and low-latitudes, and a stable East Antarctica Ice Sheet (EAIS). However, here we present geochemical reconstructions that appear to indicate large and rapid swings of CO2 (>200 ppm) and meridional temperature gradients near the Oligocene - Miocene (O-M) boundary ( 23 Ma). Further, transient waxing and waning of the EAIS during the Mi-1 glaciation is suggested by ice volume calculations based on benthic δ18O data, which are supported by the glaciomarine sequences deposited at the Ross Sea. Our results demonstrate a high sensitivity of surface ocean temperatures and temperature gradients, the global carbon cycle, and the cryosphere to changes in boundary conditions, with implications for our future.

  16. The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011–2016

    PubMed Central

    Biller, Beth; Bryce, Casey; Cousins, Claire; Direito, Susana; Forgan, Duncan; Fox-Powell, Mark; Harrison, Jesse; Landenmark, Hanna; Nixon, Sophie; Payler, Samuel J.; Rice, Ken; Samuels, Toby; Schwendner, Petra; Stevens, Adam; Nicholson, Natasha; Wadsworth, Jennifer

    2018-01-01

    Abstract The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities. Key Words: Astrobiology—Centre—Education—Subsurface—Analog research. Astrobiology 18, 224–243. PMID:29377716

  17. The Living Universe: NASA and the Development of Astrobiology

    NASA Technical Reports Server (NTRS)

    Dick, Steven J.; Strick, James E.

    2004-01-01

    In the opening weeks of 1998 a news article in the British journal Nature reported that NASA was about to enter biology in a big way. A "virtual" Astrobiology Institute was gearing up for business, and NASA administrator Dan Goldin told his external advisory council that he would like to see spending on the new institute eventually reach $100 million per year. "You just wait for the screaming from the physical scientists (when that happens)," Goldin was quoted as saying. Nevertheless, by the time of the second Astrobiology Science Conference in 2002, attended by seven hundred scientists from many disciplines, NASA spending on astrobiology had reached nearly half that amount and was growing at a steady pace. Under NASA leadership numerous institutions around the world applied the latest scientific techniques in the service of astrobiology's ambitious goal: the study of what NASA's 1996 Strategic Plan termed the "living universe." This goal embraced nothing less than an understanding of the origin, history, and distribution of life in the universe, including Earth. Astrobiology, conceived as a broad interdisciplinary research program, held the prospect of being the science for the twenty-first century which would unlock the secrets to some of the great questions of humanity. It is no surprise that these age-old questions should continue into the twenty-first century. But that the effort should be spearheaded by NASA was not at all obvious to those - inside and outside the agency - who thought NASA's mission was human spaceflight, rather than science, especially biological science. NASA had, in fact, been involved for four decades in "exobiology," a field that embraced many of the same questions but which had stagnated after the 1976 Viking missions to Mars. In this volume we tell the colorful story of the rise of the discipline of exobiology, how and why it morphed into astrobiology at the end of the twentieth century, and why NASA was the engine for both the

  18. Astrobiology Drilling Program of the NASA Astrobiology Institute

    NASA Astrophysics Data System (ADS)

    Runnegar, B.

    2004-12-01

    Access to unweathered and uncontaminated samples of the least altered, oldest, sedimentary rocks is essential for understanding the early history of life on Earth and the environments in which it may have existed. For this reason, the NASA Astrobiology Institute (NAI) has embarked on two international programs, a series of Field Workshops aimed at making the most important surface samples available to investigators, and the Astrobiology Drilling Program (ADP), which serves to provide access to fresh subsurface samples when the scientific objectives require them. The Astrobiology Drilling Program commenced in Western Australia in 2003 with the initiation of its first project, the Archean Biosphere Drilling Project (ABDP). Funding for the ABDP came mainly from the Japanese Government through Kagoshima University and from NASA through the NAI Team at Pennsylvania State University, but significant technical and logistic support was provided by the Geological of Western Australia and, to a lesser extent, by the University of Western Australia. Six diamond drill cores totalling 1.4 km were obtained from astrobiologically important successions in the 3.3-3.5 Ga-old Pilbara Craton of northern Western Australia. Drilling in 2004 also occurred in Western Australia. The Deep Time Drilling Project (DTDP), a spin-off from the NAI's Mission to Early Earth Focus Group, completed one long hole, aimed mainly at fossil biomolecules (biomarkers) and other geochemical indicators of early life. The DTDP and the ABDP also jointly drilled two other important holes 2004, one through the oldest known erosion surface (and possible soil profile). The other intersected well-preserved middle Archean sediments. These efforts parallel other drilling initiatives within the wider astrobiological community that are taking place in Western Australia, South Africa, Spain, and arctic Canada. The ADP is managed by the NAI through a Steering Committee appointed by the NAI Director. Samples of cores

  19. Philosophy and data in astrobiology

    NASA Astrophysics Data System (ADS)

    Mix, Lucas John

    2018-04-01

    Creating a unified model of life in the universe - history, extent and future - requires both scientific and humanities research. One way that humanities can contribute is by investigating the relationship between philosophical commitments and data. Making those commitments transparent allows scientists to use the data more fully. Insights in four areas - history, ethics, religion and probability - demonstrate the value of careful, astrobiology-specific humanities research for improving how we talk and think about astrobiology as a whole. First, astrobiology has a long and influential history. Second, astrobiology does not decentre humanity, either physically or ethically. Third, astrobiology is broadly compatible with major world religions. Finally, claims about the probability of life arising or existing elsewhere rest heavily on philosophical priors. In all four cases, identifying philosophical commitments clarifies the ways in which data can tell us about life.

  20. Data Sharing in Astrobiology: the Astrobiology Habitable Environments Database (AHED)

    NASA Astrophysics Data System (ADS)

    Bristow, T.; Lafuente Valverde, B.; Keller, R.; Stone, N.; Downs, R. T.; Blake, D. F.; Fonda, M.; Pires, A.

    2016-12-01

    Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. The understanding of complex questions in astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. Astrobiology, as any other scientific discipline, needs to respond to these mandates. The Astrobiology Habitable Environments Database (AHED) is a central, high quality, long-term searchable repository designed to help the community by promoting the integration and sharing of all the data generated by these diverse disciplines. AHED provides public and open-access to astrobiology-related research data through a user-managed web portal implemented using the open-source software The Open Data Repository's (ODR) Data Publisher [1]. ODR-DP provides a user-friendly interface that research teams or individual scientists can use to design, populate and manage their own databases or laboratory notebooks according to the characteristics of their data. AHED is then a collection of databases housed in the ODR framework that store information about samples, along with associated measurements, analyses, and contextual information about field sites where samples were collected, the instruments or equipment used for analysis, and people and institutions involved in their collection. Advanced graphics are implemented together with advanced online tools for data analysis (e.g. R, MATLAB, Project Jupyter-http://jupyter.org). A permissions system will be put in place so that

  1. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Felisa Wolfe-Simon, director, Astrobiology Program, NASA Headquarters, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  2. Astrobiology and Society: Building an Interdisciplinary Research Community

    PubMed Central

    Denning, Kathryn; Bertka, Constance M.; Dick, Steven J.; Harrison, Albert A.; Impey, Christopher; Mancinelli, Rocco

    2012-01-01

    Abstract This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and various astrobiology science focus groups have helped researchers orient and understand their work across disciplinary contexts, our intent was to apply the same approach to examine areas beyond the physical and life sciences and expand interdisciplinary interaction and scholarly understanding. These efforts continue as an experiment in progress, with an open invitation to interested researchers—astrobiologists as well as scholars in the humanities and social sciences—to become involved in research, analysis, and proactive discussions concerning the potential impacts of astrobiology on society as well as the possible impacts of society on progress in astrobiology. Key Words: Astrobiology—Extraterrestrial life—Life detection. Astrobiology 12, 958–965. PMID:23046203

  3. Astrobiology and society: building an interdisciplinary research community.

    PubMed

    Race, Margaret; Denning, Kathryn; Bertka, Constance M; Dick, Steven J; Harrison, Albert A; Impey, Christopher; Mancinelli, Rocco

    2012-10-01

    This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and various astrobiology science focus groups have helped researchers orient and understand their work across disciplinary contexts, our intent was to apply the same approach to examine areas beyond the physical and life sciences and expand interdisciplinary interaction and scholarly understanding. These efforts continue as an experiment in progress, with an open invitation to interested researchers-astrobiologists as well as scholars in the humanities and social sciences-to become involved in research, analysis, and proactive discussions concerning the potential impacts of astrobiology on society as well as the possible impacts of society on progress in astrobiology.

  4. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Felisa Wolfe-Simon, a lead researcher and NASA astrobiology research fellow, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  5. Icehouse Effect: A Selective Arctic Cooling Trend Current Models are Missing

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The icehouse effect is a hypothesized climate feedback mechanism which could result in human-caused surface cooling trends in polar regions. Once understood in detail, it becomes apparent that these trends, which are discernable in the literature, but have been largely dismissed, do not conflict with the consensus assessment of the evidence, which infers century-scale Arctic warming. In fact, confirmation of the hypothesis would substantially strengthen the argument that there is a detectable human influence on today's climate. This apparent enigma is resolved only through careful attention to the detail of the hypothesis and the data supporting it. The posited surface cooling is entirely dependent on the existence of climate warming in layers capping the stable boundary layer. Also, the cooling is not pandemic, but is selective. It is readily revealed in properly sorted data by making use of the principles of micrometeorological similarity. Specifically, the cooling is manifest under a range of favorable turbulence conditions which can develop and disappear locally on time scales of minutes to hours because of the intrinsically intermittent nature of stable boundary layer turbulence. Because of the fine-scale nature of the processes which produce the cooling, modeling it is a difficult proposition. Vertical resolution on the order of 1 meter is required. Adequate models of intermittent surface fluxes coupled with radiation exchange do not currently exist, not as parameterizations for aggregated systems, nor in large eddy simulation (LES) models. This presentation will introduce the theory. An important testable null hypothesis emerges: the icehouse effect produces a unique signature or "fingerprint" which could not be produced by any other known process. The presence of this signature will be demonstrated using nearly all available Arctic temperature observations. Its aggregate effect is clearly found in Arctic monthly surface temperature trends when sorted by

  6. Assessment of the NASA Astrobiology Institute

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Astrobiology is a scientific discipline devoted to the study of life in the universe--its origins, evolution, distribution, and future. It brings together the physical and biological sciences to address some of the most fundamental questions of the natural world: How do living systems emerge? How do habitable worlds form and how do they evolve? Does life exist on worlds other than Earth? As an endeavor of tremendous breadth and depth, astrobiology requires interdisciplinary investigation in order to be fully appreciated and examined. As part of a concerted effort to undertake such a challenge, the NASA Astrobiology Institute (NAI) was established in 1998 as an innovative way to develop the field of astrobiology and provide a scientific framework for flight missions. Now that the NAI has been in existence for almost a decade, the time is ripe to assess its achievements. At the request of NASA's Associate Administrator for the Science Mission Directorate (SMD), the Committee on the Review of the NASA Astrobiology Institute undertook the assignment to determine the progress made by the NAI in developing the field of astrobiology. It must be emphasized that the purpose of this study was not to undertake a review of the scientific accomplishments of NASA's Astrobiology program, in general, or of the NAI, in particular. Rather, the objective of the study is to evaluate the success of the NAI in achieving its stated goals of: 1. Conducting, supporting, and catalyzing collaborative interdisciplinary research; 2. Training the next generation of astrobiology researchers; 3. Providing scientific and technical leadership on astrobiology investigations for current and future space missions; 4. Exploring new approaches, using modern information technology, to conduct interdisciplinary and collaborative research among widely distributed investigators; and 5. Supporting outreach by providing scientific content for use in K-12 education programs, teaching undergraduate classes, and

  7. The narrative power of astrobiology

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    The narrative power of astrobiology: Telling the story of the quest to understand life's origins and the search for evidence of extraterrestrial life INTRODUCTION The story of the origins and evolution of life is a narrative with nearuniversal appeal. The story of life on Earth is meaningful to all people, and the search for life elsewhere is appealing across cultural boundaries. The U.S. National Aeronautics and Space Administration (NASA) funds an Astrobiology Program in NASA's Science Mission Directorate that is dedicated to the study of the origin, evolution, distribution, and future of life in the universe. Because public interest in astrobiology is great and advances in the field are rapid, the NASA Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. This strategic approach to communication is intended to promote the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by the Astrobiology Program. This paper will address how scientists in the field of astrobiology can participate in the telling of an ongoing story of interest to multicultural audiences and why it is important to tell this story. SUMMARY Astrobiology research addresses three fundamental questions: How does life begin and evolve? Is there life beyond Earth and how can we detect it? What is the future of life on Earth and in the universe? The field of astrobiology is an endeavor that brings together researchers in a broad range of disciplines including Earth and planetary science, astrophysics, heliophysics, microbiology and evolutionary biology, and cosmochemistry. Goals of the NASA Astrobiology Program range from determining the nature and distribution of habitable environments in the Solar System and beyond to understanding the emergence of life from cosmic and planetary precursors, the interaction of

  8. Measuring the effect of an astrobiology course on student optimism regarding extraterrestrial life

    NASA Astrophysics Data System (ADS)

    Morgan, David L.

    2017-07-01

    Students in an introductory undergraduate Astrobiology course were given a pre/post-test based on the Drake Equation in an attempt to measure changes in their perceptions regarding the prevalence of life in the Galaxy after taking the course. The results indicated that, after taking the course, the students were considerably more optimistic, by a 2 to 1 margin or more, about the prospect of habitable planets, the origin of life, and the evolution of intelligence in other planetary systems. The results suggest that, while it may not be the explicit goal of an astrobiology course to change student beliefs about the abundance or rarity of extraterrestrial life, such changes in opinion can and do occur.

  9. Astrobiology : is humankind ready for the next revolution ?

    NASA Astrophysics Data System (ADS)

    Arnould, Jacques

    2012-07-01

    The discovery of a first exoplanet, in 1995, did not revolutionize but knocked astronomical sciences over. At the same time, by opening new prospects of research, in particular in the search of planets similar to the Earth and in a possible extraterrestrial life, this discovery, since then abundantly repeated, gave a new breath to the public interest for this scientific field. But is humanity ready to learn the existence from extraterrestrial forms of life or to remain, in spite of its efforts, in ignorance? The question of the plurality of the worlds is one of the oldest interrogations conveyed by the human cultures, as testified by the multiple answers which were brought to it. In the same way, the concept of life is itself an inexhaustible source of philosophical and religious reflexions, with many consequences in moral domains. It is today necessary to accompany the scientific development in the field of astrobiology by attaching the greatest importance to this intellectual patrimony. It constitutes even one of the first stages of an ethical responsibility in astrobiology, as important as that concerning planetary protection.

  10. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Felisa Wolfe-Simon, a lead researcher and NASA astrobiology research fellow, speaks during a press conference, as Mary Voytek, Steven Benner and Pamela Conrad look on, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  11. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution, right, speaks during a press conference as Mary Voytek, director of the Astrobiology Program at NASA looks on, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  12. Exo/Astrobiology in Europe

    NASA Astrophysics Data System (ADS)

    Brack, André; Horneck, Gerda; Wynn-Williams, David

    2001-08-01

    The question of the chemical origins of life is engraved in the European scientific patrimony as it can be traced back to the pioneer ideas of Charles Darwin, Louis Pasteur, and more recently to Alexander Oparin. During the last decades, the European community of origin of life scientists has organized seven out of the twelve International Conferences on the Origins of Life held since 1957. This community contributed also to enlarge the field of research to the study of life in extreme environments and to the search for extraterrestrial life, i.e. exobiology in its classical definition or astrobiology if one uses a more NASA-inspired terminology. The present paper aims to describe the European science background in exo/astrobiology as well as the project of a European Network of Exo/Astrobiology.

  13. The Astrobiology Matrix and the "Drake Matrix" in Education

    NASA Technical Reports Server (NTRS)

    Mizser, A.; Kereszturi, A.

    2003-01-01

    We organized astrobiology lectures in the Eotvos Lorand University of Sciences and the Polaris Observatory in 2002. We present here the "Drake matrix" for the comparison of the astrobiological potential of different bodies [1], and astrobiology matrix for the visualization of the interdisciplinary connections between different fields of astrobiology. Conclusion: In Hungary it is difficult to integrate astrobiology in the education system but the great advantage is that it can connect different scientific fields and improve the view of students. We would like to get in contact with persons and organizations who already have experience in the education of astrobiology.

  14. Philosophy of astrobiology: some recent developments

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2015-09-01

    We present some recent developments in philosophy of astrobiology which illustrate usefulness of philosophy to astrobiology. We cover applications of Aristotelian views to definition of life, of Priest's dialetheism to the question if viruses are alive, and various thought experiments in regard to these and other astrobiology issues. Thought experiments about the survival of life in the Solar system and about the role of viruses at the beginning and towards the end of life are also described.

  15. AstRoMap European Astrobiology Roadmap

    PubMed Central

    Horneck, Gerda; Westall, Frances; Grenfell, John Lee; Martin, William F.; Gomez, Felipe; Leuko, Stefan; Lee, Natuschka; Onofri, Silvano; Tsiganis, Kleomenis; Saladino, Raffaele; Pilat-Lohinger, Elke; Palomba, Ernesto; Harrison, Jesse; Rull, Fernando; Muller, Christian; Strazzulla, Giovanni; Brucato, John R.; Rettberg, Petra; Capria, Maria Teresa

    2016-01-01

    Abstract The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems• Research Topic 2: Origins of Organic Compounds in Space• Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life• Research Topic 4: Life and Habitability• Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system. Key Words: Astrobiology roadmap—Europe—Origin and evolution of life—Habitability—Life detection—Life in extreme environments. Astrobiology 16, 201–243. PMID:27003862

  16. Astrobiology in Brazil: early history and perspectives

    NASA Astrophysics Data System (ADS)

    Rodrigues, Fabio; Galante, Douglas; Paulino-Lima, Ivan G.; Duarte, Rubens T. D.; Friaça, Amancio C. S.; Lage, Claudia; Janot-Pacheco, Eduardo; Teixeira, Ramachrisna; Horvath, Jorge E.

    2012-10-01

    This review reports the Brazilian history in astrobiology, as well as the first delineation of a vision of the future development of the field in the country, exploring its abundant biodiversity, highly capable human resources and state-of-the-art facilities, reflecting the last few years of stable governmental investments in science, technology and education, all conditions providing good perspectives on continued and steadily growing funding for astrobiology-related research. Brazil is growing steadily and fast in terms of its worldwide economic power, an effect being reflected in different areas of the Brazilian society, including industry, technology, education, social care and scientific production. In the field of astrobiology, the country has had some important landmarks, more intensely after the First Brazilian Workshop on Astrobiology in 2006. The history of astrobiology in Brazil, however, is not so recent and had its first occurrence in 1958. Since then, researchers carried out many individual initiatives across the country in astrobiology-related fields, resulting in an ever growing and expressive scientific production. The number of publications, including articles and theses, has particularly increased in the last decade, but still counting with the effort of researchers working individually. That scenario started to change in 2009, when a formal group of Brazilian researchers working with astrobiology was organized, aiming at congregating the scientific community interested in the subject and to promote the necessary interactions to achieve a multidisciplinary work, receiving facilities and funding from the University de Sao Paulo and other funding agencies.

  17. The Astrobiology Field Guide in World Wind

    NASA Astrophysics Data System (ADS)

    Scalice, D. M.

    2004-12-01

    In collaboration with the Australian Centre for Astrobiology (ACA), and NASA Learning Technologies (NLT), and utilizing the powerful visualization capabilities of their "World Wind" software, the NASA Astrobiology Institute (NAI) is crafting a prototype "Astrobiology Field Guide" to bring the field experiences and stories of astrobiology science to the public and classrooms around the world. The prototype focuses on one region in particular - The Pilbara in Western Australia. This first Field Guide "hotspot" is an internationally recognized area hosting the best known example of the earliest evidence of life on Earth - a stromatolitic chert precipitation in the 3.45 Ga Warrawoona Group. The goal of the Astrobiology Field Guide is to engage students of all ages with the ongoing field expeditions of today's astrobiologists as they explore the ends of the Earth searching for clues to life's origin, evolution, and distribution in the Universe. The NAI hopes to expand this Field Guide to include many more astrobiologically relevant areas across the globe such as Cuatro Cienegas in Mexico, the Rio Tinto in Spain, Yellowstone National Park in the US, and the Lost City hydrothermal vent field on the mid-Atlantic ridge - and possibly sites on Mars. To that end, we will be conducting feasibility studies and evaluations with informal and formal education contacts. The Astrobiology Field Guide is also serving as a cornerstone to educational materials being developed focused on the Pilbara region for use in classrooms in Australia, the UK, and potentially the US. These materials are being developed by the Australian Centre for Astrobiology, and the ICT Innovations Centre at Macquarie University in Sydney, in collaboration with the NAI and the Centre for Astronomy and Science Education at the University of Glamorgan in the UK.

  18. Cenozoic Icehouse Forcing Mechanisms on Coccolithophorid Evolution

    NASA Astrophysics Data System (ADS)

    Henderiks, J.

    2007-12-01

    An overall macroevolutionary size decrease in marine unicellular calcifying algae, the coccolithophores, is punctuated by distinct size responses that correlate to major climatic and paleoceanographic events during the Cenozoic. Notably, major size decreases in the ancestors of the modern blooming species Emiliania huxleyi and Gephyrocapsa oceanica are recorded at the Eocene-Oligocene transition (34 Ma) and in the late Miocene (9 Ma). Coccolithophorid cell size (as reconstructed from individual coccolith biometry) is likely influenced by a variety of passive and active evolutionary selection pressures, with specific factors, such as resource availability and climatic change, determining trends in specific intervals of time. This study presents biometric data of the Noelaerhabdacaea, Calcidiscaceae and Coccolithaceae families, which together represent the bulk of coccolith-carbonate buried in Cenozoic deep-sea sediments, from multiple Deep Sea Drilling Project and Ocean Drilling Project sites covering temperate to tropical regions in the Atlantic, Indian and Pacific oceans. Despite distinct regional ecologic responses at each site, striking correspondences within the global data set call for global forcing mechanisms on the size evolution and ecological success of coccolithophores in an 'icehouse' world.

  19. Astrobiology Learning Progressions: Linking Astrobiology Concepts with the 3D Learning Paradigm of NGSS

    NASA Astrophysics Data System (ADS)

    Scalice, D.; Davis, H. B.; Leach, D.; Chambers, N.

    2016-12-01

    The Next Generation Science Standards (NGSS) introduce a Framework for teaching and learning with three interconnected "dimensions:" Disciplinary Core Ideas (DCI's), Cross-cutting Concepts (CCC's), and Science and Engineering Practices (SEP's). This "3D" Framework outlines progressions of learning from K-12 based on the DCI's, detailing which parts of a concept should be taught at each grade band. We used these discipline-based progressions to synthesize interdisciplinary progressions for core concepts in astrobiology, such as the origins of life, what makes a world habitable, biosignatures, and searching for life on other worlds. The final product is an organizing tool for lesson plans, learning media, and other educational materials in astrobiology, as well as a fundamental resource in astrobiology education that serves both educators and scientists as they plan and carry out their programs for learners.

  20. A link between Late Pliensbachian organic matter preservation and the Spinatum Chronozone icehouse event

    NASA Astrophysics Data System (ADS)

    Silva, Ricardo L.; Duarte, Luís. V.

    2014-05-01

    It is recognized today that the "greenhouse" Mesozoic Era includes several short-lived icehouse episodes. One occurred during the Spinatum Chronozone (Late Pliensbachian), which immediately preceded a 2nd-order extinction event and a major carbon cycle perturbation associated to the Early Toarcian Oceanic Anoxic Event. The Lower Jurassic hemipelagic carbonate series of the Lusitanian Basin (Portugal) mark the hinge zone between the Tethyan (Mediterranean) and Boreal (North-European) realms. Here, one of the most obvious features is the organic-rich nature of the majority of the Ibex-Margaritatus chronozones (Pliensbachian) series (Marly-limestones with organic-rich facies member of the Vale das Fontes Formation), capped by a regressive limestone unit of uppermost Margaritatus-lowermost Polymorphum (Toarcian) chronozones (Lemede Formation). The Pliensbachian organic-rich deposition (observed in several locations around the world) is coeval with a positive carbon isotopic excursion recorded in carbonates and organic substrates. For the Lusitanian Basin, evidences points toward the occurrence of brief "hot snaps" prior to the onset of the icehouse interval of Spinatum age. We demonstrate that cooling was preceded by several episodes of organic matter preservation, most likely driven by extreme warming, coupled with high oceanic productivity and stratified (thermally?) epeiric areas. These "hot snaps" allowed the rapid but short-lived expansion of Tethyan ammonites into Boreal domains. They also promoted widespread mucilage and microbial outbreaks preserved in the Lusitanian Basin as black shales, resulting in organic matter deposition and geological carbon storage. So far, the causes for these "hot snaps" remain unclear. This chain of events most likely triggered and/or amplified the Spinatum Chronozone icehouse event, which led to permafrost and/or methane gas hydrates in locations easily disturbed by the subsequent Early Toarcian warming, or/and increased volcanic

  1. Discrimination of Pigments of Microalgae, Bacteria and Yeasts Using Lightweight Handheld Raman Spectrometers: Prospects for Astrobiology

    NASA Astrophysics Data System (ADS)

    Jehlicka, J.; Osterrothova, K.; Nedbalova, L.; Gunde-Cimerman, N.; Oren, A.

    2014-06-01

    Handheld Raman instrumentation with 532 nm lasers can be used to distinguish carotenoids of autotrophic microalgae, purple sulfur bacteria, halophilic Archaea and pigmented yeasts. Pigments are proposed as biomarkers for astrobiology of Mars.

  2. Astrobiological complexity with probabilistic cellular automata.

    PubMed

    Vukotić, Branislav; Ćirković, Milan M

    2012-08-01

    The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.

  3. Lower Secondary Students' Views in Astrobiology

    ERIC Educational Resources Information Center

    Hansson, Lena; Redfors, Andreas

    2013-01-01

    Astrobiology is, on a profound level, about whether life exists outside of the planet Earth. The question of existence of life elsewhere in the universe has been of interest to many societies throughout history. Recently, the research area of astrobiology has grown at a fast rate, mainly due to the development of observational methods, and the…

  4. Cultural Aspects of Astrobiology: A Preliminary Reconnaissance at

    NASA Astrophysics Data System (ADS)

    Dick, Steven

    NASA's Astrobiology Roadmap, developed in 1998 by an interdisciplinary team of more than 150 individuals, recognizes ten science goals, 17 more specific science objectives, and four broad principles for the Astrobiology Program. Among the four operating principles, which emphasize multidisciplinarity, planetary stewardship and public outreach, is one that also recognizes broad societal interest for the implications of astrobiology, especially its extraterrestrial life component. Although several meetings ahve been convened in the past decade to discuss the implications of extraterrestrial intelligence, including NASA's own CASETI workshops in 1991-1992, none have surveyed the broader implications of astrobiology as now defined at NASA. In this paper we survey these societal questions raised by astrobiology, and then focus on those related to extraterrestrial life, and in particular how they might differ from SETI concerns already discussed. As we enter the new millennium, the necessity for interdisciplinary studies is increasingly recognized in academia, industry and government. Astrobiology provides an unprecedented opportunity to encourage the unity of knowledge, as recently proposed in E. O. Wilson's book Consilience: The Unity of Knowledge. It is incumbent on scientists to support research on the implications of their work, in particular large government-funded scientific projects. The deep insights such study may yield has been amply demonstrated by the Human Genome Project, among others.

  5. Astrobiology and the Biological Universe

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2002-12-01

    Four hundred years ago two astronomical world views hung in the balance: the geocentric and the heliocentric. Today astronomy faces a similar choice between two grand world views: a purely physical universe, in which cosmic evolution commonly ends in planets, stars and galaxies, and a biological universe, in which cosmic evolution routinely results in life, mind and intelligence. Astrobiology is the science providing the data to make this critical choice. This 20th century overview shows how we have arrived at the view that cosmic evolution may have resulted in life and intelligence in the universe. It examines how our astronomical world view has changed over the last century, recalls the opinions of astronomical pioneers like Russell, Shapley, and Struve on life in the universe, and shows how planetary science, planetary systems science, origins of life studies and SETI have combined to form a new discipline. Astrobiology now commands \\$50 million in direct funding from NASA, funds 15 Astrobiology Institute members around the country and four affiliates around the world, and seeks to answer one of astronomy's oldest questions. Whether we live in a mostly physical universe, as exemplified in Isaac Asimov's Foundation series, or in a biological universe, as portrayed in Arthur C. Clarke's works, this reality will have profound consequences, no less than the Copernican theory. Astrobiology also looks to the future of life; taking a long-term ``Stapledonian" view, it is possible we may live in a postbiological universe.

  6. Woodpeckers and Diamonds: Some Aspects of Evolutionary Convergence in Astrobiology.

    PubMed

    Ćirković, Milan M

    2018-05-01

    Jared Diamond's argument against extraterrestrial intelligence from evolutionary contingency is subjected to critical scrutiny. As with the earlier arguments of George Gaylord Simpson, it contains critical loopholes that lead to its unraveling. From the point of view of the contemporary debates about biological evolution, perhaps the most contentious aspect of such arguments is their atemporal and gradualist usage of the space of all possible biological forms (morphospace). Such usage enables the translation of the adaptive value of a trait into the probability of its evolving. This procedure, it is argued, is dangerously misleading. Contra Diamond, there are reasons to believe that convergence not only plays an important role in the history of life, but also profoundly improves the prospects for search for extraterrestrial intelligence success. Some further considerations about the role of observation selection effects and our scaling of complexity in the great debate about contingency and convergence are given. Taken together, these considerations militate against the pessimism of Diamond's conclusion, and suggest that the search for traces and manifestations of extraterrestrial intelligences is far from forlorn. Key Words: Astrobiology-Evolution-Contingency-Convergence-Complex life-SETI-Major evolutionary transitions-Selection effects-Jared Diamond. Astrobiology 18, 491-502.

  7. Astrobiological Studies Plan at UCSD and the University of Buckingham

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Wickramasinghe, N. Chandra

    2011-10-01

    A UC-HBCU grant is requested to assist undergraduate and masters level HBCU Interns to achieve their professional and academic goals by attending summer school classes at UCSD along with graduate students in the UCSD Astrobiology Studies program, and by also attending a NASA sponsored scientific meeting in San Diego on Astrobiology organized by NASA scientist Richard Hoover (the 14th in a sequence). Hoover has recently published a paper in the Journal of Cosmology claiming extraterrestrial life fossils in three meteorites. Students will attend a workshop to prepare research publications on Astrobiological Science for the Journal of Cosmology or equivalent refereed journal, mentored by UCSD faculty and graduate students as co-authors and referees, all committed to the several months of communication usually required to complete a publishable paper. The program is intended to provide pathways to graduate admissions in the broad range of science and engineering fields, and by exposure to fundamental science and engineering disciplines needed by Astrobiologists. A three year UC-HBCU Astrobiological Studies program is proposed: 2011, 2012 and 2013. Interns would be eligible to enter this program when they become advanced graduate students. A center of excellence in astrobiology is planned for UCSD similar to that Directed by Professor Wickramasinghe for many years with Fred Hoyle at Cardiff University, http://www.astrobiology.cf.ac.uk /chandra1.html. Professor Wickramasinghe's CV is attached as Appendix 1. Figures A2-1,2 of Appendix 2 compare Astrobiology timelines of modern fluid mechanical and astrobiological models of Gibson/Wickramasinghe/Schild of the Journal of Cosmology with standard NASA- CDMHC models. NASA support will be sought to support research and educational aspects of both initiatives. Overload teaching of up to two courses a year by UCSD faculty of key astrobiology courses at either UCSD or at HBCU campuses is authorized by recent guidelines of UCSD

  8. The NASA Astrobiology Institute: early history and organization.

    PubMed

    Blumberg, Baruch S

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  9. The NASA Astrobiology Institute: early history and organization

    NASA Technical Reports Server (NTRS)

    Blumberg, Baruch S.

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  10. Robots for Astrobiology!

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2016-01-01

    The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.

  11. Astrobiology and Microbial Diversity Websites at MBL

    NASA Astrophysics Data System (ADS)

    Bahr, M.; Bordenstein, S. R.

    2006-12-01

    The NASA Astrobiology Institute (NAI) mission is to study the origin, evolution and future of life in the Universe. The MBL Astrobiology team explores the evolution and interaction of genomes of diverse organisms that play significant roles in environmental biology over evolutionary time scales. Communication about our research includes the personal contact of teacher workshops, and the development of web-based resources. Microbial Life Educational Resources (MLER) provides an expanding internet resource about the ecology, diversity and evolution for students, K-12 teachers, university faculty, and the general public. MLER includes websites, PowerPoint presentations, teaching activities, data sets, and other useful materials for creating or enhancing courses related to astrobiology. Our second site, micro*scope (http://microscope.mbl.edu), has images of microbes, classification schemes, descriptions of organisms, talks and other educational resources to improve awareness of the biodiversity of our microbial partners.

  12. Capturing Student Interest in Astrobiology through Dilemmas and Paradoxes

    ERIC Educational Resources Information Center

    Slater, Timothy F.

    2006-01-01

    Astrobiology is an interdisciplinary science course that combines essential questions from life, physical, and Earth sciences. An effective astrobiology course also capitalizes on students' natural curiosity about social science implications of studying the origin of life and the impact of finding life elsewhere in the universe. (Contains 2…

  13. Astrobiology in culture: the search for extraterrestrial life as "science".

    PubMed

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors.

  14. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  15. Data Management in Astrobiology: Challenges and Opportunities for an Interdisciplinary Community

    PubMed Central

    Suomela, Todd; Malone, Jim

    2014-01-01

    Abstract Data management and sharing are growing concerns for scientists and funding organizations throughout the world. Funding organizations are implementing requirements for data management plans, while scientists are establishing new infrastructures for data sharing. One of the difficulties is sharing data among a diverse set of research disciplines. Astrobiology is a unique community of researchers, containing over 110 different disciplines. The current study reports the results of a survey of data management practices among scientists involved in the astrobiology community and the NASA Astrobiology Institute (NAI) in particular. The survey was administered over a 2-month period in the first half of 2013. Fifteen percent of the NAI community responded (n=114), and additional (n=80) responses were collected from members of an astrobiology Listserv. The results of the survey show that the astrobiology community shares many of the same concerns for data sharing as other groups. The benefits of data sharing are acknowledged by many respondents, but barriers to data sharing remain, including lack of acknowledgement, citation, time, and institutional rewards. Overcoming technical, institutional, and social barriers to data sharing will be a challenge into the future. Key Words: Data management—Data sharing—Data preservation. Astrobiology 14, 451–461. PMID:24840364

  16. Survey on astrobiology research and teaching activities within the United kingdom.

    PubMed

    Dartnell, Lewis R; Burchell, Mark J

    2009-10-01

    While astrobiology is apparently growing steadily around the world, in terms of the number of researchers drawn into this interdisciplinary area and teaching courses provided for new students, there have been very few studies conducted to chart this expansion quantitatively. To address this deficiency, the Astrobiology Society of Britain (ASB) conducted a questionnaire survey of universities and research institutions nationwide to ascertain the current extent of astrobiology research and teaching in the UK. The aim was to provide compiled statistics and an information resource for those who seek research groups or courses of study, and to facilitate new interdisciplinary collaborations. The report here summarizes details gathered on 33 UK research groups, which involved 286 researchers (from undergraduate project students to faculty members). The survey indicates that around 880 students are taking university-level courses, with significant elements of astrobiology included, every year in the UK. Data are also presented on the composition of astrobiology students by their original academic field, which show a significant dominance of physics and astronomy students. This survey represents the first published systematic national assessment of astrobiological academic activity and indicates that this emerging field has already achieved a strong degree of penetration into the UK academic community.

  17. Astrosociological Implications of Astrobiology (Revisited)

    NASA Astrophysics Data System (ADS)

    Pass, Jim

    2010-01-01

    Supporters of astrobiology continue to organize the field around formalized associations and organizations under the guise of the so-called ``hard'' sciences (e.g., biology and the related physical/natural sciences). The so-called ``soft'' sciences-including sociology and the other social sciences, the behavioral sciences, and the humanities-remain largely separated from this dynamically growing field. However, as argued in this paper, space exploration involving the search for extraterrestrial life should be viewed as consisting of two interrelated parts (i.e., two sides of the same coin): astrobiology and astrosociology. Together, these two fields broadly combine the two major branches of science as they relate to the relationship between human life and alien life, as appropriate. Moreover, with a formalized system of collaboration, these two complimentary fields would also focus on the implications of their research to human beings as well as their cultures and social structures. By placing the astrosociological implications of astrobiology at a high enough priority, scientists interested in the search for alien life can augment their focus to include the social, cultural, and behavioral implications that were always associated with their work (yet previously overlooked or understated, and too often misunderstood). Recognition of the astrosociological implications expands our perception about alien life by creating a new emphasis on their ramifications to human life on Earth.

  18. The Lassen Astrobiology Intern Program - Concept, Implementation and Evaluation

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.; Dueck, S. L.; Davis, H. B.; Parenteau, M. N.; Kubo, M. D.

    2014-12-01

    The program goal was to provide a hands-on astrobiology learning experience to high school students by introducing astrobiology and providing opportunities to conduct field and lab research with NASA scientists. The program sought to increase interest in interdisciplinary science, technology, engineering, math and related careers. Lassen Volcanic National Park (LVNP), Red Bluff High School and the Ames Team of the NASA Astrobiology Institute led the program. LVNP was selected because it shares aspects of volcanism with Mars and it hosts thermal springs with microbial mat communities. Students documented volcanic deposits, springs and microbial mats. They analyzed waters and sampled rocks, water and microorganisms. They cultured microorganisms and studied chemical reactions between rocks and simulated spring waters. Each student prepared a report to present data and discuss relationships between volcanic rocks and gases, spring waters and microbial mats. At a "graduation" event the students presented their findings to the Red Bluff community. They visited Ames Research Center to tour the facilities and learn about science and technology careers. To evaluate program impact, surveys were given to students after lectures, labs, fieldwork and discussions with Ames scientists. Students' work was scored using rubrics (labs, progress reports, final report, presentation). Students took pre/post tests on core astrobiology concepts. Parents, teachers, rangers, Ames staff and students completed end-of-year surveys on program impact. Several outcomes were documented. Students had a unique and highly valued learning experience with NASA scientists. They understood what scientists do through authentic scientific work, and what scientists are like as individuals. Students became knowledgeable about astrobiology and how it can be pursued in the lab and in the field. The students' interest increased markedly in astrobiology, interdisciplinary studies and science generally.

  19. Ethical issues in astrobiology: a Christian perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Randolph, R. O.

    2009-12-01

    With its focus on the origin, extent, and future of life, Astrobiology raises exciting, multidisciplinary questions for science. At the same time, Astrobiology raises important questions for the humanities. For instance, the prospect of discovering extraterrestrial life - either intelligent or unintelligent - raises questions about humans’ place in the universe and our relationship with nature on planet Earth. Fundamentally, such questions are rooted in our understanding of what it means to be human. From a Christian perspective, the foundational claim about human nature is that all persons bear the "imago dei", the image of God. This concept forms the basis for how humans relate to one another (dignity) and how humans relate to nature (stewardship). For many Christians the "imago dei" also suggests that humans are at the center of the universe. The discovery of extraterrestrial life would be another scientific development - similar to evolution - that essentially de-centers humanity. For some Christian perspectives this de-centering may be problematic, but I will argue that the discovery of extraterrestrial life would actually offer a much needed theological corrective for contemporary Christians’ understanding of the "imago dei". I will make this argument by examining two clusters of ethical issues confronting Astrobiology: 1. What ethical obligations would human explorers owe to extraterrestrial life? Are there ethical obligations to protect extraterrestrial ecosystems from harm or exploitation by human explorers? Do our ethical considerations change, if the extraterrestrial life is a “second genesis;” in other words a form of life completely different and independent from the carbon-based life that we know on Earth? 2. Do we have an ethical obligation to promote life as much as we can? If human explorers discover extraterrestrial life and through examination determine that it is struggling to survive, do we have an ethical obligation to assist that

  20. Educational Outreach for Astrobiology

    NASA Astrophysics Data System (ADS)

    Kadooka, M.; Meech, K.

    2009-12-01

    Astrobiology, the search for life in the universe, has fascinating research areas that can excite students and teachers about science. Its integrative nature, relating to astronomy, geology, oceanography, physics, and chemistry, can be used to encourage students to pursue physical sciences careers. Since 2004, the University of Hawaii NASA Astrobiology Institute (NAI) team scientists have shared their research with secondary teachers at our ALI’I national teacher program to promote the inclusion of astrobiology topics into science courses. Since 2007, our NAI team has co-sponsored the HI STAR program for Hawaii’s middle and high school students to work on authentic astronomy research projects and to be mentored by astronomers. The students get images of asteroids, comets, stars, and extrasolar planets from the Faulkes Telescope North located at Haleakala Observatories on the island of Maui and owned by Las Cumbres Observatory Global Telescope network. They also do real time observing with DeKalb Observatory telescope personally owned by Donn Starkey who willing allows any student access to his telescope. Student project results include awards at the Hawaii State Science Fair and the Intel International Science and Engineering Fair. We believe that research experience stimulates these students to select STEM (science, technology, engineering and mathematics) majors upon entering college so a longitudinal study is being done. Plans are underway with California and Hawaii ALI’I teachers cooperating on a joint astronomy classroom project. International collaborations with Brazil, Portugal, and Italy astronomers have begun. We envision joint project between hemispheres and crossing time zones. The establishment of networking teachers, astronomers, students and educator liaisons will be discussed.

  1. Secondary School Students' Knowledge and Opinions on Astrobiology Topics and Related Social Issues.

    PubMed

    Oreiro, Raquel; Solbes, Jordi

    2017-01-01

    Astrobiology is the study of the origin of life on Earth and the distribution of life in the Universe. Its multidisciplinary approach, social and philosophical implications, and appeal within the discipline and beyond make astrobiology a uniquely qualified subject for general science education. In this study, student knowledge and opinions on astrobiology topics were investigated. Eighty-nine students in their last year of compulsory education (age 15) completed a written questionnaire that consisted of 10 open questions on the topic of astrobiology. The results indicate that students have significant difficulties understanding the origin of life on Earth, despite exposure to the topic by way of the assigned textbooks. The students were often unaware of past or present achievements in the search for life within the Solar System and beyond, topics that are far less commonly seen in textbooks. Student questionnaire answers also indicated that students had problems in reasoning and critical thinking when asked for their opinions on issues such as the potential for life beyond Earth, the question of whether UFOs exist, or what our place is in the Universe. Astrobiology might help initiate student awareness as to current thinking on these matters and should be considered for general science education. Key Words: Astrobiology-Students' views-Science education. Astrobiology 17, 91-99.

  2. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  3. Summer Research Experiences for Science and Art Teachers to Explore Astrobiology

    NASA Astrophysics Data System (ADS)

    Cola, J.; Gaucher, E.; Snell, T.; Greenwood, J.; Angra, A.; Zimmerman, C.; Williams, L. D.

    2012-12-01

    The Georgia Tech Center for Ribosomal Origins and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational program titled, "Life on the Edge: Astrobiology." The purpose of the program was to provide high school educators with the exposure, materials, and skills necessary to prepare our future workforce and to foster student interest in scientific discovery on Earth and throughout the universe. In an effort to promote and encourage entry into teaching careers, Georgia Tech paired teachers in the Georgia Intern-Fellowship for Teachers (GIFT) program with undergraduate students interested in becoming a teacher through the NSF Pre-Teaching REU program. The GIFT and Pre-Teaching fellows investigated extremophiles, which became the focus of a week-long, "Life on the Edge: Astrobiology " summer program developed by three high school educators, two undergraduate students and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. Twenty high school students were introduced to hands-on activities, such as astrobiology inspired art and techniques such as genomic DNA purification, gel electrophoresis, and Polymerase Chain Reaction (PCR). The impact of the Astrobiology program on the GIFT researchers, Pre-Teaching REU students, high school students, and faculty are discussed.

  4. Sixth Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.

    2018-01-01

    Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such

  5. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    PubMed

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.

  6. The NASA Astrobiology Roadmap

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  7. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  8. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  9. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Pamela Conrad, an astrobiologist from Goddard Space Flight Center, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  10. Systems astrobiology for a reliable biomarker on exo-worlds

    NASA Astrophysics Data System (ADS)

    Chela Flores, Julian

    2013-04-01

    Although astrobiology is a science midway between biology and astrophysics, it has surprisingly remained largely disconnected from recent trends in certain branches of both of these disciplines. Aiming at discovering how systems properties emerge has proved valuable in chemistry and in biology and should also yield insights into astrobiology. This is feasible since new large data banks in the case of astrobiology are of a geophysical/astronomical kind, rather than the also large molecular biology data that are used for questions related firstly, to genetics in a systems context and secondly, to biochemistry. The application of systems biology is illustrated for our own planetary system, where 3 Earth-like planets are within the habitable zone of a G2V star and where the process of photosynthesis has led to a single oxygenic atmosphere that was triggered during the Great Oxidation Event some 2,5 billion years before the present. The significance of the biogenic origin of a considerable fraction of our atmosphere has been discussed earlier (Kiang et al., 2007). Bonding of O2 ensures that it is stable enough to accumulate in a world's atmosphere if triggered by a living process. The reduction of F and Cl deliver energy release per e+-transfer, but unlike O2 the weaker bonding properties inhibit large atmospheric accumulation (Catling et al., 2005). The evolution of O2-producing photosynthesis is very likely on exo-worlds (Wolstencroft and Raven, 2002). With our simplifying assumption of evolutionary convergence, we show how to probe for a reliable biomarker in the exo-atmospheres of planets, or their satellites, orbiting stars of different luminosities and ages (Chela-Flores, 2013). We treat the living process as a system of exo-environments capable of radically modifying their geology and atmospheres, both for exo-planets, and especially for exo-moons, the presence of which can be extracted from the Kepler data (Kipping et al., 2012). What we are learning about the

  11. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  12. Proposed biomimetic molecular sensor array for astrobiology applications

    NASA Astrophysics Data System (ADS)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  13. Astrobiological stoichiometry.

    PubMed

    Young, Patrick A; Desch, Steven J; Anbar, Ariel D; Barnes, Rory; Hinkel, Natalie R; Kopparapu, Ravikumar; Madhusudhan, Nikku; Monga, Nikhil; Pagano, Michael D; Riner, Miriam A; Scannapieco, Evan; Shim, Sang-Heon; Truitt, Amanda

    2014-07-01

    Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the "Stellar Stoichiometry" Workshop Without Walls hosted at Arizona State University April 11-12, 2013, under the auspices of the NASA Astrobiology Institute. The results focus on the measurement of chemical abundances and the effects of composition on processes from stellar to planetary scales. Of particular interest were the scientific connections between processes in these normally disparate fields. Measuring the abundances of elements in stars and giant and terrestrial planets poses substantial difficulties in technique and interpretation. One of the motivations for this conference was the fact that determinations of the abundance of a given element in a single star by different groups can differ by more than their quoted errors. The problems affecting the reliability of abundance estimations and their inherent limitations are discussed. When these problems are taken into consideration, self-consistent surveys of stellar abundances show that there is still substantial variation (factors of ∼ 2) in the ratios of common elements (e.g., C, O, Na, Al, Mg, Si, Ca) important in rock-forming minerals, atmospheres, and biology. We consider how abundance variations arise through injection of supernova nucleosynthesis products into star-forming material and through photoevaporation of protoplanetary disks. The effects of composition on stellar evolution are substantial, and coupled with planetary atmosphere models can result in predicted habitable zone extents that vary by many tens of percent. Variations in the bulk composition of planets can affect rates of radiogenic heating and substantially change the mineralogy of planetary interiors, affecting properties such as convection and energy transport.

  14. The Astrobiology Graduate Conference - A Unique Early Career Opportunity

    NASA Astrophysics Data System (ADS)

    Knowles, E. J.; Domagal-Goldman, S. D.; Anderson, R.; Som, S. M.

    2011-12-01

    The Astrobiology Graduate Conference (AbGradCon) is an extremely successful annual meeting of early career researchers and educators involved and interested in the field of astrobiology. The conference has been held eight times in various locations, each time organized by a different group of students. The primary objective of AbGradCon is to stimulate the future of astrobiology research by bringing together graduate students and early post-doctoral fellows in order to create and strengthen interdisciplinary and international networks of early-career astrobiologists who will lead such research in the years to come. The conference is unique in that it is a student-led meeting, from the organization to the presentations. AbGradCon strives to remove the "pressures" of typical scientific meetings by providing a relaxed atmosphere in which presentations and round-table discussions are fostered along with numerous social activities. The success of previous AbGradCons can be attributed to the sheer enthusiasm of the participants for astrobiology, and to the spirit and format of the conference, which is outlined in a charter written by past conference organizers and participants. Because it is organized and attended by only graduate students and early career astrobiologists, AbGradCon is an ideal venue for the next generation of early career astrobiologists to form bonds, share ideas, and discuss the issues that will shape the future of the field.

  15. Astrobiology: A pathway to adult science literacy?

    NASA Astrophysics Data System (ADS)

    Oliver, C. A.; Fergusson, J.

    2007-10-01

    Adult science illiteracy is widespread. This is concerning for astrobiology, or indeed any other area of science in the communication of science to public audiences. Where and how does this scientific illiteracy arise in the journey to adulthood? Two astrobiology education projects have hinted that science illiteracy may begin in high school. This relationship between high school science education and the public understanding of science is poorly understood. Do adults forget their science education, or did they never grasp it in the first place? A 2003 science education project raised these questions when 24 16-year-olds from 10 Sydney high schools were brought into contact with real science. The unexpected results suggested that even good high school science students have a poor understanding of how science is really undertaken in the field and in the laboratory. This concept is being further tested in a new high school science education project, aimed at the same age group, using authentic astrobiology cutting-edge data, NASA Learning Technologies tools, a purpose-built research Information and Communication Technology-aided learning facility and a collaboration that spans three continents. In addition, a first year university class will be tested for evidence of science illiteracy immediately after high school among non-science oriented but well-educated students.

  16. Astrobiology from exobiology: Viking and the current Mars probes.

    PubMed

    Soffen, G A

    1997-01-01

    The development of an Astrobiology Program is an extension of current exobiology programs. Astrobiology is the scientific study of the origin, distribution, evolution, and future of life in the universe. It encompasses exobiology; formation of elements, stars, planets, and organic molecules; initiation of replicating organisms; biological evolution; gravitational biology; and human exploration. Current interest in life on Mars provides the scientific community with an example of scientific inquiry that has mass appeal. Technology is mature enough to search for life in the universe.

  17. Life, the universe, and everything: an education outreach proposal to build a traveling astrobiology exhibit.

    PubMed

    Barge, Laura M; Pulschen, André A; Emygdio, Ana Paula Mendes; Congreve, Curtis; Kishimoto, Darío E; Bendia, Amanda G; de Morais M Teles, Antonio; DeMarines, Julia; Stoupin, Daniel

    2013-03-01

    Astrobiology is a transdisciplinary field with extraordinary potential for the scientific community. As such, it is important to educate the community at large about the growing importance of this field to increase awareness and scientific content learning and expose potential future scientists. To this end, we propose the creation of a traveling museum exhibit that focuses exclusively on astrobiology and utilizes modern museum exhibit technology and design. This exhibit (the "Astrobiology Road Show"), organized and evaluated by an international group of astrobiology students and postdocs, is planned to tour throughout the Americas.

  18. Astrobiology, Evolution, and Society: Public Engagement Insights

    NASA Astrophysics Data System (ADS)

    Bertka, C. M.

    2009-12-01

    It is unavoidable that the science of astrobiology will intersect with, and inevitably challenge, many deeply held beliefs. Exploration possibilities, particularly those that may include the discovery of extraterrestrial life, will continue to challenge us to reconsider our views of nature and our connection to the rest of the universe. As a scientific discipline, astrobiology works from the assumption that the origin and evolution of life can be accounted for by natural processes, that life could emerge naturally from the physical materials that make up the terrestrial planets. The search for life on other terrestrial planets is focused on “life as we know it.” The only life we currently know of is the life found on Earth, and for the scientific community the shared common ancestry of all Earth life, and its astounding diversity, is explained by the theory of evolution. The work of astrobiology, at its very core, is fueled by the theory of evolution. However, a survey by the Pew Forum on Religion and Public Life (2005) revealed that 42% of US adults believe that “life has existed in its present form since the beginning of time”. This answer persists nearly 150 years after the publication of Charles Darwin’s "On the Origin of the Species", the landmark work in which Darwin proposed that living things share common ancestors and have “descended with modification” from these ancestors through a process of natural selection . Perhaps even more distressing is the fact that these numbers have not changed in decades, despite the astounding advancements in science that have resulted over this same time period. How will these facts bear on the usefulness of astrobiology as a tool for encouraging a US public to share in the excitement of scientific discovery and be informed participants in a public dialogue concerning next steps? When people were asked “to identify the biggest influence on your thinking about how life developed,” the response chosen most

  19. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet

  20. Robotic astrobiology - the need for sub-surface penetration of Mars

    NASA Astrophysics Data System (ADS)

    Ellery, A.; Ball, A.; Cockell, C.; Coste, P.; Dickensheets, D.; Edwards, H.; Hu, H.; Kolb, C.; Lammer, H.; Lorenz, R.; McKee, G.; Richter, L.; Winfield, A.; Welch, C.

    2002-11-01

    Recent interest in the astrobiological investigation of Mars has culminated in the only planned astrobiology-focussed robotic mission to Mars - the Beagle2 mission to be carried to Mars by the Mars Express spacecraft in 2003. Beagle2 will be primarily investigating the surface and near-surface environment of Mars. However, the results from the Viking Mars lander indicated that the Martian surface is saturated in peroxides and super-oxides which would rapidly degrade any organic material. Furthermore, recent models of gardening due to meteoritic impacts on the Martian surface suggest that the depth of this oxidising layer could extend to depths of 2-3m. Given that the discovery of organic fossilised residues will be the primary target for astrobiological investigation, this implies that future robotic astrobiology missions to Mars must penetrate to below these depths. The need to penetrate into the sub-surface of Mars has recently been given greater urgency with the discovery of extensive water ice-fields as little as 1m from the surface. We review the different technologies that make this penetration into the sub-surface a practical possibility on robotic missions. We further briefly present one such implementation of these technologies through the use of ground-penetrating moles - The Vanguard Mars mission proposal.

  1. Astrobiology Road Mapping (AstRoMap) - A project within FP7 of the European Commission: First results

    NASA Astrophysics Data System (ADS)

    Gomez-Gomez, Felipe; Capria, Maria Teresa; Palomba, Ernesto; Walter, Nicolas; Rettberg, Petra; Muller, Christian; Horneck, Gerda

    AstRoMap (Astrobiology and Planetary Exploration Road Mapping) is a funded project formulated in the 5th Call of the European Commission FP7 framework. The main objectives of the AstRoMap are: 1. Identify the main astrobiology issues to be addressed by Europe in the next decades in relation with space exploration 2. Identify potential mission concepts that would allow addressing these issues 3. Identify the technology developments required to enable these missions 4. Provide a prioritized roadmap integrating science and technology activities as well as ground-based approach 5. Map scientific knowledge related to astrobiology in Europe To reach those objectives, AstRoMap is executed within the following steps: 1. Community consultation. In order to map the European astrobiology landscape and to provide a collaborative networking platform for this community, the AstRoMap project hosts a database of scientists (European and beyond) interested in astrobiology and planetary exploration (see: http://www.astromap.eu/database.html). It reflects the demography and the research and teaching activities of the astrobiology community, as well as their professional profiles and involvement in astrobiology projects. Considering future aspects of astrobiology in Europe, the need for more astrobiology-dedicated funding programmes at the EU level, especially for cross-disciplinary groups, was stressed. This might eventually lead to the creation of a European laboratory of Astrobiology, or even of a European Astrobiology Institute. 2. Workshops organisation. On the basis of the feedbacks from the community consultation, the potential participants and interesting topics are being identified to take part in the following workshops: 1-. Origin of organic compounds, steps to life; 2. Physico-chemical boundary conditions for habitability 3. Biosignatures as facilitating life detection 4. Origin of the Solar system 3. Astrobiology road-mapping. Based on the results and major conclusions

  2. On the parallels between cosmology and astrobiology: a transdisciplinary approach to the search for extraterrestrial life

    NASA Astrophysics Data System (ADS)

    Santos, Charles Morphy D.; Alabi, Leticia P.; Friaça, Amâncio C. S.; Galante, Douglas

    2016-10-01

    The establishment of cosmology as a science provides a parallel to the building-up of the scientific status of astrobiology. The rise of astrobiological studies is explicitly based on a transdisciplinary approach that reminds of the Copernican Revolution, which eroded the basis of a closed Aristotelian worldview and reinforced the notion that the frontiers between disciplines are artificial. Given the intrinsic complexity of the astrobiological studies, with its multifactorial evidences and theoretical/experimental approaches, multi- and interdisciplinary perspectives are mandatory. Insulated expertise cannot grasp the vastness of the astrobiological issues. This need for integration among disciplines and research areas is antagonistic to excessive specialization and compartmentalization, allowing astrobiology to be qualified as a truly transdisciplinary enterprise. The present paper discusses the scientific status of astrobiological studies, based on the view that every kind of life, Earth-based or not, should be considered in a cosmic context. A confluence between 'astro' and 'bio' seeks the understanding of life as an emerging phenomenon in the universe. Thus, a new epistemological niche is opened, pointing to the development of a pluralistic vision for the philosophy of astrobiology.

  3. Astrobiology: Life in Extreme Environments

    ERIC Educational Resources Information Center

    Kaur, Preeti

    2011-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…

  4. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface

    NASA Technical Reports Server (NTRS)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  5. Astrobiology: Discovering New Worlds of Life.

    ERIC Educational Resources Information Center

    James, Charles C.; Van Dover, Cindy Lee

    2001-01-01

    Emphasizes discoveries at the frontiers of science. Includes an instructional poster illustrating the hydrothermal vent communities on the deep ocean floor. Describes research activities related to the new discipline of astrobiology, a multidisciplinary approach to studying the emergence of life in the universe. Research activities include the…

  6. Exploring Astrobiology: Future and In-Service Teacher Research Experiences

    NASA Astrophysics Data System (ADS)

    Cola, J.; Williams, L. D.; Snell, T.; Gaucher, E.; Harris, B.; Usselman, M. C.; Millman, R. S.

    2009-12-01

    The Georgia Tech Center for Ribosome Adaptation and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational Astrobiology program titled, “Life on the Edge: Astrobiology.” The purpose of the program was to provide educators with the materials, exposure, and skills necessary to prepare our future workforce and to foster student interest in scientific discovery on Earth and throughout the universe. A one-week, non-residential summer enrichment program for high school students was conducted and tested by two high school educators, an undergraduate student, and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. In an effort to promote and encourage entry into teaching careers, Georgia Tech paired in-service teachers in the Georgia Intern-Fellowship for Teachers (GIFT) program with an undergraduate student interested in becoming a teacher through the Tech to Teaching program. The GIFT and Tech to Teaching fellows investigated extremophiles which have adapted to life under extreme environmental conditions. As a result, extremophiles became the focus of a week-long, “Life on the Edge: Astrobiology” curriculum aligned with the Georgia Performance Standards in Biology. Twenty-five high school students explored the adaptation and survival rates for various types of extremophiles exposed to UV radiation and desiccation; students were also introduced to hands-on activities and techniques such as genomic DNA purification, gel electrophoresis, and Polymerase Chain Reaction (PCR). The impact on everyone invested and involved in the Astrobiology program including the GIFT and Tech to Teaching fellows, high school students, and faculty are discussed.

  7. Capturing Student Interest in Astrobiology through Dilemmas and Paradoxes

    NASA Astrophysics Data System (ADS)

    Slater, T. F.

    2005-12-01

    Traditionally, many non-science majoring undergraduates readily reveal fairly negative opinions about their introductory science survey courses that serve as general education distribution requirements. Often seen as unimportant and unrelated to helping them acquire knowledge and skills for the workplace, such general education courses carry nicknames such as "Physics for Poets" (PHYSICS101), "Bugs for Thugs" (BIOLOGY101), "Rocks for Jocks" (GEOLOGY101), and "Moons for Goons" or "Scopes for Dopes" (ASTRONOMY101). In response, many faculty are experimenting with more modern science course offerings as general education courses in an effort to improve students' attitudes, values, and interests. One might think that ASTROBIOLOGY has natural curb appeal for students. However, despite the seemingly innate appeal of a course on extraterrestrial life, when it comes right down to it, an astrobiology course is still a natural science course at its core. As such, it can suffer from the same student apathy that afflicts traditional science courses if students can not find some personal relevance or interest in the topics. One approach to more fully engaging students is to couch core course concepts in terms of what Grant Wiggin and Jay McTighe (2004, 2000) call "essential questions." Essential questions are intended create enduring understanding in students and help students find deeply meaningful personal relevance to concepts. In response, we have created a series of probing essential questions that tie central concepts in astrobiology to dilemmas, paradoxes, and moral questions with the goal of intellectually engaging our students in the human-side of the astrobiology enterprise.

  8. Secondary School Students' Knowledge and Opinions on Astrobiology Topics and Related Social Issues

    NASA Astrophysics Data System (ADS)

    Oreiro, Raquel; Solbes, Jordi

    2017-01-01

    Astrobiology is the study of the origin of life on Earth and the distribution of life in the Universe. Its multidisciplinary approach, social and philosophical implications, and appeal within the discipline and beyond make astrobiology a uniquely qualified subject for general science education. In this study, student knowledge and opinions on astrobiology topics were investigated. Eighty-nine students in their last year of compulsory education (age 15) completed a written questionnaire that consisted of 10 open questions on the topic of astrobiology. The results indicate that students have significant difficulties understanding the origin of life on Earth, despite exposure to the topic by way of the assigned textbooks. The students were often unaware of past or present achievements in the search for life within the Solar System and beyond, topics that are far less commonly seen in textbooks. Student questionnaire answers also indicated that students had problems in reasoning and critical thinking when asked for their opinions on issues such as the potential for life beyond Earth, the question of whether UFOs exist, or what our place is in the Universe. Astrobiology might help initiate student awareness as to current thinking on these matters and should be considered for general science education.

  9. Case studies approach for an undergraduate astrobiology course

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.; Enger, Sandra

    2013-04-01

    Case studies is a well known and widely used method in law schools, medical schools, and business schools, but relatively little used in physics or astronomy courses. We developed an astrobiology course based strongly on the case studies approach, and after teaching it first at the University of Alabama in Huntsville, we have adapted it and are now teaching it at Alabama A&M University, a HBCU. The case studies approach uses several well tested and successful teaching methods - including group work, peer instruction, current interest topics, just-in-time teaching, &c. We have found that certain styles of cases are more popular among students than other styles, and will revise our cases to reflect such student preferences. We chose astrobiology -- an inherently multidisciplinary field -- because of the popularity of the subject matter, its frequent appearance in the popular media (news stories about searches for life in the universe, the discovery of Earth-like exoplanets, etc, in addition to SciFi movies and novels), and the rapid current progress in the field. In this talk we review briefly the case studies method, the styles of cases used in our astrobiology course, and student response to the course as found in our assessment analysis.

  10. Astrobiology: A Roadmap for Charting Life in the Universe

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  11. Second Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2014-01-01

    The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.

  12. Astrobiology Research Experience for Undergraduates: An Interdisciplinary REU Program at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Devore, E. K.

    2009-12-01

    The SETI Institute hosts a summer Astrobiology Research Experience for Undergraduates program for highly motivated students interested in astrobiology research. Students work with scientists at the SETI Institute and at the nearby NASA Ames Research Center on projects spanning the field of astrobiology from microbiology to planetary geology to astronomy and astrophysics. Each student is mentored by a scientist for his/her summer research project. As astrobiology is interdisciplinary, the first week includes a seminar series to provide a broad foundation in the field as the students begin their research projects. The 10-week program includes a week-long field trip to the SETI Institute’s Allen Telescope Array, located at the Hat Creek Radio Astronomy Observatory in Northern California, as well as a field experience at hydrothermal systems at nearby Lassen Volcanic National Park. Students also participate in local field trips to places like the California Academy of Sciences and other nearby locations of scientific interest, and attend seminars, lectures, and discussions on astrobiology. Students are also invited to attend events at nearby NASA Ames Research Center, which offers the opportunity to interact with other undergraduate and graduate students participating in NASA summer programs. At the end of the program, students write up and present their research projects, and mentors recommend some projects for submission to a national scientific conference, which the selected students will be funded to attend. The Astrobiology REU program emphasizes three main areas, which are listed in the table along with typical project themes. Each year, specific student research projects are described on the website, and students are asked to select the three that most interest them as a part of their applications. Applications are due in early February. Typically, 10 students apply for each available position. Students have been selected from colleges and universities

  13. Understanding the nineteenth century origins of disciplines: lessons for astrobiology today?

    NASA Astrophysics Data System (ADS)

    Brazelton, William J.; Sullivan, Woodruff T., III

    2009-10-01

    Astrobiology's goal of promoting interdisciplinary research is an attempt to reverse a trend that began two centuries ago with the formation of the first specialized scientific disciplines. We have examined this era of discipline formation in order to make a comparison with the situation today in astrobiology. Will astrobiology remain interdisciplinary or is it becoming yet another specialty? As a case study, we have investigated effects on the scientific literature when a specialized community is formed by analyzing the citations within papers published during 1802-1856 in Philosophical Transactions of the Royal Society (Phil. Trans.), the most important ‘generalist’ journal of its day, and Transactions of the Geological Society of London (Trans. Geol. Soc.), the first important disciplinary journal in the sciences. We find that these two journals rarely cited each other, and papers published in Trans. Geol. Soc. cited fewer interdisciplinary sources than did geology papers in Phil. Trans. After geology had become established as a successful specialized discipline, geologists returned to publishing papers in Phil. Trans., but they wrote in the new, highly specialized style developed in Trans. Geol. Soc. They had succeeded in not only creating a new scientific discipline, but also a new way of doing science with its own modes of research and communication. A similar citation analysis was applied to papers published over the period 2001-2008 in the contemporary journals Astrobiology and the International Journal of Astrobiology to test the hypothesis that astrobiologists are in the early stages of creating their own specialized community. Although still too early to reliably detect any but the largest trends, there is no evidence yet that astrobiologists are drifting into their own isolated discipline. Instead, to date they appear to remain interdisciplinary.

  14. Astrobiology Objectives for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Meyer, M. A.

    2002-05-01

    Astrobiology is the study of life in the Universe, and a major objective is to understand the past, present, and future biologic potential of Mars. The current Mars Exploration Program encompasses a series of missions for reconnaissance and in-situ analyses to define in time and space the degree of habitability on Mars. Determining whether life ever existed on Mars is a more demanding question as evidenced by controversies concerning the biogenicity of features in the Mars meteorite ALH84001 and in the earliest rocks on Earth. In-situ studies may find samples of extreme interest but resolution of the life question most probably would require a sample returned to Earth. A selected sample from Mars has the many advantages: State-of-the-art instruments, precision sample handling and processing, scrutiny by different investigators employing different techniques, and adaptation of approach to any surprises It is with a returned sample from Mars that Astrobiology has the most to gain in determining whether life did, does, or could exist on Mars.

  15. Astrobiology: The Search for Life in the Universe

    NASA Technical Reports Server (NTRS)

    Pacchioli, David

    2003-01-01

    Each of the 11 lead members of NASA's Astrobiology Institute has a specific mission. According to Hiroshi Ohmoto, director of Penn State s Astrobiology Research Center, Here we are mainly concerned with the origin of life and the evolution and extinction of important organisms. These include bacteria that live on methane, cyanobacteria (the inventors of photosynthesis), eukaryotes (a big category, covering anything with a nucleus, from single-celled organisms to humans), land-dwelling organisms, and early animals. Penn State astrobiologists are studying the environment before there was life on Earth, the origin of oxygen in the atmosphere, the chemical and thermal structures of oceans, and the role of metals in the evolution of life. Overall, they want to understand the connection between changes in environment and changes in life forms in the early Earth. PSARC offers research assistantships for graduate and undergraduate students, fellowships for graduate students and post-doctoral fellows, and an undergraduate minor in astrobiology. The minor covers 18 credits in earth sciences, geochemistry, geophysics, astronomy, biology, biochemistry, meteorology, and microbiology. The goal, says Ohmoto, is to teach students to critically evaluate claims related to this field that they encounter well after their college education has ended. Under a scanning electron microscope, Martian meteorite ALH84001 yields tube-like structures that look a lot like remnants of Earthly bacteria except smaller by a factor of ten.

  16. Low-latency teleoperations, planetary protection, and astrobiology

    NASA Astrophysics Data System (ADS)

    Lupisella, Mark L.

    2018-07-01

    The remote operation of an asset with time-delays short enough to allow for `real-time' or near real-time control - often referred to as low-latency teleoperations (LLT) - has important potential to address planetary protection concerns and to enhance astrobiology exploration. Not only can LLT assist with the search for extraterrestrial life and help mitigate planetary protection concerns as required by international treaty, but it can also aid in the real-time exploration of hazardous areas, robotically manipulate samples in real-time, and engage in precise measurements and experiments without the presence of crew in the immediate area. Furthermore, LLT can be particularly effective for studying `Special Regions' - areas of astrobiological interest that might be adversely affected by forward contamination from humans or spacecraft contaminants during activities on Mars. LLT can also aid human exploration by addressing concerns about backward contamination that could impact mission details for returning Martian samples and crew back to Earth.This paper provides an overview of LLT operational considerations and findings from recent NASA analyses and workshops related to planetary protection and human missions beyond Earth orbit. The paper focuses primarily on three interrelated areas of Mars operations that are particularly relevant to the planetary protection and the search for life: Mars orbit-to-surface LLT activities; Crew-on-surface and drilling LLT; and Mars surface science laboratory LLT. The paper also discusses several additional mission implementation considerations and closes with information on key knowledge gaps identified as necessary for the advance of LLT for planetary protection and astrobiology purposes on future human missions to Mars.

  17. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2003-01-01

    We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.

  18. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    NASA Astrophysics Data System (ADS)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  19. The astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Coll, P.; Cabane, M.; Hebrard, E.; Israel, G.; Nguyen, M.-J.; Szopa, C.; Gpcos Team

    Largest satellite of Saturn and the only satellite in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects: Its analogies with planet Earth, in spite of much lower temperatures, The Cassini-Huygens data have largely confirmed the many analogies between Titan and our own planet. Both have similar vertical temperature profiles, (although much colder, of course, on Titan). Both have condensable and non condensable greenhouse gases in their atmosphere. Both are geologically very active. Furthermore, the data also suggest strongly the presence of a methane cycle on Titan analogous to the water cycle on Earth. The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the organic matter in Titan low atmosphere (stratosphere and troposphere) is mainly concentrated in the aerosol particles. Because of the vertical temperature profile in this part of the atmosphere, most of the volatile organics are probably mainly condensed on the aerosol particles. The nucleus of these particles seems to be made of complex macromolecular organic matter, well mimicked in the laboratory by the "Titan's tholins". Now, laboratory tholins are known to release many organic compounds of biological interest, such as amino acids and purine and pyrimidine bases, when they are in contact with liquid water. Such hydrolysis may have occurred on the surface of Titan, in the bodies of liquid water which episodically may form on Titan's surface from meteoritic and cometary impacts. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. The possible emergence and persistence of Life on Titan 1 All ingredients which seems necessary for Life are present on

  20. Lunar and Planetary Science XXXV: Astrobiology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Astrobiology" included the following reports:The Role of Cometary and Meteoritic Delivery in the Origin and Evolution of Life: Biogeological Evidences Revisited; Hopane Biomarkers Traced from Bedrock to Recent Sediments and Ice at the Haughton Impact Structure, Devon Island: Implications for the Search for Biomarkers on Mars; and Survival of Organic Matter After High Temperature Events (Meteorite Impacts, Igneous Intrusions).

  1. Astrobiology: Life on Earth (and Elsewhere?)

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2016-01-01

    Astrobiology investigates the origins, evolution and distribution of life in the universe. Scientists study how stellar systems and their planets can create planetary environments that sustain biospheres. They search for biosignatures, which are objects, substances and or patterns that indicate the presence of life. Studies of Earth's early biosphere enhance these search strategies and also provide key insights about our own origins.

  2. Science at the ends of the Earth: astrobiology field expeditions as outreach tools

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    INTRODUCTION This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. The Astrobiology Program in the U.S. National Aeronautics and Space Administration's (NASA's) Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Public interest in astrobiology is great, and advances in the field are rapid. Hence, the Astrobiology Program supports the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by its investigators, employing an approach described as strategic communication planning. That is, the Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. The Program encourages all of its investigators to contribute to the ongoing endeavor of informing public audiences about Astrobiology. The ASTEP element of the Astrobiology Program sponsors terrestrial field campaigns to further scientific research and technology development relevant to future solar system exploration missions. ASTEP science investigations are designed to further biological research in terrestrial environments analogous to those found on other planets, past or present. ASTEP sponsors the development of technologies to enable remote searches for, and identification of, life in extreme environments. ASTEP supports systems-level field campaigns designed to demonstrate and validate the science and technology in extreme environments on Earth. This

  3. Multispectral Microimager for Astrobiology

    NASA Technical Reports Server (NTRS)

    Sellar, R. Glenn; Farmer, Jack D.; Kieta, Andrew; Huang, Julie

    2006-01-01

    A primary goal of the astrobiology program is the search for fossil records. The astrobiology exploration strategy calls for the location and return of samples indicative of environments conducive to life, and that best capture and preserve biomarkers. Successfully returning samples from environments conducive to life requires two primary capabilities: (1) in situ mapping of the mineralogy in order to determine whether the desired minerals are present; and (2) nondestructive screening of samples for additional in-situ testing and/or selection for return to laboratories for more in-depth examination. Two of the most powerful identification techniques are micro-imaging and visible/infrared spectroscopy. The design and test results are presented from a compact rugged instrument that combines micro-imaging and spectroscopic capability to provide in-situ analysis, mapping, and sample screening capabilities. Accurate reflectance spectra should be a measure of reflectance as a function of wavelength only. Other compact multispectral microimagers use separate LEDs (light-emitting diodes) for each wavelength and therefore vary the angles of illumination when changing wavelengths. When observing a specularly-reflecting sample, this produces grossly inaccurate spectra due to the variation in the angle of illumination. An advanced design and test results are presented for a multispectral microimager which demonstrates two key advances relative to previous LED-based microimagers: (i) acquisition of actual reflectance spectra in which the flux is a function of wavelength only, rather than a function of both wavelength and illumination geometry; and (ii) increase in the number of spectral bands to eight bands covering a spectral range of 468 to 975 nm.

  4. Astrobiology Outreach and the Nature of Science: The Role of Creativity

    PubMed Central

    Oliver, Carol; Walter, Malcolm R.

    2012-01-01

    Abstract There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research–related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science. Key Words: Science education—School science—Creativity—Nature and processes of science—Attitudes—Astrobiology. Astrobiology 12, 1143–1153. PMID:23134090

  5. Astrobiological Research on Tardigrades: Implications for Extraterrestrial Life Forms

    NASA Astrophysics Data System (ADS)

    Horikawa, D. D.

    2013-11-01

    Tardigrades have been considered as a model for astrobiological studies based on their tolerance to extreme environments. Future research on tardigrades might provide important insight into the possibilities of existence of multicellular life forms.

  6. Astrobiology and the Possibility of Life on Earth and Elsewhere…

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Kotler, Julia Michelle; Bartik, Kristin; Cleaves, H. James; Cockell, Charles S.; de Vera, Jean-Pierre P.; Ehrenfreund, Pascale; Leuko, Stefan; Ten Kate, Inge Loes; Martins, Zita; Pascal, Robert; Quinn, Richard; Rettberg, Petra; Westall, Frances

    2017-07-01

    Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our

  7. Critical issues in the history, philosophy, and sociology of astrobiology.

    PubMed

    Dick, Steven J

    2012-10-01

    Fifty years after serious scientific research began in the field of exobiology, and forty years after serious historical research began on the subject of extraterrestrial life, this paper identifies and examines some of the most important issues in the history, philosophy, and sociology of what is today known as astrobiology. As in the philosophy of science in general, and in the philosophies of particular sciences, critical issues in the philosophy and sociology of astrobiology are both stimulated and illuminated by history. Among those issues are (1) epistemological issues such as the status of astrobiology as a science, the problematic nature of evidence and inference, and the limits of science; (2) metaphysical/scientific issues, including the question of defining the fundamental concepts of life, mind, intelligence, and culture in a universal context; the role of contingency and necessity in the origin of these fundamental phenomena; and whether or not the universe is in some sense fine-tuned for life and perhaps biocentric; (3) societal issues such as the theological, ethical, and worldview impacts of the discovery of microbial or intelligent life; and the question of whether the search for extraterrestrial life should be pursued at all, and with what precautions; and (4) issues related to the sociology of scientific knowledge, including the diverse attitudes and assumptions of different scientific communities and different cultures to the problem of life beyond Earth, the public "will to believe," and the formation of the discipline of astrobiology. All these overlapping issues are framed by the concept of cosmic evolution-the 13.7 billion year Master Narrative of the Universe-which may result in a physical, biological, or postbiological universe and determine the long-term destiny of humanity.

  8. An Explorer-Class Astrobiology Mission

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Greene, Thomas; Allamandola, Louis; Arno, Roger; Bregman, Jesse; Cox, Sylvia; Davis, Paul K.; Gonzales, Andrew; Haas, Michael; Hanel, Robert; hide

    2000-01-01

    In this paper we describe a potential new Explorer-class space mission, the AstroBiology Explorer (ABE), consisting of a relatively modest dedicated space observatory having a 50 cm aperture primary mirror which is passively cooled to T less than 65 K, resides in a low-background orbit (heliocentric orbit at 1 AU, Earth drift-away), and is equipped with a suite of three moderate order (m approx. 10) dispersive spectrographs equipped with first-order cross-dispersers in an "echellette" configuration and large format (1024xl024 pixel) near- and mid-IR detector arrays cooled by a modest amount of cryogen. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The observational program of this mission would make fundamental scientific progress in each of the key areas of the cosmic history of molecular carbon, the distribution and chemistry of organic compounds in the diffuse and dense interstellar media, and the evolution of ices and organic matter in young planetary systems. ABE could make fundamental progress in all of these areas by conducting an approximately one year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micrometers spectral range at spectral resolutions of R greater than or equal to 1000 of approximately 1000 galaxies, stars, planetary nebulae, and young star planetary systems.

  9. Protecting and Expanding the Richness and Diversity of Life, An Ethic for Astrobiology Research and Space Exploration

    NASA Technical Reports Server (NTRS)

    Randolph, Richard O.; McKay, Chris P.

    2011-01-01

    The ongoing search for life on other worlds and the prospects of eventual human exploration of the Moon and Mars indicate the need for new ethical guidelines to direct our actions as we search and how we respond if we discover microbial life on other worlds. Here we review how life on other worlds presents a novel question in environmental ethics. We propose a principle of protecting and expanding the richness and diversity of life as the basis of an ethic for astrobiology research and space exploration. There are immediate implications for the operational policies governing how we conduct the search for life on Mars and how we plan for human exploration throughout the Solar System.

  10. Protecting and expanding the richness and diversity of life, an ethic for astrobiology research and space exploration

    NASA Astrophysics Data System (ADS)

    Randolph, Richard O.; McKay, Christopher P.

    2014-01-01

    The ongoing search for life on other worlds and the prospects of eventual human exploration of the Moon and Mars indicate the need for new ethical guidelines to direct our actions as we search and how we respond if we discover microbial life on other worlds. Here we review how life on other worlds presents a novel question in environmental ethics. We propose a principle of protecting and expanding the richness and diversity of life as the basis of an ethic for astrobiology research and space exploration. There are immediate implications for the operational policies governing how we conduct the search for life on Mars and how we plan for human exploration throughout the Solar System.

  11. Real Science for Real Science Teachers: Providing Astrobiology Science Content and Contemporary Pedagogy for Today's Educators Online

    NASA Astrophysics Data System (ADS)

    Offerdahl, E. G.; Prather, E. E.; Slater, T. F.

    2003-12-01

    As teachers strive to improve the way science is taught in the classroom, many are turning to the interdisciplinary science of astrobiology as a way integrate inquiry effectively in the science classroom. However, it is generally recognized that teachers do not often have easy access to understandable and usable cutting-edge science to enrich their science lessons. Through the generous support of the NASA Astrobiology Institute (NAI), middle and high school teachers have the opportunity to learn current and provocative scientific results within the context of astrobiology as well as receive training in pedagogically sound methods of incorporating astrobiology appropriately in the classroom. In Astrobiology for Teachers, a 15-week on-line distance learning course co-sponsored by NAI, the National Science Teachers Association (NSTA) Professional Development Institute, National Teachers Enhancement Network (NTEN), Montana State University, and the Department of Astronomy at University of Arizona, teachers engage in a virtual classroom facilitated by an integrated teaching team of educators and scientists using a standards-based, inquiry curriculum. The collaborative nature of the course encourages, demonstrates, and enhances a professional exchange among scientists and educators which, in turn, fosters implementation of innovative science teaching in today's classroom.

  12. Astrobiology Student Intern Program at Lassen Volcanic National Park

    NASA Astrophysics Data System (ADS)

    Dueck, S. L.; Zachary, S.; Michael, D.; Parenteau, M.; Kubo, M.; Jahnke, L. L.; Scalice, D.; Des Marais, D. J.

    2010-04-01

    The NASA Astrobiology Institute (NAI) Ames Team has partnered with Lassen Volcanic National Park and Red Bluff High School to engage high school students in the collection of scientific data for NASA astrobiologists and the National Park Service.

  13. Applicability of cryoconite consortia of microorganisms and glacier-dwelling animals in astrobiological studies

    NASA Astrophysics Data System (ADS)

    Zawierucha, Krzysztof; Ostrowska, Marta; Kolicka, Małgorzata

    2017-06-01

    For several years it has been of interest to astrobiologists to focus on Earth's glaciers as a habitat that can be similar to glaciers on other moons and planets. Microorganisms on glaciers form consortia - cryoconite granules (cryoconites). They are granular/spherical mineral particles connected with archaea, cyanobacteria, heterotrophic bacteria, algae, fungi, and micro animals (mainly Tardigrada and Rotifera). Cryophilic organisms inhabiting glaciers have been studied in different aspects: from taxonomy, ecology and biogeography, to searching of biotechnological potentials and physiological strategies to survive in extreme glacial habitats. However, they have never been used in astrobiological experiments. The main aim of this paper is brief review of literature and supporting assumptions that cryoconite granules and microinvertebrates on glaciers, are promising models in astrobiology for looking for analogies and survival strategies in terms of icy planets and moons. So far, astrobiological research have been conducted on single strains of prokaryotes or microinvertebrates but never on a consortium of them. Due to the hypothetical similarity of glaciers on the Earth to those on other planets these cryoconites consortia of microorganisms and glacier microinvertebrates may be applied in astrobiological experiments instead of the limno-terrestrial ones used currently. Those consortia and animals have qualities to use them in such studies and they may be the key to understanding how organisms are able to survive, reproduce and remain active at low temperatures.

  14. From Titan's chemistry and exobiology to Titan's astrobiology

    NASA Astrophysics Data System (ADS)

    Raulin, François

    2015-04-01

    When the IDS proposal « Titan's chemistry and exobiology » was submitted to ESA 25 years ago, in the frame of what will become the Cassini-Huygens mission, Titan was already seen as a quite interesting planetary object in the solar system for Exobiology. Several organic compounds of prebiotic interest were identified in its atmosphere, which was thus was expected to be chemically very active, especially in term of organic processes. Atmospheric aerosols seemed to play a key role in this chemistry. Moreover, the presence of an internal aqueous ocean, compatible with life was suspected. A few years later, when astrobiology was (re)invented, Titan became one of the most interesting planetary target for this new (but very similar to exobiology) field. With the Cassini-Huygens mission, the exo/astrobiological interest of Titan has become more and more important. However, the mission has been providing a vision of Titan quite different from what it was supposed. Its atmospheric organic chemistry is very complex and starts in much higher zones than it was believed before, involving high molecular weight species in the ionosphere. Titan's surface appears to be far from homogeneous: instead of been covered by a global methane-ethane ocean, it is very diversified, with dunes, lakes, bright and dark areas, impact and volcanic craters with potential cryovolcanic activity. These various geological areas are continuously feeded by atmospheric aerosols, which represent an important step in the complexity of Titan's organic chemistry, but probably not the final one. Indeed, after being deposited on the surface, in the potential cryovolvanic zones, these particles may react with water ice and form compounds of exo/astrobiological interest, such as amino acids, purine and pyrimidine bases. Moreover, The Cassini-Huygens data strongly support the potential presence of an internal water ocean, which becomes less and less hypothetical and of great interest for exobiology. These

  15. Habitability & Astrobiology Research in Mars Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2014-05-01

    We performed a series of field research campaigns (ILEWG EuroMoonMars) in the extreme Utah desert relevant to Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL), or Moon geochemistry (SMART-1, LRO). We shall give an update on the sample analysis in the context of habitability and astrobiology. Methods & Results: In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station, near Hanksville Utah, a suite of instruments and techniques [A, 1, 2, 9-11] including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [1-9] to new measurements from 2010-2013 campaigns [10-12] relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. Keywords: field analogue research, astrobiology, habitability, life detection, Earth-Moon-Mars, organics References [A] Foing, Stoker & Ehrenfreund (Editors, 2011) "Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International

  16. STARLIFE-An International Campaign to Study the Role of Galactic Cosmic Radiation in Astrobiological Model Systems.

    PubMed

    Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda

    2017-02-01

    In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms. Key Words: Space radiation environment-Sparsely ionizing radiation-Densely ionizing radiation-Heavy ions-Gamma radiation-Astrobiological model systems. Astrobiology 17, 101-109.

  17. Astrobiology Science and Technology: A Path to Future Discovery

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Lavaery, D. B.

    2001-01-01

    The Astrobiology Program is described. However, science-driven robotic exploration of extreme environments is needed for a new era of planetary exploration requiring biologically relevant instrumentation and extensive, autonomous operations on planetary surfaces. Additional information is contained in the original extended abstract.

  18. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  19. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    'Are we alone?' is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  20. Development, Evaluation, and Dissemination of an Astrobiology Curriculum for Secondary Students: Establishing a Successful Model for Increasing the Use of Scientific Data by Underrepresented Students.

    NASA Astrophysics Data System (ADS)

    Arino de La Rubia, L.; Butler, J.; Gary, T.; Stockman, S.; Mumma, M.; Pfiffner, S.; Davis, K.; Edmonds, J.

    2009-12-01

    The Minority Institution Astrobiology Collaborative began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms modules are being developed to emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Since this time, more NASA Astrobiology Institute Teams have joined this education and public outreach (EPO)effort. Field-testing of the Astrobiology in Secondary Classrooms materials began in 2007 in five US locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics.

  1. Astrobiology Courses--A Useful Framework for Teaching Interdisciplinary Science.

    ERIC Educational Resources Information Center

    Sauterer, Roger

    2000-01-01

    Explains astrobiology and indicates the possibility of life on other planets and the interest of humankind in this possibility. Defines topics open to public misconception and their primary reinforcements by television shows. Expresses the need for students to learn the connections between different science majors. (YDS)

  2. NASA's planetary protection program as an astrobiology teaching module

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2005-09-01

    We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

  3. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Jaffe, Richard; Liang, Shoudan; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2002-01-01

    We present results from several projects in the new field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. We have developed a procedure for calculating long-range effects in molecular dynamics using a plane wave expansion of the electrostatic potential. This method is expected to be highly efficient for simulating biological systems on massively parallel supercomputers. We have perform genomics analysis on a family of actin binding proteins. We have performed quantum mechanical calculations on carbon nanotubes and nucleic acids, which simulations will allow us to investigate possible sources of organic material on the early earth. Finally, we have developed a model of protobiological chemistry using neural networks.

  4. Brazilian research on extremophiles in the context of astrobiology

    NASA Astrophysics Data System (ADS)

    Duarte, Rubens T. D.; Nóbrega, Felipe; Nakayama, Cristina R.; Pellizari, Vivian H.

    2012-10-01

    Extremophiles are organisms adapted to grow at extreme ranges of environmental variables, such as high or low temperatures, acid or alkaline medium, high salt concentration, high pressures and so forth. Most extremophiles are micro-organisms that belong to the Archaea and Bacteria domains, and are widely spread across the world, which include the polar regions, volcanoes, deserts, deep oceanic sediments, hydrothermal vents, hypersaline lakes, acid and alkaline water bodies, and other extreme environments considered hostile to human life. Despite the tropical climate, Brazil has a wide range of ecosystems which include some permanent or seasonally extreme environments. For example, the Cerrado is a biome with very low soil pH with high Al+3 concentration, the mangroves in the Brazilian coast are anaerobic and saline, Pantanal has thousands of alkaline-saline lakes, the Caatinga arid and hot soils and the deep sea sediments in the Brazilian ocean shelf. These environments harbour extremophilic organisms that, coupled with the high natural biodiversity in Brazil, could be explored for different purposes. However, only a few projects in Brazil intended to study the extremophiles. In the frame of astrobiology, for example, these organisms could provide important models for defining the limits of life and hypothesize about life outside Earth. Brazilian microbiologists have, however, studied the extremophilic micro-organisms inhabiting non-Brazilian environments, such as the Antarctic continent. The experience and previous results obtained from the Brazilian Antarctic Program (PROANTAR) provide important results that are directly related to astrobiology. This article is a brief synopsis of the Brazilian experience in researching extremophiles, indicating the most important results related to astrobiology and some future perspectives in this area.

  5. Developing the Critical Thinking Skills of Astrobiology Students through Creative and Scientific Inquiry

    PubMed Central

    Lemus, Judith D.

    2015-01-01

    Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292

  6. Impact of the Arizona NExSS Winter School on Astrobiology Knowledge and Attitudes.

    PubMed

    Burnam-Fink, Michael; Desch, Steven J; Scalice, Daniella; Davis, Hilarie; Huff, Cierra J; Apai, Dániel

    2018-03-01

    Astrobiology is an inherently interdisciplinary area of study, demanding communication across multiple fields: astronomy, geochemistry, planetary science, and so on. Successful communication requires that researchers be aware of the basic findings, open questions, and tools and techniques of allied fields and possess an appreciation and respect for what these fields consider good science. To facilitate this communication between early-career researchers, the Arizona NExSS Winter School was hosted in February 2016, bringing together graduate students and postdoctoral researchers from backgrounds spanning the field of astrobiology. Students virtually attended a scientific Workshop Without Walls and participated in lectures, discussions, field trips, and hands-on activities, culminating in the writing and review of mock proposals by interdisciplinary teams. We assess the impact of the school on interdisciplinarity using a pre- and posttest survey of 24 students, informed by National Science Foundation impact categories (Friedman et al., 2008 ) within the Impact Analysis Method (IAM) described by Davis and Scalice ( 2015 ). We demonstrate that students gained knowledge, especially in fields outside their home discipline. Furthermore, an underlying disciplinary divide between geochemists and planetary scientists on the role of life in planetary evolution is observed and interpreted. These findings demonstrate that the Arizona NExSS Winter School had measurable impact on interdisciplinarity and that the IAM rubric has utility in measuring impact. We make recommendations for further research to understand the interdisciplinary gaps in astrobiology and how best to bridge them. Key Words: Interdisciplinarity-Attitudes-Knowledge-Scientific dialogue-Training. Astrobiology 18, 365-375.

  7. An Astrobiology Microbes Exhibit and Education Module

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Allen, Jaclyn S.; Stocco, Karen; Tobola, Kay; Olendzenski, Lorraine

    2001-01-01

    Telling the story of NASA-sponsored scientific research to the public in exhibits is best done by partnerships of scientists and museum professionals. Likewise, preparing classroom activities and training teachers to use them should be done by teams of teachers and scientists. Here we describe how we used such partnerships to develop a new astrobiology augmentation to the Microbes! traveling exhibit and a companion education module. "Additional information is contained in the original extended abstract."

  8. Stepwise onset of the Icehouse world and its impact on Oligo-Miocene Central Asian mammals.

    PubMed

    Harzhauser, Mathias; Daxner-Höck, Gudrun; López-Guerrero, Paloma; Maridet, Olivier; Oliver, Adriana; Piller, Werner E; Richoz, Sylvain; Erbajeva, Margarita A; Neubauer, Thomas A; Göhlich, Ursula B

    2016-11-29

    Central Asia is a key area to study the impact of Cenozoic climate cooling on continental ecosystems. One of the best places to search for rather continuous paleontological records is the Valley of Lakes in Mongolia with its outstandingly fossil-rich Oligocene and Miocene terrestrial sediments. Here, we investigate the response by mammal communities during the early stage of Earth's icehouse climate in Central Asia. Based on statistical analyses of occurrence and abundance data of 18608 specimens representing 175 mammal species and geochemical (carbon isotopes) and geophysical (magnetic susceptibility) data we link shifts in diversities with major climatic variations. Our data document for the first time that the post-Eocene aridification of Central Asia happened in several steps, was interrupted by short episodes of increased precipitation, and was not a gradual process. We show that the timing of the major turnovers in Oligocene mammal communities is tightly linked with global climate events rather than slow tectonics processes. The most severe decline of up 48% of total diversity is related to aridification during the maximum of the Late Oligocene Warming at 25 Ma. Its magnitude was distinctly larger than the community turnover linked to the mid-Oligocene Glacial Maximum.

  9. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    PubMed

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  10. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, K. A.; Sandford, S. A.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission s observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young StellarPlanetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5 ) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detectors

  11. From systems chemistry to systems astrobiology: life in the universe as an emergent phenomenon

    NASA Astrophysics Data System (ADS)

    Chela-Flores, J.

    2013-01-01

    Although astrobiology is a science midway between the life and physical sciences, it has surprisingly remained largely disconnected from recent trends in certain branches of both life and physical sciences. We discuss potential applications to astrobiology of approaches that aim at integrating rather than reducing. Aiming at discovering how systems properties emerge has proved valuable in chemistry and in biology. The systems approach should also yield insights into astrobiology, especially concerning the ongoing search for alternative abodes for life. This is feasible since new data banks in the case of astrobiology - considered as a branch of biology - are of a geophysical/astronomical kind, rather than the molecular biology data that are used for questions related firstly, to genetics in a systems context and secondly, to biochemistry for solving fundamental problems, such as protein or proteome folding. By focusing on how systems properties emerge in astrobiology we consider the question: can life in the universe be interpreted as an emergent phenomenon? In the search for potential habitable worlds in our galactic sector with current space missions, extensive data banks of geophysical parameters of exoplanets are rapidly emerging. We suggest that it is timely to consider life in the universe as an emergent phenomenon that can be approached with methods beyond the science of chemical evolution - the backbone of previous research in questions related to the origin of life. The application of systems biology to incorporate the emergence of life in the universe is illustrated with a diagram for the familiar case of our own planetary system, where three Earth-like planets are within the habitable zone (HZ) of a G2 V (the complete terminology for the Sun in the Morgan-Keenan system) star. We underline the advantage of plotting the age of Earth-like planets against large atmospheric fraction of a biogenic gas, whenever such anomalous atmospheres are discovered in

  12. The Astrobiology Primer - an Early Career Scientist Education, Outreach and Professional Development Project

    NASA Astrophysics Data System (ADS)

    Wright, K. E.; Domagal-Goldman, S. D.

    2011-12-01

    We are early-career scientists jointly leading a project to write 'The Astrobiology Primer', a brief but comprehensive introduction to astrobiology, and we are using the process of producing the document as an innovative way of strengthening the international community of early-career astrobiologists. Astrobiology is the study of the origin, evolution, distribution and future of life in our universe. It includes not just study of life on Earth, but also the potential for life to exist beyond Earth, and the development of techniques to search for such life. It therefore incorporates geological and earth sciences, life sciences, chemistry, astronomy and planetary sciences. This requires astrobiologists to integrate these different disciplines in order to address questions such as 'How did Earth and its biosphere originate?', 'How do life and the physical, chemical and geological cycles on Earth interact, and affect each other?' and so 'What does life on Earth tell us about the habitability of environments outside Earth?'. The primer will provide a brief but comprehensive introduction to the field; it will be significantly more comprehensive than a normal review paper but much shorter than a textbook. This project is an initiative run entirely by early-career scientists, for the benefit of other early-career scientists and others. All the writers and editors of the primer are graduate/post-graduate students or post-doctoral fellows, and our primary target group for the primer is other early-career scientists, although we hope and expect that the primer will also be useful far more broadly in education and outreach work. An Astrobiology Primer was first published in 2006(Ref1), written and edited by a small group of early-career astrobiologists to provide an introduction to astrobiology for other early-career scientists new to the field. It has been used not only by the target group for private study, but in formal education and outreach settings at universities and

  13. Astrobiology at Arizona State University: An Overview of Accomplishments

    NASA Technical Reports Server (NTRS)

    Farmer, Jack

    2005-01-01

    During our five years as an NAI charter member, Arizona State University sponsored a broadly-based program of research and training in Astrobiology to address the origin, evolution and distribution of life in the Solar System. With such a large, diverse and active team, it is not possible in a reasonable space, to cover all details of progress made over the entire five years. The following paragraphs provide an overview update of the specific research areas pursued by the Arizona State University (ASU) Astrobiology team at the end of Year 5 and at the end of the 4 month and subsequent no cost month extensions. for a more detailed review, the reader is referred to the individual annual reports (and Executive Summaries) submitted to the NAI at the end of each of our five years of membership. Appended in electronic form is our complete publication record for all five years, plus a tabulation of undergraduates, graduate students and post-docs supported by our program during this time. The overarching theme of ASU s Astrobiology program was "Exploring the Living Universe: Studies of the Origin, Evolution and Distribution of Life in the Solar System". The NAi-funded research effort was organized under three basic sub- themes: 1. Origins of the Basic Building Blocks of Life. 2. Early Biosphere Evolution. and 3. Exploring for Life in the Solar System. These sub-theme areas were in turn, subdivided into Co-lead research modules. In the paragraphs that follow, accomplishments for individual research modules are briefly outlined, and the key participants presented in tabular form. As noted, publications for each module are appended in hard copy and digital formats, under the name(s) of lead co-Is.

  14. Astrobiology: The Case for Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2003-01-01

    The scientific discipline of astrobiology addresses one of the most fundamental unanswered questions of science: are we alone? Is there life elsewhere in the universe, or is life unique to Earth? The field of astrobiology includes the study of the chemical precursors for life in the solar system; it also includes the search for both presently existing life and fossil signs of previously existing life elsewhere in our own solar system, as well as the search for life outside the solar system. Two of the promising environments within the solar system being currently considered are the surface of the planet Mars, and the hypothesized oceans underneath the ice covering the moon Europa. Both of these environments differ in several key ways from the environments where life is found on Earth; the Mars environment in most places too cold and at too low pressure for liquid water to be stable, and the sub-ice environment of Europa lacking an abundance of free energy in the form of sunlight. The only place in the solar system where we know that life exists today is the Earth. To look for life elsewhere in the solar system, one promising search strategy would be to find and study the environment in the solar system with conditions that are most similar to the environmental conditions where life thrives on the Earth. Specifically, we would like to study a location in the solar system with atmospheric pressure near one bar; temperature in the range where water is liquid, 0 to 100 C; abundant solar energy; and with the primary materials required for life, carbon, oxygen, nitrogen, and hydrogen, present. Other than the surface of the Earth, the only other place where these conditions exist is the atmosphere of Venus, at an altitude of about fifty kilometers above the surface.

  15. AstroBiology Explorer (ABE) MIDEX mission concept

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Cox, Sylvia; Ellis, Benton; Gallagher, Dennis J.; Gautier, Nick; Greene, Thomas P.; McCreight, Craig R.; Mills, Gary; Purcell, William R.

    2002-02-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept under study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp. ABE will conduct IR spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Cassegrain telescope and two moderate resolution (R equals 2000-3000) spectrographs covering the 2.5-16 micron spectral region. Large format (1024x1024 pixel or larger) IR detector arrays and bandpass filters will allow each spectrograph to cover an entire octave of spectral range or more per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~8K. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1-2 year mission lifetime.

  16. Role of the observer in the scientific process in astrobiology and in defining life

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2010-09-01

    The role of the observer in the scientific process has been studied in various contexts, including philosophical. It is notorious that the experiments are theory-loaded, that the observers pick and choose what they consider important based on their scientific and cultural backgrounds, and that the same phenomenon may be studied by different observers from different angles. In this paper we critically review various authors' views of the role of the observer in the scientific process, as they apply to astrobiology. Astrobiology is especially vulnerable to the role of the observer, since it is an interdisciplinary science. Thus, the backgrounds of the observers in the astrobiology field are even more heterogeneous than in the other sciences. The definition of life is also heavily influenced by the observer of life who injects his/her own prejudices in the process of observing and defining life. Such prejudices are often dictated by the state of science, instrumentation, and the science politics at the time, as well as the educational, scientific, cultural and other background of the observer.

  17. The NASA Astrobiology Institute: A Decade of Education and Outreach

    NASA Astrophysics Data System (ADS)

    Scalice, Daniella

    The mission statement of the NASA Astrobiology Institute (NAI) charts a course to establishing astrobiology as a new and influential field of scientific inquiry. It integrates world class, interdisciplinary research with training for the next generation of astrobiologists. It enables collaboration between distributed research teams by prioritizing the use of modern information technologies, and empowers astrobiologists to provide leadership for space missions. But this unique vision would not have been complete without the inclusion of an Education and Public Outreach (E/PO) program. Over the past ten years, NAI's E/PO program has taken shape - from bootstrapping in the early days, to partnering with the likes of Disney and PBS - in pursuit of inspiring young people onto the scientific path. The E/PO program's highly collaborative group of education specialists has worked with museums, national parks, filmmakers, radio broadcasters, families, teachers, and students to ensure that the bright young faces of today find themselves in the labs of tomorrow's astrobiologists.

  18. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  19. Space Biology Meets Astrobiology: Critical Synergies and Concerns

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.; Kirven-Brooks, Melissa

    2016-01-01

    The broad fields of space biology and astrobiology share much in common in terms of science questions, approaches, and goals. However, historical circumstances and funding agency practices have frequently resulted in a wide separation between the two related areas. Is this a good thing? We believe that it is not, and that much is to be gained in each field from sharing ideas, resources, and perhaps projects between investigators traditionally working in one discipline or the other. Some of the strengths that the Space Biology community offers include sophistication and experience in flying experiments on space missions. In turn, Astrobiology has focused heavily on ground-based and field research. Challenging physical and chemical conditions experienced in space and on other planets partially overlap, and much can be gleaned from the body of work of each community along these topical lines. A combination of these areas of expertise and experience could result in major advances to all involved. When possible, avoiding having to reinvent methods or approaches already used by a sister community can result in greater efficiencies of resource use. We will discuss some case studies where we believe there are significant overlaps including adaptation to a variety of environmental stresses, extremophiles as potential flight organisms, microfluidics as applied to planetary environment simulations, and others.

  20. Stepwise onset of the Icehouse world and its impact on Oligo-Miocene Central Asian mammals

    NASA Astrophysics Data System (ADS)

    Harzhauser, Mathias; Daxner-Höck, Gudrun; López-Guerrero, Paloma; Maridet, Olivier; Oliver, Adriana; Piller, Werner E.; Richoz, Sylvain; Erbajeva, Margarita A.; Neubauer, Thomas A.; Göhlich, Ursula B.

    2016-11-01

    Central Asia is a key area to study the impact of Cenozoic climate cooling on continental ecosystems. One of the best places to search for rather continuous paleontological records is the Valley of Lakes in Mongolia with its outstandingly fossil-rich Oligocene and Miocene terrestrial sediments. Here, we investigate the response by mammal communities during the early stage of Earth’s icehouse climate in Central Asia. Based on statistical analyses of occurrence and abundance data of 18608 specimens representing 175 mammal species and geochemical (carbon isotopes) and geophysical (magnetic susceptibility) data we link shifts in diversities with major climatic variations. Our data document for the first time that the post-Eocene aridification of Central Asia happened in several steps, was interrupted by short episodes of increased precipitation, and was not a gradual process. We show that the timing of the major turnovers in Oligocene mammal communities is tightly linked with global climate events rather than slow tectonics processes. The most severe decline of up 48% of total diversity is related to aridification during the maximum of the Late Oligocene Warming at 25 Ma. Its magnitude was distinctly larger than the community turnover linked to the mid-Oligocene Glacial Maximum.

  1. Stepwise onset of the Icehouse world and its impact on Oligo-Miocene Central Asian mammals

    PubMed Central

    Harzhauser, Mathias; Daxner-Höck, Gudrun; López-Guerrero, Paloma; Maridet, Olivier; Oliver, Adriana; Piller, Werner E.; Richoz, Sylvain; Erbajeva, Margarita A.; Neubauer, Thomas A.; Göhlich, Ursula B.

    2016-01-01

    Central Asia is a key area to study the impact of Cenozoic climate cooling on continental ecosystems. One of the best places to search for rather continuous paleontological records is the Valley of Lakes in Mongolia with its outstandingly fossil-rich Oligocene and Miocene terrestrial sediments. Here, we investigate the response by mammal communities during the early stage of Earth’s icehouse climate in Central Asia. Based on statistical analyses of occurrence and abundance data of 18608 specimens representing 175 mammal species and geochemical (carbon isotopes) and geophysical (magnetic susceptibility) data we link shifts in diversities with major climatic variations. Our data document for the first time that the post-Eocene aridification of Central Asia happened in several steps, was interrupted by short episodes of increased precipitation, and was not a gradual process. We show that the timing of the major turnovers in Oligocene mammal communities is tightly linked with global climate events rather than slow tectonics processes. The most severe decline of up 48% of total diversity is related to aridification during the maximum of the Late Oligocene Warming at 25 Ma. Its magnitude was distinctly larger than the community turnover linked to the mid-Oligocene Glacial Maximum. PMID:27897168

  2. Astrobiological Significance of Microbial Extremophiles

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2007-01-01

    The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath and the ice crusts of icy moons of Jupiter and Saturn. The importance of study alkaliphilic microorganisms for astrobiology was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology. The study of halophilic microorganisms was started from work with saline soils and lakes, and one of the record of good growth for Haloferax mediterranei was shown at 30 percent NaC1. Although alkali-tolerant nitrifying bacteria had previously been reported, the first described alkaliphilic microorganism was the bacterium Streptococcus faecalis. Halophilic and alkaliphilic forms are relevant to conditions that might be found in closed impact basins and craters on Mars filled with evaporite deposits. The first obligately acidophilic bacterium described was Acidithiobacillus ferrooxydans (formally Thiobacillus ferrooxidans). Later thermophilic lithotrophic acidophiles were found, and the hyperacidophilic moderately thermophilic species of the genus Picrophilus were found to grow at negative p

  3. Aspicilia fruticulosa: A new model for Astrobiology

    NASA Astrophysics Data System (ADS)

    Sánchez Iñigo, Fco. Javier; de La Torre Noetzel, Rosa; Martinez-Frias, Jesus; Mateo Mart, Eva; Horneck, Gerda

    In order to avoid the technological constraints that prevent the performance of experiments in other planets, Astrobiology research implies the development of models that simulate the conditions present in outer space or in planetary bodies. Extremophile organisms, like lichens have been widely studied in Astrobiology due to their high resistance to extremely harsh envi-ronments(5). The vagrant lichen species, Aspicilia fruticulosa lives detached from the substrate, and has a coralloid thalli up to 2.5 cm, which provides a very compact internal structure(6). This species typically grows in deserts and arid areas. Its resistance has been tested several times and amazing results about their vitality have been obtained. Two main experiments have been per-formed: 1. LITHOPANSPERMIA experiment(1): Integrated on board of BIOPAN (multi-user exposure facility, designed for exobiology, radiation biology, radiation dosimetry and material science investigations in space (http://www.spaceflight.esa.int/users/index.cfm?act=default.pagelevel=11p foton-next-pay-Bpan) launched on the Foton M3 satellite in September 2007); the resistance of this lichen species to the combination of the following space conditions during 10 days was tested: Ultraviolet (UV) extraterrestrial radiation, Mars UV-climate, UV-B radiation and Photosynthetically Active Radiation (PAR), microgravity, space vacuum of 1x10-6 mbar and extreme temperatures ranging from -23o C to +16o C. After the flight, the samples were revital-ized for a 72h period in a climatic chamber before taking measurements of their photosynthetic activity with a Mini-PAM fluorometer (Heinz Walz GmbH) as described by R. de la Torre et al. 2007b (2). The results showed that the samples exposed to space environment except solar UV radiation, reached a 76.5-1002. A step further on these investigations was carried out in order to study how the viability of this lichen species were affected by a combination of different sim-ulated martian

  4. The challenges of educating the public about astrobiology via the mass media

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    Scientific information in astrobiology is being generated at a pace that traditional textbooks cannot easily match. For the most part, students, teachers and the general public will continue to learn piecemeal about the latest advances in the field through headlines and mass media coverage centered around discoveries and new interpretations as they occur. Yet journalists and reporters are themselves unschooled in this emerging interdisciplinary field. While it is important to continue developing astrobiological curricular materials for future use by students in formal settings, it is equally important to find novel ways for educating the mass media in the interim. Current planning in anticipation of a Mars sample return mission has focused on a variety of ways to enlist the mass media in an educational as well as informational role.

  5. The astrobiology primer: an outline of general knowledge--version 1, 2006.

    PubMed

    Billings, L; Cameron, V; Claire, M; Dick, G J; Domagal-Goldman, S D; Javaux, E J; Johnson, O J; Laws, C; Race, M S; Rask, J; Rummel, J D; Schelble, R T; Vance, S

    2006-10-01

    The Astrobiology Primer has been created as a reference tool for those who are interested in the interdisciplinary field of astrobiology. The field incorporates many diverse research endeavors, but it is our hope that this slim volume will present the reader with all he or she needs to know to become involved and to understand, at least at a fundamental level, the state of the art. Each section includes a brief overview of a topic and a short list of readable and important literature for those interested in deeper knowledge. Because of the great diversity of material, each section was written by a different author with a different expertise. Contributors, authors, and editors are listed at the beginning, along with a list of those chapters and sections for which they were responsible. We are deeply indebted to the NASA Astrobiology Institute (NAI), in particular to Estelle Dodson, David Morrison, Ed Goolish, Krisstina Wilmoth, and Rose Grymes for their continued enthusiasm and support. The Primer came about in large part because of NAI support for graduate student research, collaboration, and inclusion as well as direct funding. We have entitled the Primer version 1 in hope that it will be only the first in a series, whose future volumes will be produced every 3-5 years. This way we can insure that the Primer keeps up with the current state of research. We hope that it will be a great resource for anyone trying to stay abreast of an ever-changing field.

  6. An Introduction to Astrobiology

    NASA Astrophysics Data System (ADS)

    Gilmour, Iain; Sephton, Mark A.

    2004-05-01

    Compiled by a team of experts, this textbook has been designed for elementary university courses in astrobiology. It begins with an examination of how life may have arisen on Earth and then reviews the evidence for possible life on Mars, Europa and Titan. The potential for life in exoplanetary systems and the search for extraterrestrial intelligence are also discussed. The text contains numerous useful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. It is also supported by a website hosting further teaching materials. Written in an accessible style that avoids complex mathematics, this book is suitable for self-study and will appeal to amateur enthusiasts as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a webstite hosting further teaching materials.

  7. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions

    NASA Astrophysics Data System (ADS)

    Inglis, Gordon N.; Farnsworth, Alexander; Lunt, Daniel; Foster, Gavin L.; Hollis, Christopher J.; Pagani, Mark; Jardine, Phillip E.; Pearson, Paul N.; Markwick, Paul; Galsworthy, Amanda M. J.; Raynham, Lauren; Taylor, Kyle. W. R.; Pancost, Richard D.

    2015-07-01

    The TEX86 proxy, based on the distribution of marine isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs), is increasingly used to reconstruct sea surface temperature (SST) during the Eocene epoch (56.0-33.9 Ma). Here we compile published TEX86 records, critically reevaluate them in light of new understandings in TEX86 palaeothermometry, and supplement them with new data in order to evaluate long-term temperature trends in the Eocene. We investigate the effect of archaea other than marine Thaumarchaeota upon TEX86 values using the branched-to-isoprenoid tetraether index (BIT), the abundance of GDGT-0 relative to crenarchaeol (%GDGT-0), and the Methane Index (MI). We also introduce a new ratio, %GDGTRS, which may help identify Red Sea-type GDGT distributions in the geological record. Using the offset between TEX86H and TEX86L (ΔH-L) and the ratio between GDGT-2 and GDGT-3 ([2]/[3]), we evaluate different TEX86 calibrations and present the first integrated SST compilation for the Eocene (55 to 34 Ma). Although the available data are still sparse some geographic trends can now be resolved. In the high latitudes (>55°), there was substantial cooling during the Eocene (~6°C). Our compiled record also indicates tropical cooling of ~2.5°C during the same interval. Using an ensemble of climate model simulations that span the Eocene, our results indicate that only a small percentage (~10%) of the reconstructed temperature change can be ascribed to ocean gateway reorganization or paleogeographic change. Collectively, this indicates that atmospheric carbon dioxide (pCO2) was the likely driver of surface water cooling during the descent toward the icehouse.

  8. Mars Atmospheric Chemistry and Astrobiology Workshop Summary

    NASA Astrophysics Data System (ADS)

    Allen, M.; Wennberg, P.

    2002-09-01

    The Mars Atmospheric Chemistry and Astrobiology (MACA) Workshop was held on the California Institute of Technology campus December 17-18, 2001. The prime objective of the workshop was to consider whether extant life beneath the surface, if it exists, would be in contact with the atmosphere and introduce a detectable signature in the atmosphere. To answer this question, the workshop also explored how well we understood the abiotic chemistry of the current atmosphere and other drivers of atmospheric composition (volcanoes, surface-atmosphere interactions, escape). The conclusions from this workshop will be presented.

  9. Widening perspectives: the intellectual and social benefits of astrobiology (regardless of whether extraterrestrial life is discovered or not)

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.

    2018-01-01

    Astrobiology is usually defined as the study of the origin, evolution, distribution and future of life in the Universe. As such it is inherently interdisciplinary and cannot help but engender a worldview infused by cosmic and evolutionary perspectives. Both these attributes of the study of astrobiology are, and will increasingly prove to be, beneficial to society regardless of whether extraterrestrial life is discovered or not.

  10. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  11. Recent Aqueous Environments in Impact Craters and the Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Wynn-Williams, D. D.; Crawford, D. A.; Grin, E. A.

    2001-01-01

    Three cases of recent aqueous environments are surveyed at Mars Orbiting Camera (MOC) high-resolution in the E-Gorgonum, Newton and Hale craters and their astrobiological implications assessed. Additional information is contained in the original extended abstract.

  12. Astronomical cycles in the Serpukhovian-Moscovian (Carboniferous) marine sequence, South China and their implications for geochronology and icehouse dynamics

    NASA Astrophysics Data System (ADS)

    Fang, Qiang; Wu, Huaichun; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2018-05-01

    The Late Paleozoic Ice Age (ca. 335-260 Ma, LPIA) has long been considered as an analogy for the Cenozoic ice age since the Oligocene. The impact of astronomical forcing on the LPIA glaciation has been hampered due to the low-resolution (multi-million year scale) time framework. In the present study, high-resolution cyclostratigraphy based on magnetic susceptibility (MS), covering the Serpukhovian to late Moscovian icehouse climate, has been investigated in the Luokun section of South China. Power spectral analysis of the MS series reveals 3.44-4 m, 0.8-1.07 m, 0.3-0.32 m, and 0.17-0.19 m thick sedimentary cycles. Based on the available biostratigraphic constraints, calibrating the 3.44-4 m cycles to the 405 kyr eccentricity cycles indicates short eccentricity (136 and 100 kyr), short obliquity (34 kyr), and precession (19 and 15.9 kyr) orbital bands in addition to long eccentricity (405 kyr) band. We assigned the basal Serpukhovian and Moscovian stages in Luokun with the numerical ages from Geological Time Scale 2012 to construct two floating time scales ranging from 331.55 ± 0.5 Ma to 323.2 ± 0.5 Ma, and from 315.34 ± 0.35 Ma to 310.17 ± 0.35 Ma, respectively. The modulation of main obliquity (s4-s3 term) has a main periodicity of ∼1200 kyr. The modulation of ∼100 kyr eccentricity (g4-g3 term) shows a main periodicity of ∼2400 kyr with subordinate periodicities of ∼1620 and ∼1200 kyr for the Serpukhovian, and a main periodicity of ∼1600 kyr for the Moscovian. They may provide the geological evidence for a chaotic resonance associated with interactions between the orbits of Mars and the Earth in the Carboniferous. A duration of 7.68 ± 0.15 Myr was estimated for the Serpukhovian Stage. Eight higher accumulation rate events due to glacioeustatic drawdown were temporally constrained, and show close correspondence to far-field and near-field reconstructions of the LPIA glaciation. Glacioeustasy was paced with 405-kyr-long eccentricity and 1.2-Myr

  13. The International Journal of Astrobiology

    NASA Astrophysics Data System (ADS)

    Wynn-Williams, David D.

    2002-01-01

    The launch of a new journal is appropriately like a space mission. It is the result of a scientific need, the inspiration of a group of committed scientists and technologists, a series of draft proposals, an approved mission protocol, and a launch. Today is the launch day for a journal whose remit has only recently consolidated from diverse disciplines. Cambridge University Press has an international reputation for astronomy. To this we add extreme biology and its associated environmental research to integrate astrobiology as: 'the study of the origin, evolution, adaptation and distribution of past and present life in the Universe'. Astrobiology has three main themes: (1) Origin, evolution and limits of life on Earth; (2) Future of life, both on Earth and elsewhere; (3) Search for habitats, biomolecules and life in the Solar System and elsewhere. These fundamental concepts require the integration of various disciplines, including biology (especially microbiology), chemistry, geology, palaeontology, and the physics of atmospheres, planets and stars. We must also keep our minds wide open about the nature and limits of life. We can safely assume a carbon-based system within Solar Systems as we know them, but our concept of habitable zones expands yearly. We were taught that only the spores of certain bacilli could survive temperatures above the boiling point of water, and yet we now know that the deep-sea vent microbe Pyrolobus can survive an hour at 121 °C, which is the temperature used for sterilising medical instruments. We know of cyanobacteria which can not only live inside deep-frozen Antarctic rocks but also survive on roof-tops in Jerusalem at 80 °C. The bacterium Deinococcus radiodurans tolerates lethal doses of nuclear radiation, and cyanobacteria inside Antarctic desert sandstone receive so little moisture that their carbon turnover time (from its fixation by photosynthesis to its release as carbon dioxide during respiration) is 10,000 years. Life is

  14. Undergraduate Research at SETI in Astrobiology

    NASA Astrophysics Data System (ADS)

    Kress, Monika; Phillips, C.; DeVore, E.; Hubickyj, O.

    2012-05-01

    The SETI Institute and San Jose State University (SJSU) have begun a partnership (URSA: Undergraduate Research at the SETI Institute in Astrobiology) in which undergraduate science and engineering majors from SJSU participate in research at the SETI Institute during the academic year. We are currently in our second year of the three-year NASA-funded grant. The goal of this program is to expose future scientists, engineers and educators to the science of astrobiology and to NASA in general, and by so doing, to prepare them for the transition to their future career in the Silicon Valley or beyond. The URSA students are mentored by a SETI Institute scientist who conducts research at the SETI Institute headquarters or nearby at NASA Ames Research Center. The SETI Institute is a private, nonprofit organization dedicated to scientific research, education and public outreach. Its mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. SJSU is a large urban public university that serves the greater Silicon Valley area in California. Students at SJSU come from diverse ethnic, cultural and socioeconomic backgrounds. Many of them face financial pressures that force them to pursue part-time work. URSA students are paid to work for 10 hours/week during the academic year, and also participate in monthly group meetings where they practice their presentation skills and discuss future plans. We encourage underserved and underrepresented students, including women, minority, and those who are the first in their family to go to college, to apply to the URSA program and provide ongoing mentoring and support as needed. While preparing students for graduate school is not a primary goal, some of our students have gone on to MS or PhD programs or plan to do so. The URSA program is funded by NASA EPOESS.

  15. The Astrobiology Habitable Environments Database (AHED)

    NASA Astrophysics Data System (ADS)

    Lafuente, B.; Stone, N.; Downs, R. T.; Blake, D. F.; Bristow, T.; Fonda, M.; Pires, A.

    2015-12-01

    The Astrobiology Habitable Environments Database (AHED) is a central, high quality, long-term searchable repository for archiving and collaborative sharing of astrobiologically relevant data, including, morphological, textural and contextural images, chemical, biochemical, isotopic, sequencing, and mineralogical information. The aim of AHED is to foster long-term innovative research by supporting integration and analysis of diverse datasets in order to: 1) help understand and interpret planetary geology; 2) identify and characterize habitable environments and pre-biotic/biotic processes; 3) interpret returned data from present and past missions; 4) provide a citable database of NASA-funded published and unpublished data (after an agreed-upon embargo period). AHED uses the online open-source software "The Open Data Repository's Data Publisher" (ODR - http://www.opendatarepository.org) [1], which provides a user-friendly interface that research teams or individual scientists can use to design, populate and manage their own database according to the characteristics of their data and the need to share data with collaborators or the broader scientific community. This platform can be also used as a laboratory notebook. The database will have the capability to import and export in a variety of standard formats. Advanced graphics will be implemented including 3D graphing, multi-axis graphs, error bars, and similar scientific data functions together with advanced online tools for data analysis (e. g. the statistical package, R). A permissions system will be put in place so that as data are being actively collected and interpreted, they will remain proprietary. A citation system will allow research data to be used and appropriately referenced by other researchers after the data are made public. This project is supported by the Science-Enabling Research Activity (SERA) and NASA NNX11AP82A, Mars Science Laboratory Investigations. [1] Nate et al. (2015) AGU, submitted.

  16. Lunar and Planetary Science XXXV: Astrobiology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The presentations in this session are: 1. A Prototype Life Detection Chip 2. The Geology of Atlantis Basin, Mars, and Its Astrobiological Interest 3. Collecting Bacteria Together with Aerosols in the Martian Atmosphere by the FOELDIX Experimental Instrument Developed with a Nutrient Detector Pattern: Model Measurements of Effectivity 4. 2D and 3D X-ray Imaging of Microorganisms in Meteorites Using Complexity Analysis to Distinguish Field Images of Stromatoloids from Surrounding Rock Matrix in 3.45 Ga Strelley Pool Chert, Western Australia 4. Characterization of Two Isolates from Andean Lakes in Bolivia Short Time Scale Evolution of Microbiolites in Rapidly Receding Altiplanic Lakes: Learning How to Recognize Changing Signatures of Life 5. The Effect of Salts on Electrospray Ionization of Amino Acids in the Negative Mode 6. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence 7. Microbial D/H Fractionation in Extraterrestrial Materials: Application to Micrometeorites and Mars 8. Carbon Isotope Characteristics of Spring-fed Iron-precipitating Microbial Mats 9. Amino Acid Survival Under Ambient Martian Surface UV Lighting Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions 10. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods 11. Thermal Decomposition of Siderite-Pyrite Assemblages: Implications for Sulfide Mineralogy in Martian Meteorite ALH84001 Carbonate Globules 12. Determination of the Three-Dimensional Morphology of ALH84001 and Biogenic MV-1 Magnetite: Comparison of Results from Electron Tomography and Classical Transmission Electron Microscopy 13. On the Possibility of a Crypto-Biotic Crust on Mars Based on Northern and Southern Ringed Polar Dune Spots 14. Comparative Planetology of the Terrestrial Inner Planets: Implications for Astrobiology 15. A Possible Europa Exobiology 16. A Possible Biogeochemical Model for Titan

  17. Molecular Simulations in Astrobiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.

    2000-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. The most direct approach to this problem is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing energy and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following questions about these proteins: (1) How do small proteins self-organize into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides form membrane-spanning structures (e.g. channels)? (3) By what mechanisms do such structures perform their functions? The simulations are performed using the molecular dynamics method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated in real space while long-range forces are evaluated in reciprocal space, using a particle-mesh algorithm which is of order O(NInN). With a time step of 2 femtoseconds, problems occurring on multi-nanosecond time scales (10(exp 6)-10(exp 8) time steps) are accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude, which requires algorithmic improvements and codes scalable to a large number of processors. Work in this direction is in progress. Two series of simulations are discussed. In one series, it is shown that nonpolar peptides, disordered in water, translocate to the nonpolar interior of the membrane and fold into helical structures (see Figure). Once in the membrane, the peptides

  18. A possible first use of the word astrobiology?

    PubMed

    Briot, Danielle

    2012-12-01

    The word astrobiology was possibly first used in 1935, in an article published in a French popular science magazine. The author was Ary J. Sternfeld (1905-1980), a pioneer of astronautics who wrote numerous scientific books and papers. The article is remarkable because his portrayal of the concept is very similar to the way it is used today. Here I review the 1935 article and provide a brief history of Sternfeld's life, which was heavily influenced by the tragic events of 20(th) century history.

  19. Astrobiology Results from ILEWG EuroMoonMars Analogue Field Research

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We give an update on the astrobiology results from a series of field research campaigns (ILEWG EuroMoonMars) in the extreme environment of the Utah desert. These are relevant to prepare future lunar landers and polar sample return missions, interpret Moon-Mars data (eg SMART1, LRO, Mars Express, MRO, MER, MSL), study habitability and astrobiology in Moon-Mars environments, or to test human-robotic surface EVA or base operations. In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station near Hanksville Utah, a suite of instruments and techniques [0, 1, 2, 9-11] including sample collection, context imaging from re-mote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geo-chemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Results: Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [0-9] to new measurements from 2010-2013 campaigns relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. We acknowledge team members and supporting institutes: B.H. Foing (1, 2, 6), C. Stoker (3), P. Ehrenfreund (4, 5), I. Rammos (2), L. Rodrigues (2), A. Svendsen (2), D. Oltheten (2), I. Schlacht (2), K. Nebergall (6), M. Battler (6, 7), H

  20. Vanguard: A New Science Mission For Experimental Astrobiology

    NASA Astrophysics Data System (ADS)

    Ellery, A.; Wynn-Williams, D.; Edwards, H.; Dickensheets, D.; Welch, C.; Curley, A.

    As an alternative to technically and financially problemat ic sample return missions, a rover-mounted laser Raman spectrometer sensitive to biomolecules and their mineral substrata is a promising alternative in the search for evidence of former life on Mars. We presented a new remote in situ analysis package being designed for experimental astrobiology on terrestrial-type planetary surfaces. The science is based on the hypothesis that if life arose on Mars, the selective pressure of solar radiation would have led to the evolution of pigmented systems to harness the energy of sunlight and to protect cells from concurrent UV stress. Microbial communities would have therefore become stratified by the light gradient, and our remote system would penetrate the near-subsurface profile in a vertical transect of horizontal strata in ancient sediments (such as palaeolake beds). The system will include an extensive array of robotic support to translocate and deploy a Raman spectrometer detectors beneath the surface of Mars ­ it will comprise of a base station lander to support communications, a robotic micro-rover to permit well- separated triplicate profiles made by three ground-penetrating moles mounted in a vertical configuration. Each mole will deploy a tether carrying fibre optic cables coupling the Raman spectrometer onboard the rover and the side-scanning sensor head on the mole. The complete system has been named Vanguard, and it represents a close collaboration between a space robotics engineer (Ellery), an astrobiologist (Wynn-Williams), a molecular spectroscopist (Edwards), an opto-electronic technologist (Dickensheets), a spacecraft engineer (Welch) and a robotic vision specialist (Curley). The autonomy requirement for the Vanguard instrument requires that significant scientific competence is imparted to the instrument through an expert system to ensure that quick-look analysis is performed onboard in real-time as the mole penetrates beneath the surface. Onboard

  1. The Cuatro Ciénegas Basin in Coahuila, Mexico: An Astrobiological Precambrian Park

    PubMed Central

    Siefert, Janet L.; Escalante, Ana E.; Elser, James J.; Eguiarte, Luis E.

    2012-01-01

    Abstract The Cuatro Ciénegas Basin (CCB) is a rare oasis in the Chihuahuan Desert in the state of Coahuila, Mexico. It has a biological endemism similar to that of the Galapagos Islands, and its spring-fed ecosystems have very low nutrient content (nitrogen or phosphorous) and are dominated by diverse microbialites. Thus, it has proven to be a distinctive opportunity for the field of astrobiology, as the CCB can be seen as a proxy for an earlier time in Earth's history, in particular the late Precambrian, the biological frontier when prokaryotic life yielded at least partial dominance to eukaryotes and multicellular life. It is a kind of ecological time machine that provides abundant opportunities for collaborative investigations by geochemists, geologists, ecologists, and population biologists in the study of the evolutionary processes that structured Earth-based life, especially in the microbial realm. The CCB is an object of investigation for the identification of biosignatures of past and present biota that can be used in our search for extraterrestrial life. In this review, we summarize CCB research efforts that began with microbial ecology and population biology projects and have since been expanded into broader efforts that involve biogeochemistry, comparative genomics, and assessments of biosignatures. We also propose that, in the future, the CCB is sanctioned as a “Precambrian Park” for astrobiology. Key Words: Microbial mats—Stromatolites—Early Earth—Extremophilic microorganisms—Microbial ecology. Astrobiology 12, 641–647. PMID:22920514

  2. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    PubMed

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  3. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Dan Goldin, NASA's longest serving Administrator from 1992-2001 speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: ‚"How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?‚" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  4. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James Lovelock, Honorary Visiting Fellow of Green Templeton College, University of Oxford speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  5. Lunar and Planetary Science XXXV: Astrobiology: Analogs and Applications to the Search for Life

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Astrobiology: Analogs and Applications to the Search for Life" included the folowing reports:The Search for Life on Mars Using Macroscopically Visible Microbial Mats (Stromatolites) in 3.5/3.3 Ga Cherts from the Pilbara in Australia and Barberton in South Africa as Analogues; Life in a Mars Analog: Microbial Activity Associated with Carbonate Cemented Lava Breccias from NW Spitsbergen; Groundwater-fed Iron-rich Microbial Mats in a Freshwater Creek: Growth Cycles and Fossilization Potential of Microbial Features; Episodic Fossilization of Microorganisms on an Annual Timescale in an Anthropogenically Modified Natural Environment: Geochemical Controls and Implications for Astrobiology; Proterozoic Microfossils and Their Implications for Recognizing Life on Mars; Microbial Alteration of Volcanic Glass in Modern and Ancient Oceanic Crust as a Proxy for Studies of Extraterrestrial Material ; Olivine Alteration on Earth and Mars; Searching for an Acidic Aquifer in the R!o Tinto Basin. First Geobiology Results of MARTE Project; In-Field Testing of Life Detection Instruments and Protocols in a Mars Analogue Arctic Environment; Habitability of the Shallow Subsurface on Mars: Clues from the Meteorites; Mars Analog Rio Tinto Experiment (MARTE): 2003 Drilling Campaign to Search for a Subsurface Biosphere at Rio Tinto Spain; Characterization of the Organic Matter in an Archean Chert (Warrawoona, Australia); and The Solfatara Crater, Italy: Characterization of Hydrothermal Deposits, Biosignatures and Their Astrobiological Implication.

  6. STARLIFE - An International Campaign to Study the Role of Galactic Cosmic Radiation in Astrobiological Model Systems

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda

    2017-02-01

    In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms.

  7. Aliens are us. An innovative course in astrobiology

    NASA Astrophysics Data System (ADS)

    Oliveira, Carlos F.; Barufaldi, James P.

    2009-01-01

    We live in a scientific world; paradoxically, the scientific literacy of the population is minimal at best. Science is an ongoing process, a human endeavour; paradoxically, students tend to believe that science is a finished enterprise. Many non-science major students are not motivated in science classes; paradoxically, there is a public fascination with the possibility of life in the Universe, which is nowadays a scientific endeavour. An astrobiology course was developed at the Center for Science and Mathematics Education at The University of Texas at Austin to address these paradoxes and includes the following objectives: (a) to improve scientific literacy; (b) to demonstrate that science is a work in progress; (c) to enhance the inherent interdisciplinary aspect of science; (d) to demonstrate that science is embedded in society and relates with several social sciences; (e) to improve the content knowledge about the nature of science; (f) to illustrate how engaging learning science can be; and (g) to draw from the intrinsic motivation already incorporated in the general population. The course has been offered, taught and revised for the past three years. The informal course student feedback has been very positive and encouraging. The purpose of this paper is to provide a general overview of the course. In addition, the course's background, content, themes and mode of delivery are outlined, discussed and analysed in this paper. This paper subscribes to an educational philosophy that focuses on the multidisciplinary nature of science and includes critical thinking-based teaching strategies using the dynamic discipline of astrobiology.

  8. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Lynn Margulis, Distinguished University Professor in the Department of Geosciences at the University of Massachusetts-Amherst speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  9. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James L. Green, Director for Planetary Science in NASA's Science Mission Directorate, helps kick off the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  10. Life Out There: An Astrobiological Multimedia Experience for the Digital Planetarium

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Grinspoon, D.

    2013-04-01

    Planetariums have a long history of experimentation with audio and visuals to create new multimedia experiences. We report on a series of innovative experiences in the Gates Planetarium at the Denver Museum of Nature & Science in 2009-2011 combining live performances of music and navigation through scientific visualizations. The Life Out There productions featured a story showcasing astrobiology concepts at scales ranging from galactic to molecular, and told using VJ-ing of immersive visualizations and musical performances from the House Band to the Universe. Funded by the NASA Astrobiology Institute's JPL-Titan Team, these hour-long shows were broken into four separate themed musical movements, with an improvisatory mix of music, dome visuals, and spoken science narrative which resulted in no two performances being exactly alike. Post-performance dissemination is continuing via a recorded version of the performance available as a DVD and online streaming video. Written evaluations from visitors who were present at the live shows reveal high satisfaction, while one of the Life Out There concerts was used to inaugurate a new evening program to draw in a younger audience demographic to DMNS.

  11. EXPOSE-E: an ESA astrobiology mission 1.5 years in space.

    PubMed

    Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, André; Panitz, Corinna; Horneck, Gerda; von Heise-Rotenburg, Ralf; Hoppenbrouwers, Tom; Willnecker, Rainer; Baglioni, Pietro; Demets, René; Dettmann, Jan; Reitz, Guenther

    2012-05-01

    The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110 nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10 s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.

  12. Extraterrestrial Life as the Great Analogy, Two Centuries Ago and in Modern Astrobiology

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T.

    Mainstream ideas on the existence of extraterrestrial life in the late 18th and early 19th centuries are examined, with a focus on William Herschel, one of the greatest astronomers of all time. Herschel viewed all of the planets and moons of our solar system as inhabited, and gave logical arguments that even the Sun, and by extension all of the stars, was a giant planet fit for habitation by intelligent beings. The importance for astrobiology both two centuries ago and now of the type of inductive reasoning called "analogy" is emphasized. Analogy is an imperfect tool, but given that we have only one known case of life and of a life-bearing planet, it is very difficult to make progress in astrobiology without resorting to analogy, in particular between known life and possible other life. We cannot overcome the "N = 1 Problem" without resorting to this "Great Analogy" to guide our research.

  13. The Effect of High-Dose Ionizing Radiation on the Isolated Photobiont of the Astrobiological Model Lichen Circinaria gyrosa

    NASA Astrophysics Data System (ADS)

    Meeßen, Joachim; Backhaus, Theresa; Brandt, Annette; Raguse, Marina; Böttger, Ute; de Vera, Jean-Pierre; de la Torre, Rosa

    2017-02-01

    Lichen symbioses between fungi and algae represent successful life strategies to colonize the most extreme terrestrial habitats. Consequently, space exposure and simulation experiments have demonstrated lichens' high capacity for survival, and thus, they have become models in astrobiological research with which to discern the limits and limitations of terrestrial life. In a series of ground-based irradiation experiments, the STARLIFE campaign investigated the resistance of astrobiological model organisms to galactic cosmic radiation, which is one of the lethal stressors of extraterrestrial environments. Since previous studies have identified that the alga is the more sensitive lichen symbiont, we chose the isolated photobiont Trebouxia sp. of the astrobiological model Circinaria gyrosa as a subject in the campaign. Therein, γ radiation was used to exemplify the deleterious effects of low linear energy transfer (LET) ionizing radiation at extremely high doses up to 113 kGy in the context of astrobiology. The effects were analyzed by chlorophyll a fluorescence of photosystem II (PSII), cultivation assays, live/dead staining and confocal laser scanning microscopy (CLSM), and Raman laser spectroscopy (RLS). The results demonstrate dose-dependent impairment of photosynthesis, the cessation of cell proliferation, cellular damage, a decrease in metabolic activity, and degradation of photosynthetic pigments. While previous investigations on other extraterrestrial stressors have demonstrated a high potential of resistance, results of this study reveal the limits of photobiont resistance to ionizing radiation and characterize γ radiation-induced damages. This study also supports parallel STARLIFE studies on the lichens Circinaria gyrosa and Xanthoria elegans, both of which harbor a Trebouxia sp. photobiont.

  14. Vibrational Spectroscopy and Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  15. Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi’s paradox or the “Great Silence” problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are γ-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the “Great Silence”, it is not supportive of the “contact pessimist” position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  16. Astrobiology, Mars Exploration and Lassen Volcanic National Park

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2015-01-01

    The search for evidence of life beyond Earth illustrates how the charters of NASA and the National Park Service share common ground. The mission of NPS is to preserve unimpaired the natural and cultural resources of the National Park System for the enjoyment, education and inspiration of this and future generations. NASA's Astrobiology program seeks to understand the origins, evolution and distribution of life in the universe, and it abides by the principles of planetary stewardship, public outreach, and education. We cannot subject planetary exploration destinations to Earthly biological contamination both for ethical reasons and to preserve their scientific value for astrobiology. We respond to the public's interest in the mysteries of life and the cosmos by honoring their desire to participate in the process of discovery. We involve youth in order to motivate career choices in science and technology and to perpetuate space exploration. The search for evidence of past life on Mars illustrates how the missions of NASA and NPS can become synergistic. Volcanic activity occurs on all rocky planets in our Solar System and beyond, and it frequently interacts with water to create hydrothermal systems. On Earth these systems are oases for microbial life. The Mars Exploration Rover Spirit has found evidence of extinct hydrothermal system in Gusev crater, Mars. Lassen Volcanic National Park provides a pristine laboratory for investigating how microorganisms can both thrive and leave evidence of their former presence in hydrothermal systems. NASA scientists, NPS interpretation personnel and teachers can collaborate on field-oriented programs that enhance Mars mission planning, engage students and the public in science and technology, and emphasize the ethics of responsible exploration.

  17. Astrobiological phase transition: towards resolution of Fermi's paradox.

    PubMed

    Cirković, Milan M; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi's paradox or the "Great Silence" problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are gamma-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the "Great Silence", it is not supportive of the "contact pessimist" position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  18. Life in the Cosmic Context. An Astrobiology Course as an Experiment in Transdisciplinarity

    NASA Astrophysics Data System (ADS)

    Friaça, A. C. S.; Janot Pacheco, E.

    2014-10-01

    ``Life in the Cosmic Context" (AGA0316) is the astrobiology course offered by University of São Paulo to undergraduate students of science and humanities majors. The variety of background of the population attending AGA0316 and the broad scope of the addresssed issues makes this course a laboratory of transdisciplinarity.

  19. Question 2: why an astrobiological study of titan will help us understand the origin of life.

    PubMed

    Raulin, Francois

    2007-10-01

    For understanding the origin(s) of life on Earth it is essential to search for and study extraterrestrial environments where some of the processes which participated in the emergence of Life on our planet are still occurring. This is one of the goals of astrobiology. In that frame, the study of extraterrestrial organic matter is essential and is certainly not of limited interest regarding prebiotic molecular evolution. Titan, the largest satellite of Saturn and the only planetary body with an atmosphere similar to that of the Earth is one of the places of prime interest for these astrobiological questions. It presents many analogies with the primitive Earth, and is a prebiotic-like laboratory at the planetary scale, where a complex organic chemistry in is currently going on.

  20. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Stephen Price from Lockheed Martin Space Systems Company kicks off the ‚Äö√Ñ√∫Seeking Signs of Life‚Äö√Ñ√π Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  1. Collaboration as a Strategy to Transform the Impact of EPO Efforts in the New York Center for Astrobiology

    NASA Astrophysics Data System (ADS)

    Svirsky, A.; Rogers, K. L.; Meissner, M.; Busby, G.; Roberge, W.

    2014-12-01

    The New York Center for Astrobiology (NYCA) EPO effort is a collaboration combining expertise in evaluation and assessment of STEM educational modules with disciplinary expertise in astrobiology. In practice, the NYCA partners with external experts in professional development, informal education and evaluation to assist in developing and implementing certain programs of the NYCA EPO activities. Two specific program initiatives of the NYCA EPO effort offer excellent examples of programs with strong science content knowledge as well as using effective tools to address the NSF impact categories. These are the ExxonMobil Bernard Harris Summer Science Camp (EMBHSSC, in conjunction with RPI's STEM Pipeline Initiative) and the Astrobiology Teachers Academy (ATA). The EMBHSSC for middle school students focuses on NASA astrobiology initiatives around the "Quest for Life" theme. The Camp has a comprehensive evaluation component and uses pre-and post- assessment of student knowledge and interest in STEM. Recent data suggest that every student has shown a measurable gain in these areas. The ATA is a weeklong summer intensive professional development program for P-12 STEM teachers that combines discipline scientists in the NYCA with an external evaluation organization, the Association for the Cooperative Advancement of Science and Education (ACASE). The goal is for teachers to develop a new learning module for a course they teach that uses astrobiology as a content focus to engage students. The Academy has scientists collaborating with teachers in this effort, providing content and assistance in designing instructional activities. Assessments are woven into the fabric of the work in a few ways: 1. There is a purposeful focus on assessment as part of the learning module, and the content of the ATA; 2. ACASE offers teachers a tool for tracking their students' attainment of the learning goals identified in their learning module; 3. There are daily evaluations of the teachers

  2. Science Applications of a Multispectral Microscopic Imager for the Astrobiological Exploration of Mars

    PubMed Central

    Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging

  3. Selecting A Landing Site Of Astrobiological Interest For Mars Landers And Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Wills, Danielle; Monaghan, E.; Foing, B.

    2008-09-01

    The landscape of Mars, despite its apparent hostility to life, is riddled with geological and mineralogical signs of past or present hydrological activity. As such, it is a key target for astrobiological exploration. The aim of this work is to combine data and studies to select top priority landing locations for in-situ landers and sample return missions to Mars. We report in particular on science and technical criteria and our data analysis for sites of astrobiological interest. This includes information from previous missions (such as Mars Express, MGS, Odyssey, MRO and MER rovers) on mineralogical composition, geomorphology, evidence from past water history from imaging and spectroscopic data, and existence of in-situ prior information from landers and rovers (concerning evidence for volatiles, organics and habitability conditions). We discuss key mission objectives, and consider the accessibility of chosen locations. We describe what additional measurements are needed, and outline the technical and scientific operations requirements of in-situ landers and sample return missions to Mars.

  4. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  5. Greenhouse-icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton.

    PubMed

    Crampton, James S; Cooper, Roger A; Sadler, Peter M; Foote, Michael

    2016-02-09

    Two distinct regimes of extinction dynamic are present in the major marine zooplankton group, the graptolites, during the Ordovician and Silurian periods (486-418 Ma). In conditions of "background" extinction, which dominated in the Ordovician, taxonomic evolutionary rates were relatively low and the probability of extinction was highest among newly evolved species ("background extinction mode"). A sharp change in extinction regime in the Late Ordovician marked the onset of repeated severe spikes in the extinction rate curve; evolutionary turnover increased greatly in the Silurian, and the extinction mode changed to include extinction that was independent of species age ("high-extinction mode"). This change coincides with a change in global climate, from greenhouse to icehouse conditions. During the most extreme episode of extinction, the Late Ordovician Mass Extinction, old species were selectively removed ("mass extinction mode"). Our analysis indicates that selective regimes in the Paleozoic ocean plankton switched rapidly (generally in <0.5 My) from one mode to another in response to environmental change, even when restoration of the full ecosystem was much slower (several million years). The patterns observed are not a simple consequence of geographic range effects or of taxonomic changes from Ordovician to Silurian. Our results suggest that the dominant primary controls on extinction throughout the lifespan of this clade were abiotic (environmental), probably mediated by the microphytoplankton.

  6. Greenhouse−icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton

    PubMed Central

    Crampton, James S.; Cooper, Roger A.; Sadler, Peter M.; Foote, Michael

    2016-01-01

    Two distinct regimes of extinction dynamic are present in the major marine zooplankton group, the graptolites, during the Ordovician and Silurian periods (486−418 Ma). In conditions of “background” extinction, which dominated in the Ordovician, taxonomic evolutionary rates were relatively low and the probability of extinction was highest among newly evolved species (“background extinction mode”). A sharp change in extinction regime in the Late Ordovician marked the onset of repeated severe spikes in the extinction rate curve; evolutionary turnover increased greatly in the Silurian, and the extinction mode changed to include extinction that was independent of species age (“high-extinction mode”). This change coincides with a change in global climate, from greenhouse to icehouse conditions. During the most extreme episode of extinction, the Late Ordovician Mass Extinction, old species were selectively removed (“mass extinction mode”). Our analysis indicates that selective regimes in the Paleozoic ocean plankton switched rapidly (generally in <0.5 My) from one mode to another in response to environmental change, even when restoration of the full ecosystem was much slower (several million years). The patterns observed are not a simple consequence of geographic range effects or of taxonomic changes from Ordovician to Silurian. Our results suggest that the dominant primary controls on extinction throughout the lifespan of this clade were abiotic (environmental), probably mediated by the microphytoplankton. PMID:26811471

  7. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    NASA Technical Reports Server (NTRS)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  8. Molecular Simulations in Astrobiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.; Vincenzi, Donald L. (Technical Monitor)

    2001-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. In the absence of any record of the earliest ancestors of contemporary cells, protocells, the most direct way to test our understanding of their characteristics is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs of molecules that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing and storing energy, and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following, questions about these proteins: (1) How do small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides aggregate to form membrane-spannin(y structures (e.g., channels)? (3) By what mechanisms do such aggregates perform their functions? The simulations are performed using the molecular dynamics (MD) method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated directly in real space while long-range forces are evaluated in reciprocal space, usually using a particle-mesh algorithm which is of order O(NlnN). Currently, a time step of 2 femtoseconds is typically used, thereby making studies of problems occurring on multi-nanosecond time scales (10(exp 6) - 10(exp 8) time steps) accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude. Such an extension requires both algorithmic improvements and codes scalable to a large number of parallel

  9. The Aouda.X space suit simulator and its applications to astrobiology.

    PubMed

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.

  10. From Extremophiles to Star Trek, The Use of Synthetic Biology in Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Fujishima, Kosuke; Lima, Ivan Paulino; Gentry, Diana; Phan, Samson; Navarette, Jesica; Palmer, Jesse; Burnier, Andre

    2012-01-01

    Synthetic biology – the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes – has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as bio-mining, human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  11. Astrobiological and Geological Implications of Convective Transport in Icy Outer Planet Satellites

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert T.; Zhong, Shi-Jie; Barr, Amy

    2005-01-01

    The oceans of large icy outer planet satellites are prime targets in the search for extraterrestrial life in our solar system. The goal of our project has been to develop models of ice convection in order to understand convection as an astrobiologically relevant transport mechanism within icy satellites, especially Europa. These models provide valuable constraints on modes of surface deformation and thus the implications of satellite surface geology for astrobiology, and for planetary protection. Over the term of this project, significant progress has been made in three areas: (1) the initiation of convection in large icy satellites, which we find probably requires tidal heating; (2) the relationship of surface features on Europa to internal ice convection, including the likely role of low-melting-temperature impurities; and (3) the effectiveness of convection as an agent of icy satellite surface-ocean material exchange, which seems most plausible if tidal heating, compositional buoyancy, and solid-state convection work in combination. Descriptions of associated publications include: 3 published papers (including contributions to 1 review chapter), 1 manuscript in revision, 1 manuscript in preparation (currently being completed under separate funding), and 1 published popular article. A myriad of conference abstracts have also been published, and only those from the past year are listed.

  12. Microorganisms in extreme environments with a view to astrobiology in the outer solar system

    NASA Astrophysics Data System (ADS)

    Seckbach, Joseph; Chela-Flores, Julian

    2015-09-01

    We review the various manifestations of the evolution of life in extreme environments. We review those aspects of extremophiles that are most relevant for astrobiology. We are aware that geothermal energy triggering sources of heat in oceanic environments are not unique to our planet, a fact that was exposed by the Voyager mission images of volcanic activity on Io, the Jovian moon. Such activity exceeded by far what was known form terrestrial geology. The science of astrobiology has considered the possible presence of several moon oceans in the vicinity of both giant gas and icy planets. These watery environments include, not only Europa (strongly suggested by data from the Galileo mission), but the Voyager flybys exposed, not only the unusual geothermal activity on Io, but also the possible presence of subsurface oceans and some geothermal activity on the Neptune's moon Triton. More recently, calculations of Hussmann and coworkers with available data do not exclude that even Uranus moons may be candidates for bearing subsurface oceans. These possibilities invite a challenge that we gladly welcome, of preliminary discussions of habitability of extremophiles in so far novel environments for the science of astrobiology. Nevertheless, such exploration is currently believed to be feasible with the new generations of missions suggested for the time window of 2030 - 2040, or even earlier. We are envisaging, not only the current exploration of the moons of Saturn, but in the coming years we expect to go beyond to Uranus and Neptune to include dwarf planets and trans-neptunian worlds. Consequently, it is necessary to begin questioning whether the Europa-like conditions for the evolution of microorganisms are repeatable elsewhere. At present three new missions are in the process of being formulated, including the selection of payloads that will be necessary for the exploration of the various so far unexplored moons.

  13. Astrobiology: An astronomer's perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, Edwin A.

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the processmore » of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.« less

  14. Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Kotler, Julia Michelle; Billi, Daniela; Cockell, Charles; Demets, René; Ehrenfreund, Pascale; Elsaesser, Andreas; d'Hendecourt, Louis; van Loon, Jack J. W. A.; Martins, Zita; Onofri, Silvano; Quinn, Richard C.; Rabbow, Elke; Rettberg, Petra; Ricco, Antonio J.; Slenzka, Klaus; de la Torre, Rosa; de Vera, Jean-Pierre; Westall, Frances; Carrasco, Nathalie; Fresneau, Aurélien; Kawaguchi, Yuko; Kebukawa, Yoko; Nguyen, Dara; Poch, Olivier; Saiagh, Kafila; Stalport, Fabien; Yamagishi, Akihiko; Yano, Hajime; Klamm, Benjamin A.

    2017-07-01

    The space environment is regularly used for experiments addressing astrobiology research goals. The specific conditions prevailing in Earth orbit and beyond, notably the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure platforms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format.

  15. Micro-XRF : Elemental Analysis for In Situ Geology and Astrobiology Exploration

    NASA Technical Reports Server (NTRS)

    Allwood, Abigail; Hodyss, Robert; Wade, Lawrence

    2012-01-01

    The ability to make close-up measurements of rock chemistry is one of the most fundamental tools for astrobiological exploration of Mars and other rocky bodies of the solar system. When conducting surface-based exploration, lithochemical measurements provide critical data that enable interpretation of the local geology, which in turn is vital for determining habitability and searching for evidence of life. The value of lithochemical measurements for geological interpretations has been repeatedly demonstrated with virtually every landed Mars mission over the past four decades.

  16. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  17. A concept for NASA's Mars 2016 astrobiology field laboratory.

    PubMed

    Beegle, Luther W; Wilson, Michael G; Abilleira, Fernando; Jordan, James F; Wilson, Gregory R

    2007-08-01

    The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.

  18. Astrobiological benefits of human space exploration.

    PubMed

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  19. The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2017-01-01

    The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.

  20. Planetary and Space Simulation Facilities PSI at DLR for Astrobiology

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.

    2008-09-01

    Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.

  1. Heterocyclic Anions of Astrobiological Interest

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Demarais, Nicholas J.; Yang, Zhibo; Snow, Theodore P.; Bierbaum, Veronica M.

    2013-12-01

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N2O, O2, CO, OCS, CO2, and SO2) and other reactive species (CS2, CH3Cl, (CH3)3CCl, and (CH3)3CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  2. Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Allen, C.C.; Oehler, D.Z.; Baker, D.M.

    2009-01-01

    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.

  3. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, Eva

    2014-08-01

    The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the

  4. Astrobiology and Venus exploration

    NASA Astrophysics Data System (ADS)

    Grinspoon, David H.; Bullock, Mark A.

    For hundreds of years prior to the space age, Venus was considered among the most likely homes for extraterrestrial life. Since planetary exploration began, Venus has not been considered a promising target for Astrobiological exploration. However, Venus should be central to such an exploration program for several reasons. At present Venus is the only other Earth-sized terrestrial planet that we know of, and certainly the only one we will have the opportunity to explore in the foreseeable future. Understanding the divergence of Earth and Venus is central to understanding the limits of habitability in the inner regions of habitable zones around solar-type stars. Thus Venus presents us with a unique opportunity for putting the bulk properties, evolution and ongoing geochemical processes of Earth in a wider context. Many geological and meteorological processes otherwise active only on Earth at present are currently active on Venus. Active volcanism most likely affects the climate and chemical equilibrium state of the atmosphere and surface, and maintains the global cloud cover. Further, if we think beyond the specifics of a particular chemical system required to build complexity and heredity, we can ask what general properties a planet must possess in order to be considered a possible candidate for life. The answers might include an atmosphere with signs of flagrant chemical disequilibrium and active, internally driven cycling of volatile elements between the surface, atmosphere and interior. At present, the two planets we know of which possess these characteristics are Earth and Venus. Venus almost surely once had warm, habitable oceans. The evaporation of these oceans, and subsequent escape of hydrogen, most likely resulted in an oxygenated atmosphere. The duration of this phase is poorly understood, but during this time the terrestrial planets were not isolated. Rather, due to frequent impact transport, they represented a continuous environment for early microbial

  5. The Co-Evolution of Life & Environment, and the Astrobiological Quest

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.

    2016-12-01

    Physicochemical and environmental conditions determine the range of possible biogeochemistries on planets and moons. Yet, the Earth shows that as soon as life took hold, it modified its environment, from the mineralogy of sediments to the global composition of the atmosphere. In their evolution, life and environment are intertwined and cannot be separated. This coevolution is one of the most fundamental concepts in astrobiology, one that is central to our understanding of what, where, and how to search for life beyond Earth. In that quest, Mars will be the first destination for planetary missions seeking biosignatures. Both Earth and Mars had shared traits during the Archean/Noachian period. However, for Mars, the impact of a different environmental evolution on the development of life and the preservation of biosignatures remains unclear. In addition to an irreversible global climate change, Mars always had greater environmental variability than Earth due to its astronomical characteristics. Biological evolution, if any, would have had to proceed in this distinct context. If parallels can be drawn, the major metabolisms supporting Earth's biogeochemical cycles had evolved early. Understanding the succession of physical and environmental processes and their combination in the first 700 million years of Mars history is, therefore, essential to envision possible metabolisms, adaptation strategies life would have required to survive changes, and the biosignatures that could still be preserved today. Ultimately, the astrobiological significance of exploring Mars is also about teaching us invaluable lessons about the uniqueness of each planetary experiment, regardless of similarities. Beyond the Solar System, this notion can be expanded to the search for earth-like exoplanets, and for what it means to search for life as we know it, simple or complex.

  6. Report on a NASA astrobiology institute-funded workshop without walls: stellar stoichiometry.

    PubMed

    Desch, Steven J; Young, Patrick A; Anbar, Ariel D; Hinkel, Natalie; Pagano, Michael; Truitt, Amanda; Turnbull, Margaret

    2014-04-01

    We report on the NASA Astrobiology Institute-funded Workshop Without Walls entitled "Stellar Stoichiometry," hosted by the "Follow the Elements" team at Arizona State University in April 2013. We describe several innovative practices we adopted that made effective use of the Workshop Without Walls videoconferencing format, including use of information technologies, assignment of scientific tasks before the workshop, and placement of graduate students in positions of authority. A companion article will describe the scientific results arising from the workshop. Our intention here is to suggest best practices for future Workshops Without Walls.

  7. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis; Bregman, Jesse; Ennico, Kimberly; Greene, Thomas; Hudgins, Douglas; Strecker, Donald; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be described.

  8. Recognition of Fossil Prokaryotes in Cretaceous Methane Seep Carbonates: Relevance to Astrobiology

    NASA Astrophysics Data System (ADS)

    Shapiro, Russell Scott

    2004-12-01

    Recovery of prokaryotic body fossils from methane seep carbonates such as those of the Cretaceous Tepee Buttes of Colorado serves as a model for sampling in future astrobiological missions. The fossils, found primarily at the interface between paragenetic fabrics, suggest a sharp physicochemical gradient. Evidence of these microbial fossils occurs at a variety of scales. In the field, microbialite is found as meter-scale thrombolitic zones and centimeterscale stromatolitic crusts lining voids inferred to be the sites of ancient methane seepage. Petrographic fabrics suggestive of microbialite include indistinct peloids (0.1-1 mm in diameter) and crusts of authigenic micrite. Primary evidence obtained from scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy analysis comprises pinnate bacteria (0.3 µm in diameter and 1-1.5 µm long), sheaths (2-4 µm in diameter), coccoids (0.5-1 µm in diameter, up to 40 per cluster), and the presence of framboidal pyrite (6-8 µm in diameter). These results are in agreement with studies of other ancient and modern seeps and suggest a morphological conservatism of microbial form that can be incorporated into studies of extraterrestrial environments where it is presumed that reduced gases drive the metabolic activity of prokaryote-like organisms. Target areas that could serve as conduits for reduced gas seeps include tectonic or impact-driven faulting, zones of cryosphere melting, or other disruptions in crustal coherence. Ancient seeps, preserved as localized anomalous evaporite deposits in the sedimentary cover, could be detected by remote sensing. Astrobiology 4, 438-449.

  9. Astrobiological Effects of Stellar Radiation in Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred; Gurdemir, Levent; Guinan, Edward F.; Kurucz, Robert L.

    2006-10-01

    The centerpiece of all life on Earth is carbon-based biochemistry. Previous scientific research has suggested that biochemistry based on carbon may also play a decisive role in extraterrestrial life forms, i.e., alien life outside of Earth, if existent. In the following, we explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of energetic stellar radiation, such as UV-C in the wavelength band between 200 and 290 nm. We focus on main-sequence stars akin to the Sun, but of hotter (F-type stars) and cooler (K- and M-type stars) surface temperature. Emphasis is placed on investigating the radiative environment in stellar habitable zones (HZs). Stellar habitable zones have an important relevance in astrobiology because they constitute circumstellar regions in which a planet of suitable size can have surface temperatures for water to exist in liquid form.

  10. An Astrobiological View on Sustainable Life

    NASA Astrophysics Data System (ADS)

    Naganuma, Takeshi

    2009-10-01

    Life on a global biosphere basis is substantiated in the form of organics and organisms, and defined as the intermediate forms (briefly expressed as CH2O) hovering between the reduced (CH4, methane) and (CO2, carbon dioxide) ends, different from the classical definition of life as a complex organization maintaining ordered structure and information. Both definitions consider sustenance of life meant as protection of life against chaos through an input of external energy. The CH2O-life connection is maintained as long as the supply of H and O lasts, which is in turn are provided by the splitting of the water molecule H2O. Water is split by electricity, as well-known from school-level experiments, and by solar radiation and geothermal heat on a global scale. In other words, the Sun's radiation and the Earth's heat as well as radioactivity split water to supply H and O for continued existence of life on the Earth. These photochemical, radiochemical and geothermal processes have influences on the evolution and current composition of the Earth's atmosphere, compared with those of Venus and Mars, and influences on the planetary climatology. This view of life may be applicable to the "search-for-life in space" and to sustainability assessment of astrobiological habitats.

  11. Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research I. Morphological and Anatomical Characteristics

    NASA Astrophysics Data System (ADS)

    Meeßen, J.; Sánchez, F. J.; Brandt, A.; Balzer, E.-M.; de la Torre, R.; Sancho, L. G.; de Vera, J.-P.; Ott, S.

    2013-06-01

    Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species— Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum—used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research.

  12. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Allamandola, Louis; Bregman, Jesse D.; Cohen, Martin; Cruikshank, Dale; Greene, Thomas P.; Hudgins, Douglas; Kwok, Sun; Lord, Steven D.; Madden, Suzanne; McCreight, Craig R.; Roellig, Thomas L.; Strecker, Donald W.; Tielens, A. G. G. M.; Werner, Michael W.

    2003-03-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace &Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1.5 year mission lifetime.

  13. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; hide

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  14. Prospects for nasa s astrobiology mission Leonid Mac and ground-based observations during the upcoming 2002 Leonid storms

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Schmidt, G.

    Meteors represent a unique pathway from organic matter in space to prebiotic molecules on Earth. In the process, the organic material is changed in ways that are not easily simulated in the laboratory. An essential step to knowing what molecules may have been delivered from space at the time of the origin of life is understanding the physical conditions in the meteor phenomenon and to trace the fate of organic compounds in real-live meteors. This was the objective of the NASA and USAF sponsored Leonid Multi-Instrument Aircraft Campaign, wth successful missionsi during the strong Leonid showers of November 1998, 1999 and 2001. The research aircraft offer an international team of observers the opportunity to be above clouds and scattered Moon light and to be at the right place, at the right time. One further campaign is being prepared for a mission on November 19, 2002, when the Leonid meteor shower is expected to peak twice in succession, at rates of around ZHR = 4000/hr and 5000/hr, which will be best seen over western Europe and the America's, respectively. This presentation serves to encourage ground-based observations for observers at those locations. To that purpose, a summary will be given of the results to date, with emphasis on the progress made during the spectacular storms of 2001. We will briefly outline the new meteor model that has evolved and our new understanding of persistent emissions and the fate of meteoric matter after deposition. The new data have answered some questions, but also raised numerous issues that need to be addressed further. Finally, past Leonid storms have proven ideal to involve the public in astrobiology and provided a trilling experience, examples of which will be given. The 2002 Leonid storms are expected to be the last until 2099.

  15. Astrobiology - The New Synthesis

    NASA Astrophysics Data System (ADS)

    Sik, A.; Simon, T.

    Background In connection with the complex planetology-education in Hungary [1] we have compiled an Astrobiology coursebook - as a base of its teaching in universities and perhaps in secondary schools as well. We tried to collect and assemble in a logical and thematical order the scientific breakthroughs of the last years, that made possible the fast improvement of astrobiology. The followings are a kind of summary of these. Introduction - The ultimate science Astrobiology is a young science, that search for the possibility, forms and places of extraterrestrial life. But it is not SETI, because do not search for intelligent life, just for living organisms, so SETI is a part of astrobiology. and an extremely important statement: we can search for life-forms that similar to terrestrial life in physiology so we can recognize it as life. Astrobiology is one of the most dynamical-developing sciences of the 21st century. To determine its boundaries is difficult because the complex nature of it: astrobiology melt into itself lot of other sciences, like a kind of ultimate science. The fundamental questions are very simple [2]: When, where and how converted the organic matter into life?; How does life evolve in the Universe?; Has it appeared on other planets?; How does it spread in time and space?; and What is the future of terrestrial life? However, trying to find the answers is quite difficult. So an astrobiologist has to be aware of the basics of astronomy, space research, earth and planetary sciences, and life sciences (mainly ecology, genetics, molecular and evolution biology). But it is not enough - the newest results of these at least as important as the basic knowledge. Part I. - Astro 1. Exoplanets 1995 was a particular year in astronomy: we have found the first planet out of the Solar System. Since that time the discovery of exoplanets progress fast: nowdays more than 80 examples are known and just 6 years passed [3]. The detailed analysis of these distant objects

  16. An Astrobiological Experiment to Explore the Habitability of Tidally Locked M-Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Angerhausen, Daniel; Sapers, Haley; Simoncini, Eugenio; Lutz, Stefanie; Alexandre, Marcelo da Rosa; Galante, Douglas

    2014-04-01

    We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation.

  17. A Survey of Educational Activities and Resources Relevant to Mars and Astrobiology

    NASA Astrophysics Data System (ADS)

    Manning, Heidi L. K.; Bleacher, L.

    2009-09-01

    Sample Analysis at Mars (SAM) is a suite of instruments that will be onboard the Mars Science Laboratory (MSL) rover, which was recently named Curiosity in a student-naming contest. SAM's three instruments are devoted to studying the chemical composition of the Martian surface and atmosphere and to understanding the planet's past habitability and potential habitability today. Curiosity is scheduled to launch in 2011, however many Education and Public Outreach (EPO) activities supported by the MSL mission are well underway. The SAM EPO plan includes elements of both formal and informal education in addition to outreach, such as incorporating data into the Mars Exploration Student Data Teams program, developing a museum exhibit and associated educational materials about SAM's research, and writing articles about the MSL mission and SAM's findings for ChemMatters magazine. One of the EPO projects currently being carried out by members of the SAM team is training secondary education teachers in Mars geology, astrobiology, and SAM science goals via professional development workshops. Several of the recent Mars missions have had extensive EPO components to them. As a result, numerous educational activities and resources have already been developed relating to understanding Mars and astrobiology. We have conducted a survey of these activities and resources previously created and have compiled those relevant and useful for our SAM teacher training workshops. Resources and activities have been modified as needed. In addition, we have identified areas in which no educational activities exist and are developing new curriculum specifically to address these gaps. This work is funded by the MN Space Grant Consortium and NASA's Science Mission Directorate.

  18. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.

    PubMed

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.

  19. Automated payload and instruments for astrobiology research developed and studied by German medium-sized space industry in cooperation with European academia

    NASA Astrophysics Data System (ADS)

    Schulte, Wolfgang; Hofer, Stefan; Hofmann, Peter; Thiele, Hans; von Heise-Rotenburg, Ralf; Toporski, Jan; Rettberg, Petra

    2007-06-01

    For more than a decade Kayser-Threde, a medium-sized enterprise of the German space industry, has been involved in astrobiology research in partnership with a variety of scientific institutes from all over Europe. Previous projects include exobiology research platforms in low Earth orbit on retrievable carriers and onboard the Space Station. More recently, exobiology payloads for in situ experimentation on Mars have been studied by Kayser-Threde under ESA contracts, specifically the ExoMars Pasteur Payload. These studies included work on a sample preparation and distribution systems for Martian rock/regolith samples, instrument concepts such as Raman spectroscopy and a Life Marker Chip, advanced microscope systems as well as robotic tools for astrobiology missions. The status of the funded technical studies and major results are presented. The reported industrial work was funded by ESA and the German Aerospace Center (DLR).

  20. Global sea-level change during the next 10,000 years: the end of an icehouse?

    NASA Astrophysics Data System (ADS)

    Van Breedam, Jonas; Huybrechts, Philippe; Goelzer, Heiko; Loutre, Marie-France; Fichefet, Thierry

    2015-04-01

    scenario (and in case methane hydrate starts to destabilize), the model uncertainty does not exclude melting of the entire Antarctic ice sheet after 10,000 years. This would mark the end of the present icehouse, which has existed for about 34 Myr, and would raise global sea-level by up to 70 m from all contributions combined.

  1. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications

    NASA Astrophysics Data System (ADS)

    Gómez Gómez, José María; Medina, Jesús; Rull, Fernando

    2016-07-01

    Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.

  2. 2016 Summer Series - Penelope Boston - Subsurface Astrobiology: Cave Habitats on Earth, Mars and Beyond

    NASA Image and Video Library

    2016-08-09

    In our quest to explore other planets, we only have our own planet as an analogue to the environments we may find life. By exploring extreme environments on Earth, we can model conditions that may be present on other celestial bodies and select locations to explore for signatures of life. Dr. Penelope Boston, the new director of the NASA Astrobiology Institute at Ames, will describe her work in some of Earth’s most diverse caves and how they inform future exploration of Mars and the search for life in our solar system.

  3. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  4. Tumbleweed: Wind-propelled Surficial Measurements for Astrobiology and Planetary Science

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Behar, A. E.; Jones, J. A.; Carsey, F.; Coleman, M.; Bearman, G.; Buehler, M.; Boston, P. J.; McKay, C. P.; Rothschild, L.

    2004-01-01

    Tumbleweed is a wind-propelled long-range vehicle based on well-developed and tested technology, instrumented to perform surveys Mars analog environments for habitability and suitable for a variety of missions on Mars. Tumbleweeds are light-weight and relatively inexpensive, making it very attractive for multiple deployments or piggy-backing on a larger mission. Tumbleweeds with rigid structures are also being developed for similar applications. Modeling and testing have shown that a 6 meter diameter Tumbleweed is capable of climbing 25 hills, traveling over 1 meter diameter boulders, and ranging over a thousand kilometers. Tumbleweeds have a potential payload capability of about 10 kilograms with approximately 10-20 Watts of power. Stopping for science investigations can also be accomplished using partial deflation or other braking mechanisms. Surveys for Astrobiology and other applications of tumbleweeds are shown.

  5. The AstroBiology Explorer (ABE) MIDEX Mission: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2002-01-01

    The AstroBiology Explorer (ABE) mission is one of four selected for Phase A Concept Study in NASA's current call for MIDEX class missions. ABE is a cooled space telescope equipped with spectrographs covering the 2.5-20 micron spectral range. The ABE mission is devoted to the detection and identification of organic and related molecular species in space. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace.

  6. Life in ice: implications to astrobiology

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Pikuta, Elena V.

    2009-08-01

    During previous research expeditions to Siberia, Alaska and Antarctica, it was observed that glaciers and ice wedges contained bacterial cells that became motile as soon as the ice melted. This phenomenon of live bacteria in ice was first documented for microbes in ancient ice cores from Vostok, Antarctica. The first validly published species of Pleistocene bacteria alive on Earth today was Carnobacterium pleistocenium. This extremophile had remained for 32,000 years, encased in ice recently exposed in the Fox Tunnel of Alaska. These frozen bacteria began to swim as soon as the ice was thawed. Dark field microscopy studies revealed that large numbers of bacteria exhibited motility as soon as glacial ice was melted during our recent Expeditions to Alaska and Antarctica led to the conclusion that microbial life in ice was not a rare phenomenon. The ability of bacteria to remain alive while frozen in ice for long periods of time is of great significance to Astrobiology. In this paper, we describe the recent observations and advance the hypothesis that life in ice provides valuable clues to how we can more easily search for evidence of life on the Polar Caps of Mars, comets and other icy bodies of our Solar System. It is suggested that cryopanspermia may have played a far more important role in Origin of Life on Earth and the distribution of Life throughout the Cosmos and than previously thought possible.

  7. Preliminary investigation of proton and helium ion radiation effects on fluorescent dyes for use in astrobiology applications.

    PubMed

    Thompson, Daniel P; Wilson, Paul K; Sims, Mark R; Cullen, David C; Holt, John M C; Parker, David J; Smith, Mike D

    2006-04-15

    The Specific Molecular Identification of Life Experiment (SMILE) instrument (Sims et al. Planet. Space Science 2005, 53, 781-791) proposes to use specific molecular receptors for the detection of organic biomarkers on future astrobiology missions (e.g., to Mars). Such receptors will be used in assays with fluorescently labeled assay reagents. A key uncertainty of this approach is whether the fluorescent labels used in the system will survive exposure to levels of solar and galactic particle radiation encountered during a flight to Mars. Therefore, two fluorescent dyes (fluorescein and Alexa Fluor 633) have been exposed to low-energy proton and alpha radiation with total fluences comparable or exceeding that expected during an unshielded cruise to Mars. The results of these initial experiments are presented, which show that both dyes retain their fluorescent properties after irradiation. No significant alteration in the absorption and emission wavelengths or the quantum yields of the dyes with either radiation exposure was found. These results suggest other structurally similar fluorophores will likely retain their fluorescent properties after exposure to similar levels of proton and alpha radiation. However, more extensive radiation fluorophore testing is needed before their suitability for astrobiology missions to Mars can be fully confirmed.

  8. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

  9. Detecting and Identifying Organic Molecules in Space - The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  10. Detecting and Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 microns (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  11. Life and the Universe: From Astrochemistry to Astrobiology

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2013-01-01

    Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the cosmos. In cold molecular clouds, the birthplace of planets and stars, interstellar atoms and molecules freeze onto extremely cold dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to be important sources of complex organic materials delivered to habitable planets (including the primordial Earth) and their composition may be related to the origin of life. This talk will focus on the chemical evolution of these cosmic materials and their relevance to astrobiology.

  12. Selecting a landing site of astrobiological interest for Mars landers and sample return missions

    NASA Astrophysics Data System (ADS)

    Wills, D.; Monaghan, E.; Foing, B. H.

    2008-09-01

    Abstract The landscape of Mars, despite its apparent hostility to life, is riddled with geological and mineralogical signs of past or present hydrological activity. As such, it is a key target for astrobiological exploration. There are, however, many factors that will need to be considered when planning in-situ and sample return missions, if these missions are indeed to adequately exploit the science potential of this intriguing world. These will not only take into account the environment of the landing site in terms of topography and ambient atmosphere etc., but also the geochemical make up of the surface regolith, evidence of hydrological processes and various other considerations. The knowledge base in all aspects of Martian science is being added to on an almost daily basis, and the aim of this work is to combine data and studies to nominate top priority landing locations for the search for evidence of life on Mars. We report in particular on science and technical criteria and our data analysis for sites of astrobiological interest. This includes information from previous missions (such as Mars Express, MGS, Odyssey, MRO and MER rovers) on mineralogical composition, geomorphology, evidence from past water history from imaging and spectroscopic data, and existence of in-situ prior information from landers and rovers (concerning evidences for volatiles, organics and habitability conditions). We discuss key mission objectives, and assess what sort of sites should be targeted in the light of these. We consider the accessibility of chosen locations, taking into account difficulties presented in accessing the polar regions and other regions of high altitude. We describe what additional measurements are needed, and outline the technical and scientific operations requirements of such in-situ landers and sample return missions. Approach In the first step of this study we focus on the science objectives of in-situ and sample return missions to Mars. We investigate the

  13. First Light from Extrasolar Planets and Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake

    2005-01-01

    The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.

  14. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  15. Physics of Granular Materials: Investigations in Support of Astrobiology

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    2002-01-01

    This publication list is submitted as a summary of the work conducted under Cooperative Agreement 1120. The goal of the 1120 research was to study granular materials within a planetary, astrophysical, and astrobiological context. This involved research on the physical, mechanical and electrostatic properties of granular systems, as well as the examination of these materials with atomic force microscopy and x-ray analysis. Instruments for analyzing said materials in planetary environments were developed, including the MECA (Mars Environment Compatibility Assessment) experiment for the MSP '01 lander, the ECHOS/MATADOR experiment for the MSP '03 lander, an ISRU experiment for the '03 lander, and MiniLEAP technology. Flight experiments for microgravity (Space Station and Shuttle) have also been developed for the study of granular materials. As expressed in the publications, work on 1120 encompassed laboratory research, theoretical modeling, field experiments, and flight experiments: a series of successful new models were developed for understanding the behavior of triboelectrostatically charged granular masses, and 4 separate instruments were selected for space flight. No inventions or patents were generated by the research under this Agreement.

  16. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars

    USGS Publications Warehouse

    Nunez, Jorge; Farmer, Jack; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.

  17. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    PubMed

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.

  18. Cosmic evolution: the context for astrobiology and its cultural implications

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2012-10-01

    Astrobiology must be seen in the context of cosmic evolution, the 13.7 billion-year master narrative of the universe. The idea of an evolving universe dates back only to the 19th century, and became a guiding principle for astronomical research only in the second half of the 20th century. The modern synthesis in evolutionary biology hastened the acceptance of the idea in its cosmic setting, as did the confirmation of the Big Bang theory for the origin of the universe. NASA programmes such as Origins incorporated it as a guiding principle. Cosmic evolution encompasses physical, biological and cultural evolution, and may result in a physical, biological or postbiological universe, each with its own implications for long-term human destiny, and each imbuing the meaning of life with different values. It has the status of an increasingly accepted worldview that is beginning to have a profound effect not only in science but also in religion and philosophy.

  19. Volcanic Rocks As Targets For Astrobiology Missions

    NASA Astrophysics Data System (ADS)

    Banerjee, N.

    2010-12-01

    Almost two decades of study highlight the importance of terrestrial subaqueous volcanic rocks as microbial habitats, particularly in glass produced by the quenching of basaltic lava upon contact with water. On Earth, microbes rapidly begin colonizing glassy surfaces along fractures and cracks exposed to water. Microbial colonization of basaltic glass leads to enhanced alteration through production of characteristic granular and/or tubular bioalteration textures. Infilling of formerly hollow alteration textures by minerals enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggest the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend back ~3.5 billion years and is widespread in modern oceanic crust and its ancient metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.

  20. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal

  1. Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Irwin, Louis N.; Irwin, Troy

    2002-11-01

    The lower cloud level of the Venusian atmosphere is an environmental niche that could harbor microbial life. Particularly the mode 3 particles that are enriched in this atmospheric layer are of astrobiological interest. We propose here a sample collection mission to the atmosphere of Venus and evaluate three mission options. The first option is a Stardust-type spacecraft used for sample collection, the second option is a Rotating Probe Tether System, and the third option is a Parachute Drop - Balloon Floatation System. Given the current state of technology, the result of our preliminary analysis is that the Parachute Drop - Balloon Floatation Mission is the most feasible and practical option.

  2. Establishment of a Rearing System of the Extremotolerant Tardigrade Ramazzottius varieornatus: A New Model Animal for Astrobiology

    NASA Astrophysics Data System (ADS)

    Horikawa, Daiki D.; Kunieda, Takekazu; Abe, Wataru; Watanabe, Masahiko; Nakahara, Yuichi; Yukuhiro, Fumiko; Sakashita, Tetsuya; Hamada, Nobuyuki; Wada, Seiichi; Funayama, Tomoo; Katagiri, Chihiro; Kobayashi, Yasuhiko; Higashi, Seigo

    2008-06-01

    Studies on the ability of multicellular organisms to tolerate specific environmental extremes are relatively rare compared to those of unicellular microorganisms in extreme environments. Tardigrades are extremotolerant animals that can enter an ametabolic dry state called anhydrobiosis and have high tolerance to a variety of extreme environmental conditions, particularly while in anhydrobiosis. Although tardigrades have been expected to be a potential model animal for astrobiological studies due to their excellent anhydrobiotic and extremotolerant abilities, few studies of tolerance with cultured tardigrades have been reported, possibly due to the absence of a model species that can be easily maintained under rearing conditions. We report the successful rearing of the herbivorous tardigrade, Ramazzottius varieornatus, by supplying the green alga Chlorella vulgaris as food. The life span was 35 ± 16.4 d, deposited eggs required 5.7 ± 1.1 d to hatch, and animals began to deposit eggs 9 d after hatching. The reared individuals of this species had an anhydrobiotic capacity throughout their life cycle in egg, juvenile, and adult stages. Furthermore, the reared adults in an anhydrobiotic state were tolerant of temperatures of 90°C and -196°C, and exposure to 99.8% acetonitrile or irradiation with 4000 Gy 4He ions. Based on their life history traits and tolerance to extreme stresses, R. varieornatus may be a suitable model for astrobiological studies of multicellular organisms.

  3. Astrobiology, space and the future age of discovery.

    PubMed

    Blumberg, Baruch S

    2011-02-13

    Astrobiology is the study of the origins, evolution, distribution and future of life in the Universe, and specifically seeks to understand the origin of life and to test the hypothesis that life exists elsewhere than on Earth. There is a general mathematics, physics and chemistry; that is, scientific laws that obtain on Earth also do so elsewhere. Is there a general biology? Is the Universe life-rich or is Earth an isolated island of biology? Exploration in the Age of Enlightenment required the collection of data in unexplored regions and the use of induction and empiricism to derive models and natural laws. The current search for extra-terrestrial life has a similar goal, but with a much greater amount of data and with computers to help with management, correlations, pattern recognition and analysis. There are 60 active space missions, many of them aiding in the search for life. There is not a universally accepted definition of life, but there are a series of characteristics that can aid in the identification of life elsewhere. The study of locations on Earth with similarities to early Mars and other space objects could provide a model that can be used in the search for extra-terrestrial life.

  4. Preliminary global paleogeographic maps through the Greenhouse-Icehouse transition: forcing of the Drake Passage and Asian Monsoons.

    NASA Astrophysics Data System (ADS)

    Poblete, Fernando; Dupont-Nivet, Guillaume; Licht, Alexis; van Hinsbergen, Douwe; Roperch, Pierrick; Guillocheau, Francois; Baby, Guillaume; Baatsen, Michiel

    2017-04-01

    Paleogeographic maps are essential for understanding Earth dynamics. They provide the necessary boundary conditions for climate and geodynamic modeling, surface processes and biotic interactions. In particular, the opening and closing of ocean gateways and the growth of major mountain belts are major drivers of climate changes and biotic interchange. However, the timing and spatial extent of such events are highly controversial and regularly questioned by new data. As part of the ERC "MAGIC" project focusing on Asian Monsoons during the Icehouse to Greenhouse transition we thus produced a set of worldwide Cenozoic paleogeographic maps in the period time between 60 to 20 Ma, with a set of boundary conditions specific to the India-Asia collision zone and the Drake Passage. The creation of a paleogeographic map followed a rigorous and reproductively methodology that integrates paleobathymetric, paleoshoreline and paleotopographic data into a coherent plate tectonic model using the open source software GPlates. (1) We use the model provided by Seton et al. (2012) as a first order tectonic model modified to integrate the full restoration of five regions: the Andes, the Scotia Arc, Africa, The Mediterranean Sea and the Tibet-Himalayan collision zone. (2) The paleobathymetry was provided by Müller et al. (2008) using age-depth relationships and assuming symmetric ridge spreading. (3) Paleoshoreline maps were modified according to the fossil database from fossilworks.org and the geological record and were used to represent the boundary between terrestrial and marine paleo-environments. (4) To reconstruct paleoelevations, the most controversial task, we compiled a wide range of data including stable isotope, leaf physiognomy, and thermochronology combined with regional fossil and geological records (tectonic setting) and geomorphological data. Finally, we use the open source GMT software and a set of masks to modify the current Earth relief model (ETOPO) according to the

  5. The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars.

    PubMed

    Fairén, Alberto G; Dohm, James M; Rodríguez, J Alexis P; Uceda, Esther R; Kargel, Jeffrey; Soare, Richard; Cleaves, H James; Oehler, Dorothy; Schulze-Makuch, Dirk; Essefi, Elhoucine; Banks, Maria E; Komatsu, Goro; Fink, Wolfgang; Robbins, Stuart; Yan, Jianguo; Miyamoto, Hideaki; Maruyama, Shigenori; Baker, Victor R

    2016-02-01

    At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows.

  6. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  7. Enhancing a Person, Enhancing a Civilization: A Research Program at the Intersection of Bioethics, Future Studies, and Astrobiology.

    PubMed

    Ćirković, Milan M

    2017-07-01

    There are manifold intriguing issues located within largely unexplored borderlands of bioethics, future studies (including global risk analysis), and astrobiology. Human enhancement has for quite some time been among the foci of bioethical debates, but the same cannot be said about its global, transgenerational, and even cosmological consequences. In recent years, discussions of posthuman and, in general terms, postbiological civilization(s) have slowly gained a measure of academic respect, in parallel with the renewed interest in the entire field of future studies and the great strides made in understanding of the origin and evolution of life and intelligence in their widest, cosmic context. These developments promise much deeper synergic answers to questions regarding the long-term future of enhancement: how far can it go? Is human enhancement a further step toward building a true postbiological civilization? Should we actively participate and help shape this process? Is the future of humanity "typical" in the same Copernican sense as our location in space and time is typical in the galaxy, and if so, can we derive important insights about the evolutionary pathways of postbiological evolution from astrobiological and Search for ExtraTerrestrial Intelligence (SETI) studies? These and similar questions could be understood as parts of a possible unifying research program attempting to connect cultural and moral evolution with what we know and understand about their cosmological and biological counterparts.

  8. Astrobiology outreach and the nature of science: the role of creativity.

    PubMed

    Fergusson, Jennifer; Oliver, Carol; Walter, Malcolm R

    2012-12-01

    There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research-related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science.

  9. On the formation of polyacetylenes and cyanopolyacetylenes in Titan's atmosphere and their role in astrobiology.

    PubMed

    Kaiser, Ralf I; Mebel, Alexander M

    2012-08-21

    This tutorial review compiles recent experimental and theoretical studies on the formation of polyacetylenes (H(C≡C)(n)H) and cyanopolyacetylenes (H(C≡C)(n)CN) together with their methyl-substituted counterparts (CH(3)(C≡C)(n)H, CH(3)(C≡C)(n)CN) as probed under single collision conditions in crossed beam studies via the elementary reactions of ethynyl (CCH) and cyano radicals (CN) with unsaturated hydrocarbons. The role of these key reaction classes in the chemical evolution of Titan's orange-brownish haze layers is also discussed. We further comment on astrobiological implications of our findings with respect to proto-Earth and present a brief outlook on future research directions.

  10. Raman spectroscopic analysis of arctic nodules: relevance to the astrobiological exploration of Mars.

    PubMed

    Jorge-Villar, Susana E; Edwards, Howell G M; Benning, Liane G

    2011-11-01

    The discovery of small, spherical nodules termed 'blueberries' in Gusev Crater on Mars, by the NASA rover Opportunity has given rise to much debate on account of their interesting and novel morphology. A terrestrial analogue in the form of spherical nodules of similar size and morphology has been analysed using Raman spectroscopy; the mineralogical composition has been determined and evidence found for the biological colonisation of these nodules from the spectral signatures of cyanobacterial protective biochemical residues such as scytonemin, carotenoids, phycocyanins and xanthophylls. This is an important result for the recognition of future sites for the planned astrobiological exploration of planetary surfaces using remote robotic instrumentation in the search for extinct and extant life biosignatures and for the expansion of putative terrestrial Mars analogue geological niches and morphologies.

  11. The Formation of Complex Organic Compounds in Astrophysical Ices and their Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2015-01-01

    Ices in astrophysical environments are generally dominated by very simple molecules like H2O, CH3OH, CH4, NH3, CO, CO2, etc, although they likely contain PAHs as well. These molecules, particularly H2O, are of direct interest to astrobiology in-and-of themselves since they represent some of the main carriers of the biogenic elements C, H, O, and N. In addition, these compounds are present in the dense interstellar clouds in which new stars and planetary systems are formed and may play a large role in the delivery of volatiles and organics to the surfaces of new planets. However, these molecules are all far simpler than the more complex organic compounds found in living systems.

  12. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    PubMed Central

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon K.-M. R.

    2015-01-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens. PMID:26703739

  13. The O/OREOS mission—Astrobiology in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Landis, D.; Luzzi, E.; Ly, D.; Mai, N.; Minelli, G.; McIntyre, M.; Neumann, M.; Parra, M.; Piccini, M.; Rasay, R.; Ricks, R.; Schooley, A.; Stackpole, E.; Timucin, L.; Yost, B.; Young, A.

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small-Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72°), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cm3) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA's scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  14. Astrobiological Implications of Titan Tholin in Methane Lakes

    NASA Astrophysics Data System (ADS)

    Khare, Bishun N.; McKay, C. P.; McPherson, S.; Cruikshank, D.; Nna-Mvondo, D.; Sekine, Y.

    2010-10-01

    We report here on our ongoing research in the Laboratory for Planetary Studies at NASA Ames Research Center dedicated to determine the degree of solubility of Titan tholin in the methane-ethane lakes. Our work is also directed toward confirming the presence of any astrobiologically significant molecules via hydrolysis and pyrolysis of a simulated lake sample. Our previous work conducted at Cornell University and subsequently in the Laboratory for Planetary Studies at NASA Ames Research Center has established that Titan tholin produces amino acids (Khare et al. Icarus 1986) on hydrolysis, and many compounds including adenine on pyrolysis (Khare et al. Adv. Space Res. 1984). Also, our previous work by Thompson et al. (Icarus 1991) has clearly indicated that when energy is supplied to Titan's atmospheric composition (methane and nitrogen), tholin results from hundreds of contemporary compounds, including highly reactive compounds such as azides and isocyanides. Cassini showed that photolysis of methane produces benzene and many polycyclic aromatic hydrocarbons, along with compounds with very high molecular weights (up to 10000 amu), resulting from the photolytic reactions of CH4 with nitrogen. These heavy aerosols, termed "tholins” by Sagan and Khare (Nature 1979), are also synthesized when Titan intercepts charged particles from the magnetosphere of Saturn. Tholins resulting from both of these syntheses eventually descend to the surface of Titan, where some quantity collects in the methane-ethane lakes. This research is supported by a grant from Planetary Atmospheres.

  15. An Ultrasonic Sampler and Sensor Platform for In-Situ Astrobiological Exploration

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoaz E.; Bao, X.; Chang, Z.; Sherrit, S.

    2003-01-01

    The search for existing or past life in the Universe is one of the most important objectives of NASA's mission. In support of this objective, ultrasonic based mechanisms are currently being developed at JPL to allow probing and sampling rocks as well as perform as a sensor platform for in-situ astrobiological analysis. The technology is based on the novel Ultrasonic/Sonic Driller/Corer (USDC), which requires low axial force, thereby overcoming one of the major limitations of planetary sampling in low gravity using conventional drills. The USDC was demonstrated to: 1) drill ice and various rocks including granite, diorite, basalt and limestone, 2) not require bit sharpening, and 3) operate at high and low temperatures. The capabilities that are being investigated including probing the ground to select sampling sites, collecting various forms of samples, and hosting sensors for measuring chemical/physical properties. A series of modifications of the USDC basic configuration were implemented leading an ultrasonic abrasion tool (URAT), Ultrasonic Gopher for deep Drilling, and the lab-on-a-drill.

  16. Using Astrobiology case studies to bring science decision making into the classroom: Mars sample return, exobiology and SETI

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    As citizens and decision makers of the future, today's students need to understand the nature of science and the implications of scientific discoveries and activities in a broad societal context. Astrobiology provides an opportunity to introduce students to real world decision-making involving cutting edge, multidisciplinary research topics that involve Earth, the solar system and beyond. Although textbooks and curricular materials may take years to develop, teachers can easily bring the latest astrobiological discoveries and hypotheses into the classroom in the form of case studies to complement science classes. For example, using basic biological, geological and chemical information from Earth and other planets, students can discuss the same questions that experts consider when planning a Mars Sample Return mission. How would you recognize extraterrestrial life? What would be the impact of bringing martian life to Earth? How should martian samples be handled and tested to determine whether they pose hazards to Earth's biota and ecosystems? If truly martian life exists, what are the implications for future human missions or colonies on the planet? What are the ethical and societal implications of discovering extraterrestrial life, whether in the solar system or beyond? What difference world it make if the extraterrestrial life is microbial and simple vs. intelligent and advanced? By integrating basic science concepts, up-to-date research findings, and information about laws, societal concerns, and public decision making, students can experience first-hand the kind of questions and challenges we're likely to face in the years ahead.

  17. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Boston, Penelope Jane

    2016-01-01

    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  18. Circinaria gyrosa, a new astrobiological model system for studying the effects of heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Martín, María Luisa; Moeller, Ralf; De la Torre Noetzel, Rosa; Raguse, M. Marina

    Up to date, most astrobiological experiments performed on space have been carried out on board of Earth-orbiting spacecrafts (e.g., Foton satellites), or on board of human-tended spacecrafts, (space shuttles and space stations). Organisms included in these experiments have been exposed to harsh space conditions: vacuum, doses of UV and ionizing radiation as well as extreme temperature fluctuations. Space radiation that arrived on these organisms is related with different sources: (e.g. solar particle events, galactic cosmic rays and electromagnetic radiation) [1]. More information on biological effects of cosmic radiation is needed to understand the possible risks for biological systems exposed to space conditions and to broaden our knowledge on the limits of terrestrial life. This study is focused on Circinaria gyrosa (from Aspicilia fruticulosa, ren. see Sohrabi, M., 2012), a vagrant lichen species collected at the steppic highlands of Central Spain. C. gyrosa. has been previously used in various space experiments, e.g., LITHOPANSPERMIA experiment, BIOPAN-6, FOTON M3, 2007, and in ground-based laboratory studies [2]. For example, after intensive UV-C exposure (7.2 x 107J/m2), C. gyrosa showed the highest PS-II activity of all lichens species tested [3]. Based on this high resistance to UV radiation C. gyrosa has been included in the next EXPOSE-R2 ISS experiment called “BIOMEX” (Biology and Mars-Experiment), in which different biological systems will be exposed to space and Martian conditions for nearly one and a half year. Here, we will present our first results of C.gyrosa, which have been obtained in frame of the STARLIFE project, an intercomparison project testing the effects of space-relevant ionizing radiation, i.e., heavy ions and X-rays, on different astrobiological model systems. For C. gyrosa we tested the organism metabolism through pulse amplitude modulated (PAM) fluorescence analysis prior and after the each irradiation experiment. This new data

  19. A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach.

    PubMed

    Foucher, Frédéric; Hickman-Lewis, Keyron; Westall, Frances; Brack, André

    2017-10-26

    In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System.

  20. Astrobiology as a tool for getting high school students interested in science

    NASA Astrophysics Data System (ADS)

    Van der Meer, B. W.; Alletto, James J.; Bryant, Dudley; Carini, Mike; Elliott, Larry; Gelderman, Richard; Mason, Wayne; McDaniel, Kerrie; McGruder, Charles H.; Rinehart, Claire; Tyler, Rico; Walker, Linda

    2000-12-01

    A workshop was held (10/99) for high school students and teachers on astrobiology. NASA provided support through an IDEAS grant. Out of 63 qualified applicants, 29 were accepted: 22 students (11 minorities) and 7 teachers. The worship was held on 2 successive weekends. Activities included: culturing microbes from human skin, discussing 'what is life?', building and using a 2-inch refractive telescope and a van-Leeuwenhoek- type microscope (each participant built and kept them), listening to lectures by Dr. Richard Gelderman on detecting extra solar planets and by Dr. Richard Hoover on life in extreme environments. Other activities included: collecting samples and isolating micro-organisms from the lost river cave, studying microbial life from extreme environments in the laboratory, using the internet as a research tool and debating the logistics and feasibility of a lunar colony. Written evaluations of the workshop led to the following conclusions: 48% of the students considered a possible career in the biological and/or astrophysical sciences, and half of these stated they were spurred on by the workshop itself.

  1. A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach

    PubMed Central

    Westall, Frances; Brack, André

    2017-01-01

    In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System. PMID:29072614

  2. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Vincenzi, Donald (Technical Monitor)

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR studies (telescopic and laboratory) have demonstrated that much of the carbon in the interstellar medium (ISM) is in complex organic species of a variety of types, but the distribution, abundance, and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEAST mission concept designed to conduct IR spectroscopic observations to detect and identify these materials to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. Systematic studies include the observation of planetary nebulae and stellar outflows, protostellar objects, Solar System Objects, and galaxies, and multiple lines of sight through dense molecular clouds and the diffuse ISM. ABE will also search for evidence of D enrichment in complex molecules in all these environments. The mission is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cryogenic cross-dispersed spectrographs that share a single common slit. The 3 spectrometers each measure single spectral octaves (2.5-5, 5-10, 10-20 microns) and together cover the entire 2.5 - 20 micron region simultaneously. The spectrometers use state-of-the-art 1024x1024 pixel detectors, with a single InSb array for the 2.5-5 micron region and two Si:As arrays for the 5-10 and 10-20 micron regions. The spectral resolution is wavelength dependent but is greater than 2000 across the entire spectral range. ABE would operate in a heliocentric, Earth drift-away orbit and is designed to take maximum advantage of this environment for cooling, thermal stability, and mission lifetime. ABE would have a core science mission lasting approximately 1.5 years.

  3. Automating X-ray Fluorescence Analysis for Rapid Astrobiology Surveys.

    PubMed

    Thompson, David R; Flannery, David T; Lanka, Ravi; Allwood, Abigail C; Bue, Brian D; Clark, Benton C; Elam, W Timothy; Estlin, Tara A; Hodyss, Robert P; Hurowitz, Joel A; Liu, Yang; Wade, Lawrence A

    2015-11-01

    A new generation of planetary rover instruments, such as PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman Luminescence for Organics and Chemicals) selected for the Mars 2020 mission rover payload, aim to map mineralogical and elemental composition in situ at microscopic scales. These instruments will produce large spectral cubes with thousands of channels acquired over thousands of spatial locations, a large potential science yield limited mainly by the time required to acquire a measurement after placement. A secondary bottleneck also faces mission planners after downlink; analysts must interpret the complex data products quickly to inform tactical planning for the next command cycle. This study demonstrates operational approaches to overcome these bottlenecks by specialized early-stage science data processing. Onboard, simple real-time systems can perform a basic compositional assessment, recognizing specific features of interest and optimizing sensor integration time to characterize anomalies. On the ground, statistically motivated visualization can make raw uncalibrated data products more interpretable for tactical decision making. Techniques such as manifold dimensionality reduction can help operators comprehend large databases at a glance, identifying trends and anomalies in data. These onboard and ground-side analyses can complement a quantitative interpretation. We evaluate system performance for the case study of PIXL, an X-ray fluorescence spectrometer. Experiments on three representative samples demonstrate improved methods for onboard and ground-side automation and illustrate new astrobiological science capabilities unavailable in previous planetary instruments. Dimensionality reduction-Planetary science-Visualization.

  4. Carbon molecules in space: from astrochemistry to astrobiology.

    PubMed

    Ehrenfreund, Pascale; Sephton, Mark A

    2006-01-01

    How complex carbonaceous molecules in space are, what their abundance is and on what timescales they form are crucial questions within cosmochemistry. Despite the large heterogeneity of galactic and interstellar regions the organic chemistry in the universe seems to follow common pathways. The largest fraction of carbon in the universe is incorporated into aromatic molecules (gaseous polycyclic aromatic hydrocarbon as well as solid macromolecular aromatic structures). Macromolecular carbon constitutes more than half of the interstellar carbon, approximately 80% of the carbon in meteorites, and is likely to be present in comets. Molecules of high astrobiological relevance such as N-heterocycles, amino acids and pre-sugars have all been identified in trace quantities (ppb) in extracts of carbonaceous meteorites. Their presence in inter- and circumstellar regions is either unknown or contentious. In any event such fragile species are easily destroyed by UV radiation, shocks and thermal processing and are unlikely to survive incorporation into Solar System material without some degradation. The more refractory material, in particular macromolecular carbon may retain an interstellar heritage more faithfully. We present laboratory measurements on the photostability of organic compounds and discuss their survival in regions with elevated UV radiation. We also show recent observations of diffuse interstellar bands indicating the presence of fullerenes. We investigate the link between the carbon chemistry in interstellar space and in the Solar System by analyzing the carbonaceous fraction of meteorites and by reviewing stable isotopic data. It also seems evident that both volatile and refractory material from carbonaceous meteoritic has been substantially altered owing to thermal and aqueous processing within the Solar System.

  5. Astrobiology of Antarctic ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Doran, P. T.; Fritsen, C. H.

    2005-12-01

    Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in

  6. Astrobiological studies with extremely halophilic Archaea

    NASA Astrophysics Data System (ADS)

    Fendrihan, S.; Lotter, H. Stan

    2007-08-01

    Haloarcula sp. to the space environment. Adv Space Res. 22: 327-334. 3. Ellery A., Wynn-Williams D., Parnell J., Edwards H.G.M., Dickensheets D. (2004) The role of Raman spectroscopy as an astrobiological tool in the exploration of Mars, J. Raman Spectrosc. 35: 441-457.

  7. Density Functional Theory Study of Cyanoetheneselenol: A Molecule of Astrobiological Interest

    NASA Astrophysics Data System (ADS)

    Surajbali, P.; Ramanah, D. Kodi; Rhyman, L.; Alswaidan, I. A.; Fun, H.-K.; Somanah, R.; Ramasami, P.

    2015-12-01

    The interstellar medium has a rich chemistry which involves a wide variety of molecules. Of particular interest are molecules that have a link to prebiotic chemistry which hold the key to understanding of our origins. On the basis of suggestions that selenium may have been involved in the origin and evolution of life, we have studied the selenium analogue of cyanoethenethiol, namely the novel cyanoetheneselenol. Cyanoetheneselenol exhibits conformational and geometrical isomerism. This theoretical work deals with the study of four forms of cyanoetheneselenol in terms of their structural, spectroscopic and thermodynamic parameters. All computations were performed using density functional theory method with the B3LYP functional and the Pople basis set, 6-311 + G(d,p), for all atoms. The relative stability of the four isomers of cyanoetheneselenol was obtained and interpreted. The infrared spectra were generated and assignment of the normal modes of vibration was performed. Probable regions of detection, proposed on the basis of parameters obtained from this study for the four isomers, include comets, the molecular cloud: Sagittarius B2(N), and planetary atmospheres. The molecular and spectroscopic parameters should be useful for future identification of the astrobiological molecule cyanoetheneselenol and the development of the Square Kilometre Array.

  8. Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments

    NASA Astrophysics Data System (ADS)

    Yamagishi, Akihiko; Yano, Hajime; Yamashita, Masamichi; Hashimoto, Hirofumi; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Tabata, Makoto; Yabuta, Hikaru

    2012-07-01

    There is a long history of the microbe-collection experiments at high altitude (1). Microbes have been collected using balloons, aircraft and meteorological rockets. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments (1). It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. Tanpopo, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS) (2). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. In this presentation, we will present the recent results related to the microbiological analyses. The results suggested that the bleaching speeds and the spectra of fluorescence are different between different origins of the fluorescence: whether it is emitted from microbe or not. It is also shown that PCR analysis of the microbe can be used to determine the species. References 1)Yang, Y., Yokobori, S. and Yamagishi, A.: Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biol. Sci. Space, 23 (2009), pp. 151-163. 2) Yamagishi, A., H. Yano, K. Kobayashi, K. Kobayashi, S. Yokobori, M. Tabata, H. Kawai, M. Yamashita, H. Hashimoto, H. Naraoka, & H. Mita (2008) TANPOPO: astrobiology exposure and micrometeoroid capture

  9. Tanpopo: Astrobiology exposure and micrometeoroid capture experiments

    NASA Astrophysics Data System (ADS)

    Yamagishi, Akihiko; Yano, Hajime; Okudaira, Kyoko; Kobayashi, Kensei; Yokobori, Shin-Ichi; Kawai, Hideyuki; Yamashita, Masamichi; Hashimoto, Hirofumi; Yabuta, Hikaru

    There is a long history of the microbe-collection experiments at high altitude (1). Microbes have been collected using balloons, aircraft and meteorological rockets. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments (1). It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. Tanpopo, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS) (2). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. In this presentation, we will present the recent results related to the microbiological analyses. The results suggested that the bleaching speeds and the spectra of fluorescence are different between different origins of the fluorescence: whether it is emitted from microbe or not. It is also shown that PCR analysis of the microbe can be used to determine the species. References 1)Yang, Y., Yokobori, S. and Yamagishi, A.: Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biol. Sci. Space, 23 (2009), pp. 151-163. 2) Yamagishi, A., H. Yano, K. Kobayashi, K. Kobayashi, S. Yokobori, M. Tabata, H. Kawai, M. Yamashita, H. Hashimoto, H. Naraoka, H. Mita (2008) TANPOPO: astrobi-ology exposure and micrometeoroid capture

  10. Space Environment Survivability of Live Organisms: Results From a NASA Astrobiology Nanosatellite Mission

    NASA Astrophysics Data System (ADS)

    Santos, Orlando; Ehrenfreund, Pascale; Mancinelli, Rocco; Nicholson, Wayne; Ricco, Antonio

    NASA's Organism/Organic Exposure to Orbital Stresses, or O/OREOS, nanosatellite is a sci-ence demonstration mission that showcases achievements in using hardware from a technology development program led by the Small Spacecraft Division at NASA's Ames Research Center, Moffett Field, California. Continuing Ames' development of triple-cube nanosatellite tech-nology and flight systems, which includes the successful GeneSat-1 and PharmaSat missions, O/OREOS is constructed from off-the-shelf commercial and NASA-designed parts to create a fully self-contained, automated, stable, light-weight space science laboratory with innovative environment and power control techniques; sensors to monitor the levels of pressure, temper-ature, humidity, radiation and acceleration; and a communications system able to regularly accept commands from the ground and transmit data back to Earth for scientific analysis. The overall goal of the O/OREOS mission is to demonstrate the capability to do low-cost sci-ence experiments on autonomous nanosatellites in space in support of the Astrobiology Small Payloads program under the Planetary Science Division of the Science Mission Directorate at NASA Headquarters. The spacecraft houses two science payloads: the Space Environment Viability of Organics (SEVO) experiment will monitor the stability and changes in four classes of organic matter (results presented at another COSPAR session); and the Space Environment Survivability of Live Organisms (SESLO) experiment (presented here). SESLO will charac-terize the growth, activity, health, and ability of microorganisms to adapt to the stresses of the space environment. The experiment is sealed in a vessel at one atmosphere and contains two types of microbes commonly found in salt ponds and soil, in a dried and dormant state: Halorubrum chaoviator and Bacillus subtilis. After it reaches orbit, the experiment will initiate and begin to rehydrate and grow three sets of the microbes at three different times

  11. The Material-Independent Signatures of Life.Forensic Tools of Astrobiology

    NASA Astrophysics Data System (ADS)

    Radu, Popa

    Biological life is intimately related to the geochemical conditions on Earth and is fit for this planet's energy flux. It has often been suggested that life was also built in accordance with the particular local conditions offered by the early Earth. Common sense dictates that the constructive details of life on another planet should also be a reflection of the particular local conditions. Moreover, the collective activity of all life forms on a planet should have some measurable consequences on the global geochemistry. Comparison with the Earth-bound type of life is certainly inspirational but only up to a point. One central rule in astrobiology is: life can be made of many things and can have many forms. The search for extraterrestrial life cannot be limited to the search for Earth-like examples. Despite the common sense of this guideline, a manifest tendency exists today to judge the geochemical conditions from other planets through Earth-colored glasses. Much too often we hear expressions such as conditions too hostile to harbor life', or the search for Earth-like planets as potential hosts of life', or chemistry appropriate for life', or water as the fluid of life', or terra-formation of another planet to make it appropriate for life'. Irrespectively of how hostile another planet might appear to our Earth-based metabolism, we cannot state with certainty that life cannot be present before a comprehensive investigation is performed which includes the search for life's material-independent signatures.

  12. Resistance of an Antarctic cryptoendolithic black fungus to radiation gives new insights of astrobiological relevance.

    PubMed

    Selbmann, Laura; Pacelli, Claudia; Zucconi, Laura; Dadachova, Ekaterina; Moeller, Ralf; de Vera, Jean-Pierre; Onofri, Silvano

    2018-06-01

    The Antarctic black meristematic fungus Cryomyces antarcticus CCFEE 515 occurs endolithically in the McMurdo Dry Valleys of Antarctica, one of the best analogue for Mars environment on Earth. To date, this fungus is considered one of the best eukaryotic models for astrobiological studies and has been repeatedly selected for space experiments in the last decade. The obtained results are reviewed here, with special focus on responses to space relevant irradiation, UV radiation, and both sparsely and densely ionizing radiation, which represent the major injuries for a putative space-traveller. The remarkable resistance of this model organism to space stress, its radioresistance in particular, and mechanisms involved, significantly contributed to expanding our concept of limits for life and provided new insights on the origin and evolution of life in planetary systems, habitability, and biosignatures for life detection as well as on human protection during space missions. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Design Options for a New European Astrobiology - Focussed Mars Mission - Vanguard

    NASA Astrophysics Data System (ADS)

    Ellery, A.; Wynn-Williams, D.; Welch, C.; Curley, A.; Dickensheets, D.; Edwards, H.

    2002-01-01

    Presented is a proposed post-Beagle 2 European Mars mission with modest mass and power requirements - Vanguard. The system will comprise of a triad of robotic support devices to translocate and deploy Raman spectrometer detectors beneath the surface of Mars and possibly a laser-induced breakdown spectrometer on the surface - it will comprise of a base station lander to support communications, a robotic micro-rover to permit three well-separated sites to be selected for exploration and three ground-penetrating moles mounted onto the rover in a vertical configuration to be deployed independently. Each mole will deploy a tether carrying fibre optic cables coupling a laser Raman spectrometer mounted onboard the rover and the side-scanning sensor head on each of the moles. The Raman spectrometer is sensitive to biomolecules and their mineral substrata and represents a promising approach to the search for evidence of former life on Mars. Vanguard represents a close collaboration between scientists and engineers at the outset to maximise the scientific return within strong engineering constraints. Vanguard is essentially conceived to be a robotic field astrobiologist. In targetting the Martian sub-surface, Vanguard represents the obvious next step in the astrobiological investigation of Mars for Europe following on directly from the Beagle 2 mission. A number of design budget options are presented.

  14. The importance of the Maillard-metal complexes and their silicates in astrobiology

    NASA Astrophysics Data System (ADS)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  15. Laboratory Studies of Extraterrestrial Ices and PAHs: Making an Astrobiological Silk Purse Out of An Interstellar Sow's Ear

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Today, the composition of dust in the ISM is reasonably well constrained to cold, micron-sized particles of various refractory materials. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these particles secrete mantles of mixed molecular lees whose major components are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), whose telltale infrared signature I is now recognized throughout the Universe. However, of what significance is this scenario to the origin of life in our solar system--or any other? The major components of the icy materials observed in interstellar clouds and in our own solar system are uniformly quite simple. In addition, despite the fact that PAHs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered "biogenic" molecules. Although interesting from a chemical and astrophysical standpoint, in the absence of a mechanism by which these materials can be transformed into more biochemically significant structures, they are of little Astrobiological significance. In this talk, we will begin with a brief review of the nature and abundance of the "raw" population of PAHs and PAH-related materials in the ISM. From there, we will move on to explore our laboratory simulations of the photochemical evolution of realistic mixed molecular ices under conditions which simulate those encountered in the ISM and in evolving planetary systems. Particular attention will be paid to the surprisingly complex array of organic species that are produced in these ices from such a deceptively simple inventory of starting materials

  16. Acetate: A better astrobiological indicator of life than methane?

    NASA Astrophysics Data System (ADS)

    Kanik, I.; Russell, M. J.; Hodyss, R. P.; Johnson, P. V.

    2009-12-01

    The emergence of life on the ocean floor of the early Earth has implications for life detection on other rocky planetary bodies having subsurface ocean or ground waters in our solar system. At bottom life hydrogenates carbon dioxide. This is true not only of oxygenic photosynthesis—a relatively late evolutionary invention—but also of autotrophic chemosynthesizers such as the acetogenic bacteria and the methanoarchaea; respectively probably the first and second organisms to have emerged on Earth. Both of these prokaryotes use the acetyl coenzyme-a pathway for biosynthesis, though the variant leading to methanogenesis is substantially more complicated and therefore more highly evolved. Yet serpentinization and volcanism can produce methane with facility—an ambiguity that confounds life detection. In contrast, hydrothermal vent experiments to date along with hot spring analyses have indicated that no significant concentrations of abiotic acetate were produced in spite of the simplicity of the biological pathway. It seems that the geochemical conditions that generate abiotic methane are generally too reducing to produce acetate. Thus, the generation of acetate is solely a biotic process. As there is every reason to believe that the same chemical and electrochemical tensions would occur on other wet rocky planets containing subsurface ocean or ground waters. This encourages us to look into chemical and spectroscopic methods of detecting of acetate (both remotely and in situ) which is a better indicator than methane for the past or present biological activity on planetary bodies such as Mars. We, at the Jet Propulsion Laboratory, have designed laboratory experiments to investigate the feasibility of detecting acetate using conventional chemical and spectroscopic methods. The results and applicability of these techniques for the future astrobiology missions will be discussed.

  17. Life in Ice: Implications to Astrobiology

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    During the 2008 Tawani International Expedition Schirmacher Oasis/Lake Untersee Antarctica Expedition, living and instantly motile bacteria were found in freshly thawed meltwater from ice of the Schirmacher Oasis Lakes, the Anuchin Glacier ice and samples of the that perennial ice sheet above Lake Untersee. This phenomenon of living bacteria encased in ice had previously been observed in the 32,000 year old ice of the Fox Tunnel. The bacteria found in this ice included the strain FTR1T which was isolated and published as valid new species (Carnobacterium pleistocenium) the first validly published living Pleistocene organism still alive today. Living bacteria were also extracted from ancient ice cores from Vostok, Antarctica. The discovery that many strains of bacteria are able to survive and remain alive while frozen in ice sheets for long periods of time may have direct relevance to Astrobiology. The abundance of viable bacteria in the ice sheets of Antarctica suggests that the presence of live bacteria in ice is common, rather than an isolated phenomenon. This paper will discuss the results of recent studies at NSSTC of bacteria cryopreserved in ice. This paper advances the hypothesis that cryopreserved cells, and perhaps even viable bacterial cells, may exist today--frozen in the water-ice of lunar craters, the Polar Caps or craters of Mars; or in the permafrost of Mars; ice and rocks of comets or water bearing asteroids; or in the frozen crusts of the icy moons of Jupiter and Saturn. The existence of bacterial life in ice suggests that it may not be necessary to drill through a thick ice crust to reach liquid water seas deep beneath the icy crusts of Europa, Ganymede and Enceladus. The presence of viable bacteria in the ice of the Earth s Polar Caps suggests that the possibility that cryo-panspermia (i.e., the trans-planetary transfer of microbial life by impact ejection/spallation of bacteria-rich polar ice masses) deserves serious consideration and study as a

  18. Exoplanet Biosignatures: Observational Prospects.

    PubMed

    Fujii, Yuka; Angerhausen, Daniel; Deitrick, Russell; Domagal-Goldman, Shawn; Grenfell, John Lee; Hori, Yasunori; Kane, Stephen R; Pallé, Enric; Rauer, Heike; Siegler, Nicholas; Stapelfeldt, Karl; Stevenson, Kevin B

    2018-06-01

    Exoplanet hunting efforts have revealed the prevalence of exotic worlds with diverse properties, including Earth-sized bodies, which has fueled our endeavor to search for life beyond the Solar System. Accumulating experiences in astrophysical, chemical, and climatological characterization of uninhabitable planets are paving the way to characterization of potentially habitable planets. In this paper, we review our possibilities and limitations in characterizing temperate terrestrial planets with future observational capabilities through the 2030s and beyond, as a basis of a broad range of discussions on how to advance "astrobiology" with exoplanets. We discuss the observability of not only the proposed biosignature candidates themselves but also of more general planetary properties that provide circumstantial evidence, since the evaluation of any biosignature candidate relies on its context. Characterization of temperate Earth-sized planets in the coming years will focus on those around nearby late-type stars. The James Webb Space Telescope (JWST) and later 30-meter-class ground-based telescopes will empower their chemical investigations. Spectroscopic studies of potentially habitable planets around solar-type stars will likely require a designated spacecraft mission for direct imaging, leveraging technologies that are already being developed and tested as part of the Wide Field InfraRed Survey Telescope (WFIRST) mission. Successful initial characterization of a few nearby targets will be an important touchstone toward a more detailed scrutiny and a larger survey that are envisioned beyond 2030. The broad outlook this paper presents may help develop new observational techniques to detect relevant features as well as frameworks to diagnose planets based on the observables. Key Words: Exoplanets-Biosignatures-Characterization-Planetary atmospheres-Planetary surfaces. Astrobiology 18, 739-778.

  19. The large millimeter telescope/el Gran Telescopio Milimétrico: a new instrument for astrobiology.

    PubMed

    Irvine, William M; Carramiñana, Alberto; Carrasco, Luis; Schloerb, F Peter

    2003-12-01

    The Instituto Nacional de Astrofísica, Optica y Electrónica in Mexico and the University of Massachusetts in the U.S.A. are collaborating to build the world's largest radio telescope that operates at short millimeter wavelengths. This facility, known as the Large Millimeter Telescope (LMT) or el Gran Telescopio Milimétrico (GTM), is being sited at an altitude of 4600 m on Volcan Sierra Negra in the Mexican state of Puebla. The telescope will be a fully steerable dish with a diameter of 50 m and a surface consisting of 180 panels that are actively adjusted under computer control to correct for deformations due to gravity and temperature gradients. Instruments will include focal plane arrays to image both continuum and spectral line emission from celestial sources. The LMT/GTM will be an extremely powerful facility for studies encompassing almost all areas of astronomy, including astrobiology. In particular, the high sensitivity, angular resolution, and mapping speed will enable detailed investigations of the organic chemistry of interstellar molecular clouds, protoplanetary disks, and comets.

  20. A Perspective on the Importance of Reproductive Mode in Astrobiology

    NASA Astrophysics Data System (ADS)

    Van Doninck, Karine; Schön, Isa; Martens, Koen

    2003-12-01

    Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.

  1. Development of a Fully Integrated Lab-on-a-Chip Electrophoresis System for ExoMars and Future Astrobiology Missions

    NASA Astrophysics Data System (ADS)

    Willis, P. A.; Fisher, A.; Greer, F.; Grunthaner, F. J.; Hoppe, D.; Chiesl, T.; Mathies, R. A.; Rolland, J. P.

    2009-04-01

    This paper will describe current and future development efforts in lab-on-a-chip instrumentation for astrobiological investigations underway at JPL. We will begin with a discussion of the current technology status of our autonomous microfluidic capillary electrophoresis (μCE) system integrated with on-chip perfluoropolyether (PFPE) membrane valves and pumps [1], as part of the Urey Instrument. This work builds on the μCE system developed by Skelley et al. [2], but extends the system capability through the use of bio- and spaceflight-compatible PFPE-membrane valves rather than utilizing a PDMS-based approach. The ultimate goal of this μCE system is to perform ultrasensitive compositional and chiral analysis of amino acids in order to determine if Mars harbors signatures of past or present life. An autonomously functioning flight version of this instrument will examine extracts from the Martian regolith as part of the Pasteur Payload of the 2016 ExoMars astrobiology mission. The four-layer wafer stack design utilizes independent CE channels patterned in glass, along with a PFPE membrane, a pneumatic manifold layer, and a fluidic bus layer. Three pneumatically driven on-chip diaphragm valves placed in series are used to peristaltically pump reagents, buffers, and samples to and from capillary electrophoresis electrode well positions. Electrophoretic separation occurs in the all-glass channels near the base of the structure. The valve geometries and layouts in our integrated two-channel PFPE system have been optimized for valve sealing characteristics and uniform device spacing across the wafer surface. This paper will discuss current experimental development work in our research group involving further integration of functionality into an autonomous multi-channel system with no human intervention, enabling CE analysis upon a dried sample after receipt of a single pre-programmed instruction set from the user. The key structure under current development is an

  2. The biogeochemical iron cycle and astrobiology

    NASA Astrophysics Data System (ADS)

    Schröder, Christian; Köhler, Inga; Muller, Francois L. L.; Chumakov, Aleksandr I.; Kupenko, Ilya; Rüffer, Rudolf; Kappler, Andreas

    2016-12-01

    Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO2. This corresponds to observations of a `rusty carbon sink' in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the environment and

  3. Hydrothermal exploration and astrobiology: oases for life in distant oceans?

    NASA Astrophysics Data System (ADS)

    German, Christopher R.

    2004-04-01

    High-temperature submarine hydrothermal fields on Earth's mid-ocean ridges play host to exotic ecosystems with fauna previously unknown to science. Because these systems draw significant energy from chemosynthesis rather than photosynthesis, it has been postulated that the study of such systems could have relevance to the origins of life and, hence, astrobiology. A major flaw to that argument, however, is that modern basalt-hosted submarine vents are too oxidizing and lack the abundant free hydrogen required to drive abiotic organic synthesis and/or the energy yielding reactions that the most primitive anaerobic thermophiles isolated from submarine vent-sites apparently require. Here, however, the progress over the past decade in which systematic search strategies have been used to identify previously overlooked venting on the slow-spreading Mid-Atlantic Ridge and the ultra-slow spreading Arctic and SW Indian Ridges is described. Preliminary identification of fault-controlled venting in a number of these sites has led to the discovery of at least two high-temperature hydrothermal fields hosted in ultramafic rocks which emit complex organic molecules in their greater than 360 °C vent-fluids. Whether these concentrations represent de novo organic synthesis within the hydrothermal cell remains open to debate but it is probable that many more such sites exist throughout the Atlantic, Arctic and SW Indian Oceans. One particularly intriguing example is the Gakkel Ridge, which crosses the floor of the Arctic Ocean. On-going collaborations between oceanographers and astrobiologists are actively seeking to develop a new class of free-swimming autonomous underwater vehicle, equipped with appropriate chemical sensors, to conduct long-range missions that will seek out, locate and investigate new sites of hydrothermal venting at the bottom of this, and other, ice-covered oceans.

  4. Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael A.

    2010-01-01

    Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.

  5. Thermal Desorption/GCMS Analysis of Astrobiologically Relevant Organic Materials

    NASA Technical Reports Server (NTRS)

    McDonald, Gene D.

    2001-01-01

    Several macromolecular organic materials, both biologically-derived (type II kerogen and humic acid) and abiotic in origin (Murchison insoluble organic material, cyanide polymer, and Titan tholin) were subjected to thermal desorption using a Chromatoprobe attachment on a Varian Saturn 2000 GCMS system. Each sample was heated sequentially at 100, 200, and 300 C to release volatile components. The evolved compounds were then separated on a Supelco EC-1 dimethylsilica GC column and detected by the Saturn 2000 ion trap mass spectrometer. The various types of macromolecular organic material subjected to thermal desorption produced distinctly different GCMS chromatograms at each temperature, containing fractions of both low and high chromatographic mobility. The relative amounts of detectable volatiles released at each temperature also differed, with type II kerogen and cyanide polymer containing the highest percentage of low-temperature components. In all the samples, the highest yield of released compounds occurred at 300 C. Only cyanide polymer evolved a homologous hydrocarbon series, suggesting that it is the only material among those examined that contains a truly polymeric structure. Pyrolysis/gas chromatography/mass spectrometry has been used extensively for analysis of terrestrial organic macromolecular materials, and was also part of the instrument package on the Viking landers. Thorough analysis by pyrolysis usually employs temperatures of 500 C or higher, which for in situ analyses can be problematic given spacecraft power and materials constraints. This study demonstrates that heating of organic materials of astrobiological relevance to temperatures as low as 200-300 C for short periods releases volatile components that can be analyzed by gas chromatography and mass spectrometry. Even in the absence of full pyrolysis, useful chemical information on samples can be obtained, and materials from different biological and abiological sources can be distinguished

  6. Greenhouse to icehouse: Understanding the role of CO2 and non-CO2 forcings in warm climate intervals

    NASA Astrophysics Data System (ADS)

    Goldner, Aaron P.

    The Earth system has evolved significantly over the past 65 million years. A relatively ice free world dominated the Eocene ˜45 million years ago (Ma), until the late Oligocene (˜34 Ma) when the Antarctic Ice Sheet (AIS) developed in relatively short time period. Throughout the Oligocene and Miocene (23 to 5.3 Ma) temperatures gradually decreased as atmospheric CO2 continued to fall, vegetation biomes shifted, ocean circulation moved into its modern positions, and ocean gateways opened and closed. This transition from the warm and humid Eocene climate to the icehouse world we currently live has largely been attributed to a gradual decline in atmospheric CO 2. Acknowledging the fact that CO2 was the dominant driver in the gradual cooling over the last 65 million years, here we explore the less constrained feedbacks and forcings within the Earth system. These non-CO 2 forcings are important and could prove pivotal as we continue to constrain future climate prediction. Here we explore the climatic impact and forcing of the AIS, the oceanic response to AIS forcing, the temperature and precipitation patterns induced by changes in the El Nino southern Oscillation, and the impacts of El Nino and AIS forcing in the mid-Miocene Climatic Optimum (MMCO). Specifically, we find that the distribution of sea surface temperature (SSTs) in the eastern equatorial pacific has a teleconnected fingerprint throughout the world and more El Nino like conditions is a possible explanation of the wetter conditions in the mid-latitudes during the Pliocene and Miocene. The effective forcing and temperature impact of the Antarctic Ice Sheet depends on the mean climate state as modern climate responds differently to removing the AIS than at the Eocene-Oligocene transition and during the MMCO. The differing temperature and climate sensitivity response is largely controlled by low cloud and sea-ice feedbacks during these time periods and the efficacy of AIS forcing in the Eocene is not

  7. The astrobiological mission EXPOSE-R on board of the International Space Station

    NASA Astrophysics Data System (ADS)

    Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, Andre; Panitz, Corinna; Horneck, Gerda; Burfeindt, Jürgen; Molter, Ferdinand; Jaramillo, Esther; Pereira, Carlos; Weiß, Peter; Willnecker, Rainer; Demets, René; Dettmann, Jan

    2015-01-01

    EXPOSE-R flew as the second of the European Space Agency (ESA) EXPOSE multi-user facilities on the International Space Station. During the mission on the external URM-D platform of the Zvezda service module, samples of eight international astrobiology experiments selected by ESA and one Russian guest experiment were exposed to low Earth orbit space parameters from March 10th, 2009 to January 21st, 2011. EXPOSE-R accommodated a total of 1220 samples for exposure to selected space conditions and combinations, including space vacuum, temperature cycles through 273 K, cosmic radiation, solar electromagnetic radiation at >110, >170 or >200 nm at various fluences up to GJ m-2. Samples ranged from chemical compounds via unicellular organisms and multicellular mosquito larvae and seeds to passive radiation dosimeters. Additionally, one active radiation measurement instrument was accommodated on EXPOSE-R and commanded from ground in accordance with the facility itself. Data on ultraviolet radiation, cosmic radiation and temperature were measured every 10 s and downlinked by telemetry and data carrier every few months. The EXPOSE-R trays and samples returned to Earth on March 9th, 2011 with Shuttle flight, Space Transportation System (STS)-133/ULF 5, Discovery, after successful total mission duration of 27 months in space. The samples were analysed in the individual investigators laboratories. A parallel Mission Ground Reference experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions following to the data transmitted from the flight mission.

  8. Lunar and Planetary Science XXXV: Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites includes the following topics: 1) Investigating the Impact of UV Radiation on High-Altitude Shallow Lake Habitats, Life Diversity, and Life Survival Strategies: Clues for Mars' Past Habitability Potential? 2) An Analysis of Potential Photosynthetic Life on Mars; 3) Radiation Inactivation of Bacterial spores on Mars; 4) Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates of Bacteria on Mars Landers; 5) Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents; 6) Signs of Life in Meridiani Planum-What Might Opportunity See (or Miss)? 7) Isolation of PUrines and Pyrimidines from the Murchison Meteorite Using Sublimation; and 8) Relative Amino Acid Composition of CM1 Carbonaceous Chondrites.

  9. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments

    NASA Astrophysics Data System (ADS)

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.

  10. The Mojave Desert: A Martian Analog Site for Future Astrobiology Themed Missions

    NASA Technical Reports Server (NTRS)

    Salas, E.; Abbey, W.; Bhartia, R.; Beegle, L. W.

    2011-01-01

    Astrobiological interest in Mars is highlighted by evidence that Mars was once warm enough to have liquid water present on its surface long enough to create geologic formations that could only exist in the presense of extended fluvial periods. These periods existed at the same time life on Earth arose. If life began on Mars as well during this period, it is reasonable to assume it may have adapted to the subsurface as environments at the surface changed into the inhospitable state we find today. If the next series of Mars missions (Mars Science Laboratory, the ExoMars Trace Gas Orbiter proposed for launch in 2016, and potential near surface sample return) fail to discover either extinct or extant life on Mars, a subsurface mission would be necessary to attempt to "close the book" on the existence of martian life. Mars is much colder and drier than Earth, with a very low pressure CO2 environment and no obvious habitats. Terrestrial regions with limited precipitation, and hence reduced active biota, are some of the best martian low to mid latitude analogs to be found on Earth, be they the Antarctic dry valleys, the Atacama or Mojave Deserts. The Mojave Desert/Death Valley region is considered a Mars analog site by the Terrestrial Analogs Panel of the NSF-sponsored decadal survey; a field guide was even developed and a workshop was held on its applicability as a Mars analog. This region has received a great deal of attention due to its accessibility and the variety of landforms and processes observed relevant to martian studies.

  11. Experimental simulation of marine meteorite impacts: Implications for astrobiology

    NASA Astrophysics Data System (ADS)

    Umeda, Y.; Suga, H.; Sekine, T.; Kobayashi, T.; Furukawa, Y.; Kakegawa, T.

    2016-12-01

    experimental products and extraterrestrial matters have similar features such as the structure, the chemical bonding, and valence, it may be able to give new understandings (e.g. origin, formation mechanism, and reactions) to the areas of astrobiology. The results and discussions of these analyses will be added in the presentation of this meeting.

  12. Psychrophiles and astrobiology: microbial life of frozen worlds

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2003-01-01

    consider the Astrobiological significance of the Fox Tunnel with its rich assemblage of frozen microbes as proxy for developing techniques that may help optimize the search for evidence of life in the permafrost of Mars. We provide images of a novel anaerobic, heterotrophic, psychrotrophic bacterium (str.FTR1) isolated in pure culture from the Fox Tunnel. We also describe novel psychrotrophs isolated from guano of the Magellanic penguin (Spheniscus magellanicus) from the southern tip of Patagonia. These strains PmagG1 and PPP2) represent new species and genera of anaerobic microbes that grow at very low temperatures. The lowest limit for growth without morphological changes of str.PmagG1 is -4°C.

  13. Basaltic glass as a habitat for microbial life: Implications for astrobiology and planetary exploration

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Banerjee, N. R.; Flemming, R. L.; Bridge, N. J.; Schultz, C.

    2010-03-01

    Recent studies have demonstrated that terrestrial subaqueous basalts and hyaloclastites are suitable microbial habitats. During subaqueous basaltic volcanism, glass is produced by the quenching of basaltic magma upon contact with water. On Earth, microbes rapidly begin colonizing the glassy surfaces along fractures and cracks that have been exposed to water. Microbial colonization of basaltic glass leads to the alteration and modification of the rocks and produces characteristic granular and/or tubular bioalteration textures. Infilling of the alteration textures by minerals such as phyllosilicates, zeolites and titanite may enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggests the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend as far back as ˜3.5 billion years ago and is widespread in oceanic crust and its metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.

  14. The SOLID (Signs Of LIfe Detector) instrument concept: an antibody microarray-based biosensor for life detection in astrobiology

    NASA Astrophysics Data System (ADS)

    Parro, V.; Rivas, L. A.; Rodríguez-Manfredi, J. A.; Blanco, Y.; de Diego-Castilla, G.; Cruz-Gil, P.; Moreno-Paz, M.; García-Villadangos, M.; Compostizo, C.; Herrero, P. L.

    2009-04-01

    Immunosensors have been extensively used since many years for environmental monitoring. Different technological platforms allow new biosensor designs and implementations. We have reported (Rivas et al., 2008) a shotgun approach for antibody production for biomarker detection in astrobiology and environmental monitoring, the production of 150 new polyclonal antibodies against microbial strains and environmental extracts, and the construction and validation of an antibody microarray (LDCHIP200, for "Life Detector Chip") containing 200 different antibodies. We have successfully used the LDCHIP200 for the detection of biological polymers in extreme environments in different parts of the world (e.g., a deep South African mine, Antarctica's Dry valleys, Yellowstone, Iceland, and Rio Tinto). Clustering analysis associated similar immunopatterns to samples from apparently very different environments, indicating that they indeed share similar universal biomarkers. A redundancy in the number of antibodies against different target biomarkers apart of revealing the presence of certain biomolecules, it renders a sample-specific immuno-profile, an "immnuno-fingerprint", which may constitute by itself an indirect biosignature. We will present a case study of immunoprofiling different iron-sulfur as well as phylosilicates rich samples along the Rio Tinto river banks. Based on protein microarray technology, we designed and built the concept instrument called SOLID (for "Signs Of LIfe Detector"; Parro et al., 2005; 2008a, b; http://cab.inta.es/solid) for automatic in situ analysis of soil samples and molecular biomarkers detection. A field prototype, SOLID2, was successfully tested for the analysis of grinded core samples during the 2005 "MARTE" campaign of a Mars drilling simulation experiment by a sandwich microarray immunoassay (Parro et al., 2008b). We will show the new version of the instrument (SOLID3) which is able to perform both sandwich and competitive immunoassays. SOLID3

  15. NASA-ESA Joint Mission to Explore Two Worlds of Great Astrobiological Interest - Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Coustenis, A.; Lunine, J.; Matson, D.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.

    2009-04-01

    Rugged shorelines, laced with canyons, leading to ethane/methane seas glimpsed through an organic haze, vast fields of dunes shaped by alien sciroccos… An icy moon festooned with plumes of water-ice and organics, whose warm watery source might be glimpsed through surface cracks that glow in the infrared… The revelations by Cassini-Huygens about Saturn's crown jewels, Titan and Enceladus, have rocked the public with glimpses of new worlds unimagined a decade before. The time is at hand to capitalize on those discoveries with a broad mission of exploration that combines the widest range of planetary science disciplines—Geology, Geophysics, Atmospheres, Astrobiology,Chemistry, Magnetospheres—in a single NASA/ESA collaboration. The Titan Saturn System Mission will explore these exciting new environments, flying through Enceladus' plumes and plunging deep into Titan's atmosphere with instruments tuned to find what Cassini could only hint at. Exploring Titan with an international fleet of vehicles; from orbit, from the surface of a great polar sea, and from the air with the first hot air balloon to ride an extraterrestrial breeze, TSSM will turn our snapshot gaze of these worlds into an epic film. This paper will describe a collaborative NASA-ESA Titan Saturn System Mission that will open a new phase of planetary exploration by projecting robotic presence on the land, on the sea, and in the air of an active, organic-rich world.

  16. The Formation of Organic Compounds of Astrobiological Interest by the Irradiation Processing of Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2015-01-01

    Many environments in space contain very low temperature mixed molecular ices that are exposed to ionizing radiation in the form of cosmic rays and high-energy photons. While traditional chemistry would not be expected to occur at the temperatures typical of these ices (T < 50 K), ionizing radiation can break bonds in the original molecules in the ices to form highly reactive ions and radicals. These ions and radicals are subsequently free to react despite the low temperatures of the original ices. Laboratory experiments, many of them carried out at the Astrochemistry Laboratory at NASA-Ames, show that the irradiation of ices made of even simple molecules like H2O, CO, CO2, CH4, NH3, etc. can result in the robust formation of large numbers of far more complex organic compounds. Many of these new products are of direct interest to astrobiology. For example, the irradiation of mixed molecular ices has been shown to produce amino acids, amphiphiles, quinones, sugars, heterocyclic compounds, and nucleobases, all molecular building blocks used by terrestrial life. Insofar as the presence of these materials plays a role in the origin of life on planets, this has profound implications for the potential abundance of life in the universe since these experiments simulate universal conditions that are expected to be found wherever new stars and planets form.

  17. Astrobiological aspects of Mars and human presence: pros and cons.

    PubMed

    Horneck, G

    2008-08-01

    After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with

  18. Astrobiological Aspects of Mars and Human Presence: Pros and Cons

    PubMed Central

    Horneck, G

    2008-01-01

    After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with

  19. Astrobiological aspects of the mutagenesis of cosmic radiation on bacterial spores.

    PubMed

    Moeller, Ralf; Reitz, Günther; Berger, Thomas; Okayasu, Ryuichi; Nicholson, Wayne L; Horneck, Gerda

    2010-06-01

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. In this study, spores of B. subtilis were used to study the effects of galactic cosmic radiation (GCR) on spore survival and induced mutagenesis. In interplanetary space, outside Earth's protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galactic sources and from the Sun, which consists of photons (X-rays, gamma rays), protons, electrons, and heavy, high-energy charged (HZE) particles. B. subtilis spores were irradiated with X-rays and accelerated heavy ions (helium, carbon, silicon and iron) in the linear energy transfer (LET) range of 2-200 keV/mum. Spore survival and the rate of the induced mutations to rifampicin resistance (Rif(R)) depended on the LET of the applied species of ions and radiation, whereas the exposure to high-energy charged particles, for example, iron ions, led to a low level of spore survival and increased frequency of mutation to Rif(R) compared to low-energy charged particles and X-rays. Twenty-one Rif(R) mutant spores were isolated from X-ray and heavy ion-irradiated samples. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the beta-subunit of RNA polymerase. Most mutations were primarily found in Cluster I and were predicted to result in amino acid changes at residues Q469L, A478V, and H482P/Y. Four previously undescribed alleles in B. subtilis rpoB were isolated: L467P, R484P, and A488P in Cluster I and H507R in the spacer between Clusters I and II. The spectrum of Rif(R) mutations arising from spores exposed to components of GCR is distinctly different from those of spores exposed to simulated space vacuum and martian conditions.

  20. The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa

    NASA Astrophysics Data System (ADS)

    de la Torre, Rosa; Zélia Miller, Ana; Cubero, Beatriz; Martín-Cerezo, M. Luisa; Raguse, Marina; Meeßen, Joachim

    2017-02-01

    The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays) - the maximum doses applied for those radiation qualities - as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans.

  1. Hydro-gravitational-dynamics cosmology is crucial to astrobiology and the biological big bang at two million years

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2015-09-01

    Hydro-Gravitational-Dynamics (HGD) cosmology predicts that the 1012 s (30 Kyr) H-He4 plasma protogalaxies become, by viscous fragmentation, proto-globular-star-cluster PGC clumps of a trillion small planets, at the 1013 s transition to gas. Larger planets and stars result from mergers of these hot 3000 K hydrogen planets in the PGCs. Stardust oxides of life chemicals C, N, O, Fe, Si seed the planets when the stars explode as supernovae. Hydrogen reduces the metal oxides and silicates to metal and rocky planet cores with massive hot water oceans at critical water temperature 647 K in which organic chemistry and life can develop. Because information is continually exchanged between the merging planets, they form a cosmic soup. The biological big bang occurs between 2 Myr when liquid water rains hot deep oceans in the cooling cosmos, and 8 Myr when the oceans freeze6. Thus, HGD cosmology explains the Hoyle/Wickramasinghe concept of cometary panspermia by giving a vast, hot, nourishing, cosmological primordial soup for abiogenesis, and the means for transmitting the resulting life forms and their evolving RNA/DNA mechanisms widely throughout the universe. A primordial astrophysical basis is provided for astrobiology by HGD cosmology. Concordance ΛCDMHC cosmology is rendered obsolete by the observation of complex life on Earth.

  2. Sulfate content of Europa's ocean and shell: evolutionary considerations and some geological and astrobiological implications.

    PubMed

    McKinnon, William B; Zolensky, Michael E

    2003-01-01

    Recent models for the origin of Jupiter indicate that the Galilean satellites were mostly derived from largely unprocessed solar nebula solids and planetesimals. In the jovian subnebula the solids that built Europa were first heated and then cooled, but the major effect was most likely partial or total devolatilization, and less likely to have been wholesale thermochemical reprocessing of rock + metal compositions (e.g., oxidation of Fe and hydration of silicates). Ocean formation and substantial alteration of interior rock by accreted water and ice would occur during and after accretion, but none of the formation models predicts or implies accretion of sulfates. Europa's primordial ocean was most likely sulfidic. After accretion and later radiogenic and tidal heating, the primordial ocean would have interacted hydrothermally with subjacent rock. It has been hypothesized that sulfides could be converted to sulfates if sufficient hydrogen was lost to space, but pressure effects and the impermeability of serpentinite imply that extraction of sulfate from thoroughly altered Europa-rock would have been inefficient (if indeed Mg sulfates formed at all). Permissive physical limits on the extent of alteration limit the sulfate concentration of Europa's evolved ocean to 10% by weight MgSO(4) or equivalent. Later oxidation of the deep interior of Europa may have also occurred because of water released by the breakdown of hydrated silicates, ultimately yielding S magma and/or SO(2) gas. Geological and astrobiological implications are considered.

  3. Lateral Comparative Investigation of Stromatolites: Astrobiological Implications and Assessment of Scales of Control

    NASA Astrophysics Data System (ADS)

    Ibarra, Yadira; Corsetti, Frank A.

    2016-04-01

    The processes that govern the formation of stromatolites, structures that may represent macroscopic manifestation of microbial processes and a clear target for astrobiological investigation, occur at various scales (local versus regional), yet determining their relative importance remains a challenge, particularly for ancient deposits and/or if similar deposits are discovered elsewhere in the Solar System. We build upon the traditional multiscale level approach of investigation (micro-, meso-, macro-, mega-) by including a lateral comparative investigational component of fine- to large-scale features to determine the relative significance of local and/or nonlocal controls on stromatolite morphology, and in the process, help constrain the dominant influences on microbialite formation. In one example of lateral comparative investigation, lacustrine microbialites from the Miocene Barstow Formation (California) display two main mesofabrics: (1) micritic bands that drastically change in thickness and cannot directly be traced between adjacent decimeter-scale subunits and (2) sparry fibrous layers that are strikingly consistent across subunits, suggesting the formation of sparry fibrous layers was influenced by a process larger than the length scale between the subunits (likely lake chemistry). Microbialites from the uppermost Triassic Cotham Member, United Kingdom, occur as meter-scale mounds and contain a characteristic succession of laminated and dendrolitic mesofabrics. The same succession of laminated/dendrolitic couplets can be traced, not only from mound to mound, but over 100 km, indicating a regional-scale influence on very small structures (microns to centimeters) that would otherwise not be apparent without the lateral comparative approach, and demonstrating that the scale of the feature does not necessarily scale with the scope of the process. Thus, the combination of lateral comparative investigations and multiscale analyses can provide an effective approach

  4. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology

    NASA Astrophysics Data System (ADS)

    Pulschen, A. A.; Rodrigues, F.; Duarte, R. T.; Araujo, G. G.; Santiago, I. F.; Paulino-Lima, Ivan G.; Rosa, Carlos A.; Kato, Massuo J.; Pellizari, Vivian H.; Galante, Douglas

    2015-08-01

    The Sairecabur volcano (5971 m), in the Atacama Desert, is a high-altitude extreme environment with high daily temperature variations, acidic soils, intense UV radiation, and low availability of water. Four different species of yeasts were isolated from this region using oligotrophic media, identified and characterized for their tolerance to extreme conditions. rRNA sequencing revealed high identity (>98%) to Cryptococcus friedmannii, Exophiala sp., Holtermanniella watticus, and Rhodosporidium toruloides. To our knowledge, this is the first report of these yeasts in the Atacama Desert. All isolates showed high resistance to UV-C, UV-B and environmental-UV radiation, capacity to grow at moderate saline media (0.75-2.25 mol/L NaCl) and at moderate to cold temperatures, being C. friedmannii and H. watticus able to grow in temperatures down to -6.5°C. The presence of pigments, analyzed by Raman spectroscopy, correlated with UV resistance in some cases, but there is evidence that, on the natural environment, other molecular mechanisms may be as important as pigmentation, which has implications for the search of spectroscopic biosignatures on planetary surfaces. Due to the extreme tolerances of the isolated yeasts, these organisms represent interesting eukaryotic models for astrobiological purposes.

  5. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station.

    PubMed

    Rabbow, Elke; Rettberg, Petra; Parpart, Andre; Panitz, Corinna; Schulte, Wolfgang; Molter, Ferdinand; Jaramillo, Esther; Demets, René; Weiß, Peter; Willnecker, Rainer

    2017-01-01

    On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS), carrying EXPOSE-R2, the third ESA (European Space Agency) EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form), lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR) experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center) in Cologne by MUSC (Microgravity User Support Center), according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status) or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data). In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results.

  6. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station

    PubMed Central

    Rabbow, Elke; Rettberg, Petra; Parpart, Andre; Panitz, Corinna; Schulte, Wolfgang; Molter, Ferdinand; Jaramillo, Esther; Demets, René; Weiß, Peter; Willnecker, Rainer

    2017-01-01

    On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS), carrying EXPOSE-R2, the third ESA (European Space Agency) EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form), lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR) experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center) in Cologne by MUSC (Microgravity User Support Center), according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status) or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data). In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results. PMID

  7. Nitrogen Concentrations and Isotopic Compositions of Seafloor-Altered Terrestrial Basaltic Glass: Implications for Astrobiology

    PubMed Central

    Banerjee, N.R.; Izawa, M.R.M.; Kobayashi, K.; Lazzeri, K.; Ranieri, L.A.; Nakamura, E.

    2018-01-01

    Abstract Observed enrichments of N (and the δ15N of this N) in volcanic glasses altered on Earth's modern and ancient seafloor are relevant in considerations of modern global N subduction fluxes and ancient life on Earth, and similarly altered glasses on Mars and other extraterrestrial bodies could serve as valuable tracers of biogeochemical processes. Palagonitized glasses and whole-rock samples of volcanic rocks on the modern seafloor (ODP Site 1256D) contain 3–18 ppm N with δ15Nair values of up to +4.5‰. Variably altered glasses from Mesozoic ophiolites (Troodos, Cyprus; Stonyford volcanics, USA) contain 2–53 ppm N with δ15N of −6.3 to +7‰. All of the more altered glasses have N concentrations higher than those of fresh volcanic glass (for MORB, <2 ppm N), reflecting significant N enrichment, and most of the altered glasses have δ15N considerably higher than that of their unaltered glass equivalents (for MORB, −5 ± 2‰). Circulation of hydrothermal fluids, in part induced by nearby spreading-center magmatism, could have leached NH4+ from sediments then fixed this NH4+ in altering volcanic glasses. Glasses from each site contain possible textural evidence for microbial activity in the form of microtubules, but any role of microbes in producing the N enrichments and elevated δ15N remains uncertain. Petrographic analysis, and imaging and chemical analyses by scanning electron microscopy and scanning transmission electron microscopy, indicate the presence of phyllosilicates (smectite, illite) in both the palagonitized cracks and the microtubules. These phyllosilicates (particularly illite), and possibly also zeolites, are the likely hosts for N in these glasses. Key Words: Nitrogen—Nitrogen isotope—Palagonite—Volcanic glass—Mars. Astrobiology 18, 330–342. PMID:29106312

  8. The Lost City Hydrothermal Field: A Spectroscopic and Astrobiological Analogue for Nili Fossae, Mars.

    PubMed

    Amador, Elena S; Bandfield, Joshua L; Brazelton, William J; Kelley, Deborah

    2017-11-01

    Low-temperature serpentinization is a critical process with respect to Earth's habitability and the Solar System. Exothermic serpentinization reactions commonly produce hydrogen as a direct by-product and typically produce short-chained organic compounds indirectly. Here, we present the spectral and mineralogical variability in rocks from the serpentine-driven Lost City Hydrothermal Field on Earth and the olivine-rich region of Nili Fossae on Mars. Near- and thermal-infrared spectral measurements were made from a suite of Lost City rocks at wavelengths similar to those for instruments collecting measurements of the martian surface. Results from Lost City show a spectrally distinguishable suite of Mg-rich serpentine, Ca carbonates, talc, and amphibole minerals. Aggregated detections of low-grade metamorphic minerals in rocks from Nili Fossae were mapped and yielded a previously undetected serpentine exposure in the region. Direct comparison of the two spectral suites indicates similar mineralogy at both Lost City and in the Noachian (4-3.7 Ga) bedrock of Nili Fossae, Mars. Based on mapping of these spectral phases, the implied mineralogical suite appears to be extensive across the region. These results suggest that serpentinization was once an active process, indicating that water and energy sources were available, as well as a means for prebiotic chemistry during a time period when life was first emerging on Earth. Although the mineralogical assemblages identified on Mars are unlikely to be directly analogous to rocks that underlie the Lost City Hydrothermal Field, related geochemical processes (and associated sources of biologically accessible energy) were once present in the subsurface, making Nili Fossae a compelling candidate for a once-habitable environment on Mars. Key Words: Mars-Habitability-Serpentinization-Analogue. Astrobiology 17, 1138-1160.

  9. EVA Swab Tool to Support Planetary Protection and Astrobiology Evaluations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hood, Drew; Walker, Mary; Venkateswaran, Kasthuri J.; Schuerger, Andrew C.

    2018-01-01

    various pressure environments. To further minimize cost, the design team acquired extensive ground test experience in a relevant flight environment by piggy-backing onto suited crew training runs. These training runs allowed the project to validate tool interfaces with pressurized EVA gloves and collect user feedback on the tool design and function, as well as characterize baseline microbial data for different types of spacesuits. In general, test subjects found the EVA Swab Kit relatively straightforward to operate, but identified a number of design improvements that will be incorporated into the final design. Although originally intended to help characterize human forward contaminants, this tool has other potential applications, such as for collecting and preserving space-exposed materials to support astrobiology experiments.

  10. EVA Swab Tool to Support Planetary Protection and Astrobiology Evaluations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hood, Drew; Walker, Mary; Venkateswaran, Kasthuri J.; Schuerger, Andrew C.

    2018-01-01

    various pressure environments. To further minimize cost, the design team acquired extensive ground test experience in a relevant flight environment by piggy-backing onto suited crew training runs. These training runs allowed the project to validate tool interfaces with pressurized EVA gloves and collect user feedback on the tool design and function, as well as characterize baseline microbial data for different types of spacesuits. In general, test subjects found the EVA Swab Kit relatively straightforward to operate, but identified a number of design improvements that will be incorporated into the final design. Although originally intended to help characterize human forward contaminants, this tool has other potential applications, such as for collecting and preserving space-exposed materials to support astrobiology experiments.

  11. UV Raman imaging--a promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites.

    PubMed

    Frosch, Torsten; Tarcea, Nicolae; Schmitt, Michael; Thiele, Hans; Langenhorst, Falko; Popp, Jürgen

    2007-02-01

    The great capabilities of UV Raman imaging have been demonstrated on the three Martian meteorites: Sayh al Uhaymir, Dar al Gani, and Zagami. Raman spectra without disturbing fluorescence and with high signal-to-noise-ratios and full of spectral features were derived. This result is of utmost importance for the development of powerful instruments for space missions. By point scanning the surfaces of the meteorite samples, it was possible for the first time to construct UV-Raman images out of the array of Raman spectra. Deep-UV Raman images are to the best of our knowledge presented for the first time. The images were used for a discussion of the chemical-mineralogical composition and texture of the meteorite surfaces. Comparative Raman studies applying visible and NIR Raman excitation wavelengths demonstrate a much better performance for UV Raman excitation. This comparative study of different Raman excitation wavelengths at the same sample spots was done by constructing a versatile, robust sample holder with a fixed micro-raster. The overall advantages of UV resonance Raman spectroscopy in terms of sensitivity and selectivity are demonstrated and discussed. Finally the application of this new technique for a UV Raman instrument for envisaged astrobiological focused space missions is suggested.

  12. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology.

    PubMed

    Pulschen, André A; Rodrigues, Fabio; Duarte, Rubens T D; Araujo, Gabriel G; Santiago, Iara F; Paulino-Lima, Ivan G; Rosa, Carlos A; Kato, Massuo J; Pellizari, Vivian H; Galante, Douglas

    2015-08-01

    The Sairecabur volcano (5971 m), in the Atacama Desert, is a high-altitude extreme environment with high daily temperature variations, acidic soils, intense UV radiation, and low availability of water. Four different species of yeasts were isolated from this region using oligotrophic media, identified and characterized for their tolerance to extreme conditions. rRNA sequencing revealed high identity (>98%) to Cryptococcus friedmannii, Exophiala sp., Holtermanniella watticus, and Rhodosporidium toruloides. To our knowledge, this is the first report of these yeasts in the Atacama Desert. All isolates showed high resistance to UV-C, UV-B and environmental-UV radiation, capacity to grow at moderate saline media (0.75-2.25 mol/L NaCl) and at moderate to cold temperatures, being C. friedmannii and H. watticus able to grow in temperatures down to -6.5°C. The presence of pigments, analyzed by Raman spectroscopy, correlated with UV resistance in some cases, but there is evidence that, on the natural environment, other molecular mechanisms may be as important as pigmentation, which has implications for the search of spectroscopic biosignatures on planetary surfaces. Due to the extreme tolerances of the isolated yeasts, these organisms represent interesting eukaryotic models for astrobiological purposes. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology

    PubMed Central

    Pulschen, André A; Rodrigues, Fabio; Duarte, Rubens T D; Araujo, Gabriel G; Santiago, Iara F; Paulino-Lima, Ivan G; Rosa, Carlos A; Kato, Massuo J; Pellizari, Vivian H; Galante, Douglas

    2015-01-01

    The Sairecabur volcano (5971 m), in the Atacama Desert, is a high-altitude extreme environment with high daily temperature variations, acidic soils, intense UV radiation, and low availability of water. Four different species of yeasts were isolated from this region using oligotrophic media, identified and characterized for their tolerance to extreme conditions. rRNA sequencing revealed high identity (>98%) to Cryptococcus friedmannii, Exophiala sp., Holtermanniella watticus, and Rhodosporidium toruloides. To our knowledge, this is the first report of these yeasts in the Atacama Desert. All isolates showed high resistance to UV-C, UV-B and environmental-UV radiation, capacity to grow at moderate saline media (0.75–2.25 mol/L NaCl) and at moderate to cold temperatures, being C. friedmannii and H. watticus able to grow in temperatures down to −6.5°C. The presence of pigments, analyzed by Raman spectroscopy, correlated with UV resistance in some cases, but there is evidence that, on the natural environment, other molecular mechanisms may be as important as pigmentation, which has implications for the search of spectroscopic biosignatures on planetary surfaces. Due to the extreme tolerances of the isolated yeasts, these organisms represent interesting eukaryotic models for astrobiological purposes. PMID:26147800

  14. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures.

    PubMed

    Cabrol, Nathalie A

    2018-01-01

    Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.

  15. From Greenhouse to Icehouse: Evidence of Climatic Changes Across the Marine Eocene-Oligocene Transition From the Massignano GSSP Section (Central Italy)

    NASA Astrophysics Data System (ADS)

    Coccioni, R.; Marsili, A.; Montanari, A.

    2004-12-01

    The transition from global "greenhouse" conditions of the early and middle Eocene to global "icehouse" conditions of the early Oligocene marks a turning point in Cenozoic Earth history which was marked by reorganization of global ocean circulation patterns and significant turnovers in the marine and terrestrial biota (Prothero et al., 2003) and led to the development of the first East Antarctic ice-sheet, close to the Eocene/Oligocene boundary (33.7 Ma). The Massignano GSSP for the Eocene/Oligocene boundary (Premoli Silva & Jenkins, 1993), exposed in an abandoned quarry in the Monte Conero area, on the Adriatic coast of central Italy, was investigated at high-resolution in order to provide evidence for climatic changes across the marine Eocene-Oligocene transition. The Massignano section is 23-m thick and consists of alternating reddish/greenish-grey marls and calcareous marls with several biotite-rich levels of volcanic origin which were deposited in a lower bathyal depositional setting, at a paleodepth of 1000-2000 m (Coccioni & Galeotti, 2003). A complete geological record of 3 myr (from 36.2 to 33.2 Ma according to the time scale of Berggren et al., 1995) is preserved which spans the interval from the latest Eocene to the early Oligocene, from Chron C16n to C13n (Bice & Montanari, 1988; Lowrie & Lanci, 1994), and is provided by an accurate calibration of bio- and geochemical events. Cosmic signatures are also recorded in the Massignano section (Montanari et al., 1993) where three impactoclastic, iridium-rich layers occurs in the middle-lower part of the succession (Montanari et al., 1988, 1993; Bodeselitsch et al., 2004). They are possibly linked to the Popigai and Chesapeake Bay impacts and related to a comet shower over a duration of 2.2 myr (Farley et al., 1998). Calcareous nannofossil and foraminiferal assemblages (Coccioni et al., 2000; Spezzaferri et al., 2002), dinoflagellate cyst palynology (Brinkhuis & Biffi, 1993), ostracod faunas (Dall'Antonia et al

  16. Psychophysiology of prospective memory.

    PubMed

    Rothen, Nicolas; Meier, Beat

    2014-01-01

    Prospective memory involves the self-initiated retrieval of an intention upon an appropriate retrieval cue. Cue identification can be considered as an orienting reaction and may thus trigger a psychophysiological response. Here we present two experiments in which skin conductance responses (SCRs) elicited by prospective memory cues were compared to SCRs elicited by aversive stimuli to test whether a single prospective memory cue triggers a similar SCR as an aversive stimulus. In Experiment 2 we also assessed whether cue specificity had a differential influence on prospective memory performance and on SCRs. We found that detecting a single prospective memory cue is as likely to elicit a SCR as an aversive stimulus. Missed prospective memory cues also elicited SCRs. On a behavioural level, specific intentions led to better prospective memory performance. However, on a psychophysiological level specificity had no influence. More generally, the results indicate reliable SCRs for prospective memory cues and point to psychophysiological measures as valuable approach, which offers a new way to study one-off prospective memory tasks. Moreover, the findings are consistent with a theory that posits multiple prospective memory retrieval stages.

  17. Might Astrobiological Findings Evoke a Religious Crisis?

    NASA Astrophysics Data System (ADS)

    Peters, T.; Froehlig, J. L.

    2009-12-01

    What might be the likely impact of confirmed discovery of extraterrestrial life—microbial or intelligent life—on terrestrial religion? Many have speculated that the anthropo-centrism and earth-centrism which allegedly have characterized our religious traditions would be confronted with a crisis. Would new knowledge that we are not alone in the universe lead to a collapse of traditional religious belief? This presentation will summarize the results of the Peters Religious Crisis Survey of 1325 respondents. This survey shows that the majority of adherents to Christianity, Islam, Judaism, and Buddhism demonstrate little or no anxiety regarding the prospect of contact with extraterrestrial life, even if they express some doubts regarding their respective religious tradition and the traditions of others. This presentation will also show that theological speculation regarding other worlds has sparked lively debate beginning as far back as the middle ages and continuing into our present era. Ted Peters is a research and teaching scholar with the Center for Theology and the Natural Sciences at the Graduate Theological Union in Berkeley, California. He is co-editor of the journal, Theology and Science, and author of the books, The Evolution of Terrestrial and Extraterrestrial Life (Pandora 2008) and Playing God? Genetic Determinism and Human Freedom (Routledge, rev. ed., 2003).

  18. Depression and prospection.

    PubMed

    Roepke, Ann Marie; Seligman, Martin E P

    2016-03-01

    Prospection, the mental representation of possible futures, is usually adaptive. When it goes awry, however, it disrupts emotion and motivation. A negative view of the future is typically seen as one symptom of depression, but we suggest that such negative prospection is the core causal element of depression. Here, we describe the empirical evidence supporting this framework, and we explore the implications for clinical interventions. We integrate several literatures: Using the database PsycInfo, we retrieved empirical studies with the keywords prospection, prediction, expectation, pessimism, mental simulation, future-thinking, future-directed thinking, foresight, and/or mental time travel, in conjunction with depression, depressed, or depressive. Three kinds of faulty prospection, taken together, could drive depression: Poor generation of possible futures, poor evaluation of possible futures, and negative beliefs about the future. Depressed mood and poor functioning, in turn, may maintain faulty prospection and feed a vicious cycle. Future-oriented treatment strategies drawn from cognitive-behavioural therapy help to fix poor prospection, and they deserve to be developed further. Prospection-based techniques may lead to transdiagnostic treatment strategies for depression and other disorders. © 2015 The British Psychological Society.

  19. Widespread exposure of Noachian phyllosilicates in the Margaritifer region of Mars: Implications for paleohydrology and astrobiological detection

    NASA Astrophysics Data System (ADS)

    Thomas, Rebecca J.; Hynek, Brian M.; Osterloo, Mikki M.; Kierein-Young, Kathryn S.

    2017-03-01

    The best locations at which to detect evidence for early life on Mars are in materials formed in near-surface aqueous environments, particularly where this resulted in the deposition of minerals such as clays that are favorable to preservation of organics. The geological history of the Margaritifer region has resulted in exceptional potential to preserve such deposits and to render them discoverable. Due to its topographic setting at the interface between highlands and lowlands, Margaritifer was a major sink for water and sediments in the early, Noachian, period, potentially creating environments that were habitable and conducive to clay formation. Subsequently, during the Late Hesperian to Amazonian, the ancient surface was extensively disrupted in association with the formation of multiple chaos regions. This activity had the potential to expose any astrobiological evidence from the earlier period. We used orbital image, spectral and topographic data to investigate the extent and means of exposure of Noachian clay-bearing deposits across the region. We find that they are indeed exposed over a very wide area in Margaritifer and that their mineralogy is most consistent with clay formation in a low-energy near-neutral pH groundwater environment. We additionally find that evidence for subsequent acidic groundwater activity is absent, indicating that biosignature preservation in these units is favored, perhaps to a greater degree than for similar deposits in the surrounding region. Further, due to the intense Hesperian-Amazonian geologic activity here, early clay-bearing units are exposed to a greater degree than achievable in regions with more localized erosive mechanisms.

  20. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    The recent report of possible water vapor plumes at Europa and Ceres, together with the well-known Enceladus plume containing water vapor, salt, ammonia, and organic molecules, suggests that sample return missions could evolve into a generic approach for outer Solar System exploration in the near future, especially for the benefit of astrobiology research. Sampling such plumes can be accomplished via fly-through mission designs, modeled after the successful Stardust mission to capture and return material from Comet Wild-2 and multiple, precise trajectory controls of the Cassini mission to fly through Enceladus’ plume. The proposed LIFE (Life Investigation For Enceladus) mission to Enceladus, which would sample organic molecules from the plume of that apparently habitable world, provides one example of the appealing scientific return of such missions. Beyond plumes, the upper atmosphere of Titan could also be sampled in this manner. The SCIM mission to Mars, also inspired by Stardust, would sample and return aerosol dust in the upper atmosphere of Mars and thus extends this concept even to other planetary bodies. Such missions share common design needs. In particular, they require large exposed sampler areas (or sampler arrays) that can be contained to the standards called for by international planetary protection protocols that COSPAR Planetary Protection Policy (PPP) recommends. Containment is also needed because these missions are driven by astrobiologically relevant science - including interest in organic molecules - which argues against heat sterilization that could destroy scientific value of samples. Sample containment is a daunting engineering challenge. Containment systems must be carefully designed to appropriate levels to satisfy the two top requirements: planetary protection policy and the preserving the scientific value of samples. Planning for Mars sample return tends to center on a hermetic seal specification (i.e., gas-tight against helium escape

  1. Investigating Changes in Students’ Attitudes Towards Science During an Adaptive Online Astrobiology Course

    NASA Astrophysics Data System (ADS)

    Perera, Viranga; Buxner, Sanlyn R.; Horodyskyj, Lev; Anbar, Ariel; Semken, Steven; Mead, Chris; Lopatto, David

    2015-11-01

    Online education is an emergent sector of formal education and Arizona State University (ASU) is a leader in offering online courses. One that garners very strong positive feedback on student surveys is Habitable Worlds, which is an interdisciplinary online science course offered every semester since Fall 2011. Primary goals of this course are to teach understanding of scientific reasoning and practices by using principles from trans-disciplinary research in astrobiology. To examine course outcomes we administered the Classroom Undergraduate Research Experience (CURE) survey, which has been previously developed to measure student experiences. Here we use the survey for the first time for an online course. The survey was taken before and after completing the course during the Fall 2014 and Spring 2015 semesters (N = 544). Here, we present students’ views of science represented by 22 questions on the survey. For the questions, students responded either "not applicable," "strongly disagree," "disagree," "neutral," "agree," or "strongly agree." In order to interpret the data, we divided the questions into three broader categories for analysis: students’ understanding of the scientific process, students’ scientific self-efficacy and students’ views on science teaching. We study how the sample of students changed their responses to each of the questions as a group by using a paired-samples sign test to gauge the statistical significance of the difference between pre and post responses. We further analyze how individual students changed their responses. For example, we designated a change from “strongly disagree” to “disagree” differently than a change from “agree” to “disagree” since the latter indicated a notable change in the student’s opinion. We found statistically significant changes on 12 of the 22 questions. These early results indicate that there are measurable changes on several identified course objectives. By measuring changes that

  2. Iron world and its astrobiological implications: The Tinto River case

    NASA Astrophysics Data System (ADS)

    Gomez, F.; Amils, A.

    2007-08-01

    has been used like an environmental scenario for new technology validation for astrobiology space missions. M.A.R.T.E. (Mars Analog Research Technology Experiment) was a multidisciplinary project for technology development in the NAI framework. REFERENCES 1.- López-Archilla, A.I., Marín, I., Amils, R. (2001) Microbial Ecol., 41: 20-35. 2.- Amaral-Zettler, L.A., Gómez, F., Zettler, E., Keenan, B.G., Amils, R., Sogin, M. (2002) Nature, 417: 137. 3.- González-Toril, E., Gómez, F., Rodríguez, N., Fernández-Remolar, D., Zuluaga, J., Marín, I., Amils, R., (2002) Hydrometall., in press. 4.- Amils, R., González-Toril, E., Gómez, F., Fernández-Remolar, D., Rodríguez, N. (2000) Spring Meeting American Geophysical Society, Abstract B22B-05. 5.- Fernández-Remolar, D.C., Rodríguez, N., Gómez, F., Amils, R. (2003) J. Geophys. Res., 108, No.E7 doi. 10.1029/2002JE001918

  3. Location-based prospective memory.

    PubMed

    O'Rear, Andrea E; Radvansky, Gabriel A

    2018-02-01

    This study explores location-based prospective memory. People often have to remember to do things when in a particular location, such as buying tissues the next time they are in the supermarket. For event cognition theory, location is important for structuring events. However, because event cognition has not been used to examine prospective memory, the question remains of how multiple events will influence prospective memory performance. In our experiments, people delivered messages from store to store in a virtual shopping mall as an ongoing task. The prospective tasks were to do certain activities in certain stores. For Experiment 1, each trial involved one prospective memory task to be done in a single location at one of three delays. The virtual environment and location cues were effective for prospective memory, and performance was unaffected by delay. For Experiment 2, each trial involved two prospective memory tasks, given in either one or two instruction locations, and to be done in either one or two store locations. There was improved performance when people received instructions from two locations and did both tasks in one location relative to other combinations. This demonstrates that location-based event structure influences how well people perform on prospective memory tasks.

  4. A Role for Memory in Prospective Timing informs Timing in Prospective Memory

    PubMed Central

    Waldum, Emily R; Sahakyan, Lili

    2014-01-01

    Time-based prospective memory (TBPM) tasks require the estimation of time in passing – known as prospective timing. Prospective timing is said to depend on an attentionally-driven internal clock mechanism, and is thought to be unaffected by memory for interval information (for reviews see, Block, Hancock, & Zakay, 2010; Block & Zakay, 1997). A prospective timing task that required a verbal estimate following the entire interval (Experiment 1) and a TBPM task that required production of a target response during the interval (Experiment 2) were used to test an alternative view that episodic memory does influence prospective timing. In both experiments, participants performed an ongoing lexical decision task of fixed duration while a varying number of songs were played in the background. Experiment 1 results revealed that verbal time estimates became longer the more songs participants remembered from the interval, suggesting that memory for interval information influences prospective time estimates. In Experiment 2, participants who were asked to perform the TBPM task without the aid of an external clock made their target responses earlier as the number of songs increased, indicating that prospective estimates of elapsed time increased as more songs were experienced. For participants who had access to a clock, changes in clock-checking coincided with the occurrence of song boundaries, indicating that participants used both song information and clock information to estimate time. Finally, ongoing task performance and verbal reports in both experiments further substantiate a role for episodic memory in prospective timing. PMID:22984950

  5. The Offshore New Harbor (ONH) Seismic Expedition: Revealing the Stratigraphic History in the Southern McMurdo Sound Region, Ross Sea, Antarctica from the Greenhouse to Icehouse Worlds

    NASA Astrophysics Data System (ADS)

    Pekar, S. F.; Speece, M. A.; Wilson, G. S.; Sunwall, D. A.; Tinto, K. J.

    2010-12-01

    In the austral spring 2008, the ANDRILL (ANtarctic geological DRILLing) Program’s Offshore New Harbor Expedition successfully collected over 48 km of multi-channel seismic (MCS) data to investigate the stratigraphic and tectonic history of westernmost Southern McMurdo Sound during the Greenhouse World (Eocene) and the start of the Icehouse World (Oligocene). This survey represents an important step for identifying future drilling targets for ANDRILL, which is a multinational program, with the aim to recover stratigraphic intervals for interpreting Antarctica’s climate and glacial history over the past 50 million years. The goal of the Offshore New Harbor Project is to recover proximal archives from two widely recognized but unresolved time intervals regarding Antarctica’s history: 1) the mid-Paleogene cryospheric development on Antarctica; and 2) the abrupt climate shift across the Eocene/Oligocene transition. The ONH seismic survey used methods successfully employed by previous ANDRILL’s surveys in Southern McMurdo Sound (2005) and in Mackay Sea Valley (2007), which included deploying a Generator Injector (G.I.) airgun through holes drilled through the ice and a 1.5 km long streamer that used 60 gimbled geophones to measure the returning reflected seismic energy. Processing of the seismic data was successfully able to remove the bottom water multiple, permitting deeper seismic reflectors to be identified for the first time in this area. Since one of the two seismic lines crossed close to the previously drilled CIROS-1, correlation was possible between the seismic reflectors and the entire stratigraphic section at CIROS-1, which has been dated as old as Late Eocene (~37 Ma). Additionally, seismic and gravity data indicated that a thick sedimentary wedge of up to 5 km lie immediately east of CIROS-1. With the Devonian Beacon Sandstone Formation having been observed to be no thicker than 2 km on land, an additional 3 km of Cenozoic sediments may lie below and

  6. Prospective memory: A comparative perspective

    PubMed Central

    Crystal, Jonathon D.; Wilson, A. George

    2014-01-01

    Prospective memory consists of forming a representation of a future action, temporarily storing that representation in memory, and retrieving it at a future time point. Here we review the recent development of animal models of prospective memory. We review experiments using rats that focus on the development of time-based and event-based prospective memory. Next, we review a number of prospective-memory approaches that have been used with a variety of non-human primates. Finally, we review selected approaches from the human literature on prospective memory to identify targets for development of animal models of prospective memory. PMID:25101562

  7. The Expose-R2 mission: astrobiology and astrochemistry in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Demets, René

    EXPOSE is an exposure platform developed by ESA which permits scientists to install test samples for 1 to 2 years at the outer surface of the ISS. In that way, the impact of the open space environment on biological and biochemical sample materials can be explored. This environment, featuring full-spectrum solar light, near-vacuum, cosmic radiation, wide temperature variations and near-weightlessness, is impossible to reproduce in its entirety in the lab. As such, EXPOSE offers astrochemists and astrobiologists a chance to acquire novel scientific data. Astrochemists are interested in Low Earth Orbit conditions due to the fact that photochemistry in space is quite different from photochemistry on Earth, where the high-energy UV compounds of the solar spectrum are filtered away by our atmosphere. As for the astro biologists, EXPOSE offers an attractive opportunity to expand earlier results obtained during short-duration LEO flights, which have shown that particular microbes and, amazingly, even some multi-cellular macroscopic organisms were able to cope with a two-week exposure to space. The open space environment, often described as harsh and hostile, can apparently be tolerated by some robust inhabitants of our Earth - unprotected, in the absence of a space suit! The first mission of EXPOSE, as an external payload on the European Columbus module, happened during 2008-2009 with the test samples provided by five separate research teams. Three additional teams were involved in the monitoring of space environment. The results were published collectively in 2012 in a special issue of the monthly journal Astrobiology. Several organisms survived, having spent 1.5 years in space. The second mission was called EXPOSE-R, the R referring to ‘Russian segment’, the location where the EXPOSE instrument was installed this time. The EXPOSE-R mission took place in 2009-2011, ten science teams were involved. The publication of the results, again as a collection, is currently in

  8. Age effects in emotional prospective memory: cue valence differentially affects the prospective and retrospective component.

    PubMed

    Schnitzspahn, Katharina M; Horn, Sebastian S; Bayen, Ute J; Kliegel, Matthias

    2012-06-01

    While first studies suggested that emotional task material may enhance prospective memory performance in young and older adults, the extent and mechanisms of this effect are under debate. The authors explored possible differential effects of cue valence on the prospective and retrospective component of prospective memory in young and older adults. Forty-five young and 41 older adults performed a prospective memory task in which emotional valence of the prospective memory cue was manipulated (positive, negative, neutral). The multinomial model of event-based prospective memory was used to analyze effects of valence and age on the two prospective memory components separately. Results revealed an interaction indicating that age differences were smaller in both emotional valence conditions. For older adults positive cues improved the prospective component, while negative cues improved the retrospective component. No main effect of valence was found for younger adults on an overt accuracy measure, but model-based analyses showed that the retrospective component was enhanced in the positive compared with the negative cue condition. The study extends the literature in demonstrating that processes underlying emotional effects on prospective memory may differ depending on valence and age. PsycINFO Database Record (c) 2012 APA, all rights reserved

  9. The Biomolecule Sequencer Project: Nanopore Sequencing as a Dual-Use Tool for Crew Health and Astrobiology Investigations

    NASA Technical Reports Server (NTRS)

    John, K. K.; Botkin, D. S.; Burton, A. S.; Castro-Wallace, S. L.; Chaput, J. D.; Dworkin, J. P.; Lehman, N.; Lupisella, M. L.; Mason, C. E.; Smith, D. J.; hide

    2016-01-01

    Human missions to Mars will fundamentally transform how the planet is explored, enabling new scientific discoveries through more sophisticated sample acquisition and processing than can currently be implemented in robotic exploration. The presence of humans also poses new challenges, including ensuring astronaut safety and health and monitoring contamination. Because the capability to transfer materials to Earth will be extremely limited, there is a strong need for in situ diagnostic capabilities. Nucleotide sequencing is a particularly powerful tool because it can be used to: (1) mitigate microbial risks to crew by allowing identification of microbes in water, in air, and on surfaces; (2) identify optimal treatment strategies for infections that arise in crew members; and (3) track how crew members, microbes, and mission-relevant organisms (e.g., farmed plants) respond to conditions on Mars through transcriptomic and genomic changes. Sequencing would also offer benefits for science investigations occurring on the surface of Mars by permitting identification of Earth-derived contamination in samples. If Mars contains indigenous life, and that life is based on nucleic acids or other closely related molecules, sequencing would serve as a critical tool for the characterization of those molecules. Therefore, spaceflight-compatible nucleic acid sequencing would be an important capability for both crew health and astrobiology exploration. Advances in sequencing technology on Earth have been driven largely by needs for higher throughput and read accuracy. Although some reduction in size has been achieved, nearly all commercially available sequencers are not compatible with spaceflight due to size, power, and operational requirements. Exceptions are nanopore-based sequencers that measure changes in current caused by DNA passing through pores; these devices are inherently much smaller and require significantly less power than sequencers using other detection methods

  10. The Proposed Mars Astrobiology Explorer - Cacher [MAX-C] Rover: First Step in a Potential Sample Return Campaign

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Beaty, David W.

    2010-01-01

    Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.

  11. Assessing Student Attitudes Towards Science in an Adaptive Online Astrobiology Course: Comparing Online and On-Campus Undergraduates

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Perera, V.; Mead, C.; Horodyskyj, L.; Semken, S. C.; Lopatto, D.; Anbar, A. D.

    2016-12-01

    General-education Science, Technology, Engineering, and Mathematics (STEM) courses are considered essential to a college education, in part, to train students to think critically and to make informed decisions about complex scientific issues such as climate change and public health. Therefore, the goals of these STEM courses go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life, and understanding the nature of science. The Classroom Undergraduate Research Experience (CURE) survey is frequently used to measure these attitudes, but it has not previously been used in an online, general education course. In this work, we administered the CURE survey for three semesters (N = 774) before and after completion of an online astrobiology course called Habitable Worlds. We compare students taking this course as part of fully-online degree programs (o-course) with those taking it as part of traditional undergraduate programs (i-course). More females and older students were among the o-course group, while overall the course had more white students than the Arizona State University average. Mean course grades were similar between the two groups but attitudes toward science differred significantly. O-course students began the course with more positive attitudes than i-course students, and o-course students also showed more positive changes at the end of the course. These differences suggest lesser intrinsic motivation among the i-course students. Additionally, pre-course attitudes correlated with final course grade for o-course students, but not for i-course students, which implies that success among o-course students is influenced by different factors than i-course students. Thus, effective student support strategies may differ for online-only students. Future work will include student interviews to better calibrate the CURE survey to online science courses.

  12. Astrobiology Training in Lava Tubes (ATiLT): Characterizing coralloid speleothems in basaltic lava tubes as a Mars analogue

    NASA Astrophysics Data System (ADS)

    Ni, J.; Leveille, R. J.; Douglas, P.

    2017-12-01

    Coralloid speleothems or cave corals are small mineralised nodes that can take a variety of forms, and which develop through groundwater seepage and water-rock interaction in caves. They are found commonly on Earth in a plethora of caves, including lava tubes. Since lava tubes have been identified on the surface of Mars from remotely sensed images, there has been interest in studying Earth's lava tube systems as an analogue for understanding Martian lava environments. If cave minerals were found on Mars, they could indicate past or present water-rock interaction in the Martian subsurface. Martian lava tubes could also provide insights into habitable subsurface environments as well as conditions favourable for the synthesis and preservation of biosignatures. One of the aims of the Astrobiology Training in Lava Tubes (ATiLT) project is to analyze biosignatures and paleoenvironmental indicators in secondary cave minerals, which will be looked at in-situ and compared to collected field samples. In this study, secondary mineralization in lava cave systems from Lava Beds National Monument, CA is examined. In the field, coralloid speleothems have been observed growing on all surfaces of the caves, including cave ceilings, floors, walls and overhangs. They are also observed growing adjacent to biofilms, which sometimes fill in the cracks of the coralloid nodes. Preliminary results show the presence of opal, calcite, quartz and other minor minerals in the speleothems. This study seeks to understand the formation mechanism and source of these secondary minerals, as well as determine their possible relation to the biofilms. This will be done through the analysis of the water chemistry, isotope geochemistry and microscale mineralogy.

  13. Titan Ice and Dust Experiment (TIDE): Detection and Analysis of Compounds of Interest to Astrobiology in the Lower Atmosphere and Surface of Titan

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Holland Paul M.; Stimac, Robert M.; Kaye, William J.; Takeruchi, Noreshige

    2004-01-01

    The Titan Orbiter Aerorover Mission (TOAM) is a proposed concept for the Solar System Exploration Visions Mission, Titan Explorer, a follow-on to the Cassini-Huygens mission. TOAM would use a Titan polar orbiter and a lighter-than-air aerorover to investigate the surface and atmosphere of Titan. Astrobiology issues will be addressed though TOAM investigations including, for example: Distribution and composition of organics (atmospheric, aerosol, surface); Organic chemical processes, their chemical context and energy sources; and Seasonal variations and interactions of the atmosphere and surface. The TIDE instrument will perform in-situ analyses to obtain comprehensive and sensitive molecular and elemental assays of volatile organics in the atmosphere, oceans and surface. TIDE chemical analyses are conducted by a Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS). This TIDE GC-IMS was a component of the mini-Cometary Ice and Dust Experiment (mini-CIDEX) developed for the chemical analysis of a cometary environment. Both the GC and helium IMS of mini-CIDEX have been further developed to better meet the analytical and operational requirements of the TOAM. application. A Micro-ElectroMechanical System (MEMS) GC and Mini-Cell helium IMS are under development to replace their respective mini-CIDEX components, providing similar or advanced analytical capabilities.

  14. Health values and prospect theory.

    PubMed

    Treadwell, J R; Lenert, L A

    1999-01-01

    Health values are important components of medical decisions. Experimental data suggest that people value health in complex and dynamic ways. Prospect theory is a descriptive theory of choice that may accurately characterize how people assign values to health states. The authors first provide background on prospect theory and how it can be applied to health values. Next, they review the relevant health research and find mixed support for prospect theory. Last, they discuss implications of prospect theory for cost-effectiveness analysis. The application of prospect theory to health deserves further research because it may help clarify the link between health and values.

  15. Autonomous NanoTechnology Swarm (ANTS) Prospecting Asteroid Mission (PAM), Asteroid Proximity Operations

    NASA Technical Reports Server (NTRS)

    Marr, Greg; Cooley, Steve; Roithmayr, Carlos; Kay-Bunnell, Linda; Williams, Trevor

    2004-01-01

    The Autonomous NanoTechnology Swarm (ANTS) is a generic mission architecture based on spatially distributed spacecraft, autonomous and redundant components, and hierarchical organization. The ANTS Prospecting Asteroid Mission (PAM) is an ANTS application which will nominally use a swarm of 1000 spacecraft. There would be 10 types of "specialists" with common spacecraft buses. There would be 10 subswarms of approximately 100 spacecraft each or approximately 10 of each specialist in each swarm. The ANTS PAM primary objective is the exploration of the asteroid belt in search of resources and material with astrobiologically relevant origins and signatures. The ANTS PAM spacecraft will nominally be released from a station in an Earth-Moon L1 libration point orbit, and they will use Solar sails for propulsion. The sail structure would be highly flexible, capable of changing morphology to change cross-section for capture of sunlight or to form effective "tip vanes" for attitude control. ANTS PAM sails would be capable of full to partial deployment, to change effective sail area and center of pressure, and thus allow attitude control. Results of analysis of a transfer trajectory from Earth to a sample target asteroid will be presented. ANTS PAM will require continuous coverage of different asteroid locations as close as one to two asteroid "diameters" from the surface of the asteroid for periods of science data collection during asteroid proximity operations. Hovering spacecraft could meet the science data collection objectives. The results of hovering analysis will be presented. There are locations for which hovering is not possible, for example on the illuminated side of the asteroid. For cases where hovering is not possible, the results of utilizing asteroid formations to orbit the asteroid and achieve the desired asteroid viewing will be presented for sample asteroids. The ability of ANTS PAM to reduce the area of the solar sail during asteroid proximity operations is

  16. Assessing Attitudes Towards Science During an Adaptive Online Astrobiology Course: Comparing Online and On-Campus Undergraduates

    NASA Astrophysics Data System (ADS)

    Perera, Viranga; Mead, Chris; Buxner, Sanlyn; Horodyskyj, Lev; Semken, Steven; Lopatto, David; Anbar, Ariel

    2016-10-01

    General-education Science, Technology, Engineering, and Mathematics (STEM) courses are accepted as essential to a college education. An often cited reason is to train a scientifically literate populace who can think critically and make informed decisions about complex issues such as climate change, health care, and atomic energy. Goals of these STEM courses, therefore, go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life and understanding the nature of science. To gauge if such non-content learning outcomes are being met in our course, an online astrobiology course called Habitable Worlds, we administered the Classroom Undergraduate Research Experience (CURE) survey to students. The survey was administered before and after completion of the course for three semesters starting with the Fall 2014 semester and ending with the Fall 2015 semester (N = 774). A factor analysis indicated three factors on attitudes: toward science education, toward the interconnectedness of science with non-science fields, and toward the nature of science. Here we present some differences between students enrolled in online degree programs (o-course) and those enrolled in traditional undergraduate programs (i-course). While mean course grades were similar, changes in attitudes toward science differ significantly between o-course and i-course students. The o-course students began the course with more positive attitudes across all three factors than the i-course students. Their attitudes toward science education improved during the course, while the i-course students showed no change. Attitudes toward the other two factors declined in both populations during the course, but declines were smaller among o-course students. These differences may indicate lesser intrinsic motivation among the i-course students. The CURE survey has not been used before in an online course; therefore, we will

  17. Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Walter, N.; Amils, R.; Rull, F.; Klingelhöfer, A. K.; Kviderova, J.; Sarrazin, P.; Foing, B.; Behar, A.; Fleischer, I.; Parro, V.; Garcia-Villadangos, M.; Blake, D.; Martin Ramos, J. D.; Direito, S.; Mahapatra, P.; Stam, C.; Venkateswaran, K.; Voytek, M.

    2011-07-01

    Recently reported results from latest Mars Orbiters and Rovers missions are transforming our opinion about the red planet. That dry and inhospitable planet reported in the past is becoming a wetter planet with high probabilities of water existence in the past. Nowadays, some results seem to indicate the presence of water beneath the Mars surface. But also mineralogy studies by NASA Opportunity Rover report iron oxides and hydroxides precipitates on Endurance Crater. Sedimentary deposits have been identified at Meridiani Planum. These deposits must have generated in a dune aqueous acidic and oxidizing environment. Similarities appear when we study Rio Tinto, and acidic river under the control of iron. The discovery of extremophiles on Earth widened the window of possibilities for life to develop in the Universe, and as a consequence on Mars and other planetary bodies with astrobiological interest. The compilation of data produced by the ongoing missions offers an interested view for life possibilities to exist: signs of an early wet Mars and rather recent volcanic activity as well as ground morphological characteristics that seem to be promoted by liquid water. The discovery of important accumulations of sulfates and the existence of iron minerals such as jarosite in rocks of sedimentary origin has allowed specific terrestrial models to come into focus. Río Tinto (Southwestern Spain, Iberian Pyritic Belt) is an extreme acidic environment, product of the chemolithotrophic activity of micro-organisms that thrive in the massive pyrite-rich deposits of the Iberian Pyritic Belt. Some particular protective environments should house the organic molecules and bacterial life forms in harsh environments such as Mars surface supporting microniches inside precipitated minerals or inside rocks. Terrestrial analogues could help us to afford the comprehension of habitability (on other planetary bodies). We are reporting here the multidisciplinary study of some endolithic niches

  18. Transit Spectroscopy of Biosignature Gases: Prospects and Challenges

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, Shawn David; Arney, Giada; Meadows, Victoria; Virtual Planetary Laboratory, Sellers Exoplanet Environments Collaboration

    2018-01-01

    Transit spectroscopy should provide astronomers with their first opportunities to search for signs of life on exoplanets: first with JWST, then with ground-based extremely large telescopes, and eventually with purpose-designed missions such as the Origins Space Telescope. However, given this exciting opportunity, there are challenges to observing these signatures. The transit observation technique will carry observational biases towards planets orbiting cool (M-type) stars. These planets have challenges for habitability, including the potential for tidal locking and for planetary atmospheres to be loss to high-energy radiation from the host star. These observations will also have a bias towards spectral information from the uppermost of planetary atmospheres, where strictly abiotic photochemical processes can efficiently produce some biosignature gases, in particular as oxygen and ozone. Here, we will discuss these challenges, and how future missions/telescopes can account for them in their instrument design and observation strategies. We will also discuss how, even if some of the concerns above are warranted, such observations are justified astrobiological explorations of rocky planets around other stars.

  19. Dormant state in bacteria: Conceptions and implications for terrestrial biogeoscience and astrobiology

    NASA Astrophysics Data System (ADS)

    Mulyukin, A.

    2003-04-01

    Gaining insight into strategies and mechanisms that ensure long term-preservation of microorganisms in various environments, including cold habitats, is a very important issue for terrestrial biogeoscience and astrobiology. This communication has a focus on the analysis of the published and our experimental data regarding the dormant state of different microorganisms, with an emphasis on non-spore-forming bacteria, which are widely spread in numerous ecological niches (e.g. permafrost sediments). Albeit it is recognized that one of the strategies to endure environmental stresses is entering of non-spore-forming bacteria into the viable-but-non-culturable state, a question of whether these microorganisms have the resting stage remains unclear. However, our previous studies showed that non-spore-forming bacteria and yeast could form cyst-like cells that possess many attributes of constitutively resting cells. As applied to the survival strategy of non-spore-forming bacteria in permafrost sediments, recognizing a very important role of the viable-but-nonculturable state in asporogenous bacteria, we however believe that their long-term maintenance in such habitats is due to the formation of cyst-like cells. Interestingly, bacterial isolates from permafrost sediments showed a greater productivity of autoregulatory factors, favoring the transition of cells into the resting state, and a more elevated resistance to some stresses than closely related collection strains. This suggests a greater potentiality of the permafrost isolates to enter the resting stage and thereby to survive for millennia years in natural habitats. However, it is known that only a little part of microorganisms that are present in environmental samples can be enumerated by standard plating on agar media, and a discrepancy between the total number of cells and those capable of forming colonies is a rather common case. Such a discrepancy can be due to either the actual non-culturability of microbial

  20. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  1. Activity-based prospective memory in schizophrenia.

    PubMed

    Kumar, Devvarta; Nizamie, S Haque; Jahan, Masroor

    2008-05-01

    The study reports activity-based prospective memory as well as its clinical and neuropsychological correlates in schizophrenia. A total of 42 persons diagnosed with schizophrenia and 42 healthy controls were administered prospective memory, set-shifting, and verbal working memory tasks. The schizophrenia group was additionally administered various psychopathology rating scales. Group differences, with poorer performances of the schizophrenia group, were observed on the measures of prospective memory, working memory, and set shifting. The performance on prospective memory tasks correlated with the performance levels on verbal working memory and set-shifting tasks but not with the clinical measures. This study demonstrated impaired activity-based prospective memory in schizophrenia. The impairment can be due to deficits in various neuropsychological domains.

  2. An Agent for the Prospect Presentation Problem

    DTIC Science & Technology

    2014-05-01

    Economics, 12:133–158. [18] Daniel Kahneman . Thinking , fast and slow . Allen Lane, London, 2011. [19] Daniel Kahneman and Amos Tversky. Prospect theory...u(X) = log(X) (2) 2.2 Prospect Theory The Prospect Theory was presented by Kahneman and Tversky in [19] and later refined to the Cumulative Prospect...fully rationally, but rather use their own de- cision weights when deciding whether to reject or accept a gamble. In his book, Kahneman [18] (p.314

  3. Selective effects of acute alcohol intake on the prospective and retrospective components of a prospective-memory task with emotional targets.

    PubMed

    Walter, Nora T; Bayen, Ute J

    2016-01-01

    Prospective memory involves remembering to do something in the future and has a prospective component (remembering that something must be done) and a retrospective component (remembering what must be done and when it must be done). Initial studies reported an impairment in prospective-memory performance due to acute alcohol consumption. Retrospective-memory studies demonstrated that alcohol effects vary depending on the emotionality of the information that needs to be learned. The aim of the present study was to investigate possible differential effects of a mild acute alcohol dose (0.4 g/kg) on the prospective and retrospective components of prospective memory depending on cue valence. Seventy-five participants were allocated to an alcohol or placebo group and performed a prospective-memory task in which prospective-memory cue valence was manipulated (negative, neutral, positive). The multinomial model of event-based prospective memory (Smith and Bayen 2004) was used to measure alcohol and valence effects on the two prospective-memory components separately. Overall, no main effect of alcohol or valence on prospective-memory performance occurred. However, model-based analyses demonstrated a significantly higher retrospective component for positive compared with negative cues in the placebo group. In the alcohol group, the prospective component was weaker for negative than for neutral cues and the retrospective component was stronger for positive than for neutral cues. Group comparisons showed that the alcohol group had a significantly lower prospective component for negative cues and a lower retrospective component for neutral cues. This is the first study to demonstrate selective alcohol effects on prospective-memory components depending on prospective-memory cue valence.

  4. The PROSPECT physics program

    DOE PAGES

    Ashenfelter, J.; Balantekin, A. B.; Band, H. R.; ...

    2016-10-17

    The precision reactor oscillation and spectrum experiment, PROSPECT, is designed to make a precise measurement of the antineutrino spectrum from a highly-enriched uranium reactor and probe eV-scale sterile neutrinos by searching for neutrino oscillations over a distance of several meters. The subject of this paper, PROSPECT, is conceived as a 2-phase experiment utilizing segmented 6Li-doped liquid scintillator detectors for both efficient detection of reactor antineutrinos through the inverse beta decay reaction and excellent background discrimination. PROSPECT Phase I consists of a movable 3 ton antineutrino detector at distances of 7–12 m from the reactor core. It will probe the best-fitmore » point of the ν e disappearance experiments at 4σ in 1 year and the favored region of the sterile neutrino parameter space at > 3σ in 3 years. With a second antineutrino detector at 15–19 m from the reactor, Phase II of PROSPECT can probe the entire allowed parameter space below 10 eV 2 at 5σ in 3 additional years. Finally, the measurement of the reactor antineutrino spectrum and the search for short-baseline oscillations with PROSPECT will test the origin of the spectral deviations observed in recent θ 13 experiments, search for sterile neutrinos, and conclusively address the hypothesis of sterile neutrinos as an explanation of the reactor anomaly.« less

  5. The PROSPECT physics program

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, A. B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bignell, L.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Conant, A. J.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; DuVernois, M.; Erikson, A. S.; Febbraro, M. T.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Hackett, B. T.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Insler, J.; Jaffe, D. E.; Jones, D.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; Matta, J. T.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Nikkel, J. A.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Surukuchi, P. T.; Trinh, C.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zangakis, G. Z.; Zhang, C.; Zhang, X.; PROSPECT Collaboration

    2016-11-01

    The precision reactor oscillation and spectrum experiment, PROSPECT, is designed to make a precise measurement of the antineutrino spectrum from a highly-enriched uranium reactor and probe eV-scale sterile neutrinos by searching for neutrino oscillations over a distance of several meters. PROSPECT is conceived as a 2-phase experiment utilizing segmented 6Li-doped liquid scintillator detectors for both efficient detection of reactor antineutrinos through the inverse beta decay reaction and excellent background discrimination. PROSPECT Phase I consists of a movable 3 ton antineutrino detector at distances of 7-12 m from the reactor core. It will probe the best-fit point of the {ν }e disappearance experiments at 4σ in 1 year and the favored region of the sterile neutrino parameter space at \\gt 3σ in 3 years. With a second antineutrino detector at 15-19 m from the reactor, Phase II of PROSPECT can probe the entire allowed parameter space below 10 eV2 at 5σ in 3 additional years. The measurement of the reactor antineutrino spectrum and the search for short-baseline oscillations with PROSPECT will test the origin of the spectral deviations observed in recent {θ }13 experiments, search for sterile neutrinos, and conclusively address the hypothesis of sterile neutrinos as an explanation of the reactor anomaly.

  6. Galactic punctuated equilibrium: how to undermine Carter's anthropic argument in astrobiology.

    PubMed

    Cirković, Milan M; Vukotić, Branislav; Dragićević, Ivana

    2009-06-01

    A new strategy by which to defeat Carter's "anthropic" argument against extraterrestrial life and intelligence is presented. Our approach is based on relaxing hidden uniformitarian assumptions and considering instead a dynamical succession of evolutionary regimes governed by both global (Galaxy-wide) and local (planet- or planetary system-limited) regulation mechanisms. Notably, our increased understanding of the nature of supernovae, gamma-ray bursts, and strong coupling between the Solar System and the Galaxy, and the theories of "punctuated equilibria" and "macroevolutionary regimes" are in full accordance with the regulation-mechanism picture. The application of this particular strategy highlights the limits of application of Carter's argument and indicates that, in the real universe, its applicability conditions are not satisfied. We conclude that drawing far-reaching conclusions about the scarcity of extraterrestrial intelligence and the prospects of our efforts to detect it on the basis of this argument is unwarranted.

  7. Prospective memory impairment in "ecstasy" (MDMA) users.

    PubMed

    Rendell, Peter G; Gray, Timothy J; Henry, Julie D; Tolan, Anne

    2007-11-01

    Considerable research indicates that "ecstasy" users perceive their memory for future intentions (prospective memory) to be impaired. However, only one empirical study to date has directly tested how this capacity is affected by ecstasy use, and this study provided relatively limited information regarding the extent, scope, or implications of problems experienced. The present study assessed prospective performance on a laboratory measure of prospective memory that closely represents the types of prospective memory tasks that actually occur in everyday life and provides an opportunity to investigate the different sorts of prospective memory failures that occur ("Virtual Week"). Ecstasy user group (27 current users and 34 nonusers) was between participants, and prospective memory task (regular, irregular, time-check) was within participants. A measure sensitive to specific aspects of psychopathology was also administered. Ecstasy users were significantly impaired on Virtual Week, and these deficits were of a comparable magnitude irrespective of the specific prospective memory task demands. The pattern of results was unchanged after controlling for marijuana use, level of psychopathology, and sleep quality. Further, prospective memory was shown to be significantly impaired for both relatively infrequent and relatively frequent ecstasy users, although for the latter group the magnitude of this deficit was greater. Prospective memory performance is sensitive to regular and even moderate ecstasy use. Importantly, ecstasy users experience generalized difficulties with prospective memory, suggesting that these deficits are likely to have important implications for day-to-day functioning.

  8. An Automated, Low Mass, Low Power Drill for Acquiring Subsurface Samples of Ground Ice for Astrobiology Studies on Earth and on Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.

    2003-01-01

    As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.

  9. Did intense volcanism trigger the first Late Ordovician icehouse?

    USGS Publications Warehouse

    Buggisch, Werner; Joachimski, Michael M.; Lehnert, Oliver; Bergstrom, S. M.; Repetski, John E.

    2009-01-01

    Oxygen isotopes measured on Late Ordovician conodonts from Minnesota and Kentucky (United States) were studied to reconstruct the paleotemperature history during late Sandbian to Katian (Mohawkian–Cincinnatian) time. This time interval was characterized by intense volcanism, as shown by the prominent Deicke, Millbrig, and other K-bentonite beds. A prominent carbon isotope excursion (Guttenberg δ13C excursion, GICE) postdates the Millbrig volcanic eruptions, and has been interpreted to reflect a drawdown of atmospheric carbon dioxide and climatic cooling. The oxygen isotope record in conodont apatite contradicts this earlier interpretation. An increase in δ18O of 1.5‰ (Vienna standard mean ocean water) just above the Deicke K-bentonite suggests an abrupt and short-lived cooling that possibly initiated a first short-term glacial episode well before the major Hirnantian glaciation. The decrease in δ18O immediately after the mega-eruptions indicates warming before the GICE, and no cooling is shown in the GICE interval. The coincidence of the Deicke mega-eruption with a cooling event suggests that this major volcanic event had a profound effect on Late Ordovician (late Mohawkian) climate.

  10. Did intense volcanism trigger the first Late Ordovician icehouse?

    USGS Publications Warehouse

    Buggisch, Werner; Joachimski, Michael M.; Lehnert, Oliver; Bergström, Stig M.; Repetski, John E.; Webers, Gerald F.

    2010-01-01

    Oxygen isotopes measured on Late Ordovician conodonts from Minnesota and Kentucky (United States) were studied to reconstruct the paleotemperature history during late Sandbian to Katian (Mohawkian–Cincinnatian) time. This time interval was characterized by intense volcanism, as shown by the prominent Deicke, Millbrig, and other K-bentonite beds. A prominent carbon isotope excursion (Guttenberg δ13C excursion, GICE) postdates the Millbrig volcanic eruptions, and has been interpreted to reflect a drawdown of atmospheric carbon dioxide and climatic cooling. The oxygen isotope record in conodont apatite contradicts this earlier interpretation. An increase in δ18O of 1.5‰ (Vienna standard mean ocean water) just above the Deicke K-bentonite suggests an abrupt and short-lived cooling that possibly initiated a first short-term glacial episode well before the major Hirnantian glaciation. The decrease in δ18O immediately after the mega-eruptions indicates warming before the GICE, and no cooling is shown in the GICE interval. The coincidence of the Deicke mega-eruption with a cooling event suggests that this major volcanic event had a profound effect on Late Ordovician (late Mohawkian) climate.

  11. The role of Quaternary environmental change in plant macroevolution: the exception or the rule?

    PubMed Central

    Willis, Katherine J; Niklas, Karl J

    2004-01-01

    The Quaternary has been described as an important time for genetic diversification and speciation. This is based on the premise that Quaternary climatic conditions fostered the isolation of populations and, in some instances, allopatric speciation. However, the 'Quaternary Ice-Age speciation model' rests on two key assumptions: (i) that biotic responses to climate change during the Quaternary were significantly different from those of other periods in Earth's history; and (ii) that the mechanisms of isolation during the Quaternary were sufficient in time and space for genetic diversification to foster speciation. These assumptions are addressed by examining the plant fossil record for the Quaternary (in detail) and for the past 410 Myr, which encompasses previous intervals of icehouse Earth. Our examination of the Quaternary record indicates that floristic responses to climate changes during the past 1.8 Myr were complex and that a distinction has to be made between those plants that were able to withstand the extremes of glacial conditions and those that could not. Generation times are also important as are different growth forms (e.g. herbaceous annuals and arborescent perennials), resulting in different responses in terms of genetic divergence rates during isolation. Because of these variations in the duration of isolation of populations and genomic diversification rates, no canonical statement about the predominant floristic response to climatic changes during the Quaternary (i.e. elevated rates of speciation or extinction, or stasis) is currently possible. This is especially true because of a sampling bias in terms of the fossil record of tree species over that of species with non-arborescent growth forms. Nevertheless, based on the available information, it appears that the dominant response of arborescent species during the Quaternary was extinction rather than speciation or stasis. By contrast, our examination of the fossil record of vascular plants for the

  12. Field/Lab Training Workshops in Planetary Geology and Astrobiology for Secondary School Teachers

    NASA Astrophysics Data System (ADS)

    Treiman, A.; Newsom, H.; Hoehler, T.; Tsairides, C.; Karlstrom, K.; Crossey, L.; Kiefer, W.; Kadel, S.; Garcia-Pichel, F.; Aubele, J.; Crumpler, L.

    2003-12-01

    Thematic field-lab-classroom workshops can be successful in training secondary teachers in planetary geology and astrobiology, from the LPI's 4 years experience. A typical workshop includes ˜4 days of field study and ˜3 days of related classroom/lab lectures and exercises. Up to 30 teachers have participated at once, and the staff averages 5 researchers and educators. The 2003 workshop, The Great Desert, focused on geology and life in the Colorado Plateau as analogs for Mars. Specific emphases were on geologic processes exemplified in the Grand Canyon, Sunset Crater and Meteor Crater, and on biotic communities in desert soils and hot springs. The classroom portion, hosted by UNM, included lectures, lab work, and teaching exercises keyed to the field experience and its extensions to Mars. Formal followups: non-directive exit questionnaires; email list-serves for participants; websites with images, presentations, and exercises from the workshop, and links to related materials (e.g., http://www.lpi.usra.edu/education/EPO/yellowstone2002/index.html); and interviews for six-month retrospective. Graduate and continuing education credit are available. Past workshops, all relevant to Mars, have targeted: geology and extremophiles of Yellowstone NP, geology of the Cascade volcanos; and giant floods and lava flows of central Washington. The greatest benefit of this workshop format is the teachers' intense, deep experience, emphasizing scientific content. They learn from field, classroom, and laboratory perspectives, and work with PhD level researchers who contribute their excitement, demonstrate and teach critical thought processes, and provide authoritative background and answers. The small group size permits personal interactions (among teachers and presenters) that complement each other's understanding and appreciation of the subject. They log ˜65 contact hours with the staff, in small groups or one-on-one. Teachers return to the classroom with personal experiences

  13. Mineralogy of Surface Serpentinite Outcrops in the Coast Range Ophiolite: Implications for the Deep Biosphere and Astrobiology

    NASA Astrophysics Data System (ADS)

    Mccann, A. R.; Cardace, D.; Carnevale, D.; Ehlmann, B. L.

    2011-12-01

    Range Ophiolite, along with aerial-view maps, which will be compared with imagery and data for recently confirmed serpentinite exposures in the Nili Fossae region of the Martian surface. A summary table of terrestrial microbes (and their metabolisms) detected in serpentinite groundwaters will be provided, to add specificity to candidate subterranean life forms on Mars, be they active presently or in the planet's history. Ehlmann et al. 2010. GRL 37:1-5 Schulte et al. 2006. Astrobiology 6(2):364-376

  14. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory.

    PubMed

    Meier, Beat; Zimmermann, Thomas D

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  15. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory

    PubMed Central

    Meier, Beat; Zimmermann, Thomas D.

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially. PMID:26082709

  16. Exoplanet Biosignatures: Observational Prospects

    PubMed Central

    Angerhausen, Daniel; Deitrick, Russell; Domagal-Goldman, Shawn; Grenfell, John Lee; Hori, Yasunori; Kane, Stephen R.; Pallé, Enric; Rauer, Heike; Siegler, Nicholas; Stapelfeldt, Karl; Stevenson, Kevin B.

    2018-01-01

    Abstract Exoplanet hunting efforts have revealed the prevalence of exotic worlds with diverse properties, including Earth-sized bodies, which has fueled our endeavor to search for life beyond the Solar System. Accumulating experiences in astrophysical, chemical, and climatological characterization of uninhabitable planets are paving the way to characterization of potentially habitable planets. In this paper, we review our possibilities and limitations in characterizing temperate terrestrial planets with future observational capabilities through the 2030s and beyond, as a basis of a broad range of discussions on how to advance “astrobiology” with exoplanets. We discuss the observability of not only the proposed biosignature candidates themselves but also of more general planetary properties that provide circumstantial evidence, since the evaluation of any biosignature candidate relies on its context. Characterization of temperate Earth-sized planets in the coming years will focus on those around nearby late-type stars. The James Webb Space Telescope (JWST) and later 30-meter-class ground-based telescopes will empower their chemical investigations. Spectroscopic studies of potentially habitable planets around solar-type stars will likely require a designated spacecraft mission for direct imaging, leveraging technologies that are already being developed and tested as part of the Wide Field InfraRed Survey Telescope (WFIRST) mission. Successful initial characterization of a few nearby targets will be an important touchstone toward a more detailed scrutiny and a larger survey that are envisioned beyond 2030. The broad outlook this paper presents may help develop new observational techniques to detect relevant features as well as frameworks to diagnose planets based on the observables. Key Words: Exoplanets—Biosignatures—Characterization—Planetary atmospheres—Planetary surfaces. Astrobiology 18, 739–778. PMID:29938537

  17. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    PubMed

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  18. The Subsurface Geology of Río Tinto: Material Examined During a Simulated Mars Drilling Mission for the Mars Astrobiology Research and Technology Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  19. Prospective registration trends, reasons for retrospective registration and mechanisms to increase prospective registration compliance: descriptive analysis and survey.

    PubMed

    Hunter, Kylie Elizabeth; Seidler, Anna Lene; Askie, Lisa M

    2018-03-01

    To analyse prospective versus retrospective trial registration trends on the Australian New Zealand Clinical Trials Registry (ANZCTR) and to evaluate the reasons for non-compliance with prospective registration. Part 1: Descriptive analysis of trial registration trends from 2006 to 2015. Part 2: Online registrant survey. Part 1: All interventional trials registered on ANZCTR from 2006 to 2015. Part 2: Random sample of those who had retrospectively registered a trial on ANZCTR between 2010 and 2015. Part 1: Proportion of prospective versus retrospective clinical trial registrations (ie, registration before versus after enrolment of the first participant) on the ANZCTR overall and by various key metrics, such as sponsor, funder, recruitment country and sample size. Part 2: Reasons for non-compliance with prospective registration and perceived usefulness of various proposed mechanisms to improve prospective registration compliance. Part 1: Analysis of the complete dataset of 9450 trials revealed that compliance with prospective registration increased from 48% (216 out of 446 trials) in 2006 to 63% (723/1148) in 2012 and has since plateaued at around 64%. Patterns of compliance were relatively consistent across sponsor and funder types (industry vs non-industry), type of intervention (drug vs non-drug) and size of trial (n<100, 100-500, >500). However, primary sponsors from Australia/New Zealand were almost twice as likely to register prospectively (62%; 4613/7452) compared with sponsors from other countries with a WHO Network Registry (35%; 377/1084) or sponsors from countries without a WHO Registry (29%; 230/781). Part 2: The majority (56%; 84/149) of survey respondents cited lack of awareness as a reason for not registering their study prospectively. Seventy-four per cent (111/149) stated that linking registration to ethics approval would facilitate prospective registration. Despite some progress, compliance with prospective registration remains suboptimal. Linking

  20. Prospective registration trends, reasons for retrospective registration and mechanisms to increase prospective registration compliance: descriptive analysis and survey

    PubMed Central

    Seidler, Anna Lene; Askie, Lisa M

    2018-01-01

    Objectives To analyse prospective versus retrospective trial registration trends on the Australian New Zealand Clinical Trials Registry (ANZCTR) and to evaluate the reasons for non-compliance with prospective registration. Design Part 1: Descriptive analysis of trial registration trends from 2006 to 2015. Part 2: Online registrant survey. Participants Part 1: All interventional trials registered on ANZCTR from 2006 to 2015. Part 2: Random sample of those who had retrospectively registered a trial on ANZCTR between 2010 and 2015. Main outcome measures Part 1: Proportion of prospective versus retrospective clinical trial registrations (ie, registration before versus after enrolment of the first participant) on the ANZCTR overall and by various key metrics, such as sponsor, funder, recruitment country and sample size. Part 2: Reasons for non-compliance with prospective registration and perceived usefulness of various proposed mechanisms to improve prospective registration compliance. Results Part 1: Analysis of the complete dataset of 9450 trials revealed that compliance with prospective registration increased from 48% (216 out of 446 trials) in 2006 to 63% (723/1148) in 2012 and has since plateaued at around 64%. Patterns of compliance were relatively consistent across sponsor and funder types (industry vs non-industry), type of intervention (drug vs non-drug) and size of trial (n<100, 100–500, >500). However, primary sponsors from Australia/New Zealand were almost twice as likely to register prospectively (62%; 4613/7452) compared with sponsors from other countries with a WHO Network Registry (35%; 377/1084) or sponsors from countries without a WHO Registry (29%; 230/781). Part 2: The majority (56%; 84/149) of survey respondents cited lack of awareness as a reason for not registering their study prospectively. Seventy-four per cent (111/149) stated that linking registration to ethics approval would facilitate prospective registration. Conclusions Despite some

  1. Prospect Theory and Coercive Bargaining

    ERIC Educational Resources Information Center

    Butler, Christopher K.

    2007-01-01

    Despite many applications of prospect theory's concepts to explain political and strategic phenomena, formal analyses of strategic problems using prospect theory are rare. Using Fearon's model of bargaining, Tversky and Kahneman's value function, and an existing probability weighting function, I construct a model that demonstrates the differences…

  2. 50 CFR 27.64 - Prospecting and mining.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Prospecting and mining. 27.64 Section 27.64 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Property § 27.64 Prospecting and mining. Prospecting, locating, or filing mining claims on national...

  3. 50 CFR 27.64 - Prospecting and mining.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Prospecting and mining. 27.64 Section 27.64 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Property § 27.64 Prospecting and mining. Prospecting, locating, or filing mining claims on national...

  4. 43 CFR 3815.2 - Prospecting and mining.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Prospecting and mining. 3815.2 Section... Mineral Locations in Stock Driveway Withdrawals § 3815.2 Prospecting and mining. All prospecting and mining operations shall be conducted in such manner as to cause no interference with the use of the...

  5. Mars Analog Research and Technology Experiment (MARTE): A Simulated Mars Drilling Mission to Search for Subsurface Life at the Rio Tinto, Spain

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Lemke, Larry; Mandell, Humboldt; McKay, David; George, Jeffrey; Gomez-Alvera, Javier; Amils, Ricardo; Stevens, Todd; Miller, David

    2003-01-01

    The MARTE (Mars Astrobiology Research and Technology Experiment) project was selected by the new NASA ASTEP program, which supports field experiments having an equal emphasis on Astrobiology science and technology development relevant to future Astrobiology missions. MARTE will search for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River in southwestern Spain while also demonstrating technology needed to search for a subsurface biosphere on Mars. The experiment is informed by the strategy for searching for life on Mars.

  6. Astrosociology and the Capacity of Major World Religions to Contextualize the Possibility of Life Beyond Earth

    NASA Astrophysics Data System (ADS)

    McAdamis, E. M.

    As the scientific view of life as an emergent property in the universe continues to gain traction, it has become increasingly necessary to assess the potential for religious engagement with astrobiological issues. Astrobiology is an endeavor conducted on behalf of all humanity, and the fruits of its continued progress promise to have a far-reaching impact on every belief system and worldview. While the body of literature gauging the religious implications of the possibility of life beyond Earth continues to expand, there has, to date, been a disproportionate emphasis placed on the examination of Christian theology. Given that more than two-thirds of the world's population is non-Christian, astrosociological outreach to the religious community should strive to encompass all of the major religions of the world. This paper seeks to provide an overview assessment of the world religious landscape as it relates to astrosociology through an examination of the nineteen largest religious groups in the world. The analysis contained in the paper relies on surveys of religious leaders and adherents, religious literature that directly and indirectly addresses astrobiological issues, conference and workshop proceedings, and the astrobiological literature addressing society and religion. This paper illustrates the capacity of religion to act as a mutually beneficial partner with science in helping to contextualize astrobiological issues in diverse societies across the world. Most studies on the religious implications of astrobiology have tended to focus on whether Christianity is flexible enough to reconcile life beyond Earth with human-centered doctrines such as a special creation, a unique incarnation, and vicarious redemption. This paper shows that while there is reason to believe that most of Christendom would be amenable to astrobiological evidence, the larger religious landscape of the world seems to be philosophically constituted to not merely survive astrobiological

  7. Prospect Theory for Online Financial Trading

    NASA Astrophysics Data System (ADS)

    Liu, Yang-Yu; Nacher, Jose C.; Ochiai, Tomoshiro; Martino, Mauro; Altshuler, Yaniv

    2014-03-01

    Prospect theory is widely viewed as the best available descriptive model of how people evaluate risk in experimental settings. According to prospect theory, people make decisions based on the potential value of losses and gains rather than the final outcome. People are risk-averse with respect to gains and risk-seeking with respect to losses, a phenomenon called ``loss aversion''. Despite of the fact that prospect theory has been well studied in behavioral economics at the theoretical level, there exist very few empirical research and most of them has been undertaken with micro-panel data. Here we analyze the trading activities of over 1.5 million members of an online financial trading community over 28 months, aiming to explore the large-scale empirical aspect of prospect theory. By analyzing and comparing the behaviour of ``winners'' and ``losers'', i.e., traders with positive or negative final net profit, we find clear evidence of the loss aversion phenomenon, an essence in prospect theory. This work demonstrates an unprecedented large-scale empirical evidence of prospect theory. It has immediate implication in financial trading, e.g., developing new trading strategies by minimizing the effect of loss aversion. It also provides opportunity to augment online social trading, where users are allowed to watch and follow the trading activity of others, by predicting potential winners based on their historical trading behaviour.

  8. Prospecting for marine gas hydrate resources

    USGS Publications Warehouse

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  9. Scientific knowledge and modern prospecting

    USGS Publications Warehouse

    Neuerburg, G.J.

    1985-01-01

    Modern prospecting is the systematic search for specified and generally ill-exposed components of the Earth's crust known as ore. This prospecting depends entirely on reliable, or scientific knowledge for guidance and for recognition of the search objects. Improvement in prospecting results from additions and refinements to scientific knowledge. Scientific knowledge is an ordered distillation of observations too numerous and too complex in themselves for easy understanding and for effective management. The ordering of these observations is accomplished by an evolutionary hierarchy of abstractions. These abstractions employ simplified descriptions consisting of characterization by selected properties, sampling to represent much larger parts of a phenomenon, generalized mappings of patterns of geometrical and numerical relations among properties, and explanation (theory) of these patterns as functional relations among the selected properties. Each abstraction is predicated on the mode of abstraction anticipated for the next higher level, so that research is a deductive process in which the highest level, theory, is indispensible for the growth and refinement of scientific knowledge, and therefore of prospecting methodology. ?? 1985 Springer-Verlag.

  10. Prospect relativity: how choice options influence decision under risk.

    PubMed

    Stewart, Neil; Chater, Nick; Stott, Henry P; Reimers, Stian

    2003-03-01

    In many theories of decision under risk (e.g., expected utility theory, rank-dependent utility theory, and prospect theory), the utility of a prospect is independent of other options in the choice set. The experiments presented here show a large effect of the available options, suggesting instead that prospects are valued relative to one another. The judged certainty equivalent for a prospect is strongly influenced by the options available. Similarly, the selection of a preferred prospect is strongly influenced by the prospects available. Alternative theories of decision under risk (e.g., the stochastic difference model, multialternative decision field theory, and range frequency theory), where prospects are valued relative to one another, can provide an account of these context effects.

  11. The Geology and Astrobiology of Europa (Invited)

    NASA Astrophysics Data System (ADS)

    Chyba, C. F.; Hand, K. P.

    2009-12-01

    rates suggest an ice shell age 1-2 orders of magnitude less than the age of the solar system; sufficiently frequent melting into the ocean could lead to an oxidized, rather than a reduced ocean. Europa likely formed with a chondritic composition and, in addition, accumulated some material (while losing much in erosion) from impacts over the age of the solar system, so that the biologically essential elements should all be present. It is this combination of liquid water, essential elements, and available energy, all in contact with potentially catalytic mineral surfaces, that makes Europa so biologically attractive and gives its ocean the appearance of habitability, at least for some potential Earth-analog organisms. Of course, habitability for life and prospects for the origin of life are two distinct issues.

  12. Privacy and the Prospect Researcher.

    ERIC Educational Resources Information Center

    McNamee, Mike

    1990-01-01

    Information--who your prospects are, what they're interested in, who can best reach them, and what they're capable of giving--is the key to big gifts to institutions of higher education. Prospect research means digging into the personal and financial backgrounds of your donors. Professionals offer advice for drawing up ethical research and privacy…

  13. Reviews in Modern Astronomy 28: From the First Quasars to Life-Bearing Planets - From Accretion Physics to Astrobiology

    NASA Astrophysics Data System (ADS)

    Berlepsch, Regina v.

    2016-07-01

    The current issue of AN is Volume 28 of the Reviews in Modern Astronomy and presents the Karl Schwarzschild Award Lecture, the Ludwig Bierman n Award Lecture and the Doctoral Thesis Award Lecture given at the 88th Annual International Scientific Meeting of the Astronomische Gesellschaft held in Kiel, Germany, September 14-18, 2015. It was the fifth time that Kiel hosted a meeting of the AG, the first one was in 1887. In 2015 the fall meeting was a part of the celebrations of the 350th anniversary of the Christiana Albertina University Kiel in 1665. For astronomers around the globe, the astrophysical group is well known for the Kieler Schule and its fundamental contributions to the physics of stellar atmospheres. Based on the work by Albrecht Unsöld during his tenure of 41 years as active researcher and lecturer (and many more after becoming emeritus), the quantitative analysis of stellar atmospheres and the reliable determination of chemical abundances is nowadays a cornerstone of modern astrophysics. Even more, it is of ground-laying importance for the whole field, from the characterization of exoplanets and their host stars to the properties of galaxies at cosmic dawn. The meeting was guided by the theme "From the First Quasars to Life-Bearing Planets -- From Accretion Physics to Astrobiology". The meeting was attended by almost 300 participants from around the world. The Karl Schwarzschild Medal 2015 of the Astronomische Gesellschaft was awarded to Professor Immo Appenzeller, Heidelberg. His lecture with the title "Astronomical technology -- the past and the future" opened the meeting. The talk presented by the Ludwig Biermann Award winner 2015, Dr. Ivan Minchev, Potsdam, dealt with the topic "Constraining the Milky Way assembly history with Galactic Archaeology". The Doctoral Thesis Award 2015 was awarded to Dr. Cornelia Müller (Würzburg). In her lecture she discussed the subject "Multiwavelength and parsec-scale properties of extragalactic Jets". The AG

  14. Biodiversity Prospecting.

    ERIC Educational Resources Information Center

    Sittenfeld, Ana; Lovejoy, Annie

    1994-01-01

    Examines the use of biodiversity prospecting as a method for tropical countries to value biodiversity and contribute to conservation upkeep costs. Discusses the first agreement between a public interest organization and pharmaceutical company for the extraction of plant and animal materials in Costa Rica. (LZ)

  15. Prospective Elemantary Science Teachers' Epistemological Beliefs

    ERIC Educational Resources Information Center

    Macaroglu Akgul, Esra; Oztuna Kaplan, Aysun

    2009-01-01

    This research study examined "prospective elementary science teachers' epistemological beliefs". Forty-nine prospective elementary science teachers participated into research. The research was designed in both quantitative and qualitative manner, within the context of "Special Methods in Science Teaching I" course.…

  16. Astrovirology: Viruses at Large in the Universe.

    PubMed

    Berliner, Aaron J; Mochizuki, Tomohiro; Stedman, Kenneth M

    2018-02-01

    Viruses are the most abundant biological entities on modern Earth. They are highly diverse both in structure and genomic sequence, play critical roles in evolution, strongly influence terran biogeochemistry, and are believed to have played important roles in the origin and evolution of life. However, there is yet very little focus on viruses in astrobiology. Viruses arguably have coexisted with cellular life-forms since the earliest stages of life, may have been directly involved therein, and have profoundly influenced cellular evolution. Viruses are the only entities on modern Earth to use either RNA or DNA in both single- and double-stranded forms for their genetic material and thus may provide a model for the putative RNA-protein world. With this review, we hope to inspire integration of virus research into astrobiology and also point out pressing unanswered questions in astrovirology, particularly regarding the detection of virus biosignatures and whether viruses could be spread extraterrestrially. We present basic virology principles, an inclusive definition of viruses, review current virology research pertinent to astrobiology, and propose ideas for future astrovirology research foci. Key Words: Astrobiology-Virology-Biosignatures-Origin of life-Roadmap. Astrobiology 18, 207-223.

  17. Model-based choices involve prospective neural activity

    PubMed Central

    Doll, Bradley B.; Duncan, Katherine D.; Simon, Dylan A.; Shohamy, Daphna; Daw, Nathaniel D.

    2015-01-01

    Decisions may arise via “model-free” repetition of previously reinforced actions, or by “model-based” evaluation, which is widely thought to follow from prospective anticipation of action consequences using a learned map or model. While choices and neural correlates of decision variables sometimes reflect knowledge of their consequences, it remains unclear whether this actually arises from prospective evaluation. Using functional MRI and a sequential reward-learning task in which paths contained decodable object categories, we found that humans’ model-based choices were associated with neural signatures of future paths observed at decision time, suggesting a prospective mechanism for choice. Prospection also covaried with the degree of model-based influences on neural correlates of decision variables, and was inversely related to prediction error signals thought to underlie model-free learning. These results dissociate separate mechanisms underlying model-based and model-free evaluation and support the hypothesis that model-based influences on choices and neural decision variables result from prospection. PMID:25799041

  18. PROSPECT - A Precision Oscillation and Spectrum Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Xianyi; Prospect Collaboration

    2017-01-01

    PROSPECT, the PRecision Oscillation and SPECTrum Experiment, is a multi-phased short baseline reactor antineutrino experiment that aims to precisely measure the U-235 antineutrino spectrum and prob for oscillation effects involving a possible Δm2 1 eV2 scale sterile neutrino. In PROSPECT Phase-I, an optically segmented Li-6 loaded liquid scintillator detector will be deployed at at the baseline of 7-12m from the High Flux Isotope Reactor at the Oak Ridge National Laboratory. PROSPECT will measure the spectrum of U-235 to aid in resolving the unexplained inconsistency between predictive spectral models and recent experimental measurements using LEU cores, while the oscillation measurement will probe the best fit region suggested by global fitting studies within 1-year data taking. This talk will introduce the design of PROSPECT Phase-I, the discovery potential of the experiment, and the progress the collaboration has made toward realizing PROSPECT Phase-I. Department of Energy

  19. Prospect Theory for Online Financial Trading

    PubMed Central

    Martino, Mauro; Altshuler, Yaniv

    2014-01-01

    Prospect theory is widely viewed as the best available descriptive model of how people evaluate risk in experimental settings. According to prospect theory, people are typically risk-averse with respect to gains and risk-seeking with respect to losses, known as the “reflection effect”. People are much more sensitive to losses than to gains of the same magnitude, a phenomenon called “loss aversion”. Despite of the fact that prospect theory has been well developed in behavioral economics at the theoretical level, there exist very few large-scale empirical studies and most of the previous studies have been undertaken with micro-panel data. Here we analyze over 28.5 million trades made by 81.3 thousand traders of an online financial trading community over 28 months, aiming to explore the large-scale empirical aspect of prospect theory. By analyzing and comparing the behavior of winning and losing trades and traders, we find clear evidence of the reflection effect and the loss aversion phenomenon, which are essential in prospect theory. This work hence demonstrates an unprecedented large-scale empirical evidence of prospect theory, which has immediate implication in financial trading, e.g., developing new trading strategies by minimizing the impact of the reflection effect and the loss aversion phenomenon. Moreover, we introduce three novel behavioral metrics to differentiate winning and losing traders based on their historical trading behavior. This offers us potential opportunities to augment online social trading where traders are allowed to watch and follow the trading activities of others, by predicting potential winners based on their historical trading behavior. PMID:25330203

  20. Prospect theory for online financial trading.

    PubMed

    Liu, Yang-Yu; Nacher, Jose C; Ochiai, Tomoshiro; Martino, Mauro; Altshuler, Yaniv

    2014-01-01

    Prospect theory is widely viewed as the best available descriptive model of how people evaluate risk in experimental settings. According to prospect theory, people are typically risk-averse with respect to gains and risk-seeking with respect to losses, known as the "reflection effect". People are much more sensitive to losses than to gains of the same magnitude, a phenomenon called "loss aversion". Despite of the fact that prospect theory has been well developed in behavioral economics at the theoretical level, there exist very few large-scale empirical studies and most of the previous studies have been undertaken with micro-panel data. Here we analyze over 28.5 million trades made by 81.3 thousand traders of an online financial trading community over 28 months, aiming to explore the large-scale empirical aspect of prospect theory. By analyzing and comparing the behavior of winning and losing trades and traders, we find clear evidence of the reflection effect and the loss aversion phenomenon, which are essential in prospect theory. This work hence demonstrates an unprecedented large-scale empirical evidence of prospect theory, which has immediate implication in financial trading, e.g., developing new trading strategies by minimizing the impact of the reflection effect and the loss aversion phenomenon. Moreover, we introduce three novel behavioral metrics to differentiate winning and losing traders based on their historical trading behavior. This offers us potential opportunities to augment online social trading where traders are allowed to watch and follow the trading activities of others, by predicting potential winners based on their historical trading behavior.

  1. A Conspicuous Clay Ovoid in Nakhla: Evidence for Subsurface Hydrothermal Alteration on Mars with Implications for Astrobiology

    PubMed Central

    Haigh, Sarah; Lyon, Ian

    2014-01-01

    layer of iron oxides/hydroxides. Carbonates, halite, and sulfates were deposited last within interstitial spaces and along fractures. Among three plausible competing hypotheses here, this particular abiotic scenario is considered to be the most reasonable explanation for the formation of the ovoid structure in Nakhla, and although compelling evidence for a biotic origin is lacking, it is evident that the martian subsurface contains niche environments where life could develop. Key Words: Biomorph—Clays—Search for life (biosignatures)—Martian meteorites—Hydrothermal systems. Astrobiology 14, 651–693. PMID:25046549

  2. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures

    PubMed Central

    2018-01-01

    Abstract Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology—Biosignatures—Coevolution of Earth and life—Mars. Astrobiology 18, 1–27. PMID:29252008

  3. Procreative beneficence and the prospective parent

    PubMed Central

    Herissone‐Kelly, P

    2006-01-01

    Julian Savulescu has given clear expression to a principle—that of “procreative beneficence”—which underlies the thought of many contemporary writers on bioethics. The principle of procreative beneficence (PPB) holds that parents or single reproducers are at least prima facie obliged to select the child, out of a range of possible children they might have, who will be likely to lead the best life. My aim in this paper is to argue that prospective parents, just by dint of their being prospective parents, are in fact not obliged to act on PPB. That is, there is something about their filling the role of prospective parents that exempts them from selecting the child with the best life. I urge that it is more realistic to view prospective parents as bound by a principle of acceptable outlook, which holds that they ought not to select children whose lives will contain an unacceptable amount of suffering. PMID:16507665

  4. Procreative beneficence and the prospective parent.

    PubMed

    Herissone-Kelly, P

    2006-03-01

    Julian Savulescu has given clear expression to a principle-that of "procreative beneficence"-which underlies the thought of many contemporary writers on bioethics. The principle of procreative beneficence (PPB) holds that parents or single reproducers are at least prima facie obliged to select the child, out of a range of possible children they might have, who will be likely to lead the best life. My aim in this paper is to argue that prospective parents, just by dint of their being prospective parents, are in fact not obliged to act on PPB. That is, there is something about their filling the role of prospective parents that exempts them from selecting the child with the best life. I urge that it is more realistic to view prospective parents as bound by a principle of acceptable outlook, which holds that they ought not to select children whose lives will contain an unacceptable amount of suffering.

  5. Astronomical Prospecting of Asteroid Resources

    NASA Astrophysics Data System (ADS)

    Elvis, M.

    2017-09-01

    To make asteroid mining profitable will require professional astronomers using some of the largest telescopes on Earth to make precision measurements. This "astronomical prospecting" information is cheaper to obtain than flying even one or two spacecraft and will drastically cut the number of space probes that have to be sent to find an ore-bearing rock in space. Astronomical prospecting could make the business case for asteroid mining a solid one.

  6. 36 CFR 228.60 - Prospecting permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Prospecting permits. 228.60 Section 228.60 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.60 Prospecting permits. (a) Right...

  7. 36 CFR 228.60 - Prospecting permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Prospecting permits. 228.60 Section 228.60 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.60 Prospecting permits. (a) Right...

  8. 36 CFR 228.60 - Prospecting permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Prospecting permits. 228.60 Section 228.60 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.60 Prospecting permits. (a) Right...

  9. 36 CFR 228.60 - Prospecting permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Prospecting permits. 228.60 Section 228.60 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.60 Prospecting permits. (a) Right...

  10. 36 CFR 228.60 - Prospecting permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Prospecting permits. 228.60 Section 228.60 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.60 Prospecting permits. (a) Right...

  11. Predictors of Time-Based Prospective Memory in Children

    ERIC Educational Resources Information Center

    Mackinlay, Rachael J.; Kliegel, Matthias; Mantyla, Timo

    2009-01-01

    This study identified age differences in time-based prospective memory performance in school-aged children and explored possible cognitive correlates of age-related performance. A total of 56 7- to 12-year-olds performed a prospective memory task in which prospective memory accuracy, ongoing task performance, and time monitoring were assessed.…

  12. A Multinomial Model of Event-Based Prospective Memory

    ERIC Educational Resources Information Center

    Smith, Rebekah E.; Bayen, Ute J.

    2004-01-01

    Prospective memory is remembering to perform an action in the future. The authors introduce the 1st formal model of event-based prospective memory, namely, a multinomial model that includes 2 separate parameters related to prospective memory processes. The 1st measures preparatory attentional processes, and the 2nd measures retrospective memory…

  13. Sterile Neutrino Search with the PROSPECT Experiment

    NASA Astrophysics Data System (ADS)

    Surukuchi Venkata, Pranava Teja

    2017-01-01

    PROSPECT is a multi-phased short-baseline reactor antineutrino experiment with primary goals of performing a search for sterile neutrinos and making a precise measurement of 235U reactor antineutrino spectrum from the High Flux Isotope Reactor at Oak Ridge National Laboratory. PROSPECT will provide a model independent oscillation measurement of electron antineutrinos by performing relative spectral comparison between a wide range of baselines. By covering the baselines of 7-12 m with Phase-I and extending the coverage to 19m with Phase-II, the PROSPECT experiment will be able to address the current eV-scale sterile neutrino oscillation best-fit region within a single year of data-taking and covers a major portion of suggested parameter space within 3 years of Phase-II data-taking. Additionally, with a Phase-II detector PROSPECT will be able to distinguish between 3+1 mixing, 3+N mixing and other non-standard oscillations. In this talk, we describe the PROSPECT oscillation fitting framework and expected detector sensitivity to the oscillations arising from eV-scale sterile neutrinos. DOE

  14. A single dose of cocaine enhances prospective memory performance.

    PubMed

    Hutten, Nadia Rpw; Kuypers, Kim Pc; van Wel, Janelle Hp; Theunissen, Eef L; Toennes, Stefan W; Verkes, Robbert-Jan; Ramaekers, Johannes G

    2018-06-01

    Prospective memory is the ability to recall intended actions or events at the right time or in the right context. While cannabis is known to impair prospective memory, the acute effect of cocaine is unknown. In addition, it is not clear whether changes in prospective memory represent specific alterations in memory processing or result from more general effects on cognition that spread across multiple domains such as arousal and attention. The main objective of the study was, therefore, to determine whether drug-induced changes in prospective memory are memory specific or associated with more general drug-induced changes in attention and arousal. A placebo-controlled, three-way, cross-over study including 15 regular poly-drug users was set up to test the influence of oral cocaine (300 mg) and vaporised cannabis (300+150 'booster' µg/kg bodyweight) on an event-based prospective memory task. Attentional performance was assessed using a divided attention task and subjective arousal was assessed with the Profile of Mood States questionnaire. Results showed that cocaine enhanced prospective memory, attention and arousal. Mean performance of prospective memory and attention, as well as levels of arousal were lowest during treatment with cannabis as compared with placebo and cocaine as evinced by a significantly increased trend across treatment conditions. Prospective memory performance was only weakly positively associated to measures of attention and arousal. Together, these results indicate that cocaine enhancement of prospective memory performance cannot be fully explained by parallel changes in arousal and attention levels, and is likely to represent a direct change in the neural network underlying prospective memory.

  15. Petroleum prospecting in the Arab world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    This book discusses about oil and gas exploration in the Arab countries. After describing the chemistry and formation of petroleum and steps involved in prospecting, the book surveys the history and results of prospecting in each country. It also provides diagrams, maps, appended reserves and production data, and English equivalent terms.

  16. Characterisation of sites of astrobiology interest for Mars landers and sample return missions

    NASA Astrophysics Data System (ADS)

    Wills, D. E. S.; Monaghan, E. P.; Foing, B. H.

    2009-04-01

    Introduction: The aim of this work is to nominate and assess candidate landing sites for missions of astrobiological interest to Mars. We report in particular on science and technical criteria and our data analysis for sites suitable for an ExoMars-class mission. This includes information from previous missions (such as Mars Express, MGS, Odyssey, MRO and MER rovers) on mineralogical composition, geomorphology, evidence from past water history from imaging and spectroscopic data, and existence of in-situ prior information from landers and rovers (concerning evidences for volatiles, organics and habitability conditions). Science Goals and Objectives: Firstly, we look for morphological evidence of hydrological activity, including sedimentary deposits (deltas, valley networks), areas of ancient hydrothermal activity (spring deposits). Secondly, we look for mineralogical evidence of hydrological activity, such as phyllosilicates (formed by alteration due to water, indicate prolonged exposure to standing water), hydrated sulphates (formed by alteration due to water, not necessarily standing water), other water-containing minerals. Thirdly, we prioritise Noachian terrain (during this epoch, ~3.5 billion years ago, the Martian climate may have been warmer, and liquid water may have been stable on the surface). Finally, we look for sites where the potential for preservation of biosignatures is high (exposed bedrock, subsurface regions, spring sinters). Engineering Constraints: We consider the engineering constraints placed on the ExoMars misson. These include latitude (sufficient insolation for power), landing altitude (sufficient atmosphere for EDL), horizontal winds, shear, and wind turbulence (airbag free fall), radar altimeter reflectivity (for descent and landing control), obstacles and rock distribution (airbag landing), slopes (airbag landing), rover egress, and rover locomotion. The Priority Sites: Out of a short-list of ten proposed locations, we select two top

  17. Did intense volcanism trigger the first Late Ordovician icehouse? REPLY

    USGS Publications Warehouse

    Buggisch, Werner; Joachimski, Michael M.; Lehnert, Oliver; Bergström, Stig M.; Repetski, John E.

    2011-01-01

    We appreciate the Comment by Herrmann et al. (2011) to our paper (Buggisch et al., 2010). When we compiled the data set for our publication, we were aware that we had not enough pre-Deicke conodont oxygen isotope data because Webers’ (1966) conodont collections from the Pecatonica Member did not yield enough specimens for isotope analysis. At that time, the recently published data of Herrmann et al. (2010) were not available for comparison. Therefore, we imported data of Herrmann et al. (2005), who reported δ18O values from 18.1‰ to 19.1‰ (VSMOW) for conodont samples from Minnesota and Missouri. According to Herrmann et al. (2005, p. 457), “The samples were all collected from limestone beds immediately below the widespread Deicke K-bentonite.”

  18. Intelligence's likelihood and evolutionary time frame

    NASA Astrophysics Data System (ADS)

    Bogonovich, Marc

    2011-04-01

    This paper outlines hypotheses relevant to the evolution of intelligent life and encephalization in the Phanerozoic. If general principles are inferable from patterns of Earth life, implications could be drawn for astrobiology. Many of the outlined hypotheses, relevant data, and associated evolutionary and ecological theory are not frequently cited in astrobiological journals. Thus opportunity exists to evaluate reviewed hypotheses with an astrobiological perspective. A quantitative method is presented for testing one of the reviewed hypotheses (hypothesis i; the diffusion hypothesis). Questions are presented throughout, which illustrate that the question of intelligent life's likelihood can be expressed as multiple, broadly ranging, more tractable questions.

  19. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  20. UV and Optical Detectors: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce; Oegerle, William (Technical Monitor)

    2002-01-01

    UV and visible detectors - status and prospects. The status and prospects for UV and visible detectors for space astrophysics missions will be described, based on the findings of the NASA working group roadmap report, hopefully updated.

  1. Developing Mathematical Resilience of Prospective Math Teachers

    NASA Astrophysics Data System (ADS)

    Ariyanto, L.; Herman, T.; Sumarmo, U.; Suryadi, D.

    2017-09-01

    Prospective math teachers need to develop positive adaptive attitudes toward mathematics that will enable them to continue learning despite having to deal with obstacles and difficulties. This research focuses on the resilience improvement of the prospective mathematic teachers after being treated using problem-based learning based on their basic knowledge on mathematic and their overall knowledge on math. This research used only one group for pre-test and post-test. The result of this research shows that there is improvement on prospective teachers’ resilience after they were given treatment using problem-based learning. One of the factors causing the resilience improvement of the prospective mathematic teachers is the instructions on students’ work sheet. In the instructions, stud ents were asked to write difficulties in solving math problems as well as write down the solution they take to overcome them. This research can be used as a reference for other researchers who want to do the same research related on students’ resiliency o n math and or math lecturers to improve the resilience of prospective teachers to be resilient teachers on math in the future.

  2. Prospect theory in the valuation of health.

    PubMed

    Moffett, Maurice L; Suarez-Almazor, Maria E

    2005-08-01

    Prospect theory is the prominent nonexpected utility theory in the estimation of health state preference scores for quality-adjusted life year calculation. Until recently, the theory was not considered to be developed to the point of implementation in economic analysis. This review focuses on the research and evidence that tests the implementation of prospect theory into health state valuation. The typical application of expected utility theory assumes that a decision maker has stable preferences under conditions of risk and uncertainty. Under prospect theory, preferences are dependent on whether the decision maker regards the outcome of a choice as a gain or loss, relative to a reference point. The conceptual preference for standard gamble utilities in the valuation of health states has led to the development of elicitation techniques. Empirical evidence using these techniques indicates that when individual preferences are elicited, a prospect theory consistent framework appears to be necessary for adequate representation of individual health utilities. The relevance of prospect theory to policy making and resource allocation remains to be established. Societal preferences may not need the same attitudes towards risks as individual preferences, and may remain largely risk neutral.

  3. Visible-Near Infrared Point Spectrometry of Drill Core Samples from Río Tinto, Spain: Results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) Drilling Exercise

    NASA Astrophysics Data System (ADS)

    Sutter, Brad; Brown, Adrian J.; Stoker, Carol R.

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  4. Visible-near infrared point spectrometry of drill core samples from Río Tinto, Spain: results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling exercise.

    PubMed

    Sutter, Brad; Brown, Adrian J; Stoker, Carol R

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  5. In Situ Field Sequencing and Life Detection in Remote (79°26'N) Canadian High Arctic Permafrost Ice Wedge Microbial Communities.

    PubMed

    Goordial, J; Altshuler, Ianina; Hindson, Katherine; Chan-Yam, Kelly; Marcolefas, Evangelos; Whyte, Lyle G

    2017-01-01

    Significant progress is being made in the development of the next generation of low cost life detection instrumentation with much smaller size, mass and energy requirements. Here, we describe in situ life detection and sequencing in the field in soils over laying ice wedges in polygonal permafrost terrain on Axel Heiberg Island, located in the Canadian high Arctic (79°26'N), an analog to the polygonal permafrost terrain observed on Mars. The life detection methods used here include (1) the cryo-iPlate for culturing microorganisms using diffusion of in situ nutrients into semi-solid media (2) a Microbial Activity Microassay (MAM) plate (BIOLOG Ecoplate) for detecting viable extant microorganisms through a colourimetric assay, and (3) the Oxford Nanopore MinION for nucleic acid detection and sequencing of environmental samples and the products of MAM plate and cryo-iPlate. We obtained 39 microbial isolates using the cryo-iPlate, which included several putatively novel strains based on the 16S rRNA gene, including a Pedobacter sp. (96% closest similarity in GenBank) which we partially genome sequenced using the MinION. The MAM plate successfully identified an active community capable of L-serine metabolism, which was used for metagenomic sequencing with the MinION to identify the active and enriched community. A metagenome on environmental ice wedge soil samples was completed, with base calling and uplink/downlink carried out via satellite internet. Validation of MinION sequencing using the Illumina MiSeq platform was consistent with the results obtained with the MinION. The instrumentation and technology utilized here is pre-existing, low cost, low mass, low volume, and offers the prospect of equipping micro-rovers and micro-penetrators with aggressive astrobiological capabilities. Since potentially habitable astrobiology targets have been identified (RSLs on Mars, near subsurface water ice on Mars, the plumes and oceans of Europa and Enceladus), future astrobiology

  6. Grain transportation prospects

    DOT National Transportation Integrated Search

    1999-08-01

    Prospects for the U.S. grain and soybean crops have : improved since the first USDA projections for : 1999/2000 production in May. July projections for : combined grain (excluding rice) and soybean production : put this years crop at 15,958 millio...

  7. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    PubMed

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  8. 42 CFR 413.345 - Publication of Federal prospective payment rates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.345 Publication of Federal prospective payment rates...

  9. 42 CFR 413.345 - Publication of Federal prospective payment rates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.345 Publication of Federal prospective payment rates...

  10. On Singapore Prospective Secondary School Teachers' Mathematical Content Knowledge

    ERIC Educational Resources Information Center

    Toh, Tin Lam

    2017-01-01

    This paper reports the performance of one entire cohort of Singapore prospective secondary school mathematics teachers in a mathematics proficiency test. The prospective teachers were admitted to the teacher education program specializing in teaching secondary school mathematics. The strengths of the prospective teachers' content knowledge, their…

  11. Prospective content in the friendship conversations of young adults.

    PubMed

    Young, Richard A; Marshall, Sheila K; Murray, John

    2017-01-01

    Prospection is cognitive processes that involve constructing, encoding, and remembering the future. Less is known about the how these processes are evident in the prospective content of conversations. This study sought to identify and describe evidence of the prospective content in the conversations of friends as they transition to adulthood. The present secondary content analysis of the videotaped conversations of 15 young adult friendship dyads (n = 30, 16 females, 14 males, mean age = 21.3 years) in Canada examined these conversations based the following characteristics of prospection: simulation, reasoning about counterfactuals, constructing multiple possible futures, and episodic memory of the past. Four categories of prospective content were evident in these conversations, these processes were used sparingly in all but one conversation, and relatively few of them were collaborative in that dyad partners did not appear to serve to augment, clarify, or disconfirm prospective content. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  12. Some findings on prospect and refuge: I.

    PubMed

    Stamps, Arthur E

    2008-02-01

    Prospect and refuge theory suggests that preferences for environments are based on prospect (the unimpeded opportunity to see) and refuge (the opportunity to hide). This article reports two experiments on how well four factors derived from prospect and refuge theory predicted responses of comfort or liking. The factors were prospect (depth of view), refuge (presence of protective regions in front of the observer or occluding edges that might indicate possibilities of escape), direction of light (either front lighting or back lighting), and venue (natural or built environments). Exp. 1 had 16 landscape scenes and 29 participants; Exp. 2 had 16 landscapes, 14 rooms, and 18 participants. Empirical support was obtained for the claim that people will like gazing out over scenes of distant mountains. For venue, built scenes were preferred over scenes of nature. Results for refuge were ambiguous, and those for di rection of light were nill.

  13. 36 CFR 5.14 - Prospecting, mining, and mineral leasing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Prospecting, mining, and... OF THE INTERIOR COMMERCIAL AND PRIVATE OPERATIONS § 5.14 Prospecting, mining, and mineral leasing. Prospecting, mining, and the location of mining claims under the general mining laws and leasing under the...

  14. Rejection sensitivity prospectively predicts increased rumination.

    PubMed

    Pearson, Katherine A; Watkins, Edward R; Mullan, Eugene G

    2011-10-01

    Converging research findings indicate that rumination is correlated with a specific maladaptive interpersonal style encapsulating submissive (overly-accommodating, non-assertive and self-sacrificing) behaviours, and an attachment orientation characterised by rejection sensitivity. This study examined the prospective longitudinal relationship between rumination, the submissive interpersonal style, and rejection sensitivity by comparing two alternative hypotheses: (a) the submissive interpersonal style and rejection sensitivity prospectively predict increased rumination; (b) rumination prospectively predicts the submissive interpersonal style and rejection sensitivity. Currently depressed (n = 22), previously depressed (n = 42) and never depressed (n = 28) individuals completed self-report measures assessing depressive rumination and key psychosocial measures of interpersonal style and behaviours, at baseline and again six months later. Baseline rejection sensitivity prospectively predicted increased rumination six months later, after statistically controlling for baseline rumination, gender and depression. Baseline rumination did not predict the submissive interpersonal style or rejection sensitivity. The results provide a first step towards delineating a potential casual relationship between rejection sensitivity and rumination, and suggest the potential value of clinical assessment and intervention for both rejection sensitivity and rumination in individuals who present with either difficulty. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Prospective Memory in a Language-Trained Chimpanzee ("Pan Troglodytes")

    ERIC Educational Resources Information Center

    Beran, Michael J.; Perdue, Bonnie M.; Bramlett, Jessica L.; Menzel, Charles R.; Evans, Theodore A.

    2012-01-01

    Prospective memory involves the encoding, retention, and implementation of an intended future action. Although humans show many forms of prospective memory, less is known about the future oriented processes of nonhuman animals, or their ability to use prospective memory. In this experiment, a chimpanzee named Panzee, who had learned to associate…

  16. Turkish Prospective Teachers' Understanding and Misunderstanding on Global Warming

    ERIC Educational Resources Information Center

    Ocal, A.; Kisoglu, M.; Alas, A.; Gurbuz, H.

    2011-01-01

    The key objective of this study is to determine the Turkish elementary prospective teachers' opinions on global warming. It is also aimed to establish prospective teachers' views about the environmental education in Turkish universities. A true-false type scale was administered to 564 prospective teachers from science education, social studies…

  17. Sleep Improves Prospective Remembering by Facilitating Spontaneous-Associative Retrieval Processes

    PubMed Central

    Diekelmann, Susanne; Wilhelm, Ines; Wagner, Ullrich; Born, Jan

    2013-01-01

    Memories are of the past but for the future, enabling individuals to implement intended plans and actions at the appropriate time. Prospective memory is the specific ability to remember and execute an intended behavior at some designated point in the future. Although sleep is well-known to benefit the consolidation of memories for past events, its role for prospective memory is still not well understood. Here, we show that sleep as compared to wakefulness after prospective memory instruction enhanced the successful execution of prospective memories two days later. We further show that sleep benefited both components of prospective memory, i.e. to remember that something has to be done (prospective component) and to remember what has to be done (retrospective component). Finally, sleep enhanced prospective remembering particularly when attentional resources were reduced during task execution, suggesting that subjects after sleep were able to recruit additional spontaneous-associative retrieval processes to remember intentions successfully. Our findings indicate that sleep supports the maintenance of prospective memory over time by strengthening intentional memory representations, thus favoring the spontaneous retrieval of the intended action at the appropriate time. PMID:24143246

  18. 42 CFR 456.705 - Prospective drug review.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Prospective drug review. 456.705 Section 456.705... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Drug Use Review (DUR) Program and Electronic Claims Management System for Outpatient Drug Claims § 456.705 Prospective drug review. (a) General...

  19. 42 CFR 456.705 - Prospective drug review.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Prospective drug review. 456.705 Section 456.705... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Drug Use Review (DUR) Program and Electronic Claims Management System for Outpatient Drug Claims § 456.705 Prospective drug review. (a) General...

  20. 42 CFR 456.705 - Prospective drug review.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Prospective drug review. 456.705 Section 456.705... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Drug Use Review (DUR) Program and Electronic Claims Management System for Outpatient Drug Claims § 456.705 Prospective drug review. (a) General...

  1. 42 CFR 456.705 - Prospective drug review.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Prospective drug review. 456.705 Section 456.705... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Drug Use Review (DUR) Program and Electronic Claims Management System for Outpatient Drug Claims § 456.705 Prospective drug review. (a) General...

  2. Prospective Science Teachers' Conceptions about Astronomical Subjects

    ERIC Educational Resources Information Center

    Küçüközer, Hüseyin

    2007-01-01

    The main objective of this study was to identify prospective science teachers' conceptions on basic astronomical phenomena. A questionnaire consisting of nine open-ended questions was administered to 327 prospective science teachers. The questionnaire was constructed after extensive review of the literature and took into consideration the reported…

  3. Prospective Teachers' Personal Characteristics to Multicultural Education

    ERIC Educational Resources Information Center

    Eskici, Menekse

    2016-01-01

    The aim of this paper is to determine prospective teachers' personal characteristics to multicultural education. It is also aimed to reveal whether there are meaningful differences in prospective teachers' personal characteristics to multicultural education according to their genders, age and number of siblings. The descriptive model was chosen to…

  4. 42 CFR 412.535 - Publication of the Federal prospective payment rates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEMS FOR INPATIENT HOSPITAL SERVICES Prospective Payment System for Long-Term Care Hospitals § 412.535 Publication of the Federal prospective... care hospital prospective payment system effective for each annual update in the Federal Register. (a...

  5. Sleep Deprivation and Time-Based Prospective Memory.

    PubMed

    Esposito, Maria José; Occhionero, Miranda; Cicogna, PierCarla

    2015-11-01

    To evaluate the effect of sleep deprivation on time-based prospective memory performance, that is, realizing delayed intentions at an appropriate time in the future (e.g., to take a medicine in 30 minutes). Between-subjects experimental design. The experimental group underwent 24 h of total sleep deprivation, and the control group had a regular sleep-wake cycle. Participants were tested at 08:00. Laboratory. Fifty healthy young adults (mean age 22 ± 2.1, 31 female). 24 h of total sleep deprivation. Participants were monitored by wrist actigraphy for 3 days before the experimental session. The following cognitive tasks were administered: one time-based prospective memory task and 3 reasoning tasks as ongoing activity. Objective and subjective vigilance was assessed by the psychomotor vigilance task and a visual analog scale, respectively. To measure the time-based prospective memory task we assessed compliance and clock checking behavior (time monitoring). Sleep deprivation negatively affected time-based prospective memory compliance (P < 0.001), objective vigilance (mean RT: P < 0.001; slowest 10% RT: P < 0.001; lapses: P < 0.005), and subjective vigilance (P < 0.0001). Performance on reasoning tasks and time monitoring behavior did not differ between groups. The results highlight the potential dangerous effects of total sleep deprivation on human behavior, particularly the ability to perform an intended action after a few minutes. Sleep deprivation strongly compromises time-based prospective memory compliance but does not affect time check frequency. Sleep deprivation may impair the mechanism that allows the integration of information related to time monitoring with the prospective intention. © 2015 Associated Professional Sleep Societies, LLC.

  6. Control of cost in prospective memory: evidence for spontaneous retrieval processes.

    PubMed

    Scullin, Michael K; McDaniel, Mark A; Einstein, Gilles O

    2010-01-01

    To examine the processes that support prospective remembering, previous research has often examined whether the presence of a prospective memory task slows overall responding on an ongoing task. Although slowed task performance suggests that monitoring is present, this method does not clearly establish whether monitoring is functionally related to prospective memory performance. According to the multiprocess theory (McDaniel & Einstein, 2000), monitoring should be necessary to prospective memory performance with nonfocal cues but not with focal cues. To test this hypothesis, we varied monitoring by presenting items that were related (or unrelated) to the prospective memory task proximal to target events. Notably, whereas monitoring proximal to target events led to a large increase in nonfocal prospective memory performance, focal prospective remembering was high in the absence of monitoring, and monitoring in this condition provided no additional benefits. These results suggest that when monitoring is absent, spontaneous retrieval processes can support focal prospective remembering. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  7. Perceptions of Prospective Teachers about Tolerance Education

    ERIC Educational Resources Information Center

    Sahin, Cavus

    2011-01-01

    The purpose of this study is to ascertain the perceptions of prospective teachers about tolerance education. This research is a descriptive, qualitative study. A semi-structured and non-directive interview technique is used for collecting data. Research is carried out with 30 prospective teachers who attend Canakkale Onsekiz Mart University…

  8. Interior prospect and refuge.

    PubMed

    Stamps, Arthur E

    2006-12-01

    Prospect and refuge theory has usually been applied to landscapes but recent work suggests that it could also be applied to interiors. This article reports two experiments, covering 14 environments and 97 respondents, in which five hypotheses regarding prospect, refuge, and comfort were tested: H1: the transition from small, dark, and low to large, light, and high and vice-versa; H2: the transition from dark to light vs vice-versa; H3: the transition from low to high vs vice-versa; H4: the transition from small to big horizontally vs vice-versa; and H5: width. Results varied. The effect of width on comfort was substantial (r = .35); effects for the other hypotheses were either subtle or contrary to expectations.

  9. Prospective memory: effects of divided attention on spontaneous retrieval.

    PubMed

    Harrison, Tyler L; Mullet, Hillary G; Whiffen, Katie N; Ousterhout, Hunter; Einstein, Gilles O

    2014-02-01

    We examined the effects of divided attention on the spontaneous retrieval of a prospective memory intention. Participants performed an ongoing lexical decision task with an embedded prospective memory demand, and also performed a divided-attention task during some segments of lexical decision trials. In all experiments, monitoring was highly discouraged, and we observed no evidence that participants engaged monitoring processes. In Experiment 1, performing a moderately demanding divided-attention task (a digit detection task) did not affect prospective memory performance. In Experiment 2, performing a more challenging divided-attention task (random number generation) impaired prospective memory. Experiment 3 showed that this impairment was eliminated when the prospective memory cue was perceptually salient. Taken together, the results indicate that spontaneous retrieval is not automatic and that challenging divided-attention tasks interfere with spontaneous retrieval and not with the execution of a retrieved intention.

  10. Profile of Prospective Physics Teachers on Assessment Literacy

    NASA Astrophysics Data System (ADS)

    Efendi, R.; Rustaman, N. Y.; Kaniawati, I.

    2017-02-01

    A study about assessment literacy of prospective Physics teachers was conducted with the involvement of 45 prospective physics teachers. Data collected by using test consisted of seven competencies. The profile of prospective physics teachers on assessment literacy determined in descriptive statistics, in the form of respondent average values. Research finding shows that prospective physics teachers were weak at all competency areas. The average values of the Choosing assessment methods appropriate for instructional decisions is the highest average values and the average values of the communicating assessment results to students, parents, other lay audiences, and other educators is the lowest average values. In depth study to detect the reason underlined the results was still in progress so far, as another aspect was planned to be administered on the next semester.

  11. Perceptions of Prospective Teachers on Digital Literacy

    ERIC Educational Resources Information Center

    Çam, Emre; Kiyici, Mübin

    2017-01-01

    The aim of the quantitative study is to identify the digital literacy levels of prospective teachers in terms of several variables. The sample consisted of 354 prospective teachers studying in different departments of Sakarya University College of Education. The 30-item instrument used to gather the data was the "Digital Literacy Scale"…

  12. Opportunities for in-depth compositional studies of comets: Summary from semester 2017A observations and prospects for a 2018 observing campaign

    NASA Astrophysics Data System (ADS)

    DiSanti, Michael A.; Dello Russo, Neil; Bonev, Boncho P.; Gibb, Erika L.; Roth, Nathan; Vervack, Ronald J.; McKay, Adam J.; Kawakita, Hideyo; Cochran, Anita L.

    2017-10-01

    The period from late 2016 to mid 2017 provided unusually rich observational opportunities for compositional studies of comets using ground-based IR and optical spectroscopy. Three ecliptic comets - Jupiter-family comet (JFC) 45P/Honda-Mrkos-Pajdusakova, JFC 41P/Tuttle-Giacobini-Kresak, and 2P/Encke - as well as two moderately bright nearly istotropic comets from the Oort cloud (C/2015 ER61 PanSTARRS and C/2015 V2 Johnson) experienced highly favorable appritions.In the IR, very long on-source integration times were accumulated on all targets, primarily with the powerful new high-resolution, cross-dispersed iSHELL spectrograph at the IRTF (Rayner et al. 2016 SPIE 9908:1) but also with NIRSPEC at Keck II. This enabled accurate production rates and abundance ratios for 8-10 native ices, and spatially resolved studies of coma physics (H2O rotational temperatures and column abundances). The recent availability of iSHELL coupled with the daytime observing capability at the IRTF has opened a powerful window for conducting detailed compositional studies of comets over a range of heliocentric distances (Rh), particularly at small Rh where studies are relatively sparse. Our campaign provided detections of (or stringent abundance limits for) hyper-volatiles CO and CH4, which are severely lacking in compositional studies of JFCs.For all of these targets, optical spectra measured photo-dissociation product species using the Tull Coude spectrograph at McDonald Observatory, and ARCES at Apache Point Observatory. When possible optical and IR observations were obtained contemporaneously, with the goal of addressing potential parent-product relationships.We summarize our campaign and highlight related presentations. Prospects for investigations during the upcoming favorable apparitions of JFCs 21P/Giacobini-Zinner and 46P/Wirtanen will also be discussed, along with increased capabilities for serial studies (i.e., measurements at multiple Rh) of newly discovered (Oort cloud) comets

  13. The Dynamic Multiprocess Framework: Evidence from Prospective Memory with Contextual Variability

    PubMed Central

    Scullin, Michael K.; McDaniel, Mark A.; Shelton, Jill Talley

    2013-01-01

    The ability to remember to execute delayed intentions is referred to as prospective memory. Previous theoretical and empirical work has focused on isolating whether a particular prospective memory task is supported either by effortful monitoring processes or by cue-driven spontaneous processes. In the present work, we advance the Dynamic Multiprocess Framework, which contends that both monitoring and spontaneous retrieval may be utilized dynamically to support prospective remembering. To capture the dynamic interplay between monitoring and spontaneous retrieval we had participants perform many ongoing tasks and told them that their prospective memory cue may occur in any context. Following either a 20-min or a 12-hr retention interval, the prospective memory cues were presented infrequently across three separate ongoing tasks. The monitoring patterns (measured as ongoing task cost relative to a between-subjects control condition) were consistent and robust across the three contexts. There was no evidence for monitoring prior to the initial prospective memory cue; however, individuals who successfully spontaneously retrieved the prospective memory intention, thereby realizing that prospective memory cues could be expected within that context, subsequently monitored. These data support the Dynamic Multiprocess Framework, which contends that individuals will engage monitoring when prospective memory cues are expected, disengage monitoring when cues are not expected, and that when monitoring is disengaged, a probabilistic spontaneous retrieval mechanism can support prospective remembering. PMID:23916951

  14. Astrobiology of Comets

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.

    2004-01-01

    We model the thermal history of a cometary body, regarded as an assemblage of boulders, dust, ices and organics, as it approaches a perihelion distance of - IAU. The transfer of incident energy h m sunlight into the interior leads to the melting of ices under tens of meters of stable crust, providing possible habitats for a wide range of microorganisms. We consider the icediatoms, snow algae and cyanobacteria, bacteria and yeast of cryoconite communities which are encountered in liquid wafer pools (meltwater) surrounding dark rocks in glaciers and the polar ice sheets as excellent analogs for the microbial ecosystems that might possibly exist on some comets.

  15. Prospective associations between loneliness and emotional intelligence.

    PubMed

    Wols, A; Scholte, R H J; Qualter, P

    2015-02-01

    Loneliness has been linked cross-sectionally to emotional skill deficits (e.g., Zysberg, 2012), but missing from the literature is a longitudinal examination of these relationships. The present study fills that gap by examining the prospective relationships between loneliness and emotional functioning in young adolescents in England. One hundred and ninety-six adolescents aged 11-13 years (90 females) took part in the study and completed the youth version of the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT-YV) and the peer-related subscale of the Loneliness and Aloneness Scale for Children and Adolescents (LACA) at two time points, which were 10 months apart. Prospective associations were obtained for male and female adolescents separately using cross-lagged statistical techniques. Our results showed prospective links between understanding and managing emotions and loneliness for both females and males. Perceiving and using emotions were prospectively linked to loneliness in males only. Possible explanations and directions for future research are discussed. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  16. Prospective memory in adults with spina bifida

    PubMed Central

    Dennis, Maureen; Nelson, Rebekah; Jewell, Derryn; Fletcher, Jack M.

    2011-01-01

    Introduction Individuals with neurodevelopmental disorders have been observed to show accelerated cognitive aging or even dementia as early as 30 and 40 years of age. Memory deficits are an important component of age-related cognitive loss. Methods In this study, we investigated prospective memory, which is often impaired in aging, in a group of 32 adults with spina bifida meningomyelocele (SBM), including members of the oldest living cohort successfully treated with shunts to divert excess cerebrospinal fluid, ventriculomegaly, and hydrocephalus, who are now around 50 years of age. Seventeen typically developing adults provided a comparison group. Results The SBM and comparison groups differed in the prospective memory total score as well as in both time-based and event-based subscores. Prospective memory was impaired in both older and younger individuals with SBM. However, the percentage of individuals with impaired or poor prospective memory was three times higher in the older SBM group than in the younger SBM group. The results are considered in relation to specific features of the complex brain reorganization in SBM. PMID:20393850

  17. Diagnosing breast cancer using Raman spectroscopy: prospective analysis

    NASA Astrophysics Data System (ADS)

    Haka, Abigail S.; Volynskaya, Zoya; Gardecki, Joseph A.; Nazemi, Jon; Shenk, Robert; Wang, Nancy; Dasari, Ramachandra R.; Fitzmaurice, Maryann; Feld, Michael S.

    2009-09-01

    We present the first prospective test of Raman spectroscopy in diagnosing normal, benign, and malignant human breast tissues. Prospective testing of spectral diagnostic algorithms allows clinicians to accurately assess the diagnostic information contained in, and any bias of, the spectroscopic measurement. In previous work, we developed an accurate, internally validated algorithm for breast cancer diagnosis based on analysis of Raman spectra acquired from fresh-frozen in vitro tissue samples. We currently evaluate the performance of this algorithm prospectively on a large ex vivo clinical data set that closely mimics the in vivo environment. Spectroscopic data were collected from freshly excised surgical specimens, and 129 tissue sites from 21 patients were examined. Prospective application of the algorithm to the clinical data set resulted in a sensitivity of 83%, a specificity of 93%, a positive predictive value of 36%, and a negative predictive value of 99% for distinguishing cancerous from normal and benign tissues. The performance of the algorithm in different patient populations is discussed. Sources of bias in the in vitro calibration and ex vivo prospective data sets, including disease prevalence and disease spectrum, are examined and analytical methods for comparison provided.

  18. Conference Report: Biosignature Preservation and Detection in Mars Analog Environments.

    PubMed

    Hays, Lindsay; Beaty, David

    2017-01-01

    The Conference on Biosignature Preservation and Detection in Mars Analog Environments held in May 2016 brought together scientists to discuss microbial biosignatures in Mars analog habitable environments. Five analog environments were discussed: (1) hydrothermal spring systems, (2) subaqueous environments, (3) subaerial environments, (4) subsurface environments, and (5) iron-rich systems. This paper details the major messages that resulted from the discussions and will be followed by a review paper that adds significant detail from the published literature and interpretations from the writing committee of the workshop for future research and application to astrobiological exploration missions. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 1-2.

  19. Prospective memory in context: Moving through a familiar space.

    PubMed

    Smith, Rebekah E; Hunt, R Reed; Murray, Amy E

    2017-02-01

    Successful completion of delayed intentions is a common but important aspect of daily behavior. Such behavior requires not only memory for the intended action but also recognition of the opportunity to perform that action, known collectively as prospective memory. The fact that prospective memory tasks occur in the midst of other activities is captured in laboratory tasks by embedding the prospective memory task in an ongoing activity. In many cases the requirement to perform the prospective memory task results in a reduction in ongoing performance relative to when the ongoing task is performed alone. This is referred to as the cost to the ongoing task and reflects the allocation of attentional resources to the prospective memory task. The current study examined the pattern of cost across the ongoing task when the ongoing task provided contextual information that in turn allowed participants to anticipate when target events would occur within the ongoing task. The availability of contextual information reduced ongoing task response times overall, with an increase in response times closer to the target locations (Experiments 1-3). The fourth study, drawing on the Event Segmentation Theory, provided support for the proposal made by the Preparatory Attentional and Memory Processes theory of prospective memory that decisions about the allocation of attention to the prospective memory task are more likely to be made at points of transition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Effects of Learned Episodic Event Structure on Prospective Duration Judgments

    ERIC Educational Resources Information Center

    Faber, Myrthe; Gennari, Silvia P.

    2017-01-01

    The field of psychology of time has typically distinguished between prospective timing and retrospective duration estimation: in prospective timing, participants attend to and encode time, whereas in retrospective estimation, estimates are based on the memory of what happened. Prior research on prospective timing has primarily focused on…

  1. Decision analysis with cumulative prospect theory.

    PubMed

    Bayoumi, A M; Redelmeier, D A

    2000-01-01

    Individuals sometimes express preferences that do not follow expected utility theory. Cumulative prospect theory adjusts for some phenomena by using decision weights rather than probabilities when analyzing a decision tree. The authors examined how probability transformations from cumulative prospect theory might alter a decision analysis of a prophylactic therapy in AIDS, eliciting utilities from patients with HIV infection (n = 75) and calculating expected outcomes using an established Markov model. They next focused on transformations of three sets of probabilities: 1) the probabilities used in calculating standard-gamble utility scores; 2) the probabilities of being in discrete Markov states; 3) the probabilities of transitioning between Markov states. The same prophylaxis strategy yielded the highest quality-adjusted survival under all transformations. For the average patient, prophylaxis appeared relatively less advantageous when standard-gamble utilities were transformed. Prophylaxis appeared relatively more advantageous when state probabilities were transformed and relatively less advantageous when transition probabilities were transformed. Transforming standard-gamble and transition probabilities simultaneously decreased the gain from prophylaxis by almost half. Sensitivity analysis indicated that even near-linear probability weighting transformations could substantially alter quality-adjusted survival estimates. The magnitude of benefit estimated in a decision-analytic model can change significantly after using cumulative prospect theory. Incorporating cumulative prospect theory into decision analysis can provide a form of sensitivity analysis and may help describe when people deviate from expected utility theory.

  2. 48 CFR 253.209-1 - Responsible prospective contractors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... required service. (B) Production capability. An evaluation of the prospective contractor's ability to plan.... (C) Quality assurance capability. An assessment of the prospective contractor's capability to meet the quality assurance requirements of the proposed contract. It may involve an evaluation of the...

  3. Self-perceived assessment skill of prospective physics teachers

    NASA Astrophysics Data System (ADS)

    Efendi, R.; Rustaman, N. Y.; Kaniawati, I.

    2018-05-01

    Assessment skills are an important component of assessment practice, without adequate assessment skills it is unlikely that teacher assessment practices will produce desired student learning outcomes. This study was conducted to reveal self-perceived assessment skills of prospective physics teachers by using quantitative descriptive analysis, and involving 92 prospective physics teachers who were experiencing teaching practice in junior high school and final project related to assessment. Data was collected by using Self-Perceived Assessment Science Skills Questionnaire consisted of 29 items related seven assessment competencies was developed and used in the study. Internal consistency reliability coefficient for the total scale scores was 0.87 as measured by Cronbach’s alpha. Determination of self-perceived assessment science skills detected from prospective physics teachers was carried out in descriptive statistics, in the form of respondent average values. Research findings show that self-perceived assessment skills of prospective physics teachers was categorized as transition.

  4. Prospective Primary Teachers' Mathematics Anxiety-Apprehension and Its Causes

    ERIC Educational Resources Information Center

    Özdemir, Emine; Seker, Burcu Sezginsoy

    2017-01-01

    The study aims to investigate the mathematics anxiety-apprehension of prospective primary school teachers and its causes. The mathematics anxiety-apprehension of the prospective primary school teachers was analyzed using a number of variables. The prospective teachers were asked to provide written answers to open-ended questions about the causes…

  5. Turkish Prospective Chemistry Teachers' Alternative Conceptions about Acids and Bases

    ERIC Educational Resources Information Center

    Boz, Yezdan

    2009-01-01

    The purpose of this study was to obtain prospective chemistry teachers' conceptions about acids and bases concepts. Thirty-eight prospective chemistry teachers were the participants. Data were collected by means of an open-ended questionnaire and semi-structured interviews. Analysis of data indicated that most prospective teachers did not have…

  6. Cue-Focused and Reflexive-Associative Processes in Prospective Memory Retrieval

    ERIC Educational Resources Information Center

    McDaniel, Mark A.; Guynn, Melissa J.; Einstein, Gilles O.; Breneiser, Jennifer

    2004-01-01

    Several theories of event-based prospective memory were evaluated in 3 experiments. The results depended on the association between the target event and the intended action. For associated target-action pairs (a) preexposure of nontargets did not reduce prospective memory, (b) divided attention did not reduce prospective memory, (c) prospective…

  7. Prospecting for gold in the United States

    USGS Publications Warehouse

    ,

    1967-01-01

    Prospecting for gold is something that probably everyone dreams of trying at least once. To the person who is mainly concerned with this activity as a vacation diversion, prospecting offers a special excitement. There is a constant hope that the next pan of sediment may be "pay dirt," and no other thrill can compare with that experienced when one sees even a few tiny flecks of gold glittering in the black sand at the bottom of his pan. The search itself is its own reward for the efforts expended by the vacation prospector. The would-be prospector hoping for financial gain, however, should carefully consider all the facts of the situation before deciding to set out on a prospecting expedition.

  8. Improve your marketing effectiveness and net income through better prospecting.

    PubMed

    Gombeski, William R; Kantor, David; Bendycki, Nadine A; Wack, Jeff

    2002-01-01

    Prospecting is the process of finding customers who are ready to buy and can generate high net income for an organization. Leads for prospects come from three categories of sources: (1) organization-initiated; (2) acquired leads; and (3) marketing activity-initiated leads. Findings from a study of academic medical organizations showed a modest use of effective prospecting by hospitals surveyed and that there are opportunities to increase database marketing efforts. The data suggests that prospecting and its companion concept of qualifying are not fully integrated into many healthcare organization's marketing strategies and tactics.

  9. 48 CFR 253.209-1 - Responsible prospective contractors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... contracts, or contracts which provide for progress payments based on costs or on a percentage or stage of...) Packaging. An assessment of the prospective contractor's ability to meet all contractual packaging...)). (E) Plant safety. An assessment of the prospective contractor's ability to meet the safety...

  10. 48 CFR 253.209-1 - Responsible prospective contractors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section III, Block 19, generally mean— (A) Technical capability. An assessment of the prospective contractor's key management personnel to determine if they have the basic technical knowledge, experience... completion. This includes— (1) An assessment of the prospective contractor's possession of, or the ability to...

  11. Prospective Teachers' Perceptions on Different Aspects of Portfolio

    ERIC Educational Resources Information Center

    Ok, Ahmet; Erdogan, Mehmet

    2010-01-01

    This qualitative-case study examined how portfolio and portfolio assessment were perceived by prospective teachers. The participants were 23 prospective teachers from seven different teaching areas from a Turkish university. A semi-structured individual interview was conducted. The interview schedule included 15 open-ended questions. The main…

  12. 42 CFR 413.172 - Principles of prospective payment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Principles of prospective payment. 413.172 Section... SERVICES MEDICARE PROGRAM PRINCIPLES OF REASONABLE COST REIMBURSEMENT; PAYMENT FOR END-STAGE RENAL DISEASE...-Stage Renal Disease (ESRD) Services and Organ Procurement Costs § 413.172 Principles of prospective...

  13. 48 CFR 53.209-1 - Responsible prospective contractors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contractors. 53.209-1 Section 53.209-1 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.209-1 Responsible prospective contractors. (a) SF 1403 (Rev. 9/88), Preaward Survey of Prospective Contractor (General). SF 1403 is authorized for...

  14. Do Prospective Teachers Have Anxieties about Teaching Mathematics?

    ERIC Educational Resources Information Center

    Yavuz, Günes

    2018-01-01

    The purpose of this study is to analyse the level of prospective classroom and mathematics teachers' anxieties about teaching mathematics. Freshman and junior prospective teachers from educational faculties of two different universities participated in this study. "Anxieties About Teaching Mathematics Scale" which was developed by Peker…

  15. Preparing Elementary Prospective Teachers to Teach Early Algebra

    ERIC Educational Resources Information Center

    Hohensee, Charles

    2017-01-01

    Researchers have argued that integrating early algebra into elementary grades will better prepare students for algebra. However, currently little research exists to guide teacher preparation programs on how to prepare prospective elementary teachers to teach early algebra. This study examines the insights and challenges that prospective teachers…

  16. Investigating and analyzing prospective teacher's reflective thinking in solving mathematical problem: A case study of female-field dependent (FD) prospective teacher

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-05-01

    In the last few years, reflective thinking becomes very popular term in the world of education, especially in professional education of teachers. One of goals of the educational personnel and teacher institutions create responsible prospective teachers and they are able reflective thinking. Reflective thinking is a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. Reflective thinking can be applied in mathematics becauseby reflective thinking, students can improve theircuriosity to solve mathematical problem. In solving mathematical problem is assumed that cognitive style has an impact on prospective teacher's mental activity. As a consequence, reflective thinking and cognitive style are important things in solving mathematical problem. The subject, in this research paper, isa female-prospective teacher who has fielddependent cognitive style. The purpose of this research paperis to investigate the ability of prospective teachers' reflective thinking in solving mathematical problem. This research paper is a descriptive by using qualitativeapproach. To analyze the data related to prospectiveteacher's reflective thinking in solving contextual mathematicalproblem, the researchers focus in four main categories which describe prospective teacher's activities in using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.

  17. 48 CFR 52.216-5 - Price Redetermination-Prospective.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Price Redetermination....216-5 Price Redetermination—Prospective. As prescribed in 16.205-4, insert the following clause: Price Redetermination—Prospective (OCT 1997) (a) General. The unit prices and the total price stated in this contract...

  18. Prospective Elementary Teachers' Development of Fraction Number Sense

    ERIC Educational Resources Information Center

    Utley, Juliana; Reeder, Stacy

    2012-01-01

    Can prospective elementary teachers "unlearn" harmful algorithms used with fractions as they are invited to develop fraction number sense? This study examined the development of prospective elementary teachers' fraction number sense during an intermediate (grades 5-8) mathematics methods course. During this course, participants' were involved in a…

  19. Effect of prospective reimbursement on nursing home costs.

    PubMed

    Coburn, A F; Fortinsky, R; McGuire, C; McDonald, T P

    1993-04-01

    This study evaluates the effect of Maine's Medicaid nursing home prospective payment system on nursing home costs and access to care for public patients. The implementation of a facility-specific prospective payment system for nursing homes provided the opportunity for longitudinal study of the effect of that system. Data sources included audited Medicaid nursing home cost reports, quality-of-care data from state facility survey and licensure files, and facility case-mix information from random, stratified samples of homes and residents. Data were obtained for six years (1979-1985) covering the three-year period before and after implementation of the prospective payment system. This study used a pre-post, longitudinal analytical design in which interrupted, time-series regression models were estimated to test the effects of prospective payment and other factors, e.g., facility characteristics, nursing home market factors, facility case mix, and quality of care, on nursing home costs. Prospective payment contributed to an estimated $3.03 decrease in total variable costs in the third year from what would have been expected under the previous retrospective cost-based payment system. Responsiveness to payment system efficiency incentives declined over the study period, however, indicating a growing problem in achieving further cost reductions. Some evidence suggested that cost reductions might have reduced access for public patients. Study findings are consistent with the results of other studies that have demonstrated the effectiveness of prospective payment systems in restraining nursing home costs. Potential policy trade-offs among cost containment, access, and quality assurance deserve further consideration, particularly by researchers and policymakers designing the new generation of case mix-based and other nursing home payment systems.

  20. Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Montañez, Isabel P.; McElwain, Jennifer C.; Poulsen, Christopher J.; White, Joseph D.; Dimichele, William A.; Wilson, Jonathan P.; Griggs, Galen; Hren, Michael T.

    2016-11-01

    Earth's last icehouse, 300 million years ago, is considered the longest-lived and most acute of the past half-billion years, characterized by expansive continental ice sheets and possibly tropical low-elevation glaciation. This atypical climate has long been attributed to anomalous radiative forcing promoted by a 3% lower incident solar luminosity and sustained low atmospheric pCO2 (<=300 ppm). Climate models, however, indicate a CO2 sensitivity of ice-sheet distribution and sea-level response that questions this long-standing climate paradigm by revealing major discrepancy between hypothesized ice distribution, pCO2, and geologic records of glacioeustasy. Here we present a high-resolution record of atmospheric pCO2 for 16 million years of the late Palaeozoic, developed using soil carbonate-based and fossil leaf-based proxies, that resolves the climate conundrum. Palaeo-fluctuations on the 105-yr scale occur within the CO2 range predicted for anthropogenic change and co-vary with substantial change in sea level and ice volume. We further document coincidence between pCO2 changes and repeated restructuring of Euramerican tropical forests that, in conjunction with modelled vegetation shifts, indicate a more dynamic carbon sequestration history than previously considered and a major role for terrestrial vegetation-CO2 feedbacks in driving eccentricity-scale climate cycles of the late Palaeozoic icehouse.

  1. Development and Prototyping of the PROSPECT Antineutrino Detector

    NASA Astrophysics Data System (ADS)

    Commeford, Kelley; Prospect Collaboration

    2017-01-01

    The PROSPECT experiment will make the most precise measurement of the 235U reactor antineutrino spectrum as well as search for sterile neutrinos using a segmented Li-loaded liquid scintillator neutrino detector. Several prototype detectors of increasing size, complexity, and fidelity have been constructed and tested as part of the PROSPECT detector development program. The challenges to overcome include the efficient rejection of cosmogenic background and collection of optical photons in a compact volume. Design choices regarding segment structure and layout, calibration source deployment, and optical collection methods are discussed. Results from the most recent multi-segment prototype, PROSPECT-50, will also be shown.

  2. Health values and prospect theory: a comment.

    PubMed

    Stratmann-Schoene, D; Klose, T

    2001-01-01

    In a recent volume of Medical Decision Making, Treadwell and Lenert stated that under prospect theory, community members compared with patients underestimate the utility of health improvements. In this comment, the authors show that this statement holds only for a subset of possible preference functions. Furthermore, the authors provide arguments that, in general, the rater's current health state is not the appropriate reference level if applying prospect theory to health valuations.

  3. Study of Prospective Teachers' Conceptualization of Value Preferences

    ERIC Educational Resources Information Center

    Koruklu, Nermin; Aktamis, Hilal

    2012-01-01

    The purpose of this study was to determine whether there were any changes in the conceptualization of prospective teachers' values preferences during their university studies. The research group was composed of 208 prospective teachers who were studying at Science Education, Social Science Education and Fine Arts Education at Adnan Menderes…

  4. Prospective Physics Teachers' Awareness of Radiation and Radioactivity

    ERIC Educational Resources Information Center

    Tasoglu, Aslihan Kartal; Ates, Özlem; Bakaç, Mustafa

    2015-01-01

    The purpose of this study is to investigate prospective physics teachers' knowledge of and attitude towards radiation and radioactivity. Participants of this study are 56 prospective physics teachers. A questionnaire related with the knowledge about radiation and radiation fear was conducted. The results of this study showed that most of the…

  5. Neural Correlates of Prospective Memory across the Lifespan

    ERIC Educational Resources Information Center

    Zollig, Jacqueline; West, Robert; Martin, Mike; Altgassen, Mareike; Lemke, Ulrike; Kliegel, Matthias

    2007-01-01

    Overview: Behavioural data reveal an inverted U-shaped function in the efficiency of prospective memory from childhood to young adulthood to later adulthood. However, prior research has not directly compared processes contributing to age-related variation in prospective memory across the lifespan, hence it is unclear whether the same factors…

  6. How important is importance for prospective memory? A review

    PubMed Central

    Walter, Stefan; Meier, Beat

    2014-01-01

    Forgetting to carry out an intention as planned can have serious consequences in everyday life. People sometimes even forget intentions that they consider as very important. Here, we review the literature on the impact of importance on prospective memory performance. We highlight different methods used to manipulate the importance of a prospective memory task such as providing rewards, importance relative to other ongoing activities, absolute importance, and providing social motives. Moreover, we address the relationship between importance and other factors known to affect prospective memory and ongoing task performance such as type of prospective memory task (time-, event-, or activity-based), cognitive loads, and processing overlaps. Finally, we provide a connection to motivation, we summarize the effects of task importance and we identify important venues for future research. PMID:25018743

  7. An investigation into prospective memory in children with developmental dyslexia.

    PubMed

    Khan, Azizuddin

    2014-01-01

    Developmental dyslexia hinders reading and writing acquisition of around 5-10% of the children all over the world. However, little is known about role of prospective memory among dyslexics. Prospective memory is realization of delayed intention. Realization of delayed intention requires self initiated process. The present study explored the role of memory (prospective and retrospective memory), meta-memory and attention among dyslexic's children. One hundred and fifteen children (51 dyslexics and 64 normal controls) participated in the study. Prospective and retrospective memory questionnaire, everyday attention questionnaire and meta-memory were administered on children. Analysis of variance was used to analyses the data. All the main effects were significant. Some interactions were also found to be significant. Results suggest that dyslexic's performance on memory (prospective and retrospective memory) was worse than normal control. Meta-memory influences both dyslexics and normal control on prospective and retrospective memory. However, meta-memory affected dyslexics much more than normal control group. Similarly, significant differential effects were observed for simple, difficult and mixed attentional condition among between dyslexics and normal control. Dyslexic's performance was deteriorated as compared to normal control group. The findings of the study are discussed in the light of the existing literature.

  8. A Study on Chocolate Consumption in Prospective Teachers

    ERIC Educational Resources Information Center

    Ozgen, Leyla

    2016-01-01

    This study was planned and conducted to determine the chocolate consumption habits of prospective teachers. The study population was comprised of students attending the Faculty of Education at Gazi University in Ankara and the sample consisted of 251 prospective teachers selected with simple random sampling. 96.4% and 3.6% of the prospective…

  9. Investing in Prospective Cohorts for Etiologic Study of Occupational Exposures

    PubMed Central

    Blair, A.; Hines, C.J.; Thomas, K.W.; Alavanja, M.C.R.; Beane Freeman, L.E.; Hoppin, J.A.; Kamel, F.; Lynch, C.F.; Lubin, J.H.; Silverman, D.T.; Whelan, E.; Zahm, S. H.; Sandler, D. P.

    2015-01-01

    Prospective cohorts have played a major role in understanding the contribution of diet, physical activity, medical conditions, and genes to the development of many diseases, but have not been widely used for occupational exposures. Studies in agriculture are an exception. We draw upon our experience using this design to study agricultural workers to identify conditions that might foster use of prospective cohorts to study other occupational settings. Prospective cohort studies are perceived by many as the strongest epidemiologic design. It allows updating of information on exposure and other factors, collection of biologic samples before disease diagnosis for biomarker studies, assessment of effect modification by genes, lifestyle, and other occupational exposures, and evaluation of a wide range of health outcomes. Increased use of prospective cohorts would be beneficial in identifying hazardous exposures in the workplace. Occupational epidemiologists should seek opportunities to initiate prospective cohorts to investigate high priority, occupational exposures. PMID:25603935

  10. Fabrication, Quality Assurance, and Quality Control for PROSPECT Detector Component Production

    NASA Astrophysics Data System (ADS)

    Gustafson, Ian; Prospect (The Precision Reactor Oscillation; Spectrum Experiment) Collaboration

    2017-09-01

    The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) is an electron antineutrino (νe) detector intended to make a precision measurement of the 235U neutrino spectrum and to search for the possible existence of sterile neutrinos with a mass splitting of Δm2 on the order of 1 eV2 . As a short baseline detector, PROSPECT will be located less than 10 meters from the High Flux Isotope Reactor at Oak Ridge National Laboratory. As PROSPECT intends to search for baseline-dependent oscillations, physical segmentation is needed to better measure the interaction position. PROSPECT will therefore be a segmented detector in two dimensions, thereby improving position measurements. PROSPECT will be segmented into 154 (11×14) 1.2-meter long rectangular tubes, using optical separators. Each separator will consist of a carbon fiber core, laminated with optical reflector (to increase light collection) and Teflon (to ensure compatibility with the scintillator). These optical separators will be held in place via strings of 3D printed PLA rods called `pinwheels.' This poster discusses the fabrication and quality assurance (QA) procedures used in the production of both the PROSPECT optical separators and pinwheels. For the PROSPECT collaboration.

  11. Prospective memory across adolescence: the effects of age and cue focality.

    PubMed

    Wang, Lijuan; Altgassen, Mareike; Liu, Wei; Xiong, Weirui; Akgün, Canan; Kliegel, Matthias

    2011-01-01

    The present study examined the role of controlled attention in age differences in event-based prospective memory performance across adolescence. The researchers tested whether presenting the prospective memory cue in or out of focal awareness of the ongoing task (resulting in low versus high demands for controlled attention, respectively) might affect age-related prospective memory performance. In total, 119 Chinese participants ages 13 to 20 took part in this study (60 adolescents: age M = 13.26 years, SD = 0.50; 23 boys; 59 young adults: age M = 19.70 years, SD = 0.87; 19 men). Findings demonstrated a significant interaction, F(1, 114) = 6.41, p < .05. No effect of age on prospective memory performance was revealed when a focal cue was used (F < 1), whereas there was a reliable age effect between adolescents and young adults when nonfocal prospective memory cues were presented, F(1, 59) = 16.13, p < .01. This pattern of results suggests that the interplay of both available resources of controlled attention and working memory, along with specific task demands, may contribute to possible age differences in prospective memory performance across adolescence. Results are discussed in the context of the multiprocess theory of prospective memory.

  12. Social importance enhances prospective memory: evidence from an event-based task.

    PubMed

    Walter, Stefan; Meier, Beat

    2017-07-01

    Prospective memory performance can be enhanced by task importance, for example by promising a reward. Typically, this comes at costs in the ongoing task. However, previous research has suggested that social importance (e.g., providing a social motive) can enhance prospective memory performance without additional monitoring costs in activity-based and time-based tasks. The aim of the present study was to investigate the influence of social importance in an event-based task. We compared four conditions: social importance, promising a reward, both social importance and promising a reward, and standard prospective memory instructions (control condition). The results showed enhanced prospective memory performance for all importance conditions compared to the control condition. Although ongoing task performance was slowed in all conditions with a prospective memory task when compared to a baseline condition with no prospective memory task, additional costs occurred only when both the social importance and reward were present simultaneously. Alone, neither social importance nor promising a reward produced an additional slowing when compared to the cost in the standard (control) condition. Thus, social importance and reward can enhance event-based prospective memory at no additional cost.

  13. 42 CFR 412.304 - Implementation of the capital prospective payment system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEMS FOR INPATIENT HOSPITAL SERVICES Prospective Payment System for Inpatient Hospital Capital Costs General Provisions § 412.304 Implementation of the capital prospective payment system. (a) General rule. As described in §§ 412.312 through 412.370...

  14. Effect of prospective reimbursement on nursing home costs.

    PubMed Central

    Coburn, A F; Fortinsky, R; McGuire, C; McDonald, T P

    1993-01-01

    OBJECTIVE. This study evaluates the effect of Maine's Medicaid nursing home prospective payment system on nursing home costs and access to care for public patients. DATA SOURCES/STUDY SETTING. The implementation of a facility-specific prospective payment system for nursing homes provided the opportunity for longitudinal study of the effect of that system. Data sources included audited Medicaid nursing home cost reports, quality-of-care data from state facility survey and licensure files, and facility case-mix information from random, stratified samples of homes and residents. Data were obtained for six years (1979-1985) covering the three-year period before and after implementation of the prospective payment system. STUDY DESIGN. This study used a pre-post, longitudinal analytical design in which interrupted, time-series regression models were estimated to test the effects of prospective payment and other factors, e.g., facility characteristics, nursing home market factors, facility case mix, and quality of care, on nursing home costs. PRINCIPAL FINDINGS. Prospective payment contributed to an estimated $3.03 decrease in total variable costs in the third year from what would have been expected under the previous retrospective cost-based payment system. Responsiveness to payment system efficiency incentives declined over the study period, however, indicating a growing problem in achieving further cost reductions. Some evidence suggested that cost reductions might have reduced access for public patients. CONCLUSIONS. Study findings are consistent with the results of other studies that have demonstrated the effectiveness of prospective payment systems in restraining nursing home costs. Potential policy trade-offs among cost containment, access, and quality assurance deserve further consideration, particularly by researchers and policymakers designing the new generation of case mix-based and other nursing home payment systems. PMID:8463109

  15. Content knowledge of prospective elementary school teacher for fractional concepts

    NASA Astrophysics Data System (ADS)

    Pattimukay, N.; Juniati, D.; Budiarto, M. T.

    2018-03-01

    The aim of this study was to describe the content knowledge especially the concept of fraction of prospective elementary school teacher. The purpose of this study is to describe the content knowledge, especially the concept of fraction of prospective elementary school teacher. The subject of the study was one of prospective elementary school teacher of Pattimura University. This research is qualitative research. Data were collected through the provision of tests to explore the knowledge content of primary school teacher candidates about fractional concepts. Then continued with qualitative data analysis. The results of this study are as follows: that the prospective primary school teacher defines fractions as part of the whole if an object is divided into equal parts, so that the part that has been divided is part of the whole. Furthermore, the prospective elementary school teacher understood the fractions as division shown in two ways, namely the prospective elementary school teacher understood the fraction as a division operation, the primary school teacher candidate interpreted the fraction as a division when an object is divided be part of the same. Meanwhile, the fraction as a ratio is interpreted as the relationship between a pair of numbers. Then, the denominations are interpreted as a ratio between the numerator and the denominator of the same value. The prospective elementary school teacher also understands fractions of value when simplifying fractions. Primary school teacher candidates understand the concept of fractional operations.

  16. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  17. 42 CFR 413.304 - Eligibility for prospectively determined payment rates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospectively Determined Payment Rates for Low-Volume Skilled Nursing Facilities, for Cost...

  18. 42 CFR 413.304 - Eligibility for prospectively determined payment rates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospectively Determined Payment Rates for Low-Volume Skilled Nursing Facilities, for Cost...

  19. 42 CFR 419.20 - Hospitals subject to the hospital outpatient prospective payment system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prospective payment system. 419.20 Section 419.20 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEM FOR HOSPITAL... Outpatient Prospective Payment System § 419.20 Hospitals subject to the hospital outpatient prospective...

  20. Academic decision making and prospect theory.

    PubMed

    Mowrer, Robert R; Davidson, William B

    2011-08-01

    Two studies are reported that investigate the applicability of prospect theory to college students' academic decision making. Exp. 1 failed to provide support for the risk-seeking portion of the fourfold pattern predicted by prospect theory but did find the greater weighting of losses over gains. Using a more sensitive dependent measure, in Exp. 2 the results of the first experiment were replicated in terms of the gain-loss effect and also found some support for the fourfold pattern in the interaction between probabilities and gain versus loss. The greatest risk-seeking was found in the high probability loss condition.

  1. Prospective Pre-School Teachers' Attitudes towards Astronomy

    ERIC Educational Resources Information Center

    Türk, Cumhur; Demir, Esra

    2016-01-01

    The purpose of this study is to examine the changes in prospective pre-school teachers' attitudes towards astronomy in terms of their grades. The study was conducted with 205 prospective teachers (1st, 2nd, 3rd, 4th graders) studying in the education faculty of a university in Eastern Anatolia region of Turkey. Astronomy Attitude Scale (AAS) was…

  2. Examining the Image of Prospective Teachers towards Mathematicians

    ERIC Educational Resources Information Center

    Yazlik, Derya Ozlem; Erdogan, Ahmet

    2018-01-01

    The aim of this study is to identify how prospective teachers see mathematicians by the pictures they visualized. In accordance with this purpose phenomenology pattern which is one of the qualitative patterns was used. The study was carried out with 160 volunteered prospective teachers. The data collection tool to be used in this study consists of…

  3. Minimizing the Disruptive Effects of Prospective Memory in Simulated Air Traffic Control

    PubMed Central

    Loft, Shayne; Smith, Rebekah E.; Remington, Roger

    2015-01-01

    Prospective memory refers to remembering to perform an intended action in the future. Failures of prospective memory can occur in air traffic control. In two experiments, we examined the utility of external aids for facilitating air traffic management in a simulated air traffic control task with prospective memory requirements. Participants accepted and handed-off aircraft and detected aircraft conflicts. The prospective memory task involved remembering to deviate from a routine operating procedure when accepting target aircraft. External aids that contained details of the prospective memory task appeared and flashed when target aircraft needed acceptance. In Experiment 1, external aids presented either adjacent or non-adjacent to each of the 20 target aircraft presented over the 40min test phase reduced prospective memory error by 11% compared to a condition without external aids. In Experiment 2, only a single target aircraft was presented a significant time (39min–42min) after presentation of the prospective memory instruction, and the external aids reduced prospective memory error by 34%. In both experiments, costs to the efficiency of non-prospective memory air traffic management (non-target aircraft acceptance response time, conflict detection response time) were reduced by non-adjacent aids compared to no aids or adjacent aids. In contrast, in both experiments, the efficiency of the prospective memory air traffic management (target aircraft acceptance response time) was facilitated by adjacent aids compared to non-adjacent aids. Together, these findings have potential implications for the design of automated alerting systems to maximize multi-task performance in work settings where operators monitor and control demanding perceptual displays. PMID:24059825

  4. Earth as a Tool for Astrobiology—A European Perspective

    NASA Astrophysics Data System (ADS)

    Martins, Zita; Cottin, Hervé; Kotler, Julia Michelle; Carrasco, Nathalie; Cockell, Charles S.; de la Torre Noetzel, Rosa; Demets, René; de Vera, Jean-Pierre; d'Hendecourt, Louis; Ehrenfreund, Pascale; Elsaesser, Andreas; Foing, Bernard; Onofri, Silvano; Quinn, Richard; Rabbow, Elke; Rettberg, Petra; Ricco, Antonio J.; Slenzka, Klaus; Stalport, Fabien; ten Kate, Inge L.; van Loon, Jack J. W. A.; Westall, Frances

    2017-07-01

    Scientists use the Earth as a tool for astrobiology by analyzing planetary field analogues (i.e. terrestrial samples and field sites that resemble planetary bodies in our Solar System). In addition, they expose the selected planetary field analogues in simulation chambers to conditions that mimic the ones of planets, moons and Low Earth Orbit (LEO) space conditions, as well as the chemistry occurring in interstellar and cometary ices. This paper reviews the ways the Earth is used by astrobiologists: (i) by conducting planetary field analogue studies to investigate extant life from extreme environments, its metabolisms, adaptation strategies and modern biosignatures; (ii) by conducting planetary field analogue studies to investigate extinct life from the oldest rocks on our planet and its biosignatures; (iii) by exposing terrestrial samples to simulated space or planetary environments and producing a sample analogue to investigate changes in minerals, biosignatures and microorganisms. The European Space Agency (ESA) created a topical team in 2011 to investigate recent activities using the Earth as a tool for astrobiology and to formulate recommendations and scientific needs to improve ground-based astrobiological research. Space is an important tool for astrobiology (see Horneck et al. in Astrobiology, 16:201-243, 2016; Cottin et al., 2017), but access to space is limited. Complementing research on Earth provides fast access, more replications and higher sample throughput. The major conclusions of the topical team and suggestions for the future include more scientifically qualified calls for field campaigns with planetary analogy, and a centralized point of contact at ESA or the EU for the organization of a survey of such expeditions. An improvement of the coordinated logistics, infrastructures and funding system supporting the combination of field work with planetary simulation investigations, as well as an optimization of the scientific return and data processing

  5. The Impact of Discovering Life beyond Earth

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2016-01-01

    Introduction: astrobiology and society Steven J. Dick; Part I. Motivations and Approaches. How Do We Frame the Problems of Discovery and Impact?: Introduction; 1. Current approaches to finding life beyond earth, and what happens if we do Seth Shostak; 2. The philosophy of astrobiology: the Copernican and Darwinian presuppositions Iris Fry; 3. History, discovery, analogy: three approaches to the impact of discovering life beyond earth Steven J. Dick; 4. Silent impact: why the discovery of extraterrestrial life should be silent Clément Vidal; Part II. Transcending Anthropocentrism. How Do We Move beyond our Own Preconceptions of Life, Intelligence and Culture?: Introduction; 5. The landscape of life Dirk Schulze-Makuch; 6. The landscape of intelligence Lori Marino; 7. Universal biology: assessing universality from a single example Carlos Mariscal; 8. Equating culture, civilization, and moral development in imagining extraterrestrial intelligence: anthropocentric assumptions? John Traphagan; 9. Communicating with the other: infinity, geometry, and universal math and science Douglas Vakoch; Part III. Philosophical, Theological, and Moral Impact. How Do We Comprehend the Cultural Challenges Raised by Discovery?: Introduction; 10. Life, intelligence and the pursuit of value in cosmic evolution Mark Lupisella; 11. 'Klaatu barada nikto' - or, do they really think like us? Michael Ruse; 12. Alien minds Susan Schneider; 13. The moral subject of astrobiology: guideposts for exploring our ethical and political responsibilities towards extraterrestrial life Elspeth Wilson and Carol Cleland; 14. Astrobiology and theology Robin Lovin; 15. Would you baptize an extraterrestrial? Guy Consolmagno, SJ; Part IV. Practical Considerations: How Should Society Prepare for Discovery - and Non-Discovery?: Introduction; 16. Is there anything new about astrobiology and society? Jane Maienschein; 17. Evaluating preparedness for the discovery of extraterrestrial life: considering potential

  6. Controller's role in monitoring prospective payment system.

    PubMed

    Margrif, F D

    1986-05-01

    The challenge for hospital controllers in overseeing the prospective payment system (PPS) lies not in acquiring technical expertise but in working with the chief executive officer to coordinate organizational change. Specifically, the controller should assist in creating a prospective payment committee (PPC)--an interdisciplinary group of executives, middle managers, and medical staff. The PPC's duties, among others, include educating staff about the PPS, development of a productivity reporting system, and review of the responsibility accounting structure.

  7. An investigation into prospective memory in children with developmental dyslexia

    PubMed Central

    Khan, Azizuddin

    2014-01-01

    Developmental dyslexia hinders reading and writing acquisition of around 5–10% of the children all over the world. However, little is known about role of prospective memory among dyslexics. Prospective memory is realization of delayed intention. Realization of delayed intention requires self initiated process. The present study explored the role of memory (prospective and retrospective memory), meta-memory and attention among dyslexic's children. One hundred and fifteen children (51 dyslexics and 64 normal controls) participated in the study. Prospective and retrospective memory questionnaire, everyday attention questionnaire and meta-memory were administered on children. Analysis of variance was used to analyses the data. All the main effects were significant. Some interactions were also found to be significant. Results suggest that dyslexic's performance on memory (prospective and retrospective memory) was worse than normal control. Meta-memory influences both dyslexics and normal control on prospective and retrospective memory. However, meta-memory affected dyslexics much more than normal control group. Similarly, significant differential effects were observed for simple, difficult and mixed attentional condition among between dyslexics and normal control. Dyslexic's performance was deteriorated as compared to normal control group. The findings of the study are discussed in the light of the existing literature. PMID:25538638

  8. Astrobioethics

    NASA Astrophysics Data System (ADS)

    Chon-Torres, Octavio A.

    2018-01-01

    Astrobiology is a discipline that is expanding its field of investigation not only in the natural sciences, but also in the social sciences. It is for this reason that the ethical aspects are progressively emphasized leading to a point where the whole field requires a specific handling. The appellation `astrobioethics' is now considered as not only relevant, but also a true issue for the future of Astrobiology. Astrobioethics is the subsection within astrobiology that is accountable for studying the moral implications of, for example, bringing humans to Mars, the Planetary Protection Policy, the social responsibility of the astrobiologist to society, etc. It is in this way that the present article outlines a path for astrobioethics, as being a fertile field of study and an opportunity to trade scientific knowledge in a transdisciplinary way.

  9. Alien Mindscapes-A Perspective on the Search for Extraterrestrial Intelligence.

    PubMed

    Cabrol, Nathalie A

    2016-09-01

    Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI (1) ), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers. SETI-Astrobiology-Coevolution of Earth and life-Planetary habitability and biosignatures. Astrobiology 16, 661-676.

  10. 43 CFR 3505.61 - May BLM extend the term of my prospecting permit?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false May BLM extend the term of my prospecting....61 May BLM extend the term of my prospecting permit? We may extend prospecting permits for phosphate... additional 2 years. We cannot extend sodium and sulphur prospecting permits. ...

  11. 43 CFR 3505.61 - May BLM extend the term of my prospecting permit?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false May BLM extend the term of my prospecting....61 May BLM extend the term of my prospecting permit? We may extend prospecting permits for phosphate... additional 2 years. We cannot extend sodium and sulphur prospecting permits. ...

  12. 43 CFR 3505.61 - May BLM extend the term of my prospecting permit?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false May BLM extend the term of my prospecting....61 May BLM extend the term of my prospecting permit? We may extend prospecting permits for phosphate... additional 2 years. We cannot extend sodium and sulphur prospecting permits. ...

  13. Changes in How Prospective Teachers Anticipate Secondary Students' Answers

    ERIC Educational Resources Information Center

    Llinares, Salvador; Fernández, Ceneida; Sánchez-Matamoros, Gloria

    2016-01-01

    This study focuses on how prospective teachers learn about students' mathematical thinking when (1) anticipating secondary students' answers reflecting different characteristics of understanding, and (2) propose new activities in relation to the classification of quadrilaterals. The data were collected from forty-eight prospective secondary school…

  14. The Relationship between Learning Approaches of Prospective Teachers and Their Academic Achievement

    ERIC Educational Resources Information Center

    Gurlen, Eda; Turan, Sevgi; Senemoglu, Nuray

    2013-01-01

    To prepare for future professional challenges, prospective teachers should acquire the capabilities for independent learning. Prospective teachers should know how to learn effectively. In this article, prospective teachers' learning approaches, learning preference and the relationship between learning preference, learning approaches with…

  15. 37 CFR 10.33 - Direct contact with prospective clients.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Direct contact with prospective clients. 10.33 Section 10.33 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND... clients. A practitioner may not solicit professional employment from a prospective client with whom the...

  16. 36 CFR 1005.14 - Prospecting, mining, and mineral leasing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mineral leasing. 1005.14 Section 1005.14 Parks, Forests, and Public Property PRESIDIO TRUST COMMERCIAL AND PRIVATE OPERATIONS § 1005.14 Prospecting, mining, and mineral leasing. Prospecting, mining, and the location of mining claims under the general mining laws and leasing under the mineral leasing laws are...

  17. 36 CFR 1005.14 - Prospecting, mining, and mineral leasing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mineral leasing. 1005.14 Section 1005.14 Parks, Forests, and Public Property PRESIDIO TRUST COMMERCIAL AND PRIVATE OPERATIONS § 1005.14 Prospecting, mining, and mineral leasing. Prospecting, mining, and the location of mining claims under the general mining laws and leasing under the mineral leasing laws are...

  18. 36 CFR 1005.14 - Prospecting, mining, and mineral leasing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mineral leasing. 1005.14 Section 1005.14 Parks, Forests, and Public Property PRESIDIO TRUST COMMERCIAL AND PRIVATE OPERATIONS § 1005.14 Prospecting, mining, and mineral leasing. Prospecting, mining, and the location of mining claims under the general mining laws and leasing under the mineral leasing laws are...

  19. 77 FR 38771 - Prospective Grant of Exclusive Patent License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Prospective Grant of Exclusive Patent License AGENCY: National Institute of Standards and Technology, Commerce. ACTION: Notice of prospective grant of exclusive patent license. SUMMARY: This is a notice in accordance with 35 U.S.C. 209(e...

  20. [Diagnosis of lung embolism. Prospective study].

    PubMed

    Melcher, G A; Frauchiger, B; Brunner, W; Nager, F

    1987-01-31

    In a prospective study over the years 1983-1985, 300 cases of acute pulmonary embolism were analyzed in relation to predisposing factors, clinical signs, arterial blood gas analysis and isotope perfusion scanning. Comparison of this prospective study with an earlier retrospective one showed similar results, with the exception of isotope scanning, an investigation which has gained increasing diagnostic reliability (highly suggestive results in 94% of patients with massive pulmonary embolism and in 64% with submassive pulmonary embolism). In two thirds of the cases the diagnosis was established during the first day after hospitalisation. In 10% of the patients pulmonary embolism occurred despite anticoagulant therapy.