Sample records for icelandic rift zones

  1. The Iceland Plate Boundary Zone: Propagating Rifts, Migrating Transforms, and Rift-Parallel Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2017-11-01

    Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.

  2. Geochemistry of NE Atlantic non-rifting zones, Iceland and Jan Mayen

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Waight, T.

    2005-12-01

    The fertile components of the NE Atlantic mantle are sampled preferentially by alkaline basalts in the volcanic flank zones of Iceland and in the Jan Mayen and Vesteris seamount areas. Our data from primitive flank zone lavas from Iceland and Jan Mayen demonstrate a HIMU-affinity with enrichment of HFSE, U/Pb, Th/U and Nb/Th. In PM-normalized spider diagrams the least enriched samples have weakly positive Sr-anomalies, whereas the most enriched samples have negative Sr-anomalies. The entire sample suite shows negative Sr-Nd-isotope correlation, whereas the samples of each volcanic system or flank zone generally lack such a correlation. Our data confirm the anomalously high 87/86Sr of the Orafajokull volcanic system in the eastern flank zone. The results are consistent with existing data for other primitive flank zone basalts from Iceland and Jan Mayen. Common geochemical features linking alkaline flank zone basalts and high-degree tholeiitic melts include high 87/86Sr (and probably 176/177Hf) for a given 143/144Nd, negative delta-207Pb (except for Orafajokull) and positive delta-Nb. Alkaline flank zone basalts have generally higher 87/86Sr, 206/204Pb and 18/16O and lower 143/144Nd, 187/188Os and 3/4He than rift zone tholeiites. The different 18/16O ratios in flank and rift zone basalts are consistent with seafloor hydrothermal alteration of the upper and lower parts of recycled oceanic lithosphere, respectively. Olivine-melt fractionation may contribute to the difference. Indications of lower 187/188Os in alkaline basalts compared to nearby rift zone tholeiites could be caused by subduction zone loss of Re from the upper part of recycled slabs. The partial melting and volcanic sampling of the fertile mantle components under Iceland and the NE Atlantic is governed by the crustal structure and geometry of the Icelandic volcanic zones and the lateral deflection of the upwelling heterogeneous mantle source originating under central Iceland. Based on the pattern of V

  3. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  4. Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2015-12-01

    Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.

  5. Ambient noise tomography reveals upper crustal structure of Icelandic rifts

    NASA Astrophysics Data System (ADS)

    Green, Robert G.; Priestley, Keith F.; White, Robert S.

    2017-05-01

    The structure of oceanic spreading centres and subsurface melt distribution within newly formed crust is largely understood from marine seismic experiments. In Iceland, however, sub-aerial rift elevation allows both accurate surface mapping and the installation of large broadband seismic arrays. We present a study using ambient noise Rayleigh wave tomography to image the volcanic spreading centres across Iceland. Our high resolution model images a continuous band of low seismic velocities, parallelling all three segments of the branched rift in Iceland. The upper 10 km contains strong velocity variations, with shear wave velocities 0.5 km s-1 faster in the older non-volcanically active regions compared to the active rifts. Slow velocities correlate very closely with geological surface mapping, with contours of the anomalies parallelling the edges of the neo-volcanic zones. The low-velocity band extends to the full 50 km width of the neo-volcanic zones, demonstrating a significant contrast with the narrow (8 km wide) magmatic zone seen at fast spreading ridges, where the rate of melt supply is similarly high. Within the seismically slow rift band, the lowest velocity cores of the anomalies occur above the centre of the mantle plume under the Vatnajökull icecap, and in the Eastern Volcanic Zone under the central volcano Katla. This suggests localisation of melt accumulation at these specific volcanic centres, demonstrating variability in melt supply into the shallow crust along the rift axis. Shear velocity inversions with depth show that the strongest velocity contrasts are found in the upper 8 km, and show a slight depression in the shear velocity through the mid crust (10-20 km) in the rifts. Our model also shows less intensity to the slow rift anomaly in the Western Volcanic Zone, supporting the notion that rift activity here is decreasing as the ridge jumps to the Eastern Volcanic Zone.

  6. Episodic Rifting Events Within the Tjörnes Fracture Zone, an Onshore-Offshore Ridge-Transform in N-Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Magnusdottir, S.; Karson, J. A.; Detrick, R. S.; Driscoll, N. W.

    2015-12-01

    The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ), located on the coast and offshore Northern Iceland, is a complex transform linking the northern rift zone (NVZ) on land with the Kolbeinsey Ridge offshore. Extension across TFZ is partitioned across three N-S trending rift basins; Eyjafjarðaráll, Skjálfandadjúp (SB) and Öxarfjörður and three WNW-NW oriented seismic lineaments; the Grímsey Oblique Rift, Húsavík-Flatey Faults (HFFs) and Dalvík Lineament. We compile the tectonic framework of the TFZ ridge-transform from aerial photos, satellite images, multibeam bathymetry and high-resolution seismic reflection data (Chirp). The rift basins are made up of normal faults with vertical displacements of up to 50-60 m, and post-glacial sediments of variable thickness. The SB comprises N5°W obliquely trending, eastward dipping normal faults as well as N10°E striking, westward dipping faults oriented roughly perpendicular to the N104°E spreading direction, indicative of early stages of rifting. Correlation of Chirp reflection data and tephrachronology from a sediment core within SB reveal major rifting episodes between 10-12.1 kyrs BP activating the whole basin, followed by smaller-scale fault movements throughout Holocene. Onshore faults have the same orientations as those mapped offshore and provide a basis for the interpretation of the kinematics of the faults throughout the region. These include transform parallel right-lateral, strike-slip faults separating domains dominated by spreading parallel left-lateral bookshelf faults. Shearing is most prominent along the HFFs, a system of right-lateral strike-slip faults with vertical displacement up to 15 m. Vertical fault movements reflect increased tectonic activity during early postglacial time coinciding with isostatic rebound enhancing volcanism within

  7. A New Look at Spreading in Iceland: Propagating Rifts, Migrating Transform Faults, and Microplate Tectonics

    NASA Astrophysics Data System (ADS)

    Karson, J.; Horst, A. J.; Nanfito, A.

    2011-12-01

    Iceland has long been used as an analog for studies of seafloor spreading. Despite its thick (~25 km) oceanic crust and subaerial lavas, many features associated with accretion along mid-ocean ridge spreading centers, and the processes that generate them, are well represented in the actively spreading Neovolcanic Zone and deeply glaciated Tertiary crust that flanks it. Integrated results of structural and geodetic studies show that the plate boundary zone on Iceland is a complex array of linked structures bounding major crustal blocks or microplates, similar to oceanic microplates. Major rift zones propagate N and S from the hotspot centered beneath the Vatnajökull icecap in SE central Iceland. The southern propagator has extended southward beyond the South Iceland Seismic Zone transform fault to the Westman Islands, resulting in abandonment of the Eastern Rift Zone. Continued propagation may cause abandonment of the Reykjanes Ridge. The northern propagator is linked to the southern end of the receding Kolbeinsey Ridge to the north. The NNW-trending Kerlingar Pseudo-fault bounds the propagator system to the E. The Tjörnes Transform Fault links the propagator tip to the Kolbeinsey Ridge and appears to be migrating northward in incremental steps, leaving a swath of deformed crustal blocks in its wake. Block rotations, concentrated mainly to the west of the propagators, are clockwise to the N of the hotspot and counter-clockwise to the S, possibly resulting in a component of NS divergence across EW-oriented rift zones. These rotations may help accommodate adjustments of the plate boundary zone to the relative movements of the N American and Eurasian plates. The rotated crustal blocks are composed of highly anisotropic crust with rift-parallel internal fabric generated by spreading processes. Block rotations result in reactivation of spreading-related faults as major rift-parallel, strike-slip faults. Structural details found in Iceland can help provide information

  8. Do Processes of Rhyolite Genesis Change as Icelandic Rifts Drift off of the Plume?

    NASA Astrophysics Data System (ADS)

    Jordan, B. T.

    2004-12-01

    The abandoned Snaefellsnes rift zone in western Iceland was the on-land manifestation of the Mid-Atlantic Ridge between 15 and 7 Ma. The rift zone was abandoned at 7 Ma, after it had drifted westward off of the Iceland hotspot, generally interpreted as a mantle plume. The position of the abandoned rift was initially recognized as the axis of a regional syncline analogous to the syncline developed in response to active rifting. Previous paleomagnetic and geochronologic studies have confirmed the position of the abandoned rift axis. Recent seismic tomography shows that the abandoned rift is also characterized by relatively thin crust (<20 km, versus up to 46 km above the plume). In the context of supervising Keck Geology Consortium undergraduate research projects in northwestern Iceland in 2003 and 2004, I have studied several silicic centers erupted at different times along the northern Snaefellsnes rift. A compilation of preliminary geochemical data from the Skagi area near the rift reveals several interesting trends that bear on the origin of silicic magmas as activity in the rift was waning. The compositional spectrum of silicic rocks in this area is from dacite (67 wt.% SiO2) to rhyolite (75 wt.% SiO2). Positive correlation between Na2O and SiO2 is consistent with either fractionation or decreasing degrees of crustal melting to get from dacite to rhyolite. However, Zr correlates negatively with SiO2, consistent with zircon fractionation, but inconsistent with variation in the degree of melting unless zircon is present in the source, unlikely for the meta-basaltic crust of Iceland. Therefore, I suggest these rocks reflect extreme (>90%) fractionation of a basaltic parent. A similar argument was advanced by Furman et al. (1992, J. Pet., 1405-1445) for rhyolites at Austerhorn in eastern Iceland. Compelling arguments have been previously advanced that most rhyolites erupted in the modern rifts of Iceland are the products of crustal melting. The same has been argued

  9. Mantle and crustal contribution in the genesis of Recent basalts from off-rift zones in Iceland: Constraints from Th, Sr and O isotopes

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir; Condomines, Michel; Fourcade, Serge

    1992-05-01

    Along the two volcanic off-rift zones in Iceland, the Sn˦fellsnes volcanic zone (SNVZ) and the South Iceland volcanic zone (SIVZ), geochemical parameters vary regularly along the strike towards the centre of the island. Recent basalts from the SNVZ change from alkali basalts to tholeiites where the volcanic zone reaches the active rift axis, and their 87Sr/ 86Sr and Th/U ratios decrease in the same direction. These variations are interpreted as the result of mixing between mantle melts from two distinct reservoirs below Sn˦fellsnes. The mantle melt would be more depleted in incompatible elements, but with a higher 3He/ 4He ratio ( R/Ra≈ 20) beneath the centre of Iceland than at the tip of the Sn˦fellsnes volcanic zone ( R/Ra≈ 7.5). From southwest to northeast along the SIVZ, the basalts change from alkali basalts to FeTi basalts and quartz-normative tholeiites. The Th/U ratio of the Recent basalts increases and both ( 230Th/ 232Th ) and δ 18O values decrease in the same direction. This reflects an important crustal contamination of the FeTi-rich basalts and the quartz tholeiites. The two types of basalts could be produced through assimilation and fractional crystallization in which primary alkali basaltic and olivine tholeiitic melts 'erode' and assimilate the base of the crust. The increasingly tholeiitic character of the basalts towards the centre of Iceland, which reflects a higher degree of partial melting, is qualitatively consistent with increasing geothermal gradient and negative gravity anomaly. The highest Sr isotope ratio in Recent basalts from Iceland is observed inÖr˦fajökull volcano, which has a 3He/ 4He ratio ( R/Ra≈ 7.8) close to the MORB value, and this might represent a mantle source similar to that of Mauna Loa in Hawaii.

  10. Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    NASA Astrophysics Data System (ADS)

    Green, Robert G.; White, Robert S.; Greenfield, Tim

    2014-01-01

    Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.

  11. The May 29 2008 earthquake aftershock sequence within the South Iceland Seismic Zone: Fault locations and source parameters of aftershocks

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Parsons, M.; White, R. S.; Gudmundsson, O.; Drew, J.

    2010-12-01

    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland.

  12. Stratigraphy, Structure and Tectonics of the Eyjafjarðaráll Rift, Abandoned Southern Segment of the Kolbeinsey Ridge, North Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Karson, J. A.; Magnúsdóttir, S.; Detrick, B.; Driscoll, N. W.

    2017-12-01

    The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ) is a complex transform linking the northern rift zone (NVZ) on land with the offshore Kolbeinsey Ridge. The TFZ lacks a clear topographic expression typical of oceanic fracture zones. The transform zone is roughly 150 km long (E-W) by 50-75 km wide (N-S) with three N-S trending pull-apart basins bounded by a complex array of normal and oblique-slip faults. The offshore extension of the NVZ, the Grímsey Oblique Rift, is composed of several active volcanic systems with N-S trending fissure swarms, including the Skjálfandadjúp Basin (SB). The magma-starved southern extension of the KR, the 80 km NS and 15-20 EW Eyjafjarðaráll Rift (ER), is made up of dominantly normal faults merging southwards with a system of right-lateral strike-slip faults with vertical displacement up to 15 m in the Húsavík Flatey Fault Zone (HFFZ). The northern ER is a 500-700 m deep asymmetric rift, framed by normal faults with 20-25 m vertical displacement, To the south, transform movement associated with the HFFZ has created a NW- striking pull-apart basin with frequent earthquake swarms. Details of the tectonic framework of the ER are documented in a compilation of data from aerial photos, satellite images, field mapping, multibeam bathymetry, high-resolution seismic reflection surveys (Chirp) and seismicity. The TFZ rift basins contain post-glacial sediments of variable thickness. Strata in the western ER and SB basins dip steeply E along the normal faults, towards the deepest part of the rift. The eastern side of the ER and SB basins differ considerably from the western side, with near-vertical faults. Correlation of Chirp reflection data and tephrachronology from a sediment core reveal major rifting episodes between 10-12.1 kyrs BP activating both the Eyjafjarðaráll and Skj

  13. Enigmatic rift-parallel, strike-slip faults around Eyjafjörður, Northern Iceland

    NASA Astrophysics Data System (ADS)

    Proett, J. A.; Karson, J. A.

    2014-12-01

    Strike-slip faults along mid-ocean ridge spreading centers are generally thought to be restricted to transform boundaries connecting rift segments. Faults that are parallel to spreading centers are generally assumed to be normal faults associated with tectonic extension. However, clear evidence of north-south (rift-parallel), strike-slip displacements occur widely around the southern portion of Eyjafjörður, northern Iceland about 50 km west of the Northern Rift Zone. The area is south of the southernmost strand (Dalvík Lineament) of the NW-SE-trending, dextral-slip, Tjӧrnes Fracture Zone (where N-S, sinistral, strike-slip "bookshelf" faulting occurs). Faults in the Eyjafjörður area cut 8.5-10 m.y. basaltic crust and are parallel to spreading-related dikes and are commonly concentrated along dike margins. Fault rocks range from fault breccia to gouge. Riedel shears and other kinematic indicators provide unambiguous evidence of shear sense. Most faults show evidence of sinistral, strike-slip movement but smaller proportions of normal and oblique-slip faults also are present. Cross cutting relations among the different types of faults are inconsistent and appear to be related to a single deformation event. Fault slip-line kinematic analysis yields solutions indicating sinistral-normal oblique-slip overall. These results may be interpreted in terms of either previously unrecognized transform-fault bookshelf faulting or slip accommodating block rotation associated with northward propagation of the Northern Rift Zone.

  14. Geodetic Measurements and Numerical Models of Rifting in Northern Iceland for 1993-1999

    NASA Astrophysics Data System (ADS)

    Ali, T.; Feigl, K.; Masterlark, T.; Carr, B. B.; Sigmundsson, F.; Thurber, C. H.

    2009-12-01

    Rifting occurs as episodes of active deformation in individual rift segments of the Northern Volcanic Zone (NVZ) of Iceland. To measure the deformation, we use interferometric analysis of synthetic aperture radar (InSAR) data acquired between 1993 and 1999. Preliminary results suggest that a complex interplay of multiple inflating and deflating sources at depth is required to account for the observed deformation. In an effort to integrate heterogeneous constraining information (kinematic plate spreading, seismic tomography and anisotropy, and thermal and rheologic structures), we develop finite element models that simulate the underlying sources and processes associated with rifting events to quantitatively understand the magmatic plumbing system beneath Krafla central volcano and rift segment, the site of the most recent rifting episode in the NVZ. Calibration parameters include the positions, geometries, and flux rates for elements of the plumbing system, as well as material properties. The General Inversion for Phase Technique (GIPhT) [Feigl and Thurber, Geophys. J. Int., 2009] is used to model the InSAR phase data directly, without unwrapping parameters. It operates on wrapped phase values ranging from -1/2 to +1/2 cycles. By defining a cost function that quantifies the misfit between observed and modeled values in terms of wrapped phase, GIPhT can estimate parameters in a geophysical model by minimizing the cost function. Since this approach can handle noisy, wrapped phase data, it avoids the pitfalls of phase-unwrapping approaches. Consequently, GIPhT allows the analysis, interpretation and modeling of more interferometric pairs than approaches that require unwrapping. GIPhT also allows statistical testing of hypotheses because the wrapped phase residuals follow a Von Mises distribution. As a result, the model parameters estimated by GIPhT include formal uncertainties. We test the hypothesis that deformation in the rift zone occurred at a constant (secular

  15. Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.

    2017-12-01

    Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective

  16. Rift Zone Abandonment and Reconfiguration in Hawaii: Evidence from Mauna Loa’s Ninole Rift Zone

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.; Park, J.; Zelt, C. A.

    2009-12-01

    Large oceanic volcanoes commonly develop elongate rift zones that disperse viscous magmas to the distal reaches of the edifice. Intrusion and dike propagation occur under tension perpendicular to the rift zone, controlled by topography, magmatic pressures, and deformation of the edifice. However, as volcanoes grow and interact, the controlling stress fields can change, potentially altering the orientations and activities of rift zones. This phenomenon is probably common, and can produce complex internal structures that influence the evolution of a volcano and its neighbors. However, little direct evidence for such rift zone reconfiguration exists, primarily due to poor preservation or recognition of earlier volcanic configurations. A new onshore-offshore 3-D seismic velocity model for the Island of Hawaii, derived from a joint tomographic inversion of an offshore airgun shot - onshore receiver geometry and earthquake sources beneath the island, demonstrates a complicated history of rift zone reconfiguration on Mauna Loa volcano, Hawaii, including wholesale rift zone abandonment. Mauna Loa’s southeast flank contains a massive high velocity intrusive complex, now buried beneath flows derived from Mauna Loa’s active southwest rift zone (SWRZ). Introduced here as the Ninole Rift Zone, this feature extends more than 60 km south of Mauna Loa’s summit, spans a depth range of ~2-14 km below sea level, and is the probable source of the 100-200 ka Ninole volcanics in several prominent erosional hills. A lack of high velocities beneath the upper SWRZ and its separate zone of high velocities on the submarine flank, indicate that the younger rift zone was built upon a pre-existing edifice that emanated from the Ninole rift zone. The ancient Ninole rift zone may stabilize Mauna Loa’s southeast flank, focusing recent volcanic activity and deformation onto the unbuttressed west flank. The upper portion of the Ninole rift zone appears to have migrated westward over time

  17. Deformation during the 1975-1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery

    NASA Astrophysics Data System (ADS)

    Hollingsworth, James; Leprince, SéBastien; Ayoub, FrançOis; Avouac, Jean-Philippe

    2012-11-01

    We measure the displacement field resulting from the 1975-1984 Krafla rifting crisis, NE Iceland, using optical image correlation. Images are processed using the COSI-Corr software package. Surface extension is accommodated on normal faults and fissures which bound the rift zone, in response to dike injection at depth. Correlation of declassified KH-9 spy and SPOT5 satellite images reveals extension between 1977-2002 (2.5 m average opening over 80 km), while correlation of aerial photos between 1957-1990 provide measurements of the total extension (average 4.3 m opening over 80 km). Our results show ˜8 m of opening immediately north of Krafla caldera, decreasing to 3-4 m at the northern end of the rift. Correlation of aerial photos from 1957-1976 reveal a bi-modal pattern of opening along the rift during the early crisis, which may indicate either two different magma sources located at either end of the rift zone (a similar pattern of opening was observed in the 2005 Afar rift crisis in East Africa), or variations in rock strength along the rift. Our results provide new information on how past dike injection events accommodate long-term plate spreading, as well as providing more details on the Krafla rift crisis. This study also highlights the potential of optical image correlation using inexpensive declassified spy satellite and aerial photos to measure deformation of the Earth's surface going back many decades, thus providing a new tool for measuring Earth surface dynamics, e.g. glaciers, landsliding, coastal erosion, volcano monitoring and earthquake studies, when InSAR and GPS data are not available.

  18. Geodetic measurements and models of rifting in Northern Iceland for 1993-1998 (Invited)

    NASA Astrophysics Data System (ADS)

    Ali, T.; Feigl, K.; Thurber, C. H.; Masterlark, T.; Carr, B.; Sigmundsson, F.

    2010-12-01

    Rifting occurs as episodes of active deformation in individual rift segments of the Northern Volcanic Zone (NVZ) in Iceland. Here we simulate deformation around the Krafla central volcano and rift system in NVZ in order to explain InSAR data acquired between 1993 and 1998. The General Inversion for Phase Technique (GIPhT) is used to model the InSAR phase data directly, without unwrapping [Feigl and Thurber, Geophys. J. Int., 2009]. Using a parallel simulated annealing algorithm, GIPhT minimizes the non-linear cost function that quantifies the misfit between observed and modeled values of the phase. We test the hypothesis that the observed deformation can be explained by a combination of at least three processes including: (i) secular plate spreading, (ii) post rifting relaxation following the Krafla rifting episode (1975-1984), and (iii) deflation of a shallow magma chamber beneath the central volcano. The calibration parameters include material properties of upper/lower crust and mantle as well as flux rates for the elements of the plumbing system. The best fitting Maxwell model favors a stronger lower crust (~1.0E+20 Pa.s) and a mantle viscosity of ~1.0E+18 Pa.s as well as a shallow deflating magma chamber. The deformation appears to be linear in time over the observed interval.

  19. Oblique rift opening revealed by reoccurring magma injection in central Iceland.

    PubMed

    Ruch, Joël; Wang, Teng; Xu, Wenbin; Hensch, Martin; Jónsson, Sigurjón

    2016-08-05

    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries.

  20. Structure and kinematics of segment-scale crustal accretion processes in Iceland and implications for analogous mid-ocean ridge systems

    NASA Astrophysics Data System (ADS)

    Siler, Drew Lorenz

    2011-12-01

    The sub-surface geologic structure of the crust is controlled by the magmatic and tectonic processes that construct the crust during plate spreading. As a result, geologic structure provides constraints on the processes that occur during plate spreading. The crust of the Skagi region of northern Iceland, where this study was focused, was accreted by magmatic construction to Iceland ˜7-10 Ma and subsequently glacially eroded, exhuming ˜1-3 km of structural relief. Continuous spreading-parallel and spreading-orthogonal mountain ranges expose the crust accreted at discrete spreading segments, the fundamental intervals upon which plate spreading and crustal accretion occur. As a result, Skagi is an ideal location to employ geologic structure analysis to study magmatic rifting processes. Within spreading segments structural patterns vary significantly between segment centers and distal fissure swarms. While segment centers are characterized by focused magmatic construction and km-scale sub-volcanic subsidence, fissure swarms are characterized by limited magmatic construction, minor sub-axial subsidence and lateral dike injection. Such along-strike variation indicates that both magma in the upper crust and gabbroic material in the lower crust must be redistributed along-strike within spreading segments during plate spreading. Material flow is directed from beneath segment centers towards distal fissure swarms. At the regional scale, each spreading segment is a structurally discrete interval of Iceland's Neovolcanic Zone. As a result of west-northwestward movement of Iceland relative to the Iceland hotspot, the rift zone axis has progressively relocated to the east-southeast with time, leaving a series of abandoned rift zones throughout western Iceland. A compilation of published K/Ar and 40Ar/39Ar age data and geologic data from across northern Iceland shows that rift relocation occurs via frequent (2-3 Ma), small-scale (˜20 km) rift propagations rather than rare, 100

  1. Ridge-transform interaction and seismic behavior within the Tjörnes Fracture Zone, N-Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Magnusdottir, S.; Einarsson, P.; Gudmundsson, G.; Detrick, R. S.; Driscoll, N. W.

    2013-12-01

    High-resolution multibeam bathymetry and chirp profiling data have provided a new perspective on the structure and neotectonics of the onland-offshore Húsavík-Flatey Fault System (HFF) within the Tjörnes Fracture Zone (TFZ), N-Iceland. The TFZ comprises a broad right lateral transform zone made up of three major N-S striking extensional basins and three WNW-striking seismic lineaments, the dextral HFF, the Grímsey Oblique Rift Zone (GRZ) and the Dalvík Fault System (DF). The HFF connects the North Iceland Rift Zone (NIRZ) with the Eyjafjardaráll extensional basin (EB), the magma starved southern extension of the Kolbeinsey Ridge (KR) whereas the GRZ constitutes the offshore extension of the NIRZ with the KR. The HFF has an overall trend of N65°W and can be traced 75-80 km from its eastern junction with the NIRZ, across the Skjálfandi Bay and into the Eyjafjardaráll basin. Four pull-apart basins characterize the HFF, the largest at its intersection with the EB. En echelon arrays of conjugate strike-slip faults intersect the main HFF at angles of N20°-30°W and N20°E. Some can be traced onto land where they exhibit complicated flower patterns. Within the Skjálfandi Bay, the HFF is divided into two main branches, separated by a 70 m high N-S aligned push-up ridge and several smaller, sub-parallel WNW-trending faults. Individual fault strands have vertical displacement from 0-15 m. Large earthquakes occurred along the HFF in 1755, 1867, 1872 and 1884, the GRZ in 1884-1885 and 1910 and on the DF in 1838, 1934 and 1963. Some were destructive. A dextral transform offshore N-Iceland was initially based on diffuse earthquake epicenters and the M7, 1963 Skagafjördur earthquake. Data from the analog Iceland seismic network, established in the early 1970s, showed the TFZ microseismicity to be too diffuse to be associated with a simple oceanic transform fault. Recent seismicity within the TFZ consists of frequent earthquake swarms, lasting days or weeks with a

  2. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  3. Post-eruptive Deformation following the 2014 Holuhraun Rift, Iceland.

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Li, S.; Ofeigsson, B.; Sigmundsson, F.; Drouin, V.; Hreinsdottir, S.; Parks, M.; Friðriksdóttir, H. M.

    2017-12-01

    On August 16, 2014 an intense seismic swarm started below the eastern part of Bárdarbunga caldera at the NW edge of the Vatnajökull ice cap in Iceland. The seismicity migrated in 3 major segments changing direction at least twice until the advance stopped around 10 km south of Askja Volcano, more than 45 km from Bárdarbunga. The dike opening was accompanied by a 65 m collapse of the Bárdarbunga caldera floor and broad deflation due to magma removal from a 12 km deep reservoir (Gudmundsson et al., 2016). The area of the produced lava flow is 84 km2 with a volume of about 1.4 km3, which makes it the second largest eruption in Iceland since the Laki Fires in 1783 that produced an order of magnitude more lava. The caldera collapse was accompanied by over 40 M5 earthquakes; an immense seismic energy release for a volcano. The majority of seismicity in the dike clustered between 6-8 km depth. Sigmundsson et al. (2015) derive a maximum opening of 5 m shallower than 6 km from GPS and InSAR data. The co-eruptive deformation is followed by a complex juxtaposition of predominantly viscoelastic post-eruptive processes that include post-rifting relaxation and isostatic adjustment to the new lava flow, which modulate the long-term processes of plate spreading, subsidence at Askja Volcano, reinflation at Bárdarbunga, and glacial isostatic adjustment due to the melting of the nearby ice caps. Here, we present first results deciphering this deformation field using data from the continuous GPS network that was supplemented during the eruption specifically to capture these processes. We include InSAR analysis of Sentinel-1 data and analyze the observations through viscoelastic modeling approaches. GPS data show an asymmetric deformation field around the rift with 2-year GPS velocities between 0.1-1.5 cm/yr predominantly moving away from the rift. Preliminary modeling suggests several centimeters of horizontal displacement in plate spreading directions due to post-rifting

  4. Asymmetric seafloor spreading on the Reykjanes Ridge - influence of the Iceland anomaly?

    NASA Astrophysics Data System (ADS)

    Benediktsdóttir, Ásdís; Hey, Richard; Martinez, Fernando; Höskulddson, Ármann

    2017-04-01

    magnetic signature of a propagating rift is evident if the offset between the new and the dying rift is greater than the width of the neo-volcanic zone. The asymmetries documented on the RR are a series of spreading center shifts, shorter than the neo-volcanic zone on the ridge (which is 10km wide). The magnetic modeling used to model propagating rifts has been useful to identify and quantify the asymmetries on the RR, resulting in a hypothesis of a series of propagating rifts on the RR. The resulting features of "propagators" on the RR lack some of the major characteristics of the larger well-established propagators (i.e. the rotated fabric in the zone of transferred lithosphere and other geophysical footprints of the failed rift and pseudofaults). We are still in the process of understanding the mechanisms behind the observed asymmetries and their relation to the Iceland anomaly, the V-shaped ridges south of Iceland, and a newly formed theory on propagating buoyant upwelling instabilities.

  5. Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data

    NASA Technical Reports Server (NTRS)

    Leftwich, T. E.; vonFrese, R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, P. T.

    2003-01-01

    Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered and intruded. The mantle plume appears to be centered at (64.6 deg N, 17.4 deg W) near the Vatnajokull Glacier and the central Icelandic neovolcanic zones.

  6. Precise 40Ar/39Ar dating of basaltic dykes as an indicator of paleostress: exemple of the Icelandic rift jumps.

    NASA Astrophysics Data System (ADS)

    Arnaud, N. O.; Garcia, S.; Bergerat, F.

    2003-04-01

    Dykes constitute unique indicators of local paleostress. When compiled over a large area and over a significant time span they also underline larger changes in the global field stress and thus may be used together with the present day finite deformation to address global geodynamical problems. However, their use has often proved problematic because of their cryptic nature favouring excess argon retention or intake from the host rocks, as well as hydrothermal circulations and groundmass alteration. These flaws can be overtaken by careful sampling and specific sample preparation to get rid of “polluting” phases, reduction of the amount of used material using only hand picked glassy mesostasis, and replication of the analysis on several aliquots. This protocol allows to increase the number of significant results. In Iceland, rift zones have kept jumping for the past 20 Ma and probably even earlier as a response to the discontinuous capture of the mid-ocean ridge by the underlying Icelandic hotspot. However, direct determination of the age and location of paleorift zones has proven problematic because of rapid changes in the dipping of the lavas associated to overcasting of the oldest flows by younger ones, and also because of the retreat and discontinuity of flows associated with the severe glacial erosion. Dykes however do not suffer such problems and constitute excellent space/time indicators. About 65 dykes have systematically been dated on a 350 km long E-W cross section across the Northern Volcanic Zone, from the Vatnsnes peninsula to the east coast across the presently active Krafla rift. Excess argon proved to be rare, probably because of similar age and petrography between host rocks and intrusive dykes, although the basaltic dykes remain poor in potassium. Alteration of the groundmass was sometimes severe but replicate analysis usually helped in assessing a significant age. The final age distribution profile obtained from this important amount of data

  7. Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data

    NASA Technical Reports Server (NTRS)

    Leftwich, T. E.; vonFrese, R. R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, Patrick T.

    2003-01-01

    Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered

  8. Deformation during the 1975-84 Krafla rifting crisis, NE Iceland, measured by optical image correlation

    NASA Astrophysics Data System (ADS)

    Hollingsworth, J.; Leprince, S.; Avouac, J.; Ayoub, F.

    2011-12-01

    In this study we combine results from optical image correlation of SPOT, KH-9 spy satellite and aerial photos, EDM data and high resolution topographic data to better constrain the 3D deformation associated with the 1975-84 Krafla rifting crisis, NE Iceland. Inversion of the various geodetic datasets yields new volumes for the amount of material injected into the crust during this rifting crisis. Correlation of aerial photos from 1957 and 1990 for the middle section of the 2 km-wide Krafla fissure swarm, along with DEM differencing of their respective 1957 and 1990 DEM's (extracted using photogrammetric techniques), provides constraints on the full 3D displacement field spanning the entire rifting period. Elastic dislocation modeling of this displacement data is then used to determine the geometry of faulting and diking in the crust. In contrast to leveling data from the northern end of the fissure swarm (Rubin, et al., 1988), we find that dikes do not extend into the upper 1-2 km, where extension is accommodated primarily by faulting in the fissure swarm. Dislocation modeling of a 4 m-wide dike injected between 2 km and 6 km in the crust produces a maximum surface strain which reaches the elastic yield limit for rock (derived from laboratory experiments of deformed granite) at two points spanning a 2 km-wide zone above the dike, and which corresponds with the location of the major rift-bounding faults of the Krafla fissure swarm. If dikes extend nearer to the surface, the predicted fissure zone width would be correspondingly smaller (consistent with the southern-end of the fissure swarm), while deeper diking produces a wider fissure swarm (consistent with the northern-end of the fissure swarm). The apparent northward increase in depth of diking is consistent with the flexural effects of rift-margin topography (Behn, et al., 2006); increased flexure in the south, where the Krafla caldera is located, results in the promotion of shallow diking, where as subdued

  9. Plume-driven plumbing and crustal formation in Iceland

    USGS Publications Warehouse

    Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Nettles, M.; Ekstrom, G.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.

    2002-01-01

    Through combination of surface wave and body wave constraints we derive a three-dimensional (3-D) crustal S velocity model and Moho map for Iceland. It reveals a vast plumbing system feeding mantle plume melt into upper crustal magma chambers where crustal formation takes place. The method is based on the partitioned waveform inversion to which we add additional observations. Love waves from six local events recorded on the HOTSPOT-SIL networks are fitted, Sn travel times from the same events measured, previous observations of crustal thickness are added, and all three sets of constraints simultaneously inverted for our 3-D model. In the upper crust (0-15 km) an elongated low-velocity region extends along the length of the Northern, Eastern and Western Neovolcanic Zones. The lowest velocities (-7%) are found at 5-10 km below the two most active volcanic complexes: Hekla and Bardarbunga-Grimsvotn. In the lower crust (>15 km) the low-velocity region can be represented as a vertical cylinder beneath central Iceland. The low-velocity structure is interpreted as the thermal halo of pipe work which connects the region of melt generation in the uppermost mantle beneath central Iceland to active volcanoes along the neovolcanic zones. Crustal thickness in Iceland varies from 15-20 km beneath the Reykjanes Peninsula, Krafla and the extinct Snfellsnes rift zone, to 46 km beneath central Iceland. The average crustal thickness is 29 km. The variations in thickness can be explained in terms of the temporal variation in plume productivity over the last ~20 Myr, the Snfellsnes rift zone being active during a minimum in plume productivity. Variations in crustal thickness do not depart significantly from an isostatically predicted crustal thickness. The best fit linear isostatic relation implies an average density jump of 4% across the Moho. Rare earth element inversions of basalt compositions on Iceland suggest a melt thickness (i.e., crustal thickness) of 15-20 km, given passive

  10. Implications of new gravity data for Baikal Rift zone structure

    NASA Technical Reports Server (NTRS)

    Ruppel, C.; Kogan, M. G.; Mcnutt, M. K.

    1993-01-01

    Newly available, 2D Bouguer gravity anomaly data from the Baikal Rift zone, Siberia, indicate that this discrete, intracontinental rift system is regionally compensated by an elastic plate about 50 km thick. However, spectral and spatial domain analyses and isostatic anomaly calculations show that simple elastic plate theory does not offer an adequate explanation for compensation in the rift zone, probably because of significant lateral variations in plate strength and the presence of subsurface loads. Our results and other geophysical observations support the interpretation that the Baikal Rift zone is colder than either the East African or Rio Grande rift.

  11. Hydrothermal mineralization along submarine rift zones, Hawaii

    USGS Publications Warehouse

    Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.

    1996-01-01

    Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.

  12. Surface deformation in volcanic rift zones

    USGS Publications Warehouse

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  13. Seafloor Spreading Reorganization South of Iceland

    NASA Astrophysics Data System (ADS)

    Hey, R. N.; Martinez, F.; Benediktsdottir, A.; Hoskuldsson, A.

    2011-12-01

    There is a major ongoing diachronous reorganization of North Atlantic seafloor spreading occurring at present south of Iceland, from an orthogonal ridge/transform geometry to the present oblique spreading geometry without transform faults on the Reykjanes Ridge. This reorganization is presently interpreted as a thermal phenomenon, with a pulse of warmer mantle expanding away from the Iceland plume causing a progressive change in subaxial mantle rheology from brittle to ductile, so that transform faults can no longer be maintained. Given that this is certainly the most obvious and arguably the type-example of active plate boundary reorganization, it is somewhat surprising that a thermal mechanism has near universal acceptance here whereas most if not all other seafloor spreading reorganizations are equally universally thought to result from the tectonic rift propagation mechanism. This suggests the possibility that either the thermal model might be wrong here, or that the propagating rift (PR) model might be wrong elsewhere. The reason the PR alternative was ignored here was that the younger seafloor record flanking the Reykjanes Ridge consisting of V-shaped ridges, troughs & scarps (VSRs) enclosed by the reorganization wake seemed to prove that there had been no rift propagation. It had long been thought that these VSRs were symmetric about the spreading axis, & if this conventional wisdom (that led directly to the pulsing Iceland plume model) were true, rift propagation, which must produce asymmetry, could not have occurred. However, our expedition collected marine geophysical data that showed that the VSRs actually have an asymmetric geometry consistent with rift propagation, not with previous pulsing plume models, & thus they can no longer be considered convincing proof of a pulsing Iceland plume. Although we had previously noted that plume pulses might drive the propagators away from Iceland, a significant new result (Benediktsdóttir et al., 2011) is that

  14. Diverse Eruptions at Approximately 2,200 Years B.P. on the Great Rift, Idaho: Inferences for Magma Dynamics Along Volcanic Rift Zones

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.

    2016-01-01

    Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.

  15. Spatial distribution of dissolved constituents in Icelandic river waters

    NASA Astrophysics Data System (ADS)

    Oskarsdottir, Sigrídur Magnea; Gislason, Sigurdur Reynir; Snorrason, Arni; Halldorsdottir, Stefanía Gudrún; Gisladottir, Gudrún

    2011-02-01

    SummaryIn this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO 2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chemistry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.

  16. Kilauea east rift zone magmatism: An episode 54 perspective

    USGS Publications Warehouse

    Thornber, C.R.; Heliker, C.; Sherrod, D.R.; Kauahikaua, J.P.; Miklius, Asta; Okubo, P.G.; Trusdell, F.A.; Budahn, J.R.; Ridley, W.I.; Meeker, G.P.

    2003-01-01

    On January 29 30, 1997, prolonged steady-state effusion of lava from Pu'u'O'o was briefly disrupted by shallow extension beneath Napau Crater, 1 4 km uprift of the active Kilauea vent. A 23-h-long eruption (episode 54) ensued from fissures that were overlapping or en echelon with eruptive fissures formed during episode 1 in 1983 and those of earlier rift zone eruptions in 1963 and 1968. Combined geophysical and petrologic data for the 1994 1999 eruptive interval, including episode 54, reveal a variety of shallow magmatic conditions that persist in association with prolonged rift zone eruption. Near-vent lava samples document a significant range in composition, temperature and crystallinity of pre-eruptive magma. As supported by phenocryst liquid relations and Kilauea mineral thermometers established herein, the rift zone extension that led to episode 54 resulted in mixture of near-cotectic magma with discrete magma bodies cooled to ???1100??C. Mixing models indicate that magmas isolated beneath Napau Crater since 1963 and 1968 constituted 32 65% of the hybrid mixtures erupted during episode 54. Geophysical measurements support passive displacement of open-system magma along the active east rift conduit into closed-system rift-reservoirs along a shallow zone of extension. Geophysical and petrologic data for early episode 55 document the gradual flushing of episode 54 related magma during magmatic recharge of the edifice.

  17. Tectono-stratigraphic evolution of normal fault zones: Thal Fault Zone, Suez Rift, Egypt

    NASA Astrophysics Data System (ADS)

    Leppard, Christopher William

    The evolution of linkage of normal fault populations to form continuous, basin bounding normal fault zones is recognised as an important control on the stratigraphic evolution of rift-basins. This project aims to investigate the temporal and spatial evolution of normal fault populations and associated syn-rift deposits from the initiation of early-formed, isolated normal faults (rift-initiation) to the development of a through-going fault zone (rift-climax) by documenting the tectono-stratigraphic evolution of the Sarbut EI Gamal segment of the exceptionally well-exposed Thai fault zone, Suez Rift, Egypt. A number of dated stratal surfaces mapped around the syn-rift depocentre of the Sarbut El Gamal segment allow constraints to be placed on the timing and style of deformation, and the spatial variability of facies along this segment of the fault zone. Data collected indicates that during the first 3.5 My of rifting the structural style was characterised by numerous, closely spaced, short (< 3 km), low displacement (< 200 m) synthetic and antithetic normal faults within 1 - 2 km of the present-day fault segment trace, accommodating surface deformation associated with the development of a fault propagation monocline above the buried, pre-cursor strands of the Sarbut El Gamal fault segment. The progressive localisation of displacement onto the fault segment during rift-climax resulted in the development of a major, surface-breaking fault 3.5 - 5 My after the onset of rifting and is recorded by the death of early-formed synthetic and antithetic faults up-section, and thickening of syn-rift strata towards the fault segment. The influence of intrabasinal highs at the tips of the Sarbut EI Gamal fault segment on the pre-rift sub-crop level, combined with observations from the early-formed structures and coeval deposits suggest that the overall length of the fault segment was fixed from an early stage. The fault segment is interpreted to have grown through rapid lateral

  18. New Proposed Drilling at Surtsey Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Jackson, Marie D.

    2014-12-01

    Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.

  19. Shear zone reactivation during South Atlantic rifting in NW Namibia

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Passchier, C. W.; Salomon, E.

    2013-12-01

    Reactivation of inherited structures during rifting as well as an influence of inherited structures on the orientation of a developing rift has long been discussed (e.g. Piqué & Laville, 1996; Younes & McClay, 2002). Here, we present a qualitative and quantitative study of shear zone reactivation during the South Atlantic opening in NW Namibia. The study area comprises the Neo-Proterozoic rocks of the Kaoko Belt which was formed during the amalgamation of Gondwana. The Kaoko Belt encompasses the prominent ~500 km long ductile Purros shear zone and the Three Palms shear zone, both running sub-parallel to the present continental margin. The Kaoko Belt is partly overlain by the basalts of the Paraná-Etendeka Large Igneous Province, which with an age of ~133 Ma were emplaced just before or during the onset of the Atlantic rifting at this latitude. Combining the analysis of satellite imagery and digital elevation models with extensive field work, we identified numerous faults tracing the old shear zones along which the Etendeka basalts were down-faulted. The faults are often listric, yet we also found evidence for a regional scale basin formation. Our analysis allowed for constructing the geometry of three of these faults and we could thus estimate the vertical offsets to ~150 m, ~500 m, and ~1100 m, respectively. Our results contribute to the view that the basement inheritance plays a significant role on rifting processes and that the reactivation of shear zones can accumulate significant amounts of displacement. References: Pique, A. and E. Laville (1996). The Central Atlantic rifting: Reactivation of Paleozoic structures?. J. Geodynamics, 21, 235-255. Younes, I.A. and K. McClay (2002). Development of accommodation zones in the Gulf of Suez-Red Sea rift, Egypt. AAPG Bulletin, 86, 1003-1026.

  20. Paleomagnetic Analysis of Block Rotations in the Wake of the Migrating Tjörnes Transform Zone in Northern Iceland

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J.

    2011-12-01

    Oceanic propagating rifts create migrating transform fault zones on the seafloor that leave a wake of deformed and rotated crustal blocks between abandoned transform fault stands. Faulting and rotation kinematics in these areas are inferred from bathymetric lineaments and earthquake focal mechanisms, but the details of crustal deformation associated with migrating oceanic transforms is inhibited by limited seafloor exposures and access. A similar propagating rift and migrating transform system occurs in thick oceanic-like crust of Northern Iceland, providing an additional perspective on kinematics of these systems. The Tjörnes Fracture Zone (TFZ) in Northern Iceland is a broad region of deformation thought to have formed ~7 Ma. Right-lateral motion is accommodated mostly on two WNW-trending seismically active fault zones, the Grímsey Seismic Zone and the Húsavík-Flatey Fault (HFF), spaced ~40 km apart. Both are primarily offshore; however, deformation south of the HFF is partly exposed on land over an area of >10 km (N/S) and >25 km (E/W) on the peninsula of Flateyjarskagi. Previous work has shown that average lava flow orientations progressively change from 160°/12° SW (~20 km south from HFF), to 183°/25° NW (~12 km S of HFF), and 212°/33° NW (~6 km S of HFF). Dike orientations also progressively change from 010°/85° SE (parallel to the Northern Rift Zone), clockwise to 110°/75° SW (nearly parallel to the HFF) near the HFF. Pervasive strike-slip faulting is evident along the HFF as well as on isolated faults to the south. Between these, NNE-striking left-lateral, oblique-slip faults occur near the HFF but appear to decrease in occurrence to the south. These relationships have been interpreted as either the result of transform shear deformation (secondary features) or construction in a stress field that varies as the transform is approached (primary features). Paleomagnetic data from across the area can test these hypotheses. Mean paleomagnetic

  1. Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone

    NASA Astrophysics Data System (ADS)

    Judson, Josiah; Thelen, Weston A.; Greenfield, Tim; White, Robert S.

    2018-03-01

    Swarms of earthquakes at the head of the Southwest Rift Zone on Kīlauea Volcano, Hawai´i, reveal an interaction of normal and strike-slip faulting associated with movement of Kīlauea's south flank. A relocated subset of earthquakes between January 2012 and August 2014 are highly focused in space and time at depths that are coincident with the south caldera magma reservoir beneath the southern margin of Kīlauea Caldera. Newly calculated focal mechanisms are dominantly dextral shear with a north-south preferred fault orientation. Two earthquakes within this focused area of seismicity have normal faulting mechanisms, indicating two mechanisms of failure in very close proximity (10's of meters to 100 m). We suggest a model where opening along the Southwest Rift Zone caused by seaward motion of the south flank permits injection of magma and subsequent freezing of a plug, which then fails in a right-lateral strike-slip sense, consistent with the direction of movement of the south flank. The seismicity is concentrated in an area where a constriction occurs between a normal fault and the deeper magma transport system into the Southwest Rift Zone. Although in many ways the Southwest Rift Zone appears analogous to the more active East Rift Zone, the localization of the largest seismicity (>M2.5) within the swarms to a small volume necessitates a different model than has been proposed to explain the lineament outlined by earthquakes along the East Rift Zone.

  2. Early growth of Kohala volcano and formation of long Hawaiian rift zones

    USGS Publications Warehouse

    Lipman, Peter W.; Calvert, Andrew T.

    2011-01-01

    Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ± 34 to 1159 ± 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (≥870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot.

  3. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes.

    PubMed

    Passarelli, L; Rivalta, E; Shuler, A

    2014-01-28

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process.

  4. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes

    PubMed Central

    L., Passarelli; E., Rivalta; A., Shuler

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  5. Rates of volcanic activity along the southwest rift zone of Mauna Loa volcano, Hawaii.

    USGS Publications Warehouse

    Lipman, P.W.

    1981-01-01

    Flow-by-flow mapping of the 65 km long subaerial part of the southwest rift zone and adjacent flanks of Mauna Loa Volcano, Hawaii, and about 50 new 14C dates on charcoal from beneath these flows permit estimates of rates of lava accumulation and volcanic growth over the past 10 000 years. The sequence of historic eruptions along the southwest rift zone, beginning in 1868, shows a general pattern of uprift migration and increasing eruptive volume, culminating in the great 1950 eruption. No event comparable to 1950, in terms of volume or vent length, is evident for at least the previous 1000 years. Rates of lava accumulation along the zone have been subequal to those of Kilauea Volcano during the historic period but they were much lower in late prehistoric time (unpubl. Kilauea data by R. T. Holcomb). Rates of surface covering and volcanic growth have been markedly asymmetric along Mauna Loa's southwest rift zone. Accumulation rates have been about half again as great on the northwest side of the rift zone in comparison with the southeast side. The difference apparently reflects a westward lateral shift of the rift zone of Mauna Loa away from Kilauea Volcano, which may have acted as a barrier to symmetrical growth of the rift zone. -Author

  6. Mississippi embayment syncline: A reactivation of the Reelfoot rift zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Dart, R.L.

    1993-03-01

    Contour maps of the tops of the Paleozoic, Cretaceous, and the Eocene Porters Creek Clay sections were compiled using depth data obtained from oil, gas, and water wells which are located in six states: Tennessee, Arkansas, Mississippi, Missouri, Illinois and Indiana. All these strata are warped into the broad syncline of the Mississippi embayment. An analysis of the structural relations between the Mississippi embayment syncline and the underlying Reelfoot rift zone shows that these two structures are not coaxial; instead, their axes diverge by about 20[degree]. Late Cretaceous and early Tertiary depocenters within the embayment are not located along themore » rift zone. The known distribution of igneous intrusions within the embayment corresponds better to the embayment synclinal axis than to the rift axis. Therefore the authors infer that the Mississippi embayment may not have formed simply as a result of reactivation of the Reelfoot rift during the late Cretaceous and early Eocene, as was previously suggested. The formation of the Mississippi embayment syncline, its overall shape, and its relative position are probably the result of the interaction of at least two processes: (1) the cooling of Mesozoic magma intrusions, initiating subsidence; and (2) continuous loading due to sediment deposition. The distribution of modern strike-slip seismicity extends along the axis of the Reelfoot rift zone, indicating that the rift has been reactivated as a strike-slip fault system. The youngest strata that were warped into the Mississippi embayment syncline are late Eocene in age. Thus, the latest reactivation of the Reelfoot rift responsible for the present earthquakes must postdate the Late Eocene.« less

  7. Role of the Precambrian Mughese Shear Zone on Cenozoic faulting along the Rukwa-Malawi Rift segment of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Heilman, E.; Kolawole, F.; Mayle, M.; Atekwana, E. A.; Abdelsalam, M. G.

    2017-12-01

    We address the longstanding question of the role of long-lived basement structures in strain accommodation within active rift systems. Studies have highlighted the influence of pre-existing zones of lithospheric weakness in modulating faulting and fault kinematics. Here, we investigate the role of the Neoproterozoic Mughese Shear Zone (MSZ) in Cenozoic rifting along the Rukwa-Malawi rift segment of the East African Rift System (EARS). Detailed analyses of Shuttle Radar Topography Mission (SRTM) DEM and filtered aeromagnetic data allowed us to determine the relationship between rift-related basement-rooted normal faults and the MSZ fabric extending along the southern boundary of the Rukwa-Malawi Rift North Basin. Our results show that the magnetic lineaments defining the MSZ coincide with the collinear Rukwa Rift border fault (Ufipa Fault), a dextral strike-slip fault (Mughese Fault), and the North Basin hinge-zone fault (Mbiri Fault). Fault-scarp and minimum fault-throw analyses reveal that within the Rukwa Rift, the Ufipa Border Fault has been accommodating significant displacement relative to the Lupa Border Fault, which represents the northeastern border fault of the Rukwa Rift. Our analysis also shows that within the North Basin half-graben, the Mbiri Fault has accommodated the most vertical displacement relative to other faults along the half-graben hinge zone. We propose that the Cenozoic reactivation along the MSZ facilitated significant normal slip displacement along the Ufipa Border Fault and the Mbiri Fault, and minor dextral strike-slip between the two faults. We suggest that the fault kinematics along the Rukwa-Malawi Rift is the result of reactivation of the MSZ through regional oblique extension.

  8. Postglacial eruptive history of the Western Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Sinton, John; GröNvold, Karl; SæMundsson, KristjáN.

    2005-12-01

    New field observations, age constraints, and extensive chemical analyses define the complete postglacial eruptive history of the 170-km-long Western Volcanic Zone (WVZ) of Iceland, the ultraslow-spreading western boundary of the south Iceland microplate. We have identified 44 separate eruptive units, 10 of which are small-volume eruptions associated with the flanking Grímsnes system. Overall chemical variations are consistent with very simplified models of melting of a source approximating primitive mantle composition. The 17 eruptions in the first 3000 years of postglacial time account for about 64% of the total postglacial production and are incompatible-element depleted compared to younger units, consistent with enhanced melting as a consequence of rebound immediately following deglaciation. Steadily declining eruption rates for the last 9000 years also correlate with changes in average incompatible element ratios that appear to reflect continued decline in melting extents to the present day. This result is not restricted to the WVZ, however, and may herald a decline in melting throughout all of western Iceland during later postglacial time. Lavas from the northern part of the WVZ are depleted in incompatible elements relative to those farther south at all times, indicating either a long-wavelength gradient in mantle source composition or variations in the melting process along axis. We find no evidence in the postglacial volcanic record for current failure of the WVZ, despite evidence for continued propagation of the eastern margin of the microplate. The dominance of lava shields in the eruptive history of the WVZ contrasts with the higher number of fissure eruptions in other Icelandic volcanic zones. WVZ shields represent long-duration, low-effusion rate eruptions fed by recharge magma arising out of the mantle. Average effusion rate is the key variable distinguishing shield and fissure eruptions, both within the WVZ and between different volcanic zones. High

  9. Ambient Noise Surface Wave Tomography of the volcanic systems of eastern Iceland

    NASA Astrophysics Data System (ADS)

    Green, R. G.; Priestley, K. F.; White, R. S.

    2015-12-01

    The Vatnajökull region of central-east Iceland lies above the head of the Iceland mantle plume where the crust is thickest due to enhanced melt supply. As a result the region contains a high density of volcanic rift systems, with six large subglacial central volcanoes. Due to the ice cover, the geological structure of the area and the location of past eruptions are poorly known. Imaging of the crustal velocity heterogeneities beneath the ice sheet aims to reveal much in terms of the structure of these volcanic plumbing systems. Mapping of significant velocity changes through time may also be indicative of movement of melt around the central volcanoes; one of which (Bárðarbunga) experienced a major rifting event in August 2014 (Sigmundsson et al. Nature 2015, Green et al. Nature Geosci. 2015). We present results from tomographic imaging of the volcanic systems in the region, using continuous data from a local broadband seismic network in central-east Iceland which provides excellent ray path coverage of the volcanic systems. This is supplemented by data from the HOTSPOT and ICEMELT experiments and the permanent monitoring stations of the Icelandic Meteorological Office. We process the continuous data following Benson et al. 2007 and automatic frequency-time analysis (FTAN) routines are used to extract more than 9000 dispersion measurements. We then generate Rayleigh wave group velocity maps which we present here. We find low velocity regions beneath the Vatnajökull icecap which are bounded by the surface expression of the volcanic rift systems. The lower velocities also extend north-west to the volcanic system under the Hofsjökull ice cap, and northwards towards Askja and the volcanic systems of the northern volcanic zone. We also produce locations and focal mechanisms of earthquakes caused by magmatic and hydrothermal activity to correlate structure with the activity of the volcanic systems.

  10. The role of discrete intrabasement shear zones during multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon

    2016-04-01

    Rift systems form within areas of relatively weak, heterogeneous lithosphere, containing a range of pre-existing structures imparted from previous tectonic events. The extent to which these structures may reactivate during later rift phases, and therefore affect the geometry and evolution of superposed rift systems, is poorly understood. The greatest obstacle to understanding how intrabasement structures influence the overlying rift is obtaining detailed constraints on the origin and 3D geometry of structures within crystalline basement. Such structures are often deeply buried beneath rift systems and therefore rarely sampled directly. In addition, due to relatively low internal acoustic impedance contrasts and large burial depths, crystalline basement typically appears acoustically transparent on seismic reflection data showing no resolvable internal structure. However, offshore SW Norway, beneath the Egersund Basin, intrabasement structures are exceptionally well-imaged due to large impedance contrasts within a highly heterogeneous and shallow basement. We use borehole-constrained 2D and 3D seismic reflection data to constrain the 3D geometry of these intrabasement reflections, and examine their interactions with the overlying rift system. Two types of intrabasement structure are observed: (i) thin (c. 100 m) reflections displaying a characteristic trough-peak-trough wavetrain; and (ii) thick (c. 1 km), sub-parallel reflection packages dipping at c. 30°. Through 1D waveform modelling we show that these reflection patterns arise from a layered sequence as opposed to a single interface. Integrating this with our seismic mapping we correlate these structures to the established onshore geology; specifically layered mylonites associated with the Caledonian thrust belt and cross-cutting extensional Devonian shear zones. We observe multiple phases of reactivation along these structures throughout multiple rift events, in addition to a range of interactions with

  11. Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones

    NASA Astrophysics Data System (ADS)

    Delcamp, A.; Troll, V. R.; van Wyk de Vries, B.; Carracedo, J. C.; Petronis, M. S.; Pérez-Torrado, F. J.; Deegan, F. M.

    2012-07-01

    Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North-East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth

  12. Continuous Spectrum of Crustal Structures and Spreading Processes from Volcanic Rifted Margins to Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2016-12-01

    Structures generated by seafloor spreading in oceanic crust (and ophiolites) and thick oceanic crust of Iceland show a continuous spectrum of features that formed by similar mechanisms but at different scales. A high magma budget near the Iceland hotspot generates thick (40-25 km) mafic crust in a plate boundary zone about 50 km wide. The upper crust ( 10 km thick) is constructed by the subaxial subsidence and thickening of lavas fed by dense dike swarms over a hot, weak lower crust to produce structures analogous to seaward-dipping reflectors of volcanic rifted margins. Segmented rift zones propagate away from the hotspot creating migrating transform fault zones, microplate-like crustal blocks and rift-parallel strike-slip faults. These structures are decoupled from the underlying lower crustal gabbroic rocks that thin by along-axis flow that reduces the overall crustal thickness and smooths-out local crustal thickness variations. Spreading on mid-ocean ridges with high magma budgets have much thinner crust (10-5 km) generated at a much narrower (few km) plate boundary zone. Subaxial subsidence accommodates the thickening of the upper crust of inward-dipping lavas and outward-dipping dikes about 1-2 km thick over a hot weak lower crust. Along-axis (high-temperature ductile and magmatic) flow of lower crustal material may help account for the relatively uniform seismic thickness of oceanic crust worldwide. Spreading along even slow-spreading mid-ocean ridges near hotspots (e.g., the Reykjanes Ridge) probably have similar features that are transitional between these extremes. In all of these settings, upper crustal and lower crustal structures are decoupled near the plate boundary but eventually welded together as the crust ages and cools. Similar processes are likely to occur along volcanic rifted margins as spreading begins.

  13. Fluid flow and water-rock interaction in the East Rift Zone of Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Conrad, Mark E.; Thomas, Donald M.; Flexser, Steven; Vennemann, Torsten W.

    1997-07-01

    The East Rift Zone of Kilauea Volcano in Hawaii represents a major area of geothermal activity. Fluid inclusion and stable isotope analyses of secondary hydrothermal minerals in core samples from three scientific observation holes (SOH) drilled into the rift zone indicate that the geothermal system is dominated by meteoric waters to depths of as much as 1500 m below sea level. Calculated δ18O and δD values for fluids on the north side of the rift zone indicate that the deep meteoric fluids may be derived from precipitation on the upper slopes of Mauna Loa Volcano. In the interior of the rift zone, recharge is dominated by seawater mixed with local meteoric water. Water/rock ratios in the rift area are approximately 2, but strongly 18O-enriched fluids in the deeper parts of the SOH-2 and SOH-4 drill holes (on the north side of the rift) indicate that the fluids underwent extensive interaction with rocks prior to reaching this part of the rift zone. Marine carbonates at the subaerial to submarine transition (between 1700 and 1780 m depth) in SOH-4 have not fully equilibrated with the fluids, suggesting that the onset of hydrothermal activity in this area was relatively recent (<2000 years). This may represent increased volcanic activity along the rift after the end of the Ai La'au phase of eruptive activity at the Kilauea summit approximately 1000 years ago, or it may reflect progressive evolution of the hydrothermal system in response to southward migration of intrusive activity within the rift.

  14. Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling

    NASA Astrophysics Data System (ADS)

    Konstantinovskaya, Elena A.; Harris, Lyal B.; Poulin, Jimmy; Ivanov, Gennady M.

    2007-08-01

    Lateral transfer zones of deformation and fault reactivation were investigated in multilayered silicone-sand models during extension and subsequent co-axial shortening. Model materials were selected to meet similarity criteria and to be distinguished on CT scans; this approach permitted non-destructive visualisation of the progressive evolution of structures. Transfer zones were initiated by an orthogonal offset in the geometry of a basal mobile aluminium sheet and/or by variations of layer thickness or material rheology in basal layers. Transfer zones affected rift propagation and fault kinematics in models. Propagation and overlapping rift culminations occurred in transfer zones during extension. During shortening, deviation in the orientation of frontal thrusts and fold axes occurred within transfer zones in brittle and ductile layers, respectively. CT scans showed that steep (58-67°) rift-margin normal faults were reactivated as reverse faults. The reactivated faults rotated to shallower dips (19-38°) with continuing shortening after 100% inversion. Rotation of rift phase faults appears to be due to deep level folding and uplift during the inversion phase. New thrust faults with shallow dips (20-34°) formed outside the inverted graben at late stages of shortening. Frontal ramps propagated laterally past the transfer structure during shortening. During inversion, the layers filling the rift structures underwent lateral compression at the depth, the graben fill was pushed up and outwards creating local extension near the surface. Sand marker layers in inverted graben have showed fold-like structures or rotation and tilting in the rifts and on the rift margins. The results of our experiments conform well to natural examples of inverted graben. Inverted rift basins are structurally complex and often difficult to interpret in seismic data. The models may help to unravel the structure and evolution of these systems, leading to improved hydrocarbon exploration

  15. Thermal budget of the lower east rift zone, Kilauea Volcano

    USGS Publications Warehouse

    Delaney, Paul T.; Duffield, Wendell A.; Sass, John H.; Kauahikaua, James P.; ,

    1993-01-01

    The lower east rift zone of Kilauea has been the site of repeated fissure eruptions fed by dikes that traverse the depths of interest to geothermal explorations. We find that a hot-rock-and-magma system of low permeability extending along the rift zone at depths below about 4 km and replenished with magma at a rate that is small in comparison to the modern eruption rate Kilauea can supply heat to an overlying hydrothermal aquifer sufficient to maintain temperatures of about 250??C if the characteristic permeability to 4-km depth is about 10-15m2.

  16. Nitrogen isotope geochemistry as a volatile tracer of the deep mantle: insights from Iceland

    NASA Astrophysics Data System (ADS)

    Prade, K. C.; Fischer, T. P.; Sharp, Z. D.; Hilton, D. R.; Gronvold, K.; Fueri, E.; Halldorsson, S.; Barry, P. H.

    2009-12-01

    Nitrogen isotope geochemistry can be used to identify sedimentary input (δ15N=+8‰) in volcanic arc systems, but its use as an indicator of deep mantle volatile contributions is limited. Consequently, we target the neovolcanic zones of Iceland where He isotope work has revealed a distinct region of elevated 3He/4He ratios (>20RA, where RA=air 3He/4He) correlated to the presumed location of the plume in central Iceland (Breddam et al., 2000). In contrast, the rift zones are characterized by intermediate (10-20RA; Western Rift Zone) and MORB-like (8RA; Northern Rift Zone) 3He/4He ratios indicating these regions sample plume He increasingly dominated by MORB-like He. One principal objective is to investigate the relationship between nitrogen and helium isotope systematics throughout Iceland in order to apply nitrogen isotopes to non-arc volcanic systems and constrain the relative contributions of volatiles from the deep and shallow (MORB) mantle. A predominantly positive δ15N may imply a surface-derived N component in the source of deep mantle volatiles (Marty and Dauphas, 2003) whereas shallow mantle is characterized by δ15N=-5±3‰. We report data obtained using geothermal gas and water samples collected in 2006, 2007 and 2008. Samples show variations in gas content, notably CO2, N2 and H2. Some samples contain no CO2, while others have values ranging from 122 to 997 mmol/mol dry gas. All samples contain N2, with values ranging from 2 to 987 mmol/mol dry gas. Most samples had insignificant amounts of H2 but some had large quantities up to 690 mmol/mol dry gas. The δ15N and 3He/4He ratios range from -7.2‰ to +3.4‰ and 2.2RA to 26.4RA, respectively and show no linear correlation. For example, Krafla had a MORB-like 3He/4He of 8.9RA and δ15N=-2.4‰, and Theistareykir with 8.6RA has δ15N=+1.3‰. Additionally, there was no systematic variation in δ15N along the rift zones in contrast to He. The only distinctly positive δ15N value (3.4‰) is in the SISZ

  17. The hydrothermal system associated with the Kilauea East Rift Zone, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.M.; Conrad, M.E.

    1997-12-31

    During the last twenty years drilling and fluid production on the Kilauea East Rift Zone (KERZ) has shown that an active hydrothermal system is associated with much of the rift. Well logging and fluid geochemistry indicate that reservoir temperatures exceed 360 C but are highly variable. Although neither well testing nor pressure decline data have clearly demonstrated the lateral limits of the reservoir, divergent fluid compositions over short distances suggest that the larger hydrothermal system is strongly compartmentalized across the rift zone. The chemical compositions of production fluids indicate that recharge is derived from ocean water and meteoric recharge andmore » isotopic data suggest that the latter may be derived from subsurface inflow from the flanks of Mauna Loa.« less

  18. Abundance and isotope systematics of carbon in subglacial basalts, geothermal gases and fluids from Iceland's rift zones

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Fueri, E.; Halldorsson, S. A.; Fischer, T. P.; Gronvold, K.

    2010-12-01

    P. H. BARRY1*, D. R. HILTON1, E. FÜRI1, S.A. HALLDÓRSON1, T.P. FISCHER2, K. GRONVOLD3 1 Scripps Institution of Oceanography, UCSD, La Jolla, California 92093, USA (*Correspondence: pbarry@ucsd.edu). 2University of New Mexico, Albuquerque, NM 87131, USA. 3University of Iceland, Askja, Sturlugata 7, IS-101, Reykjavik, Iceland Carbon dioxide (CO2) is the dominant non-aqueous volatile species found in oceanic basalts and geothermal fluids and serves as the carrier gas for trace volatiles such as He and other noble gases. The aim of this study is to identify the superimposed effects of degassing and crustal contamination on the CO2 systematics of the Icelandic hotspot in order to reveal and characterize the carbon abundance and isotopic features of the underlying mantle source. Our approach involves coupling CO2 with He, utilizing the sensitivity of 3He/4He ratios to reveal mantle and crustal inputs. We report new C-isotope (δ13C) and abundance characteristics for a suite of 47 subglacial basalts and 50 geothermal gases and fluids from Iceland. CO2 contents in hyaloclastite glasses are extremely low (10-100 ppm) and likely residual following extensive degassing whereas geothermal fluids are dominated by CO2 (>90 %). C-isotopes range from -27.2 to -3.6 ‰ (vs. PDB) for basalts and from -18.8 to 2.86 ‰ (vs. PDB) for geothermal samples (mean = -4.2 ± 3.6 ‰). CO2/3He ratios range from 108 to 1012 for basalts and from 105 to 1012 for geothermal samples: In both cases, our results extend He-CO2 relationships over a much broader range than reported previously [1]. Taken together, these data suggest that several processes including mixing, degassing, and/or syn- or post-eruptive crustal contamination may act to modify CO2 source characteristics. Equilibrium degassing models are compatible with ~75 % of the basalt data, and preliminary results indicate that initial Icelandic source characteristics are ~500 ppm CO2 and δ13C ~ -5 ‰ (vs. PDB). These values are high

  19. Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures

    NASA Astrophysics Data System (ADS)

    Ai, S.; Zheng, Y.

    2017-12-01

    As an active intraplate continental rift, FWR plays an important role in accommodating the trans-tension in the Trans North China Craton (TNCO). Velocity field derived from GPS measurements reveals that the northern part of FWR is still under extension in N105°E direction at a rate of 4±2 mm/yr [Shen et al., 2000]. Actually, the FWR has been the most seismically active region in NCC. Bouguer gravity profile and seismic sounding lines [Xu and Ma, 1992] revealed a 2-3 km uplift of Moho depth beneath Taiyuan basin and 5-6 km beneath the Southwestern rift zone, those geophysical observations give clues to the un-evenly upwelling of the asthenosphere beneath the rift system and the different rifting process of the FWR. Therefore, studying the extension process of FWR is meaningful to understanding the NCC geodynamics associated with rifting tectonism. Using vertical continuous waveforms recorded during 2014 from CEarray, we construct a reliable and detailed 3-D crustal and uppermost mantle S-wave velocity structure of FWR, using a Bayesian Monte-Carlo method to jointly interpret teleseismic P-wave receiver functions and Rayleigh wave dispersions [Shen et al., 2013]. In the upmost crust, FWR appear as awful low velocity anomaly zone (LVZ), while the Taihang and Lvliang mountain ranges are imaged as strong high velocity anomaly zones(HVZ). In the middle crust, the low velocity zones still keep their LVZ features Additionally, nearly the whole FWR appears as a linearly LVZ line separating Taihang Uplift and Lvliang Uplift, except beneath Shilingguan and Linshi blocks that separate the Xinxian, Taiyuan and Linfen Basins, consisting with the high seismicity there. The velocity of the lower crust beneath Taiyuan and Weihe Basin are relatively higher than the rest rift regions, we interpret them as the limited mafic underplating beneath the TNCO. From the lower crust to upper mantle, the Datong volcanic zone display robust low velocity features, though the lowest velocity

  20. Assessing δ18O heterogeneity in Icelandic olivine crystals

    NASA Astrophysics Data System (ADS)

    Bar Rasmussen, M.; Halldorsson, S. A.; Martin, W.; Gibson, S. A.; Hilton, D. R.

    2017-12-01

    δ18O systematics of Icelandic basalts are notably distinct from MORB-sourced basalts. This difference has previously been attributed to interaction with low δ18O meteoric water in the crust or slight heterogeneity within the Icelandic mantle [1]. Studies addressing this issue have mostly involved batch mineral laser-fluorination analysis which cannot resolve any intra-mineral δ18O variability that might be present due to shallow-level processes, e.g. crustal contamination [2]. We present a study of olivine crystals found in basalts covering the neovolcanic rift and flank zones as well as older Tertiary crust, in which we couple in-situ δ18O-measurements with major and trace elements using SIMS, high-precision EMP and LA ICP-MS. Most samples have previously been analysed for 3He/4He which ranges from 6.7 to 47.8 RA, the largest span reported for any oceanic island [3]. Our analysed olivine grains, range in Fo# between 79.9 to 91.8 with limited intra-grain variability. Independent of Fo#, we observe a variation in δ18O(Ol) of >3 ‰ across Iceland, with most crystals plotting below the expected depleted mantle-value ( 5.1 ± 0.2‰ [4]). The lowest δ18O(Ol) of +2.77 ‰, is found in crystals with Fo# 86 from central Iceland, closest to the inferred plume head [3]. Trace element ratios for these olivine grains (e.g. Zn/Fe) strongly indicate a peridotitic mantle source, which implies a shallow (likely crustal) origin of low δ18O(Ol) for this region. In contrast, olivine crystals from the South Iceland Volcanic Zone (a region of active rift propagation and transitional to alkalic volcanism) display trace element ratios that are indicative of a greater amount of pyroxenite in their melt source region. The δ18O(Ol) of these samples vary significantly (from +3.45 to +4.98 ‰) which, together with their elevated 3He/4He values, implies entrainment of a lower δ18O mantle-source by a less-degassed mantle plume source. Further modelling will be performed to evaluate

  1. Networking of Icelandic Earth Infrastructures - Natural laboratories and Volcano Supersites

    NASA Astrophysics Data System (ADS)

    Vogfjörd, K. S.; Sigmundsson, F.; Hjaltadóttir, S.; Björnsson, H.; Arason, Ø.; Hreinsdóttir, S.; Kjartansson, E.; Sigbjörnsson, R.; Halldórsson, B.; Valsson, G.

    2012-04-01

    The back-bone of Icelandic geoscientific research infrastructure is the country's permanent monitoring networks, which have been built up to monitor seismic and volcanic hazard and deformation of the Earth's surface. The networks are mainly focussed around the plate boundary in Iceland, particularly the two seismic zones, where earthquakes of up to M7.3 have occurred in centuries past, and the rift zones with over 30 active volcanic systems where a large number of powerful eruptions have occurred, including highly explosive ones. The main observational systems are seismic, strong motion, GPS and bore-hole strain networks, with the addition of more recent systems like hydrological stations, permanent and portable radars, ash-particle counters and gas monitoring systems. Most of the networks are owned by a handful of Icelandic institutions, but some are operated in collaboration with international institutions and universities. The networks have been in operation for years to decades and have recorded large volumes of research quality data. The main Icelandic infrastructures will be networked in the European Plate Observing System (EPOS). The plate boundary in the South Iceland seismic zone (SISZ) with its book-shelf tectonics and repeating major earthquakes sequences of up to M7 events, has the potential to be defined a natural laboratory within EPOS. Work towards integrating multidisciplinary data and technologies from the monitoring infrastructures in the SISZ with other fault regions has started in the FP7 project NERA, under the heading of Networking of Near-Fault Observatories. The purpose is to make research-quality data from near-fault observatories available to the research community, as well as to promote transfer of knowledge and techical know-how between the different observatories of Europe, in order to create a network of fault-monitoring networks. The seismic and strong-motion systems in the SISZ are also, to some degree, being networked nationally to

  2. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.

    2000-03-01

    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Duraznero erupting basanite with abundant crustal and mantle xenoliths. The tephrites and basanites from Duraznero and Llano del Banco show narrow compositional ranges and define a bimodal suite. Each batch ascended and evolved separately without significant intermixing, as did the Hoyo Negro basanite, which formed at lower degrees of melting. The magmas fractionated clinopyroxene +olivine±kaersutite±Ti-magnetite at 600-800 MPa and possibly 800-1100 MPa. Abundant reversely zoned phenocrysts reflect mixing with evolved melts at mantle depths. Probably as early as 1936, Hoyo Negro basanite entered the deep rift system at 200-350 MPa. Some shallower pockets of this basanite evolved to phonotephrite through differentiation and assimilation of wall rock. A few months prior to eruption, a mixing event in the mantle may have triggered the final ascent of the magmas. Most of the erupted tephrite and basanite ascended from mantle depths within hours to days without prolonged storage in crustal reservoirs. The Cumbre Vieja rift zone differs from the rift zones of Kilauea volcano (Hawaii) in lacking a summit caldera or a summit reservoir feeding the rift system and in being smaller and less active with most of the rift magma solidifying between eruptions.

  3. Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Füri, E.; Halldórsson, S. A.; Grönvold, K.

    2014-06-01

    We report new carbon dioxide (CO2) abundance and isotope data for 71 geothermal gases and fluids from both high-temperature (HT > 150 °C at 1 km depth) and low-temperature (LT < 150 °C at 1 km depth) geothermal systems located within neovolcanic zones and older segments of the Icelandic crust, respectively. These data are supplemented by CO2 data obtained by stepped heating of 47 subglacial basaltic glasses collected from the neovolcanic zones. The sample suite has been characterized previously for He-Ne (geothermal) and He-Ne-Ar (basalt) systematics (Füri et al., 2010), allowing elemental ratios to be calculated for individual samples. Geothermal fluids are characterized by a wide range in carbon isotope ratios (δ13C), from -18.8‰ to +4.6‰ (vs. VPDB), and CO2/3He values that span eight orders of magnitude, from 1 × 104 to 2 × 1012. Extreme geothermal values suggest that original source compositions have been extensively modified by hydrothermal processes such as degassing and/or calcite precipitation. Basaltic glasses are also characterized by a wide range in δ13C values, from -27.2‰ to -3.6‰, whereas CO2/3He values span a narrower range, from 1 × 108 to 1 × 1012. The combination of both low δ13C values and low CO2 contents in basalts indicates that magmas are extensively and variably degassed. Using an equilibrium degassing model, we estimate that pre-eruptive basaltic melts beneath Iceland contain ∼531 ± 64 ppm CO2 with δ13C values of -2.5 ± 1.1‰, in good agreement with estimates from olivine-hosted melt inclusions (Metrich et al., 1991) and depleted MORB mantle (DMM) CO2 source estimates (Marty, 2012). In addition, pre-eruptive CO2 compositions are estimated for individual segments of the Icelandic axial rift zones, and show a marked decrease from north to south (Northern Rift Zone = 550 ± 66 ppm; Eastern Rift Zone = 371 ± 45 ppm; Western Rift Zone = 206 ± 24 ppm). Notably, these results are model dependent, and selection of a lower

  4. Icelandic-type crust

    USGS Publications Warehouse

    Foulger, G.R.; Du, Z.; Julian, B.R.

    2003-01-01

    Numerous seismic studies, in particular using receiver functions and explosion seismology, have provided a detailed picture of the structure and thickness of the crust beneath the Iceland transverse ridge. We review the results and propose a structural model that is consistent with all the observations. The upper crust is typically 7 ?? 1 km thick, heterogeneous and has high velocity gradients. The lower crust is typically 15-30 ?? 5 km thick and begins where the velocity gradient decreases radically. This generally occurs at the V p ??? 6.5 km s-1 level. A low-velocity zone ??? 10 000 km2 in area and up to ??? 15 km thick occupies the lower crust beneath central Iceland, and may represent a submerged, trapped oceanic microplate. The crust-mantle boundary is a transition zone ???5 ?? 3 km thick throughout which V p increases progressively from ???7.2 to ???8.0 km s-1. It may be gradational or a zone of alternating high- and low-velocity layers. There is no seismic evidence for melt or exceptionally high temperatures in or near this zone. Isostasy indicates that the density contrast between the lower crust and the mantle is only ???90 kg m-3 compared with ???300 kg m-3 for normal oceanic crust, indicating compositional anomalies that are as yet not understood. The seismological crust is ???30 km thick beneath the Greenland-Iceland and Iceland-Faeroe ridges, and eastern Iceland, ???20 km beneath western Iceland, and ???40 km thick beneath central Iceland. This pattern is not what is predicted for an eastward-migrating plume. Low attenuation and normal V p/V s ratios in the lower crust beneath central and southwestern Iceland, and normal uppermost mantle velocities in general, suggest that the crust and uppermost mantle are subsolidus and cooler than at equivalent depths beneath the East Pacific Rise. Seismic data from Iceland have historically been interpreted both in terms of thin-hot and thick-cold crust models, both of which have been cited as supporting the plume

  5. Teleseismic Investigations of the Malawi and Luangwa Rift Zones: Ongoing Observations From the SAFARI Experiment

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.; Chindandali, P. R. N.; Massinque, B.; Mdala, H. S.; Mutamina, D. M.

    2015-12-01

    In order to evaluate the influence of crustal and mantle heterogeneities upon the initiation of the Malawi rift zone (MRZ) and reactivation of the Zambian Luangwa rift zone (LRZ) subject to Cenozoic plate boundary stress fields and mantle buoyancy forces, we installed and operated 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia from 2012 to 2014. During the twenty-four month acquisition period, nearly 6200 radial receiver functions (RFs) were recorded. Stations situated within the MRZ, either along the coastal plains or within the Shire Graben toward the south, report an average crustal thickness of 42 km relative to approximately 46 km observed at stations located along the rift flanks. This implies the juvenile MRZ is characterized by a stretching factor not exceeding 1.1. Meanwhile, P-to-S velocity ratios within the MRZ increase from 1.71 to 1.82 in southernmost Malawi, indicating a substantial modification of the crust during Recent rifting. Time-series stacking of approximately 5500 RFs recorded by the SAFARI and 44 neighboring network stations reveals an apparent uplift of 10 to 15 km along both the 410- and 660-km mantle transition zone (MTZ) discontinuities beneath the MRZ and LRZ which, coupled with an apparently normal 250-km MTZ thickness, implies a first-order high-velocity contribution from thickened lithosphere. Preliminary manual checking of SAFARI shear-wave splitting (SWS) measurements provides roughly 650 high-quality XKS phases following a component re-orientation to correct station misalignments. Regional azimuthal variations in SWS fast orientations are observed, from rift-parallel in the vicinity of the LRZ to rift-oblique in the MRZ. A major 60° rotation in the fast orientation occurs at approximately 31°E, possibly resulting from the modulation of mantle flow around a relatively thick lithospheric keel situated between the two rift zones.

  6. Implications of historical eruptive-vent migration on the northeast rift zone of Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Lockwood, John P.

    1990-07-01

    Five times within the past 138 yr (1852, 1855-1856, 1880-1881, 1942, and 1984), lava flows from vents on the northeast rift zone of Mauna Loa Volcano have reached within a few kilometres of Hilo (the largest city on the Island of Hawaii). Most lavas erupted on this rift zone in historical time have traveled northeastward (toward Hilo), because their eruptive vents have been concentrated north of the rift zone's broad topographic axis. However, with few exceptions each successive historical eruption on the northeast rift zone has occurred farther southeast than the preceding one. Had the 1984 eruptive vents (the most southeasterly yet) opened less than 200 m farther southeast, the bulk of the 1984 lavas would have flowed away from Hilo. If this historical vent-migration pattern continues, the next eruption on the northeast rift zone could send lavas to the southeast, toward less populated areas. The historical Mauna Loa vent-migration patterns mimic the southeastern "younging" of the Hawaiian-Emperor volcanic chain and may be cryptically related to northwestward movement of the Pacific plate. Systematic temporal-spatial vent-migration patterns may characterize eruptive activity at other volcanoes with flank activity and should be considered as an aid to long-term prediction of eruption sites.

  7. Iceland Scotland Overflow Water flow through the Bight Fracture Zone in June-July 2015

    NASA Astrophysics Data System (ADS)

    Mercier, Herle; Petit, Tillys; Thierry, Virginie

    2017-04-01

    ISOW (Iceland Scotland Overflow Water) is the densest water in the northern Iceland Basin and a main constituent of the lower limb of the meridional overturning circulation (MOC). ISOW is the product of mixing of dense water originating from the Nordic Seas with Atlantic Water and Labrador Sea Water during its crossing of the Iceland-Faroe-Scotland Ridge and downstream acceleration. In the northern Iceland Basin, ISOW is characterized by potential density σ0 > 27.8 and salinity > 34.94. Downstream of the Iceland-Scotland Ridge, ISOW flows southwestward in a Deep Western Boundary Current along the eastern flank of the Reykjanes Ridge. Models and float trajectories previously suggested that part of the ISOW flow could cross the Reykjanes Ridge through the Bight Fracture Zone. However, no direct observations of the ISOW flow through the Bight Fracture Zone are available that would allow us to quantify its transport and water mass transformation. This lack of direct observations also prevents understanding the dynamics of the throughflow. In this study, we analyzed a set of CTDO2 and LADCP stations acquired in June-July 2015 during the Reykjanes Ridge Experiment cruise and provide new insights on the ISOW flow through the Bight Fracture Zone. The evolution of the properties as well as the velocity measurements confirm an ISOW flow from the Iceland Basin to the Irminger Sea. A main constrain to the throughflow is the presence of two sills of about 2150 m depth and two narrows. With potential densities between 27.8-27.87 kg m-3 and near bottom potential temperature of 3.02°C and salinity of 34.98, only the lightest variety of ISOW is found at the entrance of the BFZ east of the sills. In the central part of the Bight Fracture Zone, the evolution of ISOW is characterized by a decrease of 0.015 kg m-3 in the near bottom density, ascribed to the blocking of the densest ISOW variety by the sills and/or diapycnal mixing. To the West, at the exit of the BFZ, ISOW overlays

  8. Deep magma body beneath the summit and rift zones of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Delaney, P.T.; Fiske, R.S.; Miklius, Asta; Okamura, A.T.; Sako, M.K.

    1990-01-01

    A magnitude 7.2 earthquake in 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward in response to slippage along a deep fault. Since then, a large part of the volcano's edifice has been adjusting to this perturbation. The summit of Kilauea extended at a rate of 0.26 meter per year until 1983, the south flank uplifted more than 0.5 meter, and the axes of both the volcano's rift zones extended and subsided; the summit continues to subside. These ground-surface motions have been remarkably steady and much more widespread than those caused by either recurrent inflation and deflation of the summit magma chamber or the episodic propagation of dikes into the rift zones. Kilauea's magmatic system is, therefore, probably deeper and more extensive than previously thought; the summit and both rift zones may be underlain by a thick, near vertical dike-like magma system at a depth of 3 to 9 kilometers.

  9. The origin of Mauna Loa's Nīnole Hills: Evidence of rift zone reorganization

    USGS Publications Warehouse

    Zurek, Jeffrey; Williams-Jones, Glyn; Trusdell, Frank A.; Martin, Simon

    2015-01-01

    In order to identify the origin of Mauna Loa volcano's Nīnole Hills, Bouguer gravity was used to delineate density contrasts within the edifice. Our survey identified two residual anomalies beneath the Southwest Rift Zone (SWRZ) and the Nīnole Hills. The Nīnole Hills anomaly is elongated, striking northeast, and in inversions both anomalies merge at approximately −7 km above sea level. The positive anomaly, modeled as a rock volume of ~1200 km3 beneath the Nīnole Hills, is associated with old eruptive vents. Based on the geologic and geophysical data, we propose that the gravity anomaly under the Nīnole Hills records an early SWRZ orientation, now abandoned due to geologically rapid rift-zone reorganization. Catastrophic submarine landslides from Mauna Loa's western flank are the most likely cause for the concurrent abandonment of the Nīnole Hills section of the SWRZ. Rift zone reorganization induced by mass wasting is likely more common than currently recognized.

  10. Deep magma body beneath the summit and rift zones of kilauea volcano, hawaii.

    PubMed

    Delaney, P T; Fiske, R S; Miklius, A; Okamura, A T; Sako, M K

    1990-03-16

    A magnitude 7.2 earthquake in 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward in response to slippage along a deep fault. Since then, a large part of the volcano's edifice has been adjusting to this perturbation. The summit of Kilauea extended at a rate of 0.26 meter per year until 1983, the south flank uplifted more than 0.5 meter, and the axes of both the volcano's rift zones extended and subsided; the summit continues to subside. These ground-surface motions have been remarkably steady and much more widespread than those caused by either recurrent inflation and deflation of the summit magma chamber or the episodic propagation of dikes into the rift zones. Kilauea's magmatic system is, therefore, probably deeper and more extensive than previously thought; the summit and both rift zones may be underlain by a thick, near vertical dike-like magma system at a depth of 3 to 9 kilometers.

  11. Relation of summit deformation to east rift zone eruptions on Kilauea Volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epp, D.; Decker, R.W.; Okamura, A.T.

    1983-07-01

    An inverse relationship exists between the summit deflation of Kilauea, as recorded by summit tilt, and the elevation of associated eruptive vents on the East Rift Zone. This relationship implies that East Rift eruptions drain the summit magma reservior to pressure levels that are dependent on the elevation of the eruptive vents.

  12. Layered Crustal and Mantle Structure and Anisotropy beneath the Afar Depression and Malawi Rift Zone

    NASA Astrophysics Data System (ADS)

    Reed, Cory Alexander

    Although a wealth of geophysical data sets have been acquired within the vicinity of continental rift zones, the mechanisms responsible for the breakup of stable continental lithosphere are ambiguous. Eastern Africa is host to the largest contemporary rift zone on Earth, and is thus the most prominent site with which to investigate the processes which govern the rupture of continental lithosphere. The studies herein represent teleseismic analyses of the velocity and thermomechanical structure of the crust and mantle beneath the Afar Depression and Malawi Rift Zone (MRZ) of the East African Rift System. Within the Afar Depression, the first densely-spaced receiver function investigation of crustal thickness and inferred velocity attenuation across the Tendaho Graben is conducted, and the largest to-date study of the topography of the mantle transition zone (MTZ) beneath NE Africa is provided, which reveals low upper-mantle velocities beneath the Afar concordant with a probable mantle plume traversing the MTZ beneath the western Ethiopian Plateau. In the vicinity of the MRZ, a data set comprised of 35 seismic stations is employed that was deployed over a two year period from mid-2012 to mid-2014, belonging to the SAFARI (Seismic Arrays For African Rift Initiation) experiment. Accordingly, the first MTZ topography and shear wave splitting analyses were conducted in the region. The latter reveals largely plate motion-parallel anisotropy that is locally modulated by lithospheric thickness abnormalities adjacent to the MRZ, while the former reveals normal MTZ thicknesses and shallow discontinuities that support the presence of a thick lithospheric keel within the MRZ region. These evidences strongly argue for the evolution of the MRZ via passive rifting mechanisms absent lower-mantle influences.

  13. Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle

    USGS Publications Warehouse

    Foulger, G.R.; Pritchard, M.J.; Julian, B.R.; Evans, J.R.; Allen, R.M.; Nolet, G.; Morgan, W.J.; Bergsson, B.H.; Erlendsson, P.; Jakobsdottir, S.; Ragnarsson, S.; Stefansson, R.; Vogfjord, K.

    2001-01-01

    range ??? 100-300 km beneath east-central Iceland. The anomalous body is approximately cylindrical in the top 250 km but tabular in shape at greater depth, elongated north-south and generally underlying the spreading plate boundary. Such a morphological change and its relationship to surface rift zones are predicted to occur in convective upwellings driven by basal heating, passive upwelling in response to plate separation and lateral temperature gradients. Although we cannot resolve structure deeper than ??? 450 km, and do not detect a bottom to the anomaly, these models suggest that it extends no deeper than the mantle transition zone. Such models thus suggest a shallow origin for the Iceland hotspot rather than a deep mantle plume, and imply that the hotspot has been located on the spreading ridge in the centre of the north Atlantic for its entire history, and is not fixed relative to other Atlantic hotspots. The results are consistent with recent, regional full-thickness mantle tomography and whole-mantle tomography images that show a strong, low-wave-speed anomaly beneath the Iceland region that is confined to the upper mantle and thus do not require a plume in the lower mantle. Seismic and geochemical observations that are interpreted as indicating a lower mantle, or core-mantle boundary origin for the North Atlantic Igneous Province and the Iceland hotspot should be re-examined to consider whether they are consistent with upper mantle processes.

  14. Färoe-Iceland Ridge Experiment: 1. Crustal structure of northeastern Iceland

    USGS Publications Warehouse

    Staples, Robert K.; White, Robert S.; Brandsdottir, Bryndis; Menke, William; Maguire, Peter K.H.; McBride, John H.

    1997-01-01

    Results from the Färoe-Iceland Ridge Experiment (FIRE) constrain the crustal thickness as 19 km under the Northern Volcanic Zone of Iceland and 35 km under older Tertiary areas of northeastern Iceland. The Moho is defined by strong P wave and S wave reflections. Synthetic seismogram modeling of the Moho reflection indicates mantle velocities of at least 8.0 km/s beneath the Tertiary areas of northeastern Iceland and at least 7.9 km/s beneath the neovolcanic zone. Crustal diving rays resolve the structure of the upper and lower crust. Surface P wave velocities are 1.1–4.0 km/s in Quaternary rocks and are rather higher, 4.4–4.7 km/s, in the Tertiary basalts that outcrop elsewhere. The highest crustal P wave velocities observed directly from diving rays are 7.1 km/s, from rays that turn at 24 km depth. Velocities of 7.35 km/s at the base of the crust are inferred from extrapolation of the lower crustal velocity gradient (0.024 s−1). A Poisson's ratio of approximately 0.27, equivalent to an S wave to P wave travel time ratio of 1.78, is measured throughout the crust east of the neovolcanic zone. The Poisson's ratio and the steep Moho topography (in places up to 30° from the horizontal) indicate that the entire crust outside the neovolcanic zone is cool (<800°C). Gravity data are well matched by a velocity/density conversion of our seismic crustal model and indicate a region of low mantle density beneath the neovolcanic zone, believed to be due to elevated mantle temperatures. The crustal thickness in the neovolcanic zone is consistent with geochemical estimates of the melt generation, placing constraints on the flow within the Iceland mantle plume.

  15. Deformation and seismicity associated with continental rift zones propagating toward continental margins

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.

    2012-01-01

    We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.

  16. Magma ascent and emplacement in a continental rift setting: lessons from alkaline complexes in active and ancient rift zones

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Lloyd, Ryan; Birhanu, Yelebe; Biggs, Juliet; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahgen; Finch, Adrian

    2017-04-01

    A key feature of continental rift evolution is the development of large chemically-evolved alkaline magmatic systems in the shallow crust. At active alkaline systems, for example in the East African Rift, the volcanic complexes pose significant hazards to local populations but can also sustain major geothermal resources. In ancient rifts, for example the Gardar province in Southern Greenland, these alkaline magma bodies can host some of the world's largest rare element deposits in resources such as rare earths, niobium and tantalum. Despite their significance, there are major uncertainties about how such magmas are emplaced, the mechanisms that trigger eruptions and the magmatic and hydrothermal processes that generate geothermal and mineral resources. Here we compare observations from active caldera volcanoes in the Ethiopian Rift with compositionally equivalent ancient (1300-1100 Ma) plutonic systems in the Gardar Rift province (Greenland). In the Ethiopian Rift Valley we use InSAR and GPS data to evaluate the temporal and spatial evolution of ground deformation at Aluto and Corbetti calderas. We show that unrest at Aluto is characterized by short (3-6 month) accelerating uplift pulses likely caused by magmatic fluid intrusion at 5 km. At Corbetti, uplift is steady ( 6.6 cm/yr) and sustained over many years with analytical source models suggesting deformation is linked to sill intrusion at depths of 7 km. To evaluate the validity of these contrasting deformation mechanisms (i.e. magmatic fluid intrusion and sill emplacement) we carried out extensive field, structural and geochemical analysis in the roof zones of two alkaline plutons (Ilímaussaq and Motzfeldt) in Greenland. Our results show that the volatile contents (F, Cl, OH and S) of these magmas were exceptionally high and that there is evidence for ponding of magmatic fluids in the roof zone of the magma reservoir. We also identified extensive sill networks at the contact between the magma reservoir and the

  17. Lithology and temperature: How key mantle variables control rift volcanism

    NASA Astrophysics Data System (ADS)

    Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.

    2015-12-01

    Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of mantle plumes, upwellings of mantle rock made buoyant by their high temperatures. However, there has been debate over the relative role of the mantle's temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the mantle is inferred to be hot, this has been variously attributed to mantle plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how mantle composition and temperature contribute to melting beneath Iceland, the present day manifestation of the mantle plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic mantle. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional mantle anomalies. Secondly, we have performed a global assessment of the mantle's post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal

  18. Trichinella nativa in Iceland: an example of Trichinella dispersion in a frigid zone.

    PubMed

    Skírnisson, K; Marucci, G; Pozio, E

    2010-06-01

    In most Arctic and subarctic regions, Trichinella nativa is a common zoonotic pathogen circulating among wild carnivores. The polar bear (Ursus maritimus) is one of the most important reservoirs for T. nativa in frigid zones. In Iceland, Trichinella infection has never been detected in the local wildlife, despite the presence of one of the host species, the arctic fox (Alopex lagopus). In 2008, one of two polar bears that had swum to Iceland's coast was found to have been infected with Trichinella sp. (8.5 larvae/g in the tongue, 6.8 larvae/g in the masseter and 4.4 larvae/g in the diaphragm); the larvae were identified as T. nativa. This is the second report of Trichinella infection in polar bears that reached the Icelandic coast. In the present work, we describe this case of infection and discuss the epidemiological features that have allowed T. nativa to spread in Arctic regions.

  19. Seismic Investigations of an Accommodation zone in the Northern Rio Grande Rift, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Baldridge, W. S.; Valdes, J.; Nedorub, O.; Phrampus, B.; Braile, L. W.; Ferguson, J. F.; Benage, M. C.; Litherland, M.

    2010-12-01

    Seismic reflection and refraction data acquired in the Rio Grande rift near Santa Fe, New Mexico, in 2009 and 2010 by the SAGE (Summer of Applied Geophysical Experience) program imaged the La Bajada fault (LBF) and strata offset across the associated, perpendicular Budagher fault (BF). The LBF is a major basin-bounding normal fault, offset down to the west; the smaller BF is an extensional fault that breaks the hanging wall ramp of the LBF. We chose this area because it is in a structurally complex region of the rift, comprising a small sub-basin and plunging relay ramps, where north-trending, en echelon basin-bounding faults (including the LBF) transfer crustal extension laterally between the larger Española (to north) and Albuquerque rift basins. Our data help determine the precise location and geometry of the poorly exposed LBF, which, near the survey location, offsets the rift margin vertically about 3,000 m. When integrated with industry reflection data and other SAGE seismic, gravity, and magnetotelluric surveys, we are able to map differences in offset and extension laterally (especially southward) along the fault. We interpret only about 200 m of normal offset across the BF. Our continuing work helps define multiple structural elements, partly buried by syn-rift basin-filling sedimentary rocks, of a complex intra-rift accommodation zone. We are also able to discriminate pre-Eocene (Laramide) from post-Miocene (rift) structures. Our data help determine the amount of vertical offset of pre-rift strata across structural elements of the accommodation zone, and depth and geometry of basin fill. A goal is to infer the kinematic development of this margin of the rift, linkages among faults, growth history, and possible pre-rift structural controls. This information will be potentially useful for evaluation of resources, including oil and/or gas in pre-rift strata and ground water in Late Miocene to Holocene rift-filling units.

  20. Internal structure of Puna Ridge: evolution of the submarine East Rift Zone of Kilauea Volcano, Hawai ̀i

    NASA Astrophysics Data System (ADS)

    Leslie, Stephen C.; Moore, Gregory F.; Morgan, Julia K.

    2004-01-01

    Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawai ̀i, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early arrival times or 'pull-up' of sediment reflections on time sections imply a region of high P-wave velocity ( Vp) along the submarine ERZ. Refraction measurements along the axis of the ridge yield Vp values of 2.7-4.85 km/s within the upper 1 km of the volcanic pile and 6.5-7 km/s deeper within the edifice. Few coherent reflections are observed on seismic reflection sections within the high-velocity area, suggesting steeply dipping dikes and/or chaotic and fractured volcanic materials. Southeastward dipping reflections beneath the NW flank of Puna Ridge are interpreted as the buried flank of the older Hilo Ridge, indicating that these two ridges overlap at depth. Gravity measurements define a high-density anomaly coincident with the high-velocity region and support the existence of a complex of intrusive dikes associated with the ERZ. Gravity modeling shows that the intrusive core of the ERZ is offset to the southeast of the topographic axis of the rift zone, and that the surface of the core dips more steeply to the northwest than to the southeast, suggesting that the dike complex has been progressively displaced to the southeast by subsequent intrusions. The gravity signature of the dike complex decreases in width down-rift, and is absent in the distal portion of the rift zone. Based on these observations, and analysis of Puna Ridge bathymetry, we define three morphological and structural regimes of the submarine ERZ, that correlate to down-rift changes in rift zone dynamics and partitioning of intrusive materials. We propose that these

  1. Inferences of Complex Anisotropic Layering and Mantle Flow Beneath the Malawi Rift Zone from Shear-Wave Splitting

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Reed, C. A.; Yu, Y.; Liu, K. H.; Chindandali, P. R. N.; Mdala, H. S.; Massinque, B.; Mutamina, D. M.

    2016-12-01

    Measuring the magnitude and orientation of seismic anisotropy beneath actively extending rift zones provides invaluable estimates of the influence of numerous geodynamic parameters upon their evolution. In order to infer the character and origin of extensional forces acting upon the Malawi Rift Zone (MRZ) and Luangwa Rift Zone (LRZ) of southern Africa, we installed 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia between 2012-2014. Shear-wave splitting parameters, including the fast-component polarization orientation and the splitting time, are extracted from 142 events recorded during that time period for a total of 642 well-defined PKS, SKKS, and SKS phase measurements. Polarizations trend NE-SW along the western flank of the LRZ, whereupon they demonstrate an abrupt shift to N-S within the rift valley and the eastern flank. SWS orientations shift increasingly counterclockwise toward the east until, at 33°E, they shift from WNW-ESE to ENE-WSW, suggesting a systematic change in dominant mantle fabric orientation. The resulting fast orientations demonstrate remarkable variability within the MRZ, with E-W measurements in the north rotating counterclockwise toward the south to N-S within the southernmost MRZ. Measurements revert to E-W and NE-SW orientations toward the east in Mozambique, suggesting the presence of complex two-layer anisotropy. Azimuthal variations of SWS parameters recorded by stations within the central MRZ exhibit excellent 90° periodicity, further suggesting complex anisotropic layering. Lateral variation of measurements between the northern and southern MRZ imply the modulation of the mantle flow system beneath the active rift zone.

  2. Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; Mignan, Arnaud; Vogfjörð, Kristin S.

    2017-07-01

    In 1991, a digital seismic monitoring network was installed in Iceland with a digital seismic system and automatic operation. After 20 years of operation, we explore for the first time its nationwide performance by analysing the spatiotemporal variations of the completeness magnitude. We use the Bayesian magnitude of completeness (BMC) method that combines local completeness magnitude observations with prior information based on the density of seismic stations. Additionally, we test the impact of earthquake location uncertainties on the BMC results, by filtering the catalogue using a multivariate analysis that identifies outliers in the hypocentre error distribution. We find that the entire North-to-South active rift zone shows a relatively low magnitude of completeness Mc in the range 0.5-1.0, highlighting the ability of the Icelandic network to detect small earthquakes. This work also demonstrates the influence of earthquake location uncertainties on the spatiotemporal magnitude of completeness analysis.

  3. The Iceland Deep Drilling Project (IDDP): (I) Drilling for Supercritical Hydrothermal Fluids is Underway

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2008-12-01

    The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power

  4. Strain distribution across magmatic margins during the breakup stage: Seismicity patterns in the Afar rift zone

    NASA Astrophysics Data System (ADS)

    Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.

    2008-12-01

    Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.

  5. A refinement of the chronology of rift-related faulting in the Broadly Rifted Zone, southern Ethiopia, through apatite fission-track analysis

    NASA Astrophysics Data System (ADS)

    Balestrieri, Maria Laura; Bonini, Marco; Corti, Giacomo; Sani, Federico; Philippon, Melody

    2016-03-01

    To reconstruct the timing of rift inception in the Broadly Rifted Zone in southern Ethiopia, we applied the fission-track method to basement rocks collected along the scarp of the main normal faults bounding (i) the Amaro Horst in the southern Main Ethiopian Rift and (ii) the Beto Basin in the Gofa Province. At the Amaro Horst, a vertical traverse along the major eastern scarp yielded pre-rift ages ranging between 121.4 ± 15.3 Ma and 69.5 ± 7.2 Ma, similarly to two other samples, one from the western scarp and one at the southern termination of the horst (103.4 ± 24.5 Ma and 65.5 ± 4.2 Ma, respectively). More interestingly, a second traverse at the Amaro northeastern terminus released rift-related ages spanning between 12.3 ± 2.7 and 6.8 ± 0.7 Ma. In the Beto Basin, the ages determined along the base of the main (northwestern) fault scarp vary between 22.8 ± 3.3 Ma and 7.0 ± 0.7 Ma. We ascertain through thermal modeling that rift-related exhumation along the northwestern fault scarp of the Beto Basin started at 12 ± 2 Ma while in the eastern margin of the Amaro Horst faulting took place later than 10 Ma, possibly at about 8 Ma. These results suggest a reconsideration of previous models on timing of rift activation in the different sectors of the Ethiopian Rift. Extensional basin formation initiated more or less contemporaneously in the Gofa Province (~ 12 Ma) and Northern Main Ethiopian Rift (~ 10-12 Ma) at the time of a major reorganization of the Nubia-Somalia plate boundary (i.e., 11 ± 2 Ma). Afterwards, rift-related faulting involved the Southern MER (Amaro Horst) at ~ 8 Ma, and only later rifting seemingly affected the Central MER (after ~ 7 Ma).

  6. Petrologic constraints on rift-zone processes - Results from episode 1 of the Puu Oo eruption of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Garcia, M.O.; Ho, R.A.; Rhodes, J.M.; Wolfe, E.W.

    1989-01-01

    The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes. Emplacement of a dike began 24 hours before the start of the eruption on 3 January 1983. Seismic and geodetic evidence indicates that the dike collided with a magma body in the rift zone. Most of the lava produced during the initial episode of the Puu Oo eruption is of hybrid composition, with petrographic and geochemical evidence of mixing magmas of highly evllved and more mafic compositions. Some olivine and plagioclase grains in the hybrid lavas show reverse zoning. Whole-rock compositional variations are linear even for normally compatible elements like Ni and Cr. Leastsquares mixing calculations yield good residuals for major and trace element analyses for magma mixing. Crystal fractionation calculations yield unsatisfactory residuals. The highly evolved magma is similar in composition to the lava from the 1977 eruption and, at one point, vents for these two eruptions are only 200 m apart. Possibly both the 1977 lava and the highly evolved component of the episode 1 Puu Oo lava were derived from a common body of rift-zone-stored magma. The more mafic mixing component may be represented by the most mafic lava from the January 1983 eruption; it shows no evidence of magma mixing. The dike that was intruded just prior to the start of the Puu Oo eruption may have acted as a hydraulic plunger causing mixing of the two rift-zone-stored magmas. ?? 1989 Springer-Verlag.

  7. Models of Deformation of Uppermost Oceanic Lithosphere: Comparison of Crustal Flexure in the Blönduós Area, Northern Iceland, and Structure of East Pacific Rise Crust at Hess Deep

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Karson, J. A.; Varga, R. J.; Gee, J. S.

    2007-12-01

    Models of the internal structure of oceanic crust have been constructed from studies of ophiolites and from more recent observations of tectonic windows into the upper crust. Spreading rate and/or magma supply are the central variables that control ridge processes and the ultimate architecture of ocean crust. In addition to ophiolites, Iceland also provides an important analog to study mid-ocean ridge processes and structure. Flexure zones in Iceland characterize the structure of Tertiary-Recent lava flows, and are areas wherein lavas dip regionally inward toward the axis of one of several ~N/S-trending rift zones. These rift zones are interpreted to represent fossil spreading centers which were abandoned during a series of eastward-directed ridge jumps. In the Hildará area, north-central Iceland, the eastern side of a regional flexure is characterized by westward-dipping lavas, approximately 6-8 Ma, which are cut by east-dipping normal faults and dikes. The upper-crustal structure within this flexure zone from slow spread (~20 mm/yr) crust exhibits remarkable similarities to the structure of the upper crust created at a fast-spreading (110 mm/yr) segment of the East Pacific Rise (EPR) observed at Hess Deep. In this modern ocean setting, ~1 Ma crust is characterized by west-dipping lavas above consistently east-dipping (away from the EPR) dikes and dike-subparallel fault zones. In both locations, paleomagnetic and structural data indicate that west-dipping lavas and east-dipping dikes result from tectonic rotations. In addition, cross-cutting dike relationships demonstrate that dike intrusion occurred both during and after normal fault- related tilting. These data indicate that fault-controlled tilting was initiated within the narrow neovolcanic zone of the ridge and is not associated with off-axis processes. Lavas at magmatically robust ridges commonly flow away from elevated ridge-crests. Measurement of anisotropy of magnetic susceptibility (AMS) of the lavas

  8. Chemical provinces and dynamic melting of the NE Atlantic mantle

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.

    2009-12-01

    Low-degree melting of fertile parts of the NE Atlantic mantle yields primitive alkaline basalts in the Icelandic off-rift zones and at Jan Mayen. Olivine tholeiites in the Icelandic rift zones and oceanic spreading ridges are formed by protracted decompressional melting. The V-shaped ridges SW and NE of Iceland indicate that rising, hot material is supplied by a pulsating plume and deflected laterally for distances of about 1000 km from Iceland (Jones et al. GGG 2002; Breivik et al. JGR 2006). Plume material deflected along the rift zones and spreading ridges undergoes mixing with the ambient asthenosphere and extensive melting at shallow level, whereas material deflected in other directions may flow laterally at deeper levels and remain largely unmelted and fertile. A recent investigation of a suite of primitive off-rift basalts from Iceland and Jan Mayen (Debaille et al., 2009, GCA) demonstrated an important source contribution from subcontinental lithospheric mantle (SCLM). Available data on the primitive off-rift basalts and tholeiitic basalts from Iceland and the NE Atlantic ridges indicates the existence of three main composite mantle components, characterized by the following relative isotope ratios (H: high, I: intermediate and L: low ratio) for 87/86Sr, 143/144Nd, 206/204Pb, 187/188Os and 3/4He, respectively: 1. Iceland plume with depleted lower mantle mixed with recycled oceanic crust: I, I, H, H, H 2. Strongly depleted and later re-enriched SCLM: H, L, I, L, L 3. Depleted asthenosphere: L, H, L, I, L The two first composite components contain enriched and depleted subcomponents with distinct isotope signatures. The isotope ratio variations between the fertile components are larger than between the refractory components. The 3/4He ratio, however, is much higher in the depleted plume component than in the depleted SCLM and asthenospheric components. The old SCLM material could in principle be recycled and embedded in the lower mantle and supplied to the

  9. Dynamics of continental rift propagation: the end-member modes

    NASA Astrophysics Data System (ADS)

    Van Wijk, J. W.; Blackman, D. K.

    2005-01-01

    An important aspect of continental rifting is the progressive variation of deformation style along the rift axis during rift propagation. In regions of rift propagation, specifically transition zones from continental rifting to seafloor spreading, it has been observed that contrasting styles of deformation along the axis of rift propagation are bounded by shear zones. The focus of this numerical modeling study is to look at dynamic processes near the tip of a weak zone in continental lithosphere. More specifically, this study explores how modeled rift behavior depends on the value of rheological parameters of the crust. A three-dimensional finite element model is used to simulate lithosphere deformation in an extensional regime. The chosen approach emphasizes understanding the tectonic forces involved in rift propagation. Dependent on plate strength, two end-member modes are distinguished. The stalled rift phase is characterized by absence of rift propagation for a certain amount of time. Extension beyond the edge of the rift tip is no longer localized but occurs over a very wide zone, which requires a buildup of shear stresses near the rift tip and significant intra-plate deformation. This stage represents a situation in which a rift meets a locked zone. Localized deformation changes to distributed deformation in the locked zone, and the two different deformation styles are balanced by a shear zone oriented perpendicular to the trend. In the alternative rift propagation mode, rift propagation is a continuous process when the initial crust is weak. The extension style does not change significantly along the rift axis and lengthening of the rift zone is not accompanied by a buildup of shear stresses. Model predictions address aspects of previously unexplained rift evolution in the Laptev Sea, and its contrast with the tectonic evolution of, for example, the Gulf of Aden and Woodlark Basin.

  10. Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas

    NASA Astrophysics Data System (ADS)

    Carley, Tamara L.; Miller, Calvin F.; Wooden, Joseph L.; Bindeman, Ilya N.; Barth, Andrew P.

    2011-10-01

    Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), Öræfajökull (1362 AD) and Torfajökull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions.

  11. East African Rift

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Places where the earth's crust has formed deep fissures and the plates have begun to move apart develop rift structures in which elongate blocks have subsided relative to the blocks on either side. The East African Rift is a world-famous example of such rifting. It is characterized by 1) topographic deep valleys in the rift zone, 2) sheer escarpments along the faulted walls of the rift zone, 3) a chain of lakes within the rift, most of the lakes highly saline due to evaporation in the hot temperatures characteristic of climates near the equator, 4) voluminous amounts of volcanic rocks that have flowed from faults along the sides of the rift, and 5) volcanic cones where magma flow was most intense. This example in Kenya displays most of these features near Lake Begoria.

    The image was acquired December 18, 2002, covers an area of 40.5 x 32 km, and is located at 0.1 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  12. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  13. Contrasting geochemical trends in the fertile and refractory parts of the NE Atlantic mantle source

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Debaille, V.; Brandon, A. D.; Waight, T. E.; Graham, D. W.; Williams, A.; Lee, C. A.

    2008-12-01

    Primitive alkaline basalts from the Icelandic off-rift volcanic zones and Jan Mayen represent low-degree melts from the fertile parts of the NE Atlantic mantle. Olivine tholeiites and picrites from the Icelandic rift zones and nearby oceanic spreading ridges are formed by protracted decompressional melting. The V-shaped ridges along the Reykjanes, Kolbeinsey and Aegir ridges indicate that ascending source material is supplied by a pulsating plume and deflected laterally for distances of about 1000 km from Iceland (Jones et al. GGG 2002; Breivik et al. JGR 2006). Plume material deflected in the direction of the rift zones and spreading ridges undergoes extensive melting at shallow level, whereas material deflected in other directions flows laterally at deeper levels and remains largely unmelted and more fertile. The comparison of a sample suite of primitive off-rift basalts from Iceland and Jan Mayen (Debaille et al., in prep.) with olivine tholeiites and picrites from the Icelandic rift zones (mainly Brandon et al. GCA 2007) demonstrate opposing geochemical trends. The degree of source enrichment, expressed by the La/Sm-ratio, is positively and negatively correlated with 87/86Sr and 143/144Nd throughout the entire range of depleted rift zone tholeiites and enriched off-rift basalts. In the rift zone tholeiites the La/Sm-ratio has negative correlations with Mg# and Mg-content and positive correlations with 187/188Os and 3/4He. These four trends have opposite equivalents for the off-rift basalts. The most enriched and alkaline basalts from Jan Mayen and Snæfellsnes have the lowest 3/4He of 6-9*Ra and 187/188Os of 0.12-0.13. The trends seem to require a source component with ancient melt depletion and subsequent enrichment. A subcontinental lithospheric mantle keel (SCLM) is the most likely origin for the enriched component with high LILE, La/Sm and 87/86Sr and low 143/144Nd, 3/4He and 187/188Os. The most enriched alkaline basalts have notably higher Mg# and Mg and

  14. Geometry and architecture of faults in a syn-rift normal fault array: The Nukhul half-graben, Suez rift, Egypt

    NASA Astrophysics Data System (ADS)

    Wilson, Paul; Gawthorpe, Rob L.; Hodgetts, David; Rarity, Franklin; Sharp, Ian R.

    2009-08-01

    The geometry and architecture of a well exposed syn-rift normal fault array in the Suez rift is examined. At pre-rift level, the Nukhul fault consists of a single zone of intense deformation up to 10 m wide, with a significant monocline in the hanging wall and much more limited folding in the footwall. At syn-rift level, the fault zone is characterised by a single discrete fault zone less than 2 m wide, with damage zone faults up to approximately 200 m into the hanging wall, and with no significant monocline developed. The evolution of the fault from a buried structure with associated fault-propagation folding, to a surface-breaking structure with associated surface faulting, has led to enhanced bedding-parallel slip at lower levels that is absent at higher levels. Strain is enhanced at breached relay ramps and bends inherited from pre-existing structures that were reactivated during rifting. Damage zone faults observed within the pre-rift show ramp-flat geometries associated with contrast in competency of the layers cut and commonly contain zones of scaly shale or clay smear. Damage zone faults within the syn-rift are commonly very straight, and may be discrete fault planes with no visible fault rock at the scale of observation, or contain relatively thin and simple zones of scaly shale or gouge. The geometric and architectural evolution of the fault array is interpreted to be the result of (i) the evolution from distributed trishear deformation during upward propagation of buried fault tips to surface faulting after faults breach the surface; (ii) differences in deformation response between lithified pre-rift units that display high competence contrasts during deformation, and unlithified syn-rift units that display low competence contrasts during deformation, and; (iii) the history of segmentation, growth and linkage of the faults that make up the fault array. This has important implications for fluid flow in fault zones.

  15. Geomagnetic polarity zones for icelandic lavas

    USGS Publications Warehouse

    Dagley, P.; Wilson, R.L.; Ade-Hall, J. M.; Walker, G.P.L.; Haggerty, S.E.; Sigurgeirsson, T.; Watkins, N.D.; Smith, P.J.; Edwards, J.; Grasty, R.L.

    1967-01-01

    Analysis of cores collected from a sequence of lavas in Eastern Iceland has made possible an accurate calculation of the average rate of reversal of the Earth's magnetic field. ?? 1967 Nature Publishing Group.

  16. Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone

    NASA Astrophysics Data System (ADS)

    Tiberi, Christel; Ebinger, Cynthia; Ballu, Valérie; Stuart, Graham; Oluma, Befekadu

    2005-11-01

    The combined effects of stretching and magmatism permanently modify crustal structure in continental rifts and volcanic passive margins. The Red Sea-Gulf of Aden-Ethiopian rift triple junction zone provides a unique opportunity to examine incipient volcanic margin formation above or near an asthenospheric upwelling. We use gravity inversions and forward modelling to examine lateral variations in crust and upper mantle structure across the Oligocene flood basalt province, which has subsequently been extended to form the Red Sea, Gulf of Aden and Main Ethiopian rifts. We constrain and test the obtained models with new and existing seismic estimates of crustal thickness. In particular, we predict crustal thickness across the uplifted plateaux and rift valleys, and calibrate our results with recent receiver function analyses. We discuss the results together with a 3-D distribution of density contrasts in terms of magmatic margin structure. The main conclusions are: (1) a denser (+240 kg m-3) and/or a thinner crust (23 km) in the triple junction zone of the Afar depression; (2) a shallower Moho is found along the Main Ethiopian rift axis, with crustal thickness values decreasing from 32-33 km in the south to 24 km beneath the southern Afar depression; (3) thicker crust (~40 km) is present beneath the broad uplifted Oligocene flood basalt province, suggesting that crustal underplating compensates most of the plateau uplift and (4) possible magmatic underplating or a segmentation in the rift structure is observed at ~8°N, 39°W beneath several collapsed caldera complexes. These results indicate that magmatism has profoundly changed crustal structure throughout the flood basalt province.

  17. Making Earth's earliest continental crust - an analogue from voluminous Neogene silicic volcanism in NE-Iceland

    NASA Astrophysics Data System (ADS)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Riishuus, Morten S.; Deegan, Frances M.; Harris, Chris; Whitehouse, Martin J.; Gústafsson, Ludvik E.

    2014-05-01

    Borgarfjörður Eystri in NE-Iceland represents the second-most voluminous exposure of silicic eruptive rocks in Iceland and is a superb example of bimodal volcanism (Bunsen-Daly gap), which represents a long-standing controversy that touches on the problem of crustal growth in early Earth. The silicic rocks in NE-Iceland approach 25 % of the exposed rock mass in the region (Gústafsson et al., 1989), thus they significantly exceed the usual ≤ 12 % in Iceland as a whole (e.g. Walker, 1966; Jonasson, 2007). The origin, significance, and duration of the voluminous (> 300 km3) and dominantly explosive silicic activity in Borgarfjörður Eystri is not yet constrained (c.f. Gústafsson, 1992), leaving us unclear as to what causes silicic volcanism in otherwise basaltic provinces. Here we report SIMS zircon U-Pb ages and δ18O values from the region, which record the commencement of silicic igneous activity with rhyolite lavas at 13.5 to 12.8 Ma, closely followed by large caldera-forming ignimbrite eruptions from the Breiðavik and Dyrfjöll central volcanoes (12.4 Ma). Silicic activity ended abruptly with dacite lava at 12.1 Ma, defining a ≤ 1 Myr long window of silicic volcanism. Magma δ18O values estimated from zircon range from 3.1 to 5.5 (± 0.3; n = 170) and indicate up to 45 % assimilation of a low-δ18O component (e.g. typically δ18O = 0 ‰, Bindeman et al., 2012). A Neogene rift relocation (Martin et al., 2011) or the birth of an off-rift zone to the east of the mature rift associated with a thermal/chemical pulse in the Iceland plume (Óskarsson & Riishuus, 2013), likely brought mantle-derived magma into contact with fertile hydrothermally-altered basaltic crust. The resulting interaction triggered large-scale crustal melting and generated mixed-origin silicic melts. Such rapid formation of silicic magmas from sustained basaltic volcanism may serve as an analogue for generating continental crust in a subduction-free early Earth (e.g. ≥ 3 Ga, Kamber et

  18. Contribution of slab melting to magmatism at the active rifts zone in the middle of the Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Hirai, Y.; Okamura, S.; Sakamoto, I.; Shinjo, R.; Wada, K.; Yoshida, T.

    2016-12-01

    The active rifts zone lies just behind the Quaternary volcanic front in the middle of the Izu-Bonin arc. Volcanism at the active rifts zone has been active since ca. 2 Ma, and late Quaternary basaltic lavas (< 0.1 Ma) and hydrothermal activity occur along the central axis of the rifts (Taylor, 1992; Ishizuka et al., 2003). In this paper we present new Sr, Nd, and Hf isotope and trace element data for the basalts erupted in the active rifts zone, including the Aogashima, Myojin and Sumisu rifts. Two geochemical groups can be identified within the active rift basalts: High-Zr basalts (HZB) and Low-Zr basalts (LZB). In the case of the Sumisu rift, the HZB exhibits higher in K2O, Na2O, Y, Zr and Ni, and also has higher Ce/Yb and Zr/Y, lower Ba/Th than the LZB. Depletion of Zr-Hf in the N-MORB spidergram characterizes the LZB from the Aogashima, Myojin and Sumisu rifts. The 176Hf/177Hf ratios are slightly lower in the HZB than in the LZB, decoupling of 176Hf/177Hf ratios and 143Nd/144Nd ratios. Estimated primary magma compositions suggest that primary magma segregation for the HZB occurred at depths less than 70 km ( 2 GPa), whereas the LZB more than 70 km (2 3 GPa). ODP Leg126 site 788, 790, and 791 reached the basaltic basement of the Sumisu rift (Gill et al., 1992). The geochemical data and stratigraphic relations of the basement indicate that the HZB is younger than the LZB. Geochemical modelling demonstrates that slab-derived melt mixed with mantle wedge produces the observed isotopic and trace elemental characteristics. The LZB volcanism at the early stage of the back-arc rifting is best explained by a partial melting of subducted slab saturated with trace quantities of zircon under low-temperature conditions in the mantle wedge. On the other hand, the HZB requires a partial melt of subducted slab accompanied by full dissolution of zircon under high-temperature conditions in the mantle wedge, which could have been caused by hot asthenospheric injection during the

  19. Geophysical evidence of pre-sag rifting and post-rifting fault reactivation in the Parnaíba basin, Brazil

    NASA Astrophysics Data System (ADS)

    Lopes de Castro, David; Hilário Bezerra, Francisco; Adolfo Fuck, Reinhardt; Vidotti, Roberta Mary

    2016-04-01

    This study investigated the rifting mechanism that preceded the prolonged subsidence of the Paleozoic Parnaíba basin in Brazil and shed light on the tectonic evolution of this large cratonic basin in the South American platform. From the analysis of aeromagnetic, aerogravity, seismic reflection and borehole data, we concluded the following: (1) large pseudo-gravity and gravity lows mimic graben structures but are associated with linear supracrustal strips in the basement. (2) Seismic data indicate that 120-200 km wide and up to 300 km long rift zones occur in other parts of the basins. These rift zones mark the early stage of the 3.5 km thick sag basin. (3) The rifting phase occurred in the early Paleozoic and had a subsidence rate of 47 m Myr-1. (4) This rifting phase was followed by a long period of sag basin subsidence at a rate of 9.5 m Myr-1 between the Silurian and the late Cretaceous, during which rift faults propagated and influenced deposition. These data interpretations support the following succession of events: (1) after the Brasiliano orogeny (740-580 Ma), brittle reactivation of ductile basement shear zones led to normal and dextral oblique-slip faulting concentrated along the Transbrasiliano Lineament, a continental-scale shear zone that marks the boundary between basement crustal blocks. (2) The post-orogenic tectonic brittle reactivation of the ductile basement shear zones led to normal faulting associated with dextral oblique-slip crustal extension. In the west, pure-shear extension induced the formation of rift zones that crosscut metamorphic foliations and shear zones within the Parnaíba block. (3) The rift faults experienced multiple reactivation phases. (4) Similar processes may have occurred in coeval basins in the Laurentia and Central African blocks of Gondwana.

  20. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  1. Effects of Oblique Extension and Inherited Structure Geometry on Transfer Zone Development in Continental Rifts: A 4D Analogue Modeling Approach

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2015-04-01

    INTRODUCTION Inherited structures in the crust form weak zones along which deformation will focus during rifting. Along-strike connection of rift segments may occur along transfer zones, as observed in East Africa. Previous studies have focused on numerical and analog modeling of transfer zones (e.g. Acocella et al., 1999, Allken et al., 2012). We elaborate upon those by investigating the effects of 1) oblique extension and 2) the geometry of linked and non-linked inherited structures on the development of transfer zones. A further improvement is the use of X-ray Computer Tomography (CT) for detailed internal analysis. METHODS The experimental set-up (see Schreurs & Colleta, 1998) contains two sidewalls with a base of compressed foam and plexiglass bars stacked in between. Decompressing this base results in distributed deformation of the overlying model materials. Deforming the model laterally with a mobile base plate produces the strike-slip components for oblique extension. Divergence velocities are in the order of 5 mm/h, translating to ca. 5 mm/Ma in nature, and 1 cm represents 10 km. A 2 cm thick layer of viscous silicone represents the ductile lower crust and a 2 cm quartz sand layer the brittle upper crust. Inherited structures are created with thin lines of silicon laid down on top of the basal silicone layer. Several models were run in a CT-scanner to reveal the 3D evolution of internal structures with time, hence 4D. RESULTS Localization of deformation along the pre-defined structures works well. The models show that the structural style changes with extension obliquity, from wide rift structures to narrower rifts with internal oblique-slip and finally strike-slip structures. Furthermore, rift offset is an important parameter influencing the occurrence of linkage: increasing rift offset decreases linkage as previously observed by Allken et al. (2012). However, increasing divergence obliquity promotes transfer zone formation, as does the presence of rift

  2. Sedimentary record of relay zone evolution, Central Corinth Rift (Greece): Role of fault propagation and structural inheritance.

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Meyer, Nicolas

    2013-04-01

    Relay zones along rift border fault systems form topographic lows that are considered to allow the transfer of sediment from the footwall into hanging wall depocentres. Present knowledge focuses on the modifications of drainage patterns and sediment pathways across relay zones, however their vertical motion during growth and interaction of faults segments is not well documented. 3D models of fault growth and linkage are also under debate. The Corinth rift (Greece) is an ideal natural laboratory for the study of fault system evolution. Fault activity and rift depocentres migrated northward during Pliocene to Recent N-S extension. We report on the evolution of a relay zone in the currently active southern rift margin fault system from Pleistocene to present-day. The relay zone lies between the E-W East Helike (EHF) and Derveni faults (DF) that lie just offshore and around the town of Akrata. During its evolution the relay zone captured the antecedent Krathis river which continued to deposit Gilbert-type deltas across the relay zone during fault interaction, breaching and post linkage phases. Moreover our work underlines the role that pre-existing structure in the location of the transfer zone. Offshore fault geometry and kinematics, and sediment distribution were defined by interpretation and depth conversion of high resolution seismic profiles (from Maurice Ewing 2001 geophysical survey). Early lateral propagation of the EHF is recorded by synsedimentary fault propagation folds while the DF records tilted block geometries since initiation. Within the relay zone beds are gradually tilted toward the basin before breaching. These different styles of deformation highlight mechanical contrasts and upper crustal partition associated with the development of the Akrata relay zone. Onshore detailed lithostratigraphy, structure and geomorphological features record sedimentation across the subsiding relay ramp and subsequent footwall uplift after breaching. The area is

  3. The 12 September 1999 Upper East Rift Zone dike intrusion at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Cervelli, Peter; Segall, P.; Amelung, F.; Garbeil, H.; Meertens, C.; Owen, S.; Miklius, Asta; Lisowski, M.

    2002-01-01

    Deformation associated with an earthquake swarm on 12 September 1999 in the Upper East Rift Zone of Kilauea Volcano was recorded by continuous GPS receivers and by borehole tiltmeters. Analyses of campaign GPS, leveling data, and interferometric synthetic aperture radar (InSAR) data from the ERS-2 satellite also reveal significant deformation from the swarm. We interpret the swarm as resulting from a dike intrusion and model the deformation field using a constant pressure dike source. Nonlinear inversion was used to find the model that best fits the data. The optimal dike is located beneath and slightly to the west of Mauna Ulu, dips steeply toward the south, and strikes nearly east-west. It is approximately 3 by 2 km across and was driven by a pressure of ??? 15 MPa. The total volume of the dike was 3.3 x 106 m3. Tilt data indicate a west to east propagation direction. Lack of premonitory inflation of Kilauea's summit suggests a passive intrusion; that is, the immediate cause of the intrusion was probably tensile failure in the shallow crust of the Upper East Rift Zone brought about by persistent deep rifting and by continued seaward sliding of Kilauea's south flank.

  4. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure

    NASA Astrophysics Data System (ADS)

    Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit

    2017-02-01

    The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.

  5. Rapid high-silica magma generation in basalt-dominated rift settings

    NASA Astrophysics Data System (ADS)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Deegan, Frances M.; Riishuus, Morten S.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Ellis, Ben S.; Krumbholz, Michael; Gústafsson, Ludvik E.

    2015-04-01

    The processes that drive large-scale silicic magmatism in basalt-dominated provinces have been widely debated for decades, with Iceland being at the centre of this discussion [1-5]. Iceland hosts large accumulations of silicic rocks in a largely basaltic oceanic setting that is considered by some workers to resemble the situation documented for the Hadean [6-7]. We have investigated the time scales and processes of silicic volcanism in the largest complete pulse of Neogene rift-related silicic magmatism preserved in Iceland (>450 km3), which is a potential analogue of initial continent nucleation in early Earth. Borgarfjörður Eystri in NE-Iceland hosts silicic rocks in excess of 20 vol.%, which exceeds the ≤12 vol% usual for Iceland [3,8]. New SIMS zircon ages document that the dominantly explosive silicic pulse was generated within a ≤2 Myr window (13.5 ± 0.2 to 12.2 ± 03 Ma), and sub-mantle zircon δ18O values (1.2 to 4.5 ± 0.2‰, n=337) indicate ≤33% assimilation of low-δ18O hydrothermally-altered crust (δ18O=0‰), with intense crustal melting at 12.5 Ma, followed by rapid termination of silicic magma production once crustal fertility declined [9]. This silicic outburst was likely caused by extensive rift flank volcanism due to a rift relocation and a flare of the Iceland plume [4,10] that triggered large-scale crustal melting and generated mixed-origin silicic melts. High-silica melt production from a basaltic parent was replicated in a set of new partial melting experiments of regional hydrated basalts, conducted at 800-900°C and 150 MPa, that produced silicic melt pockets up to 77 wt.% SiO2. Moreover, Ti-in-zircon thermometry from Borgarfjörður Eystri give a zircon crystallisation temperature ~713°C (Ti range from 2.4 to 22.1 ppm, average=7.7 ppm, n=142), which is lower than recorded elsewhere in Iceland [11], but closely overlaps with the zircon crystallisation temperatures documented for Hadean zircon populations [11-13], hinting at

  6. Deep crustal earthquakes associated with continental rifts

    NASA Astrophysics Data System (ADS)

    Doser, Diane I.; Yarwood, Dennis R.

    1994-01-01

    Deep (> 20 km) crustal earthquakes have occurred within or along the margins of at least four continental rift zones. The largest of these deep crustal earthquakes ( M ⩾ 5.0) have strike-slip or oblique-slip mechanisms with T-axes oriented similarly to those associated with shallow normal faulting within the rift zones. The majority of deep crustal earthquakes occur along the rift margins in regions that have cooler, thicker crust. Several deep crustal events, however, occur in regions of high heat flow. These regions also appear to be regions of high strain, a factor that could account for the observed depths. We believe the deep crustal earthquakes represent either the relative motion of rift zones with respect to adjacent stable regions or the propagation of rifting into stable regions.

  7. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    NASA Astrophysics Data System (ADS)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  8. Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: Evidence for the distribution of magma below Kilauea's East rift zone

    USGS Publications Warehouse

    Wyss, M.; Klein, F.; Nagamine, K.; Wiemer, S.

    2001-01-01

    The pattern of b-value of the frequency-magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b = 0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b = 1.3-1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5-8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both

  9. Midplate seismicity exterior to former rift-basins

    USGS Publications Warehouse

    Dewey, J.W.

    1988-01-01

    Midplate seismicity associated with some former rift-zones is distributed diffusely near, but exterior to, the rift basins. This "basin-exterior' seismicity cannot be attributed to reactivation of major basin-border faults on which uppercrustal extension was concentrated at the time of rifting, because the border faults dip beneath the basins. The seismicity may nonetheless represent reactivation of minor faults that were active at the time of rifting but that were located outside of the principal zones of upper-crustal extension; the occurrence of basin-exterior seismicity in some present-day rift-zones supports the existence of such minor basin-exterior faults. Other hypotheses for seismicity exterior to former rift-basins are that the seismicity reflects lobes of high stress due to lithospheric-bending that is centered on the axis of the rift, that the seismicity is localized on the exteriors of rift-basins by basin-interiors that are less deformable in the current epoch than the basin exteriors, and that seismicity is localized on the basin-exteriors by the concentration of tectonic stress in the highly elastic basin-exterior upper-crust. -from Author

  10. Geodetic investigation of plate spreading along a propagating ridge: the Eastern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Scheiber-Enslin, Stephanie E.; Lafemina, Peter C.; Sturkell, Erik; Hooper, Andrew J.; Webb, Susan J.

    2011-12-01

    Hotspot-ridge interactions lead to the dynamic evolution of divergent plate boundaries, including propagating and overlapping ridge segments. In southern Iceland, the Eastern Volcanic Zone (EVZ) formed approximately 2-3 Ma ago during the last eastward ridge jump from the Western Volcanic Zone (WVZ), and is propagating to the southwest into the Tertiary lithosphere of the Eastern Volcanic Flank Zone. North America-Eurasia relative plate motion is partitioned between the Eastern and WVZs. We utilize new terrestrial (dry-tilt) and space (GPS and InSAR) geodetic data to investigate the nature of plate spreading and magma-tectonic interaction at the southern terminus of this propagating ridge system. We present a new GPS derived horizontal velocity field covering the period 1994-2006, new InSAR analyses for the periods 1993-2000 and 2003-2007, and models of plate spreading across this region. The velocity field indicates horizontal surface deformation consistent with plate spreading across and the propagation of the EVZ. The dry-tilt and InSAR data show transient deformation signals associated with magmatic processes. The velocity field is corrected for these transient deformation sources in order to investigate the nature of secular plate motion. Our model results indicate a decrease in spreading rate from northeast (15 mm yr-1) to southwest (9 mm yr-1) across the Torfajökull caldera and the intersection of the South Iceland Seismic Zone and EVZ, consistent with the propagating ridge model. Plate spreading south of the intersection demonstrates that spreading must be partitioned with the Reykjanes Peninsula to the west at this latitude. Our results also constrain the minimum flux (0.05 km3 km-1 kyr-1) of magma to this segment of the Mid-Atlantic Ridge and indicate that the Hekla magmatic system strains the Torfajökull caldera during pre- and co-eruptive periods.

  11. Comparison of magmatic and amagmatic rift zone kinematics using full moment tensor inversions of regional earthquakes

    NASA Astrophysics Data System (ADS)

    Jaye Oliva, Sarah; Ebinger, Cynthia; Shillington, Donna; Albaric, Julie; Deschamps, Anne; Keir, Derek; Drooff, Connor

    2017-04-01

    Temporary seismic networks deployed in the magmatic Eastern rift and the mostly amagmatic Western rift in East Africa present the opportunity to compare the depth distribution of strain, and fault kinematics in light of rift age and the presence or absence of surface magmatism. The largest events in local earthquake catalogs (ML > 3.5) are modeled using the Dreger and Ford full moment tensor algorithm (Dreger, 2003; Minson & Dreger, 2008) to better constrain source depth and to investigate non-double-couple components. A bandpass filter of 0.02 to 0.10 Hz is applied to the waveforms prior to inversion. Synthetics are based on 1D velocity models derived during seismic analysis and constrained by reflection and tomographic data where available. Results show significant compensated linear vector dipole (CLVD) and isotropic components for earthquakes in magmatic rift zones, whereas double-couple mechanisms predominate in weakly magmatic rift sectors. We interpret the isotropic components as evidence for fluid-involved faulting in the Eastern rift where volatile emissions are large, and dike intrusions well documented. Lower crustal earthquakes are found in both amagmatic and magmatic sectors. These results are discussed in the context of the growing database of complementary geophysical, geochemical, and geological studies in these regions as we seek to understand the role of magmatism and faulting in accommodating strain during early continental rifting.

  12. Strain Localisation at Rift Segment Boundaries: An Example from the Bocana Transfer Zone in Central Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Gleadow, A. J.; Kohn, B. P.

    2012-12-01

    Rifts are commonly segmented into several hundred kilometre long zones of opposing upper-plate transport direction with boundaries defined by accommodation and transfer zones. A number of such rift segments have been recognized in the northern Gulf of California, a youthful oceanic basin that is currently undergoing the rift-drift transition. However, detailed field studies have so far failed to identify suitable structures that could accommodate the obvious deformation gradients between different rift segments, and the nature of strain transfer at segment boundaries remains enigmatic. The situation is even less clear in central and southern Baja California, where a number of rift segments have been hypothesized but it is unknown whether the intervening segment boundaries facilitate true reversals in the upper-plate transport direction, or whether they simply accommodate differences in the timing, style or magnitude of deformation. The Bocana transfer zone (BTZ) in central Baja California is a linear, WNW-ESE striking structural discontinuity separating two rift segments with different magnitudes and styles of extensional deformation. North of the BTZ, the Libertad fault is part of the Main Gulf Escarpment, which represents the breakaway fault that separates the Gulf of California rift to the east from the relatively stable western portion of the Baja peninsula. The N-striking Libertad escarpment developed during the Late Miocene (~10-8Ma) and exhibits a topographic relief of ca. 1,000m along a strike-length of ca. 50km. Finite displacement decreases from ~1000m in the central fault segment to ~500m further south, where the fault bends SE and merges with the BTZ. In the hanging wall of the Libertad fault, a series of W-tilted horsts are bound along their eastern margins by two moderate-displacement E-dipping normal faults. South of the BTZ, extension was much less than further north, which explains the comparatively subdued relief and generally shallower tilt of

  13. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Moore, R.B.

    1992-01-01

    Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200-400 years old: 50%, 15, 14.3: (III) 400-750 years old: 20%, 54, 6.6; (IV) 750-1500 years old: 5%, 37, 20.8; (V) 1500-3000 years old: <1%, 1, unknown. At least 4.5-6 km3 of tholeiitic basalt have been erupted from the LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ. ?? 1992 Springer-Verlag.

  14. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Moore, Richard B.

    1992-08-01

    Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200 400 years old: 50%, 15, 14.3: (III) 400 750 years old: 20%, 54, 6.6; (IV) 750 1500 years old: 5%, 37, 20.8; (V) 1500 3000 years old: <1%, 1, unknown. At least 4.5 6 km3 of tholeiitic basalt have been erupted from the LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ.

  15. State-of-stress in magmatic rift zones: Predicting the role of surface and subsurface topography

    NASA Astrophysics Data System (ADS)

    Oliva, S. J. C.; Ebinger, C.; Rivalta, E.; Williams, C. A.

    2017-12-01

    Continental rift zones are segmented along their length by large fault systems that form in response to extensional stresses. Volcanoes and crustal magma chambers cause fundamental changes to the density structure, load the plates, and alter the state-of-stress within the crust, which then dictates fracture orientation. In this study, we develop geodynamic models scaled to a < 7 My rift sector in the Eastern rift, East Africa where geophysical imaging provides tight constraints on subsurface structure, petrologic and thermodynamic studies constrain material densities, and seismicity and structural analyses constrain active and time-averaged kinematics. This area is an ideal test area because a 60º stress rotation is observed in time-averaged fault and magma intrusion, and in local seismicity, and because this was the site of a large volume dike intrusion and seismic sequence in 2007. We use physics-based 2D and 3D models (analytical and finite elements) constrained by data from active rift zones to quantify the effects of loading on state-of-stress. By modeling varying geometric arrangements, and density contrasts of topographic and subsurface loads, and with reasonable regional extensional forces, the resulting state-of-stress reveals the favored orientation for new intrusions. Although our models are generalized, they allow us to evaluate whether a magmatic system (surface and subsurface) can explain the observed stress rotation, and enable new intrusions, new faults, or fault reactivation with orientations oblique to the main border faults. Our results will improve our understanding of the different factors at play in these extensional regimes, as well as contribute to a better assessment of the hazards in the area.

  16. Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.

    1993-01-01

    This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.

  17. Hydrogeological Modelling of the Geothermal Waters of Alaşehir in the Continental Rift Zone of the Gediz, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ӧzgür, Nevzat; Bostancı, Yesim; Anilır Yürük, Ezgi

    2017-12-01

    In western Anatolia, Turkey, the continental rift zones of the Büyük Menderes, Küçük Menderes and Gediz were formed by extensional tectonic features striking E-W generally and representing a great number of active geothermal systems, epithermal mineralizations and volcanic rocks from Middle Miocene to recent. The geothermal waters are associated with the faults which strike preferentially NW-SE and NE-SW and locate diagonal to general strike of the rift zones of the Menderes Massif. These NW-SE and NE-SW striking faults were probably generated by compressional tectonic regimes which leads to the deformation of uplift between two extensional rift zones in the Menderes Massif. The one of these rift zones is Gediz which is distinguished by a great number of geothermal waters such as Alaşehir, Kurşunlu, Çamurlu, Pamukkale and Urganlı. The geothermal waters of Alaşehir form the biggest potential in the rift zone of Gediz with a capacity of about 100 to 200 MWe. Geologically, the gneisses from the basement rocks in the study area which are overlain by an Paleozoic to Mesozoic intercalation of mica schists, quartzites and marbles, a Miocene intercalation of conglomerates, sandstones and clay stones and Plio-Quaternary intercalation of conglomerates, sandstones and clay stones discordantly. In the study area, Paleozoic to Mesozoic quartzites and marbles form the reservoir rocks hydrogeologically. The geothermal waters anions with Na+K>Ca>Mg dominant cations and HCO3>Cl> dominant anions are of Na-HCO3 type and can be considered as partial equilibrated waters. According to the results of geochemical thermometers, the reservoir temperatures area of about 185°C in accordance with measured reservoir temperatures. Stabile isotopes of δ18O versus δ2H of geothermal waters of Alaşehir deviate from the meteoric water line showing an intensive water-rock interaction under high temperature conditions. These data are well correlated with the results of the

  18. Structure of backarc inner rifts as a weakest zone of arc-backarc system: a case study of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tasuya; Kato, Naoko; Abe, Susumu; Saito, Hideo; Shiraishi, Kazuya; Abe, Shiori; Iwasaki, Takaya; Inaba, Mitsuru; No, Tetsuo; Sato, Takeshi; Kodaira, Shuichi; Takeda, Tetsuya; Matsubara, Makoto; Kodaira, Chihiro

    2015-04-01

    A backarc inner rift is formed after a major opening of backarc basin near a volcanic front away from the spreading center of a major backarc basin. An obvious example is the inner rift along the Izu-Bonin arc. Similar inner rift zones have been developed along the Sea of Japan coast of Honshu island, Japan. NE and SW Japan arcs experienced strong shortening after the Miocene backarc rifting. The amount of shortening shows its maximum along the backarc inner rifts, forming a fold-and-thrust of thick post-rift sediments over all the structure of backarc. The rift structure has been investigated by onshore-offshore deep seismic reflection/wide-angle reflection surveys. We got continuous onshore-offshore image using ocean bottom cable and collected offshore seismic reflection data using two ships to obtain large offset data in the difficult area for towing a long streamer cable. The velocity structure beneath the rift basin was deduced by refraction tomography in the upper curst and earthquake tomography in the deeper part. It demonstrates larger P-wave velocity in upper mantle and lower crust, suggesting a large amount of mafic intrusion and thinning of upper continental crust. The deeper seismicity in the lower crust beneath the rift basin accords well to the mafic intrusive rocks. Syn-rift volcanism was bimodal, comprising a reflective unit of mafic rocks around the rift axis and a non-reflective unit of felsic rocks near the margins of the basins. Once rifting ended, thermal subsidence, and subsequently, mechanical subsidence related to the onset of the compressional regime, allowed deposition of up to 5 km of post-rift, deep marine to fluvial sedimentation. Continued compression produced fault-related folds in the post-rift sediments, characterized by thin-skin style of deformation. The syn-rift mafic intrusion in the crust forms convex shape and the boundary between pre-rift crust and mafic intrusive shows outward dipping surface. Due to the post rift

  19. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.

    2015-09-01

    Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.

  20. The stress shadow induced by the 1975-1984 Krafla rifting episode

    NASA Astrophysics Data System (ADS)

    Maccaferri, F.; Rivalta, E.; Passarelli, L.; Jónsson, S.

    2013-03-01

    It has been posited that the 1975-1984 Krafla rifting episode in northern Iceland was responsible for a significant drop in the rate of earthquakes along the Húsavík-Flatey Fault (HFF), a transform fault that had previously been the source of several magnitude 6-7 earthquakes. This compelling case of the existence of a stress shadow has never been studied in detail, and the implications of such a stress shadow remain an open question. According to rate-state models, intense stress shadows cause tens of years of low seismicity rate followed by a faster recovery phase of rate increase. Here, we compare the long-term predictions from a Coulomb stress model of the rifting episode with seismological observations from the SIL catalog (1995-2011) in northern Iceland. In the analyzed time frame, we find that the rift-induced stress shadow coincides with the eastern half of the fault where the observed seismicity rates are found to be significantly lower than expected, given the historical earthquake activity there. We also find that the seismicity rates on the central part of the HFF increased significantly in the last 17 years, with the seismicity progressively recovering from west to east. Our observations confirm that rate-state theory successfully describes the long-term seismic rate variation during the reloading phase of a fault invested by a negative Coulomb stress. Coincident with this recovery, we find that the b-value of the frequency-magnitude distribution changed significantly over time. We conclude that the rift-induced stress shadow not only decreased the seismic rate on the eastern part of the HFF but also temporarily modified how the system releases seismic energy, with more large magnitude events in proportion to small ones. This behavior is currently being overturned, as rift-induced locking is now being compensated by tectonic forcing.

  1. An Isotopic Perspective into the Magmatic Evolution and Architecture of the Rift Zones of Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Marske, J. P.; Garcia, M. O.; Heaton, D. E.; Rhodes, M. M.

    2016-12-01

    We present Pb, Sr, and Nd isotope ratios for Kīlauea's historical rift zone lavas (n=50) to examine the magmatic evolution and architecture of the volcano's East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). Our results show that Kīlauea's historical eruptive period was preceded by the delivery of a major batch of magma from the summit reservoir to the ERZ. The timing of this intrusion, most likely in the late 17th century, was probably related to the 300-yr period of explosive eruptions that followed the formation of the modern caldera (Swanson et al., 2012; JVGR). This rift-stored magma was a component in lavas from lower ERZ (LERZ) eruptions in 1790(?), 1840, 1955, and 1960. The only other components in these LERZ lavas are related to summit lavas erupted (1) after the 1924 collapse of Halemáumáu and (2) during episodes of high fountaining at Kīlauea Iki in 1959. Thus, the intrusion of magma from the summit reservoir into the LERZ is a rare occurrence that is tied to major volcanological events. Intrusions from the summit reservoir in the 1960s likely flushed most older, stored magma from the upper ERZ (UERZ) and middle ERZ (MERZ), leaving large pockets of 1960s-era magma to serve as a dominant component in many subsequent rift lavas. An increase in the duration of pre-eruptive magma storage from the UERZ ( 0-7 yr) to the MERZ ( 0-19 yr) to the LERZ (up to 335 yr) is likely controlled by a decrease in the rate of magma supply to the more distal portions of the ERZ. Lavas from several UERZ eruptions in the 1960s and 1970s have a component of mantle-derived magma that bypassed the summit reservoir. There is no evidence for a summit bypass into the MERZ, LERZ, or the volcanically active portion of the SWRZ. These results support a recent model for Kīlauea's plumbing system (Poland et al., 2014; USGS Prof. Pap. 1801): the ERZ is connected to the deeper "South Caldera" magma body and the volcanic SWRZ is connected to the shallower Halemáumáu magma body.

  2. When Rifts Meet Cratons

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Ning, J.

    2017-12-01

    The longevity of cratons and the evolution of rifts are two outstanding issues in continental dynamics. Intriguingly, there are several active cases where the two seemingly antithetical tectonic settings abut each other. In most instances, rifting is not accompanied by widespread destruction of adjacent cratons. In the case of the East African rift system (EARS), the most prominent active rift system in the world, its western branch clearly circumvents the Tanzania craton and continues southward along the narrow Malawi rift. Meanwhile, a broad zone of scattered seismicity associated with normal faulting extends westward for about 1,000 km, as accentuated by the recent earthquake of Mw 6.8 in Botswana. Along the eastern branch of the EARS, the well-defined Kenya rift terminates against the Tanzania craton as a diffuse zone of extension (the northern Tanzania divergence.) Yet, farther southward, a band of concentrated seismicity follows the trace of the Davie ridge off the east coast of Africa for another 1,300 km. Similarly, the Ordos plateau (the western portion of the north China craton, NCC), comparable in size to the Tanzania craton, is straddled by the active Yinchuan and Shanxi rifts on its western and eastern flanks, respectively. Along the edges of the Colorado plateau, the very broad Basin and Range province of extension and the narrow Rio Grande rift surround the stable plateau. Therefore, it seems that rifting is not an effective process to destabilize cratons en masse. Widespread, low-angle detachment faulting and the intrusion of Mesozoic granitic plutons characterize the eastern portion of the NCC, an often-cited example of a craton's demise. Here we propose that these features are the consequence, not the cause of the destruction of the NCC. The exact cause(s) of this destruction process remain enigmatic, as the spatial extent of this event apparently reaches as far north as Lake Baikal.

  3. Evidence for a Nascent Rift in South Sudan: Westward Extension of the East African Rift System?

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Van Wijk, J. W.; Coblentz, D. D.; Modrak, R. T.

    2013-12-01

    Joint inversion of seismic and gravity data of eastern Africa reveals a low seismic wave velocity arm stretching from the southern Main Ethiopian rift westward in an east-west direction that has not been noticed in earlier work. The zone of low velocities is located in the upper mantle and is not overlain by a known structural rift expression. We analyzed the local pattern of seismicity and the stresses in the African plate to interpret this low velocity arm. The zone of low velocities is located within the Central African Fold Belt, which dissects the northern and southern portions of the African continent. It is seismically active with small to intermediate sized earthquakes occurring in the crust. Seven earthquake solutions indicate (oblique) normal faulting and low-angle normal faulting with a NS to NNW-SSE opening direction, as well as strike-slip faulting. This pattern of deformation is typically associated with rifting. The present day stress field in northeastern Africa reveals a tensional state of stress at the location of the low velocity arm with an opening direction that corresponds to the earthquake data. We propose that the South Sudan low velocity zone and seismic center are part of an undeveloped, nascent rift arm. The arm stretches from the East African Rift system westward.

  4. Chronology and volcanology of the 1949 multi-vent rift-zone eruption on La Palma (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Klügel, A.; Schmincke, H.-U.; White, J. D. L.; Hoernle, K. A.

    1999-12-01

    The compositionally zoned San Juan eruption on La Palma emanated from three eruptive centers located along a north-south-trending rift zone in the south of the island. Seismic precursors began weakly in 1936 and became strong in March 1949, with their foci progressing from the north of the rift zone towards its south. This suggests that magma ascended beneath the old Taburiente shield volcano and moved southward along the rift. The eruption began on June 24, 1949, with phreatomagmatic activity at Duraznero crater on the ridgetop (ca. 1880 m above sea level), where five vents erupted tephritic lava along a 400-m-long fissure. On June 8, the Duraznero vents shut down abruptly, and the activity shifted to an off-rift fissure at Llano del Banco, located at ca. 550 m lower elevation and 3 km to the northwest. This eruptive center issued initially tephritic aa and later basanitic pahoehoe lava at high rates, producing a lava flow that entered the sea. Two days after basanite began to erupt at Llano del Banco, Hoyo Negro crater (ca. 1880 m asl), located 700 m north of Duraznero along the rift, opened on July 12 and produced ash and bombs of basanitic to phonotephritic composition in violent phreatomagmatic explosions ( White and Schmincke, 1999). Llano del Banco and Hoyo Negro were simultaneously active for 11 days and showed a co-variance of their eruption rates indicating a shallow hydraulic connection. On July 30, after 3 days of quiescence at all vents, Duraznero and Hoyo Negro became active again during a final eruptive phase. Duraznero issued basanitic lava at high rates for 12 h and produced a lava flow that descended towards the east coast. The lava contains ca. 1 vol.% crustal and mantle xenoliths consisting of 40% tholeiitic gabbros from the oceanic crust, 35% alkaline gabbros, and 20% ultramafic cumulates. The occurrence of xenoliths almost exclusively in the final lava is consistent with their origin by wall-rock collapse at depth near the end of the eruption

  5. Aeromagnetic evidence for a major strike-slip fault zone along the boundary between the Weddell Sea Rift and East Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Ross, N.; Siegert, M. J.; Corr, H.; Leat, P. T.; Bingham, R. G.; Rippin, D. M.; le Brocq, A.

    2012-04-01

    The >500 km wide Weddell Sea Rift was a major focus for Jurassic extension and magmatism during the early stages of Gondwana break-up, and underlies the Weddell Sea Embayment, which separates East Antarctica from a collage of crustal blocks in West Antarctica. Here we present new aeromagnetic data combined with airborne radar and gravity data collected during the 2010-11 field season over the Institute and Moeller ice stream in West Antarctica. Our interpretations identify the major tectonic boundaries between the Weddell Sea Rift, the Ellsworth-Whitmore Mountains block and East Antarctica. Digitally enhanced aeromagnetic data and gravity anomalies indicate the extent of Proterozoic basement, Middle Cambrian rift-related volcanic rocks, Jurassic granites, and post Jurassic sedimentary infill. Two new joint magnetic and gravity models were constructed, constrained by 2D and 3D magnetic depth-to-source estimates to assess the extent of Proterozoic basement and the thickness of major Jurassic intrusions and post-Jurassic sedimentary infill. The Jurassic granites are modelled as 5-8 km thick and emplaced at the transition between the thicker crust of the Ellsworth-Whitmore Mountains block and the thinner crust of the Weddell Sea Rift, and within the Pagano Fault Zone, a newly identified ~75 km wide left-lateral strike-slip fault system that we interpret as a major tectonic boundary between East and West Antarctica. We also suggest a possible analogy between the Pagano Fault Zone and the Dead Sea transform. In this scenario the Jurassic Pagano Fault Zone is the kinematic link between extension in the Weddell Sea Rift and convergence across the Pacific margin of West Antarctica, as the Dead Sea transform links Red Sea extension to compression within the Zagros Mountains.

  6. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  7. Geoelectric structure of northern Cambay rift basin from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Danda, Nagarjuna; Rao, C. K.; Kumar, Amit

    2017-10-01

    Broadband and long-period magnetotelluric data were acquired over the northern part of the Cambay rift zone along an east-west profile 200 km in length. The decomposed TE- and TM-mode data were inverted using a 2-D nonlinear conjugate gradient algorithm to obtain the lithospheric structure of the region. A highly conductive ( 1000 S) layer was identified within the Cambay rift zone and interpreted as thick Quaternary and Tertiary sediments. The crustal conductors found in the profile were due to fluid emplacement in the western part, and the presence of fluids and/or interconnected sulfides caused by metamorphic phases in the eastern part. The demarcation of the Cambay rift zone is clearly delineated with a steeply dipping fault on the western margin, whereas the eastern margin of the rift zone gently dips along the NE-SW axis, representing a half-graben structure. A highly resistive body identified outside the rift zone is interpreted as an igneous granitic intrusive complex. Moderately conductive (30-100 Ω-m) zones indicate underplating and the presence of partial melt due to plume-lithosphere interactions.[Figure not available: see fulltext.

  8. Structural controls on the spatial distribution and geochemical composition of volcanism in a continental rift zone; an example from Owens Valley, eastern California

    NASA Astrophysics Data System (ADS)

    Haproff, P. J.; Yin, A.

    2014-12-01

    Bimodal volcanism is common in continental rift zones. Structural controls to the emplacement and compositions of magmas, however, are not well understood. To address this issue, we examine the location, age, and geochemistry of active volcanic centers, and geometry and kinematics of rift-related faults across the active transtensional Owens Valley rift zone. Building on existing studies, we postulate that the spatial distribution and geochemical composition of volcanism are controlled by motion along rift-bounding fault systems. Along-strike variation in fault geometry and characteristics of active volcanism allow us to divide Owens Valley into three segments: southern, northern, and central. The southern segment of Owens Valley is a simple shear, asymmetric rift bounded to the west by the east-dipping Sierra Nevada frontal fault (SNFF). Active vents of Coso volcanic field are distributed along the eastern rift shoulder and characterized by the eruption of bimodal lavas. The SNFF within this segment is low-angle and penetrates through the lithosphere and into the ductile asthenosphere, allowing for mantle-derived magma to migrate across the weakest part of the fault zone beneath the eastern rift shoulder. Magma thermally weakens wall rocks and eventually stalls in the crust where the melt develops a greater felsic component prior to eruption. The northern segment of Owens Valley displays similar structural geometry, as the west-dipping White Mountains fault (WMF) is listric at depth and offsets the crust and mantle lithosphere, allowing for vertical transport of magma and reservoir emplacement within the crust. Bimodal lavas periodically erupted in the Long Valley Caldera region along the western rift shoulder. The central segment of Owens Valley is a pure shear, symmetric graben generated by motion along the SNFF and WMF. The subvertical, right-slip Owens Valley fault (OVF) strikes along the axis of the valley and penetrates through the lithosphere into the

  9. Strain Partitioning and Accumulation across Overlapping Spreading Centers: Geodetic GPS Measurements in South Iceland

    NASA Astrophysics Data System (ADS)

    La Femina, P. C.; Dixon, T. H.; Malservisi, R.; Árnadóttir, T.; Sigmundsson, F.; Sturkell, E.

    2004-12-01

    Overlapping spreading centers (OSCs) and propagating ridges are important classes of mid-ocean ridges. Kinematic models of OSCs predict along strike variability in spreading rate associated with the propagation of one center and deactivation of the other. Iceland offers a unique opportunity to investigate strain accumulation and partitioning across slow, overlapping spreading centers, and the influence of a ridge centered hotspot on ridge kinematics and morphology. We present results of detailed GPS observations across the Eastern and Western Volcanic Zones, south Iceland, spanning a seven to nine year inter-rifting period, and compare our observations with two-dimensional elastic half-space models that simulate the long-term spreading process. We then compare the elastic half-space models with simple viscoelastic coupling models. We model three velocity profiles across the EVZ-WVZ system, solving for the spreading rate, locking depth and horizontal location of each spreading center. Our spreading rate estimates indicate along strike variations as expected in an OSC system and total spreading rates consistent with geodetic and geologic plate motion models. Spreading rates in the WVZ increase from northeast (3 ±1 mm/yr) to southwest (7 ±1 mm/yr). Spreading rates in the southwest propagating EVZ decrease from northeast (17 ±1 mm/yr) to southwest (12 ±1 mm/yr). These results are consistent with a model whereby the WVZ is deactivating in the direction of EVZ propagation. The morphology of the two spreading centers reflects the spreading rate differences and their location relative to the Iceland hotspot. The predicted locations of the spreading axis for each zone are consistent with mapped Holocene fissure swarms. The neovolcanic zone of the slower WVZ consists of a narrow (10-20 km wide) axial graben and has had few Holocene eruptions. The faster EVZ consists of two parallel neovolcanic zones separated by a 20 km gap of inactivity, little normal faulting, higher

  10. Magmatic densities control erupted volumes in Icelandic volcanic systems

    NASA Astrophysics Data System (ADS)

    Hartley, Margaret; Maclennan, John

    2018-04-01

    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  11. Seismic structure of the central US crust and upper mantle: Uniqueness of the Reelfoot Rift

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2014-01-01

    Using seismic surface waves recorded with Earthscope's Transportable Array, we apply surface wave imaging to determine 3D seismic velocity in the crust and uppermost mantle. Our images span several Proterozoic and early Cambrian rift zones (Mid-Continent Rift, Rough Creek Graben—Rome trough, Birmingham trough, Southern Oklahoma Aulacogen, and Reelfoot Rift). While ancient rifts are generally associated with low crustal velocity because of the presence of thick sedimentary sequences, the Reelfoot Rift is unique in its association with low mantle seismic velocity. Its mantle low-velocity zone (LVZ) is exceptionally pronounced and extends down to at least 200 km depth. This LVZ is of variable width, being relatively narrow (∼50km">∼50km wide) within the northern Reelfoot Rift, which hosts the New Madrid Seismic Zone (NMSZ). We hypothesize that this mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively low elastic plate thickness, which would tend to concentrate tectonic stress within this zone. No other intraplate ancient rift zone is known to be associated with such a deep mantle low-velocity anomaly, which suggests that the NMSZ is more susceptible to external stress perturbations than other ancient rift zones.

  12. The origin of strike-slip tectonics in continental rifts

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Pagli, C.; Yun, S. H.; Keir, D.; Wang, H.

    2016-12-01

    Although continental rifts are zones of lithospheric extension, strike-slip tectonics is also accommodated within rifts and its origin remains controversial. Here we present a combined analysis of recent seismicity, InSAR and GPS derived strain maps to reveal that the plate motion in Afar is accommodated primarily by extensional tectonics in all rift arms and lacks evidences of regional scale bookshelf tectonics. However in the rifts of central Afar we identify crustal extension and normal faulting in the central part of the rifts but strike-slip earthquakes at the rift tips. We investigate if strike-slip can be the result of Coulomb stress changes induced by recent dyking but models do not explain these earthquakes. Instead we explain strike-slips as shearing at the tips of a broad zone of spreading where extension terminates against unstretched lithosphere. Our results demonstrate that plate spreading can develop both strike-slip and extensional tectonics in the same rifts.

  13. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada: Abstract T33C-2278 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.

  14. Contribution of Transverse Structures, Magma, and Crustal Fluids to Continental Rift Evolution: The East African Rift in Southern Kenya

    NASA Astrophysics Data System (ADS)

    Kattenhorn, S. A.; Muirhead, J.; Dindi, E.; Fischer, T. P.; Lee, H.; Ebinger, C. J.

    2013-12-01

    The Magadi rift in southern Kenya formed at ~7 Ma within Proterozoic rocks of the Mozambique orogenic belt, parallel to its contact with the Archean Tanzania craton. The rift is bounded to the west by the ~1600-m-high Nguruman border fault. The rift center is intensely dissected by normal faults, most of which offset ~1.4-0.8 Ma lavas. Current E-W extensional velocities are ~2-4 mm/yr. Published crustal tomography models from the rift center show narrow high velocity zones in the upper crust, interpreted as cooled magma intrusions. Local, surface-wave, and SKS-splitting measurements show a rift-parallel anisotropy interpreted to be the result of aligned melt zones in the lithosphere. Our field observations suggest that recent fault activity is concentrated at the rift center, consistent with the location of the 1998 seismic swarm that was associated with an inferred diking event. Fault zones are pervasively mineralized by calcite, likely from CO2-rich fluids. A system of fault-fed springs provides the sole fluid input for Lake Magadi in the deepest part of the basin. Many of these springs emanate from the Kordjya fault, a 50-km-long, NW-SE striking, transverse structure connecting a portion of the border fault system (the NW-oriented Lengitoto fault) to the current locus of strain and magmatism at the rift center. Sampled springs are warm (44.4°C) and alkaline (pH=10). Dissolved gas data (mainly N2-Ar-He) suggests two-component mixing (mantle and air), possibly indicating that fluids are delivered into the fault zone from deep sources, consistent with a dominant role of magmatism to the focusing of strain at the rift center. The Kordjya fault has developed prominent fault scarps (~150 m high) despite being oblique to the dominant ~N-S fault fabric, and has utilized an en echelon alignment of N-S faults to accommodate its motion. These N-S faults show evidence of sinistral-oblique motion and imply a bookshelf style of faulting to accommodate dextral-oblique motion

  15. Mantle Convection beneath the Aegir Ridge, a Shadow in the Iceland Hotspot

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Ito, G.; Breivik, A. J.; Hanan, B. B.; Mjelde, R.; Sayit, K.; Vogt, P. R.

    2012-12-01

    The Iceland Hotspot has produced extensive volcanism spanning much of the ocean basin between Greenland and Norway, forming one of the world's largest igneous provinces. However, an apparent igneous "shadow" in hotspot activity is located at the fossil Aegir Ridge, which formed anomalously thin crust, despite this ridge being near the Iceland hotspot when it was active. The Aegir Ridge accommodated seafloor spreading northeast of present-day Iceland from the time of continental breakup at ~55 Ma until ~25 Ma, at which point spreading shifted west to the Kolbeinsey Ridge. To address the cause of the anomalously thin crust produced by the Aegir Ridge, we use three-dimensional numerical models to simulate the interaction between a mantle plume beneath the Iceland hotspot, rifting continental lithosphere, and the time-evolving North Atlantic ridge system. Two end-member hypotheses were investigated: (1) Material emanating from the Iceland mantle plume was blocked from reaching the Aegir Ridge by the thick lithosphere of the Jan Mayen Microcontinent as the Kolbeinsey Ridge began rifting it from Greenland at ~30 Ma, just east of the plume center; (2) Plume material was not blocked and did reach the Aegir Ridge, but had already experienced partial melting closer to the hotspot. This material was then unable to produce melt volumes at the Aegir Ridge comparable to those of pristine mantle. To test these hypotheses, we vary the volume flux and viscosity of the plume, and identify which conditions do and do not lead to the Aegir Ridge forming anomalously thin crust. Results show that the combination of plume material being drawn into the lithospheric channels beneath the Reykjanes Ridge and Kolbeinsey Ridge after their respective openings, and the impedance of plume flow by the Jan Mayen Microcontinent (hypothesis 1), can deprive the Aegir Ridge of plume influence. This leads to low crustal thicknesses that are comparable to those observed. We have yet to produce a model

  16. Pressurized magma reservoir within the east rift zone of Kīlauea Volcano, Hawai`i: Evidence for relaxed stress changes from the 1975 Kalapana earthquake

    NASA Astrophysics Data System (ADS)

    Baker, Scott; Amelung, Falk

    2015-03-01

    We use 2000-2012 InSAR data from multiple satellites to investigate magma storage in Kīlauea's east rift zone (ERZ). The study period includes a surge in magma supply rate and intrusion-eruptions in 2007 and 2011. The Kupaianaha area inflated by ~5 cm prior to the 2007 intrusion and the Nāpau Crater area by ~10 cm following the 2011 intrusion. For the Nāpau Crater area, elastic modeling suggests an inflation source at 5 ± 2 km depth or more below sea level. The reservoir is located in the deeper section of the rift zone for which secular magma intrusion was inferred for the period following the 1975 Mw7.7 décollement earthquake. Reservoir pressurization suggests that in this section of the ERZ, extensional stress changes due to the earthquake have largely been compensated for and that this section is approaching its pre-1975 state. Reservoir pressurization also puts the molten core model into question for this section of Kīlauea's rift zone.

  17. Postglacial eruptive history of the Askja region, North Iceland

    NASA Astrophysics Data System (ADS)

    Hartley, Margaret E.; Thordarson, Thorvaldur; de Joux, Alexandra

    2016-04-01

    Temporal variations in magma discharge rates on Iceland's neovolcanic rift zones have been associated with deglaciation. We have used tephrochronological and stratigraphic dating of 175 separate eruptive units to estimate volumetric output and reconstruct eruption rates in the Askja region over the postglacial period. We have identified 14 tephra layers that can be used as time marker horizons in the near vicinity of Askja, including the Vatnaöldur (871 ± 2 AD) tephra which has not previously been reported in surface cover profiles in this region. Our improved tephrochronological resolution indicates that, over the past c. 1,500 years, Askja has been significantly more active than has previously been recognised. A minimum of 39 km3 of basaltic magma has been erupted at Askja since the area became ice-free at around 10.3 ka. The absence of the 7.2 ka Hekla 5 tephra from the Askja region suggests that all postglacial lavas now exposed at the surface are younger than 7.2 ka. Time-averaged magma discharge rates at Askja were highest between 7.2 and 4.3 ka. However, the available tephrochronological resolution is not sufficient to resolve any peak in volcanic activity following deglaciation.

  18. Comparisons of seismic and geodetic strain across the East African rift: Implications for magmatism during rifting

    NASA Astrophysics Data System (ADS)

    Lindsey, N.; Ebinger, C. J.; Pritchard, M. E.; Cote, D. M.

    2010-12-01

    Knowledge of how the continental lithosphere accommodates strain in an active rift setting is essential to both earthquake and volcanic hazard analyses. Far-field and impinging mantle plumes drive extension within the fault-bounded rift systems of East Africa. Our study aims to evaluate models of distributed strain and localized strain between multiple rigid plates using earthquake catalogs and existing constraints, including high resolution DEMs that reveal the spatial distribution of young faults across the broad uplifts of eastern and southern Africa. We determine cumulative seismic moment release within 0.5 degree bins across the Afro-Arabian rift system using the entire NEIC earthquake catalog (1973-present), and compare these results to geodetic estimates of strain and extensional velocity. The small bin size permits comparison of strain with geological factors, including geological terrain, border fault distribution, and the presence or absence of volcanism. Our results highlight the significance of magmatism in strain accommodation across the rift system, and suggest that some strain and magmatism occur within ‘rigid blocks’, such as the Tanzania craton. Throughout the Afro-Arabian rift system, seismic moment release lags geodetic moment release by a factor of 2, consistent with aseismic creep deformation. However, our comparisons indicate that aseismic deformation accounts for a much higher percent of geodetic moment release: approximately 90% in the Main Ethiopian and Eastern rifts, and >97% in the Afar rift zone where incipient seafloor spreading occurs. The time-averaged strain distributions match the estimates from intense seismo-volcanic rifting episodes in Afar, indicating the data base is representative of longer-term patterns in Afar. We see no systematic variation in interbasinal accommodation zones or rift segment offsets, arguing against the development of transform-like structures prior to plate rupture.

  19. A Geochemical Study of Magmatic Processes and Evolution along the Submarine Southwest Rift zone of Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.; Garcia, M. O.; Weis, D.; Trusdell, F. A.; Vollinger, M. J.

    2003-12-01

    Mauna Loa's southwest rift zone (SWR) extends for 102 km from its summit caldera, at an elevation of 4,170 m above sea level, to submarine depths of over 4,500 m. About 65% of the rift zone is subaerial and 35% submarine. Recent sampling with the Jason II submersible of the `mile-high' (1800 m) Ka Lae submarine landslide scarp and the deepest section of the rift zone, in conjunction with previous submersible and dredge-haul collecting, provides petrological and geochemical understanding of rift zone processes, as well as a record of Mauna Loa's eruptive history extending back about 400 ka. The major and trace element trends of the submarine lavas are remarkably similar to those of historical and young prehistoric lavas (<31 ka) erupted along the subaerial SWR. We take this to imply that magma-forming processes have remained relatively constant over much of the volcano's recorded eruptive history. However, the distribution of samples along these trends has varied, and is correlated with elevation. There are very few picrites (>12% MgO) among the subaerial lavas, and compositions tend to cluster around 6.8-8.0% MgO. In contrast, picritic lavas are extremely abundant in the submarine samples, increasing in frequency with depth, especially below 1200 m. These observations support earlier interpretations that the submarine lavas are derived directly from deeper levels in the magma column, and that magmas from a shallow, steady-state, magma reservoir are of uncommon at these depths. Isotopic ratios of Pb and Sr in the submarine lavas, in conjunction with Nb/Y and Zr/Nb ratios, extend from values that are identical with subaerial historical Mauna Loa lavas to lavas with markedly lower 87Sr/86Sr and higher 206Pb/204Pb isotopic ratios. As yet, we see no correlation with depth or age, but the implications are that, in the past, the plume source of Mauna Loa magmas was more variable than in the last 31 ka, and contained a greater proportion of the Kea component. *Team members

  20. Lithospheric thinning beneath rifted regions of Southern California.

    PubMed

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  1. Evidences of a lithospheric fault zone in the Sicily Channel continental rift (southern Italy) from instrumental seismicity data

    NASA Astrophysics Data System (ADS)

    Calò, M.; Parisi, L.

    2014-10-01

    Sicily Channel is a portion of Mediterranean Sea, between Sicily (Southern Italy) and Tunisia, representing a part of the foreland Apennine-Maghrebian thrust belt. The seismicity of the region is commonly associated with the normal faulting related to the rifting process and volcanic activity of the region. However, certain seismic patterns suggest the existence of some mechanism coexisting with the rifting process. In this work, we present the results of a statistical analysis of the instrumental seismicity and a reliable relocalization of the events recorded in the last 30 yr in the Sicily Channel and western Sicily using the Double Difference method and 3-D Vp and Vs tomographic models. Our procedure allows us to discern the seismic regime of the Sicily sea from the Tyrrhenian one and to describe the main features of an active fault zone in the study area that could not be related to the rifting process. We report that most of the events are highly clustered in the region between 12.5°-13.5°E and 35.5°-37°N with hypocentral depth of 5-40 km, and reaching 70 km depth in the southernmost sector. The alignment of the seismic clusters, the distribution of volcanic and geothermal regions and the location of some large events occurred in the last century suggest the existence of a subvertical shear zone extending for least 250 km and oriented approximately NNE-SSW. The spatial distribution of the seismic moment suggests that this transfer fault zone is seismically discontinuous showing large seismic gaps in proximity of the Ferdinandea Island, and Graham and Nameless Bank.

  2. Variations in the mantle transition zone beneath the Ethiopian Rift and Afar

    NASA Astrophysics Data System (ADS)

    Cornwell, D. G.; Hetenyi, G.; Blanchard, T.; Stuart, G. W.

    2010-12-01

    We use receiver functions calculated on broadband seismological data across Ethiopia to identify and map 3-D changes in the mantle transition zone (MTZ) thickness beneath the Ethiopian rift, Afar and the uplifted Ethiopian Plateau. The MTZ that divides the upper and lower mantle in the Earth is marked by discontinuities whose position and nature is controlled by local temperature and composition. It is commonly assumed that positive temperature anomalies cause an overall thinning of the MTZ by deepening the mineral phase transition of olivine (α-spinel) to wadsleyite (β-spinel) at around 410 km depth and shallowing the mineral phase transition of ringwoodite (γ-spinel) to magnesiowustite-perovskite at around 660 km depth. Such regions of anomalously hot mantle have been interpreted to extend from the core-mantle boundary (e.g. the African Superplume) to the Earth's surface from global tomographic models. Previous studies in Ethiopia or Afar that invoke receiver functions are mainly restricted to illuminating the MTZ beneath permanent seismological stations and, together with a regional receiver function study, all have found difficulty in imaging the discontinuities. They were unable to provide conclusive evidence for a thinned transition zone and could not constrain lateral changes in MTZ thickness that are required to assess whether the African Superplume intersects the MTZ beneath Ethiopia. We use seismological data from permanent stations as well as from four temporary arrays to compute receiver functions. We perform time-to-depth migration using the common conversion point (CCP) method with a regional velocity model that includes the slow mantle anomalies to estimate the depth-to-discontinuties and produce an MTZ thickness map. The signature of both the 410 and the 660 km discontinuities is clearly identified across ~500x500 km2. The 410 is relatively flat at 444±10 km depth throughout the region. The 660 is more perturbed with steep topographic changes

  3. Intracontinental Rifts As Glorious Failures

    NASA Astrophysics Data System (ADS)

    Burke, K.

    2012-12-01

    Rifts: "Elongate depressions overlying places where the lithosphere has ruptured in extension" develop in many environments because rocks are weak in extension (Sengor 2nd edn. Springer Encycl. Solid Earth Geophys.). I focus on intra-continental rifts in which the Wilson Cycle failed to develop but in which that failure has led to glory because rocks and structures in those rifts throw exceptional light on how Earth's complex continental evolution can operate: The best studied record of human evolution is in the East African Rift; The Ventersdorp rifts (2.7 Ga) have yielded superb crustal-scale rift seismic reflection records; "Upside-down drainage" (Sleep 1997) has guided supra-plume-head partial melt into older continental rifts leading Deccan basalt of ~66Ma to erupt into a Late Paleozoic (~ 300Ma) rift and the CAMP basalts of ~201 Ma into Ladinian, ~230 Ma, rifts. Nepheline syenites and carbonatites, which are abundant in rifts that overlie sutures in the underlying mantle lithosphere, form by decompression melting of deformed nepheline syenites and carbonatites ornamenting those sutures (Burke et al.2003). Folding, faulting and igneous episodes involving decompression melting in old rifts can relate to collision at a remote plate margin (Guiraud and Bosworth 1997, Dewey and Burke 1974) or to passage of the rift over a plume generation zone (PGZ Burke et al.2008) on the Core Mantle Boundary (e.g.Lake Ellen MI kimberlites at ~206 Ma).

  4. High-resolution seismic survey for the characterization of planned PIER-ICDP fluid-monitoring sites in the Eger Rift zone

    NASA Astrophysics Data System (ADS)

    Simon, H.; Buske, S.

    2017-12-01

    The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.

  5. Crustal tomographic imaging of a transitional continental rift: the Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Daly, E.; Keir, D.; Ebinger, C. J.; Stuart, G. W.; Bastow, I. D.; Ayele, A.

    2008-03-01

    In this study we image crustal structure beneath a magmatic continental rift to understand the interplay between crustal stretching and magmatism during the late stages of continental rifting: the Main Ethiopian Rift (MER). The northern sector of this region marks the transition from continental rifting in the East African Rift to incipient seafloor spreading in the southern Red Sea and western Gulf of Aden. Our local tomographic inversion exploits 172 broad-band instruments covering an area of 250 × 350 km of the rift and adjacent plateaux. The instruments recorded a total of 2139 local earthquakes over a 16-month period. Several synthetic tests show that resolution is good between 12 and 25 km depth (below sea level), but some horizontal velocity smearing is evident along the axis of the Main Ethiopian Rift below 16 km. We present a 3-D P-wave velocity model of the mid-crust and present the first 3-D Vp/Vs model of the region. Our models show high P-wave velocities (6.5 km s-1) beneath the axis of the rift at a depth of 12-25 km. The presence of high Vp/Vs ratios (1.81-1.84) at the same depth range suggest that they are cooled mafic intrusions. The high Vp/Vs values, along with other geophysical evidence, suggest that dyking is pervasive beneath the axis of the rift from the mid-crustal depths to the surface and that some portion of partial melt may exist at lower crustal depths. Although the crustal stretching factor across the Main Ethiopian Rift is ~1.7, our results indicate that magma intrusion in narrow zones accommodates a large proportion of extensional strain, with similarities to slow-spreading mid-ocean ridge processes.

  6. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia

    USGS Publications Warehouse

    Scholz, C.A.; Hutchinson, D.R.

    2000-01-01

    Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700 km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian–American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9 km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by

  7. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Hutchinson, D. R.

    Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian-American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by tying

  8. Iceland.

    PubMed

    1986-08-01

    This issue of Background Notes examines the country of Iceland. In the profile section, the geography, people, government, economy, and membership in international organizations are briefly examined. An island located in the North Atlantic Ocean east of Greenland, almost 80% of Iceland's land mass is relative wasteland (glaciers, lakes, a mountainous lava desert, and others). Literature is the heritage that Iceland has given the world, especially in the forms of poetry and the Sagas. Iceland is governed by a president who is elected to a 4-year term and who has limited powers as well as a Prime Minister and the Cabinet with most of the executive functions. The current party coalition is committed to Iceland's continued membership in NATO and to maintaining the presence of US forces at the Keflavik NATO Base. Mainly, the coalition has attempted to adopt economic measures to counter Iceland's economic difficulties. Its economic backbone is the fishing industry and the US is the major overseas market for fish products. There is currently an effort underway to spur greater GNP growth rates. Iceland maintains diplomatic and commercial relations with the most important nations of the East and West but its ties with other Nordic countries and the US are especially lose. Also included in this Background Notes issue is a section on travel notes, principal Iceland related US officials, principal, Iceland government officials, and history of the country.

  9. Volcanic systems of Iceland and their magma source

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir

    2017-04-01

    Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle

  10. Lithospheric low-velocity zones associated with a magmatic segment of the Tanzanian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Plasman, M.; Tiberi, C.; Ebinger, C.; Gautier, S.; Albaric, J.; Peyrat, S.; Déverchère, J.; Le Gall, B.; Tarits, P.; Roecker, S.; Wambura, F.; Muzuka, A.; Mulibo, G.; Mtelela, K.; Msabi, M.; Kianji, G.; Hautot, S.; Perrot, J.; Gama, R.

    2017-07-01

    Rifting in a cratonic lithosphere is strongly controlled by several interacting processes including crust/mantle rheology, magmatism, inherited structure and stress regime. In order to better understand how these physical parameters interact, a 2 yr long seismological experiment has been carried out in the North Tanzanian Divergence (NTD), at the southern tip of the eastern magmatic branch of the East African rift, where the southward-propagating continental rift is at its earliest stage. We analyse teleseismic data from 38 broad-band stations ca. 25 km spaced and present here results from their receiver function (RF) analysis. The crustal thickness and Vp/Vs ratio are retrieved over a ca. 200 × 200 km2 area encompassing the South Kenya magmatic rift, the NTD and the Ngorongoro-Kilimanjaro transverse volcanic chain. Cratonic nature of the lithosphere is clearly evinced through thick (up to ca. 40 km) homogeneous crust beneath the rift shoulders. Where rifting is present, Moho rises up to 27 km depth and the crust is strongly layered with clear velocity contrasts in the RF signal. The Vp/Vs ratio reaches its highest values (ca. 1.9) beneath volcanic edifices location and thinner crust, advocating for melting within the crust. We also clearly identify two major low-velocity zones (LVZs) within the NTD, one in the lower crust and the second in the upper part of the mantle. The first one starts at 15-18 km depth and correlates well with recent tomographic models. This LVZ does not always coexist with high Vp/Vs ratio, pleading for a supplementary source of velocity decrease, such as temperature or composition. At a greater depth of ca. 60 km, a mid-lithospheric discontinuity roughly mimics the step-like and symmetrically outward-dipping geometry of the Moho but with a more slanting direction (NE-SW) compared to the NS rift. By comparison with synthetic RF, we estimate the associated velocity reduction to be 8-9 per cent. We relate this interface to melt ponding

  11. Evidences of a Lithospheric Fault Zone in the Sicily Channel Continental Rift (Southern Italy) from Instrumental Seismicity Data

    NASA Astrophysics Data System (ADS)

    Parisi, L.; Calo, M.

    2013-12-01

    The Sicily Channel continental rift is located in the African Plate and is submerged by a shallow sea extending from the northern coast of Africa to the southern coast of Sicily (southern Italy). The area is affected by an extensional regime since early Pliocene, which thins the continental crust and produces NW-SE oriented Pantelleria, Linosa and Malta grabens. The rift-related volcanic activity is represented by Pantelleria and Linosa Islands and a series of magmatic manifestations roughly NNE-SSW aligned, from Linosa Island to the Nameless Bank, in proximity of the Sicilian coast. Recent rapid magmatic ascents occurred along the strip near to the Sicilian coast in a region named Graham Bank. The NNE-SSW strip has already been recognised as a separation belt between the western sector of the rift (Pantelleria graben) and the eastern one (Linosa and Malta grabens). Seismic profiles suggest the presence of near vertical structures associated with strike slip fault zones. Bathymetric data show a 15-20 km wide zone characterised by several shallow basins irregularly alternated by topographic highs. However, evidences of a N-S or NNE-SSW orientated faults have not been found. In this work we re-localised the instrumental seismicity recorded between 1981 and 2012 in the Sicily Channel and western Sicily using the Double Difference method (Waldhauser, 2001, 2012) and 3D Vp and Vs models (Calò et al., 2013). The statistical analysis of the relocated seismicity together with the study of seismic energy release distribution allows us to describe the main patterns associated with the active faults in the western Sicily Straits. Here we find that most of the events in the Sicily Channel are highly clustered between 12.5°- 13.5°E and 35.5°-37°N with hypocentral depth between 5-40 km, reaching in some cases 70 km of depth. Seismic events seem to be aligned along a sub-vertical shear zone that is long at least 250 km and oriented approximately NNE-SSW. The spatial

  12. The 1974 Ethiopian rift geodimeter survey

    NASA Technical Reports Server (NTRS)

    Mohr, P.

    1977-01-01

    The field techniques and methods of data reduction for five successive geodimeter surveys in the Ethiopian rift valley are enlarged upon, with the considered conclusion that there is progressive accumulation of upper crustal strain, consonant with on-going rift extension. The extension is restricted to the Quaternary volcanotectonic axis of the rift, namely the Wonji fault belt, and is occurring at rates of 3 to 6 mm/yr in the northern sector of the rift valley. Although this concurs with the predictions of platetectonic analysis of the Afar triple junction, it is considered premature to endorse such a concurrence on the basis of only 5 years of observations. This is underlined by the detection of local tectonic contractions and expansions associated with geothermal and gravity anomalies in the central sector of the rift valley. There is a hint of a component of dextral slip along some of the rift-floor fault zones, both from geological evidence and from the strain patterns detected in the present geodetic surveys.

  13. Fault interaction and stresses along broad oceanic transform zone: Tjörnes Fracture Zone, north Iceland

    NASA Astrophysics Data System (ADS)

    Homberg, C.; Bergerat, F.; Angelier, J.; Garcia, S.

    2010-02-01

    Transform motion along oceanic transforms generally occurs along narrow faults zones. Another class of oceanic transforms exists where the plate boundary is quite large (˜100 km) and includes several subparallel faults. Using a 2-D numerical modeling, we simulate the slip distribution and the crustal stress field geometry within such broad oceanic transforms (BOTs). We examine the possible configurations and evolution of such BOTs, where the plate boundary includes one, two, or three faults. Our experiments show that at any time during the development of the plate boundary, the plate motion is not distributed along each of the plate boundary faults but mainly occurs along a single master fault. The finite width of a BOT results from slip transfer through time with locking of early faults, not from a permanent distribution of deformation over a wide area. Because of fault interaction, the stress field geometry within the BOTs is more complex than that along classical oceanic transforms and includes stress deflections close to but also away from the major faults. Application of this modeling to the 100 km wide Tjörnes Fracture Zone (TFZ) in North Iceland, a major BOT of the Mid-Atlantic Ridge that includes three main faults, suggests that the Dalvik Fault and the Husavik-Flatey Fault developed first, the Grismsey Fault being the latest active structure. Since initiation of the TFZ, the Husavik-Flatey Fault accommodated most of the plate motion and probably persists until now as the main plate structure.

  14. Propagation and arrest of dikes under topography: Models applied to the 2014 Bardarbunga (Iceland) rifting event

    NASA Astrophysics Data System (ADS)

    Urbani, S.; Acocella, V.; Rivalta, E.; Corbi, F.

    2017-07-01

    Dikes along rift zones propagate laterally downslope for tens of kilometers, often becoming arrested before topographic reliefs. We use analogue and numerical models to test the conditions controlling the lateral propagation and arrest of dikes, exploring the presence of a slope in connection with buoyancy and rigidity layering. A gentle downslope assists lateral propagation when combined with an effective barrier to magma ascent, e.g., gelatin stiffness contrasts, while antibuoyancy alone may be insufficient to prevent upward propagation. We also observe that experimental dikes become arrested when reaching a plain before opposite reliefs. Our numerical models show that below the plain the stress field induced by topography hinders further dike propagation. We suggest that lateral dike propagation requires an efficient barrier (rigidity) to upward propagation, assisting antibuoyancy, and a lateral pressure gradient perpendicular to the least compressive stress axis, while dike arrest may be induced by external reliefs.

  15. Fracture analysis near the mid-ocean plate boundary, Reykjavik-Hvalfjördur area, Iceland

    NASA Astrophysics Data System (ADS)

    Jefferis, Robert G.; Voight, Barry

    1981-07-01

    The geometry and thermal history of fractures have been determined at 59 stations from Reykjavik to Hvalfjördur in southwestern Iceland. The data provide information on crustal stress regimes in the vicinity of mid-ocean ridges. Two major, generalized fracture orientations are present (1) a northeast system, trend 010°-030°, except on Akranes where the orientation is 040°-060° (2) a broad east—west system containing one or more sets with strike between 070°-130°. Thermal history of the host rock and fractures was determined from secondary minerals in vugs and fractures. The thermal history indicates that the northeast fracture set opened while the area was within the relatively hot axial zone of active volcanism and rifting. Some of the east—west trending fractures also opened at this time but many formed later, after the area had begun to cool and drift from the active zone. The northeast fracture set is essentially parallel to the trend of dikes and normal faults in southwestern Iceland. They have been interpreted as extension fractures (resulting in about 0.4% maximum extension) forming generally from the same stress field associated with normal faulting and dike injection in the active zone. Fracturing in an east-west direction (estimated 0.1% maximum extension), mainly near the edge and outside the active zone, indicates a reorientation of this stress field. The dominant mechanism related to the origin of the east—west fractures may be thermoelastic stresses arising from axial and basal accretion and cooling of lithospheric plates. Both fracture systems are inferred to have formed, in the Griffiths idealization, under nearly biaxial effective compressive loading on the order of 200 bar. The discrepancy between this value and the kilobar-order strengths of short-time laboratory tests reflects such factors as high temperature stress corrosion and fatigue. Fracture propagation is assumed to have been stable, but governed primarily by lateral load

  16. Morphostructural evidence for Recent/active extension in Central Tanzania beyond the southern termination of the Kenya Rift.

    NASA Astrophysics Data System (ADS)

    Le Gall, B.; Rolet, J.; Gernigon, L.; Ebinger, C.; Gloaguen, R.

    2003-04-01

    The southern tip zone of the Kenya Rift on the eastern branch of the East African System is usually thought to occur in the so-called North Tanzanian Divergence. In this region, the narrow (50 km-wide) axial graben of southern Kenya splays southwards, via a major EW-trending volcanic lineament, into a 200 km-wide broad rifted zone with three separate arms of normal faulting and tilted fault blocks (Eyasi, Manyara and Pangani arms from W to E). Remote sensing analysis from Central Tanzania demonstrates that rift morphology exists over an area lying 400 km beyond the southern termination of the Kenya Rift. The most prominent rift structures are observed in the Kilombero region and consist of a 100 km-wide range of uplifted basement blocks fringed to the west by an E-facing half-graben inferred to reach depths of 6-8 km from aeromagnetic dataset. Physiographic features (fault scarps), and river drainage anomalies suggest that the present-day rift pattern in the Kilombero extensional province principally results from Recent/Neogene deformation. That assumption is also supported by the seismogenic character of a number of faults. The Kilombero half-graben is superimposed upon an earlier rift system, Karoo in age, which is totally overprinted and is only evidenced from its sedimentary infill. On the other hand, the nature and thickness of the inferred Neogene synrift section is still unknown. The Kilombero rifted zone is assumed to connect northwards into the central rift arm (Manyara) of the South Kenya Rift via a seismically active transverse fault zone that follows ductile fabrics within the Mozambican crystalline basement. The proposed rift model implies that incipient rifting propagates hroughout the cold and strong crust/lithosphere of Central Tanzania along Proterozoic (N140=B0E) basement weakness zones and earlier Karoo (NS)rift structures. A second belt of Recent-active linked fault/basins also extends further East from the Pangani rift arm to the offshore

  17. Style of extensional tectonism during rifting, Red Sea and Gulf of Aden

    USGS Publications Warehouse

    Bohannon, R.G.

    1989-01-01

    Geologic and geophysical studies from the Arabian continental margin in the southern Red Sea and LANDSAT analysis of the northern Somalia margin in the Gulf of Aden suggest that the early continental rifts were long narrow features that formed by extension on closely spaced normal faults above moderate- to shallow-dipping detachments with break-away zones defining one rift flank and root zones under the opposing rift flank. The rift flanks presently form the opposing continental margins across each ocean basin. The detachment on the Arabian margin dips gently to the west, with a breakaway zone now eroded above the deeply dissected terrain of the Arabian escarpment. A model is proposed in which upper crustal breakup occurs on large detachment faults that have a distinct polarity. -from Author

  18. Spatial stress variations in the aftershock sequence following the 2008 M6 earthquake doublet in the South Iceland Seismic Zone

    NASA Astrophysics Data System (ADS)

    Hensch, M.; Árnadóttir, Th.; Lund, B.; Brandsdóttir, B.

    2012-04-01

    The South Iceland Seismic Zone (SISZ) is an approximately 80 km wide E-W transform zone, bridging the offset between the Eastern Volcanic Zone and the Hengill triple junction to the west. The plate motion is accommodated in the brittle crust by faulting on many N-S trending right-lateral strike-slip faults of 2-5 km separation. Major sequences of large earthquakes (M>6) has occurred repeatedly in the SISZ since the settlement in Iceland more than thousand years ago. On 29th May 2008, two M6 earthquakes hit the western part of the SISZ on two adjacent N-S faults within a few seconds. The intense aftershock sequence was recorded by the permanent Icelandic SIL network and a promptly installed temporary network of 11 portable seismometers in the source region. The network located thousands of aftershocks during the following days, illuminating a 12-17 km long region along both major fault ruptures as well as several smaller parallel faults along a diffuse E-W trending region west of the mainshock area without any preceding main rupture. This episode is suggested to be the continuation of an earthquake sequence which started with two M6.5 and several M5-6 events in June 2000. The time delay between the 2000 and 2008 events could be due to an inflation episode in Hengill during 1993-1998, that potentially locked N-S strike slip faults in the western part of the SISZ. Around 300 focal solutions for aftershocks have been derived by analyzing P-wave polarities, showing predominantly strike-slip movements with occasional normal faulting components (unstable P-axis direction), which suggests an extensional stress regime as their driving force. A subsequent stress inversion of four different aftershock clusters reveals slight variations of the directions of the average σ3 axes. While for both southern clusters, including the E-W cluster, the σ3 axes are rather elongated perpendicular to the overall plate spreading axis, they are more northerly trending for shallower clusters

  19. Crustal and Mantle Structure beneath the Okavango and Malawi Rifts and Its Geodynamic Implications

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Liu, K. H.; Yu, Y.; Reed, C. A.; Mickus, K. L.; Moidaki, M.

    2017-12-01

    To investigate crustal and mantle structure beneath the young and incipient sections of the East African Rift System and provide constraints on rifting models, a total of 50 broadband seismic stations were placed along three profiles across the Okavango and Malawi rifts, with a total length of about 2500 km. Results to date suggest minor crustal thinning and nearly normal seismic velocities in the upper mantle beneath both rifts. The thickness of the mantle transition zone is comparable to the global average, suggesting the lack of thermal upwelling from the lower mantle beneath the rifts. In addition, shear-wave splitting analysis found no anomalies in either the fast polarization orientation or the splitting time associated with the rifts, and thus has ruled out the existence of small-scale mantle convection or plume-related mantle flow beneath the rifts. While the Okavango rift has long been recognized to be located in a Precambrian orogenic zone between the Kalahari and Congo cratons, our results suggest that the Malawi Rift is also developing along the western edge of a lithospheric block with relatively greater thickness relative to the surrounding area. Those seismological and gravity modeling results are consistent with a passive rifting model, in which rifts develop along pre-existing zones of lithospheric weakness, where rapid variations of lithospheric thickness is observed. Lateral variations of dragging stress applied to the bottom of the lithosphere are the most likely cause for the initiation and development of both rifts.

  20. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic

  1. Closing of the Midcontinent-Rift - a far-field effect on Grenvillian compression

    USGS Publications Warehouse

    Cannon, W.F.

    1994-01-01

    The Midcontinent rift formed in the Laurentian supercontinent between 1109 and 1094 Ma. Soon after rifting, stresses changed from extensional to compressional, and the central graben of the rift was partly inverted by thrusting on original extensional faults. Thrusting culminated at about 1060 Ma but may have begun as early as 1080 Ma. On the southwest-trending arm of the rift, the crust was shortened about 30km; on the southeast-trending arm, strike-slip motion was dominant. The rift developed adjacent to the tectonically active Grenville province, and its rapid evolution from an extensional to a compressional feature at c1080 Ma was coincident with renewal of northwest-directed thrusting in the Grenville, probably caused by continent-continent collision. A zone of weak lithosphere created by rifting became the locus for deformation within the otherwise strong continental lithosphere. Stresses transmitted from the Grenville province utilized this weak zone to close and invert the rift. -Author

  2. Inland termination of the Weddell Sea Rift against a major Jurassic strike-slip fault zone between East and West Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, Tom; Ferraccioli, Fausto; Leat, Phil; Ross, Neil; Bingham, Rob; Rippin, David; LeBrocq, Anne; Corr, Hugh; Siegert, Martin

    2013-04-01

    The Weddell Sea Embayment (WSE) lies in a key position to study the nature of the tectonic boundary between East and West Antarctica and the development of continental rifting processes and magmatism during the early stages of Gondwana break-up. Evidence for continental rifting within the WSE derives from previous reconnaissance geophysical investigations offshore and geological studies of the associated Jurassic magmatism onshore. Seismic data reveal high stretching factors beneath the Weddell Sea Rift (WSR) between 1.5 and 3.0, and gravity data suggest a crustal thickness of ca 27 km and an effective elastic thickness of ~35 km for the rifted region. Geochemical interpretations indicate that a Middle Jurassic LIP, including extensive mafic tholeiites and some Jurassic granitic intrusions may be related to a superplume that impinged beneath the WSE. Here we present results from a recent aerogeophysical investigation that sheds new light into the previously largely unknown inland extent of the WSR beneath the West Antarctic Ice Sheet. This includes new insights into its magmatic patterns, as well as the nature of its tectonic boundaries with the adjacent Ellsworth-Whitmore block (EWM) and the margin of East Antarctica. Aeromagnetic images were interpreted to reveal pre-rift rocks, including Proterozoic basement, Middle Cambrian rift-related volcanics and metasediments and rift-related Jurassic granitoids. Magnetic depth-to-source estimates were calculated and help constrain two joint magnetic and gravity forward models for the study region. These models were used to assess crustal thickness variations, the extent of Proterozoic basement, and the thickness of Jurassic intrusions and inferred post-Jurassic sedimentary infill. The Jurassic granitoids were modelled as 5-8 km thick. These intrusions include roughly circular plutons, emplaced at the transition between the thicker crust of the EWM block and the thinner crust of the WSR, and more elongated bodies emplaced

  3. How wide is the East African Rift system?

    NASA Astrophysics Data System (ADS)

    Pierre, S.; Ebinger, C.; Naum, J.

    2017-12-01

    There has been a longstanding observation that earthquakes and volcanoes occur mostly at the edges of rigid tectonic plates, but that pattern changes during continental rifting where new plate boundaries are forming. The seismically and volcanically active East African rift system provides an opportunity to evaluate rigid plate tectonic models. The objective of this research is to evaluate the geographic spread of earthquakes and volcanoes across the African plate, including areas interpreted as smaller microplates in East Africa. The National Earthquake Information Center catalog of earthquakes spanning the time period 1976 to July 2017 and the Smithsonian Institution Global Volcanism Program catalogue of Holocene volcanoes were displayed using the open source Geographic Information System package GMT, using command line scripts. Earthquake moment tensors from the Global CMT project were also displayed with locations of earthquakes and volcanoes. We converted all of the earthquake magnitudes to moment magnitude (Mw) for comparison of energy release in different rift sectors. A first-order observation is that earthquakes and volcanoes occur across most of the continental region, and in parts of the oceanic region offshore East Africa. The pattern of earthquakes and volcanoes suggests that the African plate is breaking into smaller plates surrounding by zones of earthquakes and volcanoes, such as the Comoros-Davie Ridge-Madagascar seismo-volcanic zone, and the Southwestern rift zone. A comparison of the geographic distribution of earthquakes and volcanoes from places such as the Malawi rift, which has only one isolated volcanic province, and the Eastern rift, which has volcanoes along its length showed differences in the magnitude frequency distributions, which appear to correlate with the presence or absence of volcanism.

  4. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  5. Simultaneous Quantification of Temperature, Pyroxenite Abundance, and Upwelling Rates in the Iceland Mantle Source

    NASA Astrophysics Data System (ADS)

    Brown, E.; Lesher, C. E.

    2014-12-01

    The compositions and volumes of basalts erupted at the earth's surface are a function of mantle temperature, mantle composition, and the rate at which the mantle upwells through the melting zone. Thus, basaltic magmatism has long been used to probe the thermal and physiochemical state of the earth's mantle. Great insight has been gained into the mantle beneath the global spreading ridge system, where the mantle source is assumed to be homogeneous peridotite that upwells passively [1]. However, it is now recognized that many basalt source regions are lithologically heterogeneous (i.e. containing recycled lithospheric material ranging from harzburgite to pyroxenite) and upwell at rates in excess of those governed by plate separation. To account for these complexities, we have developed a forward melting model for lithologically heterogeneous mantle that incorporates thermodynamically and experimentally constrained melting functions for a range of peridotite and pyroxenite lithologies. The model is unique because it quantifies mantle upwelling rates based on the net buoyancy of the source, thus providing a means for linking basalt compositions/volumes to mantle flow while accounting for source heterogeneity. We apply the model to investigate the mantle properties governing magmatism along different rift segments in Iceland, where lithologic heterogeneity and variable upwelling rates have been inferred through geochemical means [2,3]. Using constraints from seismically determined crustal thicknesses and recent estimates of the proportion of pyroxenite-derived melt contributing to Icelandic basalt compositions [4,5], we show that mantle sources beneath Iceland have excess potential temperatures >85 °C, contain <7% pyroxenite, and maximum upwelling rates ~14 times the passive rate. Our modeling highlights the dominant role of elevated mantle temperature and enhanced upwelling for high productivity magmatism in Iceland, and a subordinate role for mantle heterogeneity

  6. Dike Propagation Mechanisms from Seismicity Accompanying the 2014 Bárðarbunga-Holuhraun Fissure Eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Woods, J.; Ágústsdóttir, T.; Greenfield, T. S.; Green, R. G.; White, R. S.; Brandsdottir, B.

    2015-12-01

    We present data from our dense seismic network which captured in unprecedented detail the micro-seismicity associated with the 2014 dike intrusion from the subglacial Bárðarbunga volcano in central Iceland. Over 30,000 automatically located earthquakes delineate a complex 46 km dike propagation during the days preceding the onset of effusive magmatism at the Holuhraun lava field on 29 August 2014. Approximately 1.5 km3 of lava was erupted, making this the largest eruption in Iceland for over 200 years.Micro-seismicity tracks the lateral migration of the dike, with a concentration of earthquakes in the advancing tip where stresses are greatest, and trailing zones of lesser or no seismicity behind. Onset of an initial 4 hour fissure eruption was accompanied simultaneously by a backward retreat in seismic activity, followed by a gradual re-advance prior to the onset of a second, sustained fissure eruption in the same location on 31 August. Rock fracture mechanisms are determined from fault plane solutions of these seismic events. At the tip of the advancing dike, left-lateral strike-slip faulting parallel to the propagation is dominant, utilising pre-existing lineations and releasing stress accumulated in the brittle layer from rift zone extension. Behind the dike tip, both right-lateral and left-lateral strike-slip earthquakes are found, marking failure of solidifying magma plugs within the dike conduit. Contrary to many models of dike propagation, both normal faulting and failure at high angles to the dike are rare. Furthermore, a distinct lack of seismicity is observed in the 3-4 km region beneath the surface rupture. This suggests that opening is occuring aseismically, with earthquakes focused at the base of the dike near the brittle-ductile boundary.

  7. Architecture of the Distal Piedmont-Ligurian Rifted Margin in NW Italy: Hints for a Flip of the Rift System Polarity

    NASA Astrophysics Data System (ADS)

    Decarlis, Alessandro; Beltrando, Marco; Manatschal, Gianreto; Ferrando, Simona; Carosi, Rodolfo

    2017-11-01

    The Alpine Tethys rifted margins were generated by a Mesozoic polyphase magma-poor rifting leading to the opening of the Piedmont-Ligurian "Ocean." This latter developed through different phases of rifting that terminated with the exhumation of subcontinental mantle along an extensional detachment system. At the onset of simple shear detachment faulting, two margin types were generated: an upper and a lower plate corresponding to the hanging wall and footwall of the final detachment system, respectively. The two margin architectures were markedly different and characterized by a specific asymmetry. In this study the detailed analysis of the Adriatic margin, exposed in the Serie dei Laghi, Ivrea-Verbano, and Canavese Zone, enabled to recognize the diagnostic elements of an upper plate rifted margin. This thesis contrasts with the classic interpretation of the Southalpine units, previously compared with the adjacent fossil margin preserved in the Austroalpine nappes and considered as part of a lower plate. The proposed scenario suggests the segmentation and flip of the Alpine rifting system along strike and the passage from a lower to an upper plate. Following this interpretation, the European and Southern Adria margins are coevally developed upper plate margins, respectively resting NE and SW of a major transform zone that accommodates a flip in the polarity of the rift system. This new explanation has important implications for the study of the pre-Alpine rift-related structures, for the comprehension of their role during the reactivation of the margin and for the paleogeographic evolution of the Alpine orogen.

  8. Numerical modeling of continental rifting: Implications for the East African Rift system

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Guillou-Frottier, Laurent; Cloetingh, Sierd

    2016-04-01

    The East African Rift system (EARS) provides a unique system with juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either side of the old thick Tanzanian craton embedded into younger lithosphere. Here we take advantage of the improvements in our understanding of deep structures, geological evolution and recent kinematics, together with new cutting edge numerical modeling techniques to design a three-dimensional ultra-high resolution viscous plastic thermo-mechanical numerical model that accounts for thermo-rheological structure of the lithosphere and hence captures the essential geophysical features of the central EARS. Based on our experiments, we show that in case of the mantle plume seeded slightly to the northeast of the craton center, the ascending plume material is deflected by the cratonic keel and preferentially channeled along the eastern side of the craton, leading to formation of a large rift zone characterized by important magmatic activity with substantial amounts of melts derived from mantle plume material. This model is in good agreement with the observations in the EARS, as it reproduces the magmatic eastern branch and at the same time, anticlockwise rotation of the craton. However, this experiment does not reproduce the observed strain localization along the western margin of the cratonic bloc. To explain the formation of contrasting magmatic and amagmatic rift branches initiating simultaneously on either side of a non-deforming block as observed in the central EARS, we experimentally explored several scenarios of which three can be retained as specifically pertaining to the EARS: (1) The most trivial first scenario assumes rheologically weak vertical interface simulating the suture zone observed in the geological structure along the western border of the craton; (2) The second scenario involves a second smaller plume initially shifted in SW direction; (3) Finally, a

  9. Origin of three-armed rifts in volcanic islands: the case of El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Galindo Jiménez, Inés; Becerril Carretero, Laura; Martí Molist, Joan; Gudmundsson, Agust

    2015-04-01

    Rifts zones in volcanic oceanic islands are common structures that have been explained through several theories/models. However, despite all these models it is as yet unclear whether it is the intense intrusive activity or the sector collapses that actually control the structural evolution and geometry of oceanic-island rift zones. Here we provide a new hypothesis to explain the origin and characteristics of the feeding system of oceanic-island rift zones based on the analysis of more than 1700 surface, subsurface (water galleries), and submarine structural data from El Hierro (Canary Islands). El Hierro's geological structure is primarily controlled by a three-armed rift-zone, the arms striking NE, WSW and S. Between the rift axes there are three valleys formed during huge landslides: El Golfo, El Julan, and Las Playas. Our results show: (1) a predominant NE-SW strike of structural elements, which coincides with the main regional trend of the Canary Archipelago as a whole; (2) a clear radial strike distribution of structural elements for the whole volcanic edifice (including submarine flanks) with respect to the centre of the island; (3) that the rift zones are mainly subaerial structures and do not propagate through the submarine edifice; (4) that it is only in the NE rift that structures have a general strike similar to that of the rift as a whole, and; (5) that in the W and S rifts there is not clear main direction, showing the structural elements in the W rift a fan distribution coinciding with the general radial pattern in the island as a whole. Based on these data, we suggest that the radial-striking structures reflect comparatively uniform stress fields that operated during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses. By contrast, in the shallower parts of the edifice, that is, the NE-SW, N-S and WNW-ESE-striking structures, reflect local stress fields related

  10. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode.

    PubMed

    Wright, Tim J; Ebinger, Cindy; Biggs, Juliet; Ayele, Atalay; Yirgu, Gezahegn; Keir, Derek; Stork, Anna

    2006-07-20

    Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the continental rupture process. Between 14 September and 4 October 2005, 163 earthquakes (magnitudes greater than 3.9) and a volcanic eruption occurred within the approximately 60-km-long Dabbahu magmatic segment of the Afar rift, a nascent seafloor spreading centre in stretched continental lithosphere. Here we present a three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data, which shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy. Simple elastic modelling shows that the magmatic segment opened by up to 8 m, yet seismic rupture can account for only 8 per cent of the observed deformation. Magma was injected along a dyke between depths of 2 and 9 km, corresponding to a total intrusion volume of approximately 2.5 km3. Much of the magma appears to have originated from shallow chambers beneath Dabbahu and Gabho volcanoes at the northern end of the segment, where an explosive fissural eruption occurred on 26 September 2005. Although comparable in magnitude to the ten year (1975-84) Krafla events in Iceland, seismic data suggest that most of the Dabbahu dyke intrusion occurred in less than a week. Thus, magma intrusion via dyking, rather than segmented normal faulting, maintains and probably initiated the along-axis segmentation along this sector of the Nubia-Arabia plate boundary.

  11. Antecedent rivers and early rifting: a case study from the Plio-Pleistocene Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Malartre, Fabrice

    2016-04-01

    facies distribution throughout the early rift evolution. We show that the length scale of fluvial facies transitions is greater than and therefore not related to fault spacing. First order facies variations instead occur at the scale of the full antecedent fluvial system. Strike-parallel subsidence variations in individual fault blocks represent a second order controlling factor on stratigraphic architecture. As depocentres enlarged through time, sediments progressively filled palaeorelief, and formed a continuous alluvial plain above active faults. There was limited creation of footwall relief and thus no significant consequent drainage system developed. Here, instead of being diverted toward subsiding zones, the drainage system overfilled the whole rift from the onset of faulting. Moreover, the zones of maximum subsidence on individual faults are aligned across strike parallel to the persistent fluvial axis. This implies that long-term sediment loading influenced the growth of normal faults. We conclude that a major antecedent drainage system inherited from the Hellenide mountain belt supplied high volumes of coarse sediment from the onset of faulting in the western Corinth rift (around 4 Ma). These observations demonstrate that antecedent drainage systems can be important in the tectono-sedimentary evolution of rift basins.

  12. A multidisciplinary study in the geodynamic active western Eger rift (Central Europe): The Quaternary volcanic complex Mytina and the recent CO2-degassing zone Hartousov

    NASA Astrophysics Data System (ADS)

    Flechsig, C.; Heinicke, J.; Kaempf, H. W.; Nickschick, T.; Mrlina, J.

    2013-12-01

    The Eger rift (Central Europe) belongs to the European Cenozoic rift system and represents an approximately 50 km wide and 300 km long ENE-WSW striking continental rift that formed during the Upper Cretaceous-Tertiary transition. This rift zone is one of the most active seismic regions in Central Europe. Especially, the western part of the Eger rift area is dominated by ongoing hidden magmatic processes in the intra-continental lithospheric mantle. Besides of known quaternary volcanoes, these processes take place in absence of any presently active volcanism at the surface. However, they are expressed by a series of phenomena distributed over a relatively large area, like occurrence of repeated earthquake swarms, surface exhalation of mantle-derived and CO2-enriched fluids at mofettes and mineral springs, and enhanced heat flow. At present this is the only known intra-continental region where such deep-seated, active lithospheric processes currently occur. The aim of the project is to investigate the tectonic/geologic near surface structure and the degassing processes of the mofette field of Hartousov, where soil gas measurements (concentration and flux rate) in an area of appr. 3x2 km traced a permeable NS extended segment of a fault zone and revealed highly permeable Diffuse Degassing Structures (DDS). The second target is volcanic environment of the Quaternary volcanic complex Mytina maar and the cinder cone Zelezna hurka/Eisenbühl. The investigations are intended to clarify: a) the spatio-temporal reconstruction of the maar complex, and the palaeo volcanic scenario (geological model, tectonic settings, distribution of pyroclastica, b) the geological structure and the tectonic control of the recent degassing zone, and c) the comperative interpretation of both regions in the consideration of potential future volcanic risk assessment in sub-regions of the western Eger Rift. To investigate both regions the following methods are used: geoelectrics, geomagnetics

  13. An overview of the Icelandic Volcano Observatory response to the on-going rifting event at Bárðarbunga (Iceland) and the SO2 emergency associated with the gas-rich eruption in Holuhraun

    NASA Astrophysics Data System (ADS)

    Barsotti, Sara; Jonsdottir, Kristin; Roberts, Matthew J.; Pfeffer, Melissa A.; Ófeigsson, Benedikt G.; Vögfjord, Kristin; Stefánsdóttir, Gerður; Jónasdóttir, Elin B.

    2015-04-01

    been initialized daily and run to provide the dispersal of the SO2 volcanic cloud across the country. Daily 72-hours forecasts of SO2 ground concentration are available on the IMO webpage. If critical concentration are expected in inhabited areas, the meteorologist on duty is in charge to promptly issuing a specific warning on the web. The IMO web-page has also been improved with a registration form, open to the public, for reporting SO2 contamination and poor air quality conditions due to the eruption. A long-term hazard assessment for the high concentrations of SO2 affecting the country has also been requested from IVO (IMO) by the Icelandic Civil Protection. For this purpose two hazard zoning maps, showing the areas potentially affected by specific concentration levels have been produced. The two maps have been constructed for probability of occurrence equaling 50% and 90%, respectively. Based on all these information and advices, the Civil Protection is taking decisions for what concerns precautionary measures like for example the limitation of accessibility to the eruption site, the evacuation of exposed areas, and the issuing of warnings and information for mitigating discomforts to inhabitants and tourists.

  14. Structure of the southern Rio Grande rift from gravity interpretation

    NASA Technical Reports Server (NTRS)

    Daggett, P. H.; Keller, G. R.; Wen, C.-L.; Morgan, P.

    1986-01-01

    Regional Bouguer gravity anomalies in southern New Mexico have been analyzed by two-dimensional wave number filtering and poly-nomial trend surface analysis of the observed gravity field. A prominent, regional oval-shaped positive gravity anomaly was found to be associated with the southern Rio Grande rift. Computer modeling of three regional gravity profiles suggests that this anomaly is due to crustal thinning beneath the southern Rio Grande rift. These models indicate a 25 to 26-km minimum crustal thickness within the rift and suggest that the rift is underlain by a broad zone of anomalously low-density upper mantle. The southern terminus of the anomalous zone is approximately 50 km southwest of El Paso, Texas. A thinning of the rifted crust of 2-3 km relative to the adjacent Basin and Range province indicates an extension of about 9 percent during the formation of the modern southern Rio Grande rift. This extension estimate is consistent with estimates from other data sources. The crustal thinning and anomalous mantle is thought to result from magmatic activity related to surface volcanism and high heat flow in this area.

  15. Neoproterozoic stratigraphic framework of the Tarim Craton in NW China: Implications for rift evolution

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Guan, Shuwei; Zhang, Shuichang; Yang, Haijun; Jin, Jiuqiang; Zhang, Xiaodan; Zhang, Chunyu

    2018-06-01

    The Tarim Craton is overlain by thick Neoproterozoic sedimentary successions in rift tectonic setting. This study examines the latest outcrop, seismic, and drilling core data with the objective of investigating the regional stratigraphy to deeply recognize the evolution of rifting in the craton. Cryogenian to Lower Ediacaran successions are mainly composed of clastic rocks with thicknesses of 2000-3000 m, and the Upper Ediacaran successions are composed of carbonate rocks with thicknesses of 500-800 m. The rift basins and stratigraphic zones are divided into northern and southern parts by a central paleo-uplift. The northern rift basin extends through the northern Tarim Craton in an E-W direction with two depocenters (Aksu and Kuruktag). The southern rift basin is oriented NE-SW. There are three or four phases of tillites in the northern zone, while there are two in the southern zone. Given the north-south difference of the stratigraphic framework, the northern rift basin initiated at ca. 740 Ma and the southern rift basin initiated at ca. 780 Ma. During the Cryogenian and Ediacaran, the northern and southern rift basins were separated by the central paleo-uplift, finally connecting with each other in the early Cambrian. Tectonic deformation in the Late Ediacaran led to the formation of a parallel unconformity in the rift basins and an angular unconformity in the central paleo-uplift. The Neoproterozoic rift basins continued to affect the distribution of Lower Cambrian hydrocarbon source rocks. The north-south distribution and evolution of the rift basins in the Tarim Craton have implications for reconstructions of the Rodinia supercontinent.

  16. Crustal structure beneath western and eastern Iceland from surface waves and receiver functions

    USGS Publications Warehouse

    Du, Z.; Foulger, G.R.; Julian, B.R.; Allen, R.M.; Nolet, G.; Morgan, W.J.; Bergsson, B.H.; Erlendsson, P.; Jakobsdottir, S.; Ragnarsson, S.; Stefansson, R.; Vogfjord, K.

    2002-01-01

    We determine the crustal structures beneath 14 broad-band seismic stations, deployed in western, eastern, central and southern Iceland, using surface wave dispersion curves and receiver functions. We implement a method to invert receiver functions using constraints obtained from genetic algorithm inversion of surface waves. Our final models satisfy both data sets. The thickness of the upper crust, as defined by the velocity horizon Vs = 3.7 km s-1, is fairly uniform at ???6.5-9 km beneath the Tertiary intraplate areas of western and eastern Iceland, and unusually thick at 11 km beneath station HOT22 in the far south of Iceland. The depth to the base of the lower crust, as defined by the velocity horizon Vs = 4.1 km s-1 is ???20-26 km in western Iceland and ???27-33 km in eastern Iceland. These results agree with those of explosion profiles that detect a thinner crust beneath western Iceland than beneath eastern Iceland. An earlier report of a substantial low-velocity zone beneath the Middle Volcanic Zone in the lower crust is confirmed by a similar observation beneath an additional station there. As was found in previous receiver function studies, the most reliable feature of the results is the clear division into an upper sequence that is a few kilometres thick where velocity gradients are high, and a lower, thicker sequence where velocity gradients are low. The transition to typical mantle velocities is variable, and may range from being very gradational to being relatively sharp and clear. A clear Moho, by any definition, is rarely seen, and there is thus uncertainty in estimates of the thickness of the crust in many areas. Although a great deal of seismic data are now available constraining the structures of the crust and upper mantle beneath Iceland, their geological nature is not well understood.

  17. Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system)

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi, Mwene Ntabwoba Stanislas; Bondo, Silvanos Fiama; Kervyn, François; Havenith, Hans-Balder

    2017-10-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focusing on the Kivu and northern Tanganyika rift region in Central Africa, a new probabilistic seismic hazard assessment has been performed for the Kivu rift segment in the central part of the western branch of the East African rift system. As the geological and tectonic setting of this region is incompletely known, especially the part lying in the Democratic Republic of the Congo, we compiled homogeneous cross-border tectonic and neotectonic maps. The seismic risk assessment is based on a new earthquake catalogue based on the ISC reviewed earthquake catalogue and supplemented by other local catalogues and new macroseismic epicenter data spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. The final catalogue used for the seismic hazard assessment spans 60 years, from 1955 to 2015, with 359 events and a magnitude of completeness of 4.4. The seismotectonic zonation into 7 seismic source areas was done on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined by the least square linear fit and the maximum likelihood method. Seismic hazard maps have been computed using existing attenuation laws with the Crisis 2012 software. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates. They also vary laterally in function of the tectonic setting, with the lowest value in the volcanically active Virunga - Rutshuru zone, highest in the currently non-volcanic parts of Lake Kivu, Rusizi valley and North Tanganyika rift zone, and intermediate in the regions flanking the axial rift zone.

  18. Relocation of Seismicity at Mauna Loa, Hawaii and Hengill, Iceland: Improved Delineation of Seismogenic Structures.

    NASA Astrophysics Data System (ADS)

    Baher, S. A.; Thurber, C.; Roberts, K.; Rowe, C.

    2002-12-01

    Waveform cross-correlation based refinement of P arrival times and subsequent relocation of earthquakes was determined for events that occurred near the summit of Mauna Loa, Hawaii prior to the March, 1984 eruption and at the Hengill volcano, Iceland during a two-month survey in 1991. Hengill and Mauna Loa volcanoes have a similar rift structure and are hot-spot related volcanoes. The relocated events at Mauna Loa illuminated a previously obscured structure beneath the northwestern flank. Simultaneous inversion for hypocenters and velocity model parameters using the refined arrival times resulted in well-constrained relative earthquake locations with very low arrival time misfits (average RMS 0.03 s). Pre-eruption seismicity from this time period occurred in two groups: a shallow group located near the Mauna Loa summit region, at depths of 1-3 km, and a deeper group located 4-6 km northwest of the summit, at depths of 5-10 km. After relocation, we found that most of the northwest flank earthquakes occurred along a 1 km planar feature striking about 60o E of North in a thin band about 500 m thick. This feature we interpret to be related to a rift zone that was stunted by the buttressing of the adjacent volcanoes Hualalai and Mauna Kea. Previous gravity and magnetic studies provide supporting evidence for the existence of a failed rift zone. Northwest flank focal mechanisms reveal a change in faulting from strike-slip in the southwest to a mix of strike-slip and normal faulting in the northeast. The near summit seismicity that was previously diffuse (4.5 km in width) is reduced to a 6 km long feature (0.5 km in width) extending from depth (6 km) toward the summit. The focal mechanisms analyzed from the summit events showed a mix of faulting without a consistent pattern. Previous studies at Hengill yielded locations of seismic activity that extend from 2-6 km in depth and no apparent correlation with surface features. The existence of non-double-couple focal

  19. Parga Chasma: Coronae and Rifting on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Stofan, E. R.; Buck, W. R.; Martin, P.

    2005-01-01

    The majority of coronae (quasicircular volcano-tectonic features) are found along rifts or fracture belts, and the majority of rifts have coronae [e.g. 1,2]. However, the relationship between coronae and rifts remains unclear [3-6]. There is evidence that coronae can form before, after, or synchronously with rifts [3,4]. The extensional fractures in the rift zones have been proposed to be a result of broad scale upwelling and traction on the lower lithosphere [7]. However, not all rift systems have a significant positive geoid anomaly, as would be expected for an upwelling site [8]. This could be explained if the rifts lacking anomalies are no longer active. Coronae are generally accepted to be sites of local upwelling [e.g. 1], but the observed rifting is frequently not radial to the coronae and extends well beyond the coronae into the surrounding plains. Thus the question remains as to whether the rifts represent regional extension, perhaps driven by mantle tractions, or if the coronae themselves create local thinning and extension of the lithosphere. In the first case, a regional extension model should be consistent with the observed characteristics of the rifts. In the latter case, a model of lithospheric loading and fracturing would be more appropriate. A good analogy may be the propagation of oceanic intraplate volcanoes [9].

  20. New constraints on dike injection and fault slip during the 1975-1984 Krafla rift crisis, NE Iceland

    NASA Astrophysics Data System (ADS)

    Hollingsworth, J.; Leprince, Sébastien; Ayoub, François; Avouac, Jean-Philippe

    2013-07-01

    Correlation of KH9 spy and SPOT5 satellite images, airphotos, digital elevation model differencing, electronic distance measurement, and leveling survey data is used to constrain the deformation resulting from the 1975-1984 Krafla rifting crisis. We find that diking typically extends to depths of 5 km, while the dike tops range from 0 km in the caldera region to 3 km at the northern end of the rift. Extension is accommodated by diking at depth and normal faulting in the shallowest crust. In the southern section of the Krafla rift, surface opening is 80% of the dike opening at depth. Over the 70-80 km length of the rift, the average dike opening was 4.3-5.4 m. From these estimates, we calculate the total geodetic moment released over the Krafla rift crisis, 4.4-9.0×1019 Nm, which is an order of magnitude higher than the seismic moment released over the same time period, ~5.8×1018 Nm. The total volume of magma added to the upper crust was 1.1-2.1×109m3. This study highlights how optical image correlation using inexpensive declassified spy satellite and airphotos, combined with simple models of crustal deformation, can provide important constraints on the deformation resulting from past earthquake and volcanic events.

  1. Mantle transition zone structure beneath Tanzania, east Africa

    NASA Astrophysics Data System (ADS)

    Owens, Thomas J.; Nyblade, Andrew A.; Gurrola, Harold; Langston, Charles A.

    2000-03-01

    We apply a three-dimensional stacking method to receiver functions from the Tanzania Broadband Seismic Experiment to determine relative variations in the thickness of the mantle transition zone beneath Tanzania. The transition zone under the Eastern rift is 30-40 km thinner than under areas of the Tanzania Craton in the interior of the East African Plateau unaffected by rift faulting. The region of transition zone thinning under the Eastern rift is several hundred kilometers wide and coincides with a 2-3% reduction in S wave velocities. The thinning of the transition zone, as well as the reduction in S wave velocities, can be attributed to a 200-300°K increase in temperature. This thermal anomaly at >400 km depth beneath the Eastern rift cannot be easily explained by passive rifting and but is consistent with a plume origin for the Cenozoic rifting, volcanism and plateau uplift in East Africa.

  2. Evolution of the upper mantle beneath the southern Baikal rift zone: an Sr-Nd isotope study of xenoliths from the Bartoy volcanoes

    NASA Astrophysics Data System (ADS)

    Ionov, D. A.; Kramm, U.; Stosch, H.-G.

    1992-06-01

    Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr-Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr-Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300 400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe ˜2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone

  3. Physical characteristics and evolutionary trends of continental rifts

    NASA Technical Reports Server (NTRS)

    Ramberg, I. B.; Morgan, P.

    1984-01-01

    Rifts may be defined as zones beneath which the entire lithosphere has ruptured in extension. They are widespread and occur in a variety of tectonic settings, and range up to 2,600 m.y. in age. The object of this review is to highlight characteristic features of modern and ancient rifts, to emphasize differences and similarities in order to help characterize evolutionary trends, to identify physical conditions favorable for initiation as well as termination of rifting, and to provide constraints for future modeling studies of rifting. Rifts are characterized on the basis of their structural, geomorphic, magmatic and geophysical features and the diverse character of these features and their evolutionary trends through time are discussed. Mechanisms of rifting are critically examined in terms of the physical characteristics and evolutionary trends of rifts, and it is concluded that while simple models can give valuable insight into specific processes of rifting, individual rifts can rarely, if ever, be characterized by well defined trends predicted by these models. More data are required to clearly define evolutionary trends, and the models require development to incorporate the effects of lithospheric heterogeneities and complex geologic histories.

  4. The mode of emplacement of Neogene flood basalts in eastern Iceland: Facies architecture and structure of simple aphyric basalt groups

    NASA Astrophysics Data System (ADS)

    Óskarsson, Birgir V.; Riishuus, Morten S.

    2014-12-01

    brecciated flow-tops developed into 'a'ā flows. The groups interdigitated with lava groups from the Reyðarfjörður volcanic zone to the east, and the exhumed Breiðdalur-Thingmuli volcanic zone which appear to have formed as a flank lineament parallel the main rift zone. Flood basalt volcanism in flank areas may support a mantle anomaly more pronounced and/or perhaps more widespread in the Neogene of Iceland than today. Eruptions of simple flows have not been observed in modern times and are significant for models of crustal accretion in Iceland and other Large Igneous Provinces.

  5. Three-dimensional frictional plastic strain partitioning during oblique rifting

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2017-04-01

    Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.

  6. The geometry of propagating rifts

    NASA Astrophysics Data System (ADS)

    McKenzie, Dan

    1986-03-01

    The kinematics of two different processes are investigated, both of which have been described as rift propagation. Courtillot uses this term to describe the change from distributed to localised extension which occurs during the early development of an ocean basin. The term localisation is instead used here to describe this process, to distinguish it from Hey's type of propagation. Localisation generally leads to rotation of the direction of magnetisation. To Hey propagation means the extension of a rift into the undeformed plate beyond a transform fault. Detail surveys of the Galapagos rift have shown that the propagating and failing rifts are not connected by a single transform fault, but by a zone which is undergoing shear. The principal deformation is simple shear, and the kinematics of this deformation are investigated in some detail. The strike of most of the lineations observed in the area can be produced by such deformation. The mode of extension on the propagating rift appears to be localised for some periods but to be distributed for others. Neither simple kinematic arguments nor stretching of the lithosphere with conservation of crust can account for the observed variations in water depth.

  7. The Main Ethiopian Rift: a Narrow Rift in a Hot Craton?

    NASA Astrophysics Data System (ADS)

    Gashawbeza, E.; Keranen, K.; Klemperer, S.; Lawrence, J.

    2008-12-01

    The Main Ethiopian Rift (MER) is a classic example of a narrow rift, but a synthesis of our results from the EAGLE (Ethiopia-Afar Geoscientific Lithospheric Experiment Phase I broadband experiment) and from the EBSE experiment (Ethiopia Broadband Seismic Experiment) suggests the MER formed in thin, hot, weak continental lithosphere, in strong contrast with predictions of the Buck model of modes of continental lithospheric extension. Our joint inversion of receiver functions and Rayleigh-wave group velocities yields shear-wave velocities of the lowermost crust and uppermost mantle across the MER and the Ethiopian Plateau that are significantly lower than the equivalent velocities in the Eastern and Western branches of the East African Rift System. The very low shear-wave velocities, high electrical conductivity in the lower-crust, and high shear-wave splitting delay times beneath a very broad region of the MER and the Ethiopian Plateau indicate that the lower-crust is hot and likely contains partial melt. Our S-receiver function data demonstrate shallowing of the lithosphere-asthenosphere boundary from 90 km beneath the northwestern Ethiopian Plateau to 60 km beneath the MER. Although we lack good spatial resolution on the lithosphere-asthenosphere boundary, the region of thinned lithosphere may be intermediate in width between the narrow surface rift (< 100 km) and the broader zone of strain in the lower crust (~ 300 km). The MER developed as a narrow rift at the surface, localized along the Neoproterozoic suture that joined East and West Gondwana. However, a far broader of lower crust and uppermost mantle remains thermally weakened since the Oligocene formation of the flood basalts by the Afar plume head. If the lithosphere- asthenosphere boundary is indeed a strain marker then lithospheric mantle deformation is localized beneath the surface rift. The development of both the Eastern/Western branches of the East African Rift System to the south and of the MER in

  8. Subsurface images of the Eastern Rift, Africa, from the joint inversion of body waves, surface waves and gravity: investigating the role of fluids in early-stage continental rifting

    NASA Astrophysics Data System (ADS)

    Roecker, S.; Ebinger, C.; Tiberi, C.; Mulibo, G.; Ferdinand-Wambura, R.; Mtelela, K.; Kianji, G.; Muzuka, A.; Gautier, S.; Albaric, J.; Peyrat, S.

    2017-08-01

    The Eastern Rift System (ERS) of northern Tanzania and southern Kenya, where a cratonic lithosphere is in the early stages of rifting, offers an ideal venue for investigating the roles of magma and other fluids in such an environment. To illuminate these roles, we jointly invert arrival times of locally recorded P and S body waves, phase delays of ambient noise generated Rayleigh waves and Bouguer anomalies from gravity observations to generate a 3-D image of P and S wave speeds in the upper 25 km of the crust. While joint inversion of gravity and arrival times requires a relationship between density and wave speeds, the improvement in resolution obtained by the combination of these disparate data sets serves to further constrain models, and reduce uncertainties. The most significant features in the 3-D model are (1) P and S wave speeds that are 10-15 per cent lower beneath the rift zone than in the surrounding regions, (2) a relatively high wave speed tabular feature located along the western edge of the Natron and Manyara rifts, and (3) low (∼1.71) values of Vp/Vs throughout the upper crust, with the lowest ratios along the boundaries of the rift zones. The low P and S wave speeds at mid-crustal levels beneath the rift valley are an expected consequence of active volcanism, and the tabular, high-wave speed feature is interpreted to be an uplifted footwall at the western edge of the rift. Given the high levels of CO2 outgassing observed at the surface along border fault zones, and the sensitivity of Vp/Vs to pore-fluid compressibility, we infer that the low Vp/Vs values in and around the rift zone are caused by the volcanic plumbing in the upper crust being suffused by a gaseous CO2 froth on top of a deeper, crystalline mush. The repository for molten rock is likely located in the lower crust and upper mantle, where the Vp/Vs ratios are significantly higher.

  9. Long-period seismicity reveals magma pathways above a laterally propagating dyke during the 2014-15 Bárðarbunga rifting event, Iceland

    NASA Astrophysics Data System (ADS)

    Woods, Jennifer; Donaldson, Clare; White, Robert S.; Caudron, Corentin; Brandsdóttir, Bryndís; Hudson, Thomas S.; Ágústsdóttir, Thorbjörg

    2018-05-01

    The 2014-15 Bárðarbunga-Holuhraun rifting event comprised the best-monitored dyke intrusion to date and the largest eruption in Iceland in 230 years. A huge variety of seismicity was produced, including over 30,000 volcano-tectonic earthquakes (VTs) associated with the dyke propagation at ∼6 km depth below sea level, and large-magnitude earthquakes accompanying the collapse of Bárðarbunga caldera. We here study the long-period seismicity associated with the rifting event. We systematically detect and locate both long-period events (LPs) and tremor during the dyke propagation phase and the first week of the eruption. We identify clusters of highly similar, repetitive LPs, which have a peak frequency of ∼1 Hz and clear P and S phases followed by a long-duration coda. The source mechanisms are remarkably consistent between clusters and also fundamentally different to those of the VTs. We accurately locate LP clusters near each of three ice cauldrons (depressions formed by basal melting) that were observed on the surface of Dyngjujökull glacier above the path of the dyke. Most events are in the vicinity of the northernmost cauldron, at shallower depth than the VTs associated with lateral dyke propagation. At the two northerly cauldrons, periods of shallow seismic tremor following the clusters of LPs are also observed. Given that the LPs occur at ∼4 km depth and in swarms during times of dyke-stalling, we infer that they result from excitation of magmatic fluid-filled cavities and indicate magma ascent. We suggest that the tremor is the climax of the vertical melt movement, arising from either rapid, repeated excitation of the same LP cavities, or sub-glacial eruption processes. This long-period seismicity therefore represents magma pathways between the depth of the dyke-VT earthquakes and the surface. Notably, we do not detect tremor associated with each cauldron, despite melt reaching the base of the overlying ice cap, a concern for hazard monitoring.

  10. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.

    PubMed

    Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-06-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.

  11. Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008

    USGS Publications Warehouse

    Orr, Tim R.

    2011-01-01

    Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.

  12. Rift-drift transition in the Dangerous Grounds, South China Sea

    NASA Astrophysics Data System (ADS)

    Peng, Xi; Shen, Chuanbo; Mei, Lianfu; Zhao, Zhigang; Xie, Xiaojun

    2018-04-01

    The South China Sea (SCS) has a long record of rifting before and after subsequent seafloor spreading, affecting the wide continent of the Dangerous Grounds, and its scissor-shape opening manner results in the rifting structures that vary along this margin. Some 2000 km of regional multichannel seismic data combined with borehole and dredge data are interpreted to analyze the multistage rifting process, structural architecture and dynamic evolution across the entire Dangerous Grounds. Key sequence boundaries above the Cenozoic basement are identified and classified into the breakup unconformity and the rift end unconformity, which consist of the rift-related unconformities. Reflector T70 in the east of the Dangerous Grounds represents the breakup unconformity, which is likely corresponding to the spreading of the East Subbasin. T60 formed on the top of carbonate platform is time equivalent to the spreading of the Southwest Subbasin, marking the breakup unconformity of the central Dangerous Grounds. The termination of the spreading of the SCS is manifested by the rift end unconformity of T50 in the southwest and the final rift occurring in the northwest of the Dangerous Grounds is postponed to the rift end unconformity of T40. On the basis of the stratigraphic and structural analysis, distinct segments in the structural architecture of the syn-rift units and the ages of rift-drift transition show obvious change from the proximal zone to the distal zone. Three domains, which are the Reed Bank-Palawan Rift domain, the Dangerous Grounds Central Detachment domain and Nam Con Son Exhumation domain, reflect the propagation of the margin rifting developed initially by grabens formed by high angle faults, then large half-grabens controlled by listric faults and detachments and finally rotated fault blocks in the hyper-extended upper crust associated with missing lower crust or exhumed mantle revealing a migration and stepwise rifting process in the south margin of the SCS.

  13. Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Tetreault, Joya; Torsvik, Trond

    2015-04-01

    The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post

  14. The Mechanism and Dynamics of N-S Rifting in Southern Tibet: Insight From 3-D Thermomechanical Modeling

    NASA Astrophysics Data System (ADS)

    Pang, Yajin; Zhang, Huai; Gerya, Taras V.; Liao, Jie; Cheng, Huihong; Shi, Yaolin

    2018-01-01

    N-S trending rifts are widely distributed in southern Tibet, suggesting that this region is under E-W extension, behind the N-S collision between the Eurasia and India plates. Geophysical anomalies and Miocene magma extrusions indicate the presence of dispersed weak zones in the middle to lower crust in southern Tibet. These weak zones are partially located underneath the N-S rifting systems. In order to study the formation of rifts in collision zones, we have developed a high-resolution 3-D thermomechanical model of continental lithosphere with bidirectional compressional-extensional deformation, and spatially localized weak and low-density zones in the middle to lower crust. Our numerical experiments systematically reproduce the development of N-S trending rifts. Model results reveal that the weak middle to lower crust triggers the development of normal faults in the upper crust and surface uplift, whereas regions without such weak layer or with small-scale weak zones are characterized by strike-slip faulting. Geodynamic properties (density, depth, and geometry) of the weak middle to lower crust and Moho temperature notably influence the rifting pattern. In addition, rifting formation is critically controlled by large E-W extension, with the ratio of extensional to compressional strain rate larger than 1.5 in the model with continuous weak middle crust. Our simulated rifting patterns correlate well with the observations in southern Tibet; we conclude that a combination of the bidirectional compression-extension and the presence of locally weak middle to lower crust triggered the development of the rifting systems in southern Tibet.

  15. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  16. Analysis of radar images of the active volcanic zone at Krafla, Iceland: The effects of look azimuth biasing

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Williams, R. S., Jr.

    1989-01-01

    The geomorphic expression of Mid-Ocean-Ridge (MOR) volcanism in a subaerial setting occurs uniquely on Earth in Iceland, and the most recent MOR eruptive activity has been concentrated in the Northeastern Volcanic Zone in an area known as Krafla. Within the Krafla region are many of the key morphologic elements of MOR-related basaltic volcanism, as well as volcanic explosion craters, subglacial lava shields, tectonic fissure swarms known as gjar, and basaltic-andesite flows with well developed ogives (pressure-ridges). The objective was to quantify the degree to which the basic volcanic and structural features can be mapped from directional SAR imagery as a function of the look azimuth. To accomplish this, the current expression of volcanic and tectonic constructs was independently mapped within the Krafla region on the E, W, and N-looking SAR images, as well as from SPOT Panchromatic imagery acquired in 1987. The initial observations of the E, W, and N images indicates that fresh a'a lava surfaces are extremely radar bright (rough at 3 cm to meter scales) independent of look direction; this suggests that these flows do not have strong flow direction related structures at meter and cm scales, which is consistent with typical Icelandic a'a lava surfaces in general. The basic impression from a preliminary analysis of the effects of look azimuth biasing on interpretation of the geology of an active MOR volcanic zone is that up to 30 percent of the diagnostic features can be missed at any given look direction, but that having two orthogonal look direction images is probably sufficient to prevent gross misinterpretation.

  17. Rifting-to-drifting transition of the South China Sea: Moho reflection characteristics in continental-ocean transition zone

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Li, C.

    2017-12-01

    Dispute remains on the process of continental rifting to subsequent seafloor spreading in the South China Sea (SCS). Several crust-scale multi-channel seismic reflection profiles acquired in the continent-ocean transition zone (COT) of the SCS provide a detailed overview of Moho and deep crustal reflectors and give key information on rifting-to-drifting transition of the area. Moho has strong but discontinuous seismic reflection in COT. These discontinuities are mainly located in the landward side of continent-ocean boundary (COB), and may own to upwelling of lower crustal materials during initial continental extension, leading to numerous volcanic edifices and volcanic ridges. The continental crust in COT shows discontinuous Moho reflections at 11-8.5 s in two-way travel time (twtt), and thins from 18-20.5 km under the uppermost slope to 6-7 km under the lower slope, assuming an average crustal velocity of 6.0 km/s. The oceanic crust has Moho reflections of moderate to high continuity mostly at 1.8-2.2 s twtt below the top of the igneous basement, which means that the crustal thickness excluding sediment layer in COT is 5.4-6.6 km. Subhorizontal Moho reflections are often abruptly interrupted by large seaward dipping normal faults in southern COT but are more continuous compared with the fluctuant and very discontinuous Moho reflections in northern COT. The thickness of thinned continental crust (4.2-4.8 km) is smaller than that of oceanic crust (5.4-6.0 km) near southern COB, indicating that the continental crust has experienced a long period of rifting before seafloor spreading started. The smaller width of northern COT (0-40 km) than in southern COT (0-60 km), and thinner continental crust in southern COT, all indicate that the continental margin rifting and extension was asymmetric. The COT width in the SCS is narrower than that found in other magma-poor continental margins, indicating a swift transition from the final stage of rifting to the inception of

  18. Structure of the central Terror Rift, western Ross Sea, Antarctica

    USGS Publications Warehouse

    Hall, Jerome; Wilson, Terry; Henrys, Stuart

    2007-01-01

    The Terror Rift is a zone of post-middle Miocene faulting and volcanism along the western margin of the West Antarctic Rift System. A new seismic data set from NSF geophysical cruise NBP04-01, integrated with the previous dataset to provide higher spatial resolution, has been interpreted in this study in order to improve understanding of the architecture and history of the Terror Rift. The Terror Rift contains two components, a structurally-controlled rollover anticlinal arch intruded by younger volcanic bodies and an associated synclinal basin. Offsets and trend changes in fault patterns have been identified, coincident with shifts in the location of depocenters that define rift sub-basins, indicating that the Terror Rift is segmented by transverse structures. Multiple phases of faulting all post-date 17 Ma, including faults cutting the seafloor surface, indicating Neogene rifting and possible modern activity.

  19. Rifting the continental lithosphere: case studies of the lithosphere-asthenosphere system in rifted settings across the western U.S. and in the southern East African Rift

    NASA Astrophysics Data System (ADS)

    Hopper, E.; Gaherty, J. B.; Shillington, D. J.

    2016-12-01

    Continental extension comes in many guises, often described in terms of two endmembers. Narrow rifting is typified by a rift valley narrower than lithospheric thickness (50-100 km), presumed to result in steep lateral changes in crustal and lithospheric topography; wide rifting by a broad zone (<1000 km) of normal faulting associated with much smaller topographic gradients. A type example for the former is the East African Rift Valley; for the latter, the Basin and Range in the western U.S.A. An important control on rift development is the state of the lithosphere: for example, its strength and thickness. We analyse common conversion point stacked Sp converted wave images of the lithosphere beneath rift systems in the contiguous U.S., both the wide Basin and Range, and narrow rift systems such as the Rio Grande Rift and Salton Trough. We use Sp waves recorded by EarthScope's Transportable Array and other available permanent and temporary broadband stations. Beneath the Basin and Range, we observe a very strong, shallow velocity decrease (the lithosphere-asthenosphere boundary, or LAB) that is relatively uniform over 100s of km. The strength of this feature indicates melt has ponded at this transition. We have not observed a clear relationship between lithospheric thickness beneath the Basin and Range, and total degree of extension, current extension rate, or age since surface volcanism. Beneath narrow rifts in the western U.S., however, more localised thinning of the lithosphere has been observed. We also compare these observations with seismic images of the Malawi Rift, at the southern end of the Western Branch of the East African Rift System, using broadband data acquired as part of the Study of Extension and MaGmatism in Malawi aNd Tanzania (SEGMeNT) experiment. The Malawi Rift is extending slowly in a magma-poor region of relatively strong lithosphere. We constrain the pattern of plate-scale extension by observations of crustal thinning, and image complex

  20. Rifting the continental lithosphere: case studies of the lithosphere-asthenosphere system in rifted settings across the western U.S. and in the southern East African Rift

    NASA Astrophysics Data System (ADS)

    Hopper, E.; Gaherty, J. B.; Shillington, D. J.

    2017-12-01

    Continental extension comes in many guises, often described in terms of two endmembers. Narrow rifting is typified by a rift valley narrower than lithospheric thickness (50-100 km), presumed to result in steep lateral changes in crustal and lithospheric topography; wide rifting by a broad zone (<1000 km) of normal faulting associated with much smaller topographic gradients. A type example for the former is the East African Rift Valley; for the latter, the Basin and Range in the western U.S.A. An important control on rift development is the state of the lithosphere: for example, its strength and thickness. We analyse common conversion point stacked Sp converted wave images of the lithosphere beneath rift systems in the contiguous U.S., both the wide Basin and Range, and narrow rift systems such as the Rio Grande Rift and Salton Trough. We use Sp waves recorded by EarthScope's Transportable Array and other available permanent and temporary broadband stations. Beneath the Basin and Range, we observe a very strong, shallow velocity decrease (the lithosphere-asthenosphere boundary, or LAB) that is relatively uniform over 100s of km. The strength of this feature indicates melt has ponded at this transition. We have not observed a clear relationship between lithospheric thickness beneath the Basin and Range, and total degree of extension, current extension rate, or age since surface volcanism. Beneath narrow rifts in the western U.S., however, more localised thinning of the lithosphere has been observed. We also compare these observations with seismic images of the Malawi Rift, at the southern end of the Western Branch of the East African Rift System, using broadband data acquired as part of the Study of Extension and MaGmatism in Malawi aNd Tanzania (SEGMeNT) experiment. The Malawi Rift is extending slowly in a magma-poor region of relatively strong lithosphere. We constrain the pattern of plate-scale extension by observations of crustal thinning, and image complex

  1. Distribution of differentiated tholeiitic basalts on the lower east rift zone of Kilauea Volcano, Hawaii: a possible guide to geothermal exploration.

    USGS Publications Warehouse

    Moore, R.B.

    1983-01-01

    Geological mapping of the lower east rift zone indicates that >100 eruptions have extruded an estimated 10 km3 of basalt during the past 2000 yr; six eruptions in the past 200 yr have extruded approx 1 km3. The eruptive recurrence interval has ranged 1-115 yr since the middle of the 18th century and has averaged 20 yr or less over the past 2000 yr. New chemical analyses (100) indicate that the tholeiites erupted commonly differentiated beyond olivine control or are hybrid mixtures of differentiates with more mafic (olivine-controlled) summit magmas. The distribution of vents for differentiated lavas suggests that several large magma chambers underlie the lower east rift zone. Several workers have recognized that a chamber underlies the area near a producing geothermal well, HGP-A; petrological and 14C data indicate that it has existed for at least 1300 yr. Stratigraphy, petrology and surface-deformation patterns suggest that two other areas, Heiheiahulu and Kaliu, also overlie magma chambers and show favourable geothermal prospects.-A.P.

  2. The regional structure of the Red Sea Rift revised

    NASA Astrophysics Data System (ADS)

    Augustin, Nico; van der Zwan, Froukje M.; Devey, Colin W.; Brandsdóttir, Bryndís

    2017-04-01

    The Red Sea Rift has, for decades, been considered a text book example of how young ocean basins form and mature. Nevertheless, most studies of submarine processes in the Red Sea were previously based on sparse data (mostly obtained between the late 1960's and 1980's) collected at very low resolution. This low resolution, combined with large gaps between individual datasets, required large interpolations when developing geological models. Thus, these models generally considered the Red Sea Rift a special case of young ocean basement formation, dividing it from North to South into three zones: a continental thinning zone, a "transition zone" and a fully developed spreading zone. All these zones are imagined, in most of the models, to be separated by large transform faults, potentially starting and ending on the African and Arabian continental shields. However, no consensus between models e.g. about the locations (or even the existence) of major faults, the nature of the transition zone or the extent of oceanic crust in the Red Sea Rift has been reached. Recently, high resolution bathymetry revealed detailed seafloor morphology as never seen before from the Red Sea, very comparable to other (ultra)slow spreading mid-ocean ridges such as the Gakkel Ridge, the Mid-Atlantic Ridge and SW-Indian Ridge, changing the overall picture of the Red Sea significantly. New discoveries about the extent, movement and physical properties of submarine salt deposits led to the Red Sea Rift being linked to the young Aptian-age South Atlantic. Extensive crosscutting transform faults are not evident in the modern bathymetry data, neither in teleseismic nor vertical gravity gradient data and comparisons to Gakkel Ridge and the SW-Indian Ridge suggest that the Red Sea is much simpler in terms of structural geology than was previously thought. Complicated tectonic models do not appear necessary and there appears to be large areas of oceanic crust under the Red Sea salt blankets. Based on

  3. Evidence for triple-junction rifting focussed on local magmatic centres along Parga Chasma, Venus

    NASA Astrophysics Data System (ADS)

    Graff, J. R.; Ernst, R. E.; Samson, C.

    2018-05-01

    Parga Chasma is a discontinuous rift system marking the southern boundary of the Beta-Atla-Themis (BAT) region on Venus. Along a 1500 km section of Parga Chasma, detailed mapping of Magellan Synthetic Aperture Radar images has revealed 5 coronae, 11 local rift zones distinct from a regional extension pattern, and 47 graben-fissure systems with radiating (28), linear (12) and circumferential (7) geometries. The magmatic centres of these graben-fissure systems typically coincide with coronae or large volcanoes, although a few lack any central magmatic or tectonic feature (i.e. are cryptic). Some of the magmatic centres are interpreted as the foci of triple-junction rifting that form the 11 local rift zones. Cross-cutting relationships between graben-fissure systems and local rift faults reveal synchronous formation, implying a genetic association. Additionally, cross-cutting relationships show that local rifting events postdate the regional extension along Parga Chasma, further indicating multiple stages of rifting. Evidence for multiple centres of younger magmatism and local rifting against a background of regional extension provides an explanation for the discontinuous morphology of Parga Chasma. Examination of the Atlantic Rift System (prior to ocean opening) on Earth provides an analogue to the rift morphologies observed on Venus.

  4. Magma transport and olivine crystallization depths in Kīlauea's east rift zone inferred from experimentally rehomogenized melt inclusions

    NASA Astrophysics Data System (ADS)

    Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.

    2016-07-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit

  5. Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Bastow, Ian D.; Stuart, Graham W.; Kendall, J.-Michael; Ebinger, Cynthia J.

    2005-08-01

    The northern Ethiopian rift forms the third arm of the Red Sea, Gulf of Aden triple junction, and marks the transition from continental rifting in the East African rift to incipient oceanic spreading in Afar. We determine the P- and S-wave velocity structure beneath the northern Ethiopian rift using independent tomographic inversion of P- and S-wave relative arrival-time residuals from teleseismic earthquakes recorded by the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) passive experiment using the regularised non-linear least-squares inversion method of VanDecar. Our 79 broad-band instruments covered an area 250 × 350 km centred on the Boset magmatic segment ~70 km SE of Addis Ababa in the centre of the northern Ethiopian rift. The study area encompasses several rift segments showing increasing degrees of extension and magmatic intrusion moving from south to north into the Afar depression. Analysis of relative arrival-time residuals shows that the rift flanks are asymmetric with arrivals associated with the southeastern Somalian Plate faster (~0.65 s for the P waves; ~2 s for the S waves) than the northwestern Nubian Plate. Our tomographic inversions image a 75 km wide tabular low-velocity zone (δVP~-1.5 per cent, δVS~-4 per cent) beneath the less-evolved southern part of the rift in the uppermost 200-250 km of the mantle. At depths of >100 km, north of 8.5°N, this low-velocity anomaly broadens laterally and appears to be connected to deeper low-velocity structures under the Afar depression. An off-rift low-velocity structure extending perpendicular to the rift axis correlates with the eastern limit of the E-W trending reactivated Precambrian Ambo-Guder fault zone that is delineated by Quaternary eruptive centres. Along axis, the low-velocity upwelling beneath the rift is segmented, with low-velocity material in the uppermost 100 km often offset to the side of the rift with the highest rift flank topography. Our observations from this magmatic

  6. Recent saltmarsh foraminiferal assemblages from Iceland

    NASA Astrophysics Data System (ADS)

    Lübbers, Julia; Schönfeld, Joachim

    2018-01-01

    This study reports for the first time boreal to subarctic intertidal foraminiferal assemblages from saltmarshes at Borgarnes and Faskrudsfjördur on Iceland. The composition of living and dead foraminiferal assemblages was investigated along transects from the tidal flat to the highest reach of halophytic plants. The foraminiferal assemblages from Borgarnes showed 18 species in the total foraminiferal assemblage of which only 7 species were recorded in the living fauna. The assemblages were dominated by agglutinated taxa, whereas 3 calcareous species were recorded, of which only Haynesina orbicularis was found in the living fauna. The distribution limit of calcifying species corresponds to the lower boundary of the lower saltmarsh vegetation zone. Furthermore, calcareous tests showed many features of dissolution, which is an indication of a carbonate corrosive environment. The species forming the dead assemblages were mainly derived from the ambient intertidal areas and were displaced by tidal currents into the saltmarsh. The foraminiferal assemblages from Faskrudsfjördur showed two species, of which only one species was recorded in the living fauna. The assemblage was dominated by the agglutinated foraminifer Trochaminita irregularis. The foraminiferal species recorded on Iceland were the same as commonly found elsewhere in Europa. Since no species was found which is endemic to North America, Iceland is considered part of the European bio province. The foraminiferal could have been immigrated to Iceland from Europe through warm water currents, migratory birds or marine traffic since the last Ice Age.

  7. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin.

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire

    2017-04-01

    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif

  8. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and

  9. Rift brittle deformation of SE-Brazilian continental margin: Kinematic analysis of onshore structures relative to the transfer and accommodation zones of southern Campos Basin

    NASA Astrophysics Data System (ADS)

    Savastano, Vítor Lamy Mesiano; Schmitt, Renata da Silva; Araújo, Mário Neto Cavalcanti de; Inocêncio, Leonardo Campos

    2017-01-01

    High-resolution drone-supported mapping and traditional field work were used to refine the hierarchy and kinematics of rift-related faults in the basement rocks and Early Cretaceous mafic dikes onshore of the Campos Basin, SE-Brazil. Two sets of structures were identified. The most significant fault set is NE-SW oriented with predominantly normal displacement. At mesoscale, this fault set is arranged in a rhombic pattern, interpreted here as a breached relay ramp system. The rhombic pattern is a penetrative fabric from the thin-section to regional scale. The second-order set of structures is an E-W/ESE-WNW system of normal faults with sinistral component. These E-W structures are oriented parallel with regional intrabasinal transfer zones associated with the earliest stages of Campos Basin's rift system. The crosscutting relationship between the two fault sets and tholeiitic dikes implies that the NE-SW fault set is the older feature, but remained active until the final stages of rifting in this region as the second-order fault set is older than the tholeiitic dikes. Paleostresses estimated from fault slip inversion method indicated that extension was originally NW-SE, with formation of the E-W transfer, followed by ESE-WNW oblique opening associated with a relay ramp system and related accommodation zones.

  10. Structural interpretation of El Hierro (Canary Islands) rifts system from gravity inversion modelling

    NASA Astrophysics Data System (ADS)

    Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.

    2017-08-01

    Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.

  11. Structural geology of the African rift system: Summary of new data from ERTS-1 imagery. [Precambrian influence

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated.

  12. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea East Rift Zone geothermal area, Hawaii

    USGS Publications Warehouse

    Bargar, K.E.; Keith, T.E.C.; Trusdell, F.A.

    1995-01-01

    Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and anhydrite from several depths in three scientific observation holes drilled along the lower East Rift Zone of Kilauea volcano, Hawaii. Comparison of measured drill-hole temperatures with fluid-inclusion homogenization-temperature (Th) data indicates that only about 15% of the fluid inclusions could have formed under the present thermal conditions. The majority of fluid inclusions studied must have formed during one or more times in the past when temperatures fluctuated in response to the emplacement of nearby dikes and their subsequent cooling. -from Authors

  13. Analysis of the Junction of the East African Rift and the Cretaceous-Paleogene Rifts in Northern Kenya and Southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Mariita, N. O.; Tadesse, K.; Keller, G. R.

    2003-12-01

    The East African rift (EAR) is a Tertiary-Miocene system that extends from the Middle East, through East Africa, to Mozambique in southern Africa. Much of the present information is from the Ethiopian and Kenyan parts of the rift. Several characteristics of the EAR such as rift-related volcanism, faulting and topographic relief being exposed make it attractive for studying continental rift processes. Structural complexities reflected in the geometries of grabens and half-grabens, the existence of transverse fault zones and accommodation zones, and the influence of pre-existing geologic structures have been documented. In particular, the EAR traverses the Anza graben and related structures near the Kenya/Ethiopian border. The Anza graben is one in a series of Cretaceous-Paleogene failed rifts that trend across Central Africa from Nigeria through Chad to Sudan and Kenya with an overall northwest-southeast trend. In spite of a number of recent studies, we do not understand the interaction of these two rift systems. In both Ethiopia and Kenya, the rift segments share some broad similarities in timing and are related in a geographic sense. For example, volcanism appears to have generally preceded or in some cases have been contemporaneous with major rift faulting. Although, these segments are distinct entities, each with its own tectonic and magmatic evolution, and they do connect in the region crossed by the Anza graben and related structures. In our present study, we are using a combination of recently collected seismic, gravity and remote sensing data to increase our understanding of these two segments of the EAR. We hope that by analysing the satellite data, the variety and differences in the volume of magmatic products extruded along in southern Ethiopia and northern Kenya will be identified. The geometry of structures (in particular, those causing the gravity axial high) will be modelled to study the impact of the older Anza graben structural trends with the

  14. Deformation signals from InSAR time series analysis related to the 2007 and 2011 east rift zone intrusions at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Baker, S.; Amelung, F.

    2011-12-01

    Located on the Big Island of Hawaii, Kilauea volcano is one of the most active volcanoes on Earth with continuous eruptive activity since 1983. The eruptive activity is predominately from the Pu'u O'o vent within the east rift zone, but periodic intrusions occur in the upper east rift zone between the summit and Pu'u O'o. These intrusions occur as dikes typically accompanied by fissure openings and eruptions of small volumes of lava. Interferometric synthetic aperture radar (InSAR) provides surface displacement measurements showing how the ground moves before, during, and after these intrusions. Given the recent increase in the number of active or planned SAR satellites and the more frequent repeat-pass times, InSAR is proving to be a valuable monitoring tool for volcanic hazards. Using data from Radarsat-1, Envisat, ALOS, and TerraSAR-X satellites, we generate line-of-sight InSAR time series using the small baseline subset (SBAS) which provides dense spatial and temporal coverage at Kilauea covering the 17 June 2007 and 5 March 2011 intrusions. For these two events, the summit caldera area switches from deflation to inflation months to years before both intrusions, and just prior to the intrusions we observe increased rates of inflation accompanied by elevated seismic activity in the upper east rift zone. Observations of the intrusion relate surface displacement and the response of the summit caldera area provide insight into the shallow magmatic system and the connectivity of the system. By combining InSAR time series with other geophysical data sets (such as seismic or GPS), we obtain more details about the associated hazard and a better understanding of the time-dependent relationship between what we are measuring and the controlling processes at the volcano.

  15. Neogene Rift Propagation of the East African Rift System (EARS) into Central Africa and its Implications: Tectonic, Topographic and Geomorphic Impacts of the Luangwa and Luapula Rift Valleys on the Upper Congo Drainage Basin, Lake Bangweulu Wetlands and the Development of the Diffuse Southwestern Tip of the EARS.

    NASA Astrophysics Data System (ADS)

    Daly, M. C.; Watts, A. B.

    2017-12-01

    Integration of geomorphology, seismic reflection and gravity data, seismicity, DEM analysis and modelling defines a zone of NE/SW trending rifts extending into Central and SW Africa, orthogonal to the conventionally defined East African Rift System (EARS). These large-scale tectonic features have a relatively low level of seismicity and volcanism compared to the EARS, yet they generate significant topography and control the upper Congo drainage basin. They may also represent the beginning of an active but diffuse plate boundary developing to the southwest across Central Africa. The dominant feature of this broad zone is the Luangwa Rift Valley of eastern Zambia. Seismic reflection data show the Luangwa Rift developed as a thick ( 5km) Permo-Triassic basin. Inverted in the Mesozoic, it then experienced major Neogene extensional reactivation. The latter resulted in today's major border faults of varying polarity, with fault plane escarpments of up to 1000m, and associated rift flank uplifts that elevate the Central African plateau surface by 200 m. Late Miocene alluvial fans indicate a minimum age for the initiation of reactivation. Although having similar structural features to the EARS, the Luangwa Rift has a lower level of active seismicity and volcanism. 400 km northwest of the Luangwa, the north/south Luapula rift valley passes into the NE trending Mweru and Mweru Wantipa rift lakes. Pronounced border faults and fault terraces mark the NW and SE margins of these shallow lakes. Between the Luangwa and Luapula rift valleys lies the extensive upper Congo drainage basin of the Chambeshi river and the Lake Bangweulu wetlands. DEM mapping of topography from the Luangwa rift to the Luapula-Mweru Wantipa rift shows a low amplitude, large wavelength flexure of the Central African plateau surface compatible with an effective elastic thickness of 35 km. This regional warping controls the location and shape of the Chambeshi drainage basin and the Lake Bangweulu Wetlands

  16. Sedimentology of rift climax deep water systems; Lower Rudeis Formation, Hammam Faraun Fault Block, Suez Rift, Egypt

    NASA Astrophysics Data System (ADS)

    Leppard, Christopher W.; Gawthorpe, Rob L.

    2006-09-01

    In most marine rift basins, subsidence outpaces sedimentation during rift climax times. Typically this results in sediment-starved hangingwall depocentres dominated by deep-marine mudstones, with subordinate local development of coarser clastics in the immediate hangingwall derived from restricted catchments on the immediate footwall scarp. To highlight the spatial variability of rift climax facies and the controls upon them, we have investigated the detailed three-dimensional geometry and facies relationships of the extremely well exposed Miocene, rift climax Lower Rudeis Formation in the immediate hangingwall to the Thal Fault Zone, Suez Rift, Egypt. Detailed sedimentological analyses allows the Lower Rudeis Formation to be divided into two contemporaneous depositional systems, (1) a laterally continuous slope system comprising, hangingwall restricted (< 250 m wide) slope apron, slope slumps, fault scarp degradation complex and laterally extensive lower slope-to-basinal siltstones, and (2) a localized submarine fan complex up to 1 km wide and extending at least 2 km basinward of the fault zone. Interpretation of individual facies, facies relationships and their spatial variability indicate that deposition in the immediate hangingwall to the Thal Fault occurred via a range of submarine concentrated density flows, surge-like turbidity flows, mass wasting and hemipelagic processes. Major controls on the spatial variability and stratigraphic architecture of the depositional systems identified reflect the influence of the steep footwall physiography, accommodation and drainage evolution associated with the growth of the Thal Fault. The under-filled nature of the hangingwall depocentre combined with the steep footwall gradient result in a steep fault-controlled basin margin characterised by either slope bypass or erosion, with limited coastal plain or shelf area. Sediment supply to the slope apron deposits is controlled in part by the evolution and size of small

  17. Seismic hazard of the Kivu rift (western branch, East African Rift system): new neotectonic map and seismotectonic zonation model

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi Mwene Ntabwoba, Stanislas; Fiama Bondo, Silvanos; Kervyn, François; Havenith, Hans-Balder

    2017-04-01

    The first detailed probabilistic seismic hazard assessment has been performed for the Kivu and northern Tanganyika rift region in Central Africa. This region, which forms the central part of the Western Rift Branch, is one of the most seismically active part of the East African rift system. It was already integrated in large scale seismic hazard assessments, but here we defined a finer zonation model with 7 different zones representing the lateral variation of the geological and geophysical setting across the region. In order to build the new zonation model, we compiled homogeneous cross-border geological, neotectonic and sismotectonic maps over the central part of East D.R. Congo, SW Uganda, Rwanda, Burundi and NW Tanzania and defined a new neotectonic sheme. The seismic risk assessment is based on a new earthquake catalogue, compiled on the basis of various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. From this initial catalogue, a catalogue of 359 events from 1956 to 2015 and with M > 4.4 has been extracted for the seismic hazard assessment. The seismotectonic zonation includes 7 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined using both the least square linear fit and the maximum likelihood method (Kijko & Smit aue program). Seismic hazard maps have been computed with the Crisis 2012 software using 3 different attenuation laws. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates (Delvaux et al., 2016). They vary laterally in function of the tectonic

  18. Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)

    NASA Astrophysics Data System (ADS)

    Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.

    2017-04-01

    The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.

  19. Guidebook to Rio Grande rift in New Mexico

    USGS Publications Warehouse

    Hawley, J.W.

    1978-01-01

    Discusses the details of geologic features along the rift zone. Included are short papers on topics relative to the overall region. These papers and the road logs are of special interest to any one pursuing further study of the rift. This book is a comprehensive guide to the middle and late Cenozoic geology of the Rio Grande region of Colorado and New Mexico. Though initially used on field trips for the International Symposium on Tectonics and Magmatism of the Rio Grande rift, the guidebook will be useful to anyone interested in the Cenozoic history of the 600-mi-long area extending from central Colorado to El Paso, Texas.

  20. A shifting rift—Geophysical insights into the evolution of Rio Grande rift margins and the Embudo transfer zone near Taos, New Mexico

    USGS Publications Warehouse

    Grauch, V.J.S.; Bauer, Paul W.; Drenth, Benjamin J.; Kelson, Keith I.

    2017-01-01

    We present a detailed example of how a subbasin develops adjacent to a transfer zone in the Rio Grande rift. The Embudo transfer zone in the Rio Grande rift is considered one of the classic examples and has been used as the inspiration for several theoretical models. Despite this attention, the history of its development into a major rift structure is poorly known along its northern extent near Taos, New Mexico. Geologic evidence for all but its young rift history is concealed under Quaternary cover. We focus on understanding the pre-Quaternary evidence that is in the subsurface by integrating diverse pieces of geologic and geophysical information. As a result, we present a substantively new understanding of the tectonic configuration and evolution of the northern extent of the Embudo fault and its adjacent subbasin.We integrate geophysical, borehole, and geologic information to interpret the subsurface configuration of the rift margins formed by the Embudo and Sangre de Cristo faults and the geometry of the subbasin within the Taos embayment. Key features interpreted include (1) an imperfect D-shaped subbasin that slopes to the east and southeast, with the deepest point ∼2 km below the valley floor located northwest of Taos at ∼36° 26′N latitude and 105° 37′W longitude; (2) a concealed Embudo fault system that extends as much as 7 km wider than is mapped at the surface, wherein fault strands disrupt or truncate flows of Pliocene Servilleta Basalt and step down into the subbasin with a minimum of 1.8 km of vertical displacement; and (3) a similar, wider than expected (5–7 km) zone of stepped, west-down normal faults associated with the Sangre de Cristo range front fault.From the geophysical interpretations and subsurface models, we infer relations between faulting and flows of Pliocene Servilleta Basalt and older, buried basaltic rocks that, combined with geologic mapping, suggest a revised rift history involving shifts in the locus of fault activity as

  1. Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts

    NASA Astrophysics Data System (ADS)

    Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-12-01

    We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.

  2. The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon

    USGS Publications Warehouse

    McKay, Daniele; Donnelly-Nolan, Julie M.; Jensen, Robert A.; Champion, Duane E.

    2009-01-01

    The northwest rift zone (NWRZ) eruption took place at Newberry Volcano ~7000 years ago after the volcano was mantled by tephra from the catastrophic eruption that destroyed Mount Mazama and produced the Crater Lake caldera. The NWRZ eruption produced multiple lava flows from a variety of vents including cinder cones, spatter vents, and fissures, possibly in more than one episode. Eruptive behaviors ranged from energetic Strombolian, which produced significant tephra plumes, to low-energy Hawaiian-style. This paper summarizes and in part reinterprets what is known about the eruption and presents information from new and ongoing studies. Total distance spanned by the eruption is 32 km north-south. The northernmost flow of the NWRZ blocked the Deschutes River upstream from the city of Bend, Oregon, and changed the course of the river. Renewed mafic activity in the region, particularly eruptions such as the NWRZ with tephra plumes and multiple lava flows from many vents, would have significant impacts for the residents of Bend and other central Oregon communities.

  3. Significant Shear Preceded Rupture in the Oblique Gulf of California Rift

    NASA Astrophysics Data System (ADS)

    Bennett, S. E.; Oskin, M. E.

    2011-12-01

    Significant shear deformation during the early history of a rift may profoundly affect the efficiency and success of lithospheric rupture and formation of a new ocean basin. The active Gulf of California (GOC) rift is well suited to study the role of rift obliquity in continental rupture. Transtensional strain in the GOC is accommodated along en-echelon pull-apart basins bounded by dip-slip and oblique-slip faults and linked by strike-slip faults and accommodation zones. Lithospheric rupture is well documented at ca. 6 Ma when >90% of Pacific-North American relative plate motion localized into the GOC. In the northern GOC, the eastern rift margin of the Upper Delfín-Upper Tiburón rift segment preserves an onshore record of the earliest phase of this localization process. Two NW-striking shear zones bound this rift segment, spaced ~37 km apart. Our geologic mapping, paleomagnetic measurements, and geochronology of pre-rift and syn-rift volcanic and sedimentary rocks provide timing and displacement constraints for these shear zones. The Coastal Sonora Fault Zone, exposed on northeast Isla Tiburón and in adjacent coastal Sonora, helped form and then truncate transtensional non-marine basins beginning ca. 7 Ma. On northeast Isla Tiburón, Tertiary units do not match across the ~10 km long Yawassag fault, providing a minimum estimate for total dextral displacement. In coastal Sonora, we document ~12 km of discrete dextral displacement, clockwise block rotations up to 53°, and up to 75% extension that together accommodated 15.7 km of transtensional strain towards azimuth 294° over a 1 Myr period. These estimates do not include tens of kilometers of dextral displacement on the Sacrificio fault that bounds the NE side of this shear zone. The southern of the two shear zones is the La Cruz fault, which transects southern Isla Tiburón. Associated dextral transpression and transtension formed the elongate Southwest Isla Tiburón-Sauzal basin. This basin transitions from

  4. The 1973 Ethiopian-Rift geodimeter survey

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    Remeasurement of the Adama, Lake Langana, and Arba Minch (Lake Margherita) geodimeter networks in 1973 has enabled Mohr's interpretation concerning possible surface ground deformation in the Ethiopian rift to be considerably developed. Extension appears to have occurred across the Mojjo-Adama horst at a rate of about 1 cm yr/1. The opposing rims of the Adama graben have not moved significantly relative to one another (between 1969 and 1973), but stations on the sliced graben floor show possible movement with a large rift-trend component. In the Wolenchiti quadrilateral, significant movement of station RABBIT is confirmed, but the radical change of vector (that of 1970-1971 to that of 1971-1973) casts doubt on a tectonic cause and seems to indicate that stations on steep hillslopes are liable to be unstable. South of the quadrilateral and east of the Adama graben, alternating rift-trend zones of extension and shortening appear to coexist. In the Lake Langana network, significant movements of the order of 0.5 cm yr/1 are directed perpendicular to the rift floor faulting.

  5. Iceland - Troubled Ally

    DTIC Science & Technology

    1974-05-01

    Thorarinsson, "Population Changes in Iceland," The Geographical Review, October 1961, p. 519. 14. Ibid. 15. B-jorn Thordarson , "Iceland, Past and Present...1966, p. 182 66. Bjorn Thordarson , "Iceland, Past and Present," Oxford, London, 1945. 67. Ibid., p. 12. 68. Ibid., p. 14. 69. Ibid., p. 15. 70

  6. Strain Anomalies during an Earthquake Sequence in the South Iceland Seismic Zone

    NASA Astrophysics Data System (ADS)

    Arnadottir, T.; Haines, A. J.; Geirsson, H.; Hreinsdottir, S.

    2017-12-01

    The South Iceland Seismic Zone (SISZ) accommodates E-W translation due to oblique spreading between the North American/Hreppar microplate and Eurasian plate, in South Iceland. Strain is released in the SISZ during earthquake sequences that last days to years, at average intervals of 80-100 years. The SISZ is currently in the midst of an earthquake sequence that started with two M6.5 earthquakes in June 2000, and continued with two M6 earthquakes in May 2008. Estimates of geometric strain accumulation, and seismic strain release in these events indicate that they released at most only half of the strain accumulated since the last earthquake cycle in 1896-1912. Annual GPS campaigns and continuous measurements during 2001-2015 were used to calculate station velocities and strain rates from a new method using the vertical derivatives of horizontal stress (VDoHS). This new method allows higher resolution of strain rates than other (older) approaches, as the strain rates are estimated by integrating VDoHS rates obtained by inversion rather than differentiating interpolated GPS velocities. Estimating the strain rates for eight 1-2 year intervals indicates temporal and spatial variation of strain rates in the SISZ. In addition to earthquake faulting, the strain rates in the SISZ are influenced by anthropogenic signals due to geothermal exploitation, and magma movements in neighboring volcanoes - Hekla and Eyjafjallajökull. Subtle signals of post-seismic strain rate changes are seen following the June 2000 M6.5 main shocks, but interestingly, much larger strain rate variations are observed after the two May 2008 M6 main shocks. A prominent strain anomaly is evident in the epicentral area prior to the May 2008 earthquake sequence. The strain signal persists over at least 4 years in the epicentral area, leading up to the M6 main shocks. The strain is primarily extension in ESE-WNW direction (sub-parallel to the direction of plate spreading), but overall shear across the N

  7. Catalogue of Icelandic Volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrún; Gudmundsson, Magnús T.; Vogfjörd, Kristin; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Pagneux, Emmanuel; Barsotti, Sara; Karlsdóttir, Sigrún; Bergsveinsson, Sölvi; Oddsdóttir, Thorarna

    2017-04-01

    The Catalogue of Icelandic Volcanoes (CIV) is a newly developed open-access web resource (http://icelandicvolcanoes.is) intended to serve as an official source of information about volcanoes in Iceland for the public and decision makers. CIV contains text and graphic information on all 32 active volcanic systems in Iceland, as well as real-time data from monitoring systems in a format that enables non-specialists to understand the volcanic activity status. The CIV data portal contains scientific data on all eruptions since Eyjafjallajökull 2010 and is an unprecedented endeavour in making volcanological data open and easy to access. CIV forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the European Union funded effort FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. The supersite concept implies integration of space and ground based observations for improved monitoring and evaluation of volcanic hazards, and open data policy. This work is a collaboration of the Icelandic Meteorological Office, the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere.

  8. Differentiation and magma mixing on Kilauea's east rift zone: A further look at the eruptions of 1955 and 1960. Part II. The 1960 lavas

    USGS Publications Warehouse

    Wright, T.L.; Helz, R.T.

    1996-01-01

    New and detailed petrographic observations, mineral compositional data, and whole-rock vs glass compositional trends document magma mixing in lavas erupted from Kilauea's lower east rift zone in 1960. Evidence includes the occurrence of heterogeneous phenocryst assemblages, including resorbed and reversely zoned minerals in the lavas inferred to be hybrids. Calculations suggest that this mixing, which is shown to have taken place within magma reservoirs recharged at the end of the 1955 eruption, involved introduction of four different magmas. These magmas originated beneath Kilauea's summit and moved into the rift reservoirs beginning 10 days after the eruption began. We used microprobe analyses of glass to calculate temperatures of liquids erupted in 1955 and 1960. We then used the calculated proportions of stored and recharge components to estimate the temperature of the recharge components, and found those temperatures to be consistent with the temperature of the same magmas as they appeared at Kilauea's summit. Our studies reinforce conclusions reached in previous studies of Kilauea's magmatic plumbing. We infer that magma enters shallow storage beneath Kilauea's summit and also moves laterally into the fluid core of the East rift zone. During this process, if magmas of distinctive chemistry are present, they retain their chemical identity and the amount of cooling is comparable for magma transported either upward or laterally to eruption sites. Intrusions within a few kilometers of the surface cool and crystallize to produce fractionated magma. Magma mixing occurs both within bodies of previously fractionated magma and when new magma intersects a preexisting reservoir. Magma is otherwise prevented from mixing, either by wall-rock septa or by differing thermal and density characteristics of the successive magma batches.

  9. Mantle Flow Across the Baikal Rift Constrained With Integrated Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; Meier, T.; van der Hilst, R. D.

    2005-12-01

    The Baikal Rift is located at the boundary of the stable Siberian Craton and deforming central Mongolia. The origin of the late Cenozoic rifting and volcanism are debated, as is the mantle flow beneath the rift zone. Here we combine new evidence from azimuthally-anisotropic upper-mantle tomography and from a radially-anisotropic inversion of interstation surface-wave dispersion curves with previously published shear-wave-splitting measurements of azimuthal anisotropy across the rift (Gao et al. 1994). While our tomographic model maps isotropic and anisotropic shear-velocity heterogeneity globally, the inversion of interstation phase-velocity measurements produces a single, radially-anisotropic, shear-velocity profile that averages from the rift to 500 km SE of it. The precision and the broad band (8-340 s) of the Rayleigh and Love wave curves ensures high accuracy of the profile. Tomography and shear-wave splitting both give a NW-SE fast direction (perpendicular to the rift) in the vicinity of the rift, changing towards W-E a few hundred kilometers from it. Previously, this has been interpreted as evidence for mantle flow similar to that beneath mid-ocean ridges, with deeper vertical flow directly beneath the rift also proposed. Our radially anisotropic profile, however, shows that while strong anisotropy with SH waves faster than SV waves is present in the thin lithosphere and upper asthenosphere beneath and SE of the rift, no anisotropy is required below 110 km. The tomographic model shows thick cratonic lithosphere north of the rift. These observations suggest that instead of a flow diverging from the rift axis in NW and SE directions, the most likely pattern is the asthenospheric flow in SE direction from beneath the Siberian lithosphere and across the rift. Possible driving forces of the flow are large-scale lithospheric deformation in East Asia and the draining of asthenosphere at W-Pacific subduction zones; a plume beneath the Siberian craton also cannot be

  10. Results From a Borehole Seismometer Array I: Microseismicity at a Productive Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Shalev, E.; Malin, P.; Kaleikini, M.; Dahl, G.

    2008-12-01

    Borehole seismometer arrays have proven successful in both the exploration and monitoring of geothermal fields. Because the seismometers are located at depth, they are isolated from human noise and record microearthquakes with clearly identifiable seismic phases that can be used for event location. Further analysis of these events can be used to resolve earthquake clouds into identifiable faults. The local fault and dike structures in Puna, in southeastern Hawaii, are of interest both in terms of electricity production and volcanic hazard monitoring. The geothermal power plant at Puna has a 30MW capacity and is built on a section of the Kilauea Lower East Rift Zone where lava flows erupted as recently as 1955. In order to improve seismic monitoring in this area, we installed eight 3-component borehole seismometers. The instrument depths range from 24 to 210 m (80 to 690 ft); the shallower instruments have 2 Hz geophones and the deepest have 4.5 Hz geophones. The seismometers are located at the vertices of two rhombs, 2 km wide x 4 km long and 4 km wide x 8 km long, both centered at the power plant. Since June 2006, we have located >4500 earthquakes; P- and S-wave arrivals were hand picked and events located using Hypoinverse-2000. Most of the earthquakes occurred at depths between 2.5 and 3 km. The large majority of events were M-0.5 to M0.5; the Gutenberg-Richter b-value is 1.4, which is consistent with microearthquake swarms. Frequency analysis indicates a 7-day periodicity; a Schuster diagram confirms increased seismicity on a weekly cycle. The location, depth, and period of the microearthquakes suggest that power plant activity affects local seismicity. Southwest of the geothermal facility, up-rift towards the Kilauea summit, earthquakes were progressively deeper at greater distances. Depths also increased towards the south, which is consistent with the eastern extension of the south-dipping, east-striking Hilina fault system. To the northeast, down-rift of the

  11. Lava Flow Hazard Assessment, as of August 2007, for Kilauea East Rift Zone Eruptions, Hawai`i Island

    USGS Publications Warehouse

    Kauahikaua, Jim

    2007-01-01

    The most recent episode in the ongoing Pu'u 'O'o-Kupaianaha eruption of Kilauea Volcano is currently producing lava flows north of the east rift zone. Although they pose no immediate threat to communities, changes in flow behavior could conceivably cause future flows to advance downrift and impact communities thus far unaffected. This report reviews lava flow hazards in the Puna District and discusses the potential hazards posed by the recent change in activity. Members of the public are advised to increase their general awareness of these hazards and stay up-to-date on current conditions.

  12. Facies Relationships and Emplacement History of the 2014-2015 Eruption at Holuhraun, Iceland

    NASA Astrophysics Data System (ADS)

    Voigt, Joana; Hamilton, Christopher W.; Scheidt, Stephen P.; Jónsdóttir, Ingibjörg; Höskuldsson, Ármann; Þórðarson, Þorvaldur

    2017-04-01

    The 2014-15 eruption at Holuhraun is the largest flood lava flow emplaced in Iceland since the Laki eruption in 1783-1784. The 2014-15 event extruded approximately 1.46 cubic kilometers of lava (= 1.1-1.2 cubic kilometers calculated as dense rock equivalent) [1, 2] from August 2014 to February 2015 and covered an area of 83.5 square kilometers. This exceeds the volume magma erupted from Kilauea Volcano during the past decade. Studying the products of such a large and recent eruption provides unique insights into the emplacement of flood lavas, which are infrequent in the modern geologic record. The 2014-15 lava flow at Holuhraun therefore offers an ideal study area for examining lava flow textures (i.e., facies) that are unaffected by modification processes induced by running water, aeolian sedimentation, and vegetation. To achieve our aim in investigating the different facies and the emplacement history we used three approaches: 1) Analysis of remote sensing data obtained using Unmanned Aerial Vehicle (UAVs) at resolutions of 1-4 cm per pixel and used to generate 4-20 cm per pixel Digital Terrain Models (DTMs). 2) In-situ field observations establish detailed descriptions of the different facies and their relationships to one and another along the flow margin and accessible contact zones within the interior of the lava field. 3) Compilation of this information into a geospatial database in ArcGIS to compare the known eruption chronology to the different facies. The final orthomosaics and DTMs enable us to identify and map out lava types that make up the flow field and are known to span the spectrum from aā to pāhoehoe morphologies, including subtypes such as spiny, slabby and rubbly pāhoehoe [3]. Furthermore, we also investigate structures specific to individual lava types, such as linear compressional ridges and extensional rifts, platy-ridged pattern, wavelike form, spirals/roses and inflation features including lava rise pits and wedges. The results provide

  13. The Afar-Red Sea-Gulf of Aden volcanic margins system : early syn-rift segmentation and tectono-magmatic evolution

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled

    2017-04-01

    The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.

  14. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burtchard, G.C.; Moblo, P.

    1994-07-01

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`smore » occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.« less

  15. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows

  16. Magma-assisted rifting in Ethiopia.

    PubMed

    Kendall, J-M; Stuart, G W; Ebinger, C J; Bastow, I D; Keir, D

    2005-01-13

    The rifting of continents and evolution of ocean basins is a fundamental component of plate tectonics, yet the process of continental break-up remains controversial. Plate driving forces have been estimated to be as much as an order of magnitude smaller than those required to rupture thick continental lithosphere. However, Buck has proposed that lithospheric heating by mantle upwelling and related magma production could promote lithospheric rupture at much lower stresses. Such models of mechanical versus magma-assisted extension can be tested, because they predict different temporal and spatial patterns of crustal and upper-mantle structure. Changes in plate deformation produce strain-enhanced crystal alignment and increased melt production within the upper mantle, both of which can cause seismic anisotropy. The Northern Ethiopian Rift is an ideal place to test break-up models because it formed in cratonic lithosphere with minor far-field plate stresses. Here we present evidence of seismic anisotropy in the upper mantle of this rift zone using observations of shear-wave splitting. Our observations, together with recent geological data, indicate a strong component of melt-induced anisotropy with only minor crustal stretching, supporting the magma-assisted rifting model in this area of initially cold, thick continental lithosphere.

  17. Rayleigh Wave Tomography of Mid-Continent Rift (MCR) using Earthquake and Ambient Noise Data

    NASA Astrophysics Data System (ADS)

    Aleqabi, G. I.; Wiens, D.; Wysession, M. E.; Shen, W.; van der Lee, S.; Revenaugh, J.; Frederiksen, A. W.; Darbyshire, F. A.; Stein, S. A.; Jurdy, D. M.; Wolin, E.; Bollmann, T. A.

    2015-12-01

    The structure of the North American Mid-Continent Rift Zone (MCRZ) is examined using Rayleigh waves from teleseismic earthquakes and ambient seismic noise recorded by the Superior Province Rifting EarthScope Experiment (SPREE). Eighty-four broadband seismometers were deployed during 2011-2013 in Minnesota and Wisconsin, USA, and Ontario, CA, along three lines; two across the rift axis and the third along the rift axis. These stations, together with the EarthScope Transportable Array, provided excellent coverage of the MCRZ. The 1.1 Ga Mesoproterozoic failed rift consists of two arms, buried under post-rifting sedimentary formations that meet at Lake Superior. We compare two array-based tomography methods using teleseismic fundamental mode Rayleigh waves phase and amplitude measurements: the two-plane wave method (TPWM, Forsyth, 1998) and the automated surface wave phase velocity measuring system (ASWMS, Jin and Gaherty, 2015). Both array methods and the ambient noise method give relatively similar results showing low velocity zones extending along the MCRZ arms. The teleseismic Rayleigh wave results from 18 - 180 s period are combined with short period phase velocity results (period 8-30 s) obtained from ambient noise by cross correlation. Phase velocities from the methods are very similar at periods of 18-30 where results overlap; in this period range we use the average of the noise and teleseismic results. Finally the combined phase velocity curve is inverted using a Monte-Carlo inversion method at each geographic point in the model. The results show low velocities at shallow depths (5-10 km) that are the result of very deep sedimentary fill within the MCRZ. Deeper-seated low velocity regions may correspond to mafic underplating of the rift zone.

  18. Catalogue of Icelandic Volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  19. An inventory survey at the site of the proposed Kilauea Middle East Rift Zone (KMERZ), Well Site No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Joseph

    1991-03-01

    At the request of True Mid Pacific Geothermal, Archaeological Consultants of Hawaii, Inc. has conducted an inventory survey at the site of the proposed Kilauea Middle East Rift Zone (KMERZ), Well Site No.2, TMK: 1-2-10:3. The Principal Investigator was Joseph Kennedy M.A., assisted by Jacob Kaio, Field Supervisor and field crew Mark Borrello B.A., Michael O'Shaughnessy B.A., and Randy Adric. This report supercedes all previous reports submitted to the Historic Presentation Section of the Department of Land and Natural Resources. In addition to 100% surface coverage of the 400 x 400 foot well pad itself, 100% surface coverage of amore » substantial buffer zone was also completed. This buffer zone was established by the Department of Land and Natural Resources, Historic Preservation personnel and extends 1000 feet east and west of the well site and 500 feet north and south of the well site.« less

  20. The South China sea margins: Implications for rifting contrasts

    USGS Publications Warehouse

    Hayes, D.E.; Nissen, S.S.

    2005-01-01

    Implications regarding spatially complex continental rifting, crustal extension, and the subsequent evolution to seafloor spreading are re-examined for the northern and southern-rifted margins of the South China Sea. Previous seismic studies have shown dramatic differences in the present-day crustal thicknesses as the manifestations of the strain experienced during the rifting of the margin of south China. Although the total crustal extension is presumed to be the same along the margin and adjacent ocean basin, the amount of continental crustal extension that occurred is much less along the east and central segments of the margin than along the western segment. This difference was accommodated by the early formation of oceanic crust (creating the present-day South China Sea basin) adjacent to the eastern margin segment while continued extension of continental crust was sustained to the west. Using the observed cross-sectional areas of extended continental crust derived from deep penetration seismics, two end-member models of varying rift zone widths and varying initial crustal thicknesses are qualitatively examined for three transects. Each model implies a time difference in the initiation of seafloor spreading inferred for different segments along the margin. The two models examined predict that the oceanic crust of the South China Sea basin toward the west did not begin forming until sometime between 6-12 my after its initial formation (???32 Ma) toward the east. These results are compatible with crustal age interpretations of marine magnetic anomalies. Assuming rifting symmetry with conjugate margin segments now residing along the southern portions of the South China Sea basin implies that the total width of the zone of rifting in the west was greater than in the east by about a factor of two. We suggest the most likely causes of the rifting differences were east-west variations in the rheology of the pre-rift crust and associated east-west variations in the

  1. Post-extension shortening strains preserved in calcites of the Keweenawan rift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, K.; Craddock, J.; McGovern, M.

    1993-02-01

    The Keweenawan rift is part of failed triple junction system that underlies Lake Superior and the Michigan Basin. The rift experienced extensional stresses dating about 1.1 Ga, which were followed by compressional stresses from about 1,060 Ma to < 350 Ma. Associated with the rift are two thrust faults: the Douglas (dipping southeast) and the Keweenawan-Lake Owen (dipping northwest). To determine the direction of rifting, calcite twins were used to calculate strain ellipsoids (Groshong method) which are indicative of the intensity and direction of the stress applied to a rocks in a region at a given time. Rock samples whichmore » contain significant calcite within the zone of rifting were collected, slabbed, and made into thin sections. Calcite appears as amygdule, vein, and cement filings, as well as limestones. Analyses show that different calcite types show different stain orientations. Two principle directions of sub-horizontal shortening are present: one parallel to rift, and one normal to the rift, indicating that rifting motion varied out the time in which different calcite types were deposited. Shortening parallel to the rift is seen predominantly on the western margin while shortening normal to the rift is seen predominantly on the eastern margin.« less

  2. The evolving contribution of border faults and intra-rift faults in early-stage East African rifts: insights from the Natron (Tanzania) and Magadi (Kenya) basins

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Kattenhorn, S. A.; Dindi, E.; Gama, R.

    2013-12-01

    faults pervasively dissect 1.2-0.8 Ma trachyte lavas. Unlike Natron, intra-rift faults in the Magadi basin exhibit primarily steep, little-degraded fault scarps, implying greater activity than Natron intra-rift faults. Numerous fault-associated springs feed water into perennial Lake Magadi, which has no surface drainage input, yet survives despite a high evaporation rate that has created economically viable evaporite deposits. Calcite vein-filled joints are common along fault zones around Lake Magadi, as well as several cm veins around columnar joints that imply isotropic expansion of the fracture network under high pressures of CO2-rich fluids. Our work indicates that the locus of strain in this portion of the EAR transfers from the border fault to the center of the rift basin some time between 3 and 7 million years after rift initiation. This transition likely reflects the evolving respective roles of crustal flexure and magma budget in focusing strain, as well as the hydrothermal fluid budget along evolving fault zones.

  3. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    USGS Publications Warehouse

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the

  4. The mesoproterozoic midcontinent rift system, Lake Superior region, USA

    USGS Publications Warehouse

    Ojakangas, R.W.; Morey, G.B.; Green, J.C.

    2001-01-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ??? 1109-1087 Ma, the age span of the most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance. ?? 2001 Elsevier Science B.V. All rights reserved.

  5. The Iceland Deep Drilling Project 4.5 km deep well, IDDP-2, in the seawater-recharged Reykjanes geothermal field in SW Iceland has successfully reached its supercritical target

    NASA Astrophysics Data System (ADS)

    Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-11-01

    The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP

  6. The geology and geophysics of the Oslo rift

    NASA Technical Reports Server (NTRS)

    Ruder, M. E.

    1981-01-01

    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided.

  7. Lithospheric drip magmatism and magma-assisted rifting: a case study in the Western Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Pitcavage, E.; Furman, T.; Nelson, W. R.

    2017-12-01

    The East African Rift System (EARS) is earth's largest continental divergent boundary and an unparalleled natural laboratory for understanding magmatism related to successful continental rifting. Classic views of continental rifting suggest that faulting and extension are facilitated by ascending magmas that weaken the lithosphere thermally and structurally within basin-bounding accommodation zones. In the EARS Western Rift (WR), many volcanic fields are not aligned along rift-bounding faults, and magma compositions lack evidence for asthenospheric inputs expected along lithosphere-penetrating fault systems. We note that compositional input from the Cenozoic Afar mantle plume is not recognized convincingly in WR mafic alkaline lavas1. Rather, magma compositions demonstrate significant input from anciently metasomatized sub-continental lithospheric mantle (SCLM). Destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide, producing volatile-rich, alkaline volcanics when drips of foundered SCLM devolatilize and melt on descent. This magmatism can lead to faulting: the lithospheric thinning that results from this process may play a role in physical aspects of rifting, contrasting with faulting facilitated by asthenospheric melts. Geochemical and geophysical evidence indicates that drip magmatism has occurred in several EARS provinces, including Turkana, Chyulu Hills, and in Afar2 where it is geographically coincident with successful rifting. We present bulk geochemical data that suggest drip melting of metasomatized SCLM is occurring in several WR volcanic fields. We focus on Bufumbira (Uganda), where mafic lavas are derived from garnet+phlogopite+amphibole+zircon-bearing pyroxenite, indicating a deep metasomatized SCLM source. Isotopic and trace element data suggest that extent of melting increased with depth of melting, a signature of lithospheric drip. We propose that drip magmatism is an important

  8. Exploring Crustal Structure and Mantle Seismic Anisotropy Associated with the Incipient Southern and Southwestern Branches of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; Chindandali, P. R. N.; Moidaki, M.; Mutamina, D. M.

    2014-12-01

    In spite of numerous geoscientific studies, the mechanisms responsible for the initiation and development of continental rifts are still poorly understood. The key information required to constrain various geodynamic models on rift initiation can be derived from the crust/mantle structure and anisotropy beneath incipient rifts such as the Southern and Southwestern branches of the East African Rift System. As part of a National Science Foundation funded interdisciplinary project, 50 PASSCAL broadband seismic stations were deployed across the Malawi, Luangwa, and Okavango rift zones from the summer of 2012 to the summer of 2014. Preliminary results from these 50 SAFARI (Seismic Arrays for African Rift Initiation) and adjacent stations are presented utilizing shear-wave splitting (SWS) and P-S receiver function techniques. 1109 pairs of high-quality SWS measurements, consisting of fast polarization orientations and splitting times, have been obtained from a total of 361 seismic events. The results demonstrate dominantly NE-SW fast orientations throughout Botswana as well as along the northwestern flank of the Luangwa rift valley. Meanwhile, fast orientations beneath the eastern Luangwa rift flank rotate from NNW to NNE along the western border of the Malawi rift. Stations located alongside the western Malawi rift border faults yield ENE fast orientations, with stations situated in Mozambique exhibiting more E-W orientations. In the northern extent of the study region, fast orientations parallel the trend of the Rukwa and Usangu rift basins. Receiver function results reveal that, relative to the adjacent Pan-African mobile belts, the Luangwa rift zone has a thin (30 to 35 km) crust. The crustal thickness within the Okavango rift basin is highly variable. Preliminary findings indicate a northeastward thinning along the southeast Okavango border fault system congruent with decreasing extension toward the southwest. The Vp/Vs measurements in the Okavango basin are roughly

  9. Two-stage magmatism during the evolution of the transitional Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Cornwell, D. G.; England, R. W.; Maguire, P. K.; Kendall, M.; Stuart, G. W.

    2008-12-01

    The Ethiopian rift marks the transition between continental rifting and incipient seafloor spreading. The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) included a 400 km-long cross-rift profile with 97 broadband passive seismometers with the aim to investigate the change from mechanical to magmatic extension by defining the lithospheric structure and extent of magmatism beneath the rift. Complimentary studies of P-wave receiver functions, shear-wave splitting and teleseismic earthquake arrival times show that the lithospheric structure is inherently different beneath the north-western rift flank, rift valley and south- eastern rift flank, with contrasting crustal thickness and composition, upper mantle velocity and lithospheric anisotropy. Two stages of magmatic addition are interpreted: 1) a 6--18 km-thick underplate lens at the base of the crust, which probably formed synchronous with an Oligocene flood basalt event (and therefore pre-dates the adjacent rifting by ~20 Myr); and 2) a 20--30 km-wide zone of intense dyking and partial melt, which most likely pervades the entire crust beneath the rift valley and marks the locus of current rift extension. Furthermore, Precambrian collision-related lithospheric fabric is proposed to be the main source of the strong anisotropy that is observed along the entire cross-rift profile, which may be augmented by magmatism beneath the rift. An active, followed by a passive magma-assisted rifting model that is controlled by a combination of far-field plate stresses, the pre-existing lithospheric framework and magmatism is invoked to explain the rift evolution.

  10. Application of Microbeam Techniques to Identifying and Assessing Comagmatic Mixing Between Summit and Rift Eruptions at Kilauea Volcano (Invited)

    NASA Astrophysics Data System (ADS)

    Thornber, C. R.; Rowe, M. C.; Adams, D. T.; Orr, T. R.

    2010-12-01

    Near-continuous eruption of Kilauea Volcano since 1983 has yielded an extensive record of glass, phenocryst and melt-inclusion chemistry from well-quenched lava that can be correlated with geophysical and geological monitoring data. Eruption temperatures are determined using glass thermometry. Microbeam evaluation of phenocryst mineralogy, morphology, texture, zoning and melt inclusions helps to constrain magma storage and transport within the edifice and to track the evolution of shallow magmatic plumbing during this prolonged eruptive era. For most of this eruption up to April 2001, east rift lava was olivine-phyric and olivine-liquid relations indicated equilibrium crystallization during summit-to-rift magma transport. From 2001 to present, most lava erupted from vents near Pu`u O`o has been a relatively low-temperature “hybrid”, characterized by a disequilibrium low-pressure phenocryst assemblage. Olivine (Fo81.5-80.5) coexists with phenocrysts of lower temperature clinopyroxene (±plagioclase, ±Fe-rich olivine). Mixing between hotter and cooler magma is texturally documented by complex pyroxene zoning and resorption and olivine overgrowths on resorbed pyroxene. The co-magmatic mixing is not apparent in bulk lava analyses, since both components are fractionates of parent magmas with indistinguishable trace-element signatures. Post-2001 rift-zone lava indicates perpetual flushing of stored magma by hotter recharge magma rising from the mantle source. Geophysical and gas monitoring data confirm an increase in magma supply to Kilauea Volcano between 2001 and 2008, which we have interpreted as increasing the efficiency of the flushing process. Since March 2008, the petrology of the new summit lava lake and contemporaneously erupted rift zone lava provides new perspective on complexities of magma degassing, crystallization and mixing prior to rift eruption. Bulk lava chemistry, SIMS and LA-ICPMS analyses of matrix glasses and olivine melt-inclusions in both

  11. Geochemical and Depth Variations at the Galápagos 93.25˚W Propagating Rift

    NASA Astrophysics Data System (ADS)

    Rotella, M.; Sinton, J.; Mahoney, J.; Chazey, W.

    2006-12-01

    The 93.25°W propagating rift on the Galápagos Spreading Center (GSC) differs markedly from the better-known propagator at 95.5°W in having the morphology of a classic overlapping spreading center (~24 km of overlap and 7.5 km of offset). It has a higher propagation rate (70 vs 48 mm/yr) [Wilson & Hey, JGR v. 100, 1995] and is breaking through younger crust (260 vs 910 ka); overall magma supply is ~20% greater, as the area is closer to the Galápagos hotspot. The overlapping limbs lack pronounced bathymetric lows, instead they are up to 150 m shallower than the surrounding axial ridges away from the offset. Lavas are T-MORB; failing rift lavas show a slight increase in Mg within the overlap zone but propagating rift lavas lack the strong fractionation anomaly that characterizes the propagating limb at 95.5°W and many other propagating rifts. New major and trace element data on 28 samples from 24 dredge stations along a 175 km section of the GSC spanning the 93.25°W offset indicate significant, systematic variations in mantle sources and melting processes on each limb of the system. Fractionation-corrected ratios of highly to moderately incompatible elements (e.g. La/Yb, Sm/Yb, Zr/Y) show constant values along the propagating rift east of 93.2°W, but within the overlap zone these ratios increase sharply up to a factor of 1.5, then gradually decline to the west. In contrast, the failing rift shows constant to moderately increasing ratios as the overlap zone is approached from the west, with lower overall ratios within the zone. These variations could be interpreted to reflect a counter-intuitive relationship of gradually increasing extent of partial melting with progressive failure of the dying rift, consistent with the striking shoaling of the failing limb, or melting of incompatible-element depleted mantle. Variations along the eastern, propagating rift suggest either a sharp decrease in extent of melting or tapping of a more incompatible

  12. Rift migration explains continental margin asymmetry and crustal hyper-extension

    PubMed Central

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V.

    2014-01-01

    When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463

  13. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts

    USGS Publications Warehouse

    Scholz, C.A.; Moore, T.C.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.

    1998-01-01

    Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.

  14. The Age of Rift-Related Basalts in East Antarctica

    NASA Astrophysics Data System (ADS)

    Leitchenkov, G. L.; Belyatsky, B. V.; Kaminsky, V. D.

    2018-01-01

    The Lambert Rift, which is a large intracontinental rift zone in East Antarctica, developed over a long period of geological time, beginning from the Late Paleozoic, and its evolution was accompanied by magmatic activity. The latest manifestation of magmatism is eruption of alkaline olivine-leucite basalts on the western side of the Lambert Rift; Rb-Sr dating referred its time to the Middle Eocene, although its genesis remained vague. In order to solve this problem, we found geochronometer minerals in basaltic samples and 68 apatite grains appeared to be suitable for analysis. Their ages and ages of host basalts, determined by the U-Pb local method on the SIMS SHRIMP-II, were significantly different (323 ± 31 Ma) from those assumed earlier. This age corresponds to the earliest stage of crustal extension in East Antarctica and to most of Gondwana. The new data crucially change the ideas about the evolution of Lambert Rift and demonstrate the ambiguity of K-Ar dates of the alkali effusive formed under long-term rifting.

  15. Impact of rheological layering on rift asymmetry

    NASA Astrophysics Data System (ADS)

    Jaquet, Yoann; Schmalholz, Stefan M.; Duretz, Thibault

    2015-04-01

    Although numerous models of rift formation have been proposed, what triggers asymmetry of rifted margins remains unclear. Parametrized material softening is often employed to induce asymmetric fault patterns in numerical models. Here, we use thermo-mechanical finite element models that allow softening via thermal weakening. We investigate the importance of lithosphere rheology and mechanical layering on rift morphology. The numerical code is based on the MILAMIN solver and uses the Triangle mesh generator. Our model configuration consists of a visco-elasto-platic layered lithosphere comprising either (1) only one brittle-ductile transition (in the mantle) or (2) three brittle-ductile transitions (one in the upper crust, one in the lower crust and one in the mantle). We perform then two sets of simulations characterized by low and high extensional strain rates (5*10-15 s-1, 2*10-14 s-1). The results show that the extension of a lithosphere comprising only one brittle-ductile transition produces a symmetric 'neck' type rift. The upper and lower crusts are thinned until the lithospheric mantle is exhumed to the seafloor. A lithosphere containing three brittle-ductile transitions favors strain localization. Shear zones at different horizontal locations and generated in the brittle levels of the lithosphere get connected by the weak ductile layers. The results suggest that rheological layering of the lithosphere can be a reason for the generation of asymmetric rifting and subsequent rift morphology.

  16. Is earthquake rate in south Iceland modified by seasonal loading?

    NASA Astrophysics Data System (ADS)

    Jonsson, S.; Aoki, Y.; Drouin, V.

    2017-12-01

    Several temporarily varying processes have the potential of modifying the rate of earthquakes in the south Iceland seismic zone, one of the two most active seismic zones in Iceland. These include solid earth tides, seasonal meteorological effects and influence from passing weather systems, and variations in snow and glacier loads. In this study we investigate the influence these processes may have on crustal stresses and stressing rates in the seismic zone and assess whether they appear to be influencing the earthquake rate. While historical earthquakes in the south Iceland have preferentially occurred in early summer, this tendency is less clear for small earthquakes. The local earthquake catalogue (going back to 1991, magnitude of completeness < 1.0) has indeed more earthquakes in summer than in winter. However, this pattern is strongly influenced by aftershock sequences of the largest M6+ earthquakes, which occurred in June 2000 and May 2008. Standard Reasenberg earthquake declustering or more involved model independent stochastic declustering algorithms are not capable of fully eliminating the aftershocks from the catalogue. We therefore inspected the catalogue for the time period before 2000 and it shows limited seasonal tendency in earthquake occurrence. Our preliminary results show no clear correlation between earthquake rates and short-term stressing variations induced from solid earth tides or passing storms. Seasonal meteorological effects also appear to be too small to influence the earthquake activity. Snow and glacier load variations induce significant vertical motions in the area with peak loading occurring in Spring (April-May) and maximum unloading in Fall (Sept.-Oct.). Early summer occurrence of historical earthquakes therefore correlates with early unloading rather than with the peak unloading or unloading rate, which appears to indicate limited influence of this seasonal process on the earthquake activity.

  17. Structure of Kilauea's southwest rift zone and western south flank defined by relocated earthquakes

    NASA Astrophysics Data System (ADS)

    Rinard, Bethany D.

    This study is the first detailed seismic investigation of the southwest rift and western south flank of Kilauea Volcano. Earthquakes outline the tectonic and magmatic systems of the volcano. In this study, more than 4800 earthquakes from the years 1981--2001 were relocated with a double-difference method, and almost 500 were relocated with cross-correlation. The result is a much-improved image of Kilauea's south flank structure. The shallowest of the earthquakes on Kilauea (<5km) are usually related to magma movement, and occur almost exclusively in the actively intruded rift. The few tectonic earthquakes that occur at this depth are along the Koae and Hilina Fault systems. Focal mechanisms indicate that the shallow events on the Hilina system have [normal, right-lateral] oblique-slip motion. Beneath the entire south flank are earthquakes that occur on a decollement, located at a depth of 7--10km. The inland-dipping decollement structure is clearly imaged with this new data set. Earthquakes on the volcano's south flank normal faults appear to extend downward to the decollement. Earthquakes at intermediate depths image the decollement, a plane that dips inland. This is the boundary between the volcano and the old oceanic crust beneath it. Movement on faults at decollement depths of 7--10km have [right-lateral thrust] oblique-slip motion. When intrusions occur in the rift zones, the flank is forced seaward along the decollement. Since the decollement dips inland, the south flank must move up an incline as it slides seaward. Hawaii also experiences deep (>25km) earthquakes, which are the most intriguing events in this study. These earthquakes are significant because the Moho is located at a depth of 13--15km, so they are clearly occurring in the mantle. The deep events examined in this study are tectonic earthquakes, not attributable to melt migration. A high strain rate in the mantle, largely due to the geologically rapid formation of the island that has quickly

  18. Intracontinental rift comparisons: Baikal and Rio Grande Rift Systems

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.; Logatchev, N. A.; Zorin, Y. A.; Chapman, C. E.; Kovalenko, V.; Morgan, P.

    Both the Baikal rift in Siberia and the Rio Grande rift in New Mexico, Colorado and Texas are major intracontinental extensional structures of Cenozoic age that affect regions about 1500 km long and several hundred km wide (Figures 1, 2). In the summer of 1988 these rifts were visited by study groups of U.S. and Soviet geoscientists during cooperative field workshops sponsored by the Soviet Academy of Sciences, U.S. National Academy of Sciences, and U.S. Geological Survey.In the Rio Grande region, we spent 2 weeks examining rift features between El Paso, Tex., and Denver, Colo. Particular emphasis was on the sedimentary record of rift evolution, widespread volcanic activity from inception of rifting to the present, geophysical expression of rift features, and relations between rifting and the larger-scale evolution of the North American Cordillera. In the Baikal region, which presents formidable logistic problems for a workshop, we travelled by bus, truck, helicopter, and ship to examine young seismotectonic features, rift-related basalt, and bounding structures of the Siberian craton that influenced rift development (Figure 3).

  19. Reexaming Owens Valley: Partitioning of Discrete and Distributed Transtension, Structural Controls on Magmatism, and Seismic Potential within an Active Rift Zone, Eastern California.

    NASA Astrophysics Data System (ADS)

    Levy, D. A.; Haproff, P. J.; Yin, A.

    2016-12-01

    Crustal-scale transtensional deformation is common in intracontinental extensional settings. However, along-strike variations in the geometry, kinematics, and linkages between rift-related faults, along with controls on local magmatic plumbing, remain inadequately examined. In this study, we conducted geologic mapping of active structures within central and northern Owens Valley of eastern California. C. Owens Valley features right-slip oblique deformation accommodated by three discrete north-south-trending faults: (1) the right-slip Owens Valley fault (OVF) and rift-bounding (2) Sierra Nevada Frontal fault (SNFF) and (3) the White-Inyo Mountains fault (WIMF). The OVF also serves as a lithospheric-scale, vertical conduit for asthenospheric-derived magma to migrate upwards and erupt at Big Pine Volcanic Field. Right-slip shear within C. Owens Valley is transferred to the SNFF of N. Owens Valley via the Poverty Hills restraining bend. In contrast to C. Owens Valley, the northern segment is dominated by distributed E-W to NE-SW-oriented extension, evidenced by normal fault scarps throughout Volcanic Tablelands and basin floor. Furthermore, the White Mountain fault which bounds N. Owens Valley to the east consists of a master west-dipping detachment fault that thinned the lithosphere, allowing for asthenospheric upwelling into the crust beneath the western rift shoulder. Subvertical, right-slip faults of the SNFF provide a conduit for magma to erupt on the surface throughout the Long Valley Caldera, Mono-Inyo Craters, and Mono Basin region. Our mapping demonstrates complex strain partitioning of discrete and distributed deformation within an alternating pure and simple shear, transtensional rift zone. Lastly, we present previously unknown relationships in Owens Valley between lithospheric-scale fault systems, seismic potential, and rift magmatism.

  20. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts

    USGS Publications Warehouse

    Schulte, S.M.; Mooney, W.D.

    2005-01-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) ??? 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M ??? 6.0) earthquakes are considered. The largest events (M ??? 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the

  1. Contribution of the FUTUREVOLC project to the study of segmented lateral dyke growth in the 2014 rifting event at Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt; Rafn Heimisson, Elías; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Guðmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S.; Ágústsdóttir, Thorbjörg; Björnsson, Helgi; Bean, Christopher J.

    2015-04-01

    The FUTUREVOLC project (a 26-partner project funded by FP7 Environment Programme of the European Commission, addressing topic "Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept) set aims to (i) establish an innovative volcano monitoring system and strategy, (ii) develop new methods for near real-time integration of multi-parametric datasets, (iii) apply a seamless transdisciplinary approach to further scientific understanding of magmatic processes, and (iv) to improve delivery, quality and timeliness of transdisciplinary information from monitoring scientists to civil protection. The project duration is 1 October 2012 - 31 March 2016. Unrest and volcanic activity since August 2014 at one of the focus areas of the project in Iceland, at the Bárðarbunga volcanic system, near the middle of the project duration, has offered unique opportunities for this project. On 16 August 2014 an intense seismic swarm started in Bárðarbunga, the beginning of a major volcano-tectonic rifting event forming over 45 km long dyke extending from the caldera to Holuhraun lava field outside the northern margin of Vatnajökull. A large basaltic, effusive fissure eruption began in Holuhraun on 31 August which had by January formed a lava field with a volume in excess of one cubic kilometre. We document how the FUTUREVOLC project has contributed to the study and response to the subsurface dyke formation, through increased seismic and geodetic coverage and joint interpreation of the data. The dyke intrusion in the Bárðarbunga volcanic system, grew laterally for over 45 km at a variable rate, with an influence of topography on the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred over 14 days, was revealed by propagating seismicity, ground

  2. North America's Midcontinent Rift: when Rift MET Lip

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S. A.; Kley, J.; Keller, G. R., Jr.; Bollmann, T. A.; Wolin, E.; Zhang, H.; Frederiksen, A. W.; Ola, K.; Wysession, M. E.; Wiens, D.; Alequabi, G.; Waite, G. P.; Blavascunas, E.; Engelmann, C. A.; Flesch, L. M.; Rooney, T. O.; Moucha, R.; Brown, E.

    2015-12-01

    Rifts are segmented linear depressions, filled with sedimentary and igneous rocks, that form by extension and often evolve into plate boundaries. Flood basalts, a class of Large Igneous Provinces (LIPs), are broad regions of extensive volcanism due to sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America's Midcontinent Rift (MCR) is an unusual combination. Its 3000-km length formed as part of the 1.1 Ga rifting of Amazonia (Precambrian NE South America) from Laurentia (Precambrian North America) and became inactive once seafloor spreading was established, but contains an enormous volume of igneous rocks. MCR volcanics are significantly thicker than other flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift geometry but a LIP's magma volume. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The crust thinned during rifting and rethickened during the postrift phase and later compression, yielding the present thicker crust. The coincidence of a rift and LIP yielded the world's largest deposit of native copper. This combination arose when a new rift associated with continental breakup interacted with a mantle plume or anomalously hot or fertile upper mantle. Integration of diverse data types and models will give insight into questions including how the magma source was related to the rifting, how their interaction operated over a long period of rapid plate motion, why the lithospheric mantle below the MCR differs only slightly from its surroundings, how and why extension, volcanism, and compression varied along the rift arms, and how successful seafloor spreading ended the rift phase. Papers

  3. Oblique transfer of extensional strain between basins of the middle Rio Grande rift, New Mexico: Fault kinematic and paleostress constraints

    USGS Publications Warehouse

    Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.

    2013-01-01

    The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased

  4. Iceland-Scotland Overflow Water transport variability through the Charlie-Gibbs Fracture Zone and the impact of the North Atlantic Current

    NASA Astrophysics Data System (ADS)

    Bower, Amy; Furey, Heather

    2017-09-01

    The Charlie-Gibbs Fracture Zone (CGFZ), a deep and wide gap in the Mid-Atlantic Ridge near 52°N, is a gateway between the eastern and western subpolar regions for the Atlantic Meridional Overturning Circulation (AMOC). In 2010-2012, an eight-mooring array of current meters and temperature/salinity sensors was installed across the CGFZ between 500 m and the sea floor to measure the mean transport of westward-flowing Iceland-Scotland Overflow Water (ISOW) and investigate the impact of the eastward-flowing North Atlantic Current (NAC) on ISOW transport variability. The 22 month record mean ISOW transport through the CGFZ, -1.7 ± 0.5 Sv (95% confidence interval), is 30% lower than the previously published estimate based on 13 months of current-only measurements, -2.4 ± 1.2 Sv. The latter mean estimate may have been biased high due to the lack of continuous salinity measurements, although the two estimates are not statistically different due to strong mesoscale variability in both data sets. Empirical Orthogonal Function analysis and maps of satellite-derived absolute dynamic topography show that weak westward ISOW transport events and eastward reversals are caused by northward meanders of the NAC, with its deep-reaching eastward velocities. These results add to growing evidence that a significant fraction of ISOW exits the Iceland Basin by routes other than the CGFZ.

  5. Large-scale variation in lithospheric structure along and across the Kenya rift

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  6. New perspectives on the geometry of the Albuquerque Basin, Rio Grande rift, New Mexico: Insights from geophysical models of rift-fill thickness

    USGS Publications Warehouse

    Grauch, V. J.; Connell, Sean D.

    2013-01-01

    Discrepancies among previous models of the geometry of the Albuquerque Basin motivated us to develop a new model using a comprehensive approach. Capitalizing on a natural separation between the densities of mainly Neogene basin fill (Santa Fe Group) and those of older rocks, we developed a three-dimensional (3D) geophysical model of syn-rift basin-fill thickness that incorporates well data, seismic-reflection data, geologic cross sections, and other geophysical data in a constrained gravity inversion. Although the resulting model does not show structures directly, it elucidates important aspects of basin geometry. The main features are three, 3–5-km-deep, interconnected structural depressions, which increase in size, complexity, and segmentation from north to south: the Santo Domingo, Calabacillas, and Belen subbasins. The increase in segmentation and complexity may reflect a transition of the Rio Grande rift from well-defined structural depressions in the north to multiple, segmented basins within a broader region of crustal extension to the south. The modeled geometry of the subbasins and their connections differs from a widely accepted structural model based primarily on seismic-reflection interpretations. Key elements of the previous model are an east-tilted half-graben block on the north separated from a west-tilted half-graben block on the south by a southwest-trending, scissor-like transfer zone. Instead, we find multiple subbasins with predominantly easterly tilts for much of the Albuquerque Basin, a restricted region of westward tilting in the southwestern part of the basin, and a northwesterly trending antiform dividing subbasins in the center of the basin instead of a major scissor-like transfer zone. The overall eastward tilt indicated by the 3D geophysical model generally conforms to stratal tilts observed for the syn-rift succession, implying a prolonged eastward tilting of the basin during Miocene time. An extensive north-south synform in the

  7. Preferential rifting of continents - A source of displaced terranes

    NASA Technical Reports Server (NTRS)

    Vink, G. E.; Morgan, W. J.; Zhao, W.-L.

    1984-01-01

    Lithospheric rifting, while prevalent in the continents, rarely occurs in oceanic regions. To explain this preferential rifting of continents, the total strength of different lithospheres is compared by integrating the limits of lithospheric stress with depth. Comparisons of total strength indicate that continental lithosphere is weaker than oceanic lithosphere by about a factor of three. Also, a thickened crust can halve the total strength of normal continental lithosphere. Because the weakest area acts as a stress guide, any rifting close to an ocean-continent boundary would prefer a continental pathway. This results in the formation of small continental fragments or microplates that, once accreted back to a continent during subduction, are seen as displaced terranes. In addition, the large crustal thicknesses associated with suture zones would make such areas likely locations for future rifting episodes. This results in the tendency of new oceans to open along the suture where a former ocean had closed.

  8. Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.

    2013-12-01

    The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The

  9. Phanerozoic Rifting Phases And Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  10. Is Kīlauea's East Rift Zone eruption running out of gas?

    NASA Astrophysics Data System (ADS)

    Sutton, A. J.; Elias, T.; Orr, T. R.; Patrick, M. R.; Poland, M. P.; Thornber, C. R.

    2015-12-01

    Gases exsolving from magma are a key force that drives eruptive activity, and emissions from Kīlauea's East Rift Zone (ERZ) dominated the volcano's gas release from the beginning of the long-running and voluminous Pu'u 'Ō'ō eruption in 1983, through February 2008. In the months prior to the March 2008 onset of eruptive activity within Halema'uma'u Crater, however, SO2 degassing at the summit climbed substantially, and summit gas release has remained elevated since. These unprecedented emissions associated with the new summit eruption effectively began robbing gas from magma destined for Kīlauea's ERZ. As a result, ERZ SO2discharge, which had averaged 1,700 +-380 t/d for the previous 15 years, declined sharply and steadily beginning in September, 2008, and reached a new steady low of 380 +- 100 t/d by early 2011. This level persisted through mid-2015. In the years since the late 2008 downturn in ERZ SO2 emissions, there has been an overall slowdown in ERZ eruptive activity. Elevated emissions and effusive activity occurred briefly during the 2011 Kamoamoa fissure eruption and two other outbreaks at Pu'u 'Ō'ō , but otherwise ERZ eruptive activity had waned by 2010, when effusion rates were measured at about half of the long-term rate. Also, the sulfur preserved in ERZ olivine melt-inclusions, which provides a record of pre-eruptive SO2degassing, has steadily declined along with equilibration temperatures of host olivine phenocrysts, since 2008. We suggest that the drop in gas content of magma reaching the ERZ, owing to summit pre-eruptive degassing, has contributed significantly to the downturn in ERZ activity. While SO2 emissions from the ERZ have dropped to sustained levels lower than anything seen in the past 20 years, summit emissions have remained some of the highest recorded since regular measurements began at Kīlauea in 1979. Overall, average total SO2 discharge from Kīlauea in 2014, summit and ERZ, is still about 50% higher than for the 15 years prior

  11. Olivine-liquid relations of lava erupted by Kilauea volcano from 1994 to 1998: Implications for shallow magmatic processes associated with the ongoing east-rift-zone eruption

    USGS Publications Warehouse

    Thornber, C.R.

    2001-01-01

    From 1994 through 1998, the eruption of Ki??lauea, in Hawai'i, was dominated by steady-state effusion at Pu'u 'O??'??o that was briefly disrupted by an eruption 4 km uprift at Np??au Crater on January 30, 1997. In this paper, I describe the systematic relations of whole-rock, glass, olivine, and olivine-inclusion compositions of lava samples collected throughout this interval. This suite comprises vent samples and tube-contained flows collected at variable distances from the vent. The glass composition of tube lava varies systematically with distance and allows for the "vent-correction" of glass thermometry and olivine-liquid KD as a function of tube-transport distance. Combined olivine-liquid data for vent samples and "vent-corrected" lava-tube samples are used to document pre-eruptive magmatic conditions. KD values determined for matrix glasses and forsterite cores define three types of olivine phenocrysts: type A (in equilibrium with host glass), type B (Mg-rich relative to host glass) and type C (Mg-poor relative to host glass). All three types of olivine have a cognate association with melts that are present within the shallow magmatic plumbing system during this interval. During steady-state eruptive activity, the compositions of whole-rock, glass and most olivine phenocrysts (type A) all vary sympathetically over time and as influenced by changes of magmatic pressure within the summit-rift-zone plumbing system. Type-A olivine is interpreted as having grown during passage from the summit magmachamber along the east-rift-zone conduit. Type-B olivine (high Fo) is consistent with equilibrium crystallization from bulk-rock compositions and is likely to have grown within the summit magma-chamber. Lower-temperature, fractionated lava was erupted during non-steady state activity of the Na??pau Crater eruption. Type-A and type-B olivine-liquid relations indicate that this lava is a mixture of rift-stored and summit-derived magmas. Post-Na??pau lava (at Pu'u 'O?? 'o

  12. Tectonics of the Jemez Lineament in the Jemez Mountains and Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Aldrich, M. J., Jr.

    1986-02-01

    The Jemez lineament is a NE trending crustal flaw that controlled volcanism and tectonism in the Jemez Mountains and the Rio Grande rift zone. The fault system associated with the lineament in the rift zone includes, from west to east, the Jemez fault zone southwest of the Valles-Toledo caldera complex, a series of NE trending faults on the resurgent dome in the Valles caldera, a structural discontinuity with a high fracture intensity in the NE Jemez Mountains, and the Embudo fault zone in the Española Basin. The active western boundary faulting of the Española Basin may have been restricted to the south side of the lineament since the mid-Miocene. The faulting apparently began on the Sierrita fault on the east side of the Nacimiento Mountains in the late Oligocene and stepped eastward in the early Miocene to the Canada de Cochiti fault zone. At the end of the Miocene (about 5 Ma) the active boundary faulting again stepped eastward to the Pajarito fault zone on the east side of the Jemez Mountains. The north end of the Pajarito fault terminates against the Jemez lineament at a point where it changes from a structural discontinuity (zone of high fracture intensity) on the west to the Embudo fault zone on the east. Major transcurrent movement occurred on the Embudo fault zone during the Pliocene and has continued at a much slower rate since then. The relative sense of displacement changes from right slip on the western part of the fault zone to left slip on the east. The kinematics of this faulting probably reflect the combined effects of faster spreading in the Española Basin than the area north of the lineament (Abiquiu embayment and San Luis Basin), the right step in the rift that juxtaposes the San Luis Basin against the Picuris Mountains, and counterclockwise rotation of various crustal blocks within the rift zone. No strike-slip displacements have occurred on the lineament in the central and eastern Jemez Mountains since at least the mid-Miocene, although

  13. Hydrothermal Rock-Fluid Interactions in 15-year-old Submarine Basaltic Tuff at Surtsey Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Jackson, M. D.; Couper, S.; Li, Y.; Stan, C. V.; Tamura, N.; Stefansson, A.; Moore, J. G.; Wenk, H. R.

    2016-12-01

    Basaltic tephra at Surtsey volcano, produced by 1963-1967 eruptions in the offshore SE Icelandic rift zone, record the complex interplay of factors that determine rates of palagonitization and crystallization of authigenic minerals in seafloor basalts worldwide. We investigate how formation of nanocrystalline clay mineral in fresh sideromelane glass influenced crystallization of mineral cements in submarine tuff from a 181 m core drilled in 1979. Synchrotron-based microdiffraction and microfluorescence maps (2x5 µm X-ray beam spot size) at beamline 12.3.2, Advanced Light Source, SEM-EDS compositional analyses, and fluid geochemical models compare processes in lapilli-sized glass fragments, vitric cementing matrix, and fine ash accretions. In lapilli at 137.9 m (100°C), nanocrystalline clay mineral in gel-palagonite has asymetric 14.9-12.6 Å (001) reflections, with Fe and Ti enrichment relative to Si, Al and Ca, compared with adjacent sideromelane. Neighboring fibro-palagonite has symmetric (001) and greater Fe and Ti enrichment. Al-tobermorite, a rare calcium-silicate-hydrate, crystallized in nearby vesicles. The 11.30-11.49 Å (002) interlayer and Ca/(Si+Al) ratio of 0.9-1.0 record release of Si, Al, and Ca in a chemical system relatively isolated from submarine hydrothermal fluid flow. In vitric matrix relatively open to fluid flow, however, phillipsite zeolite cement predominates. Al-tobermorite formed at 88.45 m (130°C) and 102.6 m (140°C), but is associated with fibro-palagonite and analcite, reflecting more rapid palagonitization, and changing cation solubility and pH at higher temperature. Tubular palagonite microstructures show nanocrystalline clay mineral with (001) preferred orientations that wrap around relict microchannels, produced perhaps through biogenic activity. Nanocrystalline clay mineral d-spacings suggest similarities with nontronite, but zeolite in palagonite diffraction patterns and 6-9 wt% MgO suggest a polycrystalline composite with

  14. Exploring for geothermal resource in a dormant volcanic system: The Haleakala Southwest Rift Zone, Maui, Hawai'i

    NASA Astrophysics Data System (ADS)

    Martini, B. A.; Lewicki, J. L.; Kennedy, B. M.; Lide, C.; Oppliger, G.; Drakos, P. S.

    2011-12-01

    Suites of new geophysical and geochemical surveys provide compelling evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai'i. Ground-based gravity (~400 stations) coupled with heli-borne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Lithology and physical property data from future drilling will improve these interpretations. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth; a potentially young source of heat for a modern geothermal system. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ; a weak anomalous flux signal was observed at one young cinder cone location. Dissolved inorganic carbon concentrations and δ13C compositions and 3He/4He values measured in several shallow groundwater samples indicate addition of magmatic CO2 and He to the groundwater system. The general lack of observed magmatic surface CO2 signals on the HSWRZ is therefore likely due to a combination of groundwater 'scrubbing' of CO2 and relatively high biogenic surface CO2 fluxes that mask magmatic CO2. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals attributed to a magmatic source, while aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwaters at both Maui and Puna. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2

  15. Stress perturbation associated with the Amazonas and other ancient continental rifts

    USGS Publications Warehouse

    Zoback, M.L.; Richardson, R.M.

    1996-01-01

    rift case, because the observed stress rotation only weakly constrains the ratio of the regional horizontal stress difference to the rift-normal compression to be between 0.25 and 1.0, our analysis is inconclusive because the resultant normalized horizontal shear stress may be reduced (for ratios >0.5) or enhanced (for ratios <0.5). Additional information is needed on all three stress magnitudes to predict how a change in horizontal shear stress directly influences the likelihood of faulting in the thrust-faulting stress regime in the vicinity of the Amazonas rift. A rift-normal stress associated with the seismically active New Madrid ancient rift may be sufficient to rotate the horizontal stress field consistent with strike-slip faults parallel to the axis of the rift, although this results in a 20-40% reduction in the local horizontal shear stress within the seismic zone. Sparse stress data in the vicinity of the seismically quiescent Midcontinent rift of the central United States suggest a stress state similar to that of New Madrid, with the local horizontal shear stress potentially reduced by as much as 60%. Thus the markedly different levels of seismic activity associated with these two subparallel ancient rifts is probably due to other factors than stress perturbations due to dense rift pillows. The modeling and analysis here demonstrate that rift-normal compressive stresses are a significant source of stress acting on the lithosphere and that in some cases may be a contributing factor to the association of intraplate seismicity with old zones of continental extension.

  16. Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo

    2009-09-01

    The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea-Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres. The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north-northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated. The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE-SW) and the Late

  17. Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon

    2016-10-01

    Pre-existing structures within crystalline basement may exert a significant influence over the evolution of rifts. However, the exact manner in which these structures reactivate and thus their degree of influence over the overlying rift is poorly understood. Using borehole-constrained 2D and 3D seismic reflection data from offshore southern Norway we identify and constrain the three-dimensional geometry of a series of enigmatic intrabasement reflections. Through 1D waveform modelling and 3D mapping of these reflection packages, we correlate them to the onshore Caledonian thrust belt and Devonian shear zones. Based on the seismic-stratigraphic architecture of the post-basement succession, we identify several phases of reactivation of the intrabasement structures associated with multiple tectonic events. Reactivation preferentially occurs along relatively thick (c. 1 km), relatively steeply dipping (c. 30°) structures, with three main styles of interactions observed between them and overlying faults: i) faults exploiting intrabasement weaknesses represented by intra-shear zone mylonites; ii) faults that initiate within the hangingwall of the shear zones, inheriting their orientation and merging with said structure at depth; or iii) faults that initiate independently from and cross-cut intrabasement structures. We demonstrate that large-scale discrete shear zones act as a long-lived structural template for fault initiation during multiple phases of rifting.

  18. Seismological Constraints on the Magmato-tectonic Behavior of the Asal-Ghoubbet Rift (Afar Depression, Republic of Djibouti) Since the Last 1978-Rifting Episode

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Manighetti, I.; Bertil, D.; Dorbath, C.; Dorbath, L.; Jacques, E.

    2004-12-01

    The Asal-Ghoubbet rift was the locus of a seismic and volcanic crisis in 1978 followed by 8 years of rapid opening (60 mm/yr) before returning to its long-term opening rate of 16 mm/yr. We analyze the space-time evolution of the seismicity that occurred in the rift between 1979 and 2001. The data recorded by the Djibouti Observatory provide only hypocentral locations before 1995 and P and S-wave arrival times since 1996. Additional data acquired during a five months experiment in 2000-2001 allowed us to determine a 3D-velocity model of the rift, used to precisely relocate post 1996 events. The 2545 small-magnitude earthquakes (Md ≤ 3.2) recorded in the rift since the 1978 crisis provide a negligible contribution to the total extension across the rift, which occurs essentially aseismically. The temporal evolution of the seismicity reveals two distinct phases consistent with those observed in the geodetic data. The post-crisis period (1979-1986) is characterized by large-magnitude earthquakes exclusively located below the northern rift shoulder. These events are associated with the contraction of the side of the rift resulting from the fast opening of the central dyke system. The subsequent period (1987-2001) corresponding to normal opening rate across the rift is characterized by a micro-seismicity essentially located below the major rift caldera (Fieale). Most recorded events during this period concentrate within the rift inner floor at the top of an aseismic, low velocity zone located below the Fiale caldera, which we interpret as hot material above the magma chamber. Outside from post-crisis periods, the seismicity tends to cluster in time in response to stress changes in the brittle layer induced by episodic magmatic movements.

  19. Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James C Witcher

    2002-07-30

    The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps formore » the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.« less

  20. Evolution, distribution, and characteristics of rifting in southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Philippon, Melody; Corti, Giacomo; Sani, Federico; Bonini, Marco; Balestrieri, Maria-Laura; Molin, Paola; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2014-04-01

    Southern Ethiopia is a key region to understand the evolution of the East African rift system, since it is the area of interaction between the main Ethiopian rift (MER) and the Kenyan rift. However, geological data constraining rift evolution in this remote area are still relatively sparse. In this study the timing, distribution, and style of rifting in southern Ethiopia are constrained by new structural, geochronological, and geomorphological data. The border faults in the area are roughly parallel to preexisting basement fabrics and are progressively more oblique with respect to the regional Nubia-Somalia motion proceeding southward. Kinematic indicators along these faults are mainly dip slip, pointing to a progressive rotation of the computed direction of extension toward the south. Radiocarbon data indicate post 30 ka faulting at both western and eastern margins of the MER with limited axial deformation. Similarly, geomorphological data suggest recent fault activity along the western margins of the basins composing the Gofa Province and in the Chew Bahir basin. This supports that interaction between the MER and the Kenyan rift in southern Ethiopia occurs in a 200 km wide zone of ongoing deformation. Fault-related exhumation at ~10-12 Ma in the Gofa Province, as constrained by new apatite fission track data, occurred later than the ~20 Ma basement exhumation of the Chew Bahir basin, thus pointing to a northward propagation of the Kenyan rift-related extension in the area.

  1. The 1170 and 1202 CE Dead Sea Rift earthquakes and long-term magnitude distribution of the Dead Sea Fault zone

    USGS Publications Warehouse

    Hough, S.E.; Avni, R.

    2009-01-01

    In combination with the historical record, paleoseismic investigations have provided a record of large earthquakes in the Dead Sea Rift that extends back over 1500 years. Analysis of macroseismic effects can help refine magnitude estimates for large historical events. In this study we consider the detailed intensity distributions for two large events, in 1170 CE and 1202 CE, as determined from careful reinterpretation of available historical accounts, using the 1927 Jericho earthquake as a guide in their interpretation. In the absence of an intensity attenuation relationship for the Dead Sea region, we use the 1927 Jericho earthquake to develop a preliminary relationship based on a modification of the relationships developed in other regions. Using this relation, we estimate M7.6 for the 1202 earthquake and M6.6 for the 1170 earthquake. The uncertainties for both estimates are large and difficult to quantify with precision. The large uncertainties illustrate the critical need to develop a regional intensity attenuation relation. We further consider the distribution of magnitudes in the historic record and show that it is consistent with a b-value distribution with a b-value of 1. Considering the entire Dead Sea Rift zone, we show that the seismic moment release rate over the past 1500 years is sufficient, within the uncertainties of the data, to account for the plate tectonic strain rate along the plate boundary. The results reveal that an earthquake of M7.8 is expected within the zone on average every 1000 years. ?? 2011 Science From Israel/LPPLtd.

  2. Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland

    USGS Publications Warehouse

    Shen, Y.; Solomon, S.C.; Bjarnason, I. Th; Nolet, G.; Morgan, W.J.; Allen, R.M.; Vogfjord, K.; Jakobsdottir, S.; Stefansson, R.; Julian, B.R.; Foulger, G.R.

    2002-01-01

    Shear waves converted from compressional waves at mantle discontinuities near 410- and 660-km depth recorded by two broadband seismic experiments in Iceland reveal that the center of an area of anomalously thin mantle transition zone lies at least 100 km south of the upper-mantle low-velocity anomaly imaged tomographically beneath the hotspot. This offset is evidence for a tilted plume conduit in the upper mantle, the result of either northward flow of the Icelandic asthenosphere or southward flow of the upper part of the lower mantle in a no-net-rotation reference frame. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. The Language Situation in Iceland

    ERIC Educational Resources Information Center

    Hilmarsson-Dunn, Amanda; Kristinsson, Ari Pall

    2010-01-01

    Purist language policies in Iceland have preserved and modernized Icelandic up until the present time. However, the impact of globalization and global English has led to the perception that the language is less secure than in the past and has prompted efforts by policy makers towards greater protection of Icelandic. This monograph presents the…

  4. A mega Ultra Low Velocity Zone at the Base of the Iceland Plume: a Target for Tomographic Telescope Implementation

    NASA Astrophysics Data System (ADS)

    Romanowicz, Barbara; Yuan, Kaiqing; Masson, Yder; Adourian, Sevan

    2017-04-01

    We have recently constructed the first global whole mantle radially anisotropic shear wave velocity model based on time domain full waveform inversion and numerical wavefield computations using the Spectral Element Method (French et al., 2013; French and Romanowicz, 2014). This model's most salient features are broad chimney-like low velocity conduits, rooted within the large-low-shear-velocity provinces (LLSVPs) at the base of the mantle, and extending from the core-mantle boundary up through most of the lower mantle, projecting to the earth's surface in the vicinity of major hotspots. The robustness of these features is confirmed through several non-linear synthetic tests, which we present here, including several iterations of inversion using a different starting model than that which served for the published model. The roots of these not-so-classical "plumes" are regions of more pronounced low shear velocity. While the detailed structure is not yet resolvable tomographically, at least two of them contain large (>800 km diameter) ultra-low-velocity zones (ULVZs), one under Hawaii (Cottaar and Romanowicz, 2012) and the other one under Samoa (Thorne et al., 2013). Through 3D numerical forward modelling of Sdiff phases down to 10s period, using data from broadband arrays illuminating the base of the Iceland plume from different directions, we show that such a large ULVZ also exists at the root of this plume, embedded within a taller region of moderately reduced low shear velocity, such as proposed by He et al. (2015). We also show that such a wide, but localized ULVZ is unique in a broad region around the base of the Iceland Plume. Because of the intense computational effort required for forward modelling of trial structures, to first order this ULVZ is represented by a cylindrical structure of diameter 900 km, height 20 km and velocity reduction 20%. To further refine the model, we have developed a technique which we call "tomographic telescope", in which we are

  5. Deformation at Krafla and Bjarnarflag geothermal areas, Northern Volcanic Zone of Iceland, 1993-2015

    NASA Astrophysics Data System (ADS)

    Drouin, Vincent; Sigmundsson, Freysteinn; Verhagen, Sandra; Ófeigsson, Benedikt G.; Spaans, Karsten; Hreinsdóttir, Sigrún

    2017-09-01

    The Krafla volcanic system has geothermal areas within the Krafla caldera and at Bjarnarflag in the Krafla fissure swarm, 9-km south of the Krafla caldera. Arrays of boreholes extract geothermal fluids for power plants in both areas. We collected and analyzed InSAR, GPS, and leveling data spanning 1993-2015 in order to investigate crustal deformation in these areas. The volcanic zone hosting the geothermal areas is also subject to large scale regional deformation processes, including plate spreading and deflation of the Krafla volcanic system. These deformation processes have to be taken into account in order to isolate the geothermal deformation signal. Plate spreading produces the largest horizontal displacements, but the regional deformation pattern also suggests readjustment of the Krafla system at depth after the 1975-1984 Krafla rifting episode. Observed deformation can be fit by an inflation source at about 20 km depth north of Krafla and a deflation source at similar depth directly below the Krafla caldera. Deflation signal along the fissure swarm can be reproduced by a 1-km wide sill at 4 km depth closing by 2-4 cm per year. These sources are considered to approximate the combined effects of vertical deformation associated with plate spreading and post-rifting response. Local deformation at the geothermal areas is well resolved in addition to these signals. InSAR shows that deformation at Bjarnarflag is elongated along the direction of the Krafla fissure swarm (∼ 4 km by ∼ 2 km) while it is circular at Krafla (∼ 5 km diameter). Rates of deflation at Krafla and Bjarnarflag geothermal areas have been relatively steady. Average volume decrease of about 6.6 × 105 m3/yr for Krafla and 3.9 × 105 m3/yr for Bjanarflag are found at sources located at ∼ 1.5 km depth, when interpreted by a spherical point source of pressure. This volume change represents about 8 × 10-3 m3/ton of the mass of geothermal fluid extracted per year, indicating important renewal

  6. Radiocarbon dates for lava flows from northeast rift zone of Mauna Loa Volcano, Hilo 7 1/2 minute quadrangle, Island of Hawaii

    USGS Publications Warehouse

    Buchanan-Banks, J. M.; Lockwood, J.P.; Rubin, M.

    1989-01-01

    Twenty-eight 14C analyses are reported for carbonized roots and other plant material collected from beneath 15 prehistoric lava flows erupted from the northeast rift zone (NERZ) of Mauna Loa Volcano (ML). The new 14C dates establish ages for 13 previously undated lava flows, and correct or add to information previously reported. Limiting ages on other flows that lie either above or below the dated flows are also established. These dates help to unravel the eruptive history of ML's NERZ. -from Authors

  7. Pits, rifts and slumps: the summit structure of Piton de la Fournaise

    NASA Astrophysics Data System (ADS)

    Carter, Adam; van Wyk de Vries, Benjamin; Kelfoun, Karim; Bachèlery, Patrick; Briole, Pierre

    2007-06-01

    A clear model of structures and associated stress fields of a volcano can provide a framework in which to study and monitor activity. We propose a volcano-tectonic model for the dynamics of the summit of Piton de la Fournaise (La Reunion Island, Indian Ocean). The summit contains two main pit crater structures (Dolomieu and Bory), two active rift zones, and a slumping eastern sector, all of which contribute to the actual fracture system. Dolomieu has developed over 100 years by sudden large collapse events and subsequent smaller drops that include terrace formation. Small intra-pit collapse scars and eruptive fissures are located along the southern floor of Dolomieu. The western pit wall of Dolomieu has a superficial inward dipping normal fault boundary connected to a deeper ring fault system. Outside Dolomieu, an oval extension zone containing sub-parallel pit-related fractures extends to a maximum distance of 225 m from the pit. At the summit the main trend for eruptive fissures is N80°, normal to the north south rift zone. The terraced structure of Dolomieu has been reproduced by analogue models with a roof to width ratio of approximately 1, suggesting an original magma chamber depth of about 1 km. Such a chamber may continue to act as a storage location today. The east flank has a convex concave profile and is bounded by strike-slip fractures that define a gravity slump. This zone is bound to the north by strike-slip fractures that may delineate a shear zone. The southern reciprocal shear zone is probably marked by an alignment of large scoria cones and is hidden by recent aa lavas. The slump head intersects Dolomieu pit and may slide on a hydrothermally altered layer known to be located at a depth of around 300 m. Our model has the summit activity controlled by the pit crater collapse structure, not the rifts. The rifts become important on the mid-flanks of the cone, away from pit-related fractures. On the east flank the superficial structures are controlled

  8. Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Deegan, F. M.; Troll, V. R.; Carracedo, J. C.; Chadwick, J. P.; Chew, D. M.

    2011-09-01

    Zoned eruption deposits commonly show a lower felsic and an upper mafic member, thought to reflect eruption from large, stratified magma chambers. In contrast, the Montaña Reventada composite flow (Tenerife) consists of a lower basanite and a much thicker upper phonolite. A sharp interface separates basanite and phonolite, and chilled margins at this contact indicate the basanite was still hot upon emplacement of the phonolite, i.e. the two magmas erupted in quick succession. Four types of mafic to intermediate inclusions are found in the phonolite. Inclusion textures comprise foamy quenched ones, others with chilled margins and yet others that are physically mingled, reflecting progressive mixing with a decreasing temperature contrast between the end-members. Analysis of basanite, phonolite and inclusions for majors, traces and Sr, Nd and Pb isotopes show the inclusions to be derived from binary mixing of basanite and phonolite end-members in ratios of 2:1 to 4:1. Although, basanite and phonolite magmas were in direct contact, contrasting 206Pb/204Pb ratios show that they are genetically distinct (19.7193(21)-19.7418(31) vs. 19.7671(18)-19.7807(23), respectively). We argue that the Montaña Reventada basanite and phonolite first met just prior to eruption and had limited interaction time only. Montaña Reventada erupted from the transition zone between two plumbing systems, the phonolitic Teide-Pico Viejo complex and the basanitic Northwest rift zone. A rift zone basanite dyke most likely intersected the previously emplaced phonolite magma chamber. This led to eruption of geochemically and texturally unaffected basanite, with the inclusion-rich phonolite subsequently following into the established conduit.

  9. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, M.T.K.; Burtchard, G.C.

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone,more » Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.« less

  10. Contact zone permeability at intrusion boundaries: New results from hydraulic testing and geophysical logging in the Newark Rift Basin, New York, USA

    USGS Publications Warehouse

    Matter, J.M.; Goldberg, D.S.; Morin, R.H.; Stute, M.

    2006-01-01

    Hydraulic tests and geophysical logging performed in the Palisades sill and the underlying sedimentary rocks in the NE part of the Newark Rift Basin, New York, USA, confirm that the particular transmissive zones are localized within the dolerite-sedimentary rock contact zone and within a narrow interval below this contact zone that is characterized by the occurrence of small layers of chilled dolerite. Transmissivity values determined from fluid injection, aquifer testing, and flowmeter measurements generally fall in the range of 8.1E-08 to 9.95E-06 m2/s and correspond to various scales of investigation. The analysis of acoustic and optical BHTV images reveals two primary fracture sets within the dolerite and the sedimentary rocks - subhorizontal fractures, intersected by subvertical ones. Despite being highly fractured either with subhorizontal, subvertical or both fracture populations, the dolerite above and the sedimentary rocks below the contact zone and the zone with the layers of chilled dolerite are significantly less conductive. The distribution of the particular conductive intervals is not a function of the two dominant fracture populations or their density but rather of the intrusion path of the sill. The intrusion caused thermal fracturing and cracking of both formations, resulting in higher permeability along the contact zone. ?? Springer-Verlag 2005.

  11. Silicic central volcanoes as precursors to rift propagation: the Afar case

    NASA Astrophysics Data System (ADS)

    Lahitte, Pierre; Gillot, Pierre-Yves; Courtillot, Vincent

    2003-02-01

    The Afar depression is a triple junction characterised by thinned continental crust, where three rift systems meet (Red Sea, Gulf of Aden and East African Rift). About 100 recent K-Ar ages obtained on Plio-Pleistocene lavas [Lahitte et al., J. Geophys. Res. (2002) in press; Kidane et al., J. Geophys. Res. (2002) in press], complemented by new geomorphological interpretations, allow better understanding of the volcano-tectonic activity linked to rift propagation. In Central Afar, a significant spatial and temporal correlation is observed between the occurrence of silicic central volcanoes and the initiation of the successive phases of on-land propagation of the Red Sea and Aden rifts. Inside the Afar depression, at the scale of both a whole ridge and a small rift segment, silicic lavas are systematically erupted close to the location of a future rift segment and prior to the main extensive phase associated with fissural basaltic activity. Central silicic volcanoes therefore appear to be precursor features, and their locations underline the preferred direction of future rift propagation. Evolved volcanoes (and associated magma chambers) form zones of localised lithospheric weakness, which concentrate stress and guide the development of fractures in which fissural magmatism is next emplaced. Differentiated silicic lavas are erupted first. Then, as extension increases, basaltic magma directly erupts to the surface. This composite style of rifting, with volcanic and tectonic components, is a scaled-down equivalent of the continental break-up process at the largest scale.

  12. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution

    NASA Astrophysics Data System (ADS)

    Schiffer, C.; Petersen, K. D.

    2016-12-01

    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often

  13. Transect across the West Antarctic rift system in the Ross Sea, Antarctica

    USGS Publications Warehouse

    Trey, H.; Cooper, A. K.; Pellis, G.; Della, Vedova B.; Cochrane, G.; Brancolini, Giuliano; Makris, J.

    1999-01-01

    In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with

  14. The Summerville Formation: Evidence for a sub-horizontal stratigraphic sequence below the post-rift unconformity in the Middleton Place Summerville Seismic Zone

    NASA Astrophysics Data System (ADS)

    Getz, Joseph Edward

    The Middleton Place Summerville Seismic Zone (MPSSZ) near Summerville, South Carolina was the site of renewed extensive investigation, beginning in the 1970's, for the source of the 1886 Charleston earthquake. Reactivation of faults associated with a putative fault-bounded Triassic rift basin through analysis of seismic reflection, seismic refraction, and well data has since become the favored interpretation for the source of MPSSZ seismicity. Critical to this interpretation is the association of continental redbed sedimentary rocks with Triassic basins identified throughout the North American Atlantic margin. Reanalysis of 18 seismic reflection profiles and 25 seismic refraction profiles within the MPSSZ suggests that the red beds found here are a thin, sub-horizontal, regionally extensive, generally unbroken subsurface stratigraphic sequence distinct from the sedimentary architecture observed in analog Triassic rift systems. In addition, this sequence appears to unconformably overly a structural depression (the Jedberg basin) previously interpreted as a Triassic rift basin in the vicinity of the MPSSZ. In addition to the geometries observed on seismic reflection profiles, seismic refraction velocities ranging from 4.2 to 6.1 km/s can be correlated with (1) Jurassic basalt flows, (2) the newly proposed Summerville Formation, and (3) the Basement (B) sequences respectively. The current study maps the Summerville red bed section and its bounding reflectors. In addition to mapping the regional extent of the newly proposed Summerville Formation, refraction velocities and changes in reflection character, the lateral extent of the basalt flows can be changed to a more localized flow rather than a regionally extensive flow of which was previously thought. Reanalysis of data in the MPSSZ suggests that the area may not be part of the Triassic South Georgia Rift system due to the sub-horizontal geometry of the red bed reflections, the apparent lack of faulting, and their

  15. Off-axis volcano-tectonic activity during continental rifting: Insights from the transversal Goba-Bonga lineament, Main Ethiopian Rift (East Africa)

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Sani, Federico; Agostini, Samuele; Philippon, Melody; Sokoutis, Dimitrios; Willingshofer, Ernst

    2018-03-01

    The Main Ethiopian Rift, East Africa, is characterized by the presence of major, enigmatic structures which strike approximately orthogonal to the trend of the rift valley. These structures are marked by important deformation and magmatic activity in an off-axis position in the plateaus surrounding the rift. In this study, we present new structural data based on a remote and field analysis, complemented with analogue modelling experiments, and new geochemical analysis of volcanic rocks sampled in different portions of one of these transversal structures: the Goba-Bonga volcano-tectonic lineament (GBVL). This integrated analysis shows that the GBVL is associated with roughly E-W-trending prominent volcano-tectonic activity affecting the western plateau. Within the rift floor, the approximately E-W alignment of Awasa and Corbetti calderas likely represent expressions of the GBVL. Conversely, no tectonic or volcanic features of similar (E-W) orientation have been recognized on the eastern plateau. Analogue modelling suggests that the volcano-tectonic features of the GBVL have probably been controlled by the presence of a roughly E-W striking pre-existing discontinuity beneath the western plateau, which did not extend beneath the eastern plateau. Geochemical analysis supports this interpretation and indicates that, although magmas have the same sub-lithospheric mantle source, limited differences in magma evolution displayed by products found along the GBVL may be ascribed to the different tectonic framework to the west, to the east, and in the axial zone of the rift. These results support the importance of the heterogeneous nature of the lithosphere and the spatial variations of its structure in controlling the architecture of continental rifts and the distribution of the related volcano-tectonic activity.

  16. An essential role for continental rifts and lithosphere in the deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Foley, Stephen F.; Fischer, Tobias P.

    2017-12-01

    The continental lithosphere is a vast store for carbon. The carbon has been added and reactivated by episodic freezing and re-melting throughout geological history. Carbon remobilization can lead to significant variations in CO2 outgassing and release in the form of magmas from the continental lithosphere over geological timescales. Here we use calculations of continental lithospheric carbon storage, enrichment and remobilization to demonstrate that the role for continental lithosphere and rifts in Earth's deep carbon budget has been severely underestimated. We estimate that cratonic lithosphere, which formed 2 to 3 billion years ago, originally contained about 0.25 Mt C km-3. A further 14 to 28 Mt C km-3 is added over time from the convecting mantle and about 43 Mt C km-3 is added by plume activity. Re-melting focuses carbon beneath rifts, creating zones with about 150 to 240 Mt C km-3, explaining the well-known association of carbonate-rich magmatic rocks with rifts. Reactivation of these zones can release 28 to 34 Mt of carbon per year for the 40 million year lifetime of a continental rift. During past episodes of supercontinent breakup, the greater abundance of continental rifts could have led to short-term carbon release of at least 142 to 170 Mt of carbon per year, and may have contributed to the high atmospheric CO2 at several times in Earth's history.

  17. The Role of Crustal Strength in Controlling Magmatism and Melt Chemistry During Rifting and Breakup

    NASA Astrophysics Data System (ADS)

    Armitage, John J.; Petersen, Kenni D.; Pérez-Gussinyé, Marta

    2018-02-01

    The strength of the crust has a strong impact on the evolution of continental extension and breakup. Strong crust may promote focused narrow rifting, while wide rifting might be due to a weaker crustal architecture. The strength of the crust also influences deeper processes within the asthenosphere. To quantitatively test the implications of crustal strength on the evolution of continental rift zones, we developed a 2-D numerical model of lithosphere extension that can predict the rare Earth element (REE) chemistry of erupted lava. We find that a difference in crustal strength leads to a different rate of depletion in light elements relative to heavy elements. By comparing the model predictions to rock samples from the Basin and Range, USA, we can demonstrate that slow extension of a weak continental crust can explain the observed depletion in melt chemistry. The same comparison for the Main Ethiopian Rift suggests that magmatism within this narrow rift zone can be explained by the localization of strain caused by a strong lower crust. We demonstrate that the slow extension of a strong lower crust above a mantle of potential temperature of 1,350 °C can fit the observed REE trends and the upper mantle seismic velocity for the Main Ethiopian Rift. The thermo-mechanical model implies that melt composition could provide quantitative information on the style of breakup and the initial strength of the continental crust.

  18. Diffuse CO2 degassing monitoring for the volcanic surveillance of Tenerife North-East Rift Zone (NERZ) volcano, Canary Islands

    NASA Astrophysics Data System (ADS)

    Rodríguez, F.; Thomas, G. E.; Wong, T.; García, E.; Melián, G.; Padron, E.; Asensio-Ramos, M.; Hernández, P. A.; Perez, N. M.

    2017-12-01

    The North East Rift zone of Tenerife Island (NERZ, 210 km2) is one of the three major volcanic rift-zones of the island. The most recent eruptive activity along the NERZ took place in the 1704-1705 period with eruptions of Siete Fuentes, Fasnia and Arafo volcanoes. Since fumarolic activity is nowadays absent at the NERZ, soil CO2 degassing monitoring represent a potential geochemical tool for its volcanic surveillance. The aim of this study is to report the results of the last CO2 efflux survey performed in June 2017, with 658 sampling sites. In-situ measurements of CO2 efflux from the surface environment of the NERZ were performed by means of a portable non-dispersive infrared spectrophotometer (NDIR) following the accumulation chamber method. To quantify the total CO2 emission, soil CO2 efflux spatial distribution maps were constructed using Sequential Gaussian Simulation (SGS) as interpolation method. The diffuse CO2 emission values ranged between 0 - 41.1 g m-2 d-1. The probability plot technique applied to the data allowed to distinguish two different geochemical populations; background (B) and peak (P) represented by 81.8% and 18.2% of the total data, respectively, with geometric means of 3.9 and 15.0 g m-2 d-1, respectively. The average map constructed with 100 equiprobable simulations showed an emission rate of 1,361±35 t d-1. This value relatively higher than the background average of CO2 emission estimated on 415 t d-1 and slightly higher than the background range of 148 t d-1 (-1σ) and 1,189 t d-1 (+1σ) observed at the NERZ. This study reinforces the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool in the NERZ.

  19. Quasi-quantitative analysis of the lithospheric rheology across an incipient continental rift based on 3-D magnetotelluric imaging of Linfen Basin within the North China Craton

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Jin, S.; Wei, W.; Ye, G.; Dong, H.; Zhang, L.

    2017-12-01

    The Shanxi Rift being located within the interior of the North China Craton and far from any plate boundaries has undergone dramatic deformation and seismicity during the Cenozoic. In this study, we build 3-D lithospheric resistivity model by MT array data, across the Linfen Basin which is the most active segment of this intraplate rift. Accordingly, combined with previous rock physics experimental results, we estimate the fluid contents of lower crustal granulites and upper mantle peridotites and thereby the rough distribution of lithospheric rheological strength. On the two sides of Linfen Basin, lithosphere beneath the Precambrian terranes are of high strength. By contrast, a high-conductivity nearly upright lithosphere weak zone occurs beneath the eastern margin of the Linfen Basin and appears to be connected to the high-conductivity and therefore weak lower crust just beneath the basin, probably indicating a structure of asthenospheric upwelling causing the lower crustal decoupling through lateral drag forces. The distribution of lithospheric weak zones, brittle faults, ductile shear zones and detachment structures determined from our resistivity model is in good agreement with the 8-My stage model of a previous numerical geodynamic simulation for continental rift evolution by reconstruction of the South Atlantic plate. Accordingly, we suggest that the lithospheric weak zone could be a preexisting Precambrian shear zone and has reactivated as an asthenospheric upwelling conduit under the far-field effects of Indo- Asian collision or Pacific Plate subduction since the late Mesozoic. This process could have caused the upper crustal extension and rifting through the stress regulation by the plastic lower crust, which could be the mechanism of rift formation. In summary, we suggest the Linfen segment of the Shanxi Rift, is a simple shear mode rift in the incipient stage of rift evolution, rather than a mature pure shear mode one as determined by precious seismic

  20. Late Paleogene rifting along the Malay Peninsula thickened crust

    NASA Astrophysics Data System (ADS)

    Sautter, Benjamin; Pubellier, Manuel; Jousselin, Pierre; Dattilo, Paolo; Kerdraon, Yannick; Choong, Chee Meng; Menier, David

    2017-07-01

    Sedimentary basins often develop above internal zones of former orogenic belts. We hereafter consider the Malay Peninsula (Western Sunda) as a crustal high separating two regions of stretched continental crust; the Andaman/Malacca basins in the western side and the Thai/Malay basins in the east. Several stages of rifting have been documented thanks to extensive geophysical exploration. However, little is known on the correlation between offshore rifted basins and the onshore continental core. In this paper, we explore through mapping and seismic data, how these structures reactivate pre-existing Mesozoic basement heterogeneities. The continental core appears to be relatively undeformed after the Triassic Indosinian orogeny. The thick crustal mega-horst is bounded by complex shear zones (Ranong, Klong Marui and Main Range Batholith Fault Zones) initiated during the Late Cretaceous/Early Paleogene during a thick-skin transpressional deformation and later reactivated in the Late Paleogene. The extension is localized on the sides of this crustal backbone along a strip where earlier Late Cretaceous deformation is well expressed. To the west, the continental shelf is underlain by three major crustal steps which correspond to wide crustal-scale tilted blocks bounded by deep rooted counter regional normal faults (Mergui Basin). To the east, some pronounced rift systems are also present, with large tilted blocks (Western Thai, Songkhla and Chumphon basins) which may reflect large crustal boudins. In the central domain, the extension is limited to isolated narrow N-S half grabens developed on a thick continental crust, controlled by shallow rooted normal faults, which develop often at the contact between granitoids and the host-rocks. The outer limits of the areas affected by the crustal boudinage mark the boundary towards the large and deeper Andaman basin in the west and the Malay and Pattani basins in the east. At a regional scale, the rifted basins resemble N-S en

  1. Vertical plate motions from ancient buried landscapes: Constraints on Icelandic plume evolution

    NASA Astrophysics Data System (ADS)

    Stucky de Quay, G.

    2016-12-01

    Convection in the Earth's mantle is strongly time-dependent (Ra 106-108). In regions that are dynamically supported, uplift and subsidence histories might therefore contain information about evolution of mantle convection. We examine uplift and subsidence histories of sedimentary basins fringing NW Europe, close to the Icelandic plume, where it has been shown short-term vertical motions disrupt post-rift thermal subsidence. These sedimentary basins contain ancient (59-53 Ma) buried fluvial landscapes which developed during inception of the Icelandic plume. Stratigraphic and seismic reflection data indicate that these terrestrial landscapes were incised by 100s of meters in only a few million years and were then rapidly submerged. We extracted a landscape buried beneath 1.5 km of sedimentary rock in the Bressay region, offshore eastern Scotland. This landscape was mapped using a three-dimensional 9000 km2 seismic dataset and seven exploration wells. First, the buried landscape was mapped using every inline and cross line (horizontal resolution 12 m). Second, the landscape was depth converted and decompacted using check-shot data. Third, drainage patterns were reconstructed by calculating flow directions across the mapped landscape. River profiles were extracted from these drainage patterns and contain three knickzones analogous to those documented in an older buried landscape in the Faereo-Shetland Basin, 400 km to the west. Fourth, we reinterpreted dinocyst records to determine the age of our landscape, allowing us to constrain erosion rates. Finally, our drainage inventory was inverted for uplift rate as a function of space and time. Results indicate three uplift events occurred between 55-57 Ma, resulting in a total cumulative uplift of 400 m. We combine these results with estimates of uplift in nearby regions to constrain the behavior of the incipient Icelandic plume both in a temporal and spatial context.

  2. Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins

    NASA Astrophysics Data System (ADS)

    Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.

    2017-12-01

    Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.

  3. The crustal characteristics at syn- and/or post-rifting in eastern Shikoku basin by seismic reflection survey

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Takahashi, N.; Kodaira, S.; Takizawa, K.; No, T.; Miura, S.; Kaneda, Y.

    2008-12-01

    Imaging of the arc-backarc transition zone is important in relation to the backarc opening process. Shikoku Basin locates between the Kyushu-Palau Ridge and the Izu-Ogasawara Arc, which is an important area to reveal the opening evolution of the backarc basins as a part of the growth process of the Philippine Sea. The Shikoku Basin was in the backarc rifting and spreading stage during about 30-15 Ma (e.g. Okino et al., 1994). High P-wave velocity lower crust is identified in arc-backarc transition zone by refraction survey using OBSs (Takahashi et al., 2007). Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection (MCS) survey using 12,000 cu.in. air gun and 5 km streamer with 204 ch hydrophones in the Izu-Ogasawara region since 2004. We extracted and mapped the crustal characteristics from poststack and prestack depth migrated profiles. According to obtained profiles, the deformation structure with share component is recognized in arc-backarc transition zone, which located eastern side of Shikoku Basin from Zenisu Ridge to about 500 km south. The maximum width of this deformation zone is about 100 km. The relative displacement of horizon is little; however, it is strongly deformed from upper crust beneath seafloor. This deformation zone indicates the post- rifting activity in east side of Shikoku Basin. On the other hand, some knolls are indicated along the en- echelon arrangement from Izu-Ogasawara arc. Ishizuka et al. (2003) reported post-rifting volcanism with Miocene age in en-echelon arrangement. A part of these knolls are estimated to penetrate at syn-rifting and/or post-rifting stage in backarc opening. By comparing the both side of arc-backarc transition zone, we elucidate syn- and post-rifting effect in Shikoku Basin. We also carried out high density MCS surveys in Shikoku Basin in order to IODP proposal site for reconstruction of magmatic processes since Oligocene in rear arc. In this survey, we use new

  4. The East African rift system in the light of KRISP 90

    USGS Publications Warehouse

    Keller, Gordon R.; Prodehl, C.; Mechie, J.; Fuchs, K.; Khan, M.A.; Maguire, Peter K.H.; Mooney, W.D.; Achauer, U.; Davis, P.M.; Meyer, R.P.; Braile, L.W.; Nyambok, I.O.; Thompson, G.A.

    1994-01-01

    On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of 100-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts. Major scientific goals of this phase of KRISP were to reveal the detailed crustal and upper mantle structure under the Kenya rift, to study the relationship between mantle updoming and the development of sedimentary basins and other shallow structures within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system and within a global perspective and to elucidate fundamental questions such as the mode and mechanism of continental rifting. The KRISP results clearly demonstrate that the Kenya rift is associated with sharply defined lithospheric thinning and very low upper mantle velocities down to depths of over 150 km. In the south-central portion of the rift, the lithospheric mantle has been thinned much more than the crust. To the north, high-velocity layers detected in the upper mantle appear to require the presence of anistropy in the form of the alignment of olivine crystals. Major axial variations in structure were also discovered, which correlate very well with variations in the amount of extension, the physiographic width of the rift valley, the regional topography and the regional gravity anomalies. Similar relationships are particularly well documented in the Rio Grande rift. To the extent that truly comparable data sets are available, the Kenya rift shares many features with other rift zones. For example, crustal structure under the Kenya, Rio Grande and Baikal rifts and the Rhine Graben is generally symmetrically centered on the rift valleys. However, the Kenya rift is distinctive, but not unique, in terms of

  5. Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Tokuyama, H.; Ishii, T.

    2010-12-01

    The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites

  6. Two-stage rifting in the Kenya rift: implications for half-graben models

    NASA Astrophysics Data System (ADS)

    Mugisha, F.; Ebinger, C. J.; Strecker, M.; Pope, D.

    1997-09-01

    The Kerio sub-basin in the northern Kenya rift is a transitional area between the southern Kenya rift, where crustal thickness is 30 km, and the northern Kenya rift, where crustal thickness is 20 km. The lack of data on the shallow crustal structure, geometry of rift-bounding faults, and rift evolution makes it difficult to determine if the crustal thickness variations are due to pre-rift structure, or along-axis variations in crustal stretching. We reprocessed reflection seismic data acquired for the National Oil Corporation of Kenya, and integrated results with field and gravity observations to (1) delineate the sub-surface geometry of the Kerio sub-basin, (2) correlate seismic stratigraphic sequences with dated strata exposed along the basin margins, and (3) use new and existing results to propose a two-stage rifting model for the central Kenya rift. Although a classic half-graben form previously had been inferred from the attitude of uppermost strata, new seismic data show a more complex form in the deeper basin: a narrow full-graben bounded by steep faults. We suggest that the complex basin form and the northwards increase in crustal thinning are caused by the superposition of two or more rifting events. The first rifting stage may have occurred during Palaeogene time contemporaneous with sedimentation and rifting in northwestern Kenya and southern Sudan. The distribution of seismic sequences suggests that a phase of regional thermal subsidence occurred prior to renewed faulting and subsidence at about 12 Ma after the eruption of flood phonolites throughout the central Kenya rift. A new border fault developed during the second rifting stage, effectively widening the basin. Gravity and seismic data indicate sedimentary and volcanic strata filling the basin are 6 km thick, with up to 4 km deposited during the first rifting stage.

  7. The Tephra Layer From the Plinian Eruption in ™r‘faj”kull 1362, Southeast Iceland

    NASA Astrophysics Data System (ADS)

    Selbekk, R. S.

    2002-12-01

    Pyroclastic fallout from the 1362 eruption of ™r‘faj”kull forms one of the volcanic marker horizons of the North Atlantic. This contribution reports the mineralogical and geochemical characteristics of the ™r‘faj”kull 1362 fallout and its grain-size distribution. A non-rifting 120 km long volcanic lineament some 50 km east of the Eastern Rift-Zone of Iceland is defined by transitional and alkalic volcanic rocks resting unconformably on late Tertiary strata. ™r‘faj”kull which forms the southern termination of this off-rift liniment is an ice-covered stratovolcano (2200 masl) composed mostly of subglacially formed hyaloclastite ranging from basalts to rhyolites. The two historical (1100 yrs) eruptions of ™r‘faj”kull include a small explosive eruption in 1727 and a large devastating Plinian eruption associated with major lahars and a caldera collapse in 1362. Between 1 and 2 km3 dense rock equivalent or 5-10 km3 of rhyolitic pumice was erupted and the fallout was mainly towards ESE. Tentative modelling of the PT-conditions of the magma formation, based on glass/mineral equilibria, indicates that the source was a near-eutectic melt in equilibrium with fayalite, hedenbergite, oligoclase and hematite at some 0.2 GPa pressure. A profile through the fallout was sampled at elevation of about 1100 masl on the SE flank of the volcano. A deposit of 1.8 m thickness was collected in 14 units for examination of composition, mineralogy and grain-size distribution during the eruption. In the profile the fallout is fine grained vesicular glass (1-3% minerals, 3% lithic fragments) with bubble wall thickness in the low micron range. The high and even vesiculation of the glass indicates fast magma ascent and explains the extreme mechanical fragmentation within the eruptive column, yielding between 50 and 80 wt% of less than 0.25 mm grain size. A reconstruction of the Plinian phase, based on grain-size analysis and abundance of lithic fragments, reveals that the

  8. Oppositely directed pairs of propagating rifts in back-arc basins: Double saloon door seafloor spreading during subduction rollback

    NASA Astrophysics Data System (ADS)

    Martin, A. K.

    2006-06-01

    When a continent breaks up into two plates, which then separate from each other about a rotation pole, it can be shown that if initial movement is taken up by lithospheric extension, asthenospheric breakthrough and oceanic accretion propagate toward the pole of rotation. Such a propagating rift model is then applied to an embryonic centrally located rift which evolves into two rifts propagating in opposite directions. The resultant rhombic shape of the modeled basin, initially underlain entirely by thinned continental crust, is very similar to the Oligocene to Burdigalian back-arc evolution of the Valencia Trough and the Liguro-Provencal Basin in the western Mediterranean. Existing well and seismic stratigraphic data confirm that a rift did initiate in the Gulf of Lion and propagated southwest into the Valencia Trough. Similarly, seismic refraction, gravity, and heat flow data demonstrate that maximum extension within the Valencia Trough/Liguro-Provencal Basin occurred in an axial position close to the North Balearic Fracture Zone. The same model of oppositely propagating rifts, when applied to the Burdigalian/Langhian episode of back-arc oceanic accretion within the Liguro-Provencal and Algerian basins, predicts a number of features which are borne out by existing geological and geophysical, particularly magnetic data. These include the orientation of subparallel magnetic anomalies, presumed to be seafloor spreading isochrons, in both basins; concave-to-the-west fracture zones southwest of the North Balearic Fracture Zone, and concave-to-the-east fracture zones to its northeast; a spherical triangular area of NW oriented seafloor spreading isochrons southwest of Sardinia; the greater NW extension of the central (youngest?) magnetic anomaly within this triangular area, in agreement with the model-predicted northwestward propagation of a rift in this zone; successively more central (younger) magnetic anomalies abutting thinned continental crust nearer to the pole of

  9. Rift Valley fever in a zone potentially occupied by Aedes vexans in Senegal: dynamics and risk mapping

    NASA Astrophysics Data System (ADS)

    Tourre, Y. M.; Vignolles, C.; Lacaux, J.-P.; Bigeard, G.; Ndione, J.-A.; Lafaye, M.

    2009-09-01

    This paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF) such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM), rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image. Additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in-situ entomological and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite). Since "Ae. vexans productive events” are dependent on the timing of rainfall for their embryogenesis (six days without rain are necessary to trigger hatching), the dynamic spatio-temporal distribution of Ae. vexans density was based on the total rainfall amount and pond dynamics. Detailed ZPOM mapping was obtained on a daily basis and combined with aggressiveness temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites. This new approach, simply relying upon rainfall distribution evaluated from space, is meant to contribute to the implementation of a new, operational early warning system for RVF based on environmental risks linked to climatic and environmental conditions.

  10. Colorado Basin Structure and Rifting, Argentine passive margin

    NASA Astrophysics Data System (ADS)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  11. Geographic Names of Iceland's Glaciers: Historic and Modern

    USGS Publications Warehouse

    Sigurðsson, Oddur; Williams, Richard S.

    2008-01-01

    Climatic changes and resulting glacier fluctuations alter landscapes. In the past, such changes were noted by local residents who often documented them in historic annals; eventually, glacier variations were recorded on maps and scientific reports. In Iceland, 10 glacier place-names are to be found in Icelandic sagas, and one of Iceland's ice caps, Snaefellsjokull, appeared on maps of Iceland published in the 16th century. In the late 17th century, the first description of eight of Iceland's glaciers was written. Therefore, Iceland distinguishes itself in having a more than 300-year history of observations by Icelanders on its glaciers. A long-term collaboration between Oddur Sigurdsson and Richard S. Williams, Jr., led to the authorship of three books on the glaciers of Iceland. Much effort has been devoted to documenting historical glacier research and related nomenclature and to physical descriptions of Icelandic glaciers by Icelanders and other scientists from as far back as the Saga Age to recent (2008) times. The first book, Icelandic Ice Mountains, was published by the Icelandic Literary Society in 2004 in cooperation with the Icelandic Glaciological Society and the International Glaciological Society. Icelandic Ice Mountains was a glacier treatise written by Sveinn Palsson in 1795 and is the first English translation of this important scientific document. Icelandic Ice Mountains includes a Preface, including a summary of the history and facsimiles of page(s) from the original manuscript, a handwritten copy, and an 1815 manuscript (without maps and drawings) by Sveinn Palsson on the same subject which he wrote for Rev. Ebenezer Henderson; an Editor's Introduction; 82 figures, including facsimiles of Sveinn Palsson's original maps and perspective drawings, maps, and photographs to illustrate the text; a comprehensive Index of Geographic Place-Names and Other Names in the treatise; References, and 415 Endnotes. Professional Paper 1746 (this book) is the second

  12. The role of inheritance in structuring hyperextended rift systems

    NASA Astrophysics Data System (ADS)

    Manatschal, Gianreto; Lavier, Luc; Chenin, Pauline

    2015-04-01

    A long-standing question in Earth Sciences is related to the importance of inheritance in controlling tectonic processes. In contrast to physical processes that are generally applicable, assessing the role of inheritance suffers from two major problems: firstly, it is difficult to appraise without having insights into the history of a geological system; and secondly all inherited features are not reactivated during subsequent deformation phases. Therefore, the aim of our presentation is to give some conceptual framework about how inheritance may control the architecture and evolution of hyperextended rift systems. We use the term inheritance to refer to the difference between an "ideal" layer-cake type lithosphere and a "real" lithosphere containing heterogeneities and we define 3 types of inheritance, namely structural, compositional and thermal inheritance. Moreover, we assume that the evolution of hyperextended rift systems reflects the interplay between their inheritance (innate/"genetic code") and the physical processes at play (acquired/external factors). Thus, by observing the architecture and evolution of hyperextended rift systems and integrating the physical processes, one my get hints on what may have been the original inheritance of a system. Using this approach, we focus on 3 well-studied rift systems that are the Alpine Tethys, Pyrenean-Bay of Biscay and Iberia-Newfoundland rift systems. For the studied examples we can show that: 1) strain localization on a local scale and during early stages of rifting is controlled by inherited structures and weaknesses 2) the architecture of the necking zone seems to be influenced by the distribution and importance of ductile layers during decoupled deformation and is consequently controlled by the thermal structure and/or the inherited composition of the curst 3) the location of breakup in the 3 examples is not significantly controlled by the inherited structures 4) inherited mantle composition and rift

  13. The development of the East African Rift system in north-central Kenya

    NASA Astrophysics Data System (ADS)

    Hackman, B. D.; Charsley, T. J.; Key, R. M.; Wilkinson, A. F.

    1990-11-01

    Between 1980 and 1986 geological surveying to produce maps on a scale of 1:250,000 was completed over an area of over 100,000 km 2 in north-central Kenya, bounded by the Equator, the Ethiopian border and longitudes 36° and 38 °E. The Gregory Rift, much of which has the structure of an asymmetric half-graben, is the most prominent component of the Cenozoic multiple rift system which extends up to 200 km to the east and for about 100 km to the west, forming the Kenya dome. On the eastern shoulder and fringes two en echelon arrays of late Tertiary to Quaternary multicentre shields can be recognized: to the south is the Aberdares-Mount Kenya-Nyambeni Range chain and, to the north the clusters of Mount Kulal, Asie, Huri Hills and Marsabit, with plateau lavas and fissure vents south of Marsabit in the Laisamis area. The Gregory Rift terminates at the southern end of Lake Turkana. Further north the rift system splays: the arcuate Kinu Sogo fault zone forms an offset link with the central Ethiopian Rift system. In the rifts of north-central Kenya volcanism, sedimentation and extensional tectonics commenced and have been continuous since the late Oligocene. Throughout this period the Elgeyo Fault acted as a major bounding fault. A comparative study of the northern and eastern fringes of the Kenya dome with the axial graben reinforces the impression of regional E-W asymmetry. Deviations from the essential N-trend of the Gregory Rift reflect structural weaknesses in the underlying Proterozoic basement, the Mozambique Orogenic Belt: thus south of Lake Baringo the swing to the southeast parallels the axes of the ca. 620 Ma phase folds. Secondary faults associated with this flexure have created a "shark tooth" array, an expression of en echelon offsets of the eastern margin of the Gregory Rift in a transtensional stress regime: hinge zones where major faults intersect on the eastern shoulder feature intense box faulting and ramp structures which have counterparts in the rift

  14. Crustal and mantle structure and anisotropy beneath the incipient segments of the East African Rift System: Preliminary results from the ongoing SAFARI

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; moidaki, M.; Mutamina, D. M.; Atekwana, E. A.; Ingate, S. F.; Reusch, A.; Barstow, N.

    2013-12-01

    Despite the vast wealth of research conducted toward understanding processes associated with continental rifting, the extent of our knowledge is derived primarily from studies focused on mature rift systems, such as the well-developed portions of the East African Rift System (EARS) north of Lake Malawi. To explore the dynamics of early rift evolution, the SAFARI (Seismic Arrays for African Rift Initiation) team deployed 50 PASSCAL broadband seismic stations across the Malawi, Luangwa, and Okavango rifts of the EARS during the summer of 2012. The cumulative length of the profiles is about 2500 km and the planned recording duration is 2 years. Here we present the preliminary results of systematic analyses of data obtained from the first year of acquisition for all 50 stations. A total of 446 high-quality shear-wave splitting measurements using PKS, SKKS, and SKS phases from 84 teleseismic events were used to constrain fast polarization directions and splitting times throughout the region. The Malawi and Okavango rifts are characterized by mostly NE trending fast directions with a mean splitting time of about 1 s. The fast directions on the west side of the Luangwa Rift Zone are parallel to the rift valley, and those on the east side are more N-S oriented. Stacking of approximately 1900 radial receiver functions reveals significant spatial variations of both crustal thickness and the ratio of crustal P and S wave velocities, as well as the thickness of the mantle transition zone. Stations situated within the Malawi rift demonstrate a southward increase in observed crustal thickness, which is consistent with the hypothesis that the Malawi rift originated at the northern end of the rift system and propagated southward. Both the Okavango and Luangwa rifts are associated with thinned crust and increased Vp/Vs, although additional data is required at some stations to enhance the reliability of the observations. Teleseismic P-wave travel-time residuals show a delay of about

  15. MABEL Iceland 2012 Flight Report

    NASA Technical Reports Server (NTRS)

    Cook, William B.; Brunt, Kelly M.; De Marco, Eugenia L.; Reed, Daniel L.; Neumann, Thomas A.; Markus, Thorsten

    2017-01-01

    In March and April 2012, NASA conducted an airborne lidar campaign based out of Keflavik, Iceland, in support of Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) algorithm development. The survey targeted the Greenland Ice Sheet, Iceland ice caps, and sea ice in the Arctic Ocean during the winter season. Ultimately, the mission, MABEL Iceland 2012, including checkout and transit flights, conducted 14 science flights, for a total of over 80 flight hours over glaciers, icefields, and sea ice.

  16. The upper mantle structure of the central Rio Grande rift region from teleseismic P and S wave travel time delays and attenuation

    USGS Publications Warehouse

    Slack, P.D.; Davis, P.M.; Baldridge, W.S.; Olsen, K.H.; Glahn, A.; Achauer, U.; Spence, W.

    1996-01-01

    The lithosphere beneath a continental rift should be significantly modified due to extension. To image the lithosphere beneath the Rio Grande rift (RGR), we analyzed teleseismic travel time delays of both P and S wave arrivals and solved for the attenuation of P and S waves for four seismic experiments spanning the Rio Grande rift. Two tomographic inversions of the P wave travel time data are given: an Aki-Christofferson-Husebye (ACH) block model inversion and a downward projection inversion. The tomographic inversions reveal a NE-SW to NNE-SSW trending feature at depths of 35 to 145 km with a velocity reduction of 7 to 8% relative to mantle velocities beneath the Great Plains. This region correlates with the transition zone between the Colorado Plateau and the Rio Grande rift and is bounded on the NW by the Jemez lineament, a N52??E trending zone of late Miocene to Holocene volcanism. S wave delays plotted against P wave delays are fit with a straight line giving a slope of 3.0??0.4. This correlation and the absolute velocity reduction imply that temperatures in the lithosphere are close to the solidus, consistent with, but not requiring, the presence of partial melt in the mantle beneath the Rio Grande rift. The attenuation data could imply the presence of partial melt. We compare our results with other geophysical and geologic data. We propose that any north-south trending thermal (velocity) anomaly that may have existed in the upper mantle during earlier (Oligocene to late Miocene) phases of rifting and that may have correlated with the axis of the rift has diminished with time and has been overprinted with more recent structure. The anomalously low-velocity body presently underlying the transition zone between the core of the Colorado Plateau and the rift may reflect processes resulting from the modern (Pliocene to present) regional stress field (oriented WNW-ESE), possibly heralding future extension across the Jemez lineament and transition zone.

  17. The evolution of rifting process in the tectonic history of the Earth

    NASA Technical Reports Server (NTRS)

    Milanovsky, E. E.; Nikishin, A. M.

    1985-01-01

    The continental rifting is the response of the lithosphere to the oriented tension. The distribution of viscosity in the lithosphere plays an essential role during all stages of the rifting. The viscosity is a function of the temperature, the lithostatic pressure, the rock composition, the deformation rate and other factors. The temperature is the most important factor. The vertical section of continental lithosphere of the rift zone may be divided into the following layers: the upper crust, in which brittle deformation prevails; the medialcrust, in which the role of plastic deformation increases; the lower crust, in which plastic deformation prevails; and the uppermost plastic part of the mantle overlapping asthenosphere. The depth of the boundaries in the crust layers are mainly controlled by the temperature.

  18. Contour mapping of relic structures in the Precambrian basement of the Reelfoot rift, North American midcontinent

    USGS Publications Warehouse

    Dart, R.L.; Swolfs, H.S.

    1998-01-01

    A new contour map of the basement of the Reelfoot rift constructed from drill hole and seismic reflection data shows the general surface configuration as well as several major and minor structural features. The major features are two asymmetric intrarift basins, bounded by three structural highs, and the rift margins. The basins are oriented normal to the northeast trend of the rift. Two of the highs appear to be ridges of undetermined width that extend across the rift. The third high is an isolated dome or platform located between the basins. The minor features are three linear structures of low relief oriented subparallel to the trend of the rift. Two of these, located within the rift basins, may divide the rift basins into paired subbasins. These mapped features may be the remnants of initial extensional rifting, half graben faulting, and basement subsidence. The rift basins are interpreted as having formed as opposing half graben, and the structural highs are interpreted as having formed as associated accommodation zones. Some of these features appear to be reactivated seismogenic structures within the modem midcontinent compressional stress regime. A detailed knowledge of the geometries of the Reelfoot rift's basement features, therefore, is essential when evaluating their seismic risk potential.

  19. GPS Velocity Field at the Western Tip of the Aden Ridge ; Implications for Rifting and the Arabia-Somalia-Nubia Triple Junction Dynamics

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Socquet, A.; Masson, F.; Cressot, C.; Mohamed, K.; Vigny, C.; Ruegg, J.

    2010-12-01

    Due to the presence of magma and a complex thermal structure, the dynamics of divergent plate boundaries are complicated, with microseismicity (ML<4) contributing very little to the total moment release. For the last 35 years several geodetic campaigns have been conducted at the western tip of the Aden Ridge propagating on land into Afar (Republic of Djibouti). The first segment above water, the Asal Rift, experienced a seismo-volcanic event in 1978, which was the first rifting episode, along with the 1978-1985 Icelandic Krafla event, to be monitored by terrestrial geodetic measurements. These measurements revealed the opening of two 1-2 m-wide dykes in the rift inner floor. Since then, terrestrial and spatial geodetic monitoring shows that the rift kept opening, during the post-rifting period, at a rate largely exceeding the plates’ motions. This significant opening rate is decreasing with time to tend, three decades after the rifting event, to the far-field opening rate. We present here the results of the GPS measurements of a 45 site network covering the Tadjoura-Asal Rift System, previously made every two years from 1995 to 2003, and repeated in 2010. The calculated 1999-2010 horizontal velocity field is very homogeneous with a quasi-constant N045° direction with respect to Somalia and a regular increase from the southern to the northern margin of the Asal Rift clearly controlled by a few normal faults, and reaching a maximum of 12.5 mm/yr. A non-negligible part of the Arabia-Somalia divergent movement (1 to 2 mm/yr) is observed south of this rift, which sheds light on the role of the active normal faults bounding the asymmetrical Gaggadé Basin and therefore brings important constraints on the location of the Red Sea Ridge-Aden Ridge-East African Rift triple junction. Since the last 2003 campaign, the lack of micro-seismicity within the Asal Rift seems to be associated with a ˜2 mm/yr decrease of the opening rate deduced from the GPS time series analysis

  20. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    NASA Astrophysics Data System (ADS)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  1. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris

    2013-02-01

    The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin

  2. Evidence for a Major Late Precambrian Tectonic Event (RIFTING?) in the Eastern Midcontinent Region, United States

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Bland, A. E.; Greenberg, J. K.

    1982-04-01

    Recently acquired gravity and aeromagnetic data delineate a large linear gravity anomaly which extends through eastern Kentucky and Tennessee and coincides with a zone of complex, high-amplitude magnetic anomalies. Basement lithologies in the area can be interpreted as a bimodal volcanic suite which is locally peralkaline in nature. These volcanics appear to be metamorphosed where they lie east of the Grenville front, suggesting they predate the Grenville metamorphic event. The available gravity, aeromagnetic, seismic refraction, and petrologic data, along with regional correlations, suggest that the best tectonic interpretation of these data is that a Keweenawan rift zone extended through the area. This rift can be roughly outlined by the gravity high, which is locally offset, suggesting the presence of transform faults. The boundaries of this rift have been locally reactivated and, in fact, a recent earthquake was located along its western boundary in northern Kentucky.

  3. An Episode 56 Perspective on Post-2001 Comagmatic Mixing Along Kilauea's East Rift Zone

    NASA Astrophysics Data System (ADS)

    Thornber, C.; Orr, T.; Lowers, H.; Heliker, C.; Hoblitt, R.

    2007-12-01

    O Hamo eruption (episode 56), as with the January 1997 Napua Crater event (episode 54), the summit deflated and Pu`u O`o collapsed as magma was drawn from either end of the active rift conduit toward a zone of extension. In both cases, magma returned to the Pu`u `O`o vent area after the conduit repressurized. However, in contrast to cool and porphyritic hybrid magma erupted through isolated and chemically evolved rift magma reservoirs at Napau Crater, the episode 56 lava is relatively primitive (8.7 wt% MgO) and 30 to 50°C hotter at 1160°C. This is likely to be summit-derived magma from within the active rift conduit beneath Kane Nui o Hamo. The episode 56 lava is ~15°C hotter than the late episode 55 hybrid magmas with consistently low incompatible elements and likely represents the recharge component that maintained a shallow reservoir at near-cotectic conditions beneath the vicinity of the Pu`u `O`o vents for the last several years. Both lava erupted from Pu`u `O`o in early June, 2007(episode 57), and lava the from the July 21-24 sequence of fissure eruptions down-rift of Pu`u `O`o (early episode 58) contain a distinctly hybrid phenocryst and glomerocryst assemblage, suggesting a flushing of cooler crystal-laden magma from the conduit.

  4. Kinematics of the asal rift (djibouti) determined from the deformation of fieale volcano.

    PubMed

    De Chabalier, J B; Avouac, J P

    1994-09-16

    Because of its subaerial exposure the Asal rift segment provides an exceptional opportunity to quantify the deformation field of an active rift and assess the contribution of tectonics and volcanism to rifting processes. The present topography of the Asal rift results from the tectonic dismemberment during the last 100,000 years of a large central volcanic edifice that formed astride the rift zone 300,000 to 100,000 years ago. Three-dimensional deformation of this volcano has been quantified from the combined analysis of the topography and geology. The analysis indicates that spreading at 17 to 29 millimeters per year in a N40 degrees +/- 5 degrees E direction accounts for most of the separation between Arabia and Somalia. The small topographic subsidence relative to extension suggests that tectonic thinning of the crust has been balanced by injection and underplating of magmatic material of near crustal density. The methodology developed in this study could also be applied to quantify deformation in relatively inaccessible areas where the main available information is topography or bathymetry.

  5. Iceland

    NASA Image and Video Library

    2015-03-09

    Iceland, dressed in winter white, peaked through a hole in a complex system of clouds in late February, 2015. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image on February 21 as it passed over the region. Ice and snow covers Iceland almost entirely, except for coastal regions in the southwest and southeast. The extensive, roughly H-shaped area in the southeast section of the island is Vatnajökull, Iceland’s largest glacier. Hidden underneath the ice lies Bardarbunga, a large subglacial stratovolcano. On August 31, 2014 the volcano began an eruption at two fissures to the north of the glacier and deposited a lava field that measured about 131 feet (40 meters) at its thickest points, and covered an area about 33 sq. mi (85 sq. km) by the time the eruption ended on February 27, 2015. The massive lava flow left its mark on Iceland – the cooled lava can be seen as the roughly oval black area to the north of the Vatnajökull glacier. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. The Geomorphometrics of the Rio Grande Rift: The role of tectonics, climate, and erosional processes in forming the Rio Grande river

    NASA Astrophysics Data System (ADS)

    Berry, M. A.; van Wijk, J.; Emry, E.; Axen, G. J.; Coblentz, D. D.

    2016-12-01

    Geomorphometrics provides a powerful tool for quantifying the topographic fabric of a landscape and can help with correlating surface features with underlying dynamic processes. Here we use a suite of geomorphometric metrics (including the topographic power spectra, fabric orientation/organization) to compare and contrast the geomorphology of two of the world's major rifts, the Rio Grande Rift (RGR) in western US and the East Africa Rift (EAR). The motivation for this study is the observation of fundamental differences between the characteristics of the intra-rift river drainage for the two rifts. The RGR consists of a series of NS trending rift basins, connected by accommodation or transfer zones. The Rio Grande river developed in the late Neogene, and follows these rift segments from the San Luis basin in Colorado to the Gulf of Mexico. Before the river system formed, basins are thought to have formed internally draining systems, characterized by shallow playa lakes. This is in contrast with lakes in the Tanganyika and Malawi rifts of the East African Rift that are deep and have existed for >5 My. We investigate the role of climate, tectonics and erosional processes in the formation of the through-going Rio Grande river. This occurred around the time of a slowing down of rift opening ( 10 Ma), but also climatic changes in the southwestern U.S. have been described for the late Neogene. To model our hypothesis, a tectonics and surface transport code TISC (Transport, Isostasy, Surface Transport, Climate) was used to evaluate the dynamics of a series of proto-rift basins and their connecting accommodation zones. Basin infill and drainage system development are studied as a result of varying sediment budgets, climate variables, and rift opening rate.

  7. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    article title:  Ash from Eyjafjallajökull Volcano, Iceland Stretches over the North Atlantic   ... that occurred in late March 2010, the Eyjafjallajökull Volcano in Iceland began erupting again on April 14, 2010. The resulting ash ...

  8. The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Shorttle, O.; Maclennan, J.

    2016-11-01

    New crystallization temperatures for four eruptions from the Northern Volcanic Zone of Iceland are determined using olivine-spinel aluminum exchange thermometry. Differences in the olivine crystallization temperatures between these eruptions are consistent with variable extents of cooling during fractional crystallization. However, the crystallization temperatures for Iceland are systematically offset to higher temperatures than equivalent olivine-spinel aluminum exchange crystallization temperatures published for MORB, an effect that cannot be explained by fractional crystallization. The highest observed crystallization temperature in Iceland is 1399 ± 20°C. In order to convert crystallization temperatures to mantle potential temperature, we developed a model of multilithology mantle melting that tracks the thermal evolution of the mantle during isentropic decompression melting. With this model, we explore the controls on the temperature at which primary melts begin to crystallize, as a function of source composition and the depth from which the magmas are derived. Large differences (200°C) in crystallization temperature can be generated by variations in mantle lithology, a magma's inferred depth of origin, and its thermal history. Combining this model with independent constraints on the magma volume flux and the effect of lithological heterogeneity on melt production, restricted regions of potential temperature-lithology space can be identified as consistent with the observed crystallization temperatures. Mantle potential temperature is constrained to be 1480-30+37 °C for Iceland and 1318-32+44 °C for MORB.

  9. Volcano spacings and lithospheric attenuation in the Eastern Rift of Africa

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.; Wood, C. A.

    1976-01-01

    The Eastern Rift of Africa runs the gamut of crustal and lithospheric attenuation from undeformed shield through attenuated rift margin to active neo-oceanic spreading zones. It is therefore peculiarly well suited to an examination of relationships between volcano spacings and crust/lithosphere thickness. Although lithospheric thickness is not well known in Eastern Africa, it appears to have direct expression in the surface spacing of volcanoes for any given tectonic regime. This applies whether the volcanoes are essentially basaltic, silicic, or alkaline-carbonatitic. No evidence is found for control of volcano sites by a pre-existing fracture grid in the crust.

  10. Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone

    USGS Publications Warehouse

    Arnadottir, T.; Jonsson, Sigurjon; Pollitz, F.F.; Jiang, W.; Feigl, K.L.

    2005-01-01

    We observe postseismic deformation on two spatiotemporal scales following Mw = 6.5 earthquakes in the south Iceland seismic zone on 17 and 21 June 2000. We see a rapidly decaying deformation transient lasting no more than 2 months and extending about 5 km away from the two main shock ruptures. This local, month-scale transient is captured by several radar interferograms and is also observed at a few campaign GPS sites located near the faults. A slower transient with a characteristic timescale of about a year is detected only by GPS measurements. The month-scale deformation pattern has been explained by poroelastic rebound due to postearthquake pore pressure changes. In contrast, the year-scale deformation can be explained by either afterslip at 8-14 km depth or viscoelastic relaxation of the lower crust and upper mantle in response to the coseismic stress changes. The optimal viscoelastic models have lower crustal viscosities of 0.5-1 ?? 1019 Pa s and upper mantle viscosity of ???3 ?? 1018 Pa s. Because of the limitations of our GPS campaign data, we consider both afterslip and viscoelastic relaxation as plausible mechanisms explaining the deformation field. Both types of postseismic deformation models suggest that the areas of large coseismic stress increase east of the 17 June and west of the 21 June ruptures continue to be loaded by the postseismic deformation. Copyright 2005 by the American Geophysical Union.

  11. Syntectonic fluid flux during rift faulting: Record from the MIS core, Victoria Land Basin, Antarctica

    NASA Astrophysics Data System (ADS)

    Millan, C.; Wilson, T. J.; Paulsen, T. S.

    2009-12-01

    The McMurdo Ice Shelf project successfully recovered 1285 m of Neogene sedimentary core from the Victoria Land Basin, a large rift basin within the West Antarctic Rift System (WARS) of Antarctica. The core contains 1475 natural fractures that were logged as faults, veins and clastic dikes, associated with the southern extension of the Neogene-active? Terror Rift fault zone. Veins constitute about 625 of this population. Most veins are filled with calcite, although zeolites and minor chlorite are common towards the bottom of the core. In the lower ~300 m of the core, veins contain opening-mode fiber fills and are wavy to tightly folded due to vertical shortening. Folded, opening-mode folded veins are filled by calcite fibers that grew normal to vein walls, indicating the host sediment was cohesive enough to fracture but was not fully lithified and accommodated vein buckling during compaction. Fold hinges are fractured and wedging of vein segments is marked by overlapping tips separated by zones with strong chlorite and clay fabrics, suggesting shearing during further vertical contraction of the host rock. Calcite veins are commonly strongly twinned. Cathodoluminescence microscopy shows minor changes in color and intensity and minimal concentric or sectoral zoning, suggesting relatively rapid crystallization of fluids of similar chemistry. However, stable isotope analyses reveal large variations in values, with carbon values ranging from -21.91 to -7.15 (VPBD) and oxygen values ranging from -5.35 to -11.97 (VPBD). Further detailed investigation of the fracture fills using cathodoluminescence and electron microscopy combined with isotopic analysis of carbon and oxygen will document the generations of the filling material in more detail and will constrain the sources and evolution of the fluids. There has clearly been significant structural control on fluid pathways during lithification, compaction and diagenesis of strata deforming within the Terror Rift zone.

  12. Structural evolution of the Rio Grande rift: Synchronous exhumation of rift flanks from 20-10 Ma, embryonic core complexes, and fluid-enhanced Quaternary extension

    NASA Astrophysics Data System (ADS)

    Ricketts, Jason William

    The Rio Grande rift in Colorado and New Mexico is one of the well-exposed and well-studied continental rifts in the world. Interest in the rift is driven not only by pure scientific intrigue, but also by a desire and a necessity to quantify earthquake hazards in New Mexico as well as to assess various water related issues throughout the state. These motivating topics have thus far led to the publication of two Geological Society of America Special Publication volumes in 1994 and 2013. This dissertation aims at building on the wealth of previous knowledge about the rift, and is composed of three separate chapters that focus on the structural evolution of the Rio Grande rift at several different time and spatial scales. At the largest scale, apatite (U-Th)/He thermochronologic data suggest synchronous extension along the entire length of the Rio Grande rift in Colorado and New Mexico from 20-10 Ma, which is important for understanding and evaluating possible driving mechanisms which are responsible for the rift. Previous tectonic and magmatic events in western North America were highly influential in the formation of the Rio Grande rift, and the new thermochronologic data suggest that its formation may have been closely linked to foundering and removal of the underlying Farallon Plate. A fundamental result of rift development at these scales is a concentration of strain is some regions of the rift. In these regions of maximum extension, fault networks display a geometry involving both high- and low-angle fault networks. These geometries are similar to the early stages in the development of metamorphic core complexes, and thus these regions in the rift link incipient extensional environments to highly extended terranes. At shorter time scales, heterogeneous strain accumulation may be governed in part by fluids in fault zones. As an example, along the western edge of the Albuquerque basin, travertine deposits are cut by extensional veins that record anomalously high

  13. Interactions between propagating rifts and pre-existing linear rheological heterogeneities: insights from 3D analogue experiments of rotational extension

    NASA Astrophysics Data System (ADS)

    Molnar, Nicolas; Cruden, Alexander

    2017-04-01

    Propagating rifts are a natural consequence of lithospheric plates that diverge with respect to each other about a pole of rotation. This process of "unzipping" is common in the geological record, but how rifts interact with pre-existing structures (i.e., with a non-homogeneous lithosphere) as they propagate is poorly understood. Here we report on a series of lithospheric-scale three-dimensional analogue experiments of rotational extension with in-built, variably oriented linear weak zones in the lithospheric mantle, designed to investigate the role that inherited structural or thermal weaknesses play in the localisation of strain and rifting. Surface strain and dynamic topography in the analogue models are quantified by high-resolution particle imaging velocimetry and digital photogrammetry, which allows us to characterise the spatio-temporal evolution of deformation as a function of the orientation of the linear heterogeneities in great detail. The results show that the presence of a linear zone of weakness oriented at low angles with respect to the rift axis (i.e., favourably oriented) produces strain localisation in narrow domains, which enhances the "unzipping" process prior to continental break up. Strong strain partitioning is observed when the linear heterogeneity is oriented at high angles with respect to the rift axis (i.e., unfavourably oriented). In these experiments, early sub-parallel V-shaped basins propagate towards the pole of rotation until they are abandoned and strain is transferred entirely to structures developed in the vicinity of the strongly oblique weak lithosphere zone boundary. The modelling also provides insights on how propagating rift branches that penetrate the weak linear zone boundary are aborted when strain is relayed onto structures that develop in rheologically weaker areas. The experimental results are summarised in terms of their evolution, patterns of strain localisation, and dynamic topography as a function of the

  14. High-Latitude Paleomagnetic and Ar-Ar Study of 0 - 6 MA Lavas from Eastern Iceland: Contribution to the Time-Averaged Field Initiative

    NASA Astrophysics Data System (ADS)

    Døssing, A.; Muxworthy, A. R.; Mac Niocaill, C.; Riishuus, M. S.

    2013-12-01

    Statistical analyses of paleomagnetic data from sequential lava flows allow us to study the geomagnetic field behavior on kyr to Myr timescales. Previous paleomagnetic studies have lacked high-latitude, high-quality measurements and resolution necessary to investigate the persistence of high-latitude geomagnetic field anomalies observed in the recent and historical field records, and replicated in some numerical geodynamo simulations. As part of the Time-Averaged Field Initiative (TAFI) project, the lava sequences found in Nordurdalur (by Fljótsdalur) and Jökuldalur in eastern Iceland provide an excellent opportunity to improve high-latitude data suitable for investigating the 0-5 Ma TAF and paleosecular variation. These adjacent valleys, separated by 40 km, are known to comprise a fairly continuous record of lava flows erupted from the Northern Rift Zone between 0.5 and 5-7 Ma. During a five weeks field campaign in summer 2013, we collected a total of ~1900 cores (10-16 cores/site; mean = ~13 cores/site) from ~140 separate lava flows (165 in total) along eight stratigraphic profiles in Nordurdalur and Jökuldalur. In addition, hand samples were collected from ~70 sites to deliver ~40 new 40Ar/39Ar radiometric age measurements. We present a preliminary composite magnetostratigraphic interpretation of the exposed volcanic pile in Nordurdalur and Jökuldalur. The new data will be compared and contrasted with previously published paleomagnetic and geochronological results. In addition, determinations of the anisotropy of the magnetic susceptibility of individual lava flows is sought to deliver fossil lava flow directions. The aim of the study is ultimately to present a high-quality study of paleomagnetic directions and intensities from Iceland spanning the past 6-7 Myr. The new Fjlotsdalur and Jökuldalur data will be combined with previously published paleomagnetic results.

  15. Magma-tectonic interactions in Kīlauea's Southwest Rift Zone in 2006 through coupled geodetic/seismological analysis

    NASA Astrophysics Data System (ADS)

    Wauthier, C.; Roman, D. C.; Poland, M. P.

    2015-12-01

    For much of the first 20 years of Kīlauea's 1983-present Pu'u 'Ō'ō eruption, deformation was characterized by subsidence at the volcano's summit and along both the East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). At the end of 2003, however, Kīlauea's summit began a 4-year period of inflation due to a surge in magma supply to the volcano. In 2006, the SWRZ also experienced atypical inflation, which was last observed in 1981-82 during a series of dike intrusions. To investigate the active magma sources and their interactions with faulting in the SWRZ during 2006, we integrate contemporary geodetic data from InSAR and GPS with double-couple fault-plane solutions for volcano-tectonic earthquakes and Coulomb stress modeling. According to the rate of deformation measured in daily GPS data, two distinct periods can be defined, spanning January to 15 March 2006 (period 1) and 16 March to 30 September 2006 (period 2). Geodetic models suggest that, during period 1, deformation, due to pressurization of magma in a vertical prolate-spheroidal conduit, in the south caldera area. In addition, a major seismic swarm occurred in both the SWRZ and ERZ. Our preliminary results also suggest that, during period 2, magma was still overpressurizing the same prolate-spheroid but a subhorizontal sill also intruded further to the southwest in the seismic SWRZ (SSWRZ). The beginning of period 2 also corresponds to a switch from subsidence to inflation of the SWRZ. Faulting in the upper ERZ is primarily strike-slip, with no obvious change in FPS orientation between periods 1 and 2. In contrast, faulting in the upper SSWRZ occurs as dip-slip motion on near-vertical faults. SSWRZ FPS show a mix of orientations including NW- and NE-striking faults, which along with relative earthquake locations, suggest a series of right-stepping fault segments, particularly during period 2. Calculated Coulomb stress changes indicate that faulting in the upper SSWRZ may result from stresses produced by

  16. A global census of continental rift activity since 250 Ma reveals a missing element of the deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon; Müller, Dietmar

    2017-04-01

    The deep carbon cycle connects CO2 concentrations within the atmosphere to the vast carbon reservoir in Earth's mantle: subducted lithosphere carries carbon into the mantle, while extensional plate boundaries and arc volcanoes release it back to Earth's surface. The length of plate boundaries thereby exerts first-order control on global CO2 fluxes on geological time scales. Here we provide a global census of rift length from the Triassic to present day, combining a new plate reconstruction analysis technique with data from the geological rift record. We find that the most extensive rift phase during the fragmentation of Pangea occurred in the Jurassic/Early Cretaceous with extension along the South Atlantic (9700 km) and North Atlantic rifts (9100 km), within East Gondwana (8500 km), the failed African rift systems (4900 km), and between Australia and Antarctica (3700 km). The combined extent of these and other rift systems amounts to more than 50.000 km of simultaneously active continental rifts. During the Late Cretaceous, in the aftermath of this massive rift episode, the global rift length dropped by 60% to 20.000 km. We further show that a second pronounced rift episode starts in the Eocene with global rift lengths of up to 30.000 km. It is well-accepted that volcanoes at plate boundaries release large amounts of CO2 from the Earth's interior. Recent work, however, highlights the importance of deep-cutting faults and diffuse degassing on CO2 emissions in the East African Rift, which appear to be comparable to CO2 release rates at mid-ocean ridges worldwide. Upscaling measured CO2 fluxes from East Africa to all concurrently active global rift zones with due caution, we compute the first-order history of cumulative rift-related CO2 degassing rates for the last 250 Myr. We demonstrate that rift-related CO2 release in the Early Cretaceous may have reached 400% of present-day rates. In first-order agreement with paleo-atmospheric CO2 concentrations from proxy

  17. Insights into Rift Initiation, Evolution, and Failure from North America's Midcontinent Rift

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S.; Elling, R. P.; Keller, G. R.; Kley, J.; Wysession, M. E.

    2017-12-01

    Recent studies of the Midcontinent Rift (MCR) near Lake Superior give insights into how some rifts start, evolve, and fail because the rift-filling volcanic and sedimentary rocks are exposed at the surface and well imaged by deep seismic reflection and gravity data. The MCR was traditionally considered to have formed by midplate extension and volcanism 1.1 Ga that ended due to compression from the Grenville orogeny, the 1.3 - 0.98 Ga assembly of Amazonia (Precambrian northeast South America), Laurentia (Precambrian North America), and other continents into the supercontinent of Rodinia. We find that a more plausible scenario is that the MCR formed as part of the rifting of Amazonia from Laurentia and became inactive once seafloor spreading was established. A cusp in Laurentia's apparent polar wander path just before the onset of MCR volcanism likely reflects the rifting. Such cusps have been observed elsewhere when continents separate and a new ocean forms between the two fragments. New analyses also find that the MCR's failure did not result from Grenville compression. This view is consistent with the observation that many intracontinental rifts form and fail as part of plate boundary reorganizations. Present-day continental extension in the East African Rift and seafloor spreading in the Red Sea and Gulf of Aden form a classic three-arm rift geometry as Africa splits into Nubia, Somalia, and Arabia. The West Central African Rift system formed during the Mesozoic breakup of Africa and South America and became inactive once full seafloor spreading was established on the Mid-Atlantic Ridge. An important feature of the MCR is that it is has aspects both of a continental rift - a segmented linear depression filled with sedimentary and igneous rocks - and a large igneous province (LIP). We view it as a LIP deposited in crust weakened by rifting, and thus first a rift and then a LIP. The MCR exhibits many key features of volcanic passive margins: seaward dipping

  18. Rio Grande rift evolution and accommodation mechanisms as revealed through low-temperature thermochronometry

    NASA Astrophysics Data System (ADS)

    Abbey, A. L.; Niemi, N. A.

    2017-12-01

    Low-temperature thermochronometry in the Rio Grande rift (RGR) in CO and NM, USA, allows for quantification of exhumation magnitudes and rates across the rift and reveals insights into rift basin segmentation and symmetry as well as the timing of extensional fault initiation and dominant mechanisms for rift accommodation. We combine new apatite helium (AHe) and zircon helium (ZHe) thermochronologic data with previously published AHe and apatite fission track (AFT) data to compile 17 vertical transects, each consisting of at least four samples, spanning more than >800 km along the RGR axis. Inverse thermal modeling (QTQt; Gallagher, 2012) of these vertical transects and compilation of bimodal rift related volcanism highlight transfer regions that separate several asymmetric basins with opposing fault dip directions. The Tularosa, Jornada and Albuquerque basins, in the southern RGR show extension initiation ca. 15 Ma with 3-4 km of exhumation accommodated on east dipping faults. Northward, the Española basin, a transfer zone of several strike slip, oblique-slip and smaller normal faults, does not record significant exhumation since the early Cenozoic. In the north-central part of the rift data from the San Luis Basin reveals 3-5 km of exhumation on west dipping faults began 20-15 Ma. East dipping faults in the upper Arkansas and Blue River grabens represent the northern extent of the rift and accommodate 3-5 km of exhumation beginning 15-10 Ma. RGR extension and magmatism initiation is commonly cited at 28 Ma (Tweto, 1979) however, our low-temperature thermochronometry modeling indicates that the majority of upper crustal extension initiated somewhat synchronously 15 Ma along the entire length of the rift. Rift related volcanism increased significantly in volume at 15 Ma, as well, but the locus of this volcanism is the Jemez lineament rather than the rift axis. As a result rifting within the RGR appears to be accommodated primarily by extensional faulting, with the

  19. Images of Kilauea East Rift Zone eruption, 1983-1993

    USGS Publications Warehouse

    Takahashi, Taeko Jane; Abston, C.C.; Heliker, C.C.

    1995-01-01

    This CD-ROM disc contains 475 scanned photographs from the U.S. Geological Survey Hawaii Observatory Library. The collection represents a comprehensive range of the best photographic images of volcanic phenomena for Kilauea's East Rift eruption, which continues as of September 1995. Captions of the images present information on location, geologic feature or process, and date. Short documentations of work by the USGS Hawaiian Volcano Observatory in geology, seismology, ground deformation, geophysics, and geochemistry are also included, along with selected references. The CD-ROM was produced in accordance with the ISO 9660 standard; however, it is intended for use only on DOS-based computer systems.

  20. Icelandic occupational therapists' attitudes towards educational issues.

    PubMed

    Asmundsd ttir, ELIN EBBA; Kaplan, SUSAN

    2001-01-01

    The purpose of this study was to assess the readiness of occupational therapists in Iceland to accept a professional as opposed to a technical view of the profession. Most Icelandic occupational therapists were educated in other countries, with little emphasis on liberal arts, sciences and research. The first Icelandic occupational therapy programme, a university-level programme, was founded in 1997. All Icelandic occupational therapists were surveyed. Eighty-seven questionnaires were sent out and 80 (92%) were returned and used for statistical analysis. The results of the study showed that Icelandic occupational therapists valued academic skills over technical skills, emphasizing occupational therapy theory unique to the profession and research to validate practice. More recognition among other health professionals was considered the most needed change in the profession. The results of the study showed that the clinicians' attitudes confirmed in general what is emphasized in the curriculum and in students' fieldwork. Further research is needed to explore whether the Icelandic occupational therapy profession succeeds in promoting research and recognition by other health professions.

  1. Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.

    2017-12-01

    The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a

  2. Structural inheritance versus magmatic weakening: What controls the style of deformation at rift segment boundaries in the Gulf of California, Mexico?

    NASA Astrophysics Data System (ADS)

    Seiler, Christian; Gleadow, Andrew; Kohn, Barry

    2013-04-01

    Rifts are commonly segmented into several hundred kilometre long zones of opposing upper-plate transport direction with boundaries defined by accommodation and transfer zones. A number of such rift segments have been recognized in the Gulf of California, a youthful oceanic basin that is currently undergoing the rift-drift transition. However, detailed field studies have so far failed to identify suitable structures that could accommodate the obvious deformation gradients between different rift segments, and the nature of strain transfer at segment boundaries remains enigmatic. The Bocana transfer zone (BTZ) in central Baja California is a linear, WNW striking structural discontinuity separating two rift segments with different magnitudes and styles of extensional deformation. North of the BTZ, the Libertad fault is part of the Main Gulf Escarpment, which represents the breakaway fault that separates the Gulf of California rift to the east from the relatively stable western portion of the Baja peninsula. The N-striking Libertad escarpment developed during the Late Miocene (~10-8Ma) and exhibits a topographic relief of ca. 1,000m along a strike-length of ca. 50km. Finite displacement decreases from ~1000m in the central fault segment to ~500m further south, where the fault bends SE and merges with the BTZ. In the hanging wall of the Libertad fault, a series of W-tilted horsts are bound along their eastern margins by two moderate-displacement E-dipping normal faults. South of the BTZ, extension was much less than further north, which explains the comparatively subdued relief and generally shallower tilt of pre-rift strata in this area. The BTZ itself is characterized by two en echelon WNW-ESE striking dextral-oblique transfer faults with a significant down-to-the-NNE extensional component. Strain is transferred from the Libertad breakaway fault onto the transfer faults over a distance of >20km through a network of interacting normal, oblique and strike-slip faults

  3. ALVIN investigation of an active propagating rift system, Galapagos 95.5° W

    USGS Publications Warehouse

    Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, Norman H.; Johnson, H. Paul; Neal, C.A.

    1992-01-01

    ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.

  4. Magma Supply Rate Controls Vigor (And Longevity) of Kīlauea's Ongoing East Rift Zone Eruption

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Anderson, K. R.

    2015-12-01

    Since 1983, Kīlauea Volcano, Hawai'i, has erupted almost continuously from vents on the East Rift Zone—at 32 years and counting, this is the longest-duration eruption in the past 500 years. Although forecasting the onset of eruptive activity using geophysical, geochemical, and geological monitoring has been demonstrated repeatedly at Kīlauea and elsewhere, little progress has been made in forecasting an eruption's waning or end, particularly in the case of long-lived eruptions. This is especially important at Kīlauea for at least two reasons: (1) caldera formation at the end of another decades-long eruption, in the 15th century, raises the possibility of a link between eruption duration and caldera formation; and (2) long-lived eruptions can have an enduring effect on local population and infrastructure, as demonstrated by the repeated destruction of property by Kīlauea's ongoing rift zone eruption. Data from the past 15 years indicate that the magma supply rate to Kīlauea is an important control on eruptive activity. Joint inversions of geophysical, geochemical, and geological observations demonstrate that in 2006 the supply rate was nearly double that of 2000-2001, resulting in an increase in lava discharge, summit inflation, and the formation of new eruptive vents. In contrast, the magma supply during 2012, and likely through 2014, was less than that of 2000-2001. This lower supply rate was associated with a lower lava discharge and may have played a role in the stalling of lava flows above population centers in the Puna District during 2014-2015. Heightened eruptive vigor may be expected if magma supply increases in the future; however, a further decrease in supply rate—which is likely already below the long-term average—may result in cessation of the eruption. Multidisciplinary monitoring, and particularly tracking of CO2 emissions and surface deformation, should be able to detect changes in supply rate before they are strongly manifested at the

  5. Continental crust beneath southeast Iceland.

    PubMed

    Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume.

  6. Geophysical studies of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Lemasurier, W. E.; Cooper, A. K.; Tessensohn, F.; TréHu, A.; Damaske, D.

    1991-12-01

    survey over the Ross Sea continental shelf indicates rift fabric and suggests numerous submarine volcanoes along discrete NNW trending zones. A Bouguer anomaly range of approximately 200 (+50 to -150) mGal having 4-7 mGal/km gradients where measured in places marks the rift shoulder from northern Victoria Land possibly to the Ellsworth Mountains (where data are too sparse to determine maximum amplitude and gradient). The steepest gravity gradients across the rift shoulder require high density (mafic or ultramafic?) rock within the crust as well as at least 12 km of thinner crust beneath the West Antarctic rift system in contrast to East Antarctica. Sparse land seismic data reported along the rift shoulder, where velocities are greater than 7 km/s, and marine data indicating velocities above 7 km/s beneath the Ross Sea continental shelf support this interpretation. The maximum Bouguer gravity range in the Pensacola Mountains area of the Transantarctic Mountains is only about 130 mGal with a maximum 2 mGal/km gradient, which can be explained solely by 8 km of crustal thickening. Large offset seismic profiles over the Ross Sea shelf collected by the German Antarctic North Victoria Land Expedition V (GANOVEX V) combined with earlier USGS and other results indicate 17-21 km thickness for the crust beneath the Ross Sea shelf which we interpret as evidence of extended rifted continental crust. A regional positive Bouguer anomaly (0 to +50 mGal), the width of the rift, extends from the Ross Sea continental shelf throughout the Ross Embayment and Byrd Subglacial Basin area of the West Antarctic rift system and indicates that the Moho is approximately 20 km deep tied to the seismic results (probably coincident with the top of the asthenosphere) rather than the 30 km reported in earlier interpretations. The interpretation of horst and graben structures in the Ross Sea, made from marine seismic reflection data, probably can be extended throughout the rift (i.e., the Ross Ice shelf

  7. Insights into subglacial eruptions based on geomorphometry: Broad scale analysis of subglacial edifices in Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro; Grosse, Pablo

    2014-05-01

    The two main types of subglacial volcanic edifices, tuyas and tindars, have classicaly been known for their distinct morphometric characteristics. Tuyas are roughly equidimensional, steep-sided, flat topped mountains, while tindars are elongate, linear, steep sided, serrated ridges. In particular, the passage zone is morphometrically diagnostic, with a break in slope marking the transition from steep scree flanks to a low sloping lava cap [e.g. 1]. The passage zone thereby records the englacial water level coeval with delta formation and thereby provides important paleoenvironmental parameters regarding ice thickness, paleo-ice surface and the eruption environment. This study utilizes these morphometric characteristics to make a broad scale assessment of Icelandic subglacial edifices in the neovolcanic zone based on the TK-50 digital elevation model (20m/pixel) from the company Loftmyndir ehf. The edifice boundaries are delimited by concave breaks in slope around their bases and the passage zones are extracted as convex breaks in slope. This extraction is performed through object-based image analysis of slope and profile curvature maps with the eCognition program [2]. The MORVOLC code [3] is then used to calculate several morphometric parameters for each edifice: volume, edifice height, passage zone height, slope, base area, base width, ellipticity and irregularity. Analysis of the morphometric parameters allows grouping of subglacial edifices by to volume, with a continuum of landforms ranging from small tindars (group 1) to large tuyas (group 3), with an intermediate complex group of edifices (group 2). The plan shape indexes (ellipticity and irregularity) and the strike of main elongation show a first order correlation with the 3 classes and groups. Furthermore, correlations of passage zone heights, volumes and information regarding englacial lake stability allows us to investigate several aspects of tuya formation, including(1) spatial distribution of tuya

  8. 3D numerical simulations of multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Naliboff, J.; Glerum, A.; Brune, S.

    2017-12-01

    Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and

  9. Lithospheric rheological heterogeneity across an intraplate rift basin (Linfen Basin, North China) constrained from magnetotelluric data: Implications for seismicity and rift evolution

    NASA Astrophysics Data System (ADS)

    Yin, Yaotian; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Jing, Jian'en; Zhang, Letian; Dong, Hao; Xie, Chengliang; Liang, Hongda

    2017-10-01

    We take the Linfen Basin, which is the most active segment of the Cenozoic intraplate Shanxi Rift, as an example, showing how to use magnetotelluric data to constrain lithospheric rheological heterogeneities of intraplate tectonic zones. Electrical resistivity models, combined with previous rheological numerical simulation, show a good correlation between resistivity and rheological strength, indicating the mechanisms of enhanced conductivity could also be reasons of reduced viscosity. The crust beneath the Linfen Basin shows overall stratified features in both electrical resistivity and rheology. The uppermost crustal conductive layer is dominated by friction sliding-type brittle fracturing. The high-resistivity mid-crust is inferred to be high-viscosity metamorphic basement being intersected by deep fault. The plastic lower crust show significantly high-conductivity feature. Seismicity appears to be controlled by crustal rheological heterogeneity. Micro-earthquakes mainly distribute at the brittle-ductile transition zones as indicated by high- to low-resistivity interfaces or the high pore pressure fault zones while the epicenters of two giant destructive historical earthquakes occur within the high-resistivity and therefore high-strength blocks near the inferred rheological interfaces. The lithosphere-scale lateral rheological heterogeneity along the profile can also be illustrated. The crust and upper mantle beneath the Ordos Block, Lüliang Mountains and Taihang Mountains are of high rheological strength as indicated by large-scale high-resistivity zones while a significant high-conductivity, lithosphere-scale weak zone exists beneath the eastern margin of the Linfen Basin. According to previous geodynamic modeling works, we suggest that this kind of lateral rheological heterogeneity may play an essential role for providing driving force for the formation and evolution of the Shanxi Rift, regional lithospheric deformation and earthquake activities under the

  10. Crustal structure and kinematics of the TAMMAR propagating rift system on the Mid-Atlantic Ridge from seismic refraction and satellite altimetry gravity

    NASA Astrophysics Data System (ADS)

    Kahle, Richard L.; Tilmann, Frederik; Grevemeyer, Ingo

    2016-08-01

    The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr-1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5-6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.

  11. Insights Into the Causes of Arc Rifting From 2-D Dynamic Models of Subduction

    NASA Astrophysics Data System (ADS)

    Billen, Magali I.

    2017-11-01

    Back-arc spreading centers initiate as fore-arc or arc rifting events when extensional forces localize within lithosphere weakened by hydrous fluids or melting. Two models have been proposed for triggering fore-arc/arc rifting: rollback of the subducting plate causing trench retreat or motion of the overriding plate away from the subduction zone. This paper demonstrates that there is a third mechanism caused by an in situ instability that occurs when the thin high-viscosity boundary, which separates the weak fore arc from the hot buoyant mantle wedge, is removed. Buoyant upwelling mantle causes arc rifting, drives the overriding plate away from the subducting plate, and there is sufficient heating of the subducting plate crust and overriding plate lithosphere to form adakite or boninite volcanism. For spontaneous fore-arc/arc rifting to occur a broad region of weak material must be present and one of the plates must be free to respond to the upwelling forces.

  12. Long-term variability of dust events in Iceland (1949-2011)

    NASA Astrophysics Data System (ADS)

    Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.

    2014-06-01

    Long-term frequency of atmospheric dust observations was investigated for the southern part of Iceland and merged with results obtained from the Northeast Iceland (Dagsson-Waldhauserova et al., 2013). In total, over 34 dust days per year on average occurred in Iceland based on conventionally used synoptic codes for dust. Including codes 04-06 into the criteria for dust observations, the frequency was 135 dust days annually. The Sea Level Pressure (SLP) oscillation controlled whether dust events occurred in NE (16.4 dust days annually) or in southern part of Iceland (about 18 dust days annually). The most dust-frequent decade in S Iceland was the 1960s while the most frequent decade in NE Iceland was the 2000s. A total of 32 severe dust storms (visibility < 500 m) was observed in Iceland with the highest frequency during the 2000s in S Iceland. The Arctic dust events (NE Iceland) were typically warm and during summer/autumn (May-September) while the Sub-Arctic dust events (S Iceland) were mainly cold and during winter/spring (March-May). About half of dust events in S Iceland occurred in winter or at sub-zero temperatures. A good correlation was found between PM10 concentrations and visibility during dust observations at the stations Vik and Storhofdi. This study shows that Iceland is among the dustiest areas of the world and dust is emitted the year-round.

  13. Crustal thinning and exhumation along a fossil magma-poor distal margin preserved in Corsica: A hot rift to drift transition?

    NASA Astrophysics Data System (ADS)

    Beltrando, Marco; Zibra, Ivan; Montanini, Alessandra; Tribuzio, Riccardo

    2013-05-01

    Rift-related thinning of continental basement along distal margins is likely achieved through the combined activity of ductile shear zones and brittle faults. While extensional detachments responsible for the latest stages of exhumation are being increasingly recognized, rift-related shear zones have never been sampled in ODP sites and have only rarely been identified in fossil distal margins preserved in orogenic belts. Here we report evidence of the Jurassic multi-stage crustal thinning preserved in the Santa Lucia nappe (Alpine Corsica), where amphibolite facies shearing persisted into the rift to drift transition. In this nappe, Lower Permian meta-gabbros to meta-gabbro-norites of the Mafic Complex are separated from Lower Permian granitoids of the Diorite-Granite Complex by a 100-250 m wide shear zone. Fine-grained syn-kinematic andesine + Mg-hornblende assemblages in meta-tonalites of the Diorite-Granite Complex indicate shearing at T = 710 ± 40 °C at P < 0.5 GPa, followed by deformation at greenschist facies conditions. 40Ar/39Ar step-heating analyses on amphiboles reveal that shearing at amphibolite facies conditions possibly began at the Triassic-Jurassic boundary and persisted until t < 188 Ma, with the Mafic Complex cooling rapidly at the footwall of the Diorite-Granite Complex at ca. 165.4 ± 1.7 Ma. Final exhumation to the basin floor was accommodated by low-angle detachment faulting, responsible for the 1-10 m thick damage zone locally capping the Mafic Complex. The top basement surface is onlapped at a low angle by undeformed Mesozoic sandstone, locally containing clasts of footwall rocks. Existing constraints from the neighboring Corsica ophiolites suggest an age of ca. 165-160 Ma for these final stages of exhumation of the Santa Lucia basement. These results imply that middle to lower crustal rocks can be cooled and exhumed rapidly in the last stages of rifting, when significant crustal thinning is accommodated in less than 5 Myr through the

  14. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    USGS Publications Warehouse

    Tréhu, Anne M.; Morel-a-l'Huissier, Patrick; Meyer, R.; Hajnal, Z.; Karl, J.; Mereu, R.F.; Sexton, John L.; Shay, J.; Chan, W. K.; Epili, D.; Jefferson, T.; Shih, X. R.; Wendling, S.; Milkereit, B.; Green, A.; Hutchinson, Deborah R.

    1991-01-01

    We present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly mafic composition of the graben fill and constrain its total thickness to be at least 30km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55–60km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  15. Activation of preexisting transverse structures in an evolving magmatic rift in East Africa

    NASA Astrophysics Data System (ADS)

    Muirhead, J. D.; Kattenhorn, S. A.

    2018-01-01

    Inherited crustal weaknesses have long been recognized as important factors in strain localization and basin development in the East African Rift System (EARS). However, the timing and kinematics (e.g., sense of slip) of transverse (rift-oblique) faults that exploit these weaknesses are debated, and thus the roles of inherited weaknesses at different stages of rift basin evolution are often overlooked. The mechanics of transverse faulting were addressed through an analysis of the Kordjya fault of the Magadi basin (Kenya Rift). Fault kinematics were investigated from field and remote-sensing data collected on fault and joint systems. Our analysis indicates that the Kordjya fault consists of a complex system of predominantly NNE-striking, rift-parallel fault segments that collectively form a NNW-trending array of en echelon faults. The transverse Kordjya fault therefore reactivated existing rift-parallel faults in ∼1 Ma lavas as oblique-normal faults with a component of sinistral shear. In all, these fault motions accommodate dip-slip on an underlying transverse structure that exploits the Aswa basement shear zone. This study shows that transverse faults may be activated through a complex interplay among magma-assisted strain localization, preexisting structures, and local stress rotations. Rather than forming during rift initiation, transverse structures can develop after the establishment of pervasive rift-parallel fault systems, and may exhibit dip-slip kinematics when activated from local stress rotations. The Kordjya fault is shown here to form a kinematic linkage that transfers strain to a newly developing center of concentrated magmatism and normal faulting. It is concluded that recently activated transverse faults not only reveal the effects of inherited basement weaknesses on fault development, but also provide important clues regarding developing magmatic and tectonic systems as young continental rift basins evolve.

  16. Long-term variability of dust events in Iceland (1949-2011)

    NASA Astrophysics Data System (ADS)

    Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.

    2014-12-01

    The long-term frequency of atmospheric dust observations was investigated for the southern part of Iceland and interpreted together with earlier results obtained from northeastern (NE) Iceland (Dagsson-Waldhauserova et al., 2013). In total, over 34 dust days per year on average occurred in Iceland based on conventionally used synoptic codes for dust observations. However, frequent volcanic eruptions, with the re-suspension of volcanic materials and dust haze, increased the number of dust events fourfold (135 dust days annually). The position of the Icelandic Low determined whether dust events occurred in the NE (16.4 dust days annually) or in the southern (S) part of Iceland (about 18 dust days annually). The decade with the most frequent dust days in S Iceland was the 1960s, but the 2000s in NE Iceland. A total of 32 severe dust storms (visibility < 500 m) were observed in Iceland with the highest frequency of events during the 2000s in S Iceland. The Arctic dust events (NE Iceland) were typically warm, occurring during summer/autumn (May-September) and during mild southwesterly winds, while the subarctic dust events (S Iceland) were mainly cold, occurring during winter/spring (March-May) and during strong northeasterly winds. About half of the dust events in S Iceland occurred in winter or at sub-zero temperatures. A good correlation was found between particulate matter (PM10) concentrations and visibility during dust observations at the stations Vík and Stórhöfði. This study shows that Iceland is among the dustiest areas of the world and that dust is emitted year-round.

  17. CO2-rich geothermal areas in Iceland as natural analogues for geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Maher, K.; Bird, D. K.; Brown, G. E.; Arnorsson, S.

    2013-12-01

    Geologic CO2 sequestration into mafic rocks via silicate mineral dissolution and carbonate precipitation has been suggested as a way to mitigate industrial CO2 emissions by storing CO2 in a stable form. Experimental observations of irreversible reaction of basalt with supercritical or gaseous and aqueous CO2 have resulted in carbonate precipitation, but there are no universal trends linking the extent of mineralization and type of reaction products to the bulk rock composition, glass percentage or mineralogy of the starting material. Additionally, concern exists that CO2 leakage from injection sites and migration through the subsurface may induce mineral dissolution and desorption of trace elements, potentially contaminating groundwater. This study investigates low-temperature (≤180°C) basaltic geothermal areas in Iceland with an anomalously high input of magmatic CO2 as natural analogues of the geochemical processes associated with the injection of CO2 into mafic rocks and possible leakage. Fluids that contain >4 mmol/kg total CO2 are common along the divergent Snæfellsnes Volcanic Zone in western Iceland and within the South Iceland Seismic Zone in southwest Iceland. The meteorically derived waters contain up to 80 mmol/kg dissolved inorganic carbonate (DIC). The aqueous concentration of major cations and trace elements is greater than that in Icelandic surface and groundwater and increases with DIC and decreasing pH. Concentrations of As and Ni in some samples are several times the World Health Organization (WHO) guidelines for safe drinking water. Thermodynamic modeling indicates that waters approach saturation with respect to calcite and/or aragonite, kaolinite and amorphous silica, and are undersaturated with respect to plagioclase feldspar, clinozoisite and Ca-zeolites. Petrographic study of drill cuttings from wells that intersect the CO2-rich areas indicates that the sites have undergone at least two stages of hydrothermal alteration: initial high

  18. Geodynamic modelling of the rift-drift transition: Application to the Red Sea

    NASA Astrophysics Data System (ADS)

    Fierro, E.; Schettino, A.; Capitanio, F. A.; Ranalli, G.

    2017-12-01

    The onset of oceanic accretion after a rifting phase is generally accompanied by an initial fast pulse of spreading in the case of volcanic margins, such that the effective spreading rate exceeds the relative far-field velocity between the two plates for a short time interval. This pulse has been attributed to edge-driven convention (EDC), although our numerical modelling shows that the shear stress at the base of the lithosphere cannot exceed 1 MPa. In general, we have developed a 2D numerical model of the mantle instabilities during the rifting phase, in order to determine the geodynamic conditions at the rift-drift transition. The model was tested using Underworld II software, variable rheological parameters, and temperature and stress-dependent viscosity. Our results show an increase of strain rates at the top of the lithosphere with the lithosphere thickness as well as with the initial width of the margin up to 300 km. Beyond this value, the influence of the initial rift width can be neglected. An interesting outcome of the numerical model is the existence of an axial zone characterized by higher strain rates, which is flanked by two low-strain stripes. As a consequence, the model suggests the existence of an area of syn-rift compression within the rift valley. Regarding the post-rift phase, we propose that at the onset of a seafloor spreading, a phase of transient creep allows the release of the strain energy accumulated in the mantle lithosphere during the rifting phase, through anelastic relaxation. Then, the conjugated margins would be subject to post-rift contraction and eventually to tectonic inversion of the rift structures. To explore the tenability of this model, we introduce an anelastic component in the lithosphere rheology, assuming both the classical linear Kelvin-Voigt rheology and a non-linear Kelvin model. The non-linear model predicts viable relaxation times ( 1-2Myrs) to explain the post-rift tectonic inversion observed along the Arabian

  19. Continental rifts and mineral resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, K.

    1992-01-01

    Continental rifts are widespread and range in age from the present to 3 b.y. Individual rifts may form parts of complex systems as in E. Africa and the Basin and Range. Rifts have originated in diverse environments such as arc-crests, sites of continental collision, collapsing mountain belts and on continents at rest over the mantle circulation pattern. Continental rift resources can be classified by depth of origin: For example, in the Great Dike, Norilsk and Mwadui magma from the mantle is the host. At shallower depths continental crust partly melted above mafic magma hosts ore (Climax, Henderson). Rift volcanics aremore » linked to local hydrothermal systems and to extensive zeolite deposits (Basin and Range, East Africa). Copper (Zambia, Belt), zinc (Red Dog) and lead ores (Benue) are related to hydrothermal systems which involve hot rock and water flow through both pre-rift basement and sedimentary and volcanic rift fill. Economically significant sediments in rifts include coals (the Gondwana of Inida), marine evaporites (Lou Ann of the Gulf of Mexico) and non-marine evaporites (East Africa). Oil and gas in rifts relate to a variety of source, reservoir and trap relations (North Sea, Libya), but rift-lake sediment sources are important (Sung Liao, Bo Hai, Mina, Cabinda). Some ancient iron ores (Hammersley) may have formed in rift lakes but Algoman ores and greenstone belt mineral deposits in general are linked to oceanic and island arc environments. To the extent that continental environments are represented in such areas as the Archean of the Superior and Slave they are Andean Arc environments which today have locally rifted crests (Ecuador, N. Peru). The Pongola, on Kaapvaal craton may, on the other hand represent the world's oldest preserved, little deformed, continental rift.« less

  20. Paleorift structure constrained by gravity and stratigraphic data: The Statherian Araí rift case

    NASA Astrophysics Data System (ADS)

    Martins-Ferreira, Marco Antonio Caçador; Campos, José Eloi Guimarães; Von Huelsen, Monica Giannoccaro; Neri, Brandow Lee

    2018-07-01

    Gravimetric and stratigraphic data were used to investigate the Paleoproterozoic Araí Paleorift, a failed Statherian continental rift located in the western margin of the São Francisco Craton, where basement and cover were affected by the Neoproterozoic Brasiliano Orogeny. Euler deconvolution, tilt, total horizontal gradient amplitude and upward continuation technics were applied to terrestrial gravimetric data in order to investigate the rift's main faults location, direction and depth, allowing to identify its main horsts, grabens, volcanic and plutonic centers. We found that rift faults occur to a maximum depth of ca. 38 km, but major fault throw occurs from 4 to 8 km deep and attenuates from 8 to 12 km, probably the brittle-ductile transition zone at the time of rifting, practically disappearing at 20 km. Stratigraphic data and basement mapping were used in order to constraint gravimetric results. We classify the Araí Rift as a passive, three-armed failed rift, narrow to divergent type, that produced preferably anorogenic rapakivi-related magmas, most of it still lodged in the crust from surface down to ca. 19 km deep and subsidiary mafic magmatism. The results indicate the deep occurrence of low-density magmas beneath the rift's main axis, detected up to 20 km deep. Correlation to other global Statherian rifts show that the São Francisco Craton was strongly affected by taphrogenesis during the Statherian, together with Siberia, North America and North China cratons. Finally, by comparing our results to recent rifts we found that the Ethiopian rift's morphology is quite similar to the Araí. Surrounding the Tanzanian craton, the Cenozoic East Africa rift system morphology is compared to the Araí-Espinhaço rift system, which surrounds the São Francisco craton. The major contribution of this paper is the recognition of Araí Paleorift surface and subsurface morphology, up to now unknown, over an area of ca. 45.000 km2.

  1. Imaging an off-axis volcanic field in the Main Ethiopian Rift using 3-D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Huebert, J.; Whaler, K. A.; Fisseha, S.; Hogg, C.

    2017-12-01

    In active continental rifts, asthenospheric upwelling and crustal thinning result in the ascent of melt through the crust to the surface. In the Main Ethiopian Rift (MER), most volcanic activity is located in magmatic segments in the rift centre, but there are areas of significant off-axis magmatism as well. The Butajira volcanic field is part of the Silti Debre Zeyt Fault (SDZF) zone in the western Main Ethiopian Rift. It is characterized by densely clustered volcanic vents (mostly scoria cones) and by limited seismic activity, which is mainly located along the big border faults that form the edge of a steep escarpment. Seismic P-Wave tomography reveals a crustal low velocity anomaly in this area. We present newly collected Magnetotelluric (MT) data to image the electrical conductivity structure of the area. We deployed 12 LMT instruments and 27 broadband stations in the western flank of the rift to further investigate the along-rift and depth extent of a highly conductive region under the SDZF which was previously identified by MT data collected on the central volcano Aluto and along a cross-rift transverse. This large conductor was interpreted as potential pathways for magma and fluid in the crust. MT Stations were positioned in five NW-SE running 50 km long profiles, covering overall 100km along the rift and providing good coverage for a 3-D inversion of the data to image this enigmatic area of the MER.

  2. Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Cuffaro, Marco; Doglioni, Carlo

    2014-09-01

    We present the kinematics of the Ethiopian Rift, in the northern part of East African Rift System, derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis and geological profiles. In the central Ethiopian Rift, the GPS velocity field shows a systematic magnitude increase in ENE direction, and the incremental extensional strain axes recorded by earthquake focal mechanisms and fault slip inversion show ≈ N100°E orientation. This deviation between direction of GPS velocity vectors and orientation of incremental extensional strain is developed due to left lateral transtensional deformation along the NE-SW trending segment of the rift. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, plus the distribution of the volcanic centers, and the asymmetry of the rift itself. We analyzed the kinematics of the Ethiopian Rift also relative to the mantle comparing the results in the deep and shallow hotspot reference frames. While the oblique orientation of the rift was controlled by the pre-existing lithospheric fabric, the two reference frames predict different kinematics of Africa and Somalia plates along the rift itself, both in magnitude and direction, and with respect to the mantle. However, the observed kinematics and tectonics along the rift are more consistent with a faster WSW-ward motion of Africa than Somalia observed in the shallow hotspot framework. The faster WSW motion of Africa with respect to Somalia plate is inferred to be due to the lower viscosity in the top asthenosphere (LVZ-low-velocity zone) beneath Africa. These findings have significant implication for the evolution of continental rifting in transtensional settings and provide evidence for the kinematics of the Ethiopian Rift in the context of the Africa-Somalia plate interaction in the mantle reference frame.

  3. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.

    2014-01-01

    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  4. Escape tectonism in the Gulf of Thailand: Paleogene left-lateral pull-apart rifting in the Vietnamese part of the Malay Basin

    NASA Astrophysics Data System (ADS)

    Fyhn, Michael B. W.; Boldreel, Lars O.; Nielsen, Lars H.

    2010-03-01

    The Malay Basin represents one of the largest rift basins of SE Asia. Based on a comprehensive 2-D seismic database tied to wells covering mainly Vietnamese acreage, the evolution of the Vietnamese part of the basin is outlined and a new tectonic model is proposed for the development of the basin. The Vietnamese part of the Malay Basin comprises a large and deep Paleogene pull-apart basin formed through Middle or Late Eocene to Oligocene left-lateral strike-slip along NNW-trending fault zones. The Tho Chu Fault Zone constitutes a significant Paleogene left-lateral strike-slip zone most likely associated with SE Asian extrusion tectonism. The fault zone outlines a deep rift that widens to the south and connects with the main Malay Basin. In the central northern part of the basin, a series of intra-basinal left-lateral fracture zones are interconnected by NW to WNW-trending extensional faults and worked to distribute sinistral shearing across the width of the basin. Extensive thermal sagging throughout the Neogene has led to the accommodation of a very thick sedimentary succession. Moderate rifting resumed during the Early Miocene following older structural fabric. The intensity of rifting increases towards the west and was probably related to coeval extension in the western part of the Gulf of Thailand. Neogene extension culminated before the Pliocene, although faults in places remains active. Late Neogene basin inversion has been attributed to c. 70 km of right-lateral movement across major c. N-S-trending faults in the central part of the basin. However, the lack of inversion in Vietnamese territory only seems to merit a few kilometers of dextral inversion.

  5. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    NASA Astrophysics Data System (ADS)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  6. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    article title:  Eyjafjallajökull, Iceland, Volcano Ash Cloud     View larger ... Europe and captured this image of the Eyjafjallajökull Volcano ash cloud as it continued to drift over the continent. Unlike other ...

  7. Variations of stress fields in the Tunka Rift of the southwestern Baikal region

    NASA Astrophysics Data System (ADS)

    Lunina, O. V.; Gladkov, A. S.; Sherman, S. I.

    2007-05-01

    The stress fields in the Tunka Rift at the southwestern flank of the Baikal Rift Zone are reconstructed and analyzed on the basis of a detailed study of fracturing. The variation of these fields is of a systematic character and is caused by a complex morphological and fault-block structure of the studied territory. The rift was formed under conditions of oblique (relative to its axis) regional NW-SE extension against the background of three ancient tectonic boundaries (Sayan, Baikal, and Tuva-Mongolian) oriented in different directions. Such a geological history resulted in the development of several en echelon arranged local basins and interbasinal uplifted blocks, the strike-slip component of faulting, and the mosaic distribution of various stress fields with variable orientation of their principal vectors. The opening of basins was promoted by stress fields of a lower hierarchical rank with a near-meridional tension axis. The stress field in the western Tunka Rift near the Mondy and Turan basins is substantially complicated because the transform movements, which are responsible for the opening of the N-S-trending rift basins in Mongolia, become important as Lake Hövsgöl is approached. It is concluded that, for the most part, the Tunka Rift has not undergone multistage variation of its stress state since the Oligocene, the exception being a compression phase in the late Miocene and early Pliocene, which could be related to continental collision of the Eurasian and Indian plates. Later on, the Tunka Rift continued its tectonic evolution in the transtensional regime.

  8. The role of major rift faults in the evolution of deformation bands in the Rio do Peixe Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Hilario Bezerra, Francisco; Araujo, Renata; Maciel, Ingrid; Cezar Nogueira, Francisco; Balsamo, Fabrizio; Storti, Fabrizio; Souza, Jorge Andre; Carvalho, Bruno

    2017-04-01

    Many studies have investigated on the evolution and properties of deformation bands, but their occurrence and relationships with basin-boundary faults remain elusive when the latter form by brittle reactivation of structural inheritance in crystalline basements. The main objective of our study was to systematically record the location, kinematics, geometry, and density of deformation bands in the early Cretaceous Rio do Peixe basin, NE Brazil, and analyze their relationship with major syn-rift fault zones. Reactivation in early Cretaceous times of continental-scale ductile shear zones led to the development of rift basins in NE Brazil. These shear zones form a network of NE- and E-W-trending structures hundreds of kilometers long and 3-10 km wide. They were active in the Brasiliano orogeny at 540-740 Ma. Brittle reactivation of these structures occurred in Neocomian times ( 140-120 Ma) prior the breakup between the South American and African plates in the late Cretaceous. The Rio do Peixe basin formed at the intersection between the NE-SW-striking Portalegre shear zone and the E-W-striking Patos shear zone. The brittle fault systems developed by the shear zone reactivation are the Portalegre Fault and the Malta Fault, respectively. In this research we used field structural investigations and drone imagery with centimetric resolution. Our results indicate that deformation bands occur in poorly sorted, medium to coarse grain size sandstones and localize in 3-4 km wide belts in the hanging wall of the two main syn-rifts fault systems. Deformation bands formed when sandstones were not completely lithified. They strike NE along the Portalegre Fault and E-W along the Malta Fault and have slip lineations with rake values ranging from 40 to 90. The kinematics recorded in deformation bands is consistent with that characterizing major rift fault systems, i.e. major extension with a strike-slip component. Since deformations bands are typical sub-seismic features, our findings

  9. Crustal Strain Patterns in Magmatic and Amagmatic Early Stage Rifts: Border Faults, Magma Intrusion, and Volatiles

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Roecker, S. W.; Tiberi, C.; Aman, M.; Weinstein, A.; Lambert, C.; Drooff, C.; Oliva, S. J. C.; Peterson, K.; Bourke, J. R.; Rodzianko, A.; Gallacher, R. J.; Lavayssiere, A.; Shillington, D. J.; Khalfan, M.; Mulibo, G. D.; Ferdinand-Wambura, R.; Palardy, A.; Albaric, J.; Gautier, S.; Muirhead, J.; Lee, H.

    2015-12-01

    Rift initiation in thick, strong continental lithosphere challenges current models of continental lithospheric deformation, in part owing to gaps in our knowledge of strain patterns in the lower crust. New geophysical, geochemical, and structural data sets from youthful magmatic (Magadi-Natron, Kivu), weakly magmatic (Malawi, Manyara), and amagmatic (Tanganyika) sectors of the cratonic East African rift system provide new insights into the distribution of brittle strain, magma intrusion and storage, and time-averaged deformation. We compare and contrast time-space relations, seismogenic layer thickness variations, and fault kinematics using earthquakes recorded on local arrays and teleseisms in sectors of the Western and Eastern rifts, including the Natron-Manyara basins that developed in Archaean lithosphere. Lower crustal seismicity occurs in both the Western and Eastern rifts, including sectors on and off craton, and those with and without central rift volcanoes. In amagmatic sectors, lower crustal strain is accommodated by slip along relatively steep border faults, with oblique-slip faults linking opposing border faults that penetrate to different crustal levels. In magmatic sectors, seismicity spans surface to lower crust beneath both border faults and eruptive centers, with earthquake swarms around magma bodies. Our focal mechanisms and Global CMTs from a 2007 fault-dike episode show a local rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with time-averaged strain recorded in vent and eruptive chain alignments. These patterns suggest that strain localization via widespread magma intrusion can occur during the first 5 My of rifting in originally thick lithosphere. Lower crustal seismicity in magmatic sectors may be caused by high gas pressures and volatile migration from active metasomatism and magma degassing, consistent with high CO2 flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and

  10. Tectonic study of the extension of the New Madrid fault zone near its intersection with the 38th parallel lineament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braile, L.W.; Hinze, W.J.; Sexton, J.L.

    1982-06-01

    Gravity, magnetic, geologic, and seismicity data have been combined in a seismotectonic analysis of the New Madrid seismic zone. Previous studies have presented evidence for several rift zones in this area (Upper Mississippi enmbayment), including the Reelfoot rift, a late precambrian-early Paleozoic failed arm which extends north-northeast from the ancient continental margin. We suggest that the northern terminus of the Reelfoot rift forms a rift complex, with arms extending northeast into southwestern Indiana, northwest along the Mississippi River, and east into western Kentucky, which appears to correlate well with the seismicity in the area. This correlation suggests that faults associatedmore » with this rift complex are being reactivated in the contemporary stress field (east-northeast compression). If this interpretation is valid, it represents a seismotectonic model which can be used to predict the extent of future seismicity in the New Madrid seismic zone. The proposed rift complex also provides a coherent model for the tectonic development of this region of the North American midcontinent.« less

  11. Pre-existing oblique transfer zones and transfer/transform relationships in continental margins: New insights from the southeastern Gulf of Aden, Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Bellahsen, N.; Leroy, S.; Autin, J.; Razin, P.; d'Acremont, E.; Sloan, H.; Pik, R.; Ahmed, A.; Khanbari, K.

    2013-11-01

    Transfer zones are ubiquitous features in continental rifts and margins, as are transform faults in oceanic lithosphere. Here, we present a structural study of the Hadibo Transfer Zone (HTZ), located in Socotra Island (Yemen) in the southeastern Gulf of Aden. There, we interpret this continental transfer fault zone to represent a reactivated pre-existing structure. Its trend is oblique to the direction of divergence and it has been active from the early up to the latest stages of rifting. One of the main oceanic fracture zones (FZ), the Hadibo-Sharbithat FZ, is aligned with and appears to be an extension of the HTZ and is probably genetically linked to it. Comparing this setting with observations from other Afro-Arabian rifts as well as with passive margins worldwide, it appears that many continental transfer zones are reactivated pre-existing structures, oblique to divergence. We therefore establish a classification system for oceanic FZ based upon their relationship with syn-rift structures. Type 1 FZ form at syn-rift structures and are late syn-rift to early syn-OCT. Type 2 FZ form during the OCT formation and Type 3 FZ form within the oceanic domain, after the oceanic spreading onset. The latter are controlled by far-field forces, magmatic processes, spreading rates, and oceanic crust rheology.

  12. Holocene temperature history of northern Iceland inferred from subfossil midges

    NASA Astrophysics Data System (ADS)

    Axford, Yarrow; Miller, Gifford H.; Geirsdóttir, Áslaug; Langdon, Peter G.

    2007-12-01

    The Holocene temperature history of Iceland is not well known, despite Iceland's climatically strategic location at the intersection of major surface currents in the high-latitude North Atlantic. Existing terrestrial records reveal spatially heterogeneous changes in Iceland's glacier extent, vegetation cover, and climate over the Holocene, but these records are temporally discontinuous and mostly qualitative. This paper presents the first quantitative estimates of temperatures throughout the entire Holocene on Iceland. Mean July temperatures are inferred based upon subfossil midge (Chironomidae) assemblages from three coastal lakes in northern Iceland. Midge data from each of the three lakes indicate broadly similar temperature trends, and suggest that the North Icelandic coast experienced relatively cool early Holocene summers and gradual warming throughout the Holocene until after 3 ka. This contrasts with many sites on Iceland and around the high-latitude Northern Hemisphere that experienced an early to mid-Holocene "thermal maximum" in response to enhanced summer insolation forcing. Our results suggest a heightened temperature gradient across Iceland in the early Holocene, with suppressed terrestrial temperatures along the northern coastal fringe, possibly as a result of sea surface conditions on the North Iceland shelf.

  13. Inland extent of the Weddell Sea Rift imaged by new aerogeophysical data

    NASA Astrophysics Data System (ADS)

    Jordan, Tom A.; Ferraccioli, Fausto; Ross, Neil; Corr, Hugh F. J.; Leat, Philip T.; Bingham, Rob G.; Rippin, David M.; le Brocq, Anne; Siegert, Martin J.

    2013-02-01

    The Weddell Sea Rift was a major focus for Jurassic extension and magmatism during the early stages of Gondwana break-up and underlies the Weddell Sea Embayment, which separates East Antarctica from a collage of crustal blocks in West Antarctica. Newly-collected aerogeophysical data over the catchments of Institute and Möller ice streams reveal the inland extent of the Weddell Sea Rift against the Ellsworth-Whitmore block and a hitherto unknown major left-lateral strike slip boundary between East and West Antarctica. Aeromagnetic and gravity anomalies define the regional subglacial extent of Proterozoic basement, Middle Cambrian rift-related volcanic rocks, Jurassic intrusions and sedimentary rocks of inferred post-Jurassic age. 2D and 3D magnetic depth-to-source estimates were used to help constrain joint magnetic and gravity models for the region. The models reveal that Proterozoic crust similar to that exposed at Haag Nunataks, extends southeast of the Ellsworth Mountains to the margin of the Coastal Basins. Thick granitic Jurassic intrusions are modelled at the transition between the Ellsworth-Whitmore block and the thinner crust of the Weddell Sea Rift and within the Pagano Shear Zone. The crust beneath the inland extension of the Weddell Sea Rift is modelled as being either ~ 4 km thinner compared to the adjacent Ellsworth-Whitmore block or as underlain by an up to 8 km thick mafic underplate.

  14. Crustal Properties Across the Mid-Continent Rift via Transfer Function Analysis

    NASA Astrophysics Data System (ADS)

    Frederiksen, A. W.; Tyomkin, Y.; Campbell, R.; van der Lee, S.; Zhang, H.

    2015-12-01

    The Mid-Continent Rift (MCR), a failed Proterozoic rift structure in central North America, is a dominant feature of North American gravity maps. The rift underwent a combination of extension, magmatism, and later compression, and it is difficult to predict how these events affected the overall crustal thickness and bulk composition in the vicinity of the rift axis, though the associated gravity high indicates that large-volume mafic magmatism took place. The Superior Province Rifting Earthscope Experiment (SPREE) project instrumented the MCR with Flexible Array broadband seismographs from 2011 through 2013 in Minnesota and Wisconsin, along two lines crossing the rift axis as well as a line following the axis. We examine teleseismic P-coda data from SPREE and nearby Transportable Array instruments using a new technique: transfer-function analysis. In this approach, possible models of crustal structure are used to generate a predicted transfer function relating the radial and vertical components of the P coda at a particular site. The transfer function then allows generation of a misfit (between the true radial component and a synthetic radial component predicted from the vertical trace) without the need to perform receiver-function deconvolution, thus avoiding the deconvolution problems encountered with receiver functions in sedimentary basins. We use the transfer-function approach to perform a grid search over three crustal properties: crustal thickness, crustal P/S velocity ratio, and the thickness of an overlying sedimentary basin. Results for our SPREE/TA data set indicate that the crust is significantly thickened along the rift axis, with maximum thicknesses approaching 50 km; the crust is thinner (ca. 40 km) outside of the rift zone. The crustal thickness structure is particularly complex beneath southeastern Minnesota, where very strong Moho topography is present, as well as up to 2 km of sediment; further north, the Moho is smoother and the basin is not

  15. Modelling of sea floor spreading initiation and rifted continental margin formation

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Isimm Team

    2003-04-01

    Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. i

  16. Using earthquake clusters to identify fracture zones at Puna geothermal field, Hawaii

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Shalev, E.; Malin, P.; Kenedi, C. L.

    2010-12-01

    The actively producing Puna geothermal system (PGS) is located on the Kilauea East Rift Zone (ERZ), which extends out from the active Kilauea volcano on Hawaii. In the Puna area the rift trend is identified as NE-SW from surface expressions of normal faulting with a corresponding strike; at PGS the surface expression offsets in a left step, but no rift perpendicular faulting is observed. An eight station borehole seismic network has been installed in the area of the geothermal system. Since June 2006, a total of 6162 earthquakes have been located close to or inside the geothermal system. The spread of earthquake locations follows the rift trend, but down rift to the NE of PGS almost no earthquakes are observed. Most earthquakes located within the PGS range between 2-3 km depth. Up rift to the SW of PGS the number of events decreases and the depth range increases to 3-4 km. All initial locations used Hypoinverse71 and showed no trends other than the dominant rift parallel. Double difference relocation of all earthquakes, using both catalog and cross-correlation, identified one large cluster but could not conclusively identify trends within the cluster. A large number of earthquake waveforms showed identifiable shear wave splitting. For five stations out of the six where shear wave splitting was observed, the dominant polarization direction was rift parallel. Two of the five stations also showed a smaller rift perpendicular signal. The sixth station (located close to the area of the rift offset) displayed a N-S polarization, approximately halfway between rift parallel and perpendicular. The shear wave splitting time delays indicate that fracture density is higher at the PGS compared to the surrounding ERZ. Correlation co-efficient clustering with independent P and S wave windows was used to identify clusters based on similar earthquake waveforms. In total, 40 localized clusters containing ten or more events were identified. The largest cluster was located in the

  17. Continuous deflation and plate spreading at the Askja volcanic system, Iceland: Constrains on deformation processes from finite element models using temperature-dependent non-linear rheology

    NASA Astrophysics Data System (ADS)

    Tariqul Islam, Md.; Sturkell, Erik; Sigmundsson, Freysteinn; Drouin, Vincent Jean Paul B.; Ófeigsson, Benedikt G.

    2014-05-01

    Iceland is located on the mid Atlantic ridge, where the spreading rate is nearly 2 cm/yr. The high rate of magmatism in Iceland is caused by the interaction between the Iceland hotspot and the divergent mid-Atlantic plate boundary. Iceland hosts about 35 volcanoes or volcanic systems that are active. Most of these are aliened along the plate boundary. The best studied magma chamber of central volcanoes (e.g., Askja, Krafla, Grimsvötn, Katla) have verified (suggested) a shallow magma chamber (< 5 km), which has been model successfully with a Mogi source, using elastic and/or elastic-viscoelastic half-space. Maxwell and Newtonian viscosity is mainly considered for viscoelastic half-space. Therefore, rheology may be oversimplified. Our attempt is to study deformation of the Askja volcano together with plate spreading in Iceland using temperature-dependent non-linear rheology. It offers continuous variation of rheology, laterally and vertically from rift axis and surface. To implement it, we consider thermo-mechanic coupling models where rheology follows dislocation flow in dry condition based on a temperature distribution. Continuous deflation of the Askja volcanic system is associated with solidification of magma in the magma chamber and post eruption relaxation. A long time series of levelling data show its subsidence trend to exponentially. In our preliminary models, a magma chamber at 2.8 km depth with 0.5 km radius is introduced at the ridge axis as a Mogi source. Simultaneously far field of rift axis stretching by 18.4 mm/yr (measured during 2007 to 20013) is applied to reproduce plate spreading. Predicted surface deformation caused of combined effect of tectonic-volcanic activities is evaluated with GPS during 2003-2009 and RADARSAT InSAR data during 2000 to 2010. During 2003-2009, data from the GPS site OLAF (close to the centre of subsidence) shows average rate of subsidence 19±1 mm/yr relative to the ITRF2005 reference frame. The MASK (Mid ASKJA) site is

  18. Neogene Development of the Terror Rift, western Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Sauli, C.; Sorlien, C. C.; Busetti, M.; De Santis, L.; Wardell, N.; Henrys, S. A.; Geletti, R.; Wilson, T. J.; Luyendyk, B. P.

    2015-12-01

    Terror Rift is a >300 km-long, 50-70 km-wide, 14 km-deep sedimentary basin at the edge of the West Antarctic Rift System, adjacent to the Transantarctic Mountains. It is cut into the broader Victoria Land Basin (VLB). The VLB experienced 100 km of mid-Cenozoic extension associated with larger sea floor spreading farther north. The post-spreading (Neogene) development of Terror Rift is not well understood, in part because of past use of different stratigraphic age models. We use the new Rossmap seismic stratigraphy correlated to Cape Roberts and Andrill cores in the west and to DSDP cores in the distant East. This stratigraphy, and new fault interpretations, was developed using different resolutions of seismic reflection data included those available from the Seismic Data Library System. Depth conversion used a new 3D velocity model. A 29 Ma horizon is as deep as 8 km in the south, and a 19 Ma horizon is >5 km deep there and 4 km-deep 100 km farther north. There is a shallower northern part of Terror Rift misaligned with the southern basin across a 50 km right double bend. It is bounded by steep N-S faults down-dropping towards the basin axis. Between Cape Roberts and Ross Island, the Oligocene section is also progressively-tilted. This Oligocene section is not imaged within northern Terror Rift, but the simplest hypothesis is that some of the Terror Rift-bounding faults were active at least during Oligocene through Quaternary time. Many faults are normal separation, but some are locally vertical or even reverse-separation in the upper couple of km. However, much of the vertical relief of the strata is due to progressive tilting (horizontal axis rotation) and not by shallow faulting. Along the trend of the basin, the relief alternates between tilting and faulting, with a tilting margin facing a faulted margin across the Rift, forming asymmetric basins. Connecting faults across the basin form an accommodation zone similar to other oblique rifts. The Neogene basin is

  19. The Role of Rift Obliquity in Formation of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bennett, Scott Edmund Kelsey

    The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly

  20. Climate variability and the Icelandic marine ecosystem

    NASA Astrophysics Data System (ADS)

    Astthorsson, Olafur S.; Gislason, Astthor; Jonsson, Steingrimur

    2007-11-01

    This paper describes the main features of the Icelandic marine ecosystem and its response to climate variations during the 20th century. The physical oceanographic character and faunal composition in the southern and western parts of the Icelandic marine ecosystem are different from those in the northern and the eastern areas. The former areas are more or less continuously bathed by warm and saline Atlantic water while the latter are more variable and influenced by Atlantic, Arctic and even Polar water masses to different degrees. Mean annual primary production is higher in the Atlantic water than in the more variable waters north and east of Iceland, and higher closer to land than farther offshore. Similarly, zooplankton production is generally higher in the Atlantic water than in the waters north and east of Iceland. The main spawning grounds of most of the exploited fish stocks are in the Atlantic water south of the country while nursery grounds are off the north coast. In the recent years the total catch of fish and invertebrates has been in the range of 1.6-2.4 million ton. Capelin ( Mallotus villosus) is the most important pelagic stock and cod ( Gadus morhua) is by far the most important demersal fish stock. Whales are an important component of the Icelandic marine ecosystem, and Icelandic waters are an important habitat for some of the largest seabird populations in the Northeast Atlantic. In the waters to the north and east of Iceland, available information suggests the existence of a simple bottom-up controlled food chain from phytoplankton through Calanus, capelin and to cod. Less is known about the structure of the more complex southern part of the ecosystem. The Icelandic marine ecosystem is highly sensitive to climate variations as demonstrated by abundance and distribution changes of many species during the warm period in the 1930s, the cold period in the late 1960s and warming observed during the recent years. Some of these are highlighted in the

  1. Variable modes of rifting in the eastern Basin and Range, USA from on-fault geological evidence

    NASA Astrophysics Data System (ADS)

    Stahl, T.; Niemi, N. A.

    2017-12-01

    Continental rifts are often divided along their axes into magmatic (or magma-assisted) and amagmatic (or magma-poor) segments. Less is known about magmatic versus non-magmatic extension across `wide' continental rift margins like the Basin and Range province of the USA. Paleoseismic trench investigations, Quaternary geochronology (10Be and 3He exposure-age, luminescence, and 40Ar/39Ar dating), and high-resolution topographic surveys (terrestrial laser scanning and UAV photogrammetry) were used to assess the timing and spatial variability of faulting at the Basin and Range-Colorado Plateau transition zone in central Utah. Results show that while the majority of strain is accommodated by a single, range- and province-bounding fault (the Wasatch fault zone, WFZ, slip rate of c. 3-4 mm yr-1), a transition to magma-assisted rifting occurs near the WFZ southern termination marked by a diffuse zone of faults associated with Pliocene to Holocene volcanism. Paleoseismic analysis of faults within and adjacent to this zone reveal recent (<18 ka) surface-ruptures on these faults. A single event displacement of 10-15 m for the Tabernacle fault at c. 15-18 ka (3He exposure-age) and large fault displacement gradients imply that slip was coeval with lava emplacement and that the faults in this region are linked, at least in part, to dike injection in the uppermost crust rather than slip at seismogenic depths. These results have implications for the controversial nature of regional seismic hazard and the structural evolution of the eastern Basin and Range.

  2. Post-rift deformation of the Red Sea Arabian margin

    NASA Astrophysics Data System (ADS)

    Zanoni, Davide; Schettino, Antonio; Pierantoni, Pietro Paolo; Rasul, Najeeb

    2017-04-01

    Starting from the Oligocene, the Red Sea rift nucleated within the composite Neoproterozoic Arabian-Nubian shield. After about 30 Ma-long history of continental lithosphere thinning and magmatism, the first pulse of oceanic spreading occurred at around 4.6 Ma at the triple junction of Africa, Arabia, and Danakil plate boundaries and propagated southward separating Danakil and Arabia plates. Ocean floor spreading between Arabia and Africa started later, at about 3 Ma and propagated northward (Schettino et al., 2016). Nowadays the northern part of the Red Sea is characterised by isolated oceanic deeps or a thinned continental lithosphere. Here we investigate the deformation of thinned continental margins that develops as a consequence of the continental lithosphere break-up induced by the progressive oceanisation. This deformation consists of a system of transcurrent and reverse faults that accommodate the anelastic relaxation of the extended margins. Inversion and shortening tectonics along the rifted margins as a consequence of the formation of a new segment of ocean ridge was already documented in the Atlantic margin of North America (e.g. Schlische et al. 2003). We present preliminary structural data obtained along the north-central portion of the Arabian rifted margin of the Red Sea. We explored NE-SW trending lineaments within the Arabian margin that are the inland continuation of transform boundaries between segments of the oceanic ridge. We found brittle fault zones whose kinematics is consistent with a post-rift inversion. Along the southernmost transcurrent fault (Ad Damm fault) of the central portion of the Red Sea we found evidence of dextral movement. Along the northernmost transcurrent fault, which intersects the Harrat Lunayyir, structures indicate dextral movement. At the inland termination of this fault the evidence of dextral movement are weaker and NW-SE trending reverse faults outcrop. Between these two faults we found other dextral transcurrent

  3. 3D Numerical Rift Modeling with Application to the East African Rift System

    NASA Astrophysics Data System (ADS)

    Glerum, A.; Brune, S.; Naliboff, J.

    2017-12-01

    As key components of plate tectonics, continental rifting and the formation of passive margins have been extensively studied with both analogue models and numerical techniques. Only recently however, technical advances have enabled numerical investigations into rift evolution in three dimensions, as is actually required for including those processes that cause rift-parallel variability, such as structural inheritance and oblique extension (Brune 2016). We use the massively parallel finite element code ASPECT (Kronbichler et al. 2012; Heister et al. 2017) to investigate rift evolution. ASPECT's adaptive mesh refinement enables us to focus resolution on the regions of interest (i.e. the rift center), while leaving other areas such as the asthenospheric mantle at coarse resolution, leading to kilometer-scale local mesh resolution in 3D. Furthermore, we implemented plastic and viscous strain weakening of the nonlinear viscoplastic rheology required to develop asymmetric rift geometries (e.g. Huismans and Beaumont 2003). Additionally created plugins to ASPECT allow us to specify initial temperature and composition conditions based on geophysical data (e.g. LITHO1.0, Pasyanos et al. 2014) or to prescribe more general along-strike variation in the initial strain seeding the rift. Employing the above functionality, we construct regional models of the East African Rift System (EARS), the world's largest currently active rift. As the EARS is characterized by both orthogonal and oblique rift sections, multi-phase extension histories as well as magmatic and a-magmatic branches (e.g. Chorowicz 2005; Ebinger and Scholz 2011), it constitutes an extensive natural laboratory for our research into the 3D nature of continental rifting. References:Brune, S. (2016), in Plate boundaries and natural hazards, AGU Geophysical Monograph 219, J. C. Duarte and W. P. Schellart (Eds.). Chorowicz, J. (2005). J. Afr. Earth Sci., 43, 379-410. Ebinger, C. and Scholz, C. A. (2011), in Tectonics of

  4. Monitoring diffuse degassing in monogenetic volcanic field during seismic-volcanic unrest: the case of Tenerife North-West Rift Zone (NWRZ), Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    García, E.; Botelho, A. H.; Regnier, G. S. G.; Rodríguez, F.; Alonso Cótchico, M.; Melián, G.; Asensio-Ramos, M.; Padrón, E.; Hernández, P. A.; Pérez, N. M.

    2017-12-01

    Tenerife North-West Rift-Zone (NWRZ) is the most active volcano of the oceanic active volcanic island of Tenerife and the scenario of three historical eruptions (Boca Cangrejo S. XVI, Arenas Negras 1706 and Chinyero 1909). Since no visible degassing (fumaroles, etc.) at Tenerife NWRZ occurs, a geochemical monitoring program at Tenerife NWRZ was established mainly consisting on performing soil CO2 efflux surveys (50 surveys since 2000) to evaluate the temporal and spatial variations of soil CO2 efflux measurements and the diffuse CO2 emission rate. To do so, about 340 sampling sites were selected for each survey to obtain a homogeneous distribution after taking into consideration the local geology, structure, and accessibility. Measurements of soil CO2 efflux were performed in situ by means of a portable non-dispersive infrared sensor following the accumulation chamber method. The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 46.6 g m-2 d-1. Statistical-graphical analysis of the 2017 data show two different geochemical populations; background (B) and peak (P) represented by 93.3% and 1.9% of the total data, respectively. The geometric means of the B and P populations are 2.4 and 19.1 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed at the N-W side of the volcanic rift. To estimate the diffuse CO2 emission in metric tons per day released from Tenerife NWRZ (75 km2) for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by the Tenerife NWRZ volcano was 297 ± 13 t d-1. This 2017 diffuse CO2 emission rate value is relatively higher than the estimated background value (144 t d-1) and falls within the estimated background range (72 - 321 t d-1) observed for Tenerife NWRZ volcano during the 2000-2017 period. The observed temporal variation in the diffuse CO2 degassing output during this period does not seem to be driven by external

  5. Iceland’s Financial Crisis

    DTIC Science & Technology

    2008-11-20

    distress. In particular, access to easy credit, a boom in domestic construction that fueled rapid economic growth, and a broad deregulation of...pressure on the value of the krona and worsened the trade deficit. As Iceland deregulated its commercial banks, those banks expanded to the United Kingdom...2007 valued at $9 billion. After Iceland deregulated its commercial banks, the banks expanded their operations abroad by acquiring subsidiaries in

  6. Iceland: health system review.

    PubMed

    Sigurgeirsdóttir, Sigurbjörg; Waagfjörð, Jónína; Maresso, Anna

    2014-01-01

    This analysis of the Icelandic health system reviews the developments in its organization and governance, health financing, health care provision, health reforms and health system performance. Life expectancy at birth is high and Icelandic men and women enjoy longer life in good health than the average European. However, Icelanders are putting on weight, more than half of adult Icelanders were overweight or obese in 2004, and total consumption of alcohol has increased considerably since 1970. The health care system is a small, state centred, publicly funded system with universal coverage, and an integrated purchaser provider relationship in which the state as payer is also the owner of most organizations providing health care services. The country's centre of clinical excellence is the University Hospital, Landspitali, in the capital Reykjavik, which alone accounts for 70 percent of the total national budget for general hospital services. However, since 1990, the health system has become increasingly characterized by a mixed economy of care and service provision, in which the number and scope of private non profit and private for profit providers has increased. While Iceland's health outcomes are some of the best among OECD countries, the health care system faces challenges involving the financial sustainability of the current system in the context of an ageing population, new public health challenges, such as obesity, and the continued impact of the country's financial collapse in 2008. The most important challenge is to change the pattern of health care utilization to steer it away from the most expensive end of the health services spectrum towards more cost efficient and effective alternatives. To a large degree, this will involve renewed attempts to prioritize primary care as the first port of call for patients, and possibly to introduce a gatekeeping function for GPs in order to moderate the use of specialist services. World Health Organization 2014 (acting as

  7. Strain transfer between disconnected, propagating rifts in Afar

    NASA Astrophysics Data System (ADS)

    Manighetti, I.; Tapponnier, P.; Courtillot, V.; Gallet, Y.; Jacques, E.; Gillot, P.-Y.

    2001-01-01

    We showed before that both the Aden and Red Sea plate boundaries are currently rifting and propagating along two distinct paths into Afar through the opening of a series of disconnected, propagating rifts. Here we use new geochronological, tectonic, and paleomagnetic data that we acquired mostly in the southeastern part of Afar to examine the geometry, kinematics, and time-space evolution of faulting related to strain transfer processes. It appears that transfer of strain is accommodated by a bookshelf faulting mechanism wherever rifts or plate boundaries happen to overlap without being connected. This mechanism implies the rotation about a vertical axis of small rigid blocks along rift-parallel faults that are shown to slip with a left-lateral component, which is as important as their normal component of slip (rates of ˜2-3 mm/yr). By contrast, where rifts do not overlap, either a classic transform fault (Maskali) or an oblique transfer zone (Mak'arrasou) kinematically connects them. The length of the Aden-Red Sea overlap has increased in the last ˜0.9 Myr, as the Aden plate boundary propagated northward into Afar. As a consequence, the first-order blocks that we identify within the overlap did not all rotate during the same time-span nor by the same amounts. Similarly, the major faults that bound them did not necessarily initiate and grow as their neighboring faults did. Despite these variations in strain distribution and kinematics, the overlap kept accommodating a constant amount of strain (7 to 15% of the extension amount imposed by plate driving forces), which remained distributed on a limited number (seven or eight) of major faults, each one having slipped at constant rates (˜3 and 2 mm/yr for vertical and lateral rates, respectively). The fault propagation rates and the block rotation rates that we either measure or deduce are so fast (30-130 mm/yr and 15-38°/Myr, respectively) that they imply that strain transfer processes are transient, as has been

  8. Investigating Variations in Rifting Style Along the Southern Margin of Flemish Cap, Offshore Newfoundland: Results from the Erable Multichannel Seismic Reflection Experiment

    NASA Astrophysics Data System (ADS)

    Welford, J.; Smith, J.; Hall, J.; Deemer, S.; Srivastava, S.; Sibuet, J.

    2009-05-01

    In 1992, the Erable project was undertaken by the Geological Survey of Canada and Ifremer to acquire multiple 2-D multichannel seismic reflection profiles in the Newfoundland Basin and along the margins of Flemish Cap. We present four multichannel seismic reflection profiles from the project collected over the southern margin of Flemish Cap and extending into the Newfoundland Basin. These profiles are between and sub- parallel to lines 1 and 2 from the 2000 SCREECH seismic experiment and provide more comprehensive data coverage over the region. We combine these data with the SCREECH seismic profiles, two ODP drill sites, and other geophysical data to map distinct zones of continental, transitional, and oceanic crust in this region. Just as has been evidenced from the mapped crustal boundaries on their conjugate Galicia Bank and Iberian margins, the Flemish Cap and Newfoundland margins show significant along-margin variability in terms of rifting structures and styles. This along-margin variability is superimposed on the overall asymmetry of the conjugate pairs highlighting the complexity of the margins and the importance of considering three- dimensional influences on rifting evolution. In particular, the hypothesized clockwise rotation and southeastward motion of Flemish Cap and the transfer zones that would have accommodated such movement appear to have affected the distribution of extension along the margins as rifting propagated northward. Meanwhile, activity at the North Atlantic triple junction immediately to the east of Flemish Cap may have initiated slow seafloor spreading while rifting was still active to the south as evidenced along the nearby Erable profiles. While simple two-dimensional rifting models may be appropriate for interpreting individual seismic profiles, three-dimensional rifting models are clearly needed to adequately explain the evolution of Flemish Cap and Galicia Bank relative to the margins to the south. These rifting models must

  9. [Icelanders' beliefs about medicines. Use of BMQ].

    PubMed

    Vilhelmsdottir, Hlif; Johannsson, Magnus

    2017-01-01

    To study beliefs held by the general public in Iceland about medicines. The Beliefs about Medicines Questionnaire was used to explore Icelanders' beliefs about medicines. A sample of 1500 Icelandic citizens, aged 18-75, obtained from the Social Science Research Insti-tute was given The Beliefs about Medicines Questionnaire. The response rate was 61.6%. Most Icelanders have positive beliefs about their medication as well as general trust. Those who suffer from chronic diseases are more positive towards medicines than others and less inclined to view them as excessively used and harmful. Higher level of education predicts more positive beliefs towards medication - and vice versa. Gender and age do not seem to affect such beliefs. Gaining a better understanding of people´s beliefs about medicines and what determines these beliefs can be of considerable value in the search for ways to improve therapy and adherence, espe-cially for those suffering from chronic diseases. Promoting education for the general public about medicines might result in less mis-understanding among patients and subsequently better grounded -beliefs and more adequate therapeutic adherence. Key words: beliefs, medicines, Icelanders, BMQ, survey. Correspondence: Hlif Vilhelmsdottir, hlif84@gmail.com.

  10. Slip re-orientation in the oblique Abiquiu embayment, northern Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Murphy, M. A.; Andrea, R. A.

    2015-12-01

    Traditional models of oblique rifting predict that an oblique fault accommodates both dip-slip and strike-slip kinematics. However, recent analog experiments suggest that slip can be re-oriented to almost pure dip-slip on oblique faults if a preexisting weak zone is present at the onset of oblique extension. In this study, we use fault slip data from the Abiquiu embayment in northern Rio Grande rift to test the new model. The Rio Grande rift is a Cenozoic oblique rift extending from southern Colorado to New Mexico. From north to south, it comprises three major half grabens (San Luis, Española, and Albuquerque). The Abiquiu embayment is a sub-basin of the San Luis basin in northern New Mexico. Rift-border faults are generally older and oblique to the trend of the rift, whereas internal faults are younger and approximately N-S striking, i.e. orthogonal to the regional extension direction. Rift-border faults are deep-seated in the basement rocks while the internal faults only cut shallow stratigraphic sections. It has been suggested by many that inherited structures may influence the Rio Grande rifting. Particularly, Laramide structures (and possibly the Ancestral Rockies as well) that bound the Abiquiu embayment strike N- to NW. Our data show that internal faults in the Abiquiu embayment exhibit almost pure dip-slip (rake of slickenlines = 90º ± 15º), independent of their orientations with respect to the regional extension direction. On the contrary, border faults show two sets of rakes: almost pure dip-slip (rake = 90º ± 15º) where the fault is sub-parallel to the foliation, and moderately-oblique (rake = 30º ± 15º) where the fault is high angle to the foliation. We conclude that slip re-orientation occurs on most internal faults and some oblique border faults under the influence of inherited structures. Regarding those border faults on which slip is not re-oriented, we hypothesize that it may be caused by the Jemez volcanism or small-scale mantle

  11. Peripheral structures of the Rio Grande Rift in the Sangre de Cristo Mountains, around the Colorado-New Mexico border

    NASA Astrophysics Data System (ADS)

    Fridrich, C. J.; Workman, J. B.

    2009-12-01

    Recently active faults of the Rio Grande rift near the Colorado-New Mexico border are almost entirely limited to the San Luis basin. In contrast, the early (≈26 to ≈10 Ma) structure of the rift in this area is significantly broader. A wide zone of abandoned, peripheral extensional structures is exposed on the eastern flank of the San Luis basin—in the west half of the Sangre de Cristo Mountains, known in this area as the southern Culebra and northern Taos Ranges. New detailed mapping shows that the eastern limit of the zone of early peripheral extension is marked by an aligned series of north-trending grabens, including the Devil’s Park, Valle Vidal, and Moreno Valley basins. Master faults of these intermontaine basins are partly localized along, and evidently reactivated moderate- to high-angle Laramide (≈70 to ≈40 Ma) reverse faults of the Sangre de Cristo Mountains. Between these grabens and the San Luis basin lies a structural zone that varies in style from block faulting, in the north, to more closely spaced tilted-domino-style faulting in the Latir volcanic field, to the south. Additional early rift structures include several long northwest-striking faults, the largest of which are interpreted to have accommodated significant right-lateral strike-slip, based on abrupt southwestward increase in the magnitude of extension across them. These faults evidently transferred strain from the axial part of the rift into the zone of early peripheral extension, and accommodated lateral changes in structural style. Throughout the area of early peripheral extension, there is a correlation between the magnitude of local volcanism and the degree of extension; however, it is unclear if extension drove volcanism—via mantle upwelling, or if extension was maximized where the crust was weakest, owing to the presence of magma and hot rock at shallow depths.

  12. Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history

    NASA Astrophysics Data System (ADS)

    Thordarson, T.; Larsen, G.

    2007-01-01

    The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone. Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine). Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic

  13. New perspectives on the evolution of narrow, modest extension continental rifts: Embryonic core complexes and localized, rapid Quaternary extension in the Rio Grande rift, central New Mexico

    NASA Astrophysics Data System (ADS)

    Ricketts, J.; Karlstrom, K. E.; Kelley, S.

    2013-12-01

    Updated models for continental rift zones need to address the role and development of low-angle normal fault networks, episodicity of extension, and interaction of 'active and passive' driving mechanisms. In the Rio Grande rift, USA, low-angle normal faults are found throughout the entire length of the rift, but make up a small percentage of the total fault population. The low-angle Jeter and Knife Edge faults, for example, crop out along the SW and NE margins of the Albuquerque basin, respectively. Apatite fission track (AFT) age-elevation data and apatite (U-Th)/He (AHe) ages from these rift flank uplifts record cooling between ~21 - 16 Ma in the NE rift flank and ~20 - 10 Ma in the SW, which coincides with times of rapid extension and voluminous syntectonic sedimentation. The timing of exhumation is also similar to rift flanks farther north in active margins based on AFT data alone. In addition, synthetic faults in the hanging wall of each low-angle fault become progressively steeper and younger basinward, and footwall blocks are the highest elevation along the rift flanks. These observations are consistent with a model where initially high-angle faults are shallowed in regions of maximum extension. As they rotate, new intrabasinal faults emerge which also can be rotated if extension continues. These relationships are similarly described in mature core complexes, and if these processes continued in the Rio Grande rift, it could eventually result in mid-crustal ductily deformed rocks in the footwall placed against surficial deposits in the hanging wall across faults that have been isostatically rotated to shallow dips. Although existing data are consistent with highest strain rates during a pulse of extension along the entire length of the rift 20-10 Ma., GPS-constrained measurements suggest that the rift is still actively-extending at 1.23-1.39 nstr/yr (Berglund et al., 2012). Additional evidence for Quaternary extension comes from travertine deposits that are

  14. ODP Leg 210 Drills the Newfoundland Margin in the Newfoundland-Iberia Non-Volcanic Rift

    NASA Astrophysics Data System (ADS)

    Tucholke, B. E.; Sibuet, J.

    2003-12-01

    The final leg of the Ocean Drilling Project (Leg 210, July-September 2003) was devoted to studying the history of rifting and post-rift sedimentation in the Newfoundland-Iberia rift. For the first time, drilling was conducted in the Newfoundland Basin along a transect conjugate to previous drill sites on the Iberia margin (Legs 149 and 173) to obtain data on a complete `non-volcanic' rift system. The prime site during this leg (Site 1276) was drilled in the transition zone between known continental crust and known oceanic crust at chrons M3 and younger. Extensive geophysical work and deep-sea drilling have shown that this transition-zone crust on the conjugate Iberia margin is exhumed continental mantle that is strongly serpentinized in its upper part. Transition-zone crust on the Newfoundland side, however, is typically a kilometer or more shallower and has much smoother topography, and seismic refraction data suggest that the crust may be thin (about 4 km) oceanic crust. A major goal of Site 1276 was to investigate these differences by sampling basement and a strong, basinwide reflection (U) overlying basement. Site 1276 was cored from 800 to 1737 m below seafloor with excellent recovery (avg. 85%), bottoming in two alkaline diabase sills >10 m thick that are estimated to be 100-200 meters above basement. The sills have sedimentary contacts that show extensive hydrothermal metamorphism. Associated sediment structural features indicate that the sills were intruded at shallow levels within highly porous sediments. The upper sill likely is at the level of the U reflection, which correlates with lower Albian - uppermost Aptian(?) fine- to coarse-grained gravity-flow deposits. Overlying lower Albian to lower Oligocene sediments record paleoceanographic conditions similar to those on the Iberia margin and in the main North Atlantic basin, including deposition of `black shales'; however, they show an extensive component of gravity-flow deposits throughout.

  15. Tectonic Evolution of the Terceira Rift (Azores)

    NASA Astrophysics Data System (ADS)

    Stratmann, Sjard; Huebscher, Christian; Terrinha, Pedro; Ornelas Marques, Fernando; Weiß, Benedik

    2017-04-01

    The Azores Plateau is located in the Central Atlantic at the Eurasian, Nubian and North-American plates (RRT) Azores Triple Junction. The Terceira Rift (TR) connects the Mid-Atlantic Ridge with the Gloria Fault, hence establishing a transtensional-transform present day plate boundary between the Eurasian and the Nubian plates. Three volcanic islands arose along the TR, Graciosa, Terceira and Sao Miguel. In the geological past, the plate boundary in the Azores area between the Eurasian and Nubian plates was located further south at the East Azores Fracture Zone. The timing of the plate boundary jump, which marks the onset of rifting along the TR, is heavily disputed. Published ages vary from 36 to 1 Ma. Based on bathymetric data and high-resolution marine 2D multi-channel seismic data acquired during M113 cruise of R/V Meteor in 2014/2015 we discuss the structural evolution of the TR and address the question whether the divergence between both plates is entirely accommodated by the TR. The central TR between São Miguel and Terceira, also known as Hirondelle Basin, is up to 70 km wide. Rifting created two asymmetric graben sections separated by a rift parallel horst. The north-eastern and south-western graben sections are ca. 4 km and 3 km deep, respectively, and the corresponding graben floors are tilted towards the central horst. Volcanic cones emerged on the central horst and rift shoulders. Bright spots in the basin fill deposits indicate fluid flow out of the volcanic basement. The seafloor is displaced by faults which suggest recent fault displacement. In the Eastern Graciosa Basin between Terceira and Graciosa Islands the rift narrows to ca. 40 km and shallows to ca. 3200 m water depth. The central horst is no longer detectable. Instead, a buried normal fault and a small escarpment are observed. Shallow faults and block rotation are less pronounced compared to the basins to the south-east and north-west. The Western Graciosa Basin is about 30 km wide and ca

  16. Iceland

    NASA Image and Video Library

    2017-12-08

    On August 22, 2014 the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured a true-color image of a sunny summer day in Iceland. While most of the winter snow has melted to reveal green vegetation, the rugged northern peaks retain a snow cap. Further south bright white marks the location of glaciers. Situated in the southeast is Vatnajökull – the largest glacier in Europe and the site of Iceland’s highest mountain, Hvannadalshnjúkur. On August 20, scientists from the Icelandic Met Office closed all roads into the north of Vatnajökull Glacier due to increase seismic activity from the Bardarbunga volcano which lies under the ice cap in this area. On August 23, a small eruption was detected in Bardarbunga and the airspace near the activity was closed as a precautionary measure. Further study of the data suggested that no eruption had in fact occurred and airspace was opened under a code orange alert. Seismic activity remained high. On August 29, an eruption occurred north of Vatnajökull Glacier when a fissure, close to 1 km in length, opened up, and emitted lava at a slow pace. The eruption was short-lived, but on August 31 an eruption was confirmed in the same remote, uninhabited area. The Icelandic Meteorological Office reported that as of September 11 that eruption continued unabated. There has been no significant explosive activity, but lava flow has been the primary feature. High concentrations of sulfuric gases from the volcanic activity accompany the eruption, and are the primary health concern. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on

  17. Transfer fault earthquake in compressionally reactivated back-arc failed rift: 1948 Fukui earthquake (M7.1), Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin

    2017-04-01

    Back-arc rift structures in many subduction zones are recognized as mechanically and thermally weak zones that possibly play important roles in strain accommodation at later post-rift stages within the overriding plates. In case of Miocene back-arc failed rift structures in the Sea of Japan in the Eurasian-Pacific subduction system, the mechanical contrasts between the crustal thrust wedges of the pre-rift continental crust and high velocity lower crust have fundamentally controlled the styles of post-rift, Quaternary active deformation (Ishiyama et al. 2016). In this study, we show a possibility that strike-slip M>7 devastating earthquakes in this region have been gregion enerated by reactivation of transfer faults highly oblique to the rift axes. The 1948 Fukui earthquake (M7.1), onshore shallow seismic event with a strike-slip faulting mechanism (Kanamori, 1973), resulted in more than 3,500 causalities and destructive damages on the infrastructures. While geophysical analyses on geodetic measurements based on leveling and triangulation networks clearly show coseismic left-lateral fault slip on a NNW striking vertical fault plane beneath the Fukui plain (Sagiya, 1999), no evidence for coseismic surface rupture has been identified based on both post-earthquake intensive fieldwork and recent reexamination of stereopair interpretations using 1/3,000 aerial photographs taken in 1948 (Togo et al., 2000). To find recognizable fault-related structures that deform Neogene basin fill sediments, we collected new 9.6-km-long high-resolution seismic reflection data across the geodetically estimated fault plane and adjacent subparallel active strike slip faults, using 925 offline recorders and Envirovib truck as a seismic source. A depth-converted section to 1.5 km depth contains discontinuous seismic reflectors correlated to Miocene volcaniclastic deposits and depression of the overlying Plio-Pleistocene sediments above the geodetically determined fault plane. We interpreted

  18. Influence of the Iceland mantle plume on North Atlantic continental margins

    NASA Astrophysics Data System (ADS)

    White, R. S.; Isimm Team

    2003-04-01

    Early Tertiary breakup of the North Atlantic was accompanied by widespread magmatism. The histories of the Iceland mantle plume, of rifting and of magmatism are intimately related. The magmatism provides a challenge both to imaging structure, and to modelling the subsidence and development of the continental margins. We report new work which integrates state-of-the-art seismic imaging and new acquisition on the Atlantic volcanic margins with new techniques for modelling their evolution. We discuss the distribution of igneous rocks along the North Atlantic margins and discuss the temporal and spatial variations in the Iceland mantle plume in the early Tertiary, which have largely controlled this pattern of magmatism. Igneous rocks are added to the crust on rifted margins as extrusive lavas, as sills intruded into the sub-surface and as lower crustal intrusions or underplate. Each provide different, but tractable problems to seismic imaging. We show that many of these difficulties can be surmounted by using very long offsets (long streamers or two-ship methods) with a broad-band, low-frequency source, and by using fixed ocean bottom receivers. We report results from surveys on the North Atlantic continental margins using these methods. Imaging results are shown from the recent FLARE project and from the iSIMM project, which recorded new seismic data recorded in summer 2002. The iSIMM project acquired two seismic surveys, using 85 4-component ocean bottom seismometers with long streamers for wide-angle data, and vertical arrays for far-field source signature recording. One survey crosses the Faroes Shelf and adjacent continental margin, and a second the Hatton-Rockall Basin, Hatton Bank and adjacent oceanic crust. The Faroes wide-angle profiles were overshot by WesternGeco's Topaz using three single-sensor, Q-Marine streamers, 12km plus two 4km. We designed deep-towed, broad-band low-frequency sources tuned to enhance the bubble pulses, with peak frequencies at 8

  19. Hydrothermal Alteration and Seawater Exchange at Surtsey Volcano, Iceland: New results from 1979 Surtsey Drill Core.

    NASA Astrophysics Data System (ADS)

    Rhodes, M.; Bryce, J. G.; Jercinovic, M. J.; Fahnestock, M. F.; Jackson, M. D.

    2017-12-01

    The archetypal volcano Surtsey erupted spectacularly out of the North Atlantic Ocean from November 1963 to June 1967, on the southern submarine extension of the E. Icelandic Rift Zone. Twelve years later, in 1979, the eastern cone (Surtur I) was drilled to a depth of 181 m to document the growth of the volcano and the interaction of basaltic tephra with seawater [1]. The present study is a pilot project for the International Continental Drilling Project on Surtsey, SUSTAIN, starting in August, 2017. The overall intent is to document the nature, extent and rates of hydrothermal and seawater reaction with tephra over the past 50 years. This work builds on the 1979 drilling studies through new electron microprobe and laser ablation (LA- ICPMS) analyses to document varying degrees of palagonitic alteration of volcanic glass and primary phases to form authigenic minerals (smectite, zeolites, Al-tobermorite, anhydrite) in the intervening 12 years since the eruption. Combined with modal data and inferred phase densities, the data documents the mass balance of major and trace elements among the phases and the relationship of these changes to core depth, temperature and porosity. Although hydrothermal alteration is extensive, especially in the hotter submarine intervals from 60 to 120 m, detailed whole-rock major, trace and isotopic data (Sr, Nd, Pb), show that, apart from hydration and oxidation, there is only modest exchange of elements between tephra and seawater, or hydrothermal fluids, in the upper 140 m of the core prior to 1979. Below 140 m, in a cooler zone of coarse, more porous tephra, extensive exchange of elements, involving hydrothermal introduction of sulfur and growth of anhydrite, is associated with the loss of Ca, K, Rb, Sr and addition of MgO and Na and seawater isotopic signatures. It is surely no coincidence that this zone of elemental and isotopic exchange supports active microbial colonies [2]. Our results serve as an important baseline for the 2017

  20. Morphotectonic evolution of the central Kenya rift flanks: Implications for late Cenozoic environmental change in East Africa

    NASA Astrophysics Data System (ADS)

    Spiegel, Cornelia; Kohn, Barry P.; Belton, David X.; Gleadow, Andrew J. W.

    2007-05-01

    The Kenya rift valley is the classic example of an active continental rift zone. We report the rift flank cooling history based on a combination of previous apatite fission track (AFT) and new (U-Th)/He (AHe) data. Our results corroborate the Late Cretaceous rapid cooling episode of continent-wide significance revealed previously by AFT dating. Post-Cretaceous cooling of the eastern rift flank was slow with net cooling of <20 °C through much of the Cenozoic. We interpret this cooling style in terms of the absence of significant relief. Samples from the western rift flank and from low elevations of the eastern rift flank reveal a late Neogene cooling episode associated with net cooling of ˜38 °C, indicating that this flank was eroded to a deeper level than that to the east. The late Neogene cooling episode is interpreted as the time of uplift and shaping of the present-day relief of the graben shoulders, which attain elevations of >3400 m in central Kenya. This timing also largely coincides with the uplift of the Western Rift flanks in Uganda and Congo and with the change toward drier conditions and grassland-dominated vegetation in East Africa. We propose that the regional morphotectonic evolution of the Kenyan rift flanks contributed to late Cenozoic environmental change in East Africa, thus superimposing a pronounced local effect on global climate change at that time.

  1. Plate Speed-up and Deceleration during Continental Rifting: Insights from Global 2D Mantle Convection Models.

    NASA Astrophysics Data System (ADS)

    Brune, S.; Ulvrova, M.; Williams, S.

    2017-12-01

    The surface of the Earth is divided into a jigsaw of tectonic plates, some carrrying continents that disperse and aggregate through time, forming transient supercontinents like Pangea and Rodinia. Here, we study continental rifting using large-scale numerical simulations with self-consistent evolution of plate boundaries, where continental break-up emerges spontaneously due to slab pull, basal drag and trench suction forces.We use the StagYY convection code employing a visco-plastic rheology in a spherical annulus geometry. We consider an incompressible mantle under the Boussinesq approximation that is basally and internally heated.We show that continental separation follows a characteristic evolution with three distinctive phases: (1) A pre-rift phase that typically lasts for several hundreds of millions of years with tectonic quiescence in the suture and extensional stresses that are slowly building up. (2) A rift phase that further divides into a slow rift period of several tens of millions of years where stresses continuously increase followed by a rift acceleration period featuring an abrupt stress drop within several millions of years. The speed-up takes place before lithospheric break-up and therefore affects the structural architecture of the rifted margins. (3) The drifting phase with initially high divergence rates persists over tens of millions of years until the system adjust to new conditions and the spreading typically slows down.By illustrating the geodynamic connection between subduction dynamics and rift evolution, our results allow new interpretations of plate tectonic reconstructions. Rift acceleration within the second phase of rifting is compensated by enhanced convergence rates at subduction zones. This model outcome predicts enhanced subduction velocities, e.g. between North America and the Farallon plate during Central Atlantic rifting 200 My ago, or closure of potential back-arc basins such as in the proto-Andean ranges of South America

  2. The evolution of the River Nile. The buried saline rift lakes in Sudan—I. Bahr El Arab Rift, the Sudd buried saline lake

    NASA Astrophysics Data System (ADS)

    Salama, Ramsis B.

    The River Nile in Sudan, was during the Tertiary, a series of closed lake basins. Each basin occupying one of the major Sudanese rift systems (Salama, 1985a). In this paper evidence is presented for the presence of the buried saline Sudd Lake in Bahr El Arab rift. The thick Tertiary sediments filling the deep grabens were eroded from the elevated blocks; Jebel Marra, Darfur Dome, Nuba Mountains and the Nile-Congo Divide. The thick carbonate deposits existing at the faulted boundaries of Bahr El Arab defines the possible boundaries between the fresh and saline water bodies. The widespread presence of kanker nodules in the sediments was a result of continuous efflorescence, leaching and evaporative processes. The highly saline zone in the central part of the Sudd was formed through the same processes with additional sulphate being added by the oxidation of the hydrogen sulphide gases emanating from the oil fields.

  3. Plague and landscape resilience in premodern Iceland.

    PubMed

    Streeter, Richard; Dugmore, Andrew J; Vésteinsson, Orri

    2012-03-06

    In debates on societal collapse, Iceland occupies a position of precarious survival, defined by not becoming extinct, like Norse Greenland, but having endured, sometimes by the narrowest of margins. Classic decline narratives for late medieval to early modern Iceland stress compounding adversities, where climate, trade, political domination, unsustainable practices, and environmental degradation conspire with epidemics and volcanism to depress the Icelanders and turn the once-proud Vikings and Saga writers into one of Europe's poorest nations. A mainstay of this narrative is the impact of incidental setbacks such as plague and volcanism, which are seen to have compounded and exacerbated underlying structural problems. This research shows that this view is not correct. We present a study of landscape change that uses 15 precisely dated tephra layers spanning the whole 1,200-y period of human settlement in Iceland. These tephras have provided 2,625 horizons of known age within 200 stratigraphic sections to form a high-resolution spatial and temporal record of change. This finding shows short-term (50 y) declines in geomorphological activity after two major plagues in A.D. 15th century, variations that probably mirrored variations in the population. In the longer term, the geomorphological impact of climate changes from the 14th century on is delayed, and landscapes (as well as Icelandic society) exhibit resilience over decade to century timescales. This finding is not a simple consequence of depopulation but a reflection of how Icelandic society responded with a scaling back of their economy, conservation of core functionality, and entrenchment of the established order.

  4. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    NASA Astrophysics Data System (ADS)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry

  5. Continental crust beneath southeast Iceland

    PubMed Central

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn

    2015-01-01

    The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  6. Revised Geochronology and Magnetostratigraphy of Northwest Iceland

    NASA Astrophysics Data System (ADS)

    Riishuus, M. S.; Duncan, R. A.; Kristjansson, L.

    2013-12-01

    .5-15.0 Ma - and at a significantly higher growth rate. This suggests that the period of volcanic quiescence, during which the lignite-bearing laterites were deposited, was long-lived (1-1.5 Myr). Our results also reveal significant variations in growth rates SW-NE along strike of the lava pile, presumably reflecting differences in the volcanic productivity along the rift zone, as well as higher resolution of temporal growth rate variations from 17 to 8 Ma (~350 m/Myr @ 17-15 Ma, ~2200m/Myr @ 14.5-13.8 Ma, ~700m/Myr @ 13.8-11.6 Ma, ~1500m/Myr @ 11.6-10.6 Ma, ~800m/Myr @ 10.5-8 Ma) than hitherto thought. At several stratigraphic levels the new absolute ages are significantly older than the recalculated age data from earlier studies. This requires reassessment of the correlation of the observed polarity patterns with the Geomagnetic Polarity Time Scale. McDougall, I., Kristjansson, L. and Saemundsson, K., 1984. Magnetostratigraphy and geochronology of Northwest Iceland. Journal of Geophysical Research 89, 7029-7060.

  7. Rifting along the northern Gondwana margin and the evolution of the Rheic Ocean: A Devonian age for the El Castillo volcanic rocks (Salamanca, Central Iberian Zone)

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Alonso, G.; Murphy, J. B.; Fernández-Suárez, J.; Hamilton, M. A.

    2008-12-01

    Exposures of volcanic rocks (El Castillo) in the Central Iberian Zone near Salamanca, Spain, are representative of Paleozoic volcanic activity along the northern Gondwanan passive margin. Alkaline basalts and mafic volcaniclastic rocks of this sequence are structurally preserved in the core of the Variscan-Tamames Syncline. On the basis of the occurrence of graptolite fossils in immediately underlying strata, the El Castillo volcanics traditionally have been regarded as Lower Silurian in age. In contrast, most Paleozoic volcanic units in western Iberia are rift-related mafic to felsic rocks emplaced during the Late Cambrian-Early Ordovician, and are attributed to the opening of the Rheic Ocean. We present new zircon U-Pb TIMS data from a mafic volcaniclastic rock within the El Castillo unit. These data yield a near-concordant, upper intercept age of 394.7 ± 1.4 Ma that is interpreted to reflect a Middle Devonian (Emsian-Eifelian) age for the magmatism, demonstrating that the El Castillo volcanic rocks are separated from underlying lower Silurian strata by an unconformity. The U-Pb age is coeval with a widespread extensional event in Iberia preserved in the form of a generalized paraconformity surface described in most of the Iberian Variscan realm. However, in the inner part of the Gondwanan platform, the Cantabrian Zone underwent a major, coeval increase in subsidence and the generation of sedimentary troughs. From this perspective, the eruption age reported here probably represents a discrete phase of incipient rifting along the southern flank of the Rheic Ocean. Paleogeographic reconstructions indicate that this rifting event was coeval with widespread orogeny and ridge subduction along the conjugate northern flank of the Rheic Ocean, the so called Acadian "orogeny". We speculate that ridge subduction resulted in geodynamic coupling of the northern and southern flanks of the Rheic Ocean, and that the extension along the southern flank of the Rheic Ocean is a

  8. Geometry of the neoproterozoic and paleozoic rift margin of western Laurentia: Implications for mineral deposit settings

    USGS Publications Warehouse

    Lund, K.

    2008-01-01

    The U.S. and Canadian Cordilleran miogeocline evolved during several phases of Cryogenian-Devonian intracontinental rifting that formed the western mangin of Laurentia. Recent field and dating studies across central Idaho and northern Nevada result in identification of two segments of the rift margin. Resulting interpretations of rift geometry in the northern U.S. Cordillera are compatible with interpretations of northwest- striking asymmetric extensional segments subdivided by northeast-striking transform and transfer segments. The new interpretation permits integration of miogeoclinal segments along the length of the western North American Cordillera. For the U.S. Cordillera, miogeoclinal segments include the St. Mary-Moyie transform, eastern Washington- eastern Idaho upper-plate margin, Snake River transfer, Nevada-Utah lower-plate margin, and Mina transfer. The rift is orthogonal to most older basement domains, but the location of the transform-transfer zones suggests control of them by basement domain boundaries. The zigzag geometry of reentrants and promontories along the rift is paralleled by salients and recesses in younger thrust belts and by segmentation of younger extensional domains. Likewise, transform transfer zones localized subsequent transcurrent structures and igneous activity. Sediment-hosted mineral deposits trace the same zigzag geometry along the margin. Sedimentary exhalative (sedex) Zn-Pb-Ag ??Au and barite mineral deposits formed in continental-slope rocks during the Late Devonian-Mississippian and to a lesser degree, during the Cambrian-Early Ordovician. Such deposits formed during episodes of renewed extension along miogeoclinal segments. Carbonate-hosted Mississippi Valley- type (MVT) Zn-Pb deposits formed in structurally reactivated continental shelf rocks during the Late Devonian-Mississippian and Mesozoic due to reactivation of preexisting structures. The distribution and abundance of sedex and MVT deposits are controlled by the

  9. Rift systems in the southern North Atlantic: why did some fail and others not?

    NASA Astrophysics Data System (ADS)

    Nirrengarten, M.; Manatschal, G.; Tugend, J.; Kusznir, N. J.; Sauter, D.

    2017-12-01

    Orphan, Rockall, Porcupine, Parentis and Pyrenean Basins are failed rift systems surrounding the southern North Atlantic Ocean. The failure or succeessing of a rift system is intimately linked to the question of what controls lithospheric breakup and what keeps oceanic spreading alive. Extension rates and the thermal structure are usually the main parameters invoked. However, between the rifts that succeeded and those that failed, the relative control and relative importance of these parameters is not clear. Cessation of driving forces, strain hardening or competition between concurrent rifts are hypotheses often used to explain rift failure. In this work, we aim to analyze the influence of far field forces on the abandon of rift systems in the southern North Atlantic domain using plate kinematic modeling. A new reconstruction approach that integrates the spatio-temporal evolution of rifted basins has been developed. The plate modeling is based on the definition, mapping and restoration of rift domains using 3D gravity inversions methods that provide crustal thickness maps. The kinematic description of each rift system enables us to discuss the local rift evolution relative to the far field kinematic framework. The resulting model shows a strong segmentation of the different rift systems during extreme crustal thinning that are crosscut by V-shape propagators linked to the exhumation of mantle and emplacement of first oceanic crust. The northward propagating lithospheric breakup of the southern North Atlantic may be partly triggered and channeled by extreme lithospheric thinning. However, at Aptian-Albian time, the northward propagating lithospheric breakup diverts and is partitioned along a transtensional system resulting in the abandon of the Orphan and Rockall basins. The change in the propagation direction may be related to a local strain weakening along existing/inherited transfer zones and/or, alternatively, to a more global plate reorganization. The

  10. Seismic unrest at Katla Volcano- southern Iceland

    NASA Astrophysics Data System (ADS)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  11. The major tectonic boundaries of the Northern Red Sea rift, Egypt derived from geophysical data analysis

    NASA Astrophysics Data System (ADS)

    Saleh, Salah; Pamukçu, Oya; Brimich, Ladislav

    2017-09-01

    In the present study, we have attempted to map the plate boundary between Arabia and Africa at the Northern Red Sea rift region including the Suez rift, Gulf of Aqaba-Dead Sea transform and southeastern Mediterranean region by using gravity data analysis. In the boundary analysis method which was used; low-pass filtered gravity anomalies of the Northern Red Sea rift region were computed. Different crustal types and thicknesses, sediment thicknesses and different heat flow anomalies were evaluated. According to the results, there are six subzones (crustal blocks) separated from each other by tectonic plate boundaries and/or lineaments. It seems that these tectonic boundaries reveal complex structural lineaments, which are mostly influenced by a predominant set of NNW-SSE to NW-SE trending lineaments bordering the Red Sea and Suez rift regions. On the other side, the E-W and N-S to NNE-SSW trended lineaments bordering the South-eastern Mediterranean, Northern Sinai and Aqaba-Dead Sea transform regions, respectively. The analysis of the low pass filtered Bouguer anomaly maps reveals that the positive regional anomaly over both the Red Sea rift and South-eastern Mediterranean basin subzones are considered to be caused by the high density of the oceanic crust and/or the anomalous upper mantle structures beneath these regions whereas, the broad medium anomalies along the western half of Central Sinai with the Suez rift and the Eastern Desert subzones are attributed to low-density sediments of the Suez rift and/or the thick upper continental crustal thickness below these zones. There are observable negative anomalies over the Northern Arabia subzone, particularly in the areas covered by Cenozoic volcanics. These negative anomalies may be attributed to both the low densities of the surface volcanics and/or to a very thick upper continental crust. On the contrary, the negative anomaly which belongs to the Gulf of Aqaba-Dead Sea transform zone is due to crustal thickening

  12. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2011-12-01

    Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower

  13. Variable styles of rifting expressed in crustal structure across three rift segments of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Lizarralde, D. D.; Axen, G. J.; Brown, H. E.; Fletcher, J. M.; Fernandez, A. G.; Harding, A. J.; Holbrook, W. S.; Kent, G. M.; Paramo, P.; Sutherland, F. H.; Umhoefer, P. J.

    2007-05-01

    We present a summary of results from a crustal-scale seismic experiment conducted in the southern Gulf of California. This experiment, the PESCADOR experiment, imaged crustal structure across three rift segments, the Alarcon, Guaymas, and San José del Cabo to Puerto Vallarta (Cabo-PV) segments, using seismic refraction/wide-angle reflection data acquired with airgun sources and recorded by closely spaced (10-15 km) ocean-bottom seismometers (OBSs). The imaged crustal structure reveals a surprisingly large variation in rifting style and magmatism between these segments: the Alarcon segment is a wide rift with apparently little syn-rift magmatism; the Guaymas segment is a narrow, magmatically robust rift; and the Cabo-PV segment is a narrow, magmatically "normal" rift. Our explanation for the observed variability is non-traditional in that we do not invoke mantle temperature, the factor commonly invoked to explain end-member volcanic and non-volcanic rifted margins, as the source of the considerable, though non-end-member variability we observe. Instead, we invoke mantle depletion related to pre-rift arc volcanism to account for observed wide, magma-poor rifting and mantle fertility and possibly the influence of sediments to account for robust rift and post-rift magmatism. These factors may commonly vary over small lateral spatial scales in regions that have transitioned from convergent to extensional tectonics, as is the case for the Gulf of California and many other rifts. Our hypothesis suggests that substantial lateral variability may exist within the uppermost mantle beneath the Gulf of California today, and it is hoped that ongoing efforts to image upper mantle structure here will provide tests for this hypothesis.

  14. Icelandic: Linguistic Maintenance or Change? The Role of English. Occasional Paper.

    ERIC Educational Resources Information Center

    Hilmarsson-Dunn, Amanda

    The Icelandic language has a long and stable history, and Old Icelandic is still accessible to modern day Icelanders. This is despite being ruled from Denmark, with influence by the Danish language, for about 500 years. Icelandic may now be under a more serious threat from the onslaught of English. This paper evaluates the linguistic situation in…

  15. Plume-induced continental break-up from Red Sea to Lake Malawi: 3D numerical models of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Cloetingh, Sierd; Guillou-Frottier, Laurent

    2017-04-01

    We use numerical thermo-mechanical experiments in order to analyze the role of active mantle plume, far-field tectonic stresses and pre-existing lithospheric heterogeneities in structural development of the East African Rift system (EARS). It is commonly assumed that the Cenozoic rifts have avoided the cratons and follow the mobile belts which serve as the weakest pathways within the non-uniform material structured during pre-rift stages. Structural control of the pre-existing heterogeneities within the Proterozoic belts at the scale of individual faults or rifts has been demonstrated as well. However, the results of our numerical experiments show that the formation of two rift zones on opposite sides of a thick lithosphere segment can be explained without appealing to pre-imposed heterogeneities at the crustal level. These models have provided a unified physical framework to understand the development of the Eastern branch, the Western branch and its southern prolongation by the Malawi rift around thicker lithosphere of the Tanzanian and Bangweulu cratons as a result of the interaction between pre-stressed continental lithosphere and single mantle plume anomaly corresponding to the Kenyan plume. The second series of experiments has been designed in order to investigate northern segment of the EARS where Afro-Arabian plate separation is supposed to be related with the impact of Afar mantle plume. We demonstrate that whereas relatively simple linear rift structures are preferred in case of uni-directional extension, more complex rifting patterns combining one or several ridge-ridge-ridge triple junctions can form in response to bi-directional extensional far-field stresses. In particular, our models suggest that Afar triple junction represents an end-member mode of plume-induced bi-directional rifting combining asymmetrical northward traction and symmetrical EW extension of similar magnitudes. The presence of pre-existing linear weak zones appears to be not

  16. Public opinion on childhood immunisations in Iceland.

    PubMed

    Óskarsson, Ýmir; Guðnason, Þórólfur; Jónsdóttir, Guðbjörg A; Kristinsson, Karl G; Briem, Haraldur; Haraldsson, Ásgeir

    2015-12-16

    In recent years, vaccine preventable diseases such as measles and pertussis have been re-emerging in Western countries, maybe because of decreasing participation in childhood vaccination programs in some countries. There is clear evidence for vaccine efficacy and the risk of adverse effects is low. This needs to be communicated to the general public. The aim of the study was to evaluate the public opinion on childhood vaccinations in Iceland. An internet based study was used to evaluate the opinion on childhood immunisations in Iceland. The cohort was divided in three groups: (a) general public (b) employees of the University Hospital Iceland and (c) employees (teachers and staff) of the University of Iceland. The cohorts could be stratified according to age, gender, education, household income, parenthood and residency. Responses were received from 5584 individuals (53% response rate). When asked about childhood vaccinations in the first and second year of life, approximately 95% of participants were "positive" or "very positive", approximately 1% were "negative" or "very negative". When participants were asked whether they would have their child immunized according to the Icelandic childhood vaccination schedule, 96% were "positive" or "very positive", 1.2% were "negative" or "very negative". Similarly, 92% trust Icelandic Health authorities to decide on childhood vaccination schedule, 2.3% did not. In total, 9.3% "rather" or "strongly" agreed to the statement "I fear that vaccinations can cause severe adverse effects", 17.5% were undecided and 66.9% "disagreed" or "strongly disagreed". Individuals with higher education were more likely to disagree with this statement (OR=1.45, CI95=1.29-1.64, p<0.001) as did males (OR=1.22, CI95=1.087-1.379, p=0.001). This study shows a very positive attitude towards vaccinations raising expectations for an ongoing success in preventing preventable communicable diseases in childhood in Iceland. Copyright © 2015 Elsevier Ltd

  17. Contrasting magma types and steady-state, volume-predictable, basaltic volcanism along the Great Rift, Idaho.

    USGS Publications Warehouse

    Kuntz, M.A.; Champion, D.E.; Spiker, E. C.; Lefebvre, R.H.

    1986-01-01

    The Great Rift is an 85 km-long, 2-8 km-wide volcanic rift zone in the Snake River Plain, Idaho. Three basaltic lava fields, latest Pleistocene to Holocene, are located along the Great Rift: Craters of the Moon, Kings Bowl and Wapi. Craters of the Moon is the largest, covering 1600 km2 and containing approx 30 km3 of lava flows and pyroclastics. Field, radiocarbon and palaeomagnetic data show that this lava field formed in eight eruptive periods, each lasted several hundred years with a recurrence interval of several hundred to approx 3000 yr. The first eruption began approx 15 000 yr B.P. and the last ended at approx 2100 yr B.P. The other two lava fields formed approx 2250 yr B.P. Three magma types fed flows along the Great Rift. A contaminated and a fractionated type were erupted at the Craters of the Moon lava field. The third, little-fractionated Snake River Plain magma-type was erupted at the other two lava fields. The Craters of the Moon segment of the Great Rift has experienced quasi-steady state, volume-predictable volcanism for the last 15 000 yr. Based on this, about 5-6 km3 of lava will be erupted within the next 1000 yr.-L.C.H.

  18. Seismic hazard assessment of the Kivu rift segment based on a new sismo-tectonic zonation model (Western Branch of the East African Rift system)

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Delvaux, Damien

    2015-04-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focused on the Kivu and Northern Tanganyika Region, a seismic hazard map has been produced for this area. It is based on a on a recently re-compiled catalogue using various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, thus spanning about 100 years. The magnitudes have been homogenized to Mw and the coherence of the catalogue has been checked and validated. The seismo-tectonic zonation includes 10 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of earthquake epicenters. The seismic catalogue was filtered by removing obvious aftershocks and Gutenberg-Richter Laws were determined for each zone. On the basis of this seismo-tectonic information and existing attenuation laws that had been established by Twesigomwe (1997) and Mavonga et al. (2007) for this area, seismic hazard has been computed with the Crisis 2012 (Ordaz et al., 2012) software. The outputs of this assessment clearly show higher PGA values (for 475 years return period) along the Rift than the previous estimates by Twesigomwe (1997) and Mavonga (2007) while the same attenuation laws had been used. The main reason for these higher PGA values is likely to be related to the more detailed zonation of the Rift structure marked by a strong gradient of the seismicity from outside the rift zone to the inside. Mavonga, T. (2007). An estimate of the attenuation relationship for the strong ground motion in the Kivu Province, Western Rift Valley of Africa. Physics of the Earth and Planetary Interiors 62, 13-21. Ordaz M, Martinelli F, Aguilar A, Arboleda J, Meletti C, D'Amico V. (2012). CRISIS 2012, Program for computing seismic hazard. Instituto de Ingeniería, Universidad Nacional Autónoma de M

  19. Evaluating nature and wilderness in Iceland

    Treesearch

    Thora Ellen Thorhallsdottir

    2002-01-01

    Iceland is sparsely populated with towns and farms mostly restricted to coastal lowlands. The country’s ca 50,000 km2 (19,000 mi2) interior is an uninhabited highland with isolated mountains and large glaciers. At present, only a small part of Iceland’s rich geothermal and hydroelectric resources have been harnessed, but if political commitments to largescale...

  20. Magma Reservoir Processes Revealed by Geochemistry of the Ongoing East Rift Zone Eruption, Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Thornber, C. R.

    2002-12-01

    Geochemical data were examined for a suite of 1,000 near-vent lava samples from the Pu`u `O`o-Kupaianaha eruption of Kilauea, collected from January 1983 through October 2001. Bulk lava and glass compositions reveal short- and long-term changes in pre-eruptive magma conditions that can be correlated with changes in edifice deformation, shallow magma transfer and eruptive behavior. Two decades of eruption on Kilauea's east rift zone has yielded ~2 km3 of lava, 97% of which is sparsely olivine-phyric with an MgO range of 6.8 to 9.6 wt%. During separate brief intervals of low-volume, fissure eruption (episodes 1 to 3 and 54), isolated rift-zone reservoirs with lower-MgO and olv-cpx-plg-phryic magma were incorporated by more mafic magma immediately prior to eruption. During prolonged, near-continuous eruption(e.g.,episodes 48-53 and most of 55), steady-state effusion is marked by cyclic variations in olivine-saturated magma chemistry. Bulk lava MgO and eruption temperature vary in cycles of monthly to bi-annual frequency, while olivine-incompatible elements vary inversely to these cycles. However, MgO-normalized values and ratios of highly to moderately incompatible elements (HINCE/MINCE), which nullify olivine fractionation effects, reveal cycles in magma chemistry that occur prior to olivine crystallization over the magmatic temperature range that is tapped by this eruption (1205-1155°C). These short-term cycles are superimposed on a long-term decrease of HINCE/MINCE, which is widely thought to reflect a 20-year change in mantle-source conditions. While HINCE/MINCE variation in primitive recharge magma cannot be ruled out, the short-term fluctuations of this signature may require unreasonably complex mantle variations. Alternatively, the correspondence of HINCE/MINCE cycles with edifice deformation and eruptive behavior suggests that the long-term evolving magmatic condition is a result of prolonged succession of short-term shallow magmatic events. The consistent

  1. Near N-S paleo-extension in the western Deccan region, India: Does it link strike-slip tectonics with India-Seychelles rifting?

    NASA Astrophysics Data System (ADS)

    Misra, Achyuta Ayan; Bhattacharya, Gourab; Mukherjee, Soumyajit; Bose, Narayan

    2014-09-01

    This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India-Seychelles rifting during Late Cretaceous-Early Paleocene, was studied, and the paleostress tensors were deduced. Near N-S trending shear zones, lineaments, and faults were already reported without significant detail. An E-W extension was envisaged by the previous workers to explain the India-Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N-S brittle shear zones and also those faults (sub-vertical, ~NE-SW/~NW-SE, and few ~N-S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N-S to ~NE-SW/~NW-SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW-SE/NE-SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N-S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N-S extension is put forward that refutes the popular view of E-W India-Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE-SW and ~NW-SE, with some ~N-S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of

  2. The Newly Identified Subsurface Hazlehurst Formation and Implications for the Tectonic Evolution of the South Georgia Rift Basin, Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Cao, R.; Knapp, J. H.

    2016-12-01

    Integration of new 2-D seismic reflection profile with existing wells and potential field data from southeastern Georgia, USA provide exciting discovery of a new stratigraphic unit associated with the post-rift phase of the South Georgia Rift (SGR) basins. These data document an apparent reversal of rift basin asymmetry across the Warner Robins Transfer Zone, and the apparent presence of a new sub-horizontal stratigraphic unit (informally named the Hazlehurst Formation) which overlies with angular unconformity an inferred Triassic rift basin (Valdosta Basin), and sits below the regional Coastal Plain unconformity. Triassic rifting of the supercontinent Pangea left behind numerous extensional basins on what is now the eastern North American margin. The SGR is thought to be the most regionally extensive and best preserved of these basins, which were capped by thick basalt -flows of the Central Atlantic Magmatic Province (CAMP) and later buried beneath the Cretaceous and younger Coastal Plain section. Because it is buried beneath the Coastal Plain, the SGR is only known through relatively sparse drilling and geophysical methods. With these new seismic data acquired in 2013 near Hazlehurst, Georgia, we are able to put more constraints into the tectonic history of the basin. We test several hypotheses related to the SGR: (1) the "Transfer Zone" had to exist to transmit extensional strain between rift sub-basins with reverse polarities; (2) the newly identified sub-horizontal stratigraphic interval ("Hazlehurst Formation"), with a possible Jurassic age may represent a post-rift phase of regional subsidence; (3) the extent of this new unit appears to cover most of the coastal plain from eastern Mississippi to South Carolina. The result of this study suggests the previous inferred extent of the might need revision.

  3. Life Interpretation and Religion among Icelandic Teenagers

    ERIC Educational Resources Information Center

    Gunnarsson, Gunnar J.

    2009-01-01

    Does religion play any specific part in Icelandic teenagers' life interpretation? This paper examines Icelandic teenagers' talk about religion and presents some of the findings in interviews with teenagers in a qualitative research project. The focus is especially on how three individuals express themselves about the influence of religion on their…

  4. Education in Iceland: Its Rise and Growth.

    ERIC Educational Resources Information Center

    Josephson, Bragi S.

    This document is an English-language abstract (approximately 1,500 words) of a Doctorate of Education dissertation on the development of education in Iceland since 874 A.D. Special attention has been given to social, political, and economic issues influencing Icelandic education. The procedure consisted of reviewing the literature, interviewing…

  5. Sources of Minor and Rare-Earth Elements in Hydrothermal Edifices of Near-Continental Rifts with Sedimentary Cover: Evidence from the Guaymas Basin, Southern Trough

    NASA Astrophysics Data System (ADS)

    Lein, A. Yu.; Dara, O. M.; Bogdanova, O. Yu.; Novikov, G. V.; Ulyanova, N. V.; Lisitsyn, A. P.

    2018-03-01

    The mineralogy and geochemistry of a fragment of an active hydrothermal edifice from the Hydrothermal Hill of the Southern Trough valley of the Guaymas Basin in the Gulf of California were studied. The sample was collected from a depth of 1995 m by the Pisces manned submersible on cruise 12 of the R/V Akademik Mstislav Keldysh, Institute of Oceanology, Russian Academy of Sciences. The fragment and the edifice itself consists of two accrete pipes: ore (pyrrhotite) and barren (carbonate) combined in a single edifice by an outer barite-opal zone. The ore edifice is located in the rift zone of the Guaymas Basin with a thick sedimentary cover and is depleted in metals in comparison with ores from rift zones of the open ocean, which are not blocked by sedimentary deposits. This is explained by loss of metals at the boundary between hot sills and sedimentary rocks and by the processes of interaction of hydrothermal solutions with sedimentary deposits. The sedimentary series faciitates long-term preservation of endogenous heat and the ore formation process. Ore edifices of the Guaymas Basin are mostly composed of pyrrhotite, have a specific set of major elements, microelements and REEs, and contain naphthenic hydrocarbons. They may be search signs of hidden polymetallic deposits, considered to be the roots of ore occurrences localized under the surface of the bottom in young active rifts with high spreading and sedimentation rates, i.e., in near-continental areas of rifts of the humid zone with avalanche sedimentation.

  6. Strike-slip tectonics during rift linkage

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.

    2017-12-01

    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  7. Insights Into the Stress Field Around Bárðarbunga Volcano From the 2014/2015 Holuhraun Rifting Event

    NASA Astrophysics Data System (ADS)

    Spaans, Karsten; Hooper, Andrew

    2018-04-01

    The two weeklong rifting event at Bárðarbunga volcano in 2014 led to the Holuhraun eruption, which produced 1.5 km3 of lava and was the largest in Iceland in over 200 years. Predicting when and where an intrusion will lead to eruption requires detailed knowledge of the underlying stress field. Previous studies have explained the dike propagation path with a model that includes a tectonically induced stress field set up by a uniform amount of plate spreading across a straight rift axis. Here we test this hypothesis by modeling the tractions acting on the dike walls, constrained by data from Global Navigation Satellite System and Interferometric Synthetic Aperture Radar. Our results show that the majority of the opening and shearing in the final two dike segments is due to stresses built up by plate spreading since the last eruption at Holuhraun, as expected, but that the tectonically induced stress magnitude must be much lower to explain the movement of the dike walls further south. This result implies that most of the tectonically induced stress beneath the ice cap has been released, presumably due to intrusions associated with the Bárðarbunga volcanic system and the nearby Grímsvötn volcanic system, which have not been detected due to their subglacial nature. Modeling of the 2014 Bárðarbunga rifting event therefore not only yields insights into the event but also provides a window into undetected volcanic activity in the past.

  8. Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kervyn, F.; Vittori, E.; Kajara, R. S. A.; Kilembe, E.

    1998-04-01

    Interpretation of remotely sensed images and air photographs, compilation of geological and topographical maps, morphostructural and fault kinematic observations and 14C dating reveal that, besides obvious climatic influences, the lake water extent and sedimentation in the closed hydrological system of Lake Rukwa is strongly influenced by tectonic processes. A series of sandy ridges, palaeolacustrine terraces and palaeounderwater delta fans are related to an Early Holocene high lake level and subsequent progressive lowering. The maximum lake level was controlled by the altitude of the watershed between the Rukwa and Tanganyika hydrological systems. Taking as reference the present elevation of the palaeolacustrine terraces around Lake Rukwa, two orders of vertical tectonic movement are evidenced: i) a general uplift centred on the Rungwe Volcanic Province between the Rukwa and Malawi Rift Basins; and ii) a tectonic northeastward tilting of the entire Rukwa Rift Basin, including the depression and rift shoulders. This is supported by the observed hydromorphological evolution. Local uplift is also induced by the development of an active fault zone in the central part of the depression, in a prolongation of the Mbeya Range-Galula Fault system. The Ufipa and Lupa Border Faults, bounding the Rukwa depression on the southwestern and northeastern sides, respectively, exert passive sedimentation control only. They appear inactive or at least less active in the Late Quaternary than during the previous rifting stage. The main Late Quaternary tectonic activity is represented by dextral strike-slip movement along the Mbeya Range-Galula Fault system, in the middle of the Rukwa Rift Basin, and by normal dip-slip movements along the Kanda Fault, in the western rift shoulder.

  9. Volcanic rocks and processes of the Mid-Atlantic Ridge rift valley near 36 ° 49′ N

    USGS Publications Warehouse

    Hekinian, R.; Moore, J.G.; Bryan, W.B.

    1976-01-01

    The above relations indicate that the diverse lava types were erupted from a shallow, zoned magma chamber from fissures distributed over the width of the inner rift valley and elongate parallel to it. Differentiation was accomplished by cooling and crystallization of plagioclase, olivine, and clinopyroxene toward the margins of the chamber. The centrally located hills were built by the piling up of frequent eruption of mainly primitive lavas which also are the youngest flows. In contrast smaller and less frequent eruptions of more differentiated lavas were exposed on both sides of the rift valley axis.

  10. Rayleigh Wave Phase Velocities Beneath the Central and Southern East African Rift System

    NASA Astrophysics Data System (ADS)

    Adams, A. N.; Miller, J. C.

    2017-12-01

    This study uses the Automated Generalized Seismological Data Function (AGSDF) method to develop a model of Rayleigh wave phase velocities in the central and southern portions of the East African Rift System (EARS). These phase velocity models at periods of 20-100s lend insight into the lithospheric structures associated with surficial rifting and volcanism, as well as basement structures that pre-date and affect the course of rifting. A large dataset of >700 earthquakes is used, comprised of Mw=6.0+ events that occurred between the years 1995 and 2016. These events were recorded by a composite array of 176 stations from twelve non-contemporaneous seismic networks, each with a distinctive array geometry and station spacing. Several first-order features are resolved in this phase velocity model, confirming findings from previous studies. (1) Low velocities are observed in isolated regions along the Western Rift Branch and across the Eastern Rift Branch, corresponding to areas of active volcanism. (2) Two linear low velocity zones are imaged trending southeast and southwest from the Eastern Rift Branch in Tanzania, corresponding with areas of seismic activity and indicating possible incipient rifting. (3) High velocity regions are observed beneath both the Tanzania Craton and the Bangweulu Block. Furthermore, this model indicates several new findings. (1) High velocities beneath the Bangweulu Block extend to longer periods than those found beneath the Tanzania Craton, perhaps indicating that rifting processes have not altered the Bangweulu Block as extensively as the Tanzania Craton. (2) At long periods, the fast velocities beneath the Bangweulu Block extend eastwards beyond the surficial boundaries, to and possibly across the Malawi Rift. This may suggest the presence of older, thick blocks of lithosphere in regions where they are not exposed at the surface. (3) Finally, while the findings of this study correspond well with previous studies in regions of overlapping

  11. Interaction of deep and shallow processes in the evolution of the Kenya rift

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    1994-09-01

    The start of volcanism before rifting in the northern Kenya rift suggests that an asthenospheric thermal anomaly was responsible, not decompression melting due to lithosphere stretching. This volcanism may be partly related to the Ethiopian rift, or even the Anza graben, not the Kenya rift. In the northern Kenya rift the first stage of deformation was the formation of isolated sediment-filled half-graben basins during the Late Oligocene-Early Miocene, perhaps superimposed on lower Tertiary basins. During the Miocene, the location of basins shifted eastwards. This shift is interpreted as being due to strain hardening of the lithosphere during extension caused by a relatively slow strain rate. Relocation of the zone of extension progressively eastwards was possibly caused by migration of the asthenospheric thermal anomaly to the east (which lowered the strength of the crust above the thermal anomaly). The simple McKenzie model of uniform lithosphere stretching does not apparently fit the Kenya rift. Uniform extension may have affected the entire lithosphere but uniform stretching can only be demonstrated for the continental crust. The shape of the geophysically defined base lithosphere under the rift shows much more thinning of the mantle lithosphere than the crust. Consequently, thermal thinning of the mantle lithosphere has to be invoked to explain the discrepancy. Where the asthenosphere lies almost at the base of the crust the surface rift above displays swarms of minor faults and a linear array of Pliocene recent volcanoes. Thus the deep thermal history and the shallow brittle structures of the Kenya rift appear to be closely linked and each has influenced the evolution of the other. Extension estimates for the upper crust and the lower crust are similar, indicating that addition of magma to the crust has not caused an underestimate of lower crust extension. This suggests that either the ratios of magma emplaced within the crust to surface volcanism are much

  12. Morphotectonic architecture of the Transantarctic Mountains rift flank between the Royal Society Range and the Churchill Mountains based on geomorphic analysis

    USGS Publications Warehouse

    Demyanick, Elizabeth; Wilson, Terry J.

    2007-01-01

    Extensional forces within the Antarctic Plate have produced the Transantarctic Mountains rift-flank uplift along the West Antarctic rift margin. Large-scale linear morphologic features within the mountains are controlled by bedrock structure and can be recognized and mapped from satellite imagery and digital elevation models (DEMs). This study employed the Antarctic Digital Database DEM to obtain slope steepness and aspect maps of the Transantarctic Mountains (TAM) between the Royal Society Range and the Churchill Mountains, allowing definition of the position and orientation of the morphological axis of the rift-flank. The TAM axis, interpreted as a fault-controlled escarpment formed by coast-parallel retreat, provides a marker for the orientation of the faulted boundary between the TAM and the rift system. Changes in position and orientation of the TAM axis suggests the rift flank is segmented into tectonic blocks bounded by relay ramps and transverse accommodation zones. The transverse boundaries coincide with major outlet glaciers, supporting interpretation of rift structures between them. The pronounced morphological change across Byrd Glacier points to control by structures inherited from the Ross orogen.

  13. Cratonic roots and lower crustal seismicity: Investigating the role of deep intrusion in the Western rift, Africa

    NASA Astrophysics Data System (ADS)

    Drooff, C.; Ebinger, C. J.; Lavayssiere, A.; Keir, D.; Oliva, S. J.; Tepp, G.; Gallacher, R. J.

    2017-12-01

    Improved seismic imaging beneath the African continent reveals lateral variations in lithospheric thickness, and crustal structure, complementing a growing crust and mantle xenolith data base. Border fault systems in the active cratonic rifts of East Africa are characterized by lower crustal seismicity, both in magmatic sectors and weakly magmatic sectors, providing constraints on crustal rheology and, in some areas, magmatic fluid migration. We report new seismicity data from magmatic and weakly magmatic sectors of the East African rift zone, and place the work in the context of independent geophysical and geochemical studies to models for strain localization during early rifting stages. Specifically, multidisciplinary studies in the Magadi Natron rift sectors reveal volumetrically large magmatic CO2 degassing along border faults with seismicity along projections of surface dips to the lower crust. The magmatic CO2 degassing and high Vp/Vs ratios and reflectivity of the lower crust implies that the border fault serves a conduit between the lower crustal underplating and the atmospheric. Crustal xenoliths in the Eastern rift sector indicate a granulitic lower crust, which is relatively weak in the presence of fluids, arguing against a strong lower crust. Within magmatic sectors, seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Within some weakly magmatic sectors, lower crustal earthquakes also occur along projections of border faults to the lower crust (>30 km), and they are prevalent in areas with high Vp/Vs in the lower crust. Within the southern Tanganyika rift, focal mechanisms are predominantly normal with steep nodal planes. Our comparative studies suggest that pervasive metasomatism above a mantle plume, and melt extraction in thin zones between cratonic roots, lead to

  14. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Magma supply to Hawaiian volcanoes has varied over millions of years but is presently at a high level. Supply to Kīlauea’s shallow magmatic system averages about 0.1 km3/yr and fluctuates on timescales of months to years due to changes in pressure within the summit reservoir system, as well as in the volume of melt supplied by the source hot spot. Magma plumbing systems beneath Kīlauea and Mauna Loa are complex and are best constrained at Kīlauea. Multiple regions of magma storage characterize Kīlauea’s summit, and two pairs of rift zones, one providing a shallow magma pathway and the other forming a structural boundary within the volcano, radiate from the summit to carry magma to intrusion/eruption sites located nearby or tens of kilometers from the caldera. Whether or not magma is present within the deep rift zone, which extends beneath the structural rift zones at ~3-km depth to the base of the volcano at ~9-km depth, remains an open question, but we suggest that most magma entering Kīlauea must pass through the summit reservoir system before entering the rift zones. Mauna Loa’s summit magma storage system includes at least two interconnected reservoirs, with one centered beneath the south margin of the caldera and the other elongated along the axis of the caldera. Transport of magma within shield-stage Hawaiian volcanoes occurs through dikes that can evolve into long-lived pipe-like pathways. The ratio of eruptive to noneruptive dikes is large in Hawai‘i, compared to other basaltic volcanoes (in Iceland, for example), because Hawaiian dikes tend to be intruded with high driving pressures. Passive dike intrusions also occur, motivated at Kīlauea by rift opening in response to seaward slip of the volcano’s south flank.

  15. Venus - Limited extension and volcanism along zones of lithospheric weakness

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.

    1982-01-01

    Three global-scale zones of possible tectonic origin are described as occurring along broad, low rises within the Equatorial Highlands on Venus (lat 50 deg N to 50 deg S, long 60 deg to 310 deg). The two longest of these tectonic zones, the Aphrodite-Beta and Themis-Atla zones, extend for 21,000 and 14,000 km, respectively. Several lines of evidence indicate that Beta and Atla Regiones, located at the only two intersections of the three major tectonic zones, are dynamically supported volcanic terranes associated with currently active volcanism. Rift valleys south of Aphrodite Terra and between Beta and Phoebe Regiones are characterized by 75- to 100-km widths, raised rims, and extensions of only a few tens of kilometers, about the same magnitudes as in continental rifts on the earth. Horizontal extension on Venus was probably restricted by an early choking-off of plate motion by high crustal and upper-mantle temperatures, and the subsequent loss of water and an asthenosphere.

  16. A comprehensive survey of faults, breccias, and fractures in and flanking the eastern Española Basin, Rio Grande rift, New Mexico

    USGS Publications Warehouse

    Caine, Jonathan S.; Minor, Scott A.; Grauch, V.J.S.; Budahn, James R.; Keren, Tucker T.

    2017-01-01

    A comprehensive survey of geologic structures formed in the Earth’s brittle regime in the eastern Española Basin and flank of the Rio Grande rift, New Mexico, reveals a complex and protracted record of multiple tectonic events. Data and analyses from this representative rift flank-basin pair include measurements from 53 individual fault zones and 22 other brittle structures, such as breccia zones, joints, and veins, investigated at a total of just over 100 sites. Structures were examined and compared in poorly lithified Tertiary sediments, as well as in Paleozoic sedimentary and Proterozoic crystalline rocks. Data and analyses include geologic maps; field observations and measurements; orientation, kinematic, and paleostress analyses; statistical examination of fault trace lengths derived from aeromagnetic data; mineralogy and chemistry of host and fault rocks; and investigation of fault versus bolide-impact hypotheses for the origin of enigmatic breccias found in the Proterozoic basement rocks. Fault kinematic and paleostress analyses suggest a record of transitional, and perhaps partitioned, strains from the Laramide orogeny through Rio Grande rifting. Normal faults within Tertiary basin-fill sediments are consistent with more typical WNW-ESE Rio Grande rift extension, perhaps decoupled from bedrock structures due to strength contrasts favoring the formation of new faults in the relatively weak sediments. Analyses of the fault-length data indicate power-law length distributions similar to those reported from many geologic settings globally. Mineralogy and chemistry in Proterozoic fault-related rocks reveal geochemical changes tied to hydrothermal alteration and nearly isochemical transformation of feldspars to clay minerals. In sediments, faulted minerals are characterized by mechanical entrainment with minor secondary chemical changes. Enigmatic breccias in rift-flanking Proterozoic rocks are autoclastic and isochemical with respect to their protoliths and

  17. Evidence for hot Mississippi Valley-type brines in the Reelfoot Rift complex, south-central United States, in Late Pennsylvanian-Early Permian

    USGS Publications Warehouse

    Leach, D.L.; Apodaca, L.E.; Repetski, J.E.; Powell, J.W.; Rowan, E.L.

    1997-01-01

    Petrographic and fluid inclusion studies of sparry dolomite cement from Upper Cambrian to Lower Ordovician rocks and conodont thermal-alteration indices provide evidence that hot mississippi valley-type brines were once present in the Reelfoot Rift complex. The cathodoluminescent microstratigraphy of sparry dolomite cement in the Reelfoot Rift resembles that of sparry dolomite cement associated with widespread mississippi valley-type deposition in the Ozark region. If correlative cathodoluminescent zones in the sparry dolomite from the Ozark and Reelfoot Rift regions indicate broadly contemporaneous dolomite deposition, then the results show that the Ozark MVT-type hydrothermal system extended into the Reelfoot region and onto the western flank of the Nashville Dome. Independent evidence supports migration of MVT-type brines into the Ozark region from the Reelfoot Rift complex in late Paleozoic time.

  18. Lithospheric structure of the Rio Grande rift.

    PubMed

    Wilson, David; Aster, Richard; West, Michael; Ni, James; Grand, Steve; Gao, Wei; Baldridge, W Scott; Semken, Steve; Patel, Paresh

    2005-02-24

    A high-resolution, regional passive seismic experiment in the Rio Grande rift region of the southwestern United States has produced new images of upper-mantle velocity structure and crust-mantle topography. Synthesizing these results with geochemical and other geophysical evidence reveals highly symmetric lower-crustal and upper-mantle lithosphere extensional deformation, suggesting a pure-shear rifting mechanism for the Rio Grande rift. Extension in the lower crust is distributed over a region four times the width of the rift's surface expression. Here we propose that the laterally distributed, pure shear extension is a combined effect of low strain rate and a regionally elevated geotherm, possibly abetted by pre-existing lithospheric structures, at the time of rift initiation. Distributed extension in the lower crust and mantle has induced less concentrated vertical mantle upwelling and less vigorous small-scale convection than would have arisen from more localized deformation. This lack of highly focused mantle upwelling may explain a deficit of rift-related volcanics in the Rio Grande rift compared to other major rift systems such as the Kenya rift.

  19. Man against volcano: The eruption on Heimaey, Vestmann Islands, Iceland

    USGS Publications Warehouse

    Williams, R.S.; Moore, J.G.

    1976-01-01

    The U.S. Geological Survey carries out scientific studies in the geological, hydrological, and cartographic sciences generally within the 50 states, but also in cooperation with scientific organizations in many foreign countries for the investigation of unusual earth science phenomena throughout the world. The following material discusses the impact of the 1973 volcanic eruption of Eldfell on the fishing port of Vestmannaeyjar on the island of Heimaey, Iceland. Before the eruption was over, approximately one-third of the town of Vestmannaeyjar had been obliterated but, more importantly, the potential damage had been reduced markedly by the spraying of seawater onto the advancing lava flows, causing them to be slowed, stopped, or diverted from the undamaged portion of the town. The Survey's interest and involvement in the Heimaey eruption in Iceland was occasioned by the possibility that the procedures used to control the course of the flowing lava and to reduce the damage in a modern town may some day be needed in Hawaii and possibly even in the continental United States. This publication is based on the observations of two USGS geologists, Richard S. Williams, Jr. and James G. Moore, as well as on information from the Icelandic Ministry for Foreign Affairs, Icelandic scientists' reports through the Center for Short-Lived Phenomena, and other published scientific reports. A number of Icelandic scientists studied the scientific aspects of the eruption and the engineering aspects of the control of lava flows, in particular, Professors Thorbjb'rn Sigurgeirsson and Sigurdur Thorarinsson of the University of Iceland Science Institute. Also, Icelandic governmental officials provided logistical and other support, in particular, Mr. Steingnmur Hermannsson, Director, Icelandic National Research Council and Professor Magnus Magnusson, Director, University of Iceland Science Institute.

  20. Examining Teaching Practices in Design and Craft Education in Iceland

    ERIC Educational Resources Information Center

    Thorsteinsson, Gisli; Olafsson, Brynjar

    2017-01-01

    This article reports a survey which aimed to examine the present situation in Design and Craft Education (D&C) in Iceland in terms of teachers' general standing and their teaching inside the Icelandic elementary schools. A questionnaire was sent to 170 D&C teachers in Icelandic elementary schools. The questionnaire was completed by 101…

  1. The North Tanganyika hydrothermal fields, East African Rift system: Their tectonic control and relationship to volcanism and rift segmentation

    NASA Astrophysics Data System (ADS)

    Coussement, C.; Gente, P.; Rolet, J.; Tiercelin, J.-J.; Wafula, M.; Buku, S.

    1994-10-01

    The two branches of the East African Rift system include numerous hydrothermal fields, which are closely related to the present fault motion and to volcanic and seismic activity. In this study structural data from Pemba and Cape Banza hydrothermal fields (western branch, North Tanganyika, Zaire) are discussed in terms of neotectonic phenomena. Different types of records, such as fieldwork (onshore and underwater) and LANDSAT and SPOT imagery, are used to explain structural controls on active and fossil hydrothermal systems and their significance. The Pemba site is located at the intersection of 000-020°-trending normal faults belonging to the Uvira Border Fault System and a 120-130°-trending transtensional fault zone and is an area of high seismicity, with events of relatively large magnitude ( Ms < 6.5). The Cape Banza site occurs at the northern end of the Ubawari Peninsula horst. It is bounded by two fault systems trending 015° and is characterized seismically by events of small magnitude ( Ms < 4). The hydrothermal area itself is tectonically controlled by structures striking 170-180° and 080°. The analysis of both hydrothermal areas demonstrates the rejuvenation of older Proterozoic structures during Recent rift faulting and the location of the hydrothermal activity at the junctions of submeridian and transverse faults. The fault motion is compatible with a regional direction of extension of 090-110°. The Cape Banza and Pemba hydrothermal fields may testify to magma chambers existing below the junctions of the faults. They appear to form at structural nodes and may represent a future volcanic province. Together with the four surface volcanic provinces existing along the western branch, they possibly indicate an incipient rift segmentation related to 'valley-valley' or 'transverse fault-valley' junctions, contrasting with the spacing of the volcanoes measured in the eastern branch. These spacings appear to express the different elastic thicknesses between

  2. Aeolian Environments of Iceland

    NASA Astrophysics Data System (ADS)

    Arnalds, Olafur; Olafsson, Haraldur; Dagsson Waldhauserová, Pavla

    2017-04-01

    Iceland has the largest area of volcaniclastic sandy desert on Earth or 22,000 km2. The sand has been mostly produced by glacio-fluvial processes, leaving behind fine-grained unstable sediments which are later re-distributed by repeated aeolian events. Volcanic eruptions add to this pool of unstable sediments, often from subglacial eruptions. Icelandic desert surfaces are divided into sand fields, sandy lavas and sandy lag gravel, each with separate aeolian surface characteristics such as threshold velocities. Storms are frequent due to Iceland's location on the North Atlantic Storm track. Dry winds occur on the leeward sides of mountains and glaciers, in spite of the high moisture content of the Atlantic cyclones. Surface winds often move hundreds to more than 1000 kg m-1 per annum, and more than 10,000 kg m-1 have been measured in a single storm. Desertification occurs when aeolian processes push sand fronts and have thus destroyed many previously fully vegetated ecosystems since the time of the settlement of Iceland in the late ninth century. There are about 135 dust events per annum, ranging from minor storms to >300,000 t of dust emitted in single storms. Dust can be generated from all the major sandy areas of Iceland; however the amount of finer particles that become dust varies with the surfaces. There are areas that produce more dust by far compared to the general sandy deserts; they have therefore been termed "dust plume areas" or "dust hot-spots". They are characterized by repeated charging of fine sediments with a relatively high proportion of finer (silty) materials which, upon repeated wind erosion become sorted downwind from the sources with loss of silt (dust) and an increasing saltation component (sand). Dust production is on the order of 30-40 million tons annually, some travelling over 1000 km and deposited on land and sea. Dust deposited on deserts tends to be re-suspended during subsequent storms. High PM10 concentrations occur during major dust

  3. The 2014-2015 slow collapse of the Bárðarbunga caldera, Iceland

    NASA Astrophysics Data System (ADS)

    Tumi Gudmundsson, Magnus; Jónsdóttir, Kristín; Roberts, Matthew; Ófeigsson, Benedikt G.; Högnadóttir, Thórdís; Magnússon, Eyjólfur; Jarosch, Alexander H.; Pálsson, Finnur; Einarsson, Páll; Sigmundsson, Freysteinn; Drouin, Vincent; Hjörleifsdóttir, Vala; Reynolds, Hannah I.; Dürig, Tobias; Vogfjörd, Kristín; Hensch, Martin; Munoz-Cobo Belart, Joaquin; Oddsson, Björn

    2015-04-01

    The Bárðarbunga caldera is located in central Iceland, under in NW corner of Vatnajökull ice cap. The caldera is about 65 km2 in area, with 500-600 m high topographic rims and is fully covered with up to 800 m thick ice. On 16 August 2014 an intense earthquake swarm started in Bárðarbunga, the beginning of a major volcano-tectonic rifting event forming a 45 km long dyke extending from the caldera to Holuhraun lava field outside the northern margin of Vatnajökull (Sigmundsson et al., 2014). A large basaltic, effusive fissure eruption began in Holuhraun on 31 August that by January had formed a lava field of volume in excess of one cubic kilometre. The collapse of the caldera is expected to have begun a few days after the onset of the earthquake swarm, probably coinciding with the first M5 earthquake. This slow caldera collapse has been monitored through repeated mapping of the gradually increasing subsidence bowl (~80 km2 in December) with airborne profiling of the ice surface, satellite mapping, an online GPS station set up in September on the glacier surface in the centre of the caldera with a strong motion sensor added in November, and indirectly through recording of seismic activity. Satellite interferograms constrain both ice movements and the rate of collapse. The rate of collapse was greatest in the first two weeks or 0.5-1 m/day in the centre, but has since gradually declined with time. The daily rate was 0.1-0.2 m/day in January, when the maximum lowering had reached about 60 m. A gradual widening of the subsidence bowl has been observed since early September. It is asymmetric, deepest in the NE part of the caldera. Downwards displacement extends outside the pre-existing topographic caldera rims, particularly on the south side where the rims have subsided by over 10 meters. Ice-flow modelling indicates that the ice is mostly passively subsiding with the caldera floor. Thus, horizontal ice flow has had little effect on the shape of the subsidence bowl

  4. Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Bastow, I. D.; Whaler, K.; Hammond, J. O. S.; Ayele, A.; Miller, M. S.; Tiberi, C.; Hautot, S.

    2017-12-01

    The Cenozoic East African rift (EAR), Cameroon Volcanic Line (CVL), and Atlas Mountains formed on the slow-moving African continent, which last experienced orogeny during the Pan-African. We synthesize primarily geophysical data to evaluate the role of magmatism in shaping Africa's crust. In young magmatic rift zones, melt and volatiles migrate from the asthenosphere to gas-rich magma reservoirs at the Moho, altering crustal composition and reducing strength. Within the southernmost Eastern rift, the crust comprises 20% new magmatic material ponded in the lower crust and intruded as sills and dikes at shallower depths. In the Main Ethiopian Rift, intrusions comprise 30% of the crust below axial zones of dike-dominated extension. In the incipient rupture zones of the Afar rift, magma intrusions fed from crustal magma chambers beneath segment centers create new columns of mafic crust, as along slow-spreading ridges. Our comparisons suggest that transitional crust, including seaward dipping sequences, is created as progressively smaller screens of continental crust are heated and weakened by magma intrusion into 15-20 km thick crust. In the 30 Ma Recent CVL, which lacks a hot spot age progression, extensional forces are small, inhibiting the creation and rise of magma into the crust. In the Atlas orogen, localized magmatism follows the strike of the Atlas Mountains from the Canary Islands hot spot toward the Alboran Sea. CVL and Atlas magmatism has had minimal impact on crustal structure. Our syntheses show that magma and volatiles are migrating from the asthenosphere through the plates, modifying rheology, and contributing significantly to global carbon and water fluxes.

  5. [Effects of volcanic eruptions on human health in Iceland. Review].

    PubMed

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  6. New evidence for global tectonic zones on Venus

    NASA Technical Reports Server (NTRS)

    Kozak, Richard C.; Schaber, Gerald G.

    1989-01-01

    Venera 15 and 16 spacecraft images show clear evidence of major crustal disruptions on Venus which have been interpreted to indicate crustal divergence. Complementary to the divergent zones are mountain belts that border the continent-like high terrains. The requisite transcurrent motions appear to be manifested as diffuse shear zones. The rift zones form an interconnected transpolar system which ties in with previously recognized equatorial disruption zones, suggesting a global tectonic network. Several independent lines of evidence suggest that the tectonism may be geologically young.

  7. Magma-Tectonic Interactions in the Main Ethiopian Rift; Insights into Rifting Processes

    NASA Astrophysics Data System (ADS)

    Greenfield, T.; Keir, D.; Tessema, T.; Lloyd, R.; Biggs, J.; Ayele, A.; Kendall, J. M.

    2017-12-01

    We report observations made around the Bora-Tulu Moye volcanic field, in the Main Ethiopian Rift (MER). A network of seismometers deployed around the volcano for one and a half years reveals the recent state of the volcano. Accurate earthquake locations and focal mechanisms are combined with surface deformation and mapping of faults, fissures and geothermally active areas to reveal the interaction between magmatism and intra-rift faulting. More than 1000 earthquakes are detected and located, making the Bora-Tulu Moye volcanic field one of the most seismically active regions of the MER. Earthquakes are located at depths of less than 5 km below the surface and range between magnitudes of 1.5 - 3.5. Surface deformation of Bora-Tulu Moye is observed using satellite based radar interferometry (InSAR) recorded before and during the seismic deployment. Since 2004, deformation has oscillated between uplift and subsidence centered at the same spatial location but different depths. We constrain the source of the uplift to be at 7 km depth while the source of the subsidence is shallower. Micro-earthquake locations reveal that earthquakes are located around the edge of the observed deformation and record the activation of normal faults orientated at 025°. The spatial link between surface deformation and brittle failure suggest that significant hydrothermal circulation driven by an inflating shallow heat source is inducing brittle failure. Elsewhere, seismicity is focused in areas of significant surface alteration from hydrothermal processes. We use shear wave splitting using local earthquakes to image the stress state of the volcano. A combination of rift parallel and rift-oblique fast directions are observed, indicating the volcano has a significant influence on the crustal stresses. Volcanic activity around Bora-Tulu Moye has migrated eastwards over time, closer to the intra-rift fault system, the Wonji Fault Belt. How and why this occurs relates to changes in the melt

  8. Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback

    NASA Astrophysics Data System (ADS)

    Martin, A. K.

    2007-12-01

    A model has been developed where two arc-parallel rifts propagate in opposite directions from an initial central location during backarc seafloor spreading and subduction rollback. The resultant geometry causes pairs of terranes to simultaneously rotate clockwise and counterclockwise like the motion of double-saloon-doors about their hinges. As movement proceeds and the two terranes rotate, a gap begins to extend between them, where a third rift initiates and propagates in the opposite direction to subduction rollback. Observations from the Oligocene to Recent Western Mediterranean, the Miocene to Recent Carpathians, the Miocene to Recent Aegean and the Oligocene to Recent Caribbean point to a two-stage process. Initially, pairs of terranes comprising a pre-existing retro-arc fold thrust belt and magmatic arc rotate about poles and accrete to adjacent continents. Terrane docking reduces the width of the subduction zone, leading to a second phase during which subduction to strike-slip transitions initiate. The clockwise rotated terrane is caught up in a dextral strike-slip zone, whereas the counterclockwise rotated terrane is entrained in a sinistral strike-slip fault system. The likely driving force is a pair of rotational torques caused by slab sinking and rollback of a curved subduction hingeline. By analogy with the above model, a revised five-stage Early Jurassic to Early Cretaceous Gondwana dispersal model is proposed in which three plates always separate about a single triple rift or triple junction in the Weddell Sea area. Seven features are considered diagnostic of double-saloon-door rifting and seafloor spreading: earliest movement involves clockwise and counterclockwise rotations of the Falkland Islands Block and the Ellsworth Whitmore Terrane respectively; terranes comprise areas of a pre-existing retro-arc fold thrust belt (the Permo-Triassic Gondwanide Orogeny) attached to an accretionary wedge/magmatic arc; the Falklands Islands Block is initially

  9. Larsen C Rift Growth

    Atmospheric Science Data Center

    2017-04-17

    ... NASA's MISR Tracks Growth of Rift in the Larsen C Ice Shelf     View Larger Image ... figures image   A rift in Antarctica's Larsen C ice shelf has grown to 110 miles (175 km) long, making it inevitable that an ...

  10. The inverted Triassic rift of the Marrakech High Atlas: A reappraisal of basin geometries and faulting histories

    NASA Astrophysics Data System (ADS)

    Domènech, Mireia; Teixell, Antonio; Babault, Julien; Arboleya, Maria-Luisa

    2015-11-01

    The High Atlas of Morocco is an aborted rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The Marrakech High Atlas, with large exposures of basement and Triassic early syn-rift deposits, is ideal to investigate the geometries of the deepest parts of a rift, constituting a good analogue for pre-salt domains. It allows unraveling geometries and kinematics of the extensional and compressional structures and the influence that they exert over one another. A detailed structural study of the main Triassic basins and basin-margin faults of the Marrakech High Atlas shows that only a few rift faults were reactivated during the Cenozoic compressional stage in contrast to previous interpretations, and emphasizes that fault reactivation cannot be taken for granted in inverted rift systems. Preserved extensional features demonstrate a dominant dip-slip opening kinematics with strike-slip playing a minor role, at variance to models proposing a major strike-slip component along the main basin-bounding faults, including faults belonging to the Tizi n'Test fault zone. A new Middle Triassic paleogeographic reconstruction shows that the Marrakech High Atlas was a narrow and segmented orthogonal rift (sub-perpendicular to the main regional extension direction which was ~ NW-SE), in contrast to the central and eastern segments of the Atlas rift which developed obliquely. This difference in orientation is attributed to the indented Ouzellarh Precambrian salient, part of the West African Craton, which deflected the general rift trend in the area evidencing the major role of inherited lithospheric anisotropies in rift direction and evolution. As for the Cenozoic inversion, total orogenic shortening is moderate (~ 16%) and appears accommodated by basement-involved large-scale folding, and by newly formed shortcut and by-pass thrusting, with rare left-lateral strike-slip indicators. Triassic faults commonly acted as buttresses.

  11. Fluid flow and permeabilities in basement fault zones

    NASA Astrophysics Data System (ADS)

    Hollinsworth, Allan; Koehn, Daniel

    2017-04-01

    Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault

  12. Comparative Riftology: Insights into the Evolution of Passive Continental Margins and Continental Rifts from the Failed Midcontinent Rift (MCR)

    NASA Astrophysics Data System (ADS)

    Elling, R. P.; Stein, C. A.; Stein, S.; Kley, J.; Keller, G. R.; Wysession, M. E.

    2017-12-01

    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these evolutionary paths. Of particular interest is the evolution of volcanic passive margins, which are characterized by seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and are underlain by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), which began to form during the 1.1 Ga rifting of Amazonia from Laurentia, but failed when seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick and highly magnetized volcanic section during rifting. Surface exposures and reflection seismic data near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins would have naturally occurred had it gone to completion. Hence the MCR implies that many passive margin features form prior to seafloor spreading. Massive inversion of the MCR long after it failed has provided a much clearer picture of its structure compared to failed rifts with lesser degrees of inversion. Seismic imaging as well as gravity and magnetic modeling provide important insight into the effects of inversion on failed rifts. The MCR provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, to failed

  13. The Relevance of English Language Instruction in a Changing Linguistic Environment in Iceland: The L2 Self of Young Icelanders

    ERIC Educational Resources Information Center

    Jeeves, Anna

    2014-01-01

    In this study perceptions of post-compulsory school studies in Iceland were investigated through semi-structured interviews. While colloquial English suffices for entertainment, hobbies and Internet use in Iceland, a high level of proficiency is required for employment and tertiary study. School learners and young people in tertiary study and…

  14. Torque exerted on the side of crustal blocks controls the kinematics of Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Kidane, Tesfaye; Cuffaro, Marco; Doglioni, Carlo

    2016-04-01

    Plate tectonic stress at active plate boundary can arises from 1) a torque applied on the side of lithospheric blocks and 2) a torque at the base of the lithosphere due to the flow of the underlying mantle. In this paper we use a simple force balance analysis to compare side and basal shear stresses and their contribution in driving kinematics and deformation in the Ethiopian Rift (ER), in the northern part of the East African Rift System (EARS). Assuming the constraints of the ER given by the dimension of the lithospheric blocks, the strain rate, the viscosity of the low velocity zone (LVZ) and the depth of the brittle-ductile transition zone, the lateral torque is several orders of magnitude higher than the basal torque. The minor contribution of basal torque might be due to low viscosity in the LVZ. Both Africa and Somalia plates are moving to the ;west; relative to the mantle and there are not slabs that can justify this pull and consequent motion. Therefore, we invoke that westerly oriented tidal torque on Africa and Somalia plates in providing the necessary side torque in the region. This plate motion predicts significant sinistral transtension along the ER and rift parallel strike-slip faulting similar to the estimated angular velocity vector for tectonic blocks and GPS observations. Vertical axis block rotations are observed in areas where the lithospheric mantle is removed and strain is widely distributed.

  15. Dynamics of Rifting in two Active Rift Segments in Afar - Geodetic and Structural Studies - DoRA Project

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Socquet, A.; Masson, F.; Jacques, E.; Grandin, R.; Nercessian, A.; Kassim, M.; Vergne, J.; Diament, M.; Hinderer, J.; Ayele, A.; Lewi, E.; Calais, E.; Peltzer, G.; Toussaint, R.; de Chaballier, J.; Ballu, V. S.; Luck, B.; King, G. C.; Vigny, C.; Cattin, R.; Tiberi, C.; Kidane, T.; Jalludin, M.; Maggi, A.; Dorbath, C.; Manatschal, G.; Schmittbuhl, J.; Le Moigne, N.; Deroussi, S.

    2009-12-01

    The DoRA project aims to conduct complementary studies in two volcano-tectonic rifts in the Afar Depression. In Northern Afar, the Wal’is Dabbahu Rift (WD, Ethiopia) is currently undergoing a major rifting episode. This event started in September 2005 with a significant seismic activity. InSAR data revealed the injection of a 65 km-long mega-dyke that opened by up to 8 m, the slip of numerous normal faults and opening of fissures, and a rhyolitic eruption. Similarly, the Asal-Ghoubbet Rift (AG, Djibouti) was affected in 1978 by a smaller episode of rifting associated with the intrusion of a 2 m wide dyke into the crust. Since then, a large catalog of geodetic data that includes recent InSAR time series reveals the importance of non-steady deformation controlling the rift dynamics. Our goal is to gain an understanding of such volcano-tectonic segments on several time scales, including the dyking period itself and the post-event period. The study of the behavior of the AG Rift during its whole post-rifting period offers an image at t+30 years of the WD segment, while keeping in mind important structural and scale differences. First, we propose to build a complete and accurate set of geodetic data (InSAR, cGPS, GPS), covering the period under study. With a narrow temporal sample window, we will precisely describe the aseismic slip affecting the normal faults of these rifts, the periods of sudden slip and/or slip acceleration but also measure the deformation associated with probable future dyke intrusion. Second, we aim to constrain the origin of these displacements and their relation with mass transfers within the crust. Series of gravity measurements will be pursue or initiated in both rifts. Third, the recording of seismic activity is essential to constrain the relative importance of seismic and aseismic deformation. This will also help to evaluate the thickness of the seismogenic layer. Together with structural data collected during a seismic survey in the AG

  16. The temporal and spatial distribution of upper crustal faulting and magmatism in the south Lake Turkana rift, East Africa

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Scholz, C. A.

    2017-12-01

    During continental breakup extension is accommodated in the upper crust largely through dike intrusion and normal faulting. The Eastern branch of the East African Rift arguably represents the premier example of active continental breakup in the presence magma. Constraining how faulting is distributed in both time and space in these regions is challenging, yet can elucidate how extensional strain localizes within basins as rifting progresses to sea-floor spreading. Studies of active rifts, such as the Turkana Rift, reveal important links between faulting and active magmatic processes. We utilized over 1100 km of high-resolution Compressed High Intensity Radar Pulse (CHIRP) 2D seismic reflection data, integrated with a suite of radiocarbon-dated sediment cores (3 in total), to constrain a 17,000 year history of fault activity in south Lake Turkana. Here, a set of N-S-striking intra-rift faults exhibit time-averaged slip-rates as high as 1.6 mm/yr, with the highest slip-rates occurring along faults within 3 km of the rift axis. Results show that strain has localized into a zone of intra-rift faults along the rift axis, forming an approximately 20 km-wide graben in central parts of the basin. Subsurface structural mapping and fault throw profile analyses reveal increasing basin subsidence and fault-related strain as this faulted graben approaches a volcanic island in the center of the basin (South Island). The long-axis of this island trends north-south, and it contains a number of elongate cones that support recent emplacement of N-S-striking dike intrusions, which parallel recently active intra-rift faults. Overall, these observations suggest strain localization into intra-rift faults in the rift center is likely a product of both volcanic loading and the mechanical and thermal effects of diking along the rift axis. These results support the establishment of magmatic segmentation in southern Lake Turkana, and highlight the importance of magmatism for focusing upper

  17. Episodic kinematics in continental rifts modulated by changes in mantle melt fraction.

    PubMed

    Lamb, Simon; Moore, James D P; Smith, Euan; Stern, Tim

    2017-07-05

    Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor 'spreading centres' found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however-which are also associated with mantle melt production-are amenable to detailed measurements of their short-term kinematics using geodetic techniques. Here we show that such data can provide evidence for an upwelling mantle flow, as well as information on the dimensions and timescale of mantle melting. For North Island, New Zealand, around ten years of campaign and continuous GPS measurements in the continental rift system known as the Taupo volcanic zone reveal that it is extending at a rate of 6-15 millimetres per year. However, a roughly 70-kilometre-long segment of the rift axis is associated with strong horizontal contraction and rapid subsidence, and is flanked by regions of extension and uplift. These features fit a simple model that involves flexure of an elastic upper crust, which is pulled downwards or pushed upwards along the rift axis by a driving force located at a depth greater than 15 kilometres. We propose that flexure is caused by melt-induced episodic changes in the vertical flow forces that are generated by upwelling mantle beneath the rift axis, triggering a transient lower-crustal flow. A drop in the melt fraction owing to melt extraction raises the mantle flow viscosity and drives subsidence, whereas melt accumulation reduces viscosity and allows uplift-processes that are also likely to occur in oceanic spreading centres.

  18. Seventeen years of monitoring diffuse CO2 emission from the Tenerife North-West Rift Zone (NWRZ) volcano, Canary Islands

    NASA Astrophysics Data System (ADS)

    Padilla, Germán D.; Evans, Bethany J.; Provis, Aaron R.; Asensio, María; Alonso, Mar; Calvo, David; Hernández, Pedro; Pérez, Nemesio M.

    2017-04-01

    Tenerife together and Gran Canaria are the central islands of the Canarian archipelago, which have developed a central volcanic complex characterized by the eruption of differentiated magmas. Tenerife is the largest of the Canary Islands (2100 km2) and at present, the North-West Rift-Zone (NWRZ) is one of the most active volcanic structures of the three volcanic rift-zone of the island, which has hosted two historical eruptions (Arenas Negras in 1706 and Chinyero in 1909). In order to monitor the volcanic activity of NWRZ, since the year 2000, 49 soil CO2 efflux surveys have been performed at NWRZ (more than 300 observation sites each one) to evaluate the temporal an spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. We report herein the results of the last diffuse CO2 efflux surveys at the NWRZ undertaken in July and October 2016 to constrain the total CO2 output from the studied area. During July and October 2016 surveys, soil CO2 efflux values ranged from non-detectable up to 32.4 and 53.7 g m-2 d-1, respectively. The total diffuse CO2 output released to atmosphere were estimated at 255 ± 9 and 338 ± 18 t d-1, respectively, values higher than the background CO2 emission estimated on 144 t d-1. Since 2000, soil CO2 efflux values have ranged from non-detectable up to 141 g m-2 d-1, with the highest values measured in May 2005 whereas total CO2 output ranged between 52 and 867 t d-1. Long-term variations in the total CO2 output have shown a temporal correlation with the onsets of seismic activity at Tenerife, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the studied area

  19. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans.

    PubMed

    Hutchison, William; Fusillo, Raffaella; Pyle, David M; Mather, Tamsin A; Blundy, Jon D; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E; Brooker, Richard A; Barfod, Dan N; Calvert, Andrew T

    2016-10-18

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km 3 ) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.

  20. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans

    PubMed Central

    Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.

    2016-01-01

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations. PMID:27754479

  1. Along-strike supply of volcanic rifted margins: Implications for plume-influenced rifting and sudden along-strike transitions between volcanic and non-volcanic rifted margins

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Phipps Morgan, J.

    2006-12-01

    The existence of sudden along-strike transitions between volcanic and non-volcanic rifted margins is an important constraint for conceptual models of rifting and continental breakup. We think there is a promising indirect approach to infer the maximum width of the region of upwelling that exists beneath a rifted margin during the transition from rifting to seafloor-spreading. We infer this width of ~30km from the minimum length of the ridge-offsets that mark the limits of the `region of influence' of on-ridge plumes on the axial relief, axial morphology, and crustal thickness along the ridge and at the terminations of fossil volcanic rifted margins. We adopt Vogt's [1972] hypothesis for along-ridge asthenospheric flow in a narrow vertical slot beneath the axis of plume-influenced `macro-segments' and volcanic rifted margins. We find that: (1) There is a threshold distance to the lateral offsets that bound plume-influenced macrosegments; all such `barrier offsets' are greater than ~30km, while smaller offsets do not appear to be a barrier to along-axis flow. This pattern is seen in the often abrupt transitions between volcanic and non-volcanic rifted margins; these transitions coincide with >30km ridge offsets that mark the boundary between the smooth seafloor morphology and thick crust of a plume- influenced volcanic margin and a neighboring non-volcanic margin, as recorded in 180Ma rifting of the early N. Atlantic, the 42Ma rifting of the Kerguelen-Broken Ridge, and the 66Ma Seychelles-Indian rifting in the Indian Ocean. (2) A similar pattern is seen in the often abrupt transitions between `normal' and plume-influenced mid- ocean ridge segments, which is discussed in a companion presentation by Phipps Morgan and Ranero (this meeting). (3) The coexistance of adjacent volcanic and non-volcanic rifted margin segments is readily explained in this conceptual framework. If the volcanic margin macrosegment is plume-fed by hot asthenosphere along an axial ridge slot

  2. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    NASA Astrophysics Data System (ADS)

    Keranen, Katie M.; Klemperer, Simon L.; Julia, Jordi; Lawrence, Jesse F.; Nyblade, Andy A.

    2009-05-01

    The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ≤4.3 km/s in the uppermost mantle, both ˜0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (˜400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are the

  3. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    USGS Publications Warehouse

    Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.

    2009-01-01

    [1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are

  4. Erosion of Terrestrial Rift Flank Topography: A Quantitative Study

    NASA Technical Reports Server (NTRS)

    Weissel, Jeffrey K.

    1999-01-01

    Many rifted or passive continental margins feature a seaward-facing erosional escarpment which abruptly demarcates deeply weathered, low relief, interior uplands from a deeply incised, high relief coastal zone. It is generally accepted that these escarpments originate at the time of continental rifting and propagate inland through the elevated rift flank topography at rates on the order of 1 km/Myr over the course of a margin's history. Considering the length of passive margins worldwide and an average rift flank plateau height of several hundred meters, it is clear that sediment eroded from passive margins is an important component of the mass flux from continents to oceans through geologic time. The overall goal of the research reported here is to develop a quantitative understanding of the kinematics of escarpment propagation across passive margins and the underlying geological processes responsible for this behavior. Plateau-bounding escarpments in general exhibit two basic forms depending on the direction of surface water drainage on the plateau interior relative to the escarpment. Where surface water flows away from the escarpment, the escarpment takes the form of subdued embayments and promontories, such that its overall trend remains fairly straight as it evolves with time. Where upland streams flow across the escarpment, it takes the form of dramatic, narrow gorges whose heads appear to propagate up the plateau drainage systems as large-scale knickpoints. From work on the Colorado Plateau, Schmidt (1987) noted that the Colorado River is located much closer to the Grand Canyon's south rim, a drainage divide escarpment, than to the north rim, which is a gorge-like escarpment. The main implication is that the gorge-like form might be associated with higher long-term average erosion rates compared to the drainage divide escarpment type.

  5. CO2 Degassing Estimates from Rift Length Analysis since Pangea Fragmentation: A Key Component of the Deep Carbon Cycle?

    NASA Astrophysics Data System (ADS)

    Brune, S.; Williams, S.; Müller, D.

    2017-12-01

    The deep carbon cycle links the carbon content of crust and mantle to Earth's surface: extensional plate boundaries and arc volcanoes release CO2 to the ocean and atmosphere while subducted lithosphere carries carbon back into the mantle. The length of extensional and convergent plate boundaries therefore exerts first-order control on solid Earth CO2 degassing rates. Here we provide a global census of plate boundary length for the last 200 million years. Focusing on rift systems, we find that the most extensive rift phase during the fragmentation of Pangea occurred in the Jurassic/Early Cretaceous with more than 50.000 km of simultaneously active continental rifts. During the Late Cretaceous, in the aftermath of this pervasive rift episode, the global rift length dropped by 60% to 20,000 km. We further find that a second pronounced rift episode with global rift lengths of up to 30,000 km started in Eocene times. A close geological link between CO2 degassing and faulting has been documented in currently active rift systems worldwide. Regional-scale CO2 flux densities at rift segments in Africa, Europe, and New Zealand feature an annual average value of 200 t of CO2 per km2. Assuming that the release of CO2 scales with rift length, we show that rift-related CO2 degassing rates during the two major Mesozoic and Cenozoic rift episodes reached more than 300% of present-day values. Most importantly, the timing of enhanced CO2 degassing from continental rifts correlates with two well-known periods of elevated atmospheric CO2 in the Mesozoic and Cenozoic as evidenced by multiple independent proxy indicators. Compiling the length of other plate boundaries (mid-ocean ridges, subduction zones, continental arcs) through time, we do not reproduce such a correlation. Finally, we conduct numerical carbon cycle models that account for key feedback-mechanisms of the long-term carbon cycle. We find that only those models that feature a strong rift degassing component reproduce the

  6. Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia

    NASA Astrophysics Data System (ADS)

    Bottenberg, Helen Carrie

    This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.

  7. Geochemistry and petrology of andesites from the north rift zone of Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Smithka, I. N.; Perfit, M. R.; Clague, D. A.; Wanless, V. D.

    2014-12-01

    In 2013, the ROV Doc Ricketts onboard R/V Western Flyer explored ~4 km of an elongate pillow ridge up to ~300 m high along the eastern edge of the north rift zone of Axial Seamount. The steep-sided volcanic ridge is constructed of large pillow lavas up to 2-3 m in diameter and smaller elongated pillow tubes. Of the 27 samples collected during dive D526, all but one are andesites making it one of the largest confirmed high-silica exposures along a mid-ocean ridge (MOR). Based on radiocarbon ages of sediment on top of flows, the mounds are at least ~1390 years old. This minimum age is much younger than the 56 Ka age calculated based on distance from the rift axis, indicating eruption off-axis through older, colder crust and supporting the hypothesis and model calculations that extensive fractional crystallization (>85%) caused the high silica content. The andesitic lavas are primarily glassy, highly vesicular, crusty, and sparsely phyric with small (~1 mm) plagioclase crystals and olivine, clinopyroxene, and Fe-Ti oxide microphenocrysts. Microprobe analyses of glasses are similar to wax-core samples previously collected from this area but are more compositionally variable. Excluding one basalt (7.7 wt% MgO) sampled between mounds, the lavas are basaltic andesites and andesites (53-59 wt% SiO2) with <3 wt% MgO and 12.8-15.7 wt% FeO concentrations. Incompatible trace element abundances are ~4-6 times more enriched than in Axial Seamount T-MORB. Primitive mantle-normalized patterns are similar to those of high-silica lavas from other MORs (southern Juan de Fuca Ridge, 9N East Pacific Rise) with significant positive U anomalies, large negative Sr anomalies, small negative Eu anomalies, and slight positive Zr-Hf anomalies. The andesites are more enriched in light rare earth elements than basalts from Axial Seamount ((La/Yb)N 1.35-1.4 vs. 0.7-1.27) and N-MORB from the southern Juan de Fuca Ridge. The andesites also have high Cl (~0.3-0.6 wt%) and H2O (~1.60-1.71 wt

  8. Results From a Borehole Seismometer Array II: 3-D Mapping of an Active Geothermal Field at the Kilauea Lower Rift Zone

    NASA Astrophysics Data System (ADS)

    Shalev, E.; Kenedi, C. L.; Malin, P.

    2008-12-01

    The geothermal power plant in Puna, in southeastern Hawaii, is located in a section of the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955, 1960, and 1972. In 2006 a seismic array consisting of eight 3-component stations was installed around the geothermal field in Puna. The instrument depths range from 24 to 210 m. The shallower instruments have 2 Hz geophones and the deeper have 4.5 Hz geophones. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the Vp/Vs ratio show an area of very fast P-wave velocity at the relatively shallow depth of 2.5 km in the southern section of the field. The same area shows moderate S-wave velocity. This high P-wave velocity anomaly at the southern part of the geothermal field may indicate the presence of dense rock material usually found at greater depths.

  9. Icelandic Analogs for Volcanic and Fluvial Processes on Mars

    NASA Astrophysics Data System (ADS)

    McEwen, A.; Burr, D.; Hardardottir, J.; Hoskuldsson, A.; Keszthelyi, L.; Lanagan, P.; Snorrason, A.; Thordarson, T.

    2001-12-01

    Iceland has proven to be an excellent location to study a wide range of Martian geologic analogs. Among these are basaltic volcanism and aqueous flooding--key geologic processes that have shaped the Martian surface and that remain active in Iceland. On both Mars and Iceland, volcanic units are interfingered in space and time with fluvial units. Well-preserved flood lavas in SE Elysium Planitia, Amazonis Planitia, and portions of the Tharsis rise are dominated by a distinctive morphology of plates and ridges, very similar to the "apalhraun" or "rubbly pahoehoe" of Iceland (Keszthelyi and Thordarson, 2000, GSA Abstract 52593). On both Iceland and Mars there are marginal regions of undisrupted inflated pahoehoe, small rootless cones, and long parallel structures in the wake of topographic obstacles. The Icelandic paleoflood channels of Jokulsa a Fjollum, extending from the Vatnajokull ice cap to the north coast, have eroded basaltic plains and provide many insights into morphologies seen on Mars. The manner in which different types of lava erode in a catastrophic flood is well illustrated and sometimes surprising. For example, there are channel floors where the crusts of inflated lavas have been completely stripped off by the floodwater, but then suddenly transitions upstream into a stretch with almost no erosion--even the cm-scale pahoehoe ropes are intact. This implies that significant aqueous floods could have occurred over some well-preserved lava flows on Mars. A streamlined "island" or mesa extending downstream from the volcanic crater Hrossaborg in Iceland appears to be mixture of remobilized older glacial deposits and a debris flow deposit. The debris flow apparently formed by collapse of the western outer crater slopes into the active floodwaters, diverting the flow northward; this process may have occurred on Mars at some of the impact craters eroded by outflow channels.

  10. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    West, H. B.; Delanoy, G. A.; Thomas, D. M.; Gerlach, D. C.; Chen, B.; Takahashi, P.; Thomas, D. M.

    1992-03-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of the mixing of at least two, and possibly three, source fluids. These source fluids were recognized as a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibriated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80 percent of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs, yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  11. Geochemical and geochronological constraints on the origin and evolution of rocks in the active Woodlark Rift of Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Zirakparvar, Nasser Alexander

    Tectonically active regions provide important natural laboratories to glean information that is applicable to developing a better understanding of the geologic record. One such area of the World is Papua New Guinea, much of which is situated in an active and transient plate boundary zone. The focus of this PhD research is to develop a better understanding of rocks in the active Woodlark Rift, situated in Papua New Guinea's southernmost reaches. In this region, rifting and lithospheric rupture is occurring within a former subduction complex where there is a history of continental subduction and (U)HP metamorphism. The lithostratigraphic units exposed in the Woodlark Rift provide an opportunity to better understand the records of plate boundary processes at many scales from micron-sized domains within individual minerals to regional geological relationships. This thesis is composed of three chapters that are independent of one another but are all related to the overall goal of developing a better understanding of the record of plate boundary processes in the rocks currently exposed in the Woodlark Rift. The first chapter, published in its entirety in Earth and Planetary Science Letters (2011 v. 309, p. 56 - 66), is entitled 'Lu-Hf garnet geochronology applied to plate boundary zones: Insights from the (U)HP terrane exhumed within the Woodlark Rift'. This chapter focuses on the use of the Lu-Hf isotopic system to date garnets in the Woodlark Rift. Major findings of this study are that some of the rocks in the Woodlark Rift preserve a Lu-Hf garnet isotopic record of initial metamorphism and continental subduction occurring in the Late Mesozoic, whereas others only preserve a record of tectonic processes related to lithospheric rupture during the initiation of rifting in the Late Cenozoic. The second chapter is entitled 'Geochemical and geochronological constraints on the origin of rocks in the active Woodlark Rift of Papua New Guinea: Recognizing the dispersed

  12. Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.

    2014-12-01

    Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower

  13. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  14. Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  15. Rifting an Archaean Craton: Insights from Seismic Anisotropy Patterns in E. Africa

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Tiberi, C.; Currie, C. A.; van Wijk, J.; Albaric, J.

    2016-12-01

    Few places worldwide offer opportunities to study active deformation of deeply-keeled cratonic lithosphere. The magma-rich Eastern rift transects the eastern edge of the Archaean Tanzania craton in northeastern Tanzania, which has been affected by a large-scale mantle upwelling. Abundant xenolith locales offer constraints on mantle age, composition, and physical properties. Our aim is to evaluate models for magmatic fluid-alteration (metasomatism) and deformation of mantle lithosphere along the edge of cratons by considering spatial variations in the direction and magnitude of seismic anisotropy, which is strongly influenced by mantle flow patterns along lithosphere-asthenosphere topography, fluid-filled cracks (e.g., dikes), and pre-existing mantle lithosphere strain fabrics. Waveforms of teleseismic earthquakes (SKS, SKKS) recorded on the 39-station CRAFTI-CoLiBREA broadband array in southern Kenya and northern Tanzania are used to determine the azimuth and amount of shear-wave splitting accrued as seismic waves pass through the uppermost mantle and lithosphere at the craton edge. Lower crustal earthquakes enable evaluation of seismic anisotropy throughout the crust along the rift flanks and beneath the heavily intruded Magadi and Natron basins, and the weakly intruded Manyara basin. Our results and those of earlier studies show a consistent N50E splitting direction within the craton, with delay times of ca. 1.5 s, and similar direction east of the rift in thinner Pan-African lithosphere. Stations within the rift zone are rotated to a N15-35E splitting, with the largest delay times of 2.5 s at the margin of the heavily intruded Magadi basin. The short length scale of variations and rift-parallel splitting directions are similar to patterns in the Main Ethiopian rift attributed to melt-filled cracks or oriented pockets rising from the base of the lithosphere. The widespread evidence for mantle metasomatism and magma intrusion to mid-crustal levels suggests that

  16. Iceland as a Model for Chemical Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Schiffman, P.; Murad, E.; Southard, R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Subglacial volcanic activity on Iceland has led to the formation of a variety of silicate and iron oxide-rich alteration products that may serve as a model for chemical alteration on Mars. Multiple palagonitic tuffs, altered pillow lavas, hydrothermal springs and alteration at glacial run-off streams were observed during a recent field trip in Iceland. Formation of alteration products and ferrihydrite in similar environments on Mars may have contributed to the ferric oxide-rich surface material there. The spectral and chemical properties of Icelandic alteration products and ferrihydrites are presented here.

  17. [Infection risks associated with importation of fresh food in Iceland].

    PubMed

    Kristinsson, Karl G; Georgsson, Franklín

    2015-06-01

    Access to safe food is a privilege for people living in Iceland. Rapid increase in antimicrobial resistance, related to factory farming and antimicrobial use in agriculture, is a major threat to public health. Increasing food trade between countries and continents facilitates global spread of pathogens and resistance. Icelandic agriculture has benefitted from its isolation and small size. After interventions to reduce the prevalence of Campylobacter and Salmonella at poultry farms, the incidence of human campylobacteriolsis is 17-43/100.000, of which about half is domestically acquired and Salmonella infections 10-15/100.000 mainly acquired abroad. Since Enterohaemorrhagic E. coli (EHEC) has not been detected in domestic cattle, the low incidence of infections is not surprising (0-0.6/100.000/year). A recent outbreak due to a multiresistant EHEC strain was traced to imported lettuce. Antimicrobial use in Icelandic agriculture is among the lowest in Europe and domestic infections caused by Salmonella and Campylobacter are rarely caused by resistant strains. Carbapenemase producing Enterobacteriaceae have not been found in Iceland. Low use of antimicrobials in Icelandic agriculture and actions to limit the spread of Campylobacter and Salmonella have been successful. The public should be informed of the importance of the origin of food and that Icelandic food products are among the safest.

  18. SO2 from episode 48A eruption, Hawaii: Sulfur dioxide emissions from the episode 48A East Rift Zone eruption of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Andres, R.J.; Kyle, P.R.; Stokes, J.B.; Rose, William I.

    1989-01-01

    An SO2 flux of 1170??400 (1??) tonnes per day was measured with a correlation spectrometer (COSPEC) in October and November 1986 from the continuous, nonfountaining, basaltic East Rift Zone eruption (episode 48A) of Kilauea volcano. This flux is 5-27 times less than those of highfountaining episodes, 3-5 times greater than those of contemporaneous summit emissions or interphase Pu'u O'o emissions, and 1.3-2 times the emissions from Pu'u O'o alone during 48A. Calculations based on the SO2 emission rate resulted in a magma supply rate of 0.44 million m3 per day and a 0.042 wt% sulfur loss from the magma upon eruption. Both of these calculated parameters agree with determinations made previously by other methods. ?? 1989 Springer-Verlag.

  19. Istopically Defined Source Reservoirs of Primitive Magmas in the East African Rift.

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Furman, T.; Hanan, B.

    2005-12-01

    isotopic signatures. Thus, along-axis patterns in Quaternary EARS magmatism are compatible with two "C"-like plumes with contributions from the upper mantle and chemically distinct lithospheric components. Alternatively, a single "C"-like plume can account for these relationships. In the single plume scenario, the HIMU source component present in the 30 Ma Turkana lavas may represent melting of metasomatised lithosphere, derived from the accretion of island-arc-backarc basins during Pan-African events (e.g. Schilling et al., 1992). The recent plume-dominated activity in Turkana and Afar are separated by a region characterized by waning plume influence and a greater contribution from the depleted mantle. This intermediate zone, which is located in the south-central MER represents the modern site of contact between the northward propagating Kenya / Turkana Rift and the southward propagating Afar Rift zone.

  20. Volcanic geothermal system in the Main Ethiopian Rift: insights from 3D MT finite-element inversion and other exploration methods

    NASA Astrophysics Data System (ADS)

    Samrock, F.; Grayver, A.; Eysteinsson, H.; Saar, M. O.

    2017-12-01

    In search for geothermal resources, especially in exploration for high-enthalpy systems found in regions with active volcanism, the magnetotelluric (MT) method has proven to be an efficient tool. Electrical conductivity of the subsurface, imaged by MT, is used for detecting layers of electrically highly conductive clays which form around the surrounding strata of hot circulating fluids and for delineating magmatic heat sources such as zones with partial melting. We present a case study using a novel 3-D inverse solver, based on adaptive local mesh refinement techniques, applied to decoupled forward and inverse mesh parameterizations. The flexible meshing allows accurate representation of surface topography, while keeping computational costs at a reasonable level. The MT data set we analyze was measured at 112 sites, covering an area of 18 by 11 km at a geothermal prospect in the Main Ethiopian Rift. For inverse modelling, we tested a series of different settings to ensure that the recovered structures are supported by the data. Specifically, we tested different starting models, regularization functionals, sets of transfer functions, with and without inclusion of topography. Several robust subsurface structures were revealed. These are prominent features of a high-enthalpy geothermal system: A highly conductive shallow clay cap occurs in an area with high fumarolic activity, and is underlain by a more resistive zone, which is commonly interpreted as a propylitic reservoir and is the main geothermal target for drilling. An interesting discovery is the existence of a channel-like conductor connecting the geothermal field at the surface with an off-rift conductive zone, whose existence was proposed earlier as being related to an off-rift volcanic belt along the western shoulder of the Main Ethiopian Rift. The electrical conductivity model is interpreted together with results from other geoscientific studies and outcomes from satellite remote sensing techniques.

  1. The Afar rift zone deformation dynamics retrieved through phase and amplitude SAR data

    NASA Astrophysics Data System (ADS)

    Casu, F.; Pagli, C.; Paglia, L.; Wang, H.; Wright, T. J.; Lanari, R.

    2011-12-01

    The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. Since 2003, the Afar depression has been repeatedly imaged by the ENVISAT satellite, generating a large SAR archive which allow us to study the ongoing deformation processes and the dynamics of magma movements. We combine sets of small baseline interferograms through the advanced DInSAR algorithm referred to as Small BAseline Subset (SBAS), and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS), with accuracies on the order of 5 mm. The main limitation of DInSAR applications is that large and rapid deformations, such as those caused by dyke intrusions and eruptions in Afar, cannot be fully measured. The phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field of a given SAR image pair, for both range and azimuth directions. Moreover, after computing the POs for each image pair, it is possible to combine them, following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30cm and 15 cm for the range and azimuth, respectively. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. In particular, we use the phase information to construct dense and accurate

  2. Re-Thinking Sustainable Education Systems in Iceland: The Net-University Project

    ERIC Educational Resources Information Center

    Rennie, Frank; Johannesdottir, Sigurbjorg

    2011-01-01

    The recent economic crisis in Iceland has raised issues of the sustainability of Icelandic higher education to new levels of importance. A key strategy in relation to this economic crisis is to consider the merger of the four public universities in Iceland and to introduce a much higher engagement with online and open delivery methods of higher…

  3. Recognition of hyper-extended rifted margin remnants in the internal zone of the Alpine belt: A tribute to Marco Beltrando

    NASA Astrophysics Data System (ADS)

    Mohn, Geoffroy; Manatschal, Gianreto

    2016-04-01

    Marco Beltrando was part of the young generation of Alpine geologists who challenged the interpretation of the Western Alps by combining a classical field approach and modern techniques (e.g. 40Ar/39Ar and (U-Th)/He thermochronology). His work provides the foundation to re-interpret some of the classical sections through the Alpine belt and may impact the way of thinking about the nature and structure of internal parts of collisional orogens. This contribution will present the main outcomes of the work of Marco Beltrando and their implications for the understanding of Alpine type orogens. Since his PhD, Marco Beltrando focused most of his work on the study of the internal parts of the Western Alps. He investigated in great details the complex, multiphase structural and metamorphic evolution of the Penninic units in the Western Alps. He concluded that these units went through several cycles of shortening and extension during the Alpine orogeny, with major implications for the Alps but also other orogenic belts. After his PhD, he focused his research on the pre-orogenic evolution of the Alpine belt. He first worked on the Petit St. Bernard area, where he identified relics of the former hyper-extended Tethyan rifted margin. Thanks to his work and his amazing knowledge of the Western Alps, he understood the potential importance of rift-inheritance in controlling the architecture and evolution of the Alpine belt. In parallel to the study of the orogenic evolution, he developed a new methodology to recognize rift-related lithostratigraphic units in highly deformed and metamorphosed parts of the Alps. His innovative work allowed a re-assessment of several areas in the Western Alps and demonstrates the importance of rift inheritance. Recently, he started a new research project on the evolution of the Southern Alps highlighting the importance of heating and cooling cycles resulting from complex successions of rifting events. In spite of his young age, Marco Beltrando was at

  4. Patterns in the Physical, Chemical, and Biological Composition of Icelandic Lakes and the Dominant Factors Controlling Variability Across Watersheds

    NASA Astrophysics Data System (ADS)

    Greco, A.; Strock, K.; Edwards, B. R.

    2017-12-01

    Fourteen lakes were sampled in the southern and western area of Iceland in June of 2017. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes that produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse and located in older bedrock with more extensively weathered soil. Physical variables (temperature, oxygen concentration, and water clarity), chemical variables (pH, conductivity, dissolved and total nitrogen and phosphorus concentrations, and dissolved organic carbon concentration), and biological variables (algal biomass) were compared across the lakes sampled in these geographic regions. There was a large range in lake characteristics, including five to eighteen times higher algal biomass in the southern systems that experience active ash input to lakes. The lakes located in the Eastern Volcanic Zone also had higher conductivity and lower pH, especially in systems receiving substantial geothermal input. These results were analyzed in the context of more extensive lake sampling efforts across Iceland (46 lakes) to determine defining characteristics of lakes in each region and to identify variables that drive heterogeneous patterns in physical, chemical, and biological lake features within each region. Coastal systems, characterized by high conductivity, and glacially-fed systems, characterized by high iron concentrations, were unique from lakes in all other regions. Clustering and principal component analyses revealed that lake type (plateau, valley, spring-fed, and direct-runoff) was not the primary factor explaining variability in lake chemistry outside of the coastal and glacial lake types. Instead, lakes differentiated along a gradient of iron concentration and total nitrogen concentration. The physical and chemical properties of subarctic lakes are especially susceptible to both natural and human-induced environmental impacts. However, relatively little is known about the

  5. Iceland's Grímsvötn volcano erupts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-05-01

    About 13 months after Iceland's Eyjafjallajökull volcano began erupting on 14 April 2010, which led to extensive air traffic closures over Europe, Grímsvötn volcano in southeastern took its turn. Iceland's most active volcano, which last erupted in 2004 and lies largely beneath the Vatnajökull ice cap, began its eruption activity on 21 May, with the ash plume initially reaching about 20 kilometers in altitude, according to the Icelandic Meteorological Office. Volcanic ash from Grímsvötn has cancelled hundreds of airplane flights and prompted U.S. president Barack Obama to cut short his visit to Ireland. As Eos went to press, activity at the volcano was beginning to subside.

  6. Spatial instability of the rift in the St. Paul multifault transform fracture system, Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Sokolov, S. Yu.; Zaraiskaya, Yu. A.; Mazarovich, A. O.; Efimov, V. N.; Sokolov, N. S.

    2016-05-01

    The structure of the acoustic basement of the eastern part of the St. Paul multifault transform fracture system hosts rift paleovalleys and a paleonodal depression that mismatch the position of the currently active zones. This displacement zone, which is composed of five fault troughs, is unstable in terms of the position of the rift segments, which jumped according to redistribution of stresses. The St. Paul system is characterized by straightening of the transform transition between two remote segments of the Mid-Atlantic Ridge (MAR). The eastern part of the system contains anomalous bright-spot-like reflectors on the flattened basement, which is a result of atypical magmatism, that forms the standard ridge relief of the acoustic basement. Deformations of the acoustic basement have a presedimentation character. The present-day deformations with lower amplitude in comparison to the basement are accompanied by acoustic brightening of the sedimentary sequence. The axial Bouguer anomalies in the east of the system continue to the north for 120 km from the active segments of the St. Paul system. Currently seismically active segments of the spreading system are characterized by increasing amplitudes of the E-W displacement along the fault troughs. Cross-correlation of the lengths of the active structural elements of the MAR zone (segments of the ridge and transform fracture zones of displacement) indicates that, statistically, the multifault transform fracture system is a specific type of oceanic strike-slip faults.

  7. Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data

    NASA Astrophysics Data System (ADS)

    Tomic, J.; Doubre, C.; Peltzer, G.

    2009-12-01

    Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be

  8. Control of rift asymmetry and segmentation on the thermal architecture of hyperextended rift systems: insights from Pyrenean field observations and numerical modelling

    NASA Astrophysics Data System (ADS)

    Lescoutre, Rodolphe; Tugend, Julie; Brune, Sascha; Manatschal, Gianreto

    2017-04-01

    Mid-Cretaceous rift basins are exposed in the Pyrenees providing key information on rifted domain formation that is not available at present-day rift system. Substantial paleotemperature and thermochronological data have been collected and published in numerous recent papers. These data show a strong heterogeneity in the distribution of peak temperatures within the Cretaceous rift basins. Locations that experienced relatively high or low temperatures appear to cluster in specific areas along strike. These areas have been interpreted as either reflecting hot and cold conditions during rifting, or alternatively, a change in the polarity of a strongly asymmetric rift systems. In this study, we test if the observed variability of peak temperatures can be explained by segmentation and a change in polarity of an asymmetrical upper/lower plate rift model. To this aim we restore the observed syn- to early post-rift peak temperatures to their paleo-location within sections across the evolving rift system. In the meantime, we conduct numerical models of rift migration leading to asymmetrical extension that are benchmarked with geological and geophysical observations from the Pyrenees. From the models, we extract thermal information at different stages of rifting that are finally compared to the thermal data from the Pyrenean Cretaceous rift basins. This work employs a novel approach by comparing thermal output from numerical modelling with the distribution of peak temperatures and thermal gradient from field data. As such, these results may have substantial implications to further understand the pre-orogenic thermal evolution of the Pyrenean rift system and the role of segmentation. More generally, the results of this work may unravel the role of rift asymmetry and segmentation on the thermal architecture of hyperextended rift basins and margins.

  9. Rifting kinematics along the Arabian Margin, Red Sea

    NASA Astrophysics Data System (ADS)

    Pierantoni, Pietro Paolo; Schettino, Antonio; Zanoni, Davide; Rasul, Najeeb

    2017-04-01

    The Red Sea represents a young basin floored by oceanic, transitional, or thinned continental crust that formed between Nubia and Arabia. According to most authors, rifting between Nubia and Arabia started in the late Oligocene ( 27 Ma) and it is still in progress in the northern part of the Red Sea at latitudes greater than 24°N. Conversely, the area south of 20.3°N displays a linear spreading ridge extending as south as 14.8°N, which formed in the early Pliocene (the first pulse of sea floor spreading occurred during chron C3n.2n, 4.62 Ma). A transition zone (between 24°N and 20.3°N, present-day coordinates) exists between the northern and the southern sectors, characterized by a segmented spreading center that started forming at 2.58 Ma (chron 2A, late Pliocene) in the southernmost area and propagated northwards. Some authors suggest that the present-day NE-SW spreading directions can be extended back to the early Miocene. However, we are going to show, on the basis of geological evidence from the Arabian margin, that at least two phases of rifting, characterized by distinct extension directions, are necessary to explain the observed structural pattern of deformation in a wide area extending from 28°N to 20°N. At present, there is no magnetic evidence for the existence of a linear spreading center in the northern Red Sea at latitudes higher than 24°N. In this area, the syn-rift pattern of deformation along the Arabian margin is only partly coherent with the present day NE-SW sea floor spreading directions and with the observed trend of fracture zones in the Red Sea. In fact, an older set of rift structures was found during 3 field trips performed along the northern and central Red Sea Arabian margin (2015-2016), suggesting the existence of an earlier rifting stage characterized by N-S trending strike-slip faults and E-W normal faults. The objective of the field trips was to investigate the hypothesis that an early phase of N-S extension and formation of

  10. Icelandic for Adult Foreigners: Effects of Imposing an Icelandic Language Test

    ERIC Educational Resources Information Center

    Innes, Pamela; Skaptadóttir, Unnur Dís

    2017-01-01

    Legislation linking language course attendance and passage of a language test for residence visas and citizenship, respectively, was enacted in Iceland in the early 2000s. Curricular guidelines and the language test were developed as a result. Research in other countries suggests such structures cause teachers to create "de facto"…

  11. Along strike behavior of the Tizi n' Firest fault during the Lower Jurassic rifting (Central High Atlas Carbonate basin, Morocco)

    NASA Astrophysics Data System (ADS)

    Sarih, S.; Quiquerez, A.; Allemand, P.; Garcia, J. P.; El Hariri, K.

    2018-03-01

    The purpose of this study is to document the along-strike early syn-rift history of the Lower Jurassic Carbonate basin of the Central High Atlas (Morocco) by combining sedimentological observations and high-resolution biostratigraphy. Six sections, each from the Sinemurian to the Upper Pliensbachian, were investigated along a 75 km-long transect at the hanging wall of a major fault of the Lower Jurassic Basin (i.e. the Tizi n' Firest fault). Depositional geometries of the early syn-rift deposits were reconstructed from the correlation between eight main timelines dated by biochronological markers for a time span covering about 6 Ma. Depocentre migration was examined and accommodation rates were calculated at the sub-zone timescale to discuss the along-strike-fault behavior of the Lower Jurassic basin formation. The early stages of extension are marked by contrasted along-strike variations in depositional geometry thickness, depocentre migration and accommodation rates, leading to the growth of three independent sub-basins (i.e. western, central, and eastern), ranging in size from 30 to 50 km, and displaying three contrasted tectono-sedimentary histories. Our results suggest that, during the early rifting phase, tectonic activity was not a continuous and progressive process evolving towards a rift climax stage, but rather a series of acceleration periods that alternated with periods of much reduced activity. The length of active fault segments is estimated at about 15-20 km, with a lifespan of a few ammonite sub-zones (> 2-3 Ma).

  12. Extratropical Cyclones near Iceland

    NASA Image and Video Library

    2010-04-22

    A cyclone is a low-pressure area of winds that spiral inwards. Although tropical storms most often come to mind, these spiraling storms can also form at mid- and high latitudes. Two such cyclones formed in tandem in November 2006. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard NASA’s Terra satellite took this picture on November 20. This image shows the cyclones south of Iceland. Scotland appears in the lower right. The larger and perhaps stronger cyclone appears in the east, close to Scotland. Cyclones at high and mid-latitudes are actually fairly common, and they drive much of the Earth’s weather. In the Northern Hemisphere, cyclones move in a counter-clockwise direction, and both of the spiraling storms in this image curl upwards toward the northeast then the west. The eastern storm is fed by thick clouds from the north that swoop down toward the storm in a giant “V” shape on either side of Iceland. Skies over Iceland are relatively clear, allowing some of the island to show through. South of the storms, more diffuse cloud cover swirls toward the southeast. Credit: NASA NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  13. Surface effects of faulting and deformation resulting from magma accumulation at the Hengill triple junction, SW Iceland, 1994 1998

    NASA Astrophysics Data System (ADS)

    Clifton, Amy E.; Sigmundsson, Freysteinn; Feigl, Kurt L.; Guðmundsson, Gunnar; Árnadóttir, Thóra

    2002-06-01

    The Hengill triple junction, SW Iceland, is subjected to both tectonic extension and shear, causing seismicity related to strike-slip and normal faulting. Between 1994 and 1998, the area experienced episodic swarms of enhanced seismicity culminating in a ML=5.1 earthquake on June 4, 1998 and a ML=5 earthquake on November 13, 1998. Geodetic measurements, using Global Positioning System (GPS), leveling and Synthetic Aperture Radar Interferometry (InSAR) detected maximum uplift of 2 cm/yr and expansion between the Hrómundartindur and Grensdalur volcanic systems. A number of faults in the area generated meter-scale surface breaks. Geographic Information System (GIS) software has been used to integrate structural, field and geophysical data to determine how the crust failed, and to evaluate how much of the recent activity focused on zones of pre-existing weaknesses in the crust. Field data show that most surface effects can be attributed to the June 4, 1998 earthquake and have occurred along or adjacent to old faults. Surface effects consist of open gashes in soil, shattering of lava flows, rockfall along scarps and within old fractures, loosened push-up structures and landslides. Seismicity in 1994-1998 was distributed asymmetrically about the center of uplift, with larger events migrating toward the main fault of the June 4, 1998 earthquake. Surface effects are most extensive in the area of greatest structural complexity, where N- and E-trending structures related to the transform boundary intersect NE-trending structures related to the rift zone. InSAR, GPS, and field observations have been used in an attempt to constrain slip along the trace of the fault that failed on June 4, 1998. Geophysical and field data are consistent with an interpretation of distributed slip along a segmented right-lateral strike-slip fault, with slip decreasing southward along the fault plane. We suggest a right step or right bend between fault segments to explain local deformation near

  14. The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Taylor, Brian; Weiss, Jonathan R.; Goodliffe, Andrew M.; Sachpazi, Maria; Laigle, Mireille; Hirn, Alfred

    2011-06-01

    gradually rotate from 090-120° in the basement and early rift to 090-100° in the latest rift, reflecting a ˜10° rotation of the opening direction to the 005° presently measured by GPS. The sediments include a (locally >1.5-km-) thick, early-rift section, and a late-rift section (also locally >1.5-km-thick) that we subdivide into three sequences and correlate with seven 100-ka glacio-eustatic cycles. The Gulf depocentre has deepened through time (currently >700 mbsl) as subsidence has outpaced sedimentation. We measure the minimum total horizontal extension across the central and eastern Gulf as varying along strike between 4 and 10 km, and estimate full values of 6-11 km. The rift evolution is strongly influenced by the inherited basement fabric. The regional NNW structural fabric of the Hellenic nappes changes orientation to ESE in the Parnassos terrane, facilitating the focused north-south extension observed offshore there. The basement-penetrating faults lose seismic reflectivity above the 4-14-km-deep seismogenic zone. Multiple generations and dips of normal faults, some cross-cutting, accommodate extension beneath the GoC, including low-angle (15-20°) interfaces in the basement nappes. The thermally cool forearc setting and cross-orogen structures unaccompanied by magmatism make this rift a poor analogue and unlikely precursor for metamorphic core complex formation.

  15. Continental Rifts and Resources

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.

    2017-04-01

    Nearly all resource-forming systems involve upward mobility of fluids and melts. In fact, one of the most effective means of chemically transforming the earth's crust can be readily observed in the rift environment. Imposition of rifting is based on deeper stresses that play out in the crust. At its most fundamental level, rifting transfers heat and fluids to the crust. Heat delivered by fluids aids both in transport of metal and maturation of hydrocarbons. The oxidizing capacity of fluids on their arrival in the deep crust, whether derived from old slabs, depleted upper mantle and/or deeper, more primitive mantle, is a fundamental part of the resource-forming equation. Oxidizing fluids transport some metals and breakdown kerogen, the precursor for oil. Reducing fluids transport a different array of metals. The tendency is to study the resource, not the precursor or the non-economic footprint. In doing so, we lose the opportunity to discover the involvement and significance of initiating processes; for example, externally derived fluids may produce widespread alteration in host rocks, a process that commonly precedes resource deposition. It is these processes that are ultimately the transferable knowledge for successful mineral and hydrocarbon exploration. Further limiting our understanding of process is the tendency to study large, highly complex, and economically successful ore-forming or petroleum systems. In order to understand their construction, however, it is necessary to put equal time toward understanding non-economic systems. It is the non-economic systems that often clearly preserve key processes. The large resource-forming systems are almost always characterized by multiple episodes of hydrothermal overprints, making it difficult if not impossible to clearly discern individual events. Understanding what geologic and geochemical features blocked or arrested the pathway to economic success or, even worse, caused loss of a resource, are critical to

  16. Mapping of magnetic chrons: paleomagnetic polarity map of East Iceland, 0-13 Myr

    NASA Astrophysics Data System (ADS)

    Helgason, Johann

    2016-04-01

    Through data on palaeomagnetism, stratigraphy and radiometric age dating an immense database on magnetic chrons has been established for the lava succession in Iceland (e.g. Kristjánsson, 2008). Correlation of magnetic chrons with the geomagnetic time scale provides a reasonable age estimate for vast stratigraphic sequences. The basalt lava succession in Iceland has a thickness of tens of kilometers. The magnetostratigraphic data offer, through the help of paleomagnetism and radiometric dating, a detailed timing of events in the evolution of the Iceland mantle plume region. Yet a magnetic polarity map for Iceland has been lacking but during the last 50 years, comprehensive stratigraphic mapping has paved the way for a magnetic polarity map in various parts of Iceland. Here, such a map is presented for a segment of East Iceland, i.e. for lavas ranging in age from 0 to 13 M yr. The map is a compilation based on various studies into the cliff section and stratigraphic work performed by numerous research initiatives, both in relation to hydroelectric research as well as academic projects. References: Kristjánsson, L., 2008. Paleomagnetic research on Icelandic lava flows. Jökull, 58, 101-116. Helgason, J., Duncan, R.A., Franzson, H., Guðmundsson, Á., and M. Riishuus., 2015. Magnetic polarity map of Akrafjall and Skarðsheiði and new 40Ar-39Ar age dating from West Iceland., Presentation at the spring conference of the Icelandic Geological Society, held on March 13th 2015 at the University of Iceland.

  17. Hydrothermal Petroleum in Active Continental Rift: Lake Chapala, Western Mexico, Initial Results.

    NASA Astrophysics Data System (ADS)

    Zarate-del Valle, P. F.; Simoneit, B. R.; Ramirez-Sanchez, H. U.

    2003-12-01

    Lake Chapala in western Mexico is located partially in the Citala Rift, which belongs to the well-known neotectonic Jalisco continental triple junction. The region is characterized by active volcanism (Ceboruco, Volcan de Fuego), tectonic (1995 earthquake, M=8, 40-50 mm to SW) and hydrothermal (San Juan Cosala & Villa Corona spas and La Calera sinter deposit) activities. Hydrothermal petroleum has been described in active continental rift (East African Rift) and marine spreading zones (Guaymas Basin, Gulf of California). In 1868 the Mexican local press reported that manifestations of bitumen were appearing in front of the Columba Cap on the mid south shore of Lake Chapala. This bitumen is linked to the lake bottom and when the water level decreases sufficiently it is possible to access these tar bodies as islands. Because of these manifestations the Mexican oil company (PEMEX) drilled an exploration well (2,348m) at Tizapan El Alto without success. Hydrothermal activity is evident in the tar island zone as three in-shore thermal springs (26.8 m depth, 48.5° C, pH 7.8 and oriented N-S). The preliminary analyses by GC-MS of the tar from these islands indicate hydrothermal petroleum derived from lake sedimentary organic matter, generated at low temperatures (150° -200° C). The tars contain no n-alkanes, no PAH or other aromatics, but a major UCM of branched and cyclic hydrocarbons and mature biomarkers derived from lacustrine biota. The biomarkers consist of mainly 17α (H),21β (H)-hopanes ranging from C27 to C34 (no C28), gammacerane, tricyclic terpanes (C20-C26), carotane and its cracking products, and drimanes (C14-C16). The biomarker composition indicates an organic matter source from bacteria and algae, typical of lacustrine ecosystems. 14C dating of samples from two tar islands yielded ages exceeding 40 kyrs, i.e., old carbon from hydrothermal/tectonic remobilization of bitumen from deeper horizons to the surface. The occurrence of hydrothermal petroleum in

  18. Seismicity associated with magmatism, faulting and hydrothermal circulation at Aluto Volcano, Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Wilks, Matthew; Kendall, J.-Michael; Nowacki, Andy; Biggs, Juliet; Wookey, James; Birhanu, Yelebe; Ayele, Atalay; Bedada, Tulu

    2017-06-01

    The silicic volcanic centres of the Main Ethiopian Rift (MER) play a central role in facilitating continental rifting. Many of these volcanoes host geothermal resources and are located in heavily populated regions. InSAR studies have shown several are deforming, but regional seismic networks have detected little seismicity. A local network of 12 seismometers was deployed at Aluto Volcano from 2012 to 2014, and detected 2142 earthquakes within a 24-month period. We locate the events using a 1D velocity model that exploits a regional model and information from geothermal boreholes and calculate local magnitudes, b-values and focal mechanisms. Event depths generally range from the near surface to 15 km with most of the seismicity clustering in the upper 2 km. A significant amount of seismicity follows the Artu Jawa Fault Zone, which trends in alignment with the Wonji Fault Belt, NNE-SSW and is consistent with previous studies of strain localisation in the MER. Focal mechanisms are mostly normal in style, with the mean T-axes congruent to the orientation of extension in the rift at this latitude. Some show relatively small left-lateral strike-slip components and are likely associated with the reactivation of NE-ENE structures at the southern tip of the Aluto-Gedemsa segment. Events range from - 0.40 to 2.98 in magnitude and we calculate an overall b-value of 1.40 ± 0.14. This relatively elevated value suggests fluid-induced seismicity that is particularly evident in the shallow hydrothermal reservoir and above it. Subdividing our observations according to depth identifies distinct regions beneath the volcanic edifice: a shallow zone (- 2-0 km) of high seismicity and high b-values that corresponds to the hydrothermal system and is influenced by a high fluid saturation and circulation; a relatively aseismic zone (0-2 km) with low b-values that is impermeable to ascending volatiles; a region of increased fluid-induced seismicity (2-9 km) that is driven by magmatic

  19. Gravity study of the Central African Rift system: A model of continental disruption 1. The Ngaoundere and Abu Gabra Rifts

    NASA Astrophysics Data System (ADS)

    Browne, S. E.; Fairhead, J. D.

    1983-05-01

    A regional compilation of published and unpublished gravity data for Central Africa is presented and reveals the presence of a major rift system, called here, the Central African Rift System. It is proposed that the junction area between the Ngaoundere and Abu Gabra rift arms in Western Sudan forms an incipient intraplate, triple-junction with the as yet unfractured, but domally uplifted and volcanically active, Darfur swell. It is only the Darfur swell that shows any similarities to the uplift and rift history of East Africa. The other two rifts arms are considered to be structurally similar to the early stages of passive margin development and thus reflect more closely the initial processes of continental fragmentation than the structures associated with rifting in East Africa.

  20. Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Corti, Giacomo; Ranalli, Giorgio

    2017-09-01

    Inherited rheological structures in the lithosphere are expected to have large impact on the architecture of continental rifts. The Turkana depression in the East African Rift connects the Main Ethiopian Rift to the north with the Kenya rift in the south. This region is characterized by a NW-SE trending band of thinned crust inherited from a Mesozoic rifting event, which is cutting the present-day N-S rift trend at high angle. In striking contrast to the narrow rifts in Ethiopia and Kenya, extension in the Turkana region is accommodated in subparallel deformation domains that are laterally distributed over several hundred kilometers. We present both analog experiments and numerical models that reproduce the along-axis transition from narrow rifting in Ethiopia and Kenya to a distributed deformation within the Turkana depression. Similarly to natural observations, our models show that the Ethiopian and Kenyan rifts bend away from each other within the Turkana region, thus forming a right-lateral step over and avoiding a direct link to form a continuous N-S depression. The models reveal five potential types of rift linkage across the preexisting basin: three types where rifts bend away from the inherited structure connecting via a (1) wide or (2) narrow rift or by (3) forming a rotating microplate, (4) a type where rifts bend towards it, and (5) straight rift linkage. The fact that linkage type 1 is realized in the Turkana region provides new insights on the rheological configuration of the Mesozoic rift system at the onset of the recent rift episode.