Sample records for icervs subsystem design

  1. Interactive Computer-Enhanced Remote Viewing System (ICERVS): Final report, November 1994--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    The Interactive Computer-Enhanced Remote Viewing System (ICERVS) is a software tool for complex three-dimensional (3-D) visualization and modeling. Its primary purpose is to facilitate the use of robotic and telerobotic systems in remote and/or hazardous environments, where spatial information is provided by 3-D mapping sensors. ICERVS provides a robust, interactive system for viewing sensor data in 3-D and combines this with interactive geometric modeling capabilities that allow an operator to construct CAD models to match the remote environment. Part I of this report traces the development of ICERVS through three evolutionary phases: (1) development of first-generation software to render orthogonalmore » view displays and wireframe models; (2) expansion of this software to include interactive viewpoint control, surface-shaded graphics, material (scalar and nonscalar) property data, cut/slice planes, color and visibility mapping, and generalized object models; (3) demonstration of ICERVS as a tool for the remediation of underground storage tanks (USTs) and the dismantlement of contaminated processing facilities. Part II of this report details the software design of ICERVS, with particular emphasis on its object-oriented architecture and user interface.« less

  2. Spacecraft Design Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  3. Spacecraft Design Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    2003-01-01

    This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.

  4. Statistical Design Model (SDM) of satellite thermal control subsystem

    NASA Astrophysics Data System (ADS)

    Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi

    2016-07-01

    Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware

  5. The Space Station air revitalization subsystem design concept

    NASA Technical Reports Server (NTRS)

    Ray, C. D.; Ogle, K. Y.; Tipps, R. W.; Carrasquillo, R. L.; Wieland, P.

    1987-01-01

    The current status of the Space Station (SS) Environmental Control and Life Support System (ECLSS) Air Revitalization Subsystem (ARS) design is outlined. ARS performance requirements are provided, along with subsystem options for each ARS function and selected evaluations of the relative merits of each subsystem. Detailed computer models that have been developed to analyze individual subsystem performance capabilities are also discussed. A summary of ARS subsystem level testing planned and completed by NASA Marshall Space Flight Center (MSFC) is given.

  6. Viking Orbiter 1975 articulation control subsystem design analysis

    NASA Technical Reports Server (NTRS)

    Horiuchi, H. H.; Vallas, L. J.

    1973-01-01

    The articulation control subsystem, developed for the Viking Orbiter 1975 spacecraft, is a digital, multiplexed, closed-loop servo system used to control the pointing and positioning of the science scan platform and the high-gain communication antenna, and to position the solar-energy controller louver blades for the thermal control of the propellant tanks. The development, design, and anlaysis of the subsystem is preliminary. The subsystem consists of a block-redundant control electronics multiplexed among eight control actuators. Each electronics block is capable of operating either individually or simultaneously with the second block. This provides the subsystem the capability of simultaneous two-actuator control or a single actuator control with the second block in a stand-by redundant mode. The result of the preliminary design and analysis indicates that the subsystem will perform satisfactorily in the Viking Orbiter 1975 mission. Some of the parameter values used, particularly those in the subsystem dynamics and the error estimates, are preliminary and the results will be updated as more accurate parameter values become available.

  7. Spacecraft active thermal control subsystem design and operation considerations

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; Lehtinen, A. M.; Nguyen, H. T.; Parish, R.

    1986-01-01

    Future spacecraft missions will be characterized by high electrical power requiring active thermal control subsystems for acquisition, transport, and rejection of waste heat. These systems will be designed to operate with minimum maintenance for up to 10 years, with widely varying externally-imposed environments, as well as the spacecraft waste heat rejection loads. This paper presents the design considerations and idealized performance analysis of a typical thermal control subsystem with emphasis on the temperature control aspects during off-design operation. The selected thermal management subsystem is a cooling loop for a 75-kWe fuel cell subsystem, consisting of a fuel cell heat exchanger, thermal storage, pumps, and radiator. Both pumped-liquid transport and two-phase (liquid/vapor) transport options are presented with examination of similarities and differences of the control requirements for these representative thermal control options.

  8. Modular space station phase B extension, preliminary system design. Volume 4: Subsystems analyses

    NASA Technical Reports Server (NTRS)

    Antell, R. W.

    1972-01-01

    The subsystems tradeoffs, analyses, and preliminary design results are summarized. Analyses were made of the structural and mechanical, environmental control and life support, electrical power, guidance and control, reaction control, information, and crew habitability subsystems. For each subsystem a summary description is presented including subsystem requirements, subsystem description, and subsystem characteristics definition (physical, performance, and interface). The major preliminary design data and tradeoffs or analyses are described in detail at each of the assembly levels.

  9. NFIRAOS beamsplitters subsystems optomechanical design

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Nash, Reston; Boucher, Marc-André; Martin, Olivier; Buteau-Vaillancourt, Louis; Châteauneuf, François; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Véran, Jean-Pierre

    2016-07-01

    The early-light facility adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). The science beam splitter changer mechanism and the visible light beam splitter are subsystems of NFIRAOS. This paper presents the opto-mechanical design of the NFIRAOS beam splitters subsystems (NBS). In addition to the modal and the structural analyses, the beam splitters surface deformations are computed considering the environmental constraints during operation. Surface deformations are fit to Zernike polynomials using SigFit software. Rigid body motion as well as residual RMS and peak-to-valley surface deformations are calculated. Finally, deformed surfaces are exported to Zemax to evaluate the transmitted and reflected wave front error. The simulation results of this integrated opto-mechanical analysis have shown compliance with all optical requirements.

  10. Optomechanical design of TMT NFIRAOS Subsystems at INO

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Grenier, Martin; Cottin, Pierre; Leclerc, Mélanie; Martin, Olivier; Buteau-Vaillancourt, Louis; Boucher, Marc-André; Nash, Reston; Lardière, Olivier; Andersen, David; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Fitzsimmons, Joeleff; Véran, Jean-Pierre

    2017-08-01

    The adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). Recently, INO has been involved in the optomechanical design of several subsystems of NFIRAOS, including the Instrument Selection Mirror (ISM), the NFIRAOS Beamsplitters (NBS), and the NFIRAOS Source Simulator system (NSS) comprising the Focal Plane Mask (FPM), the Laser Guide Star (LGS) sources, and the Natural Guide Star (NGS) sources. This paper presents an overview of these subsystems and the optomechanical design approaches used to meet the optical performance requirements under environmental constraints.

  11. Design evolution of the orbiter reaction control subsystem

    NASA Technical Reports Server (NTRS)

    Taeber, R. J.; Karakulko, W.; Belvins, D.; Hohmann, C.; Henderson, J.

    1985-01-01

    The challenges of space shuttle orbiter reaction control subsystem development began with selection of the propellant for the subsystem. Various concepts were evaluated before the current Earth storable, bipropellant combination was selected. Once that task was accomplished, additional challenges of designing the system to satisfy the wide range of requirements dictated by operating environments, reusability, and long life were met. Verification of system adequacy was achieved by means of a combination of analysis and test. The studies, the design efforts, and the test and analysis techniques employed in meeting the challenges are described.

  12. Subsystem design package for Solar II collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The requirements for the design and performance of the Solar 2 Collector Subsystem developed for use in solar heating of single family residences and mobile homes are presented. Installation drawings are included.

  13. Automated design of spacecraft systems power subsystems

    NASA Technical Reports Server (NTRS)

    Terrile, Richard J.; Kordon, Mark; Mandutianu, Dan; Salcedo, Jose; Wood, Eric; Hashemi, Mona

    2006-01-01

    This paper discusses the application of evolutionary computing to a dynamic space vehicle power subsystem resource and performance simulation in a parallel processing environment. Our objective is to demonstrate the feasibility, application and advantage of using evolutionary computation techniques for the early design search and optimization of space systems.

  14. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    NASA Technical Reports Server (NTRS)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  15. RF subsystem design for microwave communication receivers

    NASA Astrophysics Data System (ADS)

    Bickford, W. J.; Brodsky, W. G.

    A system review of the RF subsystems of (IFF) transponders, tropscatter receivers and SATCOM receivers is presented. The quantity potential for S-band and X-band IFF transponders establishes a baseline requirement. From this, the feasibility of a common design for these and other receivers is evaluated. Goals are established for a GaAs MMIC (monolithic microwave integrated circuit) device and related local oscillator preselector and self-test components.

  16. ARES I Upper Stage Subsystems Design and Development

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Senick, Paul F.; Tolbert, Carol M.

    2011-01-01

    From 2005 through early 2011, NASA conducted concept definition, design, and development of the Ares I launch vehicle. The Ares I was conceived to serve as a crew launch vehicle for beyond-low-Earth-orbit human space exploration missions as part of the Constellation Program Architecture. The vehicle was configured with a single shuttle-derived solid rocket booster first stage and a new liquid oxygen/liquid hydrogen upper stage, propelled by a single, newly developed J-2X engine. The Orion Crew Exploration Vehicle was to be mated to the forward end of the Ares I upper stage through an interface with fairings and a payload adapter. The vehicle design passed a Preliminary Design Review in August 2008, and was nearing the Critical Design Review when efforts were concluded as a result of the Constellation Program s cancellation. At NASA Glenn Research Center, four subsystems were developed for the Ares I upper stage. These were thrust vector control (TVC) for the J-2X, electrical power system (EPS), purge and hazardous gas (P&HG), and development flight instrumentation (DFI). The teams working each of these subsystems achieved 80 percent or greater design completion and extensive development testing. These efforts were extremely successful representing state-of-the-art technology and hardware advances necessary to achieve Ares I reliability, safety, availability, and performance requirements. This paper documents the designs, development test activity, and results.

  17. Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning

    PubMed Central

    Ettlinger, Marc; Wong, Patrick C. M.

    2016-01-01

    Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085

  18. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.

  19. Orbiting Geophysical Observatory Attitude Control Subsystem Design Survey. NASA/ERC Design Criteria Program, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Mc Kenna, K. J.; Schmeichel, H.

    1968-01-01

    This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.

  20. Thermal Control Subsystem Design for the Avionics of a Space Station Payload

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    1996-01-01

    A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.

  1. Subsystem design in aircraft power distribution systems using optimization

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Sriram

    2000-10-01

    The research reported in this dissertation focuses on the development of optimization tools for the design of subsystems in a modern aircraft power distribution system. The baseline power distribution system is built around a 270V DC bus. One of the distinguishing features of this power distribution system is the presence of regenerative power from the electrically driven flight control actuators and structurally integrated smart actuators back to the DC bus. The key electrical components of the power distribution system are bidirectional switching power converters, which convert, control and condition electrical power between the sources and the loads. The dissertation is divided into three parts. Part I deals with the formulation of an optimization problem for a sample system consisting of a regulated DC-DC buck converter preceded by an input filter. The individual subsystems are optimized first followed by the integrated optimization of the sample system. It is shown that the integrated optimization provides better results than that obtained by integrating the individually optimized systems. Part II presents a detailed study of piezoelectric actuators. This study includes modeling, optimization of the drive amplifier and the development of a current control law for piezoelectric actuators coupled to a simple mechanical structure. Linear and nonlinear methods to study subsystem interaction and stability are studied in Part III. A multivariable impedance ratio criterion applicable to three phase systems is proposed. Bifurcation methods are used to obtain global stability characteristics of interconnected systems. The application of a nonlinear design methodology, widely used in power systems, to incrementally improve the robustness of a system to Hopf bifurcation instability is discussed.

  2. System design of the Pioneer Venus spacecraft. Volume 7: Communication subsystem studies

    NASA Technical Reports Server (NTRS)

    Newlands, D. M.

    1973-01-01

    Communications subsystem tradeoffs were undertaken to establish a low cost and low weight design consistent with the mission requirements. Because of the weight constraint of the Thor/Delta launched configuration, minimum weight was emphasized in determining the Thor/Delta design. In contrast, because of the greatly relaxed weight constraint of the Atlas/Centaur launched configuration, minimum cost and off the shelf hardware were emphasized and the attendant weight penalities accepted. Communication subsystem hardware elements identified for study included probe and bus antennas (CM-6, CM-17), power amplifiers (CM-10), and the large probe transponder and small probe stable oscillator required for doppler tracking (CM-11, CM-16). In addition, particular hardware problems associated with the probe high temperature and high-g environment were investigated (CM-7).

  3. The OA System of College - - Design of the Teaching Quality Monitoring Subsystem

    NASA Astrophysics Data System (ADS)

    Wu, Hongjuan; Ying, Hong; Jiang, Youyi; Yan, Pei

    According to the drawbacks of traditional teaching quality monitoring subsystems and based on the achievements of practical research in the teaching quality monitoring administration in College, this paper provides a design of overall structure of teaching quality monitoring subsystem, that is more suitable for colleges' management. This new system is endowed with the same features as .NET application programes: easy to extend, easy to maintain, flexible, convenient, and it let enterprises, students' parents and excellent graduates participate in teaching quality monitoring administration, have significant effect to ensure the quality of talent training in colleges.

  4. Preprototype SAWD subsystem

    NASA Technical Reports Server (NTRS)

    Nalette, T. A.

    1984-01-01

    A regenerable, three man preprototype solid amine, water desorbed (SAWD) CO2 removal and concentation subsystem was designed, fabricated, and successfully acceptance tested by Hamilton Standard. The preprototype SAWD incorporates a single solid amine canister to perform the CO2 removal function, an accumulator to provide the CO2 storage and delivery function, and a microprocessor which automatically controls the subsystem sequential operation and performance. The SAWD subsystem was configured to have a CO2 removal and CO2 delivery capability at the rate of 0.12 kg/hr (0.264 lb/hr) over the relative humidity range of 35 to 70%. The controller was developed to provide fully automatic control over the relative humidity range via custom software that was generated specifically for the SAWD subsystem. The preprototype SAWD subsystem demonstrated a total of 281 hours (208) cycles of operation during ten acceptance tests that were conducted over the 3 to 70% relative humidity range. This operation was comprised of 178 hours (128 cycles) in the CO2 overboard mode and 103 hours (80 cycles) in the CO2 reduction mode. The average CO2 removal/delivery rate met or exceeded the design specification rate of 0.12 kg/hr (0.254 lb/hr) for all ten of the acceptance tests.

  5. Tracking and data relay satellite system configuration and tradeoff study. Volume 4: Spacecraft and subsystem design, part 1

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1972-01-01

    The design and development of the Tracking and Data Relay satellite are discussed. The subjects covered are: (1) spacecraft mechanical and structural design, (2) attitude stabilization and control subsystem, (3) propulsion system, (4) electrical power subsystem, (5) thermal control, and (6) reliability engineering.

  6. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  7. Lessons Learned from the Node 1 Temperature and Humidity Control Subsystem Design

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2010-01-01

    Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1

  8. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  9. [Communication subsystem design of tele-screening system for diabetic retinopathy].

    PubMed

    Chen, Jian; Pan, Lin; Zheng, Shaohua; Yu, Lun

    2013-12-01

    A design scheme of a tele-screening system for diabetic retinopathy (DR) has been proposed, especially the communication subsystem. The scheme uses serial communication module consisting of ARM 7 microcontroller and relays to connect remote computer and fundus camera, and also uses C++ programming language based on MFC to design the communication software consisting of therapy and diagnostic information module, video/audio surveillance module and fundus camera control module. The scheme possesses universal property in some remote medical treatment systems which are similar to the system.

  10. The 30-centimeter ion thrust subsystem design manual

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The principal characteristics of the 30-centimeter ion propulsion thrust subsystem technology that was developed to satisfy the propulsion needs of future planetary and early orbital missions are described. Functional requirements and descriptions, interface and performance requirements, and physical characteristics of the hardware are described at the thrust subsystem, BIMOD engine system, and component level.

  11. Preliminary design report for OTEC stationkeeping subsystems (SKSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-12

    Lockheed Ocean Systems with IMODCO prepared these preliminary designs for OTEC Stationkeeping Subsystems (SKSS) under contract to NOAA in support of the Department of Energy OTEC program. The results of Tasks III, V, and VI are presented in this design report. The report consists of five sections: introduction, preliminary designs for the multiple anchor leg (MAL) and tension anchor leg (TAL), costs and schedule, and conclusions. Extensive appendixes provide detailed descriptions of design methodology and include backup calculations and data to support the results presented. The objective of this effort is to complete the preliminary designs for the barge-MAL andmore » Spar-TAL SKSS. A set of drawings is provided for each which show arrangements, configuration, component details, engineering description, and deployment plan. Loads analysis, performance assessment, and sensitivity to requirements are presented, together with the methodology employed to analyze the systems and to derive the results presented. Life cycle costs and schedule are prepared and compared on a common basis. Finally, recommendations for the Commercial Plant SKSS are presented for both platform types.« less

  12. Space tug point design study. Volume 3: Design definition. Part 1: Propulsion and mechanical, avionics, thermal control and electrical power subsystems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.

  13. The CRAF/Cassini power subsystem - Preliminary design update

    NASA Technical Reports Server (NTRS)

    Atkins, Kenneth L.; Brisendine, Philip; Clark, Karla; Klein, John; Smith, Richard

    1991-01-01

    A chronology is provided of the rationale leading from the early Mariner spacecraft to the CRAF/Cassini Mariner Mark II power subsystem architecture. The display pathway began with a hybrid including a solar photovoltaic array, a radioisotope thermoelectric generator (RTG), and a battery supplying a power profile with a peak loading of about 300 W. The initial concept was to distribute power through a new solid-state, programmable switch controlled by an embedded microprocessor. As the overall mission, science, and project design matured, the power requirements increased. The design evolved from the hybrid to two RTG plus batteries to meet peak loadings of near 500 W in 1989. Later that year, circumstances led to abandonment of the distributed computer concept and a return to centralized control. Finally, as power requirements continued to grow, a third RTG was added to the design and the battery removed, with the return to the discharge-controller for transients during fault recovery procedures.

  14. The mariner 9 power subsystem design and flight performance

    NASA Technical Reports Server (NTRS)

    Josephs, R. H.

    1973-01-01

    The design and flight performance of the Mariner Mars 1971 power subsystem are presented. Mariner 9 was the first spacecraft to orbit another planet, and some of the power management techniques employed to support an orbital mission far from earth with marginal sunlight for its photovoltaic-battery power source are described. The performance of its nickel-cadmium battery during repetitive sun occultation phases of the mission, and the results of unique tests in flight to assess the performance capability of its solar array are reported.

  15. Lightning testing at the subsystem level

    NASA Technical Reports Server (NTRS)

    Luteran, Frank

    1991-01-01

    Testing at the subsystem or black box level for lightning hardness is required if system hardness is to be assured at the system level. The often applied philosophy of lighting testing only at the system level leads to extensive end of the line design changes which result in excessive costs and time delays. In order to perform testing at the subsystem level two important factors must be defined to make the testing simulation meaningful. The first factor is the definition of the test stimulus appropriate to the subsystem level. Application of system level stimulations to the subsystem level usually leads to significant overdesign of the subsystem which is not necessary and may impair normal subsystem performance. The second factor is the availability of test equipment needed to provide the subsystem level lightning stimulation. Equipment for testing at this level should be portable or at least movable to enable efficient testing in a design laboratory environment. Large fixed test installations for system level tests are not readily available for use by the design engineers at the subsystem level and usually require special operating skills. The two factors, stimulation level and test equipment availability, must be evaluated together in order to produce a practical, workable test standard. The neglect or subordination of either factor will guarantee failure in generating the standard. It is not unusual to hear that test standards or specifications are waived because a specified stimulation level cannot be accomplished by in-house or independent test facilities. Determination of subsystem lightning simulation level requires a knowledge and evaluation of field coupling modes, peak and median levels of voltages and currents, bandwidths, and repetition rates. Practical limitations on test systems may require tradeoffs in lightning stimulation parameters in order to build practical test equipment. Peak power levels that can be generated at specified bandwidths with

  16. Mission Design and Selection of Nanosatellite Subsystems for Exploration of Lunar Water Deposits

    NASA Astrophysics Data System (ADS)

    Cadavid, S. C.

    2018-02-01

    This project presents an initiative for the development of a lunar exploration mission, looking to cover the first steps of mission design and the specifications of the mission subsystems; the Cubesat 6U configuration is taken as the low cost platform.

  17. Exterior spacecraft subsystem protective shielding analysis and design

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1990-01-01

    All spacecraft are susceptible to impacts by meteoroids and pieces of orbiting space debris. An effective mechanism is developed to protect external spacecraft subsystems against damage by ricochet particles formed during such impacts. Equations and design procedures for protective shield panels are developed based on observed ricochet phenomena and calculated ricochet particle sizes and speeds. It is found that the diameter of the most damaging ricochet debris particle can be as large as 40 percent of the original project tile diameter, and can travel at speeds between 24 and 36 percent of the original projectile impact velocity. Panel dimensions are shown to be strongly dependent on their inclination to the impact velocity vector and on their distribution around a spacecraft module. It is concluded that obliquity effects of high-speed impacts must be considered in the design of any structure exposed to the meteoroid and space debris environment.

  18. An Algorithm for Integrated Subsystem Embodiment and System Synthesis

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper

    1997-01-01

    Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft.

  19. Structural and mechanical design challenges of space shuttle solid rocket boosters separation and recovery subsystems

    NASA Technical Reports Server (NTRS)

    Woodis, W. R.; Runkle, R. E.

    1985-01-01

    The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.

  20. Apollo experience report: Lunar module electrical power subsystem

    NASA Technical Reports Server (NTRS)

    Campos, A. B.

    1972-01-01

    The design and development of the electrical power subsystem for the lunar module are discussed. The initial requirements, the concepts used to design the subsystem, and the testing program are explained. Specific problems and the modifications or compromises (or both) imposed for resolution are detailed. The flight performance of the subsystem is described, and recommendations pertaining to power specifications for future space applications are made.

  1. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, M.; Klimeck, G.; Hanks, D.

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment.

  2. Apollo experience report: Lunar module environmental control subsystem

    NASA Technical Reports Server (NTRS)

    Gillen, R. J.; Brady, J. C.; Collier, F.

    1972-01-01

    A functional description of the environmental control subsystem is presented. Development, tests, checkout, and flight experiences of the subsystem are discussed; and the design fabrication, and operational difficulties associated with the various components and subassemblies are recorded. Detailed information is related concerning design changes made to, and problems encountered with, the various elements of the subsystem, such as the thermal control water sublimator, the carbon dioxide sensing and control units, and the water section. The problems associated with water sterilization, water/glycol formulation, and materials compatibility are discussed. The corrective actions taken are described with the expection that this information may be of value for future subsystems. Although the main experiences described are problem oriented, the subsystem has generally performed satisfactorily in flight.

  3. Modular design of electrical power subsystem for a remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Kosari, Ehsan; Ghazanfarinia, Sajjad; Hosseingholi, Mahboobeh; Haghshenas, Javad

    2017-09-01

    Power Supply is one of the most important subjects in Remote Sensing satellite. Having an appropriate and adequate power resources, A Remote Sensing satellite may utilize more complex Payloads and also make them more operable in orbit and mission timeline. This paper is deals with a design of electrical power supply subsystem (EPS) of a hypothetical satellite with remote sensing mission in Low Earth Orbits, without any restriction on the type and number of Payloads and only assuming a constraint on the total power consumption of them. EPS design is in a way that can supply the platform consumption to support Mission and Payload(s) requirements beside the power consumption of the payload(s). The design is also modular, as it can be used not only for the hypothetical system, but also for the other systems with similar architecture and even more needs on power and differences in some specifications. Therefore, a modularity scope is assumed in design of this subsystem, in order to support the satellite in the circular orbits with altitude of 500 to 700 km and inclination of 98 degrees, a sun-synchronous orbit, where one can say the design is applicable to a large range of remote sensing satellites. Design process will be started by high level and system requirements analysis, continued by choosing the best approach for design and implementation based on system specification and mission. After EPS sizing, the specifications of elements are defined to get the performance needed during operation phases; the blocks and sub-blocks are introduced and details of their design and performance analysis are presented; and the modularity is verified using calculations for the confined area based on design parameters and evaluated by STK software analysis results. All of the process is coded in MATLAB software and comprehensive graphs are generated to demonstrate the capabilities and performance. The code and graphs are developed in such a way to completely review the design

  4. Simplified power processing for ion-thruster subsystems

    NASA Technical Reports Server (NTRS)

    Wessel, F. J.; Hancock, D. J.

    1983-01-01

    Compared to chemical propulsion, ion propulsion offers distinct payload-mass increases for many future low-thrust earth-orbital and deep-space missions. Despite this advantage, the high initial cost and complexity of ion-propulsion subsystems reduce their attractiveness for most present and near-term spacecraft missions. Investigations have, therefore, been conducted with the objective to attempt to simplify the power-processing unit (PPU), which is the single most complex and expensive component in the thruster subsystem. The present investigation is concerned with a program to simplify the design of the PPU employed in a 8-cm mercury-ion-thruster subsystem. In this program a dramatic simplification in the design of the PPU could be achieved, while retaining essential thruster control and subsystem operational flexibility.

  5. System integration of marketable subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These monthly reports, covering the period February 1978 through June 1978, describe the progress made in the major areas of the program. The areas covered are: systems integration of marketable subsystems; development, design, and building of site data acquisition subsystems; development and operation of the central data processing system; operation of the MSFC Solar Test Facility; and systems analysis.

  6. Suit study - The impact of VMS in subsystem integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, B.; Watts, R.

    1992-02-01

    One of the thrusts of the Wright Laboratory/FIVE-sponsored Subsystem Integration Technology (SUIT) study is to investigate the impact of emerging vehicle management system (VMS) concepts on subsystem integration. This paper summarizes the issues relating to VMS/subsystem integration as examined during the Northrop SUIT study. Projected future weapon system requirements are identified and their impact on VMS and subsystem design interpreted. Integrated VMS/subsystem control and management functions are proposed. A candidate system VMS architecture satisfying the aforementioned weapon system requirements and providing the identified control and management functions is proposed. This architecture is used, together with the environmental control system, asmore » an illustrative subsystem example, to address the risks associated with the design, development, procurement, integration and testing of integrated VMS/subsystem concepts. The conclusion is that the development process requires an airframer to adopt the role of subsystem integrator, the consequences of which are discussed. 2 refs.« less

  7. United States Control Module Guidance, Navigation, and Control Subsystem Design Concept

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Bartlow, B. E.

    1997-01-01

    Should the Russian Space Agency (RSA) not participate in the International Space Station (ISS) program, then the United States (U.S.) National Aeronautics and Space Administration (NASA) may choose to execute the ISS mission. However, in order to do this, NASA must build two new space vehicles, which must perform the functions that the Russian vehicles and hardware were to perform. These functions include periodic ISS orbit reboost, initial ISS attitude control, and U.S. On-Orbit Segment (USOS) control Moment gyroscope (CMG) momentum desaturation. The two new NASA vehicles that must perform these functions are called the U.S. control module (USCM) and the U.S. resupply module. This paper presents a design concept for the USCM GN&C subsystem, which must play a major role in ISS orbit reboost and initial attitude control, plus USOS CMG momentum desaturation. The proposed concept is structured similar to the USOS GN&C subsystem, by design. It is very robust, in that it allows the USCM to assume a variety of vehicle attitudes and stay power-positive. It has a storage/safe mode that places the USCM in a gravity-gradient orientation and keeps it there for extended periods of time without consuming a great deal of propellant. Simulation results are presented and discussed that show the soundness of the design approach. An equipment list is included that gives detailed information on the baselined GN&C components.

  8. Simplified power processing for ion-thruster subsystems

    NASA Technical Reports Server (NTRS)

    Wessel, F. J.; Hancock, D. J.

    1983-01-01

    A design for a greatly simplified power-processing unit (SPPU) for the 8-cm diameter mercury-ion-thruster subsystem is discussed. This SPPU design will provide a tenfold reduction in parts count, a decrease in system mass and cost, and an increase in system reliability compared to the existing power-processing unit (PPU) used in the Hughes/NASA Lewis Research Center Ion Auxiliary Propulsion Subsystem. The simplifications achieved in this design will greatly increase the attractiveness of ion propulsion in near-term and future spacecraft propulsion applications. A description of a typical ion-thruster subsystem is given. An overview of the thruster/power-processor interface requirements is given. Simplified thruster power processing is discussed.

  9. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  10. Thermal Infrared Sensor (TIRS) Instrument Thermal Subsystem Design and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Otero, Veronica; Mosier, Carol; Neuberger, David

    2013-01-01

    The Thermal Infrared Sensor (TIRS) is one of two instruments on the Landsat Data Continuity Mission (LDCM), which is scheduled to launch in February of 2013. The TIRS instrument was officially added to the mission later in the flow, which led to a highly aggressive schedule that became one of the main drivers during instrument development. The thermal subsystem design of the TIRS Sensor Unit is comprised of five thermal zones which range in temperature from less than 43 Kelvin to 330 Kelvin. Most zones are proportional heater controlled, and all are within a volume of 35 cu.ft. A two-stage cryocooler is used to cool the "cold stage" including three QWIP detectors to less than 43 Kelvin, and cool the "warm stage" to 105 Kelvin. The excess power dissipation from the cryocooler is rejected via ammonia transport heat pipes to a dedicated Cryocooler Radiator with embedded ammonia heat pipes. The cryogenic subsystem includes a series of shells used to radiatively and conductively isolate the cold stage from the warmer surroundings. The Optical System (telescope) is passively cooled to 180-190 Kelvin using a "thermal link" (comprised of a Flexible Conductive Thermal Strap and an APG Bar) which couples the telescope stage to a dedicated radiator with embedded ethane heat pipes. The Scene Select Mechanism, which is responsible for moving the Scene Select Mirror to three distinct positions (including Nadir, Space, and On-board Black Body Calibrator pointing), runs nominally at 278 Kelvin and is thermally isolated from the cryogenic thermal zones. The On-board Black Body Calibrator requires a dedicated radiator which allows for a temperature range of 260-330 Kelvin at the Source. The detectors are powered by the FPE Box, which is mounted to the nadir external surface of the composite honeycomb structure. There are two additional electronics boxes which are wet-mounted directly to the spacecraft shear panel, the Main Electronics Box and Cryocooler Electronics Box; thermal

  11. Development of a preprototype times wastewater recovery subsystem

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dehner, G. F.

    1982-01-01

    A three-man wastewater recovery preprototype subsystem using a hollow fiber membrane evaporator with a thermoelectric heat pump to provide efficient potable water recovery from wastewater on extended duration space flights was designed, fabricated, and tested at one-gravity. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem. The tubular hollow fiber elements provide positive liquid/gas phase control with no moving parts, and provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery. Application and integration of these key elements solved problems inherent in all previous reclamation subsystem designs.

  12. Small spacecraft power and thermal subsystems

    NASA Technical Reports Server (NTRS)

    Eakman, D.; Lambeck, R.; Mackowski, M.; Slifer, L., Jr.

    1994-01-01

    This white paper provides a general guide to the conceptual design of satellite power and thermal control subsystems with special emphasis on the unique design aspects associated with small satellites. The operating principles of these technologies are explained and performance characteristics of current and projected components are provided. A tutorial is presented on the design process for both power and thermal subsystems, with emphasis on unique issues relevant to small satellites. The ability of existing technology to meet future performance requirements is discussed. Conclusions and observations are presented that stress cost-effective, high-performance design solutions.

  13. Automated biowaste sampling system urine subsystem operating model, part 1

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Mangialardi, J. K.; Rosen, F.

    1973-01-01

    The urine subsystem automatically provides for the collection, volume sensing, and sampling of urine from six subjects during space flight. Verification of the subsystem design was a primary objective of the current effort which was accomplished thru the detail design, fabrication, and verification testing of an operating model of the subsystem.

  14. Spacecraft expected cost analysis with k-out-of-n:G subsystems

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Suich, Ron

    1991-01-01

    In designing a subsystem for a spacecraft, the design engineer is often faced with a number of options ranging from planning an inexpensive subsystem with low reliability to selecting a highly reliable system that would cost much more. We minimize the total of the cost of the subsytem and the costs that would occur if the subsystem fails. We choose the subsystem with the lowest total. A k-out-of-n:G subsystem has n modules, of which k are required to be good for the subsystem to be good. We examine two models to illustrate the principles of the k-out-of-n:G subsystem designs. For the first model, the following assumptions are necessary: the probability of failure of any module in the system is not affected by the failure of any other module; and each of the modules has the same probabillity of success. For the second model we are also free to choose k in our subsystem.

  15. A graphics subsystem retrofit design for the bladed-disk data acquisition system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Carney, R. R.

    1983-01-01

    A graphics subsystem retrofit design for the turbojet blade vibration data acquisition system is presented. The graphics subsystem will operate in two modes permitting the system operator to view blade vibrations on an oscilloscope type of display. The first mode is a real-time mode that displays only gross blade characteristics, such as maximum deflections and standing waves. This mode is used to aid the operator in determining when to collect detailed blade vibration data. The second mode of operation is a post-processing mode that will animate the actual blade vibrations using the detailed data collected on an earlier data collection run. The operator can vary the rate of payback to view differring characteristics of blade vibrations. The heart of the graphics subsystem is a modified version of AMD's ""super sixteen'' computer, called the graphics preprocessor computer (GPC). This computer is based on AMD's 2900 series of bit-slice components.

  16. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.; Gang, Guan-Wan; He, J. Q.; Ichitsubo, I.

    1988-05-01

    This final technical report presents results on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. New results include analytical and computer aided device models of GaAs MESFETs and HEMTs or MODFETs, new synthesis techniques for monolithic feedback and distributed amplifiers and a new nonlinear CAD program for MIMIC called CADNON. This program incorporates the new MESFET and HEMT model and has been successfully applied to the design of monolithic millimeter-wave mixers.

  17. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  18. The Integrated Library System Design Concepts for a Complete Serials Control Subsystem.

    DTIC Science & Technology

    1984-08-20

    7AD-fl149 379 THE INTEGRTED LIBRARY SYSTEM DESIGN CONCEPTS FOR A 1/COMPLETE SERIALS CONTROL UBSYSTEM(U) ONLINE COMPUTER SYSTEMS INC GERMANTOWN MD 28...CONTROL SUBSYSTEM Presented to: The Pentagon Library The Pentagon Washington, DC 20310 Prepared by: Online Computer Systems, Inc. 20251 Century Blvd...MDA903-82-C-0535 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Online Computer Systems, Inc

  19. Electrochemical energy storage subsystems study, volume 1

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.

    1981-01-01

    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values.

  20. Electrochemical Energy Storage Subsystems Study, Volume 2

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.

    1981-01-01

    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values.

  1. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  2. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  3. Headway Separation Assurance Subsystem (HSAS)

    DOT National Transportation Integrated Search

    1975-07-01

    This report discusses the design, fabrication, test and evaluation of a Headway Separation Assurance Subsystem (HSAS) capable of reliable, failsafe performance in PRT systems. The items designed include both hardware and software packages. These pack...

  4. System design package for solar heating and cooling site data acquisition subsystem

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Site Data Acquisition Subsystem (SDAS) designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system is described. It takes the data obtained from sensors located on the solar system, processes the data into suitable format, stores the data for a period of time, and provides the capability for either telephone retrieval by the central data processing system or manual retrieval of the data for transfer to a central site. The SDAS is also designed so that it will not degrade the operation of the solar heating/cooling system which it is monitoring.

  5. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Moser, R. L.; Veatch, M.

    1983-01-01

    Generic power-system elements and their potential faults are identified. Automation functions and their resulting benefits are defined and automation functions between power subsystem, central spacecraft computer, and ground flight-support personnel are partitioned. All automation activities were categorized as data handling, monitoring, routine control, fault handling, planning and operations, or anomaly handling. Incorporation of all these classes of tasks, except for anomaly handling, in power subsystem hardware and software was concluded to be mandatory to meet the design and operational requirements of the space station. The key drivers are long mission lifetime, modular growth, high-performance flexibility, a need to accommodate different electrical user-load equipment, onorbit assembly/maintenance/servicing, and potentially large number of power subsystem components. A significant effort in algorithm development and validation is essential in meeting the 1987 technology readiness date for the space station.

  6. Developments in Nano-Satellite Structural Subsystem Design at NASA-GSFC

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter; Panetta, Peter V.

    1999-01-01

    The NASA-GSFC Nano-satellite Technology Development Program will enable flying constellations of tens to hundreds of nano-satellites for future NASA Space and Earth Science missions. Advanced technology components must be developed to make these future spacecraft compact, lightweight, low-power, low-cost, and survivable to a radiation environment over a two-year mission lifetime. This paper describes the efforts underway to develop lightweight, low cost, and multi-functional structures, serviceable designs, and robust mechanisms. As designs shrink, the integration of various subsystems becomes a vital necessity. This paper also addresses structurally integrated electrical power, attitude control, and thermal systems. These innovations bring associated fabrication, integration, and test challenges. Candidate structural materials and processes are examined and the merits of each are discussed. Design and fabrication processes include flat stock composite construction, cast aluminum-beryllium alloy, and an injection molded fiber-reinforced plastic. A viable constellation deployment scenario is described as well as a Phase-A Nano-satellite Pathfinder study.

  7. Engineering model 8-cm thruster subsystem

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Hyman, J.; Hopper, D. J.; Williamson, W. S.; Dulgeroff, C. R.; Collett, C. R.

    1978-01-01

    An Engineering Model (EM) 8 cm Ion Thruster Propulsion Subsystem was developed for operation at a thrust level 5 mN (1.1 mlb) at a specific impulse 1 sub sp = 2667 sec with a total system input power P sub in = 165 W. The system dry mass is 15 kg with a mercury-propellant-reservoir capacity of 8.75 kg permitting uninterrupted operation for about 12,500 hr. The subsystem can be started from a dormant condition in a time less than or equal to 15 min. The thruster has a design lifetime of 20,000 hr with 10,000 startup cycles. A gimbal unit is included to provide a thrust vector deflection capability of + or - 10 degrees in any direction from the zero position. The EM subsystem development program included thruster optimization, power-supply circuit optimization and flight packaging, subsystem integration, and subsystem acceptance testing including a cyclic test of the total propulsion package.

  8. PREVAIL-EPL alpha tool electron optics subsystem

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans C.; Dhaliwal, Rajinder S.; Golladay, Steven D.; Doran, Samuel K.; Gordon, Michael S.; Kendall, Rodney A.; Lieberman, Jon E.; Pinckney, David J.; Quickle, Robert J.; Robinson, Christopher F.; Rockrohr, James D.; Stickel, Werner; Tressler, Eileen V.

    2001-08-01

    The IBM/Nikon alliance is continuing pursuit of an EPL stepper alpha tool based on the PREVAIL technology. This paper provides a status report of the alliance activity with particular focus on the Electron Optical Subsystem developed at IBM. We have previously reported on design features of the PREVAIL alpha system. The new state-of-the-art e-beam lithography concepts have since been reduced to practice and turned into functional building blocks of a production level lithography tool. The electron optical alpha tool subsystem has been designed, build, assembled and tested at IBM's Semiconductor Research and Development Center (SRDC) in East Fishkill, New York. After demonstrating subsystem functionality, the electron optical column and all associated control electronics hardware and software have been shipped during January 2001 to Nikon's facility in Kumagaya, Japan, for integration into the Nikon commercial e-beam stepper alpha tool. Early pre-shipment results obtained with this electron optical subsystem are presented.

  9. Serenity: A subsystem quantum chemistry program.

    PubMed

    Unsleber, Jan P; Dresselhaus, Thomas; Klahr, Kevin; Schnieders, David; Böckers, Michael; Barton, Dennis; Neugebauer, Johannes

    2018-05-15

    We present the new quantum chemistry program Serenity. It implements a wide variety of functionalities with a focus on subsystem methodology. The modular code structure in combination with publicly available external tools and particular design concepts ensures extensibility and robustness with a focus on the needs of a subsystem program. Several important features of the program are exemplified with sample calculations with subsystem density-functional theory, potential reconstruction techniques, a projection-based embedding approach and combinations thereof with geometry optimization, semi-numerical frequency calculations and linear-response time-dependent density-functional theory. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Solar electric propulsion thrust subsystem development

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1973-01-01

    The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.

  11. A Computer Program Functional Design of the Simulation Subsystem of an Automated Central Flow Control System

    DOT National Transportation Integrated Search

    1976-08-01

    This report contains a functional design for the simulation of a future automation concept in support of the ATC Systems Command Center. The simulation subsystem performs airport airborne arrival delay predictions and computes flow control tables for...

  12. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  13. Apollo experience report: Lunar module instrumentation subsystem

    NASA Technical Reports Server (NTRS)

    Obrien, D. E., III; Woodfill, J. R., IV

    1972-01-01

    The design concepts and philosophies of the lunar module instrumentation subsystem are discussed along with manufacturing and systems integration. The experience gained from the program is discussed, and recommendations are made for making the subsystem more compatible and flexible in system usage. Characteristics of lunar module caution and warning circuits are presented.

  14. Data Transport Subsystem - The SFOC glue

    NASA Technical Reports Server (NTRS)

    Parr, Stephen J.

    1988-01-01

    The design and operation of the Data Transport Subsystem (DTS) for the JPL Space Flight Operation Center (SFOC) are described. The SFOC is the ground data system under development to serve interplanetary space probes; in addition to the DTS, it comprises a ground interface facility, a telemetry-input subsystem, data monitor and display facilities, and a digital TV system. DTS links the other subsystems via an ISO OSI presentation layer and an LAN. Here, particular attention is given to the DTS services and service modes (virtual circuit, datagram, and broadcast), the DTS software architecture, the logical-name server, the role of the integrated AI library, and SFOC as a distributed system.

  15. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1989-05-01

    The objectives of this research are to develop analytical and computer aided design techniques for monolithic microwave and millimeter wave integrated circuits (MMIC and MIMIC) and subsystems and to design and fabricate those ICs. Emphasis was placed on heterojunction-based devices, especially the High Electron Mobility Transition (HEMT), for both low noise and medium power microwave and millimeter wave applications. Circuits to be considered include monolithic low noise amplifiers, power amplifiers, and distributed and feedback amplifiers. Interactive computer aided design programs were developed, which include large signal models of InP MISFETs and InGaAs HEMTs. Further, a new unconstrained optimization algorithm POSM was developed and implemented in the general Analysis and Design program for Integrated Circuit (ADIC) for assistance in the design of largesignal nonlinear circuits.

  16. NFIRAOS in 2015: engineering for future integration of complex subsystems

    NASA Astrophysics Data System (ADS)

    Atwood, Jenny; Andersen, David; Byrnes, Peter; Densmore, Adam; Fitzsimmons, Joeleff; Herriot, Glen; Hill, Alexis

    2016-07-01

    The Narrow Field InfraRed Adaptive Optics System (NFIRAOS) will be the first-light facility Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). NFIRAOS will be able to host three science instruments that can take advantage of this high performance system. NRC Herzberg is leading the design effort for this critical TMT subsystem. As part of the final design phase of NFIRAOS, we have identified multiple subsystems to be sub-contracted to Canadian industry. The scope of work for each subcontract is guided by the NFIRAOS Work Breakdown Structure (WBS) and is divided into two phases: the completion of the final design and the fabrication, assembly and delivery of the final product. Integration of the subsystems at NRC will require a detailed understanding of the interfaces between the subsystems, and this work has begun by defining the interface physical characteristics, stability, local coordinate systems, and alignment features. In order to maintain our stringent performance requirements, the interface parameters for each subsystem are captured in multiple performance budgets, which allow a bottom-up error estimate. In this paper we discuss our approach for defining the interfaces in a consistent manner and present an example error budget that is influenced by multiple subsystems.

  17. Reduction of vibration by using mechatronical subsystem

    NASA Astrophysics Data System (ADS)

    Białas, K.; Buchacz, A.

    2015-11-01

    The primary aim introduced in this paper is synthesis of mechatronical system understand as planning of this type of systems. Mechatronical system is consisted of fundamental mechanical system and subsystem reducing vibration including electric elements. Fundamental system is received applying reverse task of dynamic (synthesis) and it's including inertial and elastic elements. The subsystem includes electric elements by means moving-coil transducer. The synthesis can also be used to change the already existing systems. Due to the method, introduced in this work, may be performed as early as whilst the designing of future functions. Using this way of designing is support for designers of mechanical systems with active reducing of vibrations.

  18. Development of a preprototype vapor compression distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1978-01-01

    The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.

  19. A membrane-based subsystem for very high recoveries of spacecraft waste waters

    NASA Technical Reports Server (NTRS)

    Ray, Roderick J.; Retzlaff, Sandra E.; Radke-Mitchell, Lyn; Newbold, David D.; Price, Donald F.

    1986-01-01

    This paper describes the continued development of a membrane-based subsystem designed to recover up to 99.5 percent of the water from various spacecraft waste waters. Specifically discussed are: (1) the design and fabrication of an energy-efficient reverse-osmosis (RO) breadboard subsystem; (2) data showing the performance of this subsystem when operated on a synthetic wash-water solution - including the results of a 92-day test; and (3) the results of pasteurization studies, including the design and operation of an in-line pasteurizer. Also included in this paper is a discussion of the design and performance of a second RO stage. This second stage results in higher-purity product water at a minimal energy requirement and provides a substantial redundancy factor to this subsystem.

  20. X-34 Main Propulsion System-Selected Subsystem Analyses

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; McDonald, J. P.; Knight, K. C.; Champion, R. H., Jr.

    1998-01-01

    The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion System (MPS) has been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents selected analyses of MPS subsystems and components. Topics include the integration of component and system level modeling of the LOX dump subsystem and a simple terminal bubble velocity analysis conducted to guide propellant feed line design.

  1. MIT's role in project Apollo. Volume 2: Optical, radar, and candidate subsystems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of optical, radar, and candidate subsystems for Project Apollo is discussed. The design and development of the optical subsystems for both the Apollo command and lunar spacecraft are described. Design approaches, problems, and solutions are presented. The evolution of radar interfaces with the GN&C system is discussed; these interfaces involved both hardware and software in a relatively complex interrelationship. The design and development of three candidate subsystems are also described. The systems were considered for use in Apollo, but were not incorporated into the final GN&C system. The three subsystems discussed are the star tracker-horizon photometer, the map and data viewer and the lunar module optical rendezvous system.

  2. Thermal energy storage subsystems. A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design, development, and progress toward the delivery of three subsystems is discussed. The subsystem used a salt hydrate mixture for thermal energy storage. The program schedules, technical data, and other program activities from October 1, 1976, through December 31, 1977 are presented.

  3. Autonomous navigation - The ARMMS concept. [Autonomous Redundancy and Maintenance Management Subsystem

    NASA Technical Reports Server (NTRS)

    Wood, L. J.; Jones, J. B.; Mease, K. D.; Kwok, J. H.; Goltz, G. L.; Kechichian, J. A.

    1984-01-01

    A conceptual design is outlined for the navigation subsystem of the Autonomous Redundancy and Maintenance Management Subsystem (ARMMS). The principal function of this navigation subsystem is to maintain the spacecraft over a specified equatorial longitude to within + or - 3 deg. In addition, the navigation subsystem must detect and correct internal faults. It comprises elements for a navigation executive and for orbit determination, trajectory, maneuver planning, and maneuver command. Each of these elements is described. The navigation subsystem is to be used in the DSCS III spacecraft.

  4. A prototype to automate the video subsystem routing for the video distribution subsystem of Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Betz, Jessie M. Bethly

    1993-12-01

    The Video Distribution Subsystem (VDS) for Space Station Freedom provides onboard video communications. The VDS includes three major functions: external video switching; internal video switching; and sync and control generation. The Video Subsystem Routing (VSR) is a part of the VDS Manager Computer Software Configuration Item (VSM/CSCI). The VSM/CSCI is the software which controls and monitors the VDS equipment. VSR activates, terminates, and modifies video services in response to Tier-1 commands to connect video sources to video destinations. VSR selects connection paths based on availability of resources and updates the video routing lookup tables. This project involves investigating the current methodology to automate the Video Subsystem Routing and developing and testing a prototype as 'proof of concept' for designers.

  5. Space shuttle atmospheric revitalization subsystem/active thermal control subsystem computer program (users manual)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A shuttle (ARS) atmosphere revitalization subsystem active thermal control subsystem (ATCS) performance routine was developed. This computer program is adapted from the Shuttle EC/LSS Design Computer Program. The program was upgraded in three noteworthy areas: (1) The functional ARS/ATCS schematic has been revised to accurately synthesize the shuttle baseline system definition. (2) The program logic has been improved to provide a more accurate prediction of the integrated ARS/ATCS system performance. Additionally, the logic has been expanded to model all components and thermal loads in the ARS/ATCS system. (3) The program is designed to be used on the NASA JSC crew system division's programmable calculator system. As written the new computer routine has an average running time of five minutes. The use of desk top type calculation equipment, and the rapid response of the program provides the NASA with an analytical tool for trade studies to refine the system definition, and for test support of the RSECS or integrated Shuttle ARS/ATCS test programs.

  6. Design of high-order HTS dual-band bandpass filters with receiver subsystem for future mobile communication systems

    NASA Astrophysics Data System (ADS)

    Sekiya, N.

    2016-08-01

    We have developed two high-order high-temperature superconducting (HTS) dual-band bandpass filters (BPFs) with a receiver subsystem for future mobile communication systems. They feature stub-loaded hair-pin resonators with two types of microstrip lines between them. One has a six-pole design, and the other has an eight-pole design. Both were designed to operate at 2.15 GHz with a 43-MHz (2%) bandwidth for the lower passband and at 3.50 GHz with a 70-MHz (2%) bandwidth for the upper one. They were fabricated using YBa2Cu3Oy thin film on a CeO2-bufferd r-Al2O3 substrate. The measured results for both filters agree well with the simulated ones. The HTS dual-band BPF receiver subsystem uses a pulse tube cryocooler and a wideband low noise amplifier (LNA). We measured the frequency response of the six-pole dual-band BPF with and without a wideband LNA with a gain of 10 dB. The measured return losses were close.

  7. Systems integration of marketable subsystems: A collection of progress reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Monthly progress reports are given in the areas of marketable subsystems integration; development, design, and building of site data acquisition subsystems and data processing systems; operation of the solar test facility and a systems analysis.

  8. Development of a preprototype times wastewater recovery subsystem: Appendices

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dehner, G. F.

    1984-01-01

    This Master Test Plan outlines the test program to be performed by Hamilton Standard during the Urine Water Recovery Subsystem Program. Testing is divided into three phases: (1) design support testing; development component testing; and acceptance testing. The completion of this test program verifies the subsystem operation.

  9. Design and evaluation of Nemesis, a scalable, low-latency, message-passing communication subsystem.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buntinas, D.; Mercier, G.; Gropp, W.

    2005-12-02

    This paper presents a new low-level communication subsystem called Nemesis. Nemesis has been designed and implemented to be scalable and efficient both in the intranode communication context using shared-memory and in the internode communication case using high-performance networks and is natively multimethod-enabled. Nemesis has been integrated in MPICH2 as a CH3 channel and delivers better performance than other dedicated communication channels in MPICH2. Furthermore, the resulting MPICH2 architecture outperforms other MPI implementations in point-to-point benchmarks.

  10. Mark 3 VLBI system: Tropospheric calibration subsystems

    NASA Technical Reports Server (NTRS)

    Resch, G. M.

    1980-01-01

    Tropospheric delay calibrations are implemented in the Mark 3 system with two subsystems. Estimates of the dry component of tropospheric delay are provided by accurate barometric data from a subsystem of surface meteorological sensors (SMS). An estimate of the wet component of tropospheric delay is provided by a water vapor radiometer (WVR). Both subsystems interface directly to the ASCII Transceiver bus of the Mark 3 system and are operated by the control computer. Seven WVR's under construction are designed to operate in proximity to a radio telescope and can be commanded to point along the line-of-sight to a radio source. They should provide a delay estimate that is accurate to the + or - 2 cm level.

  11. Triple redundant computer system/display and keyboard subsystem interface

    NASA Technical Reports Server (NTRS)

    Gulde, F. J.

    1973-01-01

    Interfacing of the redundant display and keyboard subsystem with the triple redundant computer system is defined according to space shuttle design. The study is performed in three phases: (1) TRCS configuration and characteristics identification; (2) display and keyboard subsystem configuration and characteristics identification, and (3) interface approach definition.

  12. Integrated flight/propulsion control - Subsystem specifications for performance

    NASA Technical Reports Server (NTRS)

    Neighbors, W. K.; Rock, Stephen M.

    1993-01-01

    A procedure is presented for calculating multiple subsystem specifications given a number of performance requirements on the integrated system. This procedure applies to problems where the control design must be performed in a partitioned manner. It is based on a structured singular value analysis, and generates specifications as magnitude bounds on subsystem uncertainties. The performance requirements should be provided in the form of bounds on transfer functions of the integrated system. This form allows the expression of model following, command tracking, and disturbance rejection requirements. The procedure is demonstrated on a STOVL aircraft design.

  13. Thermal analyses of power subsystem components

    NASA Technical Reports Server (NTRS)

    Morehouse, Jeffrey H.

    1990-01-01

    The hiatus in the Space Shuttle (Orbiter) program provided time for an in-depth examination of all the subsystems and their past performance. Specifically, problems with reliability and/or operating limits were and continue to be of major engineering concern. The Orbiter Auxiliary Power Unit (APU) currently operates with electric resistance line heaters which are controlled with thermostats. A design option simplification of this heater subsystem is being considered which would use self-regulating heaters. A determination of the properties and thermal operating characteristics of these self-regulating heaters was needed. The Orbiter fuel cells are cooled with a freon loop. During a loss of external heat exchanger coolant flow, the single pump circulating the freon is to be left running. It was unknown what temperature and flow rate transient conditions of the freon would provide the required fuel cell cooling and for how long. The overall objective was the development of the thermal characterization and subsequent analysis of both the proposed self-regulating APU heater and the fuel cell coolant loop subsystem. The specific objective of the APU subsystem effort was to determine the feasibility of replacing the current heater and thermostat arrangement with a self-regulating heater. The specific objective of the fuel cell coolant subsystem work was to determine the tranient coolant temperature and associated flow rates during a loss-of-external heat exchanger flow.

  14. Subsystem design package for Mod 2 site data acquisition system: Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Mod II Site Data Acquisition Subsystem (SDAS) is designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system. The SDAS takes the data obtained from sensors located on the solar heating and/or cooling system, processes the data into a suitable format, stores the data for a period of time, and provides the capability for both telephone retrieval by the Central Data Processing System (CDPS) and manual retrieval of the data for transfer to the central site. The unit is designed so it will not degrade the operation of the solar heating/cooling system which it is monitoring.

  15. Some special sub-systems for stratospheric balloon flights in India

    NASA Astrophysics Data System (ADS)

    Damle, S. V.; Gokhale, G. S.; Kundapurkar, R. U.

    During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.

  16. Focal plane subsystem design and performance for atmospheric chemistry from geostationary orbit tropospheric emissions monitoring of pollution

    NASA Astrophysics Data System (ADS)

    Gilmore, A. S.; Philbrick, R. H.; Funderburg, J.

    2017-09-01

    Remote sensing of pollutants are enabled from a satellite in a geostationary orbit containing an imaging spectrometer encompassing the wavelength ranges of 290 - 490 nm and 540 - 740 nm. As the first of NASA's Earth Venture Instrument Program, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) program will utilize this instrument to measure hourly air quality over a large portion of North America. The focal plane subsystem (FPS) contains two custom designed and critically aligned full frame transfer charge coupled devices (active area: 1028 x 2048, 18 μm) within a focal plane array package designed for radiation tolerance and space charging rejection. In addition, the FPS contains custom distributed focal plane electronics that provide all necessary clocks and biases to the sensors, receives all analog data from the sensors and performs 14 bit analog to digital conversion for upstream processing. Finally, the FPS encompasses custom low noise cables connecting the focal plane array and associated electronics. This paper discusses the design and performance of this novel focal plane subsystem with particular emphasis on the optical performance achieved including alignment, quantum efficiency, and modulation transfer function.

  17. Development status of a preprototype water electrolysis subsystem

    NASA Technical Reports Server (NTRS)

    Martin, R. B.; Erickson, A. C.

    1981-01-01

    A preprototype water electrolysis subsystem was designed and fabricated for NASA's advanced regenerative life support program. A solid polymer is used for the cell electrolyte. The electrolysis module has 12 cells that can generate 5.5 kg/day of oxygen for the metabolic requirements of three crewmembers, for cabin leakage, and for the oxygen and hydrogen required for carbon dioxide collection and reduction processes. The subsystem can be operated at a pressure between 276 and 2760 kN/sq m and in a continuous constant-current, cyclic, or standby mode. A microprocessor is used to aid in operating the subsystem. Sensors and controls provide fault detection and automatic shutdown. The results of development, demonstration, and parametric testing are presented. Modifications to enhance operation in an integrated and manned test are described. Prospective improvements for the electrolysis subsystem are discussed.

  18. Performance/Design Requirements and Detailed Technical Description for a Computer-Directed Training Subsystem for Integration into the Air Force Phase II Base Level System.

    ERIC Educational Resources Information Center

    Butler, A. K.; And Others

    The performance/design requirements and a detailed technical description for a Computer-Directed Training Subsystem to be integrated into the Air Force Phase II Base Level System are described. The subsystem may be used for computer-assisted lesson construction and has presentation capability for on-the-job training for data automation, staff, and…

  19. Energy Efficient Engine Low Pressure Subsystem Flow Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.

    1998-01-01

    The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.

  20. Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Lynn, Sean R.; Veres, Joseph P.

    1998-01-01

    The objective of this study was to demonstrate the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). Detailed analyses were performed using three- dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off- design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component acro/mechanical interactions that previously were unknown to the designer until after hardware testing.

  1. Apollo experience report: Crew provisions and equipment subsystem

    NASA Technical Reports Server (NTRS)

    Mcallister, F.

    1972-01-01

    A description of the construction and use of crew provisions and equipment subsystem items for the Apollo Program is presented. The subsystem is composed principally of survival equipment, bioinstrumentation devices, medical components and accessories, water- and waste-management equipment, personal-hygiene articles, docking aids, flight garments (excluding the pressure garment assembly), and various other crew-related accessories. Particular attention is given to items and assemblies that presented design, development, or performance problems: the crew optical alinement sight system, the metering water dispenser, and the waste-management system. Changes made in design and materials to improve the fire safety of the hardware are discussed.

  2. Apollo experience report: Launch escape propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Townsend, N. A.

    1973-01-01

    The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.

  3. The ICCB Computer Based Facilities Inventory & Utilization Management Information Subsystem.

    ERIC Educational Resources Information Center

    Lach, Ivan J.

    The Illinois Community College Board (ICCB) Facilities Inventory and Utilization subsystem, a part of the ICCB management information system, was designed to provide decision makers with needed information to better manage the facility resources of Illinois community colleges. This subsystem, dependent upon facilities inventory data and course…

  4. Design development and test: Two-gas atmosphere control subsystem

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.

  5. Guidance, navigation, and control subsystem for the EOS-AM spacecraft

    NASA Technical Reports Server (NTRS)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John

    1992-01-01

    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.

  6. Design, fabrication, assembly, and test of a liquid hydrogen acquisition subsystem

    NASA Technical Reports Server (NTRS)

    Blackman, J. B.

    1974-01-01

    The development of a cryogenic fluid system to supply liquid hydrogen to a turbopump at flowrates up to 7.5 pounds per second for a period of approximately 5 seconds before refill, is discussed. Refill is accomplished in less than 10 seconds, during which a constant flowrate can be maintained to the pumps. Diagrams are provided to show the configuration of the system. Subsystem acceptance and functional tests, including acquisition subsystem expulsion, pressurization, and refill were performed. The tests included: (1) thermodynamic vent system operation, (2) warm-gas pressurization effects, (3) hydraulic pressure surge effects, (4) screen device operational limitations, (5) feedline vapor control, and (6) two-phase refill.

  7. Lessons Learned from the Node 1 Atmosphere Control and Storage and Water Recovery and Management Subsystem Design

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2010-01-01

    Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.

  8. Lessons Learned from the Node 1 Atmosphere Control and Storage and Water Recovery and Management Subsystem Design

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2011-01-01

    Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.

  9. System integration of marketable subsystems. [for residential solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress is reported in the following areas: systems integration of marketable subsystems; development, design, and building of site data acquisition subsystems; development and operation of the central data processing system; operation of the MSFC Solar Test Facility; and systems analysis.

  10. Development of a preprototype times wastewater recovery subsystem, addendum

    NASA Technical Reports Server (NTRS)

    Dehner, G. F.

    1984-01-01

    Six tasks are described reflecting subsystem hardware and software modifications and test evaluation of a TIMES wastewater recovery subsystem. The overall results are illustrated in a figure which shows the water production rate, the specific energy corrected to 26.5 VDC, and the product water conductivity at various points in the testing. Four tasks are described reflecting studies performed to develop a preliminary design concept for a next generation TIMES. The overall results of the study are the completion of major design analyses and preliminary configuration layout drawings.

  11. Return Beam Vidicon (RBV) panchromatic two-camera subsystem for LANDSAT-C

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A two-inch Return Beam Vidicon (RBV) panchromatic two camera Subsystem, together with spare components was designed and fabricated for the LANDSAT-C Satellite; the basis for the design was the Landsat 1&2 RBV Camera System. The purpose of the RBV Subsystem is to acquire high resolution pictures of the Earth for a mapping application. Where possible, residual LANDSAT 1 and 2 equipment was utilized.

  12. Shuttle user analysis (study 2.2). Volume 4: Standardized subsystem modules analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The capability to analyze payloads constructed of standardized modules was provided for the planning of future mission models. An inventory of standardized module designs previously obtained was used as a starting point. Some of the conclusions and recommendations are: (1) the two growth factor synthesis methods provide logical configurations for satellite type selection; (2) the recommended method is the one that determines the growth factor as a function of the baseline subsystem weight, since it provides a larger growth factor for small subsystem weights and results in a greater overkill due to standardization; (3) the method that is not recommended is the one that depends upon a subsystem similarity selection, since care must be used in the subsystem similarity selection; (4) it is recommended that the application of standardized subsystem factors be limited to satellites with baseline dry weights between about 700 and 6,500 lbs; and (5) the standardized satellite design approach applies to satellites maintainable in orbit or retrieved for ground maintenance.

  13. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  14. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low Earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  15. Optimum dry-cooling sub-systems for a solar air conditioner

    NASA Technical Reports Server (NTRS)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  16. On-orbit experience with the HEAO attitude control subsystem

    NASA Technical Reports Server (NTRS)

    Hoffman, D. P.; Berkery, E. A.

    1978-01-01

    The first satellite (HEAO-1) in the High Energy Astronomy Observatory Program series was launched successfully on Aug. 12, 1977. To date it has completed over nine months of orbital operation in a science data gathering mode. During this period all attitude control modes have been exercised and all primary mission objectives have been achieved. This paper highlights the characteristics of the attitude control subsystem design and compares the predicted performance with the actual flight operations experience. Environmental disturbance modeling, component hardware/software characteristics, and overall attitude control performance are reviewed and are found to compare very well with the prelaunch analytical predictions. Brief comments are also included regarding the operations aspects of the attitude control subsystem. The experience in this regard demonstrates the effectiveness of the design flexibility afforded by the presence of a general purpose digital processor in the subsystem flight hardware implementation.

  17. An application of software design and documentation language. [Galileo spacecraft command and data subsystem

    NASA Technical Reports Server (NTRS)

    Callender, E. D.; Clarkson, T. B.; Frasier, C. E.

    1980-01-01

    The software design and documentation language (SDDL) is a general purpose processor to support a lanugage for the description of any system, structure, concept, or procedure that may be presented from the viewpoint of a collection of hierarchical entities linked together by means of binary connections. The language comprises a set of rules of syntax, primitive construct classes (module, block, and module invocation), and language control directives. The result is a language with a fixed grammar, variable alphabet and punctuation, and an extendable vocabulary. The application of SDDL to the detailed software design of the Command Data Subsystem for the Galileo Spacecraft is discussed. A set of constructs was developed and applied. These constructs are evaluated and examples of their application are considered.

  18. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  19. NPS-SCAT: Systems Engineering and Payload Subsystem Design, Integration, and Testing of NPS’ First CubeSat

    DTIC Science & Technology

    2010-06-01

    Subsystem Design, Integration, and Testing of NPS’ First CubeSat 6. AUTHOR(S) Jenkins, Robert D. IV 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S...AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING...Experimental Mission SOIC Small Outline Integrated Circuit SOT Small Outline Transistor SpaceX Space Exploration Technologies Corporation SPI

  20. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  1. A new environment for multiple spacecraft power subsystem mission operations

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.

    1990-01-01

    The engineering analysis subsystem environment (EASE) is being developed to enable fewer controllers to monitor and control power and other spacecraft engineering subsystems. The EASE prototype has been developed to support simultaneous real-time monitoring of several spacecraft engineering subsystems. It is being designed to assist with offline analysis of telemetry data to determine trends, and to help formulate uplink commands to the spacecraft. An early version of the EASE prototype has been installed in the JPL Space Flight Operations Facility for online testing. The EASE prototype is installed in the Galileo Mission Support Area. The underlying concept, development, and testing of the EASE prototype and how it will aid in the ground operations of spacecraft power subsystems are discussed.

  2. Design and Analysis of a Hyperspectral Microwave Receiver Subsystem

    NASA Technical Reports Server (NTRS)

    Blackwell, W.; Galbraith, C.; Hancock, T.; Leslie, R.; Osaretin, I.; Shields, M.; Racette, P.; Hillard, L.

    2012-01-01

    Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance. HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth. A principal challenge is Size/Weight/Power scaling. Objectives of this work: 1) Demonstrate ultra-compact (100 cm3) 52-channel IF processor (enabler); 2) Demonstrate a hyperspectral microwave receiver subsystem; and 3) Deliver a flight-ready system to validate HM sounding.

  3. Apollo experience report: Command and service module sequential events control subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, G. W.

    1975-01-01

    The Apollo command and service module sequential events control subsystem is described, with particular emphasis on the major systems and component problems and solutions. The subsystem requirements, design, and development and the test and flight history of the hardware are discussed. Recommendations to avoid similar problems on future programs are outlined.

  4. Design concept definition study for an improved shuttle waste collection subsystem

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A no-risk approach for developing an Improved Waste Collection Subsystem (WCS) for the shuttle orbiter is described. The GE Improved WCS Concept builds on the experience of 14 Shuttle missions with over 400 man-days of service. This concept employs the methods of the existing flight-proven mature design, augmenting them to eliminate foreseen difficulties and to fully comply with the design requirements. The GE Improved WCS Concept includes separate storage for used wipes. Compaction of the wipes provides a solution to the capacity problem, fully satisfying the 210 man-day storage requirement. The added feature of in-flight serviceable storage space for the wipes creates a variable capacity feature which affords redundancy in the event of wipes compaction system failure. Addition of features permitting in-flight servicing of the feces storage tank creates a variable capacity WCS with easier post-flight servicing to support rapid turnaround of the Shuttle orbiter. When these features are combined with a vacuum pump to evacuate wipes and fecal storage tanks through replaceable odor/bacteria filters to the cabin, the GE Improved WCS satisfies the known requirements for Space Station use, including no venting to space.

  5. The Human Subsystem - Definition and Integration

    NASA Technical Reports Server (NTRS)

    vonBengston, Kristian; Twyford, Evan

    2007-01-01

    This paper will discuss the use of the human subsystem in development phases of human space flight. Any space mission has clearly defined subsystems, managed by experts attached to these. Clearly defined subsystems and correct use provide easier and more efficient development for each independent subsystem and for the relation between these subsystems. Furthermore, this paper will argue that a defined subsystem related to humans in space has not always been clearly present, and that correct implementation is perhaps missing, based on experience and survey data. Finally, the authors will discuss why the human subsystem has not been fully integrated, why it must be a mandatory part of the programming, a re-definition of the human subsystem, and suggestions of methods to improve the integration of human factors in the development.

  6. Display management subsystem, version 1: A user's eye view

    NASA Technical Reports Server (NTRS)

    Parker, Dolores

    1986-01-01

    The structure and application functions of the Display Management Subsystem (DMS) are described. The DMS, a subsystem of the Transportable Applications Executive (TAE), was designed to provide a device-independent interface for an image processing and display environment. The system is callable by C and FORTRAN applications, portable to accommodate different image analysis terminals, and easily expandable to meet local needs. Generic applications are also available for performing many image processing tasks.

  7. Orbital maneuvering subsystem functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    The functional paths of the Orbital Maneuver Subsystem (OMS) is defined. The operational flight instrumentation required for performance monitoring, fault detection, and annunciation is described. The OMS is a pressure fed rocket engine propulsion subsystem. One complete OMS shares each of the two auxiliary propulsion subsystem pods with a reaction control subsystem. Each OMS is composed of a pressurization system, a propellant tanking system, and a gimbaled rocket engine. The design, development, and operation of the system are explained. Diagrams of the system are provided.

  8. Velocity control propulsion subsystem of the Radio Astronomy Explorer satellite for Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Braught, W.; Moore, E. K.; Steinberg, R. L.

    1973-01-01

    The Velocity Control Propulsion Subsystem (VCPS) was designed the propulsion required for trajectory and lunar orbit corrections of the spacecraft. A GFE clamp assembly physically attaches the VCPS to the spacecraft and the unit is ejected after completing the required corrections. The VCPS is physically and functionally separated from the spacecraft except for the electrical and telemetry interfaces. A GFE transtage provides the superstructure on which the VCPS is assembled. The subsystem consists of two 5 foot pound rocket engine assemblies, 4 propellant tanks, 2 latching valves, 2 fill and drain valves, a system filter, pressure transducer, gas and propellant manifolds and electrical heaters and thermostats. The RAE-B VCPS program covered the design, manufacture and qualification of one subsystem. This subsystem was to be manufactured, subjected to qualification tests; and refurbished, if necessary, prior to flight. The VCPS design and test program precluded the need for refurbishing the subsystem and the unit was delivered to GSFC at the conclusion of the program.

  9. Evolution of magnetic disk subsystems

    NASA Astrophysics Data System (ADS)

    Kaneko, Satoru

    1994-06-01

    The higher recording density of magnetic disk realized today has brought larger storage capacity per unit and smaller form factors. If the required access performance per MB is constant, the performance of large subsystems has to be several times better. This article describes mainly the technology for improving the performance of the magnetic disk subsystems and the prospects of their future evolution. Also considered are 'crosscall pathing' which makes the data transfer channel more effective, 'disk cache' which improves performance coupling with solid state memory technology, and 'RAID' which improves the availability and integrity of disk subsystems by organizing multiple disk drives in a subsystem. As a result, it is concluded that since the performance of the subsystem is dominated by that of the disk cache, maximation of the performance of the disk cache subsystems is very important.

  10. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Sewy, D.; Pickering, C.; Sauers, R.

    1984-01-01

    The purpose of the phase 2 of the power subsystem automation study was to demonstrate the feasibility of using computer software to manage an aspect of the electrical power subsystem on a space station. The state of the art in expert systems software was investigated in this study. This effort resulted in the demonstration of prototype expert system software for managing one aspect of a simulated space station power subsystem.

  11. Mars Science Laboratory Sample Acquisition, Sample Processing and Handling: Subsystem Design and Test Challenges

    NASA Technical Reports Server (NTRS)

    Jandura, Louise

    2010-01-01

    The Sample Acquisition/Sample Processing and Handling subsystem for the Mars Science Laboratory is a highly-mechanized, Rover-based sampling system that acquires powdered rock and regolith samples from the Martian surface, sorts the samples into fine particles through sieving, and delivers small portions of the powder into two science instruments inside the Rover. SA/SPaH utilizes 17 actuated degrees-of-freedom to perform the functions needed to produce 5 sample pathways in support of the scientific investigation on Mars. Both hardware redundancy and functional redundancy are employed in configuring this sampling system so some functionality is retained even with the loss of a degree-of-freedom. Intentional dynamic environments are created to move sample while vibration isolators attenuate this environment at the sensitive instruments located near the dynamic sources. In addition to the typical flight hardware qualification test program, two additional types of testing are essential for this kind of sampling system: characterization of the intentionally-created dynamic environment and testing of the sample acquisition and processing hardware functions using Mars analog materials in a low pressure environment. The overall subsystem design and configuration are discussed along with some of the challenges, tradeoffs, and lessons learned in the areas of fault tolerance, intentional dynamic environments, and special testing

  12. Exploring relationships of human-automation interaction consequences on pilots: uncovering subsystems.

    PubMed

    Durso, Francis T; Stearman, Eric J; Morrow, Daniel G; Mosier, Kathleen L; Fischer, Ute; Pop, Vlad L; Feigh, Karen M

    2015-05-01

    We attempted to understand the latent structure underlying the systems pilots use to operate in situations involving human-automation interaction (HAI). HAI is an important characteristic of many modern work situations. Of course, the cognitive subsystems are not immediately apparent by observing a functioning system, but correlations between variables may reveal important relations. The current report examined pilot judgments of 11 HAI dimensions (e.g., Workload, Task Management, Stress/Nervousness, Monitoring Automation, and Cross-Checking Automation) across 48 scenarios that required airline pilots to interact with automation on the flight deck. We found three major clusters of the dimensions identifying subsystems on the flight deck: a workload subsystem, a management subsystem, and an awareness subsystem. Relationships characterized by simple correlations cohered in ways that suggested underlying subsystems consistent with those that had previously been theorized. Understanding the relationship among dimensions affecting HAI is an important aspect in determining how a new piece of automation designed to affect one dimension will affect other dimensions as well. © 2014, Human Factors and Ergonomics Society.

  13. System design of the Pioneer Venus spacecraft. Volume 10: Propulsion/orbit insertion subsystem studies

    NASA Technical Reports Server (NTRS)

    Rosenstein, B. J.

    1973-01-01

    The Pioneer Venus orbiter and multiprobe missions require spacecraft maneuvers for successful accomplishment. This report presents the results of studies performed to define the propulsion subsystems required to perform those maneuvers. Primary goals were to define low mass subsystems capable of performing the required missions with a high degree of reliability for low cost. A review was performed of all applicable propellants and thruster types, as well as propellant management techniques. Based on this review, a liquid monopropellant hydrazine propulsion subsystem was selected for all multiprobe mission maneuvers, and for all orbiter mission maneuvers except orbit insertion. A pressure blowdown operating mode was selected using helium as the pressurizing gas. The forces associated with spacecraft rotations were used to control the liquid-gas interface and resulting propellant orientation within the tank.

  14. Guidance, navigation, and control subsystem equipment selection algorithm using expert system methods

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1991-01-01

    Enhanced engineering tools can be obtained through the integration of expert system methodologies and existing design software. The application of these methodologies to the spacecraft design and cost model (SDCM) software provides an improved technique for the selection of hardware for unmanned spacecraft subsystem design. The knowledge engineering system (KES) expert system development tool was used to implement a smarter equipment section algorithm than that which is currently achievable through the use of a standard data base system. The guidance, navigation, and control subsystems of the SDCM software was chosen as the initial subsystem for implementation. The portions of the SDCM code which compute the selection criteria and constraints remain intact, and the expert system equipment selection algorithm is embedded within this existing code. The architecture of this new methodology is described and its implementation is reported. The project background and a brief overview of the expert system is described, and once the details of the design are characterized, an example of its implementation is demonstrated.

  15. Subsystem eigenstate thermalization hypothesis

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly; Lashkari, Nima; Liu, Hong

    2018-01-01

    Motivated by the qualitative picture of canonical typicality, we propose a refined formulation of the eigenstate thermalization hypothesis (ETH) for chaotic quantum systems. This formulation, which we refer to as subsystem ETH, is in terms of the reduced density matrix of subsystems. This strong form of ETH outlines the set of observables defined within the subsystem for which it guarantees eigenstate thermalization. We discuss the limits when the size of the subsystem is small or comparable to its complement. In the latter case we outline the way to calculate the leading volume-proportional contribution to the von Neumann and Renyi entanglment entropies. Finally, we provide numerical evidence for the proposal in the case of a one-dimensional Ising spin chain.

  16. FLPP NGL Structural Subsystems Activity

    NASA Astrophysics Data System (ADS)

    Jaredson, D.; Ramusat, G.; Appel, S.; Cardone, T.; Persson, J.; Baiocco, P.; Lavelle, F.; Bouilly, Th.

    2012-07-01

    The ESA Future Launchers Preparatory Programme (FLPP) is the basis for new paradigms, investigating the key elements, logic and roadmaps to prepare the development of the safe, reliable and low cost next European Launch Vehicle (LV) for access to space (dubbed NGL - Next Generation LV), with an initial operational capability mid-next decade. In addition to carry cargo to conventional GTO or SSO, the European NGL has to be flexible enough to cope with new pioneering institutional missions as well as the evolving commercial payloads market. This achievement is broached studying three main areas relevant to ELVs: System concepts, Propulsion and Core Technology During the preliminary design activity, a number of design alternatives concerning NGL main structural subsystems have been investigated. Technology is one of the ways to meet the NGL challenges to either improve the performances or to reduce the cost or both. The relevant requirements allow to steer a ‘top-down’ approach for their conception and to propose the most effective technologies. Furthermore, all these technology developments represent a significant ‘bottom-up’ approach investment and concern a large range of activities. The structural subsystems portfolio of the FLPP ‘Core Technology’ activity encompasses major cutting-edge challenges for maturation of the various subsystems leading to reduce overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic propellants, significantly reducing fabrication and operations cost, etc. to derive performing upper and booster stages. Application of concurrent engineering methods will allow developments of performing technology demonstrators in terms of need, demonstration objective, size and cost yielding to safe, low-risk technical approaches for a future development. Potential ability of these advanced structural LV technologies to satisfy the system requirements of the NGL and their current

  17. Pressurization, Pneumatic, and Vent Subsystems of the X-34 Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Steadman, T. E.; Brown, T. M.; Knight, K. C.; White, C. E., Jr.; Champion, R. H., Jr.

    1998-01-01

    In pressurization systems, regulators and orifices are use to control the flow of the pressurant. For the X-34 Main Propulsion System, three pressurization subsystem design configuration options were considered. In the first option, regulators were used while in the other options, orifices were considered. In each design option, the vent/relief system must be capable of relieving the pressurant flow without allowing the tank pressure to rise above proof, therefore, impacts on the propellant tank vent system were investigated and a trade study of the pressurization system was conducted. The analysis indicated that design option using regulators poses least risk. Then, a detailed transient thermal/fluid analysis of the recommended pressurization system was performed. Helium usage, thermodynamic conditions, and overpressurization of each propellant tank were evaluated. The pneumatic and purge subsystem is used for pneumatic valve actuation, Inter-Propellant Seal purges, Engine Spin Start, and engine purges at the required interface pressures, A transient analysis of the pneumatic and purge subsystem provided helium usage and flow rates to Inter-Propellant Seal and engine interfaces. Fill analysis of the helium bottles of pressurization and pneumatic subsystems during ground operation was performed. The required fill time and the stored

  18. Receiver subsystem analysis report (RADL Item 4-1). The 10-MWe solar thermal central-receiver pilot plant: Solar-facilities design integration

    NASA Astrophysics Data System (ADS)

    1982-04-01

    The results of thermal hydraulic, design for the stress analyses which are required to demonstrate that the receiver design for the Barstow Solar Pilot Plant satisfies the general design and performance requirements during the plant's design life are presented. Recommendations are made for receiver operation. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding.

  19. Site Data Acquisition Subsystem (SDAS) Mod 1, installation, operation, and maintenance manual

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Site Data Acquisition Subsystem (SDAS) Mod 1 was designed to collect sensor measurement data from solar energy demonstration site. This report provides a brief description of the SDAS and defines the installation requirements and procedures, the operations description and the procedures for field maintenance of the subsystem.

  20. Development of an advanced Sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Cusick, R. J.

    1981-01-01

    A preprototype Sabatier CO2 reduction subsystem was successfully designed, fabricated and tested. The lightweight, quick starting (less than 5 minutes) reactor utlizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a simple, passively controlled reactor design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with process flows equivalent to a crew size of up to five persons. The subsystem requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation.

  1. Mathematical modeling of control subsystems for CELSS: Application to diet

    NASA Technical Reports Server (NTRS)

    Waleh, Ahmad; Nguyen, Thoi K.; Kanevsky, Valery

    1991-01-01

    The dynamic control of a Closed Ecological Life Support System (CELSS) in a closed space habitat is of critical importance. The development of a practical method of control is also a necessary step for the selection and design of realistic subsystems and processors for a CELSS. Diet is one of the dynamic factors that strongly influences, and is influenced, by the operational states of all major CELSS subsystems. The problems of design and maintenance of a stable diet must be obtained from well characterized expert subsystems. The general description of a mathematical model that forms the basis of an expert control program for a CELSS is described. The formulation is expressed in terms of a complete set of time dependent canonical variables. System representation is dynamic and includes time dependent storage buffers. The details of the algorithm are described. The steady state results of the application of the method for representative diets made from wheat, potato, and soybean are presented.

  2. International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.

  3. Subsystems component definitions summary program

    NASA Technical Reports Server (NTRS)

    Scott, A. Don; Thomas, Carolyn C.; Simonsen, Lisa C.; Hall, John B., Jr.

    1991-01-01

    A computer program, the Subsystems Component Definitions Summary (SUBCOMDEF), was developed to provide a quick and efficient means of summarizing large quantities of subsystems component data in terms of weight, volume, resupply, and power. The program was validated using Space Station Freedom Program Definition Requirements Document data for the internal and external thermal control subsystem. Once all component descriptions, unit weights and volumes, resupply, and power data are input, the user may obtain a summary report of user-specified portions of the subsystem or of the entire subsystem as a whole. Any combination or all of the parameters of wet and dry weight, wet and dry volume, resupply weight and volume, and power may be displayed. The user may vary the resupply period according to individual mission requirements, as well as the number of hours per day power consuming components operate. Uses of this program are not limited only to subsystem component summaries. Any applications that require quick, efficient, and accurate weight, volume, resupply, or power summaries would be well suited to take advantage of SUBCOMDEF's capabilities.

  4. Development and testing of a source subsystem for the supporting development PMAD DC test bed

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1991-01-01

    The supporting Development Power Management and Distribution (PMAD) DC Test Bed is described. Its benefits to the Space Station Freedom Electrical Power System design are discussed along with a short description of how the PMAD DC Test Bed was systematically integrated. The Source Subsystem of the PMAD DC Test Bed consisting of a Sequential Shunt Unit (SSU) and a Battery Charge/Discharge Unit (BCDU) is introduced. The SSU is described in detail and component level test data is presented. Next, the BCDU's operation and design is given along with component level test data. The Source Subsystem is then presented and early data given to demonstrate an effective subsystem design.

  5. The charged particle accelerators subsystems modeling

    NASA Astrophysics Data System (ADS)

    Averyanov, G. P.; Kobylyatskiy, A. V.

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept.

  6. Virtual quantum subsystems.

    PubMed

    Zanardi, P

    2001-08-13

    The physical resources available to access and manipulate the degrees of freedom of a quantum system define the set A of operationally relevant observables. The algebraic structure of A selects a preferred tensor product structure, i.e., a partition into subsystems. The notion of compoundness for quantum systems is accordingly relativized. Universal control over virtual subsystems can be achieved by using quantum noncommutative holonomies

  7. A thermal control approach for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Oglebay, J. C.

    1979-01-01

    A thrust subsystem thermal control design is defined for a Solar Electric Propulsion System (SEPS) proposed for the comet Halley Flyby/comet Tempel 2 rendezvous mission. A 114 node analytic model, developed and coded on the systems improved numerical differencing analyzer program, was employed. A description of the resulting thrust subsystem thermal design is presented as well as a description of the analytic model and comparisons of the predicted temperature profiles for various SEPS thermal configurations that were generated using this model. It was concluded that: (1) a BIMOD engine system thermal design can be autonomous; (2) an independent thrust subsystem thermal design is feasible; (3) the interface module electronics temperatures can be controlled by a passive radiator and supplementary heaters; (4) maintaining heat pipes above the freezing point would require an additional 322 watts of supplementary heating power for the situation where no thrusters are operating; (5) insulation is required around the power processors, and between the interface module and the avionics module, as well as in those areas which may be subjected to solar heating; and (6) insulation behind the heat pipe radiators is not necessary.

  8. Selected Lessons Learned in Space Shuttle Orbiter Propulsion and Power Subsystems

    NASA Technical Reports Server (NTRS)

    Hernandez, Francisco J.; Martinez, Hugo; Ryan, Abigail; Westover, Shayne; Davies, Frank

    2011-01-01

    Over its 30 years of space flight history, plus the nearly 10 years of design, development test and evaluation, the Space Shuttle Orbiter is full of lessons learned in all of its numerous and complex subsystems. In the current paper, only selected lessons learned in the areas of the Orbiter propulsion and power subsystems will be described. The particular Orbiter subsystems include: Auxiliary Power Unit (APU), Hydraulics and Water Spray Boiler (WSB), Mechanical Flight Controls, Main Propulsion System (MPS), Fuel Cells and Power Reactant and Storage Devices (PRSD), Orbital Maneuvering System (OMS), Reaction Control System (RCS), Electrical Power Distribution (EPDC), electrical wiring and pyrotechnics. Given the complexity and extensive history of each of these subsystems, and the limited scope of this paper, it is impossible to include most of the lessons learned; instead the attempt will be to present a selected few or key lessons, in the judgment of the authors. Each subsystem is presented separate, beginning with an overview of the hardware and their function, a short description of a few historical problems and their lessons, followed by a more comprehensive table listing of the major subsystem problems and lessons. These tables serve as a quick reference for lessons learned in each subsystem. In addition, this paper will establish common lessons across subsystems as well as concentrate on those lessons which are deemed to have the highest applicability to future space flight programs.

  9. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  10. System design of the Pioneer Venus spacecraft. Volume 9: Attitude control/mechanisms subsystems studies

    NASA Technical Reports Server (NTRS)

    Neil, A. L.

    1973-01-01

    The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.

  11. Development of a two-stage membrane-based wash-water reclamation subsystem

    NASA Technical Reports Server (NTRS)

    Mccray, S. B.

    1988-01-01

    A two-stage membrane-based subsystem was designed and constructed to enable the recycle of wash waters generated in space. The first stage is a fouling-resistant tube-side-feed hollow-fiber ultrafiltration module, and the second stage is a spiral-wound reverse-osmosis module. Throughout long-term tests, the subsystem consistently produced high-quality permeate, processing actual wash water to 95 percent recovery.

  12. Preprototype vapor compression distillation subsystem. [recovering potable water from wastewater

    NASA Technical Reports Server (NTRS)

    Ellis, G. S.; Wynveen, R. A.; Schubert, F. H.

    1979-01-01

    A three-person capacity preprototype vapor compression distillation subsystem for recovering potable water from wastewater aboard spacecraft was designed, assembled, and tested. The major components of the subsystem are: (1) a distillation unit which includes a compressor, centrifuge, central shaft, and outer shell; (2) a purge pump; (3) a liquids pump; (4) a post-treat cartridge; (5) a recycle/filter tank; (6) an evaporator high liquid level sensor; and (7) the product water conductivity monitor. A computer based control monitor instrumentation carries out operating mode change sequences, monitors and displays subsystem parameters, maintains intramode controls, and stores and displays fault detection information. The mechanical hardware occupies 0.467 m3, requires 171 W of electrical power, and has a dry weight of 143 kg. The subsystem recovers potable water at a rate of 1.59 kg/hr, which is equivalent to a duty cycle of approximately 30% for a crew of three. The product water has no foul taste or odor. Continued development of the subsystem is recommended for reclaiming water for human consumption as well as for flash evaporator heat rejection, urinal flushing, washing, and other on-board water requirements.

  13. Explosive-actuated valve design concept that eliminates blow-by. [for the TOPS spacecraft trajectory correction propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Hagler, R., Jr.

    1974-01-01

    A method of evaluating the normally open normally closed, explosive actuated valves that were selected for use in the trajectory correction propulsion subsystem of the Thermoelectric Outer Planet Spacecraft (TOPS) program is presented. The design philosophy which determined the requirements for highly reliable valves that could provide the performance capability during long duration (10 year) missions to the outer planets is discussed. The techniques that were used to fabricate the valves and manifold ten valves into an assembly with the capability of five propellant-flow initiation/isolation sequences are described. The test program, which was conducted to verify valve design requirements, is outlined and the more significant results are shown.

  14. MAIUS-1- Vehicle, Subsystems Design and Mission Operations

    NASA Astrophysics Data System (ADS)

    Stamminger, A.; Ettl, J.; Grosse, J.; Horschgen-Eggers, M.; Jung, W.; Kallenbach, A.; Raith, G.; Saedtler, W.; Seidel, S. T.; Turner, J.; Wittkamp, M.

    2015-09-01

    In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a BoseEinstein Condensate in space and performing atom interferometry on a sounding rocket [3]. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian 53 1 motor as 1 st stage, a 530 motor as 2nd stage, a conical motor adapter, a despin module, a payload adapter, the MAIUS-A experiment consisting of five experiment modules, an attitude control system module, a newly developed conical service system, and a two-staged recovery system including a nosecone. In contrast to usual payloads on VSB-30 rockets, the payload has a diameter of 500 mm due to constraints of the scientific experiment. Because of this change in design, a blunted nosecone is necessary to guarantee the required static stability during the ascent phase of the flight. This paper will give an overview on the subsystems which have been built at DLR MORABA, especially the newly developed service system. Further, it will contain a description of the MAIUS-1 vehicle, the mission and the unique requirements on operations and attitude control, which is additionally required to achieve a required attitude with respect to the nadir vector. Additionally to a usual microgravity environment, the MAIUS-l payload requires attitude control to achieve a required attitude with respect to the nadir vector.

  15. Ice pack heat sink subsystem - phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, and test of a functional laboratory model ice pack heat sink subsystem are discussed. Operating instructions to include mechanical and electrical schematics, maintenance instructions, and equipment specifications are presented.

  16. Advanced large scale GaAs monolithic IF switch matrix subsystem

    NASA Technical Reports Server (NTRS)

    Ch'en, D. R.; Petersen, W. C.; Kiba, W. M.

    1992-01-01

    Attention is given to a novel chip design and packaging technique to overcome the limitations due to the high signal isolation requirements of advanced communications systems. A hermetically sealed 6 x 6 monolithic GaAs switch matrix subsystem with integral control electronics based on this technique is presented. An 0-dB insertion loss and 60-dB crosspoint isolation over a 3.5-to-6-GHz band were achieved. The internal controller portion of the switching subsystem provides crosspoint control via a standard RS-232 computer interface and can be synchronized with an external systems control computer. The measured performance of this advanced switching subsystem is fully compatible with relatively static 'switchboard' as well as dynamic TDMA modes of operation.

  17. Optimisation study of a vehicle bumper subsystem with fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Farkas, L.; Moens, D.; Donders, S.; Vandepitte, D.

    2012-10-01

    This paper deals with the design and optimisation for crashworthiness of a vehicle bumper subsystem, which is a key scenario for vehicle component design. The automotive manufacturers and suppliers have to find optimal design solutions for such subsystems that comply with the conflicting requirements of the regulatory bodies regarding functional performance (safety and repairability) and regarding the environmental impact (mass). For the bumper design challenge, an integrated methodology for multi-attribute design engineering of mechanical structures is set up. The integrated process captures the various tasks that are usually performed manually, this way facilitating the automated design iterations for optimisation. Subsequently, an optimisation process is applied that takes the effect of parametric uncertainties into account, such that the system level of failure possibility is acceptable. This optimisation process is referred to as possibility-based design optimisation and integrates the fuzzy FE analysis applied for the uncertainty treatment in crash simulations. This process is the counterpart of the reliability-based design optimisation used in a probabilistic context with statistically defined parameters (variabilities).

  18. On DESTINY Science Instrument Electrical and Electronics Subsystem Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Benford, Dominic J.; Lauer, Tod R.

    2009-01-01

    Future space missions are going to require large focal planes with many sensing arrays and hundreds of millions of pixels all read out at high data rates'' . This will place unique demands on the electrical and electronics (EE) subsystem design and it will be critically important to have high technology readiness level (TRL) EE concepts ready to support such missions. One such omission is the Joint Dark Energy Mission (JDEM) charged with making precise measurements of the expansion rate of the universe to reveal vital clues about the nature of dark energy - a hypothetical form of energy that permeates all of space and tends to increase the rate of the expansion. One of three JDEM concept studies - the Dark Energy Space Telescope (DESTINY) was conducted in 2008 at the NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. This paper presents the EE subsystem framework, which evolved from the DESTINY science instrument study. It describes the main challenges and implementation concepts related to the design of an EE subsystem featuring multiple focal planes populated with dozens of large arrays and millions of pixels. The focal planes are passively cooled to cryogenic temperatures (below 140 K). The sensor mosaic is controlled by a large number of Readout Integrated Circuits and Application Specific Integrated Circuits - the ROICs/ASICs in near proximity to their sensor focal planes. The ASICs, in turn, are serviced by a set of "warm" EE subsystem boxes performing Field Programmable Gate Array (FPGA) based digital signal processing (DSP) computations of complex algorithms, such as sampling-up-the-ramp algorithm (SUTR), over large volumes of fast data streams. The SUTR boxes are supported by the Instrument Control/Command and Data Handling box (ICDH Primary and Backup boxes) for lossless data compression, command and low volume telemetry handling, power conversion and for communications with the spacecraft. The paper outlines how the JDEM DESTINY concept

  19. Spacelab data management subsystem phase B study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Spacelab data management system is described. The data management subsystem (DMS) integrates the avionics equipment into an operational system by providing the computations, logic, signal flow, and interfaces needed to effectively command, control, monitor, and check out the experiment and subsystem hardware. Also, the DMS collects/retrieves experiment data and other information by recording and by command of the data relay link to ground. The major elements of the DMS are the computer subsystem, data acquisition and distribution subsystem, controls and display subsystem, onboard checkout subsystem, and software. The results of the DMS portion of the Spacelab Phase B Concept Definition Study are analyzed.

  20. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1987-08-01

    This interim technical report presents results of research on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. A specific objective is to extend the state-of-the-art of the Computer Aided Design (CAD) of the monolithic microwave and millimeter wave integrated circuits (MIMIC). In this reporting period, we have derived a new model for the high electron mobility transistor (HEMT) based on a nonlinear charge control formulation which takes into consideration the variation of the 2DEG distance offset from the heterointerface as a function of bias. Pseudomorphic InGaAs/GaAs HEMT devices have been successfully fabricated at UCSD. For a 1 micron gate length, a maximum transconductance of 320 mS/mm was obtained. In cooperation with TRW, devices with 0.15 micron and 0.25 micron gate lengths have been successfully fabricated and tested. New results on the design of ultra-wideband distributed amplifiers using 0.15 micron pseudomorphic InGaAs/GaAs HEMT's have also been obtained. In addition, two-dimensional models of the submicron MESFET's, HEMT's and HBT's are currently being developed for the CRAY X-MP/48 supercomputer. Preliminary results obtained are also presented in this report.

  1. Periodic subsystem density-functional theory

    NASA Astrophysics Data System (ADS)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2014-11-01

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  2. Periodic subsystem density-functional theory.

    PubMed

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  3. Electrochemical carbon dioxide concentrator subsystem development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlausen, M. J.; Schubert, F. H.

    1983-01-01

    The fabrication of a one-person Electrochemical Depolarized Carbon Dioxide Concentrator subsystem incorporating advanced electrochemical, mechanical, and control and monitor instrumentation concepts is discussed. This subsystem included an advanced liquid cooled unitized core composite cell module and integrated electromechanical components. Over 1800 hours with the subsystem with removal efficiencies between 90%. and 100%; endurance tests with a Fluid Control Assembly which integrates 11 gas handling components of the subsystem; and endurance testing of a coolant control assembly which integrates a coolant pump, diverter valve and a liquid accumulator were completed.

  4. Constrained subsystem density functional theory.

    PubMed

    Ramos, Pablo; Pavanello, Michele

    2016-08-03

    Constrained Subsystem Density Functional Theory (CSDFT) allows to compute diabatic states for charge transfer reactions using the machinery of the constrained DFT method, and at the same time is able to embed such diabatic states in a molecular environment via a subsystem DFT scheme. The CSDFT acronym is chosen to reflect the fact that on top of the subsystem DFT approach, a constraining potential is applied to each subsystem. We show that CSDFT can successfully tackle systems as complex as single stranded DNA complete of its backbone, and generate diabatic states as exotic as a hole localized on a phosphate group as well as on the nucleobases. CSDFT will be useful to investigators needing to evaluate the environmental effect on charge transfer couplings for systems in condensed phase environments.

  5. Opto-mechanical subsystem of a 10 micrometer wavelength receiver terminal. Waveguide laser local oscillator. Servo system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An engineering model opto-mechanical subsystem for a 10.6-micrometer laser heterodyne receiver is developed, and a CO2 waveguide local oscillator and servo electronics are provided for the receiver. Design goals are presented for the subsystems and overall package design is described. Thermal and mechanical distortion loading tests were performed and the results are included.

  6. Technology advancement of an oxygen generation subsystem

    NASA Technical Reports Server (NTRS)

    Lee, M. K.; Burke, K. A.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    An oxygen generation subsystem based on water electrolysis was developed and tested to further advance the concept and technology of the spacecraft air revitalization system. Emphasis was placed on demonstrating the subsystem integration concept and hardware maturity at a subsystem level. The integration concept of the air revitalization system was found to be feasible. Hardware and technology of the oxygen generation subsystem was demonstrated to be close to the preprototype level. Continued development of the oxygen generation technology is recommended to further reduce the total weight penalties of the oxygen generation subsystem through optimization.

  7. Automated biowaste sampling system, solids subsystem operating model, part 2

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Mangialardi, J. K.; Stauffer, R. E.

    1973-01-01

    The detail design and fabrication of the Solids Subsystem were implemented. The system's capacity for the collection, storage or sampling of feces and vomitus from six subjects was tested and verified.

  8. Landsat 9 OLI 2 focal plane subsystem: design, performance, and status

    NASA Astrophysics Data System (ADS)

    Malone, Kevin J.; Schrein, Ronald J.; Bradley, M. Scott; Irwin, Ronda; Berdanier, Barry; Donley, Eric

    2017-09-01

    The Landsat 9 mission will continue the legacy of Earth remote sensing that started in 1972. The Operational Land Imager 2 (OLI 2) is one of two instruments on the Landsat 9 satellite. The OLI 2 instrument is essentially a copy of the OLI instrument flying on Landsat 8. A key element of the OLI 2 instrument is the focal plane subsystem, or FPS, which consists of the focal plane array (FPA), the focal plane electronics (FPE) box, and low-thermal conductivity cables. This paper presents design details of the OLI 2 FPS. The FPA contains 14 critically-aligned focal plane modules (FPM). Each module contains 6 visible/near-IR (VNIR) detector arrays and three short-wave infrared (SWIR) arrays. A complex multi-spectral optical filter is contained in each module. Redundant pixels for each array provide exceptional operability. Spare detector modules from OLI were recharacterized after six years of storage. Radiometric test results are presented and compared with data recorded in 2010. Thermal, optical, mechanical and structural features of the FPA will be described. Special attention is paid to the thermal design of the FPA since thermal stability is crucial to ensuring low-noise and low-drift operation of the detectors which operate at -63°C. The OLI 2 FPE provides power, timing, and control to the focal plane modules. It also digitizes the video data and formats it for the solid-state recorder. Design improvements to the FPA-FPE cables will be discussed and characterization data will be presented. The paper will conclude with the status of the flight hardware assembly and testing.

  9. Laser and Optical Subsystem for NASA's Cold Atom Laboratory

    NASA Astrophysics Data System (ADS)

    Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert

    2016-05-01

    We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.

  10. Development and testing of the data automation subsystem for the Mariner Mars 1971 spacecraft

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The data automation subsystem designed and built as part of the Mariner Mars 1971 program, sequences and controls the science instruments and formats all science data. A description of the subsystem with emphasis on major changes relative to Mariner Mars 1969 is presented. In addition, the complete test phase is described.

  11. Periodic subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genova, Alessandro; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dualmore » approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.« less

  12. Power, Avionics and Software - Phase 1.0:. [Subsystem Integration Test Report

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This report describes Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This report covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies to exchange messages and to perform audio testing of both inbound and outbound channels. This report describes each test performed, defines the test, the data, and provides conclusions and recommendations.

  13. Space Shuttle Orbiter audio subsystem. [to communication and tracking system

    NASA Technical Reports Server (NTRS)

    Stewart, C. H.

    1978-01-01

    The selection of the audio multiplex control configuration for the Space Shuttle Orbiter audio subsystem is discussed and special attention is given to the evaluation criteria of cost, weight and complexity. The specifications and design of the subsystem are described and detail is given to configurations of the audio terminal and audio central control unit (ATU, ACCU). The audio input from the ACCU, at a signal level of -12.2 to 14.8 dBV, nominal range, at 1 kHz, was found to have balanced source impedance and a balanced local impedance of 6000 + or - 600 ohms at 1 kHz, dc isolated. The Lyndon B. Johnson Space Center (JSC) electroacoustic test laboratory, an audio engineering facility consisting of a collection of acoustic test chambers, analyzed problems of speaker and headset performance, multiplexed control data coupled with audio channels, and the Orbiter cabin acoustic effects on the operational performance of voice communications. This system allows technical management and project engineering to address key constraining issues, such as identifying design deficiencies of the headset interface unit and the assessment of the Orbiter cabin performance of voice communications, which affect the subsystem development.

  14. A miniaturized HTS microwave receiver front-end subsystem for radar and communication applications

    NASA Astrophysics Data System (ADS)

    Bian, Yongbo; Guo, Jin; Gao, Changzheng; Li, Chunguang; Li, Hong; Wang, Jia; Cui, Bin; He, Xiaofeng; Li, Chao; Li, Na; Li, Guoqiang; Zhang, Qiang; Zhang, Xueqiang; Meng, Jibao; He, Yusheng

    2010-08-01

    This paper presents a miniaturized high performance high temperature superconducting (HTS) microwave receiver front-end subsystem, which uses a mini stirling cryocooler to cool a high selective HTS filter and a low noise amplifier (LNA). The HTS filter was miniaturized by using specially designed compact resonators and fabricating with double-sided YBCO films on LAO substrate which has a relatively high permittivity. The LNA was specially designed to work at cryogenic temperature with noise figure of 0.27 dB at 71 K. The mini cryocooler, which is widely used in infrared detectors, has a smaller size (60 mm × 80 mm × 100 mm) and a lighter weight (340 g) than the stirling cryocoolers commonly used in other HTS filter subsystem. The whole front-end subsystem, including a HTS filter, a LNA, a cryocooler and the vacuum chamber, has a size of only φ120 mm × 175 mm and a weight of only 3.3 kg. The microwave devices inside the subsystem are working at 71.8 K with a consumed cooling power of 0.325 W. The center frequency of this subsystem is 925.2 MHz and the bandwidth is 2.7 MHz (which is a fractional bandwidth of 0.2%), with the gain of 19.75 dB at center frequency and the return loss better than -18.11 dB in the pass band. The stop band rejection is more than 60 dB and the skirt slope is exceeding 120 dB MHz -1. The noise figure of this subsystem is less than 0.8 dB. This front-end subsystem can be used in radars and communication systems conveniently due to it’s compact size and light weight.

  15. Virtual Engineering and Science Team - Reusable Autonomy for Spacecraft Subsystems

    NASA Technical Reports Server (NTRS)

    Bailin, Sidney C.; Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Thompson, Bryan; Day, John H. (Technical Monitor)

    2002-01-01

    In this paper we address the design, development, and evaluation of the Virtual Engineering and Science Team (VEST) tool - a revolutionary way to achieve onboard subsystem/instrument autonomy. VEST directly addresses the technology needed for advanced autonomy enablers for spacecraft subsystems. It will significantly support the efficient and cost effective realization of on-board autonomy and contribute directly to realizing the concept of an intelligent autonomous spacecraft. VEST will support the evolution of a subsystem/instrument model that is probably correct and from that model the automatic generation of the code needed to support the autonomous operation of what was modeled. VEST will directly support the integration of the efforts of engineers, scientists, and software technologists. This integration of efforts will be a significant advancement over the way things are currently accomplished. The model, developed through the use of VEST, will be the basis for the physical construction of the subsystem/instrument and the generated code will support its autonomous operation once in space. The close coupling between the model and the code, in the same tool environment, will help ensure that correct and reliable operational control of the subsystem/instrument is achieved.VEST will provide a thoroughly modern interface that will allow users to easily and intuitively input subsystem/instrument requirements and visually get back the system's reaction to the correctness and compatibility of the inputs as the model evolves. User interface/interaction, logic, theorem proving, rule-based and model-based reasoning, and automatic code generation are some of the basic technologies that will be brought into play in realizing VEST.

  16. The Sentinel 4 focal plane subsystem

    NASA Astrophysics Data System (ADS)

    Hohn, Rüdiger; Skegg, Michael P.; Hermsen, Markus; Hinger, Jürgen; Williges, Christian; Reulke, Ralf

    2017-09-01

    The Sentinel 4 instrument is an imaging spectrometer, developed by Airbus under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program with the objective of monitoring trace gas concentrations. Sentinel 4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties. Sentinel 4 is unique in being the first geostationary UVN mission. The SENTINEL 4 space segment will be integrated on EUMETSAT's Meteosat Third Generation Sounder satellite (MTG-S). Sentinel 4 will provide coverage of Europe and adjacent regions. The Sentinel 4 instrument comprises as a major element two Focal Plane Subsystems (FPS) covering the wavelength ranges 305 nm to 500 nm (UVVIS) and 750 nm to 775 nm (NIR) respectively. The paper describes the Focal Plane Subsystems, comprising the detectors, the optical bench and the control electronics. Further the design and development approach will be presented as well as first measurement results of FPS Qualification Model.

  17. HIRDLS Cryocooler Subsystem on-orbit Performance

    NASA Astrophysics Data System (ADS)

    Lock, J.; Stack, R.; Glaister, D. S.; Gully, W.

    2006-04-01

    This paper describes the HIRDLS (High Resolution Dynamic Limb Sounder) Cryocooler Subsystem (CSS) and its on-orbit flight performance. The HIRDLS Instrument was launched on July 15, 2004 as part of the NASA GSFC EOS Aura platform. Ball Aerospace provided the CSS, which includes the long life Stirling cryocooler (cooling at 59 K), cold plumbing to connect the cooler to the instrument Detector Subsystem, an ambient radiator to reject the cooler dissipation, and a vacuum enclosure system that enabled bench top ground testing. As of August 20, 2005, the cryocooler has over 9,000 hours of continuous operation with performance that exceeds requirements. Of note is that the CSS has experienced virtually no change in performance, including no indication of external contamination related degradation that has been evident on several other cryocooler systems in space flights. This steady performance can be attributed to the multi-layer insulation (MLI) based insulation design, which will be described in the paper.

  18. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  19. Preprototype nitrogen supply subsystem development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Fort, J. H.; Schubert, F. H.

    1982-01-01

    The design and development of a test stand for the Nitrogen Generation Module (NGM) and a series of tests which verified its operation and performance capability are described. Over 900 hours of parametric testing were achieved. The results from this testing were then used to design an advanced NGM and a self contained, preprototype Nitrogen Supply Subsystem. The NGM consists of three major components: nitrogen generation module, pressure controller and hydrazine storage tank and ancillary components. The most important improvement is the elimination of all sealing surfaces, achieved with a total welded or brazed construction. Additionally, performance was improved by increasing hydrogen separating capability by 20% with no increase in overall packaging size.

  20. LARES Mission: Separation and Retention Subsystem

    NASA Technical Reports Server (NTRS)

    Bursi, Alessandro; Camilli, Pierluigi; Piredda, Claudio; Babini, Gianni; Mangraviti, Elio

    2014-01-01

    As part of the Lares (LAser RElativity Satellite) mission, an all-Italian scientific mission launched with the Vega maiden flight in February 2012, a mechanical separation and retention subsystem (SSEP) has been developed to retain the LARES satellite during launch and release it in the final orbit. The design flow was based on the identification of the driving requirements and critical areas to guide the trade-off, design, analysis and test activities. In particular, the SSEP had to face very high environmental loads and to minimize the contact areas with the satellite that had a spherical shape. The test activity overview is provided.

  1. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  2. Functional Specifications for the OCLC Interlibrary Loan Subsystem.

    ERIC Educational Resources Information Center

    Bova, Phyllis V.

    This report covers functional specifications for the OCLC Interlibrary Loan (ILL) Subsystem, designed to permit participating libraries to increase the availability of library resources to patrons by enabling these libraries to form, transmit, and fulfill loan requests more rapidly and effectively. It will provide rapid access to a large on-line…

  3. Image Processing In Laser-Beam-Steering Subsystem

    NASA Technical Reports Server (NTRS)

    Lesh, James R.; Ansari, Homayoon; Chen, Chien-Chung; Russell, Donald W.

    1996-01-01

    Conceptual design of image-processing circuitry developed for proposed tracking apparatus described in "Beam-Steering Subsystem For Laser Communication" (NPO-19069). In proposed system, desired frame rate achieved by "windowed" readout scheme in which only pixels containing and surrounding two spots read out and others skipped without being read. Image data processed rapidly and efficiently to achieve high frequency response.

  4. Waveform stimulus subsystem: An advanced technology multifunction subsystem on a card

    NASA Astrophysics Data System (ADS)

    Pritchard, David J.

    The F-15 TISS ATE (automatic test equipment) requires subsystem-on-a-card technology to achieve the required functionality within the space constraints. The waveform stimulus subsystem (WSS), an example of this advanced technology, is considered. The WSS circuit card consists of two 40-MHz pulse generators and an 80-MHz aribtrary waveform generator. Each generator is independently programmed and is available simultaneously to the user. The implementation of this highly integrated malfunction-detection system on a card is described, and the benefits to performance and maintainability are highlighted.

  5. Development of an integrated, zero-G pneumatic transporter/rotating-paddle incinerator/catalytic afterburner subsystem for processing human waste on board spacecraft

    NASA Technical Reports Server (NTRS)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A baseline laboratory prototype of an integrated, six man, zero-g subsystem for processing human wastes onboard spacecraft was investigated, and included the development of an operational specification for the baseline subsystem, followed by design and fabrication. The program was concluded by performing a series of six tests over a period of two weeks to evaluate the performance of the subsystem. The results of the tests were satisfactory, however, several changes in the design of the subsystem are required before completely satisfactory performance can be achieved.

  6. Development of a preprototype sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1980-01-01

    A preoprototype Sabatier CO2 Reduction Subsystem was successfully designed, fabricated and tested. The lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical (equivalent to 5 persons steady state). The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  7. Space power subsystem automation technology

    NASA Technical Reports Server (NTRS)

    Graves, J. R. (Compiler)

    1982-01-01

    The technology issues involved in power subsystem automation and the reasonable objectives to be sought in such a program were discussed. The complexities, uncertainties, and alternatives of power subsystem automation, along with the advantages from both an economic and a technological perspective were considered. Whereas most spacecraft power subsystems now use certain automated functions, the idea of complete autonomy for long periods of time is almost inconceivable. Thus, it seems prudent that the technology program for power subsystem automation be based upon a growth scenario which should provide a structured framework of deliberate steps to enable the evolution of space power subsystems from the current practice of limited autonomy to a greater use of automation with each step being justified on a cost/benefit basis. Each accomplishment should move toward the objectives of decreased requirement for ground control, increased system reliability through onboard management, and ultimately lower energy cost through longer life systems that require fewer resources to operate and maintain. This approach seems well-suited to the evolution of more sophisticated algorithms and eventually perhaps even the use of some sort of artificial intelligence. Multi-hundred kilowatt systems of the future will probably require an advanced level of autonomy if they are to be affordable and manageable.

  8. Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test

    NASA Technical Reports Server (NTRS)

    Callahan, M. R.; Lubman, A.; Pickering, Karen D.

    2009-01-01

    Recovery of potable water from wastewater is essential for the success of long-duration manned missions to the Moon and Mars. Honeywell International and a team from NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, referred to as the Cascade Distillation Subsystem (CDS), utilizes an innovative and efficient multistage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage subsystem unit has been designed, built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing. A major test objective of the project is to demonstrate the advancement of the CDS technology from the breadboard level to a subsystem level unit. An initial round of CDS performance testing was completed in fiscal year (FY) 2008. Based on FY08 testing, the system is now in development to support an Exploration Life Support (ELS) Project distillation comparison test expected to begin in early 2009. As part of the project objectives planned for FY09, the system will be reconfigured to support the ELS comparison test. The CDS will then be challenged with a series of human-gene-rated waste streams representative of those anticipated for a lunar outpost. This paper provides a description of the CDS technology, a status of the current project activities, and data on the system s performance to date.

  9. Preliminary Design of a Modular Unmanned Research Vehicle. Volume 2. Subsystem Technical Development Design Study

    DTIC Science & Technology

    1988-12-01

    members of our committee for their contributions to our work : Major Lanson Hudson, Lieutenant Colonel Paul King, and Dr. Curtis Spenny provided many... Effectiveness MSL Mean Sea Level MURV Modular Unmanned Research Vehicle n.p. neutral point NASA National Aeronautics and Space Administration PAM Pulse Amplitude...subsystem objectives and measures of effectiveness , see Volume One, Figure 2.2 The systems approach was then applied to generate and select the best

  10. Evaluation of an Atmosphere Revitalization Subsystem for Deep Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Conrad, Ruth E.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Knox, James C.; Newton, Robert L.; Parrish, Keith J.; Takada, Kevin C.; hide

    2015-01-01

    An Atmosphere Revitalization Subsystem (ARS) suitable for deployment aboard deep space exploration mission vehicles has been developed and functionally demonstrated. This modified ARS process design architecture was derived from the International Space Station's (ISS) basic ARS. Primary functions considered in the architecture include trace contaminant control, carbon dioxide removal, carbon dioxide reduction, and oxygen generation. Candidate environmental monitoring instruments were also evaluated. The process architecture rearranges unit operations and employs equipment operational changes to reduce mass, simplify, and improve the functional performance for trace contaminant control, carbon dioxide removal, and oxygen generation. Results from integrated functional demonstration are summarized and compared to the performance observed during previous testing conducted on an ISS-like subsystem architecture and a similarly evolved process architecture. Considerations for further subsystem architecture and process technology development are discussed.

  11. Plant Development, Auxin, and the Subsystem Incompleteness Theorem

    PubMed Central

    Niklas, Karl J.; Kutschera, Ulrich

    2012-01-01

    Plant morphogenesis (the process whereby form develops) requires signal cross-talking among all levels of organization to coordinate the operation of metabolic and genomic subsystems operating in a larger network of subsystems. Each subsystem can be rendered as a logic circuit supervising the operation of one or more signal-activated system. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of progressively larger networks. This technique is illustrated here by rendering two logic circuits and signal-activated subsystems, one for auxin (IAA) polar/lateral intercellular transport and another for IAA-mediated cell wall loosening. For each of these phenomena, a circuit/subsystem diagram highlights missing components (either in the logic circuit or in the subsystem it supervises) that must be identified experimentally if each of these basic plant phenomena is to be fully understood. We also illustrate the “subsystem incompleteness theorem,” which states that no subsystem is operationally self-sufficient. Indeed, a whole-organism perspective is required to understand even the most simple morphogenetic process, because, when isolated, every biological signal-activated subsystem is morphogenetically ineffective. PMID:22645582

  12. Apollo experience report: Guidance and control systems: Command and service module entry monitor subsystem

    NASA Technical Reports Server (NTRS)

    Reina, B., Jr.; Patterson, H. G.

    1975-01-01

    The conceptual aspects of the command and service module entry monitor subsystem, together with an interpretation of the displays and their associated relationship to entry trajectory control, are presented. The entry monitor subsystem is described, and the problems encountered during the developmental phase and the first five manned Apollo flights are discussed in conjunction with the design improvements implemented.

  13. Reception-Conversion Subsystem (RXCV) for microwave power transmission system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    As part of a program to demonstrate the feasibility of power transmission from space, an approximately 25 sq m Reception-Conversion Subsystem was designed and tested. The device collects high power microwave energy, converts it into dc, and dissipates it in an instrumented demonstration load.

  14. Development of Testing Station for Prototype Rover Thermal Subsystem

    NASA Technical Reports Server (NTRS)

    Burlingame, Kaitlin

    2010-01-01

    In order to successfully and efficiently explore the moon or other planets, a vehicle must be built to assist astronauts as they travel across the surface. One concept created to meet this need is NASA's Space Exploration Vehicle (SEV). The SEV, a small pressurized cabin integrated onto a 12-wheeled chassis, can support two astronauts up to 14 days. Engineers are currently developing the second generation of the SEV, with the goal of being faster, more robust, and able to carry a heavier payload. In order to function properly, the rover must dissipate heat produced during operation and maintain an appropriate temperature profile inside the rover. If these activities do not occur, components of the rover will start to break down, eventually leading to the failure of the rover. On the rover, these requirements are the responsibility of the thermal subsystem. My project for the summer was to design and build a testing station to facilitate the design and testing of the new thermal subsystem. As the rover develops, initial low fidelity parts can be interchanged for the high fidelity parts used on the rover. Based on a schematic of the proposed thermal system, I sized and selected parts for each of the components in the thermal subsystem. For the components in the system that produced heat but had not yet been finalized or fabricated, I used power resistors to model their load patterns. I also selected all of the fittings to put the system together and a mounting platform to support the testing station. Finally, I implemented sensors at various points in the system to measure the temperature, pressure, and flow rate, and a data acquisition system to collect this information. In the future, the information from these sensors will be used to study the behavior of the subsystem under different conditions and select the best part for the rover.

  15. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  16. Relationships Between Design Characteristics of Avionics Subsystems and Training Cost, Training Difficulty, and Job Performance. Final Report, Covering Activity from 1 July 1971 Through 1 September 1972.

    ERIC Educational Resources Information Center

    Lintz, Larry M.; And Others

    A study investigated the relationship between avionics subsystem design characteristics and training time, training cost, and job performance. A list of design variables believed to affect training and job performance was established and supplemented with personnel variables, including aptitude test scores and the amount of training and…

  17. Development of a six-man, self-contained carbon dioxide collection subsystem for spacecraft application

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Quattrone, P. D.

    1974-01-01

    Life Systems, working with NASA, has developed an electrochemical, six-man, self-contained carbon dioxide concentrator subsystem (CX-6) designed to normally remove 13.2 lb/day of CO2 while maintaining the CO2 partial pressure (pCO2) of the cabin atmosphere at 3 mm Hg or less. The CX-6 was subjected to extensive parametric and endurance testing. The effects of operating conditions on CO2 removal and electrical efficiencies were determined, including effects of hydrogen (H2) flow rate, process airflow rate, pCO2, operating temperature and current density. A total of 209 days of operation was accumulated. The subsystem was designed with self-contained electronic control and monitoring instrumentation. The CX-6 was redesigned and repackaged into the CO2 collection subsystem for the air revitalization group of the space station prototype.

  18. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Osullivan, G.; Merrill, W. C.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. Optimization of the inverter/controller design is discussed as part of an overall photovoltaic power system designed for maximum energy extraction from the solar array. The special design requirements for the inverter/ controller include: a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy.

  19. CBERS-03 Satellite Power Supply Subsystem

    NASA Astrophysics Data System (ADS)

    Almeida, Mario C. P.; Bo, Han

    2005-05-01

    The second China Brazil Earth Resources Satellite, CBERS-2, was successfully launched on October 21st, 2003 from the Taiyuan Satellite Launch Center, China, through a Long March 4B launcher.The cooperation between China and Brazil for the construction of CBERS satellites is a continued mission and the governments of both countries are committed to building CBERS-3 for the continued and improved services started with the launch of CBERS-1 satellite [1]. Given to its success, the CBERS program is considered as a model for other joint scientific and technological projects between those two countries. CBERS-3 will have new instruments with higher resolution and higher power consumption requirements. The Power Supply Subsystem of CBERS-3 will be a scaled-up version of the one used in the previous missions, but will also present some innovations now possible due to improvements in components, technologies and materials. The modular concept used in the previous design, and repeated in this new mission, will allow the development of the new power subsystem equipments in a straightforward manner.

  20. Stepping-Motion Motor-Control Subsystem For Testing Bearings

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1992-01-01

    Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).

  1. Development of components for an S-band phased array antenna subsystem

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system requirements, module test data, and S-band phased array subsystem test data are discussed. Of the two approaches to achieving antenna gain (mechanically steered reflector or electronically steered phased array), the phased array approach offers the greatest simplicity and lowest cost (size, weight, power, and dollars) for this medium gain. A competitive system design is described as well as hardware evaluation which will lead to timely availability of this technology for implementing such a system. The objectives of the study were: to fabricate and test six engineering model transmit/receive microelectronics modules; to design, fabricate, and test one dc and logic multilayer manifold; and to integrate and test an S-band phased array antenna subsystem composed of antenna elements, seven T/R modules, RF manifolds and dc manifold.

  2. Revalidation of the Huygens Descent Control Sub-System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Huygens probe, part of the Cassini mission to Saturn, is designed to investigate the atmosphere of Titan, Saturn's largest moon. The passage of the probe through the atmosphere is controlled by the Descent Control Sub-System (DCSS), which consists of three parachutes and associated mechanisms. The Cassini / Huygens mission was launched in October 1997 and was designed during the early 1990's. During the time since the design and launch, analysis capabilities have improved significantly, knowledge of the Titan environment has improved and the baseline mission has been modified. Consequently, a study was performed to revalidate the DCSS design against the current predictions.

  3. Command module/service module reaction control subsystem assessment

    NASA Technical Reports Server (NTRS)

    Weary, D. P.

    1971-01-01

    Detailed review of component failure histories, qualification adequacy, manufacturing flow, checkout requirements and flow, ground support equipment interfaces, subsystem interface verification, protective devices, and component design did not reveal major weaknesses in the command service module (CSM) reaction control system (RCS). No changes to the CSM RCS were recommended. The assessment reaffirmed the adequacy of the CSM RCS for future Apollo missions.

  4. Waves in space plasma dipole antenna subsystem

    NASA Technical Reports Server (NTRS)

    Thomson, Mark

    1993-01-01

    The Waves In Space Plasma (WISP) flight experiment requires a 50-meter-long deployable dipole antenna subsystem (DASS) to radiate radio frequencies from the STS Orbiter cargo bay. The transmissions are to excite outer ionospheric plasma between the dipole and a free-flying receiver (Spartan) for scientific purposes. This report describes the singular DASS design requirements and how the resulting design satisfies them. A jettison latch is described in some detail. The latch releases the antenna in case of any problems which might prevent the bay doors from closing for re-entry and landing of the Orbiter.

  5. Waves in space plasma dipole antenna subsystem

    NASA Astrophysics Data System (ADS)

    Thomson, Mark

    1993-05-01

    The Waves In Space Plasma (WISP) flight experiment requires a 50-meter-long deployable dipole antenna subsystem (DASS) to radiate radio frequencies from the STS Orbiter cargo bay. The transmissions are to excite outer ionospheric plasma between the dipole and a free-flying receiver (Spartan) for scientific purposes. This report describes the singular DASS design requirements and how the resulting design satisfies them. A jettison latch is described in some detail. The latch releases the antenna in case of any problems which might prevent the bay doors from closing for re-entry and landing of the Orbiter.

  6. Hyperfiltration wash water recovery subsystem - Design and test results. [for extended mission spacecraft such as space stations

    NASA Technical Reports Server (NTRS)

    Reysa, R. P.; Price, D. F.; Olcott, T.; Gaddis, J. L.

    1983-01-01

    The Hyperfiltration Wash Water Recovery (HWWR) subsystem, designed to offer low-power high-volume wash water purification for extended mission spacecraft, is discussed in terms of preprototype design and configuration. Heated wash water collected from the shower, hand wash, and laundry flows into a temperature-controlled (374 K) waste storage tank. Two parallel 25 micron absolute filters at the tank outlet remove large particles from the feed stream. A positive displacement feed pump delivers wash water to the hyperfiltration module at a constant flow rate of 0.20 lpm with discharge pressure variations from 4181-7239 Kpa. The hyperfiltration membrane module is a single-pass design including 36 porous stainless steel tubes, and is designed to provide an approximate water recovery rate of 90 percent. Permeate and brine water flows are monitored by flow meters, and removal of urea and ammonia is achieved by adding 15 percent NaOCl solution to the permeate fluid stream. An alternate module design using two diameters of tubing (allowing a smaller pressure drop and a larger membrane area) gave a superior predicted performance over the first module with larger tubing throughout.

  7. Portable Oxygen Subsystem (POS). [for space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Concept selection, design, fabrication, and testing of a Portable Subsystem (POS) for use in space shuttle operations are described. Tradeoff analyses were conducted to determine the POS concept for fabrication and testing. The fabricated POS was subjected to unmanned and manned tests to verify compliance with statement of work requirements. The POS used in the development program described herein met requirements for the three operational modes -- prebreathing, contaminated cabin, and personnel rescue system operations.

  8. The ICCB Computer Based Faculty and Staff Utilization Subsystem.

    ERIC Educational Resources Information Center

    Lach, Ivan J.

    The Illinois Community College Board (ICCB) Faculty and Staff Utilization subsystem, a component of the ICCB management information system, was designed to produce meaningful and useful information reports for the analysis of faculty and staff, as a resource, in Illinois community colleges. Accommodating the complex nature of staffing at the 49…

  9. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 7: System/subsystem requirements data book

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    Volume 7 of the Satellite Power Systems (SPS) Concept Definition Study final report summarizes the basic requirements used as a guide to systems analysis and is a basis for the selection of candidate SPS point design(s). Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point design(s). The identified subsystem/systems requirements are defined, and where appropriate, recommendations for alternate approaches which may represent improved design features are presented. A more detailed discussion of the selected point design(s) will be found in Volume 2 of this report.

  10. Static Feed Water Electrolysis Subsystem Testing and Component Development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  11. The JPL telerobotic Manipulator Control and Mechanization (MCM) subsystem

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Lee, Thomas S.; Tso, Kam; Backes, Paul; Kan, Edwin; Lloyd, J.

    1989-01-01

    The Manipulator Control and Mechanization (MCM) subsystem of the telerobot system provides the real-time control of the robot manipulators in autonomous and teleoperated modes and real time input/output for a variety of sensors and actuators. Substantial hardware and software are included in this subsystem which interfaces in the hierarchy of the telerobot system with the other subsystems. The other subsystems are: run time control, task planning and reasoning, sensing and perception, and operator control subsystem. The architecture of the MCM subsystem, its capabilities, and details of various hardware and software elements are described. Important improvements in the MCM subsystem over the first version are: dual arm coordinated trajectory generation and control, addition of integrated teleoperation, shared control capability, replacement of the ultimate controllers with motor controllers, and substantial increase in real time processing capability.

  12. Advanced vehicle systems assessment. Volume 2: Subsystems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 2 (Subsystems Assessment) is part of a five-volume report entitled Advanced Vehicle Systems Assessment. Volume 2 presents the projected performance capabilities and cost characteristics of applicable subsystems, considering an additional decade of development. Subsystems of interest include energy storage and conversion devices as well as the necessary powertrain components and vehicle subsystems. Volume 2 also includes updated battery information based on the assessment of an independent battery review board (with the aid of subcontractor reports on advanced battery characteristics).

  13. Simple debugging techniques for embedded subsystems

    NASA Astrophysics Data System (ADS)

    MacPherson, Matthew S.; Martin, Kevin S.

    1990-08-01

    This paper describes some of the tools and methods used for developing and debugging embedded subsystems at Fermilab. Specifically, these tools have been used for the Flying Wire project and are currently being employed for the New TECAR upgrade. The Flying Wire is a subsystem that swings a wire through the beam in order to measure luminosity and beam density distribution, and TECAR (Tevatron excitation controller and regulator) controls the power-supply ramp generation for the superconducting Tevatron accelerator at Fermilab. In both instances the subsystem hardware consists of a VME crate with one or more processors, shared memory and a network connection to the accelerator control system. Two real-time-operating systems are currently being used: VRTX for the Flying Wire system, and MTOS for New TECAR. The code which runs in these subsystems is a combination of C and assembler and is developed using the Microtec cross-development tools on a VAX 8650 running VMS. This paper explains how multiple debuggers are used to give the greatest possible flexibility from assembly to high-level debugging. Also discussed is how network debugging and network downloading can make a very effective and efficient means of finding bugs in the subsystem environment. The debuggers used are PROBE1, TRACER and the MTOS debugger.

  14. Flow Analysis of a Gas Turbine Low- Pressure Subsystem

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is coordinating a project to numerically simulate aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The numerical model solves the three-dimensional Navier-Stokes flow equations through all components within the low-pressure subsystem as well as the external flow around the engine nacelle. The Advanced Ducted Propfan Analysis Code (ADPAC), which is being developed jointly by Allison Engine Company and NASA, is the Navier-Stokes flow code being used for LPS simulation. The majority of the LPS project is being done under a NASA Lewis contract with Allison. Other contributors to the project are NYMA and the University of Toledo. For this project, the Energy Efficient Engine designed by GE Aircraft Engines is being modeled. This engine includes a low-pressure system and a high-pressure system. An inlet, a fan, a booster stage, a bypass duct, a lobed mixer, a low-pressure turbine, and a jet nozzle comprise the low-pressure subsystem within this engine. The tightly coupled flow analysis evaluates aerodynamic interactions between all components of the LPS. The high-pressure core engine of this engine is simulated with a one-dimensional thermodynamic cycle code in order to provide boundary conditions to the detailed LPS model. This core engine consists of a high-pressure compressor, a combustor, and a high-pressure turbine. The three-dimensional LPS flow model is coupled to the one-dimensional core engine model to provide a "hybrid" flow model of the complete gas turbine Energy Efficient Engine. The resulting hybrid engine model evaluates the detailed interaction between the LPS components at design and off-design engine operating conditions while considering the lumped-parameter performance of the core engine.

  15. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  16. Micro-Inspector Spacecraft Testbed: Breadboard Subsystem Demonstrations

    NASA Astrophysics Data System (ADS)

    Mueller, Juergen; Goldberg, Hannah; Alkalai, Leon

    2007-01-01

    distance. Micro-Inspector design, through funding from the NASA Explorations Systems Mission Directorate, has significantly advanced over the past year and is currently at PDR level and beyond. Special emphasis was placed on retiring risk in various subsystem areas through the use of advanced technologies. To this end, a micro-inspector test bed was set up to critically assess the readiness of component technologies and subsystems. Breadboard subsystem demonstrations and system integration were performed to place future design efforts on a solid basis.

  17. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  18. Some recent developments in spacecraft environmental control/life support subsystems

    NASA Technical Reports Server (NTRS)

    Gillen, R. J.; Olcott, T. M.

    1974-01-01

    The subsystems considered include a flash evaporator for heat rejection, a regenerable carbon dioxide and humidity control subsystem, an iodinating subsystem for potable water, a cabin contaminant control subsystem, and a wet oxidation subsystem for processing spacecraft wastes. The flash evaporator discussed is a simple unit which efficiently controls life support system temperatures over a wide range of heat loads. For certain advanced spacecraft applications the control of cabin carbon dioxide and humidity can be successfully achieved by a regenerable solid amine subsystem.

  19. Six-man, self-contained carbon dioxide concentrator subsystem for Space Station Prototype (SSP) application

    NASA Technical Reports Server (NTRS)

    Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.

    1974-01-01

    A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.

  20. Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights

    NASA Technical Reports Server (NTRS)

    Wedge, T. E.; Williamson, R. P.

    1973-01-01

    Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.

  1. X-38 Bolt Retractor Subsystem Separation Demonstration

    NASA Technical Reports Server (NTRS)

    Rugless, Fedoria (Editor); Johnston, A. S.; Ahmed, R.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2002-01-01

    The Flight Robotics Laboratory FRL successfully demonstrated the X-38 bolt retractor subsystem (BRS). The BRS design was proven safe by testing in the Pyrotechnic Shock Facility (PSI) before being demonstrated in the FRL. This Technical Memorandum describes the BRS, FRL, PSF, and interface hardware. Bolt retraction time, spacecraft simulator acceleration, and a force analysis are also presented. The purpose of the demonstration was to show the FRL capability for spacecraft separation testing using pyrotechnics. Although a formal test was not performed due to schedule and budget constraints, the data will show that the BRS is a successful design concept and the FRL is suitable for future separation tests.

  2. The Mariner Mars 1971 radio frequency subsystem

    NASA Technical Reports Server (NTRS)

    Hughes, R. S.

    1972-01-01

    The radio frequency subsystem (RFS) for the Mariner Mars 1971 (MM'71) spacecraft is described. The MM'69 RFS was used as the baseline design for the MM'71 RFS, and the report describes the design changes made to the 1969 RFS for use on MM'71. It also cites various problems encountered during the fabrication and testing of the RFS, as well as the types of tests to which the RFS was subjected. In areas where significant problems were encountered, a detailed description of the problem and its solution is presented. In addition, some recommendations are given for modifications to the RFS and test techniques for future programs.

  3. Age, gesture span, and dissociations among component subsystems of working memory.

    PubMed

    Dolman, R; Roy, E A; Dimeck, P T; Hall, C R

    2000-01-01

    Working memory was examined in old and young adults using a series of span tasks, including the forward versions of the visual-spatial and digit span tasks from the Wechsler Memory Scale-Revised, and comparable hand gesture and visual design span tasks. The observation that the young participants performed significantly better on all the tasks except digit span suggested that aging has an impact on some component subsystems of working memory but not others. Analyses of intercorrelations in span performance supports the dissociation among three component subsystems, one for auditory verbal information (the articulatory loop), one for visual-spatial information (visual-spatial scratch-pad), and one for hand/body postural configuration.

  4. On the subsystem formulation of linear-response time-dependent DFT.

    PubMed

    Pavanello, Michele

    2013-05-28

    A new and thorough derivation of linear-response subsystem time-dependent density functional theory (TD-DFT) is presented and analyzed in detail. Two equivalent derivations are presented and naturally yield self-consistent subsystem TD-DFT equations. One reduces to the subsystem TD-DFT formalism of Neugebauer [J. Chem. Phys. 126, 134116 (2007)]. The other yields Dyson type equations involving three types of subsystem response functions: coupled, uncoupled, and Kohn-Sham. The Dyson type equations for subsystem TD-DFT are derived here for the first time. The response function formalism reveals previously hidden qualities and complications of subsystem TD-DFT compared with the regular TD-DFT of the supersystem. For example, analysis of the pole structure of the subsystem response functions shows that each function contains information about the electronic spectrum of the entire supersystem. In addition, comparison of the subsystem and supersystem response functions shows that, while the correlated response is subsystem additive, the Kohn-Sham response is not. Comparison with the non-subjective partition DFT theory shows that this non-additivity is largely an artifact introduced by the subjective nature of the density partitioning in subsystem DFT.

  5. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Atmosphere Control and Supply Subsystem

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2009-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS ACS subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.

  6. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    NASA Technical Reports Server (NTRS)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  7. The Mariner Venus Mercury flight data subsystem.

    NASA Technical Reports Server (NTRS)

    Whitehead, P. B.

    1972-01-01

    The flight data subsystem (FDS) discussed handles both the engineering and scientific measurements performed on the MVM'73. It formats the data into serial data streams, and sends it to the modulation/demodulation subsystem for transmission to earth or to the data storage subsystem for storage on a digital tape recorder. The FDS is controlled by serial digital words, called coded commands, received from the central computer sequencer of from the ground via the modulation/demodulation subsystem. The eight major blocks of the FDS are: power converter, timing and control, engineering data, memory, memory input/output and control, nonimaging data, imaging data, and data output. The FDS incorporates some 4000 components, weighs 17 kg, and uses 35 W of power. General data on the mission and spacecraft are given.

  8. Pressure Loss Predictions of the Reactor Simulator Subsystem at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.

    2016-01-01

    Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA Glenn Research Center. The TDU consists of three subsystems: the reactor simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the heat exchanger manifold (HXM). An annular linear induction pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now) is referred to as the "RxSim subsystem" and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the computer-aided-design (CAD) model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras (S?A) turbulence model) and 2.223 kg/sec (using the k- turbulence model). The computational error of the predictions for the available mass flow is ?0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k- turbulence model) when compared to measured data.

  9. Keck adaptive optics: control subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval formore » the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.« less

  10. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  11. Automatic control of a primary electric thrust subsystem

    NASA Technical Reports Server (NTRS)

    Macie, T. W.; Macmedan, M. L.

    1975-01-01

    A concept for automatic control of the thrust subsystem has been developed by JPL and participating NASA Centers. This paper reports on progress in implementing the concept at JPL. Control of the Thrust Subsystem (TSS) is performed by the spacecraft computer command subsystem, and telemetry data is extracted by the spacecraft flight data subsystem. The Data and Control Interface Unit, an element of the TSS, provides the interface with the individual elements of the TSS. The control philosophy and implementation guidelines are presented. Control requirements are listed, and the control mechanism, including the serial digital data intercommunication system, is outlined. The paper summarizes progress to Fall 1974.

  12. Recursive Construction of Noiseless Subsystem for Qudits

    NASA Astrophysics Data System (ADS)

    Güngördü, Utkan; Li, Chi-Kwong; Nakahara, Mikio; Poon, Yiu-Tung; Sze, Nung-Sing

    2014-03-01

    When the environmental noise acting on the system has certain symmetries, a subsystem of the total system can avoid errors. Encoding information into such a subsystem is advantageous since it does not require any error syndrome measurements, which may introduce further errors to the system. However, utilizing such a subsystem for large systems gets impractical with the increasing number of qudits. A recursive scheme offers a solution to this problem. Here, we review the recursive construct introduced in, which can asymptotically protect 1/d of the qudits in system against collective errors.

  13. Preprototype Vapor Compression Distillation Subsystem development

    NASA Technical Reports Server (NTRS)

    Thompson, C. D.; Ellis, G. S.; Schubert, F. H.

    1981-01-01

    Vapor Compression Distillation (VCD) has evolved as the most promising approach to reclaim potable water from wastewater for future long-term manned space missions. Life Systems, Inc. (LSI), working with NASA, has developed a preprototype Vapor Compression Distillation Subsystem (VCDS) which processes wastewater at 1.4 kg/h. The preprototype unit weighs 143 kg, occupies a volume of 0.47 cu m, and will reclaim 96 percent of the available wastewater. This unit has been tested by LSI and is scheduled for further testing at NASA-JSC. This paper presents the preprototype VCDS design, configuration, performance data, test results and flight system projections.

  14. Preliminary analysis of a membrane-based atmosphere-control subsystem

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Newbold, David D.; Ray, Rod; Ogle, Kathryn

    1993-01-01

    Controlled ecological life supprot systems will require subsystems for maintaining the consentrations of atmospheric gases within acceptable ranges in human habitat chambers and plant growth chambers. The goal of this work was to develop a membrane-based atmosphere comntrol (MBAC) subsystem that allows the controlled exchange of atmospheric componets (e.g., oxygen, carbon dioxide, and water vapor) between these chambers. The MBAC subsystem promises to offer a simple, nonenergy intensive method to separate, store and exchange atmospheric components, producing optimal concentrations of components in each chamber. In this paper, the results of a preliminary analysis of the MBAC subsystem for control of oxygen and nitrogen are presented. Additionally, the MBAC subsystem and its operation are described.

  15. Effector-Triggered Self-Replication in Coupled Subsystems.

    PubMed

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Systems design study of the Pioneer Venus spacecraft. Appendices to volume 1, sections 8-11 (part 3 of 3). [power subsystem/cost tradeoffs for Venus probe

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Power subsystem cost/weight tradeoffs are discussed for the Venus probe spacecraft. The cost estimations of power subsystem units were based upon DSCS-2, DSP, and Pioneer 10 and 11 hardware design and development and manufacturing experience. Parts count and degree of modification of existing hardware were factored into the estimate of manufacturing and design and development costs. Cost data includes sufficient quantities of units to equip probe bus and orbiter versions. It was based on the orbiter complement of equipment, but the savings in fewer slices for the probe bus balance the cost of the different probe bus battery. The preferred systems for the Thor/Delta and for the Atlas/Centaur are discussed. The weights of the candidate designs were based upon slice or tray weights for functionally equivalent circuitry measured on existing hardware such as Pioneers 10 and 11, Intelsat 3, DSCS-2, or DSP programs. Battery weights were based on measured cell weight data adjusted for case weight or off-the-shelf battery weights. The solar array weight estimate was based upon recent hardware experience on DSCS-2 and DSP arrays.

  17. MIUS Integration and Subsystem Test (MIST) data system

    NASA Technical Reports Server (NTRS)

    Pringle, L. M.

    1977-01-01

    A data system for use in testing integrated subsystems of a modular integrated utility system (MIUS) is presented. The MIUS integration and subsystem test (MIST) data system is reviewed from its conception through its checkout and operation as the controlling portion of the MIST facility. The MIST data system provides a real time monitoring and control function that allows for complete evaluation of the performance of the mechanical and electrical subsystems, as well as controls the operation of the various components of the system. In addition to the aforementioned capabilities, the MIST data system provides computerized control of test operations such that minimum manpower is necessary to set up, operate, and shut down subsystems during test periods.

  18. Intelligent subsystem interface for modular hardware system

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T. (Inventor); Krening, Douglas N. (Inventor); Lannan, Gregory B. (Inventor); Schneiderwind, Michael J. (Inventor); Schneiderwind, Robert A. (Inventor)

    2000-01-01

    A single chip application specific integrated circuit (ASIC) which provides a flexible, modular interface between a subsystem and a standard system bus. The ASIC includes a microcontroller/microprocessor, a serial interface for connection to the bus, and a variety of communications interface devices available for coupling to the subsystem. A three-bus architecture, utilizing arbitration, provides connectivity within the ASIC and between the ASIC and the subsystem. The communication interface devices include UART (serial), parallel, analog, and external device interface utilizing bus connections paired with device select signals. A low power (sleep) mode is provided as is a processor disable option.

  19. Development of a preprototype Sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1981-01-01

    A lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical. The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. Subsystem performance was proven by parametric testing and endurance testing over a wide range of crew sizes and metabolic loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  20. Apollo experience report: Command and service module electrical power distribution on subsystem

    NASA Technical Reports Server (NTRS)

    Munford, R. E.; Hendrix, B.

    1974-01-01

    A review of the design philosophy and development of the Apollo command and service modules electrical power distribution subsystem, a brief history of the evolution of the total system, and some of the more significant components within the system are discussed. The electrical power distribution primarily consisted of individual control units, interconnecting units, and associated protective devices. Because each unit within the system operated more or less independently of other units, the discussion of the subsystem proceeds generally in descending order of complexity; the discussion begins with the total system, progresses to the individual units of the system, and concludes with the components within the units.

  1. Investigation of Techniques for Simulating Communications and Tracking Subsystems on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Deacetis, Louis A.

    1991-01-01

    The need to reduce the costs of Space Station Freedom has resulted in a major redesign and downsizing of the Station in general, and its Communications and Tracking (C&T) components in particular. Earlier models and simulations of the C&T Space-to-Ground Subsystem (SGS) in particular are no longer valid. There thus exists a general need for updated, high fidelity simulations of C&T subsystems. This project explored simulation techniques and methods that might be used in developing new simulations of C&T subsystems, including the SGS. Three requirements were placed on the simulations to be developed: (1) they run on IBM PC/XT/AT compatible computers; (2) they be written in Ada as much as possible; and (3) since control and monitoring of the C&T subsystems will involve communication via a MIL-STD-1553B serial bus, that the possibility of commanding the simulator and monitoring its sensors via that bus be included in the design of the simulator. The result of the project is a prototype of a simulation of the Assembly/Contingency Transponder of the SGS, written in Ada, which can be controlled from another PC via a MIL-STD-1553B bus.

  2. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailedmore » subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)« less

  3. Subsystem Hazard Analysis Methodology for the Ares I Upper Stage Source Controlled Items

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael S.; Winner, David R.

    2010-01-01

    This article describes processes involved in developing subsystem hazard analyses for Source Controlled Items (SCI), specific components, sub-assemblies, and/or piece parts, of the NASA ARES I Upper Stage (US) project. SCIs will be designed, developed and /or procured by Boeing as an end item or an off-the-shelf item. Objectives include explaining the methodology, tools, stakeholders and products involved in development of these hazard analyses. Progress made and further challenges in identifying potential subsystem hazards are also provided in an effort to assist the System Safety community in understanding one part of the ARES I Upper Stage project.

  4. Final-Approach-Spacing Subsystem For Air Traffic

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1992-01-01

    Automation subsystem of computers, computer workstations, communication equipment, and radar helps air-traffic controllers in terminal radar approach-control (TRACON) facility manage sequence and spacing of arriving aircraft for both efficiency and safety. Called FAST (Final Approach Spacing Tool), subsystem enables controllers to choose among various levels of automation.

  5. An expert systems approach to automated fault management in a regenerative life support subsystem

    NASA Technical Reports Server (NTRS)

    Malin, J. T.; Lance, N., Jr.

    1986-01-01

    This paper describes FIXER, a prototype expert system for automated fault management in a regenerative life support subsystem typical of Space Station applications. The development project provided an evaluation of the use of expert systems technology to enhance controller functions in space subsystems. The software development approach permitted evaluation of the effectiveness of direct involvement of the expert in design and development. The approach also permitted intensive observation of the knowledge and methods of the expert. This paper describes the development of the prototype expert system and presents results of the evaluation.

  6. Installation package for the Solaron solar subsystem

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information that is intended to be a guide for installation, operation, and maintenance of the various solar subsystems is presented. The subsystems consist of the following: collectors, storage, transport (air handler) and controller for heat pump and peak storage. Two prototype residential systems were installed at Akron, Ohio, and Duffield, Virginia.

  7. A close examination of under-actuated attitude control subsystem design for future satellite missions' life extension

    NASA Astrophysics Data System (ADS)

    Lam, Quang M.; Barkana, Itzhak

    2014-12-01

    Satellite mission life, maintained and prolonged beyond its typical norm of their expectancy, are primarily dictated by the state of health of its Reaction Wheel Assembly (RWA), especially for commercial GEO satellites since torquer bars are no longer applicable while thruster assistant is unacceptable due to pointing accuracy impact during jet firing. The RWA is the primary set of actuators (as compared to thrusters for orbit maintenance and maneuvering) mainly responsible for the satellite mission for accurately and precisely pointing its payloads to the right targets to conduct its mission operations. The RWA consisting of either a set of four in pyramid or three in orthogonal is the primary set of actuators to allow the satellite to achieve accurate and precise pointing of the satellite payloads towards the desired targets. Future space missions will be required to achieve much longer lives and are currently perceived by the GEO satellite community as an "expected norm" of 20 years or longer. Driven by customers' demands/goals and competitive market have challenged Attitude Control Subsystems (ACS) engineers to develop better ACS algorithms to address such an emerging need. There are two main directions to design satellite's under-actuated control subsystem: (1) Attitude Feedback with Zero Momentum Principle and (2) Attitude Control by Angular Velocity Tracking via Small Time Local Controllability concept. Successful applications of these control laws have been largely demonstrated via simulation for the rest to rest case. Limited accuracy and oscillatory behaviors are observed in three axes for non-zero wheel momentum while realistic loss of a wheel scenario (i.e., fully actuated to under-actuated) has not been closely examined! This study revisits the under-actuated control design with detailed set ups of multiple scenarios reflecting real life operating conditions which have put current under-actuated control laws mentioned earlier into a re-evaluation mode

  8. A Statistical Approach to Establishing Subsystem Environmental Test Specifications

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1974-01-01

    Results are presented of a research task to evaluate structural responses at various subsystem mounting locations during spacecraft level test exposures to the environments of mechanical shock, acoustic noise, and random vibration. This statistical evaluation is presented in the form of recommended subsystem test specifications for these three environments as normalized to a reference set of spacecraft test levels and are thus suitable for extrapolation to a set of different spacecraft test levels. The recommendations are dependent upon a subsystem's mounting location in a spacecraft, and information is presented on how to determine this mounting zone for a given subsystem.

  9. Pressure Loss Predictions of the Reactor Simulator Subsystem at NASA GRC

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.

    2015-01-01

    Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA GRC. The TDU consists of three subsystems: the Reactor Simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the Heat Exchanger Manifold (HXM). An Annular Linear Induction Pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now), is referred to as the RxSim subsystem and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the CAD model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras turbulence model), and 2.223 kg/sec (using the k-? turbulence model). The computational error of the predictions for the available mass flow is -0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k-epsilon turbulence model) when compared to measured data.

  10. Input and output constraints-based stabilisation of switched nonlinear systems with unstable subsystems and its application

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liu, Qian; Zhao, Jun

    2018-01-01

    This paper studies the problem of stabilisation of switched nonlinear systems with output and input constraints. We propose a recursive approach to solve this issue. None of the subsystems are assumed to be stablisable while the switched system is stabilised by dual design of controllers for subsystems and a switching law. When only dealing with bounded input, we provide nested switching controllers using an extended backstepping procedure. If both input and output constraints are taken into consideration, a Barrier Lyapunov Function is employed during operation to construct multiple Lyapunov functions for switched nonlinear system in the backstepping procedure. As a practical example, the control design of an equilibrium manifold expansion model of aero-engine is given to demonstrate the effectiveness of the proposed design method.

  11. Balancing reliability and cost to choose the best power subsystem

    NASA Technical Reports Server (NTRS)

    Suich, Ronald C.; Patterson, Richard L.

    1991-01-01

    A mathematical model is presented for computing total (spacecraft) subsystem cost including both the basic subsystem cost and the expected cost due to the failure of the subsystem. This model is then used to determine power subsystem cost as a function of reliability and redundancy. Minimum cost and maximum reliability and/or redundancy are not generally equivalent. Two example cases are presented. One is a small satellite, and the other is an interplanetary spacecraft.

  12. Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling

    NASA Astrophysics Data System (ADS)

    Schum, William K.; Doolittle, Christina M.; Boyarko, George A.

    2006-05-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.

  13. Maintenance and operations cost model for DSN subsystems

    NASA Technical Reports Server (NTRS)

    Burt, R. W.; Lesh, J. R.

    1977-01-01

    A procedure is described which partitions the recurring costs of the Deep Space Network (DSN) over the individual DSN subsystems. The procedure results in a table showing the maintenance, operations, sustaining engineering and supportive costs for each subsystems.

  14. UGV: security analysis of subsystem control network

    NASA Astrophysics Data System (ADS)

    Abbott-McCune, Sam; Kobezak, Philip; Tront, Joseph; Marchany, Randy; Wicks, Al

    2013-05-01

    Unmanned Ground vehicles (UGVs) are becoming prolific in the heterogeneous superset of robotic platforms. The sensors which provide odometry, localization, perception, and vehicle diagnostics are fused to give the robotic platform a sense of the environment it is traversing. The automotive industry CAN bus has dominated the industry due to the fault tolerance and the message structure allowing high priority messages to reach the desired node in a real time environment. UGVs are being researched and produced at an accelerated rate to preform arduous, repetitive, and dangerous missions that are associated with a military action in a protracted conflict. The technology and applications of the research will inevitably be turned into dual-use platforms to aid civil agencies in the performance of their various operations. Our motivation is security of the holistic system; however as subsystems are outsourced in the design, the overall security of the system may be diminished. We will focus on the CAN bus topology and the vulnerabilities introduced in UGVs and recognizable security vulnerabilities that are inherent in the communications architecture. We will show how data can be extracted from an add-on CAN bus that can be customized to monitor subsystems. The information can be altered or spoofed to force the vehicle to exhibit unwanted actions or render the UGV unusable for the designed mission. The military relies heavily on technology to maintain information dominance, and the security of the information introduced onto the network by UGVs must be safeguarded from vulnerabilities that can be exploited.

  15. The Space Telescope SI C&DH system. [Scientific Instrument Control and Data Handling Subsystem

    NASA Technical Reports Server (NTRS)

    Gadwal, Govind R.; Barasch, Ronald S.

    1990-01-01

    The Hubble Space Telescope Scientific Instrument Control and Data Handling Subsystem (SI C&DH) is designed to interface with five scientific instruments of the Space Telescope to provide ground and autonomous control and collect health and status information using the Standard Telemetry and Command Components (STACC) multiplex data bus. It also formats high throughput science data into packets. The packetized data is interleaved and Reed-Solomon encoded for error correction and Pseudo Random encoded. An inner convolutional coding with the outer Reed-Solomon coding provides excellent error correction capability. The subsystem is designed with the capacity for orbital replacement in order to meet a mission life of fifteen years. The spacecraft computer and the SI C&DH computer coordinate the activities of the spacecraft and the scientific instruments to achieve the mission objectives.

  16. An intelligent advisor for the design manager

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Padula, Sharon L.

    1989-01-01

    A design problem is viewed as a complex system divisible into modules. Before the design of a complex system can begin, much time and money are spent in determining the couplings among modules and the presence of iterative loops. This is important because the design manager must know how to group the modules into substems and how to assign subsystems to design teams so that changes in one subsystem will have predictable effects on other subsystems. Determining these subsystems is not an easy, straightforward process and often important couplings are overlooked. Moreover, the planning task must be repeated as new information becomes available or as the design specifications change. The purchase of this research effort is to develop a knowledge-based tool to act as an intelligent advisor for the design manager. This tool identifies the subsystems of a complex design problem, orders them into a well-structured format, and marks the couplings among the subsystems to facilitate the use of multilevel tools. The tool was tested in the decomposition of the COFS (Control of Flexible Structures) mast design which has about 50 modules. This test indicated that this type of approach could lead to a substantial savings by organizing and displaying a complex problem as a sequence of subsystems easily divisible among design teams.

  17. Application of improved technology to a preprototype vapor compression distillation /VCD/ water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Reysa, R. P.; Fricks, D. H.

    1981-01-01

    Vapor compression distillation (VCD) is considered the most efficient water recovery process for spacecraft application. This paper reports on a preprototype VCD which has undergone the most extensive operational and component development testing of any VCD subsystem to date. The component development effort was primarily aimed at eliminating corrosion and the need for lubrication, upgrading electronics, and substituting nonmetallics in key rotating components. The VCD evolution is documented by test results on specific design and/or materials changes. Innovations worthy of further investigation and additional testing are summarized for future VCD subsystem development reference. Conclusions on experience gained are presented.

  18. Preliminary Subsystem Designs for the Assured Crew Return Vehicle (ACRV), volumes 1-3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A long term manned facility in space must include provisions for the safety of the crew. The resolution of this need was the design of an Assured Crew Return Vehicle (ACRV). The main focus is on the braking and landing system of the ACRV. This subsystem of the ACRV was divided into three phases. The Phase 1 analysis showed that the use of a tether to aid in the reentry of the ACRV was infeasible due to cost and efficiency. Therefore, a standard rocket would be used for reentry. It was also found that the continental United States was an achievable landing site for the ACRV. The Phase 2 analysis determined the L/D of the vehicle to be 1.8, thus requiring the use of a lifting body for reentry. It was also determined that shuttle tiles would be used for the thermal protection system. In addition, a parachute sequence for further deceleration was included, namely a ringslot drogue chute, a pilot chute, and finally a ringsail main parachute. This sequence was found to be capable of slowing the vehicle to a descent velocity of 9 to 10 m/s, which is the required velocity for aerial recovery. The Phase 3 analysis proved that a Sikorsky CH-53E helicopter is capable of retrieving the ACRV at 5.5 km altitude with minimal g-forces induced on the ACRV and minimal induced moments on the helicopter upon hookup. The helicopter would be modified such that it could stabilize the ACRV close to the bottom of helicopter and carry it to the nearest designated trauma center.

  19. Unified Generic Geometric-Decompositions for Consensus or Flocking Systems of Cooperative Agents and Fast Recalculations of Decomposed Subsystems Under Topology-Adjustments.

    PubMed

    Li, Wei

    2016-06-01

    This paper considers a unified geometric projection approach for: 1) decomposing a general system of cooperative agents coupled via Laplacian matrices or stochastic matrices and 2) deriving a centroid-subsystem and many shape-subsystems, where each shape-subsystem has the distinct properties (e.g., preservation of formation and stability of the original system, sufficiently simple structures and explicit formation evolution of agents, and decoupling from the centroid-subsystem) which will facilitate subsequent analyses. Particularly, this paper provides an additional merit of the approach: considering adjustments of coupling topologies of agents which frequently occur in system design (e.g., to add or remove an edge, to move an edge to a new place, and to change the weight of an edge), the corresponding new shape-subsystems can be derived by a few simple computations merely from the old shape-subsystems and without referring to the original system, which will provide further convenience for analysis and flexibility of choice. Finally, such fast recalculations of new subsystems under topology adjustments are provided with examples.

  20. HVAC [Heating, Ventilation and Air Conditioning] subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1986-06-01

    The HVAC system is a subsystem within the Mechanical Services Group (MSG). The HVAC system for the 4 x 350 MW(t) Modular HTGR Plant presently consists of ten, nonsafety-related subsystems located in the Nuclear Island (NI) and Energy Conversion Area (ECA) of the plant.

  1. Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder

    PubMed Central

    Miller, Danielle R.; Hayes, Scott M.; Hayes, Jasmeet P.; Spielberg, Jeffrey M.; Lafleche, Ginette; Verfaellie, Mieke

    2017-01-01

    Background Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Methods Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Results Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Conclusions Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology. PMID:28435932

  2. Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder.

    PubMed

    Miller, Danielle R; Hayes, Scott M; Hayes, Jasmeet P; Spielberg, Jeffrey M; Lafleche, Ginette; Verfaellie, Mieke

    2017-05-01

    Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology.

  3. The MIST /MIUS Integration and Subsystems Test/ laboratory - A testbed for the MIUS /Modular Integrated Utility System/ program

    NASA Technical Reports Server (NTRS)

    Beckham, W. S., Jr.; Keune, F. A.

    1974-01-01

    The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.

  4. Laboratory measurements of on-board subsystems

    NASA Technical Reports Server (NTRS)

    Nuspl, P. P.; Dong, G.; Seran, H. C.

    1991-01-01

    Good progress was achieved on the test bed for on-board subsystems for future satellites. The test bed is for subsystems developed previously. Four test setups were configured in the INTELSAT technical labs: (1) TDMA on-board modem; (2) multicarrier demultiplexer demodulator; (3) IBS/IDR baseband processor; and (4) baseband switch matrix. The first three series of tests are completed and the tests on the BSM are in progress. Descriptions of test setups and major test results are included; the format of the presentation is outlined.

  5. Automated Subsystem Control for Life Support System (ASCLSS)

    NASA Technical Reports Server (NTRS)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support Systems (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of space station subsystems. The automation system features a hierarchical and distributed real-time control architecture which places maximum controls authority at the lowest or process control level which enhances system autonomy. The ASCLSS demonstration system pioneered many automation and control concepts currently being considered in the space station data management system (DMS). Heavy emphasis is placed on controls hardware and software commonality implemented in accepted standards. The approach demonstrates successfully the application of real-time process and accountability with the subsystem or process developer. The ASCLSS system completely automates a space station subsystem (air revitalization group of the ASCLSS) which moves the crew/operator into a role of supervisory control authority. The ASCLSS program developed over 50 lessons learned which will aide future space station developers in the area of automation and controls..

  6. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  7. Minimize system cost by choosing optimal subsystem reliability and redundancy

    NASA Technical Reports Server (NTRS)

    Suich, Ronald C.; Patterson, Richard L.

    1993-01-01

    The basic question which we address in this paper is how to choose among competing subsystems. This paper utilizes both reliabilities and costs to find the subsystems with the lowest overall expected cost. The paper begins by reviewing some of the concepts of expected value. We then address the problem of choosing among several competing subsystems. These concepts are then applied to k-out-of-n: G subsystems. We illustrate the use of the authors' basic program in viewing a range of possible solutions for several different examples. We then discuss the implications of various solutions in these examples.

  8. Interface Supports Lightweight Subsystem Routing for Flight Applications

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Block, Gary L.; Ahmad, Mohammad; Whitaker, William D.; Dillon, James W.

    2010-01-01

    A wireless avionics interface exploits the constrained nature of data networks in flight systems to use a lightweight routing method. This simplified routing means that a processor is not required, and the logic can be implemented as an intellectual property (IP) core in a field-programmable gate array (FPGA). The FPGA can be shared with the flight subsystem application. In addition, the router is aware of redundant subsystems, and can be configured to provide hot standby support as part of the interface. This simplifies implementation of flight applications requiring hot stand - by support. When a valid inbound packet is received from the network, the destination node address is inspected to determine whether the packet is to be processed by this node. Each node has routing tables for the next neighbor node to guide the packet to the destination node. If it is to be processed, the final packet destination is inspected to determine whether the packet is to be forwarded to another node, or routed locally. If the packet is local, it is sent to an Applications Data Interface (ADI), which is attached to a local flight application. Under this scheme, an interface can support many applications in a subsystem supporting a high level of subsystem integration. If the packet is to be forwarded to another node, it is sent to the outbound packet router. The outbound packet router receives packets from an ADI or a packet to be forwarded. It then uses a lookup table to determine the next destination for the packet. Upon detecting a remote subsystem failure, the routing table can be updated to autonomously bypass the failed subsystem.

  9. Simulation verification techniques study. Subsystem simulation validation techniques

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1974-01-01

    Techniques for validation of software modules which simulate spacecraft onboard systems are discussed. An overview of the simulation software hierarchy for a shuttle mission simulator is provided. A set of guidelines for the identification of subsystem/module performance parameters and critical performance parameters are presented. Various sources of reference data to serve as standards of performance for simulation validation are identified. Environment, crew station, vehicle configuration, and vehicle dynamics simulation software are briefly discussed from the point of view of their interfaces with subsystem simulation modules. A detailed presentation of results in the area of vehicle subsystems simulation modules is included. A list of references, conclusions and recommendations are also given.

  10. ISS Double-Gimbaled CMG Subsystem Simulation Using the Agile Development Method

    NASA Technical Reports Server (NTRS)

    Inampudi, Ravi

    2016-01-01

    This paper presents an evolutionary approach in simulating a cluster of 4 Control Moment Gyros (CMG) on the International Space Station (ISS) using a common sense approach (the agile development method) for concurrent mathematical modeling and simulation of the CMG subsystem. This simulation is part of Training systems for the 21st Century simulator which will provide training for crew members, instructors, and flight controllers. The basic idea of how the CMGs on the space station are used for its non-propulsive attitude control is briefly explained to set up the context for simulating a CMG subsystem. Next different reference frames and the detailed equations of motion (EOM) for multiple double-gimbal variable-speed control moment gyroscopes (DGVs) are presented. Fixing some of the terms in the EOM becomes the special case EOM for ISS's double-gimbaled fixed speed CMGs. CMG simulation development using the agile development method is presented in which customer's requirements and solutions evolve through iterative analysis, design, coding, unit testing and acceptance testing. At the end of the iteration a set of features implemented in that iteration are demonstrated to the flight controllers thus creating a short feedback loop and helping in creating adaptive development cycles. The unified modeling language (UML) tool is used in illustrating the user stories, class designs and sequence diagrams. This incremental development approach of mathematical modeling and simulating the CMG subsystem involved the development team and the customer early on, thus improving the quality of the working CMG system in each iteration and helping the team to accurately predict the cost, schedule and delivery of the software.

  11. Life support subsystem monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Kostell, G. D.

    1974-01-01

    The recognition of the need for instrumentation in manned spacecraft life-support subsystems has increased significantly over the past several years. Of the required control and monitoring instrumentation, this paper will focus on the monitoring instrumentation as applied to life-support subsystems. The initial approach used independent sensors, independent sensor signal conditioning circuitry, and independent logic circuitry to provide shutdown protection only. This monitoring system was replaced with a coordinated series of printed circuit cards, each of which contains all the electronics to service one sensor and provide performance trend information, fault detection and isolation information, and shutdown protection. Finally, a review of sensor and instrumentation problems is presented, and the requirement for sensors with built-in signal conditioning and provisions for in situ calibration is discussed.

  12. Prediction of matching condition for a microstrip subsystem using artificial neural network and adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim

    2016-11-01

    In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.

  13. Cost-effective data storage/archival subsystem for functional PACS

    NASA Astrophysics Data System (ADS)

    Chen, Y. P.; Kim, Yongmin

    1993-09-01

    Not the least of the requirements of a workable PACS is the ability to store and archive vast amounts of information. A medium-size hospital will generate between 1 and 2 TBytes of data annually on a fully functional PACS. A high-speed image transmission network coupled with a comparably high-speed central data storage unit can make local memory and magnetic disks in the PACS workstations less critical and, in an extreme case, unnecessary. Under these circumstances, the capacity and performance of the central data storage subsystem and database is critical in determining the response time at the workstations, thus significantly affecting clinical acceptability. The central data storage subsystem not only needs to provide sufficient capacity to store about ten days worth of images (five days worth of new studies, and on the average, about one comparison study for each new study), but also supplies images to the requesting workstation in a timely fashion. The database must provide fast retrieval responses upon users' requests for images. This paper analyzes both advantages and disadvantages of multiple parallel transfer disks versus RAID disks for short-term central data storage subsystem, as well as optical disk jukebox versus digital recorder tape subsystem for long-term archive. Furthermore, an example high-performance cost-effective storage subsystem which integrates both the RAID disks and high-speed digital tape subsystem as a cost-effective PACS data storage/archival unit are presented.

  14. MIUS integration and subsystems test program

    NASA Technical Reports Server (NTRS)

    Beckham, W. S., Jr.; Shows, G. C.; Redding, T. E.; Wadle, R. C.; Keough, M. B.; Poradek, J. C.

    1976-01-01

    The MIUS Integration and Subsystems Test (MIST) facility at the Lyndon B. Johnson Space Center was completed and ready in May 1974 for conducting specific tests in direct support of the Modular Integrated Utility System (MIUS). A series of subsystems and integrated tests was conducted since that time, culminating in a series of 24-hour dynamic tests to further demonstrate the capabilities of the MIUS Program concepts to meet typical utility load profiles for a residential area. Results of the MIST Program are presented which achieved demonstrated plant thermal efficiencies ranging from 57 to 65 percent.

  15. Subsystem radiation susceptibility analysis for deep-space missions

    NASA Technical Reports Server (NTRS)

    West, W. S.; Poch, W.; Holmes-Siedle, A.; Bilsky, H. W.; Carroll, D.

    1971-01-01

    Scientific, unmanned spacecraft on mission to Jupiter and beyond will be subjected to nuclear radiation from the natural environment and onboard nuclear power sources which may be harmful to subsystems. This report postulates these environments and discusses practical considerations to ensure confidence that the spacecraft's materials and subsystems will withstand the effects of anticipated radiation. Degradation mechanisms are discussed.

  16. Stability of large-scale systems with stable and unstable subsystems.

    NASA Technical Reports Server (NTRS)

    Grujic, Lj. T.; Siljak, D. D.

    1972-01-01

    The purpose of this paper is to develop new methods for constructing vector Liapunov functions and broaden the application of Liapunov's theory to stability analysis of large-scale dynamic systems. The application, so far limited by the assumption that the large-scale systems are composed of exponentially stable subsystems, is extended via the general concept of comparison functions to systems which can be decomposed into asymptotically stable subsystems. Asymptotic stability of the composite system is tested by a simple algebraic criterion. With minor technical adjustments, the same criterion can be used to determine connective asymptotic stability of large-scale systems subject to structural perturbations. By redefining the constraints imposed on the interconnections among the subsystems, the considered class of systems is broadened in an essential way to include composite systems with unstable subsystems. In this way, the theory is brought substantially closer to reality since stability of all subsystems is no longer a necessary assumption in establishing stability of the overall composite system.

  17. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  18. Advanced silver zinc battery development for the SRB and ET range safety subsystems

    NASA Technical Reports Server (NTRS)

    Adamedes, Zoe

    1994-01-01

    This document presents in viewgraph format the design and development of silver zinc (AgZn) batteries for the solid rocket booster (SRB) and external tank (ET) range safety subsystems. Various engineering techniques, including composite separator systems, new electrode processing techniques, and new restraint techniques, were used to meet difficult requirements.

  19. Debris measure subsystem of the nanosatellite IRECIN

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; di Ciolo, L.; Ortenzi, A.; Petrozzi, M.; del Re, V.

    2003-09-01

    The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes an Electronic real-time system that acquires space debris measures. It uses a piezo-electric sensor. The described device is a subsystem on board of the IRECIN nanosatellite composed mainly by a r.i.s.c. microprocessor, an electronic part that interfaces to the debris sensor in order to provide a low noise electrical and suitable range to ADC 12 bit converter, and finally a memory in order to store the data. The microprocessor handles the Debris Measure System measuring the impacts number, their intensity and storing their waves form. This subsystem is able to communicate with the other IRECIN subsystems through I2C Bus and principally with the "Main Microprocessor" subsystem allowing the data download directly to the Ground Station. Moreover this subsystem lets free the "Main Microprocessor Board" from the management and charge of debris data. All electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Development Group. The proposed system is implemented on the IRECIN, a modular nanosatellite weighting less than 1.5 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are added for eclipse operations. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin-stabilized with the spin-axis normal to the orbit. debris and micrometeoroids mass and velocity.

  20. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes

    NASA Astrophysics Data System (ADS)

    Marvian, Milad; Lidar, Daniel A.

    2017-01-01

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  1. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.

    PubMed

    Marvian, Milad; Lidar, Daniel A

    2017-01-20

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  2. Photovoltaic power conditioning subsystem: State of the art and development opportunities

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-01

    Photovoltaic systems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and host utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are considered; these include: (1) standards, guidelines, and specifications; (2) cost effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. Theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  3. Discovering novel subsystems using comparative genomics

    PubMed Central

    Ferrer, Luciana; Shearer, Alexander G.; Karp, Peter D.

    2011-01-01

    Motivation: Key problems for computational genomics include discovering novel pathways in genome data, and discovering functional interaction partners for genes to define new members of partially elucidated pathways. Results: We propose a novel method for the discovery of subsystems from annotated genomes. For each gene pair, a score measuring the likelihood that the two genes belong to a same subsystem is computed using genome context methods. Genes are then grouped based on these scores, and the resulting groups are filtered to keep only high-confidence groups. Since the method is based on genome context analysis, it relies solely on structural annotation of the genomes. The method can be used to discover new pathways, find missing genes from a known pathway, find new protein complexes or other kinds of functional groups and assign function to genes. We tested the accuracy of our method in Escherichia coli K-12. In one configuration of the system, we find that 31.6% of the candidate groups generated by our method match a known pathway or protein complex closely, and that we rediscover 31.2% of all known pathways and protein complexes of at least 4 genes. We believe that a significant proportion of the candidates that do not match any known group in E.coli K-12 corresponds to novel subsystems that may represent promising leads for future laboratory research. We discuss in-depth examples of these findings. Availability: Predicted subsystems are available at http://brg.ai.sri.com/pwy-discovery/journal.html. Contact: lferrer@ai.sri.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21775308

  4. Age differences in the intrinsic functional connectivity of default network subsystems

    PubMed Central

    Campbell, Karen L.; Grigg, Omer; Saverino, Cristina; Churchill, Nathan; Grady, Cheryl L.

    2013-01-01

    Recent work suggests that the default mode network (DMN) includes two core regions, the ventromedial prefrontal cortex and posterior cingulate cortex (PCC), and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL) subsystem, active during remembering and future projection, and a dorsomedial prefrontal cortex (dmPFC) subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC) and dorsal (dPCC) regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults. PMID:24294203

  5. Age differences in the intrinsic functional connectivity of default network subsystems.

    PubMed

    Campbell, Karen L; Grigg, Omer; Saverino, Cristina; Churchill, Nathan; Grady, Cheryl L

    2013-01-01

    Recent work suggests that the default mode network (DMN) includes two core regions, the ventromedial prefrontal cortex and posterior cingulate cortex (PCC), and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL) subsystem, active during remembering and future projection, and a dorsomedial prefrontal cortex (dmPFC) subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC) and dorsal (dPCC) regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults.

  6. Mariner Mars 1971 attitude control subsystem

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1974-01-01

    The Mariner Mars 1971 attitude control subsystem (ACS) is discussed. It is comprised of a sun sensor set, a Canopus tracker, an inertial reference unit, two cold gas reaction control assemblies, two rocket engine gimbal actuators, and an attitude control electronics unit. The subsystem has the following eight operating modes: (1) launch, (2) sun acquisition, (3) roll search, (4) celestial cruise, (5) all-axes inertial, (6) roll inertial, (7) commanded turn, and (8) thrust vector control. In the celestial cruise mode, the position control is held to plus or minus 0.25 deg. Commanded turn rates are plus or minus 0.18 deg/s. The attitude control logic in conjunction with command inputs from other spacecraft subsystems establishes the ACS operating mode. The logic utilizes Sun and Canopus acquisition signals generated within the ACS to perform automatic mode switching so that dependence of ground control is minimized when operating in the sun acquisition, roll search, and celestial cruise modes. The total ACS weight is 65.7 lb, and includes 5.4 lb of nitrogen gas. Total power requirements vary from 9 W for the celestial cruise mode to 54 W for the commanded turn mode.

  7. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  8. Orbiter integrated active thermal control subsystem test

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.

    1980-01-01

    Integrated subsystem level testing of the systems within the orbiter active thermal chamber capable of simulating ground, orbital, and entry temperature and pressure profiles. The test article was in a closed loop configuration that included flight type and functionally simulated protions of all ATCS components for collecting, transporting, and rejecting orbiter waste heat. Specially designed independently operating equipment simulated the transient thermal input from the cabin, payload, fuel cells, freon cold plates, hydraulic system, and space environment. Test team members using data, controls, and procedures available to a flight crew controlled the operation of the ATCS. The ATCS performance met or exceeded all thermal and operational requirements for planned and contingency mission support.

  9. Waste collection subsystem study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Practical ways were explored of improving waste compaction and of providing rapid turnaround between flights at essentially no cost for the space shuttle waste collection subsystem commode. Because of the possible application of a fully developed shuttle commode to the space station, means of providing waste treatment without overboard venting were also considered. Three basic schemes for compaction and rapid turnaround, each fully capable of meeting the objectives, were explored in sufficient depth to bring out the characteristic advantages and disadvantages of each. Tradeoff comparisons were very close between leading contenders and efforts were made to refine the design concepts sufficiently to justify a selection. The concept selected makes use of a sealed canister containing wastes that have been forcibly compacted, which is removable in flight. No selection was made between three superior non-venting treatment methods owing to the need for experimental evaluations of the processes involved. A system requirements definition document has been prepared to define the task for a test embodiment of the selected concept.

  10. Low cost computer subsystem for the Solar Electric Propulsion Stage (SEPS)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Solar Electric Propulsion Stage (SEPS) subsystem which consists of the computer, custom input/output (I/O) unit, and tape recorder for mass storage of telemetry data was studied. Computer software and interface requirements were developed along with computer and I/O unit design parameters. Redundancy implementation was emphasized. Reliability analysis was performed for the complete command computer sybsystem. A SEPS fault tolerant memory breadboard was constructed and its operation demonstrated.

  11. Propellant Feed Subsystem for the X-34 Main Propulsion System

    NASA Technical Reports Server (NTRS)

    McDonald, J. P.; Minor, R. B.; Knight, K. C.; Champion, R. H., Jr.; Russell, F. J., Jr.

    1998-01-01

    The Orbital Sciences Corporation X-34 vehicle demonstrates technologies and operations key to future reusable launch vehicles. The general flight performance goal of this unmanned rocket plane is Mach 8 flight at an altitude of 250,000 feet. The Main Propulsion System supplies liquid propellants to the main engine, which provides the primary thrust for attaining mission goals. Major NMS design and operational goals are aircraft-like ground operations, quick turnaround between missions, and low initial/operational costs. This paper reviews major design and analysis aspects of the X-34 propellant feed subsystem of the X-34 Main Propulsion System. Topics include system requirements, system design, the integration of flight and feed system performance, propellant acquisition at engine start, and propellant tank terminal drain.

  12. Receiver-exciter controller design

    NASA Technical Reports Server (NTRS)

    Jansma, P. A.

    1982-01-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  13. Mariner Mars 1971 attitude control subsystem flight performance

    NASA Technical Reports Server (NTRS)

    Schumacher, L.

    1973-01-01

    The flight performance of the Mariner 71 attitude control subsystem is discussed. Each phase of the mission is delineated and the attitude control subsystem is evaluated within the observed operational environment. Performance anomalies are introduced and discussed within the context of general performance. Problems such as the sun sensor interface incompatibility, gas valve leaks, and scan platform dynamic coupling effects are given analytical considerations.

  14. DeMAID: A Design Manager's Aide for Intelligent Decomposition user's guide

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    A design problem is viewed as a complex system divisible into modules. Before the design of a complex system can begin, the couplings among modules and the presence of iterative loops is determined. This is important because the design manager must know how to group the modules into subsystems and how to assign subsystems to design teams so that changes in one subsystem will have predictable effects on other subsystems. Determining these subsystems is not an easy, straightforward process and often important couplings are overlooked. Moreover, the planning task must be repeated as new information become available or as the design specifications change. The purpose of this research is to develop a knowledge-based tool called the Design Manager's Aide for Intelligent Decomposition (DeMAID) to act as an intelligent advisor for the design manager. DeMaid identifies the subsystems of a complex design problem, orders them into a well-structured format, and marks the couplings among the subsystems to facilitate the use of multilevel tools. DeMAID also provides the design manager with the capability of examining the trade-offs between sequential and parallel processing. This type of approach could lead to a substantial savings or organizing and displaying a complex problem as a sequence of subsystems easily divisible among design teams. This report serves as a User's Guide for the program.

  15. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOEpatents

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  16. A subsystem identification method based on the path concept with coupling strength estimation

    NASA Astrophysics Data System (ADS)

    Magrans, Francesc Xavier; Poblet-Puig, Jordi; Rodríguez-Ferran, Antonio

    2018-02-01

    For complex geometries, the definition of the subsystems is not a straightforward task. We present here a subsystem identification method based on the direct transfer matrix, which represents the first-order paths. The key ingredient is a cluster analysis of the rows of the powers of the transfer matrix. These powers represent high-order paths in the system and are more affected than low-order paths by damping. Once subsystems are identified, the proposed approach also provides a quantification of the degree of coupling between subsystems. This information is relevant to decide whether a subsystem may be analysed in a computer model or measured in the laboratory independently of the rest or subsystems or not. The two features (subsystem identification and quantification of the degree of coupling) are illustrated by means of numerical examples: plates coupled by means of springs and rooms connected by means of a cavity.

  17. Using Tests Designed to Measure Individual Sensorimotor Subsystem Perfomance to Predict Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Peters, B. T.; Caldwell, E. E.; Batson, C. D.; Guined, J. R.; DeDios, Y. E.; Stepanyan, V.; Gadd, N. E.; Szecsy, D. L.; Mulavara, A. P.; Seidler, R. D.; hide

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functions during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The way each individual's brain synthesizes the available visual, vestibular and somatosensory information is likely the basis for much of the variation. Identifying the presence of biases in each person's use of information available from these sensorimotor subsystems and relating it to their ability to adapt to a novel locomotor task will allow us to customize a training program designed to enhance sensorimotor adaptability. Eight tests are being used to measure sensorimotor subsystem performance. Three of these use measures of body sway to characterize balance during varying sensorimotor challenges. The effect of vision is assessed by repeating conditions with eyes open and eyes closed. Standing on foam, or on a support surface that pitches to maintain a constant ankle angle provide somatosensory challenges. Information from the vestibular system is isolated when vision is removed and the support surface is compromised, and it is challenged when the tasks are done while the head is in motion. The integration and dominance of visual information is assessed in three additional tests. The Rod & Frame Test measures the degree to which a subject's perception of the visual vertical is affected by the orientation of a tilted frame in the periphery. Locomotor visual dependence is determined by assessing how much an oscillating virtual visual world affects a treadmill-walking subject. In the third of the visual manipulation tests, subjects walk an obstacle course while wearing up-down reversing prisms. The two remaining tests include direct

  18. Power Subsystem for Extravehicular Activities for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle

    2005-01-01

    The NASA Glenn Research Center has the responsibility to develop the next generation space suit power subsystem to support the Vision for Space Exploration. Various technology challenges exist in achieving extended duration missions as envisioned for future lunar and Mars mission scenarios. This paper presents an overview of ongoing development efforts undertaken at the Glenn Research Center in support of power subsystem development for future extravehicular activity systems.

  19. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2012-01-01

    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  20. The OGO attitude control subsystem redesign as a result of OGO 3 experience. Volume 1: System analysis and design studies

    NASA Technical Reports Server (NTRS)

    Mckenna, K. J.

    1967-01-01

    An oscillation in the OGO-3 roll control channel, resulting from the EP-5 and EP-6 boom motion coupling into the control channel and causing loss of attitude control, is investigated. The study includes (1) an analysis of the OGO-3 and OGO-2 flight data to determine the nature and extent of the roll oscillation phenomena, (2) design analysis of the complete attitude control subsystem (ACS) to evolve changes which would prevent recurrences of the coupled ACS boom oscillation observed on OGO-3, and (3) analog simulations to verify the performance of the design changes selected. Portions of OGO-3 and OGO-2 flight data are illustrated and the major flexible body oscillation are identified. A model of the major flexible appendage dynamics is developed and is shown analytically and through analog simulations to reproduce the OGO-3 oscillation phenomena. The design changes which were found necessary are: a reversal delay logic for the roll reaction wheels, widening of the solar array dead zone from 0.5 to 1.0 deg, and modification of the OPEP control loop to include a filter and stabilizing feedback loops.

  1. Mid Infrared Instrument cooler subsystem test facility overview

    NASA Astrophysics Data System (ADS)

    Moore, B.; Zan, J.; Hannah, B.; Chui, T.; Penanen, K.; Weilert, M.

    2017-12-01

    The Cryocooler for the Mid Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) provides cooling at 6.2K on the instrument interface. The cooler system design has been incrementally documented in previous publications [1][2][3][4][5]. It has components that traverse three primary thermal regions on JWST: Region 1, approximated by 40K; Region 2, approximated by 100K; and Region 3, which is at the allowable flight temperatures for the spacecraft bus. However, there are several sub-regions that exist in the transition between primary regions and at the heat reject interfaces of the Cooler Compressor Assembly (CCA) and Cooler Control Electronics Assembly (CCEA). The design and performance of the test facility to provide a flight representative thermal environment for acceptance testing and characterization of the complete MIRI cooler subsystem are presented.

  2. Integrated pneumatic transporter-incinerator-afterburner subsystem development. [for spacecraft waste disposal

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1974-01-01

    The design and fabrication of a prototype automatic transport system to move wastes to an incinerator onboard a spacecraft are described. The commode and debris collector, subsystems to treat noncondensible gases, oxygen supply to incinerator and afterburner, and removal and ash collection from the incinerator are considered, as well as a zero gravity condenser. In-depth performance testing of a totally integrated incineration system and autoclaving as a waste treatment method are included.

  3. Data Management Applications for the Service Preparation Subsystem

    NASA Technical Reports Server (NTRS)

    Luong, Ivy P.; Chang, George W.; Bui, Tung; Allen, Christopher; Malhotra, Shantanu; Chen, Fannie C.; Bui, Bach X.; Gutheinz, Sandy C.; Kim, Rachel Y.; Zendejas, Silvino C.; hide

    2009-01-01

    These software applications provide intuitive User Interfaces (UIs) with a consistent look and feel for interaction with, and control of, the Service Preparation Subsystem (SPS). The elements of the UIs described here are the File Manager, Mission Manager, and Log Monitor applications. All UIs provide access to add/delete/update data entities in a complex database schema without requiring technical expertise on the part of the end users. These applications allow for safe, validated, catalogued input of data. Also, the software has been designed in multiple, coherent layers to promote ease of code maintenance and reuse in addition to reducing testing and accelerating maturity.

  4. Charactering lidar optical subsystem using four quadrants method

    NASA Astrophysics Data System (ADS)

    Tian, Xiaomin; Liu, Dong; Xu, Jiwei; Wang, Zhenzhu; Wang, Bangxin; Wu, Decheng; Zhong, Zhiqing; Xie, Chenbo; Wang, Yingjian

    2018-02-01

    Lidar is a kind of active optical remote sensing instruments , can be applied to sound atmosphere with a high spatial and temporal resolution. Many parameter of atmosphere can be get by using different inverse algorithm with lidar backscatter signal. The basic setup of a lidar consist of a transmitter and a receiver. To make sure the quality of lidar signal data, the lidar must be calibrated before being used to measure the atmospheric variables. It is really significant to character and analyze lidar optical subsystem because a well equiped lidar optical subsystem contributes to high quality lidar signal data. we pay close attention to telecover test to character and analyze lidar optical subsystem.The telecover test is called four quadrants method consisting in dividing the telescope aperture in four quarants. when a lidar is well configured with lidar optical subsystem, the normalized signal from four qudrants will agree with each other on some level. Testing our WARL-II lidar by four quadrants method ,we find the signals of the four basically consistent with each other both in near range and in far range. But in detail, the signals in near range have some slight distinctions resulting from overlap function, some signals distinctions are induced by atmospheric instability.

  5. Computer simulation of thermal and fluid systems for MIUS integration and subsystems test /MIST/ laboratory. [Modular Integrated Utility System

    NASA Technical Reports Server (NTRS)

    Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.

    1975-01-01

    This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.

  6. Design and development of a robust ATP subsystem for the Altair UAV-to-Ground lasercomm 2.5 Gbps demonstration

    NASA Technical Reports Server (NTRS)

    Ortiz, G. G.; Lee, S.; Monacos, S.; Wright, M.; Biswas, A.

    2003-01-01

    A robust acquisition, tracking and pointing (ATP) subsystem is being developed for the 2.5 Gigabit per second (Gbps) Unmanned-Aerial-Vehicle (UAV) to ground free-space optical communications link project.

  7. Domestic wash-water reclamation using an aerospace-developed water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.

    1973-01-01

    A prototype aerospace distillation water recovery subsystem was tested to determine its capability to recover potable water from domestic wash water. A total of 0.0994 cu m (26.25 gallons) of domestic wash water was processed over a 7-day period at an average process rate of 0.0146 cu m per day (3.85 gallons per day). The subsystem produced water that met all United States Public Health Standards for drinking water with the exception of two standards which could not be analyzed at the required sensitivity levels. Average energy consumption for this evaluation to maintain both the recovery process and microbial control in the recovered water was approximately 3366 kilowatt-hours per cubic meter (12.74 kilowatt-hours per gallon) of water recovered. This condition represents a worst case energy consumption since no attempt was made to recover heat energy in the subsystem. An ultraviolet radiation cell installed in the effluent line of the subsystem was effective in controlling coliform micro-organisms within acceptable levels for drinking water. The subsystem recovered virtually 100 percent of the available water in the waste-water process. In addition, the subsystem removed 99.6 percent and 98.3 percent of the surfactants and phosphate, respectively, from the wash water.

  8. The human operator transfer function: Identification of the limb mechanics subsystem

    NASA Technical Reports Server (NTRS)

    Jones, Lynette A.; Hunter, Ian W.

    1991-01-01

    The objective of our research is to decompose the performance of the human operator in terms of the subsystems that determine the operator's responses in order to establish how the dynamics of these component subsystems influence the operator's performance. In the present experiment, the dynamic stiffness of the human elbow joint was measured at rest and under different levels of biceps muscle activation; this work forms part of the analysis of the limb mechanics subsystem.

  9. Software Testbed for Developing and Evaluating Integrated Autonomous Subsystems

    NASA Technical Reports Server (NTRS)

    Ong, James; Remolina, Emilio; Prompt, Axel; Robinson, Peter; Sweet, Adam; Nishikawa, David

    2015-01-01

    To implement fault tolerant autonomy in future space systems, it will be necessary to integrate planning, adaptive control, and state estimation subsystems. However, integrating these subsystems is difficult, time-consuming, and error-prone. This paper describes Intelliface/ADAPT, a software testbed that helps researchers develop and test alternative strategies for integrating planning, execution, and diagnosis subsystems more quickly and easily. The testbed's architecture, graphical data displays, and implementations of the integrated subsystems support easy plug and play of alternate components to support research and development in fault-tolerant control of autonomous vehicles and operations support systems. Intelliface/ADAPT controls NASA's Advanced Diagnostics and Prognostics Testbed (ADAPT), which comprises batteries, electrical loads (fans, pumps, and lights), relays, circuit breakers, invertors, and sensors. During plan execution, an experimentor can inject faults into the ADAPT testbed by tripping circuit breakers, changing fan speed settings, and closing valves to restrict fluid flow. The diagnostic subsystem, based on NASA's Hybrid Diagnosis Engine (HyDE), detects and isolates these faults to determine the new state of the plant, ADAPT. Intelliface/ADAPT then updates its model of the ADAPT system's resources and determines whether the current plan can be executed using the reduced resources. If not, the planning subsystem generates a new plan that reschedules tasks, reconfigures ADAPT, and reassigns the use of ADAPT resources as needed to work around the fault. The resource model, planning domain model, and planning goals are expressed using NASA's Action Notation Modeling Language (ANML). Parts of the ANML model are generated automatically, and other parts are constructed by hand using the Planning Model Integrated Development Environment, a visual Eclipse-based IDE that accelerates ANML model development. Because native ANML planners are currently

  10. Solar electric propulsion/instrument/subsystems interaction study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Cole, R. K.; Kemp, R. F.; Hall, D. F.; Shelton, H.

    1973-01-01

    The interactive effects between a solar electric propulsion system and an electrically propelled scientific spacecraft were examined. The operation of the ion thrusters may impact upon the acquisition and interpretation of data by the science payload of the spacecraft. The effluents from the operation of the electric propulsion unit may also impact upon the operation of the various subsystems of the vehicle. Specific interactive effects were isolated where meaningful levels of interaction may occur. The level of impact upon elements of the science payload and other affected subsystems is examined, and avenues for the reduction or elimination of impact are defined.

  11. Analysis of the human operator subsystems

    NASA Technical Reports Server (NTRS)

    Jones, Lynette A.; Hunter, Ian W.

    1991-01-01

    Except in low-bandwidth systems, knowledge of the human operator transfer function is essential for high-performance telerobotic systems. This information has usually been derived from detailed analyses of tracking performance, in which the human operator is considered as a complete system rather than as a summation of a number of subsystems, each of which influences the operator's output. Studies of one of these subsystems, the limb mechanics system, demonstrate that large parameter variations can occur that can have a profound effect on the stability of force-reflecting telerobot systems. An objective of this research was to decompose the performance of the human operator system in order to establish how the dynamics of each of the elements influence the operator's responses.

  12. Modular control subsystems for use in solar heating systems for multi-family dwellings

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress in the development of solar heating modular control subsystems is reported. Circuit design, circuit drawings, and printed circuit board layout are discussed along with maintenance manuals, installation instructions, and verification and acceptance tests. Calculations made to determine the predicted performance of the differential thermostat are given including details and results of tests for the offset temperature, and boil and freeze protect points.

  13. Cryogenic on-orbit liquid depot storage acquisition and transfer (COLD-SAT) experiment subsystem instrumentation and wire harness design report

    NASA Technical Reports Server (NTRS)

    Edwards, Lawrence G.

    1994-01-01

    Subcritical cryogens such as liquid hydrogen (LH2) and liquid oxygen (LO2) are required for space based transportation propellant, reactant, and life support systems. Future long-duration space missions will require on-orbit systems capable of long-term cryogen storage and efficient fluid transfer capabilities. COLD-SAT, which stands for cryogenic orbiting liquid depot-storage acquisition and transfer, is a free-flying liquid hydrogen management flight experiment. Experiments to determine optimum methods of fluid storage and transfer will be performed on the COLD-SAT mission. The success of the mission is directly related to the type and accuracy of measurements made. The instrumentation and measurement techniques used are therefore critical to the success of the mission. This paper presents the results of the COLD-SAT experiment subsystem instrumentation and wire harness design effort. Candidate transducers capable of fulfilling the COLD-SAT experiment measurement requirements are identified. Signal conditioning techniques, data acquisition requirements, and measurement uncertainty analysis are presented. Electrical harnessing materials and wiring techniques for the instrumentation designed to minimize heat conduction to the cryogenic tanks and provide optimum measurement accuracy are listed.

  14. Preprototype independent air revitalization subsystem

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1982-01-01

    The performance and maturity of a preprototype, three-person capacity, automatically controlled and monitored, self-contained independent air revitalization subsystem were evaluated. The subsystem maintains the cabin partial pressure of oxygen at 22 kPa (3.2 psia) and that of carbon dioxide at 400 Pa (3 mm Hg) over a wide range of cabin air relative humidity conditions. Consumption of water vapor by the water vapor electrolysis module also provides partial humidity control of the cabin environment. During operation, the average carbon dioxide removal efficiency at baseline conditions remained constant throughout the test at 84%. The average electrochemical depolarized concentrator cell voltage at the end of the parametric/endurance test was 0.41 V, representing a very slowly decreasing average cell voltage. The average water vapor electrolysis cell voltage increased only at a rate of 20 mu/h from the initial level of 1.67 V to the final level of 1.69 V at conclusion of the testing.

  15. [Financing, organization, costs and services performance of the Argentinean health sub-systems.

    PubMed

    Yavich, Natalia; Báscolo, Ernesto Pablo; Haggerty, Jeannie

    2016-01-01

    To analyze the relationship between health system financing and services organization models with costs and health services performance in each of Rosario's health sub-systems. The financing and organization models were characterized using secondary data. Costs were calculated using the WHO/SHA methodology. Healthcare quality was measured by a household survey (n=822). Public subsystem:Vertically integrated funding and primary healthcare as a leading strategy to provide services produced low costs and individual-oriented healthcare but with weak accessibility conditions and comprehensiveness. Private subsystem: Contractual integration and weak regulatory and coordination mechanisms produced effects opposed to those of the public sub-system. Social security: Contractual integration and strong regulatory and coordination mechanisms contributed to intermediate costs and overall high performance. Each subsystem financing and services organization model had a strong and heterogeneous influence on costs and health services performance.

  16. Neurocomputing strategies in decomposition based structural design

    NASA Technical Reports Server (NTRS)

    Szewczyk, Z.; Hajela, P.

    1993-01-01

    The present paper explores the applicability of neurocomputing strategies in decomposition based structural optimization problems. It is shown that the modeling capability of a backpropagation neural network can be used to detect weak couplings in a system, and to effectively decompose it into smaller, more tractable, subsystems. When such partitioning of a design space is possible, parallel optimization can be performed in each subsystem, with a penalty term added to its objective function to account for constraint violations in all other subsystems. Dependencies among subsystems are represented in terms of global design variables, and a neural network is used to map the relations between these variables and all subsystem constraints. A vector quantization technique, referred to as a z-Network, can effectively be used for this purpose. The approach is illustrated with applications to minimum weight sizing of truss structures with multiple design constraints.

  17. Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Moriarty, Michael P.

    1993-11-01

    NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

  18. Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Moriarty, Michael P.

    1993-01-01

    NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

  19. Subsystem real-time time dependent density functional theory.

    PubMed

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-21

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  20. STS-2: SAIL non-avionics subsystems math model requirements

    NASA Technical Reports Server (NTRS)

    Bennett, W. P.; Herold, R. W.

    1980-01-01

    Simulation of the STS-2 Shuttle nonavionics subsystems in the shuttle avionics integration laboratory (SAIL) is necessary for verification of the integrated shuttle avionics system. The math model (simulation) requirements for each of the nonavionics subsystems that interfaces with the Shuttle avionics system is documented and a single source document for controlling approved changes (by the SAIL change control panel) to the math models is provided.

  1. Technology for subsystems of space-based plant growth facilities

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Corey, R. B.

    1990-01-01

    Technologies for different subsystems of space-based plant growth facilities are being developed at the Wisconsin Center for Space Automation and Robotics, a NASA Center for the Commercial Development of Space. The technologies include concepts for water and nutrient delivery, for nutrient composition control, and for irradiation. Effort is being concentrated on these subsystems because available technologies cannot be effectively utilized for space applications.

  2. FDE-vdW: A van der Waals inclusive subsystem density-functional theory.

    PubMed

    Kevorkyants, Ruslan; Eshuis, Henk; Pavanello, Michele

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation-dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

  3. FDE-vdW: A van der Waals inclusive subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevorkyants, Ruslan; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Eshuis, Henk

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method.more » We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.« less

  4. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  5. HAL/SM system functional design specification. [systems analysis and design analysis of central processing units

    NASA Technical Reports Server (NTRS)

    Ross, C.; Williams, G. P. W., Jr.

    1975-01-01

    The functional design of a preprocessor, and subsystems is described. A structure chart and a data flow diagram are included for each subsystem. Also a group of intermodule interface definitions (one definition per module) is included immediately following the structure chart and data flow for a particular subsystem. Each of these intermodule interface definitions consists of the identification of the module, the function the module is to perform, the identification and definition of parameter interfaces to the module, and any design notes associated with the module. Also described are compilers and computer libraries.

  6. The Sortie-Generation Model System. Volume 5. Maintenance Subsystem

    DTIC Science & Technology

    1981-09-01

    Compuger RoanutI f and moidel 11, Computer operatinS system 17, Proorammino largualviso IS. Numlier of .ugic proltsm Hoewl -3 CSCobol 600 stuscomentm...THE SORTIE-GENERATION MODEL SYSTEM OC’ VOLUME V MAINTENANCE SUBSYSTEM September 1981 Robert S. Greenberg 05$ Prepared pursuant to Department of...Generation Model System Volume V Maintenance Subsystem 6. PERFORMING ORG. REPORT NUMBER LMI Task- L102 7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(a

  7. Goddard trajectory determination subsystem: Mathematical specifications

    NASA Technical Reports Server (NTRS)

    Wagner, W. E. (Editor); Velez, C. E. (Editor)

    1972-01-01

    The mathematical specifications of the Goddard trajectory determination subsystem of the flight dynamics system are presented. These specifications include the mathematical description of the coordinate systems, dynamic and measurement model, numerical integration techniques, and statistical estimation concepts.

  8. Concentrating solar collector subsystem: Preliminary design package

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.

  9. Electronic Components Subsystems and Equipment: a Compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Developments in electronic components, subsystems, and equipment are summarized. Topics discussed include integrated circuit components and techniques, circuit components and techniques, and cables and connectors.

  10. The development of the intrinsic functional connectivity of default network subsystems from age 3 to 5.

    PubMed

    Xiao, Yaqiong; Zhai, Hongchang; Friederici, Angela D; Jia, Fucang

    2016-03-01

    In recent years, research on human functional brain imaging using resting-state fMRI techniques has been increasingly prevalent. The term "default mode" was proposed to describe a baseline or default state of the brain during rest. Recent studies suggested that the default mode network (DMN) is comprised of two functionally distinct subsystems: a dorsal-medial prefrontal cortex (DMPFC) subsystem involved in self-oriented cognition (i.e., theory of mind) and a medial temporal lobe (MTL) subsystem engaged in memory and scene construction; both subsystems interact with the anterior medial prefrontal cortex (aMPFC) and posterior cingulate (PCC) as the core regions of DMN. The present study explored the development of DMN core regions and these two subsystems in both hemispheres from 3- to 5-year-old children. The analysis of the intrinsic activity showed strong developmental changes in both subsystems, and significant changes were specifically found in MTL subsystem, but not in DMPFC subsystem, implying distinct developmental trajectories for DMN subsystems. We found stronger interactions between the DMPFC and MTL subsystems in 5-year-olds, particularly in the left subsystems that support the development of environmental adaptation and relatively complex mental activities. These results also indicate that there is stronger right hemispheric lateralization at age 3, which then changes as bilateral development gradually increases through to age 5, suggesting in turn the hemispheric dominance in DMN subsystems changing with age. The present results provide primary evidence for the development of DMN subsystems in early life, which might be closely related to the development of social cognition in childhood.

  11. Comm for Small Sats: The Lunar Atmosphere and Dust Environment Explorer (LADEE) Communications Subsystem

    NASA Technical Reports Server (NTRS)

    Kuroda, Vanessa M.; Allard, Mark R.; Lewis, Brian; Lindsay, Michael

    2014-01-01

    September 6, 2013 through April 21, 2014 marked the mission lifecycle of the highly successful LADEE (Lunar Atmosphere and Dust Environment Explorer) mission that orbited the moon to gather detailed information about the thin lunar atmosphere. This paper will address the development, risks, and lessons learned regarding the specification, selection, and deployment of LADEE's unique Radio Frequency based communications subsystem and supporting tools. This includes the Electronic Ground Support Equipment (EGSE), test regimes, and RF dynamic link analysis environment developed to meet mission requirements for small, flexible, low cost, high performance, fast turnaround, and reusable spacecraft communication capabilities with easy and reliable application to future similar low cost small satellite missions over widely varying needs for communications and communications system complexity. LADEE communication subsystem key components, architecture, and mission performance will be reviewed toward applicability for future mission planning, design, and utilization.

  12. Partitioning a macroscopic system into independent subsystems

    NASA Astrophysics Data System (ADS)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  13. Shuttle Orbiter Atmospheric Revitalization Pressure Control Subsystem

    NASA Technical Reports Server (NTRS)

    Walleshauser, J. J.; Ord, G. R.; Prince, R. N.

    1982-01-01

    The Atmospheric Revitalization Pressure Control Subsystem (ARPCS) provides oxygen partial pressure and total pressure control for the habitable atmosphere of the Shuttle for either a one atmosphere environment or an emergency 8 PSIA mode. It consists of a Supply Panel, Control Panel, Cabin Pressure Relief Valves and Electronic Controllers. The panels control and monitor the oxygen and nitrogen supplies. The cabin pressure relief valves protect the habitable environment from overpressurization. Electronic controllers provide proper mixing of the two gases. This paper describes the ARPCS, addresses the changes in hardware that have occurred since the inception of the program; the performance of this subsystem during STS-1 and STS-2; and discusses future operation modes.

  14. Internet Use and Child Development: Validation of the Ecological Techno-Subsystem

    ERIC Educational Resources Information Center

    Johnson, Genevieve Marie

    2010-01-01

    Johnson and Puplampu recently proposed the "ecological techno-subsystem", a refinement to Bronfenbrenner's theoretical organization of environmental influences on child development. The ecological techno-subsystem includes child interaction with both living (e.g., peers) and nonliving (e.g., hardware) elements of communication,…

  15. Electronic Subsystems For Laser Communication System

    NASA Technical Reports Server (NTRS)

    Long, Catherine; Maruschak, John; Patschke, Robert; Powers, Michael

    1992-01-01

    Electronic subsystems of free-space laser communication system carry digital signals at 650 Mb/s over long distances. Applicable to general optical communications involving transfer of great quantities of data, and transmission and reception of video images of high definition.

  16. JOB BUILDER remote batch processing subsystem

    NASA Technical Reports Server (NTRS)

    Orlov, I. G.; Orlova, T. L.

    1980-01-01

    The functions of the JOB BUILDER remote batch processing subsystem are described. Instructions are given for using it as a component of a display system developed by personnel of the System Programming Laboratory, Institute of Space Research, USSR Academy of Sciences.

  17. Subsystem Analysis/Optimization for the X-34 Main Propulsion System

    NASA Technical Reports Server (NTRS)

    McDonald, J. P.; Hedayat, A.; Brown, T. M.; Knight, K. C.; Champion, R. H., Jr.

    1998-01-01

    The Orbital Sciences Corporation X-34 vehicle demonstrates technologies and operations key to future reusable launch vehicles. The general flight performance goal of this unmanned rocket plane is Mach 8 flight at an altitude of 250,000 feet. The Main Propulsion System (MPS) supplies liquid propellants to the main engine, which provides the primary thrust for attaining mission goals. Major MPS design and operational goals are aircraft-like ground operations, quick turnaround between missions, and low initial/operational costs. Analyses related to optimal MPS subsystem design are reviewed in this paper. A pressurization system trade weighs maintenance/reliability concerns against those for safety in a comparison of designs using pressure regulators versus orifices to control pressurant flow. A propellant dump/feed system analysis weighs the issues of maximum allowable vehicle landing weight, trajectory, and MPS complexity to arrive at a final configuration for propellant dump/feed systems.

  18. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  19. Design and installation package for a solar powered pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and installation procedures of a solar powered pump developed by Calmac Manufacturing Company are presented. Subsystem installation, operation and maintenance requirements, subsystem performance specifications, and detailed design drawings are included.

  20. Automation study for space station subsystems and mission ground support

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS.

  1. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  2. Predicting Speech Intelligibility with a Multiple Speech Subsystems Approach in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Lee, Jimin; Hustad, Katherine C.; Weismer, Gary

    2014-01-01

    Purpose: Speech acoustic characteristics of children with cerebral palsy (CP) were examined with a multiple speech subsystems approach; speech intelligibility was evaluated using a prediction model in which acoustic measures were selected to represent three speech subsystems. Method: Nine acoustic variables reflecting different subsystems, and…

  3. Study report on interfacing major physiological subsystem models: An approach for developing a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.; Grounds, D. J.; Leonard, J. I.

    1975-01-01

    Using a whole body algorithm simulation model, a wide variety and large number of stresses as well as different stress levels were simulated including environmental disturbances, metabolic changes, and special experimental situations. Simulation of short term stresses resulted in simultaneous and integrated responses from the cardiovascular, respiratory, and thermoregulatory subsystems and the accuracy of a large number of responding variables was verified. The capability of simulating significantly longer responses was demonstrated by validating a four week bed rest study. In this case, the long term subsystem model was found to reproduce many experimentally observed changes in circulatory dynamics, body fluid-electrolyte regulation, and renal function. The value of systems analysis and the selected design approach for developing a whole body algorithm was demonstrated.

  4. Quantum subsystems: Exploring the complementarity of quantum privacy and error correction

    NASA Astrophysics Data System (ADS)

    Jochym-O'Connor, Tomas; Kribs, David W.; Laflamme, Raymond; Plosker, Sarah

    2014-09-01

    This paper addresses and expands on the contents of the recent Letter [Phys. Rev. Lett. 111, 030502 (2013), 10.1103/PhysRevLett.111.030502] discussing private quantum subsystems. Here we prove several previously presented results, including a condition for a given random unitary channel to not have a private subspace (although this does not mean that private communication cannot occur, as was previously demonstrated via private subsystems) and algebraic conditions that characterize when a general quantum subsystem or subspace code is private for a quantum channel. These conditions can be regarded as the private analog of the Knill-Laflamme conditions for quantum error correction, and we explore how the conditions simplify in some special cases. The bridge between quantum cryptography and quantum error correction provided by complementary quantum channels motivates the study of a new, more general definition of quantum error-correcting code, and we initiate this study here. We also consider the concept of complementarity for the general notion of a private quantum subsystem.

  5. Positive gravitational subsystem energies from CFT cone relative entropies

    NASA Astrophysics Data System (ADS)

    Neuenfeld, Dominik; Saraswat, Krishan; Van Raamsdonk, Mark

    2018-06-01

    The positivity of relative entropy for spatial subsystems in a holographic CFT implies the positivity of certain quantities in the dual gravitational theory. In this note, we consider CFT subsystems whose boundaries lie on the lightcone of a point p. We show that the positive gravitational quantity which corresponds to the relative entropy for such a subsystem A is a novel notion of energy associated with a gravitational subsystem bounded by the minimal area extremal surface à associated with A and by the AdS boundary region  corresponding to the part of the lightcone from p bounded by ∂ A. This generalizes the results of arXiv:1605.01075 for ball-shaped regions by making use of the recent results in arXiv:1703.10656 for the vacuum modular Hamiltonian of regions bounded on lightcones. As part of our analysis, we give an analytic expression for the extremal surface in pure AdS associated with any such region A. We note that its form immediately implies the Markov property of the CFT vacuum (saturation of strong subadditivity) for regions bounded on the same lightcone. This gives a holographic proof of the result proven for general CFTs in arXiv:1703.10656. A similar holographic proof shows the Markov property for regions bounded on a lightsheet for non-conformal holographic theories defined by relevant perturbations of a CFT.

  6. The Detector Subsystem for the SXS Instrument on the Astro-H Observatory

    NASA Technical Reports Server (NTRS)

    Porter, Frederick; Adams, J. S.; Brown, G. V.; Chervenak, J. A.; Chiao, M. P.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; hide

    2011-01-01

    The Soft X-ray Spectrometer (SXS) instrument on the Astro-H observatory is based on a 36 pixel x-ray calorimeter array cooled to 50 mK in a sophisticated spaceflight cryostat. The SXS is a true spatial-spectral instrument, where each spatially discrete pixel functions as a high-resolution spectrometer. Here we discuss the SXS detector subsystem that includes the detector array, the anticoincidence detector, the first stage amplifiers, the thermal and mechanical staging of the detector, and the cryogenic bias electronics. The design of the SXS detector subsystem has significant heritage from the Suzaku/XRS instrument but has some important modifications that increase performance margins and simplify the focal plane assembly. Notable improvements include x-ray absorbers with significantly lower heat capacity, improved load resistors, improved thermometry, and a decreased sensitivity to thermal radiation. These modifications have yielded an energy resolution of 3.5-4.0 eV FWHM at 6 keV for representative devices in the laboratory, giving considerable margin against the 7 eV instrument requirement. We expect similar performance in flight

  7. Power subsystem performance prediction /PSPP/ computer program.

    NASA Technical Reports Server (NTRS)

    Weiner, H.; Weinstein, S.

    1972-01-01

    A computer program which simulates the operation of the Viking Orbiter Power Subsystem has been developed. The program simulates the characteristics and interactions of a solar array, battery, battery charge controls, zener diodes, power conditioning equipment, and the battery spacecraft and zener diode-spacecraft thermal interfaces. This program has been used to examine the operation of the Orbiter power subsystem during critical phases of the Viking mission - from launch, through midcourse maneuvers, Mars orbital insertion, orbital trims, Lander separation, solar occultations and unattended operation - until the end of the mission. A typical computer run for the first 24 hours after launch is presented which shows the variations in solar array, zener diode, battery charger, batteries and user load characteristics during this period.

  8. Deviation Management: Key Management Subsystem Driver of Knowledge-Based Continuous Improvement in the Henry Ford Production System.

    PubMed

    Zarbo, Richard J; Copeland, Jacqueline R; Varney, Ruan C

    2017-10-01

    To develop a business subsystem fulfilling International Organization for Standardization 15189 nonconformance management regulatory standard, facilitating employee engagement in problem identification and resolution to effect quality improvement and risk mitigation. From 2012 to 2016, the integrated laboratories of the Henry Ford Health System used a quality technical team to develop and improve a management subsystem designed to identify, track, trend, and summarize nonconformances based on frequency, risk, and root cause for elimination at the level of the work. Programmatic improvements and training resulted in markedly increased documentation culminating in 71,641 deviations in 2016 classified by a taxonomy of 281 defect types into preanalytic (74.8%), analytic (23.6%), and postanalytic (1.6%) testing phases. The top 10 deviations accounted for 55,843 (78%) of the total. Deviation management is a key subsystem of managers' standard work whereby knowledge of nonconformities assists in directing corrective actions and continuous improvements that promote consistent execution and higher levels of performance. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  9. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system and subsystems design and operational requirements. (c) Flight safety system diagram. An applicant... subsystems. The diagram must include the following subsystems defined in part 417, subpart D of this chapter... data processing, display, and recording system; and flight safety official console. (d) Subsystem...

  10. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system and subsystems design and operational requirements. (c) Flight safety system diagram. An applicant... subsystems. The diagram must include the following subsystems defined in part 417, subpart D of this chapter... data processing, display, and recording system; and flight safety official console. (d) Subsystem...

  11. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system and subsystems design and operational requirements. (c) Flight safety system diagram. An applicant... subsystems. The diagram must include the following subsystems defined in part 417, subpart D of this chapter... data processing, display, and recording system; and flight safety official console. (d) Subsystem...

  12. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system and subsystems design and operational requirements. (c) Flight safety system diagram. An applicant... subsystems. The diagram must include the following subsystems defined in part 417, subpart D of this chapter... data processing, display, and recording system; and flight safety official console. (d) Subsystem...

  13. Overview of the Mars Science Laboratory Parachute Decelerator Subsystem

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Steltzner, Adam; Witkowski, Al; Rowan, Jerry; Cruz, Juan

    2007-01-01

    In 2010 the Mars Science Laboratory (MSL) mission will deliver NASA's largest and most capable rover to the surface of Mars. MSL will explore previously unattainable landing sites due to the implementation of a high precision Entry, Descent, and Landing (EDL) system. The parachute decelerator subsystem (PDS) is an integral prat of the EDL system, providing a mass and volume efficient some of aerodynamic drag to decelerate the entry vehicle from Mach 2 to subsonic speeds prior to final propulsive descent to the sutface. The PDS for MSL is a mortar deployed 19.7m Viking type Disk-Gap-Band (DGB) parachute; chosen to meet the EDL timeline requirements and to utilize the heritage parachute systems from Viking, Mars Pathfinder, Mars Exploration Rover, and Phoenix NASA Mars Lander Programs. The preliminary design of the parachute soft goods including materials selection, stress analysis, fabrication approach, and development testing will be discussed. The preliminary design of mortar deployment system including mortar system sizing and performance predictions, gas generator design, and development mortar testing will also be presented.

  14. An automated environment for multiple spacecraft engineering subsystem mission operations

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.; Hioe, K.; Lai, J.; Imlay, E.; Schwuttke, U.; Hsu, E.; Mikes, S.

    1990-01-01

    Flight operations at the Jet Propulsion Laboratory (JPL) are now performed by teams of specialists, each team dedicated to a particular spacecraft. Certain members of each team are responsible for monitoring the performances of their respective spacecraft subsystems. Ground operations, which are very complex, are manual, labor-intensive, slow, and tedious, and therefore costly and inefficient. The challenge of the new decade is to operate a large number of spacecraft simultaneously while sharing limited human and computer resources, without compromising overall reliability. The Engineering Analysis Subsystem Environment (EASE) is an architecture that enables fewer controllers to monitor and control spacecraft engineering subsystems. A prototype of EASE has been installed in the JPL Space Flight Operations Facility for on-line testing. This article describes the underlying concept, development, testing, and benefits of the EASE prototype.

  15. Space Shuttle Orbiter corrosion history, 1981-1993: A review and analysis of issues involving structures and subsystems

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes past corrosion issues experienced by the NASA space shuttle orbiter fleet. Design considerations for corrosion prevention and inspection methods are reviewed. Significant corrosion issues involving structures and subsystems are analyzed, including corrective actions taken. Notable successes and failures of corrosion mitigation systems and procedures are discussed. The projected operating environment used for design is contrasted with current conditions in flight and conditions during ground processing.

  16. Predicting Speech Intelligibility with A Multiple Speech Subsystems Approach in Children with Cerebral Palsy

    PubMed Central

    Lee, Jimin; Hustad, Katherine C.; Weismer, Gary

    2014-01-01

    Purpose Speech acoustic characteristics of children with cerebral palsy (CP) were examined with a multiple speech subsystem approach; speech intelligibility was evaluated using a prediction model in which acoustic measures were selected to represent three speech subsystems. Method Nine acoustic variables reflecting different subsystems, and speech intelligibility, were measured in 22 children with CP. These children included 13 with a clinical diagnosis of dysarthria (SMI), and nine judged to be free of dysarthria (NSMI). Data from children with CP were compared to data from age-matched typically developing children (TD). Results Multiple acoustic variables reflecting the articulatory subsystem were different in the SMI group, compared to the NSMI and TD groups. A significant speech intelligibility prediction model was obtained with all variables entered into the model (Adjusted R-squared = .801). The articulatory subsystem showed the most substantial independent contribution (58%) to speech intelligibility. Incremental R-squared analyses revealed that any single variable explained less than 9% of speech intelligibility variability. Conclusions Children in the SMI group have articulatory subsystem problems as indexed by acoustic measures. As in the adult literature, the articulatory subsystem makes the primary contribution to speech intelligibility variance in dysarthria, with minimal or no contribution from other systems. PMID:24824584

  17. Predicting speech intelligibility with a multiple speech subsystems approach in children with cerebral palsy.

    PubMed

    Lee, Jimin; Hustad, Katherine C; Weismer, Gary

    2014-10-01

    Speech acoustic characteristics of children with cerebral palsy (CP) were examined with a multiple speech subsystems approach; speech intelligibility was evaluated using a prediction model in which acoustic measures were selected to represent three speech subsystems. Nine acoustic variables reflecting different subsystems, and speech intelligibility, were measured in 22 children with CP. These children included 13 with a clinical diagnosis of dysarthria (speech motor impairment [SMI] group) and 9 judged to be free of dysarthria (no SMI [NSMI] group). Data from children with CP were compared to data from age-matched typically developing children. Multiple acoustic variables reflecting the articulatory subsystem were different in the SMI group, compared to the NSMI and typically developing groups. A significant speech intelligibility prediction model was obtained with all variables entered into the model (adjusted R2 = .801). The articulatory subsystem showed the most substantial independent contribution (58%) to speech intelligibility. Incremental R2 analyses revealed that any single variable explained less than 9% of speech intelligibility variability. Children in the SMI group had articulatory subsystem problems as indexed by acoustic measures. As in the adult literature, the articulatory subsystem makes the primary contribution to speech intelligibility variance in dysarthria, with minimal or no contribution from other systems.

  18. The Calipso Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth s cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system s operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system s survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  19. Interlibrary Loan Communications Subsystem: Users Manual.

    ERIC Educational Resources Information Center

    OCLC Online Computer Library Center, Inc., Dublin, OH.

    The OCLC Interlibrary Loan (ILL) Communications Subsystem provides participating libraries with on-line control of ILL transactions. This user manual includes a glossary of terms related to the procedures in using the system. Sections describe computer entry, searching, loan request form, loan response form, ILL procedures, the special message…

  20. Interdisciplinary and multilevel optimum design

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  1. Characterization of Subsystems for a WB-003 Single Stage Shuttle

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; Lepsch, Roger A., Jr. (Technical Monitor)

    2002-01-01

    Subsystems for an all oxygen-hydrogen-single-stage shuttle are characterized for a vehicle designated WB-003. Features of the vehicle include all-electric actuation, fiber optics for information circuitry, fuel cells for power generation, and extensive use of composites for structure. The vehicle is sized for the delivery of a 25,000 lb. payload to a space station orbit without crew. When crew are being delivered, they are carried in a module in the payload bay with escape and manual override capabilities. The underlying reason for undertaking this task is to provide a framework for the study of the operations costs of the newer shuttles.

  2. Functional Performance of an Enabling Atmosphere Revitalization Subsystem Architecture for Deep Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Newton, Robert L.; Parrish, Keith J.; Roman, Monsi C.; Takada, Kevin C.; Miller, Lee A.; hide

    2013-01-01

    A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.

  3. Galileo attitude and articulation control subsystem closed loop testing

    NASA Technical Reports Server (NTRS)

    Lembeck, M. F.; Pignatano, N. D.

    1983-01-01

    In order to ensure the reliable operation of the Attitude and Articulation Control Subsystem (AACS) which will guide the Galileo spacecraft on its two and one-half year journey to Jupiter, the AACS is being rigorously tested. The primary objectives of the test program are the verification of the AACS's form, fit, and function, especially with regard to subsystem external interfaces and the functional operation of the flight software. Attention is presently given to the Galileo Closed Loop Test System, which simulates the dynamic and 'visual' flight environment for AACS components in the laboratory.

  4. BEHAVE: fire behavior prediction and fuel modeling system-BURN Subsystem, part 1

    Treesearch

    Patricia L. Andrews

    1986-01-01

    Describes BURN Subsystem, Part 1, the operational fire behavior prediction subsystem of the BEHAVE fire behavior prediction and fuel modeling system. The manual covers operation of the computer program, assumptions of the mathematical models used in the calculations, and application of the predictions.

  5. Integrating the autonomous subsystems management process

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry R.

    1992-01-01

    Ways in which the ranking of the Space Station Module Power Management and Distribution testbed may be achieved and an individual subsystem's internal priorities may be managed within the complete system are examined. The application of these results in the integration and performance leveling of the autonomously managed system is discussed.

  6. Stability of subsystem solutions in agent-based models

    NASA Astrophysics Data System (ADS)

    Perc, Matjaž

    2018-01-01

    The fact that relatively simple entities, such as particles or neurons, or even ants or bees or humans, give rise to fascinatingly complex behaviour when interacting in large numbers is the hallmark of complex systems science. Agent-based models are frequently employed for modelling and obtaining a predictive understanding of complex systems. Since the sheer number of equations that describe the behaviour of an entire agent-based model often makes it impossible to solve such models exactly, Monte Carlo simulation methods must be used for the analysis. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among agents that describe systems in biology, sociology or the humanities often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. This begets the question: when can we be certain that an observed simulation outcome of an agent-based model is actually stable and valid in the large system-size limit? The latter is key for the correct determination of phase transitions between different stable solutions, and for the understanding of the underlying microscopic processes that led to these phase transitions. We show that a satisfactory answer can only be obtained by means of a complete stability analysis of subsystem solutions. A subsystem solution can be formed by any subset of all possible agent states. The winner between two subsystem solutions can be determined by the average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem solutions are characterised by a proper composition and spatiotemporal structure before the competition starts. We use the spatial public goods game with diverse tolerance as an example, but the approach has relevance for a wide variety of agent-based models.

  7. Transitioning from conceptual design to construction performance specification

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather

    2012-09-01

    On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.

  8. Conceptual design of a thermal control system for an inflatable lunar habitat module

    NASA Technical Reports Server (NTRS)

    Gadkari, Ketan; Goyal, Sanjay K.; Vanniasinkam, Joseph

    1991-01-01

    NASA is considering the establishment of a manned lunar base within the next few decades. To house and protect the crew from the harsh lunar environment, a habitat is required. A proposed habitat is an spherical, inflatable module. Heat generated in the module must be rejected to maintain a temperature suitable for human habitation. This report presents a conceptual design of a thermal control system for an inflatable lunar module. The design solution includes heat acquisition, heat transport, and heat rejection subsystems. The report discusses alternative designs and design solutions for each of the three subsystems mentioned above. Alternative subsystems for heat acquisition include a single water-loop, a single air-loop, and a double water-loop. The vapor compression cycle, vapor absorption cycle, and metal hydride absorption cycle are the three alternative transport subsystems. Alternative rejection subsystems include flat plate radiators, the liquid droplet radiator, and reflux boiler radiators. Feasibility studies on alternatives of each subsystem showed that the single water-loop, the vapor compression cycle, and the reflux boiler radiator were the most feasible alternatives. The design team combined the three subsystems to come up with an overall system design. Methods of controlling the system to adapt it for varying conditions within the module and in the environment are presented. Finally, the report gives conclusions and recommendations for further study of thermal control systems for lunar applications.

  9. Integration & Validation of LCU with Different Sub-systems for Diacrode based amplifier

    NASA Astrophysics Data System (ADS)

    Rajnish, Kumar; Verma, Sriprakash; Soni, Dipal; Patel, Hriday; Suthar, Gajendra; Dalicha, Hrushikesh; Dhola, Hitesh; Patel, Amit; Upadhayay, Dishang; Jha, Akhil; Patel, Manoj; Trivedi, Rajesh; Machchhar, Harsha; Singh, Raghuraj; Mukherjee, Aparajita

    2017-04-01

    ITER-India is responsible to deliver nine (8+1 spare) ICH & CD Power Sources to ITER. Each power source is capable to deliver 2.5 MW at 35 to 65 MHz frequency range with a load condition up to VSWR 2:1. For remote operation of different subsystems, Local Control Unit (LCU) is developed. LCU is developed using PXI hardware and Schneider PLC with Lab VIEW-RT developmental environment. All the protection function of the amplifier is running on PXI 7841 R module that ensures hard wired protection logic. There are three level of protection function- first by power supply itself that detects overcurrent/overvoltage and trips itself and generate trip signal for further action. There are some direct hardwired signal interfaces between power supplies to protect the amplifier. Second level of protection is generated through integrated controller of amplifier i.e. Command Control Embedded (CCE) against arc and Anode over current. Third level of Protection is through LCU where different fault signals are received and processed to generate off command for different sub-systems. Before connecting different subsystem with High power RF amplifiers (Driver & Final stage), each subsystem is individually tested through LCU. All protection functions are tested before hooking up the subsystems with main amplifier and initiating RF operation.

  10. The CALIPSO Integrated Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth's cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system's operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system's survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  11. Development of a household waste treatment subsystem, volume 1. [with water conservation features

    NASA Technical Reports Server (NTRS)

    Gresko, T. M.; Murray, R. W.

    1973-01-01

    The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.

  12. The conical scanner evaluation system design

    NASA Technical Reports Server (NTRS)

    Cumella, K. E.; Bilanow, S.; Kulikov, I. B.

    1982-01-01

    The software design for the conical scanner evaluation system is presented. The purpose of this system is to support the performance analysis of the LANDSAT-D conical scanners, which are infrared horizon detection attitude sensors designed for improved accuracy. The system consists of six functionally independent subsystems and five interface data bases. The system structure and interfaces of each of the subsystems is described and the content, format, and file structure of each of the data bases is specified. For each subsystem, the functional logic, the control parameters, the baseline structure, and each of the subroutines are described. The subroutine descriptions include a procedure definition and the input and output parameters.

  13. The Organization of the Distance Teaching Sub-System in an Open University.

    ERIC Educational Resources Information Center

    Chacon, Fabio J.

    The problem of finding an adequate organization for the distance teaching subsystem in the Open University of Venezuela (Universidad Nacional Abierta) is analyzed. Problems facing this subsystem concern: communications with the headquarters and within the learning centers network, interaction with the environment in order to create a favorable…

  14. Electrochemical carbon dioxide concentrator subsystem development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Heppner, D. B.; Bunnell, C. T.

    1986-01-01

    The most promising concept for a regenerative CO2 removal system for long duration manned space flight is the Electrochemical CO2 Concentrator (EDC), which allows for the continuous, efficient removal of CO2 from the spacecraft cabin. This study addresses the advancement of the EDC system by generating subsystem and ancillary component reliability data through extensive endurance testing and developing related hardware components such as electrochemical module lightweight end plates, electrochemical module improved isolation valves, an improved air/liquid heat exchanger and a triple redundant relative humidity sensor. Efforts included fabrication and testing the EDC with a Sabatier CO2 Reduction Reactor and generation of data necessary for integration of the EDC into a space station air revitalization system. The results verified the high level of performance, reliability and durability of the EDC subsystem and ancillary hardware, verified the high efficiency of the Sabatier CO2 Reduction Reactor, and increased the overall EDC technology engineering data base. The study concluded that the EDC system is approaching the hardware maturity levels required for space station deployment.

  15. Trajectory Design Considerations for Exploration Mission 1

    NASA Technical Reports Server (NTRS)

    Dawn, Timothy F.; Gutkowski, Jeffrey P.; Batcha, Amelia L.

    2017-01-01

    Exploration Mission 1 (EM-1) will be the first mission to send an uncrewed Orion vehicle to cislunar space in 2018, targeted to a Distant Retrograde Orbit (DRO). Analysis of EM-1 DRO mission opportunities in 2018 help characterize mission parameters that are of interest to other subsystems (e.g., power, thermal, communications, flight operations, etc). Subsystems request mission design trades which include: landing lighting, addition of an Orion main engine checkout burn, and use of auxiliary thruster only cases. This paper examines the evolving trade studies that incorporate subsystem feedback and demonstrate the feasibility of these constrained mission trajectory designs and contingencies.

  16. Regenerable non-venting thermal control subsystem for extravehicular activity

    NASA Technical Reports Server (NTRS)

    Roebelen, George J.; Bayes, Stephen A.; Lawson, B. Mike

    1986-01-01

    Routine and complex EVAs call for more effective heat rejection systems in order to maximize mission productivity; an optimum EVA mobility unit (EMU) thermal control subsystem must require no expendables and introduce no contaminants into the environment, while conforming to minimum size limits and allowing easy regeneration. Attention is presently given to two thermal control subsystems, one of which can be integrated with the existing Space Shuttle Orbiter EMU to provide a 3-hour nonventing heat rejection capability, while the other can furnish the entire heat rejection capability requirement for an 8-hour Space Station EVA.

  17. Modeling and analysis of selected space station communications and tracking subsystems

    NASA Technical Reports Server (NTRS)

    Richmond, Elmer Raydean

    1993-01-01

    The Communications and Tracking System on board Space Station Freedom (SSF) provides space-to-ground, space-to-space, audio, and video communications, as well as tracking data reception and processing services. Each major category of service is provided by a communications subsystem which is controlled and monitored by software. Among these subsystems, the Assembly/Contingency Subsystem (ACS) and the Space-to-Ground Subsystem (SGS) provide communications with the ground via the Tracking and Data Relay Satellite (TDRS) System. The ACS is effectively SSF's command link, while the SGS is primarily intended as the data link for SSF payloads. The research activities of this project focused on the ACS and SGS antenna management algorithms identified in the Flight System Software Requirements (FSSR) documentation, including: (1) software modeling and evaluation of antenna management (positioning) algorithms; and (2) analysis and investigation of selected variables and parameters of these antenna management algorithms i.e., descriptions and definitions of ranges, scopes, and dimensions. In a related activity, to assist those responsible for monitoring the development of this flight system software, a brief summary of software metrics concepts, terms, measures, and uses was prepared.

  18. SMS engineering design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The engineering design for the Shuttle Missions Simulator is presented in sections, with each section representing a subsystem development activity. Subsystems covered include: electrical power system; mechanical power system; main propellant and external tank; solid rocket booster; reaction control system; orbital maneuvering system; guidance, navigation, and control; data processing system; mission control center interface; and image display system.

  19. Space shuttle rudder/speedbrake subsystem analysis

    NASA Technical Reports Server (NTRS)

    Duke, H. G.

    1975-01-01

    The Continuous System Modeling Program (CSMP) is described with its uses, its limitations, and its application to the rudder/speedbrake (R/SB) subsystem. The space shuttle R/SB is analyzed using the CSMP. Areas of analysis emphasized include: step response, ramp response, and the delay time or deadspace observed in system response. Results are presented and discussed.

  20. Effect of various features on the life cycle cost of the timing/synchronization subsystem of the DCS digital communications network

    NASA Technical Reports Server (NTRS)

    Kimsey, D. B.

    1978-01-01

    The effect on the life cycle cost of the timing subsystem was examined, when these optional features were included in various combinations. The features included mutual control, directed control, double-ended reference links, independence of clock error measurement and correction, phase reference combining, self-organization, smoothing for link and nodal dropouts, unequal reference weightings, and a master in a mutual control network. An overall design of a microprocessor-based timing subsystem was formulated. The microprocessor (8080) implements the digital filter portion of a digital phase locked loop, as well as other control functions such as organization of the network through communication with processors at neighboring nodes.

  1. No need for external orthogonality in subsystem density-functional theory.

    PubMed

    Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R

    2016-08-03

    Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes.

  2. System Simulation by Recursive Feedback: Coupling A Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, Douglas D.; Hanson, John M. (Technical Monitor)

    2002-01-01

    Recursive feedback is defined and discussed as a framework for development of specific algorithms and procedures that propagate the time-domain solution for a dynamical system simulation consisting of multiple numerically coupled self-contained stand-alone subsystem simulations. A satellite motion example containing three subsystems (other dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Centralized and distributed versions of coupling structure have been addressed. Numerical results are evaluated by direct comparison with a standard total-system simultaneous-solution approach.

  3. Trajectory Optimization of Electric Aircraft Subject to Subsystem Thermal Constraints

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Chin, Jeffrey C.; Schnulo, Sydney L.; Burt, Jonathan M.; Gray, Justin S.

    2017-01-01

    Electric aircraft pose a unique design challenge in that they lack a simple way to reject waste heat from the power train. While conventional aircraft reject most of their excess heat in the exhaust stream, for electric aircraft this is not an option. To examine the implications of this challenge on electric aircraft design and performance, we developed a model of the electric subsystems for the NASA X-57 electric testbed aircraft. We then coupled this model with a model of simple 2D aircraft dynamics and used a Legendre-Gauss-Lobatto collocation optimal control approach to find optimal trajectories for the aircraft with and without thermal constraints. The results show that the X-57 heat rejection systems are well designed for maximum-range and maximum-efficiency flight, without the need to deviate from an optimal trajectory. Stressing the thermal constraints by reducing the cooling capacity or requiring faster flight has a minimal impact on performance, as the trajectory optimization technique is able to find flight paths which honor the thermal constraints with relatively minor deviations from the nominal optimal trajectory.

  4. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less

  5. Power Subsystem In-Flight Behaviour

    NASA Astrophysics Data System (ADS)

    Loche, Didier; Cosculluela, Valerie

    2005-05-01

    A synthesis of the In-flight monitoring of the Electrical Power Subsystem (EPS) behaviour of SPOT family and Mars Express is presented.It covers the solar array and battery performance, their degradation with life compared to the expected one in order to have lessons learned for future designs but also for in-orbit satellites software improvement.The SPOT family (from SPOT1 launched in 1986 up to ENVISAT/SPOT5 launched in 2002) EPS is based on an unregulated bus hard connected to the batteries. The solar array is split in sections, some digital and others PWM controlled in order to provide an accurate battery voltage and current regulation whatever is satellite power need. This regulation is performed by hardware. Mars Express EPS provides a regulated 28V bus. The battery power is managed by Battery Charge & Discharge Regulator (BCDR). The SA power is controlled by a Maximum Power Point Tracker (MPPT) logic. A bad connection between the SA and the Power Conditioning Unit (PCU) has led to a reduction of the power by about 30% and requested a large amount of test and simulations to estimate which power could be made available to the spacecraft and to monitor the actual EPS performance.

  6. Environmental Control Subsystem Development

    NASA Technical Reports Server (NTRS)

    Laidlaw, Jacob; Zelik, Jonathan

    2017-01-01

    Kennedy Space Center's Launch Pad 39B, part of Launch Complex 39, is currently undergoing construction to prepare it for NASA's Space Launch System missions. The Environmental Control Subsystem, which provides the vehicle with an air or nitrogen gas environment, required development of its local and remote display screens. The remote displays, developed by NASA contractors and previous interns, were developed without complete functionality; the remote displays were revised, adding functionality to over 90 displays. For the local displays, multiple test procedures were developed to assess the functionality of the screens, as well as verify requirements. One local display screen was also developed.

  7. A large-scale photonic node architecture that utilizes interconnected OXC subsystems.

    PubMed

    Iwai, Yuto; Hasegawa, Hiroshi; Sato, Ken-ichi

    2013-01-14

    We propose a novel photonic node architecture that is composed of interconnected small-scale optical cross-connect subsystems. We also developed an efficient dynamic network control algorithm that complies with a restriction on the number of intra-node fibers used for subsystem interconnection. Numerical evaluations verify that the proposed architecture offers almost the same performance as the equivalent single large-scale cross-connect switch, while enabling substantial hardware scale reductions.

  8. Transient Analysis of Pressurization and Pneumatic Subsystems of the X-34 Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Knight, K. C.; Chamption, R. H., Jr.; Kennedy, Jim W. (Technical Monitor)

    2000-01-01

    Transient models for the pressurization, vent/relief, and pneumatic subsystems of the X-34 Main Propulsion System are presented and simulation of their operation within prescribed requirements are provided. First, using ROCket Engine Transient Simulation (ROCETS) program, pressurization subsystem operation was simulated and helium requirements and the ullage thermodynamic condition within each propellant tank were calculated. Then, Overpressurization scenarios of propellant tanks and the response of vent/relief valves were evaluated using ROCETS simulation of simultaneous operation of the pressurization and vent/relief subsystems by incorporating the valves data into the model. Finally, the ROCETS simulation of in-flight operation of pneumatic subsystem predicted the overall helium consumption, Inter-Propellant Seal (IPS) purge flowrate and thermodynamic conditions, and Spin Start power.

  9. Integrated flight/propulsion control system design based on a decentralized, hierarchical approach

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Garg, Sanjay; Bullard, Randy

    1989-01-01

    A sample integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statistically unstable fighter aircraft. The design procedure is summarized. The vehicle model used in the sample study is described, and the procedure for partitioning the integrated system is presented along with a description of the subsystems. The high-level airframe performance specifications and control design are presented and the control performance is evaluated. The generation of the low-level (engine) subsystem specifications from the airframe requirements are discussed, and the engine performance specifications are presented along with the subsystem control design. A compensator to accommodate the influence of airframe outputs on the engine subsystem is also considered. Finally, the entire closed loop system performance and stability characteristics are examined.

  10. Integrated flight/propulsion control system design based on a decentralized, hierarchical approach

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Garg, Sanjay; Bullard, Randy

    1989-01-01

    A sample integrated flight/propulsion control system design is presented for the piloted longitiudinal landing task with a modern, statistically unstable fighter aircraft. The design procedure is summarized, the vehicle model used in the sample study is described, and the procedure for partitioning the integrated system is presented along with a description of the subsystems. The high-level airframe performance specifications and control design are presented and the control performance is evaluated. The generation of the low-level (engine) subsystem specifications from the airframe requirements are discussed, and the engine performance specifications are presented along with the subsystem control design. A compensator to accommodate the influence of airframe outputs on the engine subsystem is also considered. Finally, the entire closed loop system performance and stability characteristics are examined.

  11. System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, D. D.

    2001-01-01

    Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.

  12. Accelerated life testing of spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  13. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  14. Vapor Compression Distillation Subsystem (VCDS) Component Enhancement, Testing and Expert Fault Diagnostics Development, Volume 2

    NASA Technical Reports Server (NTRS)

    Mallinak, E. S.

    1987-01-01

    A wide variety of Space Station functions will be managed via computerized controls. Many of these functions are at the same time very complex and very critical to the operation of the Space Station. The Environmental Control and Life Support System is one group of very complex and critical subsystems which directly affects the ability of the crew to perform their mission. Failure of the Environmental Control and Life Support Subsystems are to be avoided and, in the event of failure, repair must be effected as rapidly as possible. Due to the complex and diverse nature of the subsystems, it is not possible to train the Space Station crew to be experts in the operation of all of the subsystems. By applying the concepts of computer-based expert systems, it may be possible to provide the necessary expertise for these subsystems in dedicated controllers. In this way, an expert system could avoid failures and extend the operating time of the subsystems even in the event of failure of some components, and could reduce the time to repair by being able to pinpoint the cause of a failure when one cannot be avoided.

  15. Molten salt thermal energy storage subsystem for Solar Thermal Central Receiver plants

    NASA Astrophysics Data System (ADS)

    Wells, P. B.; Nassopoulos, G. P.

    The development of a low-cost thermal energy storage subsystem for large solar plants is analyzed. Molten nitrate salt is used as both the plant's working fluid and as the storage medium. The storage system comprises a specially designed hot tank to hold salt at a storage temperature of 839 K (1050 F) and a separate carbon steel cold tank to hold the salt after its thermal energy has been extracted to generate steam. The hot tank is lined with insulating firebrick to lower the shell temperature to 561 K (550 F) so that a low-cost carbon steel shell can be used. A preliminary design is described for a large commercial-size plant (1200 MWht). Also described are a laboratory test program for the critical components and the design, construction, and test of a small-scale research experiment at the Central Receiver Test Facility in Albuquerque, New Mexico.

  16. OAO-3 end of mission power subsystem evaluation

    NASA Technical Reports Server (NTRS)

    Tasevoli, M.

    1982-01-01

    End of mission tests were performed on the OAO-3 power subsystem in three component areas: solar array, nickel-cadmium batteries and the On-Board Processor (OBP) power boost operation. Solar array evaluation consisted of analyzing array performance characteristics and comparing them to earlier flight data. Measured solar array degradation of 14.1 to 17.7% after 8 1/3 years is in good agreement with theortical radiation damage losses. Battery discharge characteristics were compared to results of laboratory life cycle tests performed on similar cells. Comparison of cell voltage profils reveals close correlation and confirms the validity of real time life cycle simulation. The successful operation of the system in the OBP/power boost regulation mode demonstrates the excellent life, reliability and greater system utilization of power subsystems using maximum power trackers.

  17. Protective and control relays as coal-mine power-supply ACS subsystem

    NASA Astrophysics Data System (ADS)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  18. ACCESS: Design and Sub-System Performance

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Elizabeth; Morris, Matthew J.; McCandliss, Stephan R.; Rasucher, Bernard J.; Kimble, Randy A.; Kruk, Jeffrey W.; Pelton, Russell; Mott, D. Brent; Wen, Hiting; Foltz, Roger; hide

    2012-01-01

    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. ACCESS, "Absolute Color Calibration Experiment for Standard Stars", is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 -1.7 micrometer bandpass.

  19. Evaluation of the Telecommunications Protocol Processing Subsystem Using Reconfigurable Interoperable Gate Array

    NASA Technical Reports Server (NTRS)

    Pang, Jackson; Liddicoat, Albert; Ralston, Jesse; Pingree, Paula

    2006-01-01

    The current implementation of the Telecommunications Protocol Processing Subsystem Using Reconfigurable Interoperable Gate Arrays (TRIGA) is equipped with CFDP protocol and CCSDS Telemetry and Telecommand framing schemes to replace the CPU intensive software counterpart implementation for reliable deep space communication. We present the hardware/software co-design methodology used to accomplish high data rate throughput. The hardware CFDP protocol stack implementation is then compared against the two recent flight implementations. The results from our experiments show that TRIGA offers more than 3 orders of magnitude throughput improvement with less than one-tenth of the power consumption.

  20. Union Listing via OCLC's Serials Control Subsystem.

    ERIC Educational Resources Information Center

    O'Malley, Terrence J.

    1984-01-01

    Describes library use of Conversion of Serials Project's (CONSER) online national machine-readable database for serials to create online union lists of serials via OCLC's Serial Control Subsystem. Problems in selection of appropriate, accurate, and authenticated records and prospects for the future are discussed. Twenty sources and sample records…

  1. Common modular avionics - Partitioning and design philosophy

    NASA Astrophysics Data System (ADS)

    Scott, D. M.; Mulvaney, S. P.

    The design objectives and definition criteria for common modular hardware that will perform digital processing functions in multiple avionic subsystems are examined. In particular, attention is given to weapon system-level objectives, such as increased supportability, reduced life cycle costs, and increased upgradability. These objectives dictate the following overall modular design goals: reduce test equipment requirements; have a large number of subsystem applications; design for architectural growth; and standardize for technology transparent implementations. Finally, specific partitioning criteria are derived on the basis of the weapon system-level objectives and overall design goals.

  2. Gravity Probe-B (GP-B) Mission and Tracking, Telemetry and Control Subsystem Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Paul; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) in Huntsville, Alabama will launch the Gravity Probe B (GP-B) space experiment in the Fall of 2002. The GP-B spacecraft was developed to prove Einstein's theory of General Relativity. This paper will provide an overview of the GPB mission and will discuss the design, and test of the spacecraft Tracking, Telemetry and Control (TT&C) subsystem which incorporates NASA's latest generation standard transponder for use with the NASA Tracking and Data Relay Satellite System (TDRSS).

  3. Stability test and analysis of the Space Shuttle Primary Reaction Control Subsystem thruster

    NASA Technical Reports Server (NTRS)

    Applewhite, John; Hurlbert, Eric; Krohn, Douglas; Arndt, Scott; Clark, Robert

    1992-01-01

    The results are reported of a test program conducted on the Space Shuttle Primary Reaction Control Subsystem thruster in order to investigate the effects of trapped helium bubbles and saturated propellants on stability, determine if thruster-to-thruster stability variations are significant, and determine stability under STS-representative conditions. It is concluded that the thruster design is highly reliable in flight and that burn-through has not occurred. Significantly unstable thrusters are screened out, and wire wrap is found to protect against chamber burn-throughs and to provide a fail-safe thruster for this situation.

  4. Subsystem Details for the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.

    2004-01-01

    This document provides values at the assembly level for the subsystems described in the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric (Hanford, 2004). Hanford (2004) summarizes the subordinate computational values for the Advanced Life Support Research and Technology Development (ALS R&TD) Metric at the subsystem level, while this manuscript provides a summary at the assembly level. Hanford (2004) lists mass, volume, power, cooling, and crewtime for each mission examined by the ALS R&TD Metric according to the nominal organization for the Advanced Life Support (ALS) elements. The values in the tables below, Table 2.1 through Table 2.8, list the assemblies, using the organization and names within the Advanced Life Support Sizing Analysis Tool (ALSSAT) for each ALS element. These tables specifically detail mass, volume, power, cooling, and crewtime. Additionally, mass and volume are designated in terms of values associated with initial hardware and resupplied hardware just as they are within ALSSAT. The overall subsystem values are listed on the line following each subsystem entry. These values are consistent with those reported in Hanford (2004) for each listed mission. Any deviations between these values and those in Hanford (2004) arise from differences in when individual numerical values are rounded within each report, and therefore the resulting minor differences should not concern even a careful reader. Hanford (2004) u es the uni ts kW(sub e) and kW(sub th) for power and cooling, respectively, while the nomenclature below uses W(sub e) and W(sub th), which is consistent with the native units within ALSSAT. The assemblies, as specified within ALSSAT, are listed in bold below their respective subsystems. When recognizable assembly components are not listed within ALSSAT, a summary of the assembly is provided on the same line as the entry for the assembly. Assemblies with one or more recognizable components are further

  5. Planetary Sample Caching System Design Options

    NASA Technical Reports Server (NTRS)

    Collins, Curtis; Younse, Paulo; Backes, Paul

    2009-01-01

    Potential Mars Sample Return missions would aspire to collect small core and regolith samples using a rover with a sample acquisition tool and sample caching system. Samples would need to be stored in individual sealed tubes in a canister that could be transfered to a Mars ascent vehicle and returned to Earth. A sample handling, encapsulation and containerization system (SHEC) has been developed as part of an integrated system for acquiring and storing core samples for application to future potential MSR and other potential sample return missions. Requirements and design options for the SHEC system were studied and a recommended design concept developed. Two families of solutions were explored: 1)transfer of a raw sample from the tool to the SHEC subsystem and 2)transfer of a tube containing the sample to the SHEC subsystem. The recommended design utilizes sample tool bit change out as the mechanism for transferring tubes to and samples in tubes from the tool. The SHEC subsystem design, called the Bit Changeout Caching(BiCC) design, is intended for operations on a MER class rover.

  6. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    NASA Technical Reports Server (NTRS)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.

  7. Cost analysis of life sciences experiments and subsystems. [to be carried in the Spacelab

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1975-01-01

    Cost estimates for experiments and subsystems flown in the Spacelab were established. Ten experiments were cost analyzed. Estimated cost varied from $650,000 for the hardware development of the SPE water electrolysis experiment to $78,500,000 for the development and operation of a representative life sciences laboratory program. The cost of subsystems for thermal, atmospheric and trace contaminants control of the Spacelab internal atmosphere was also estimated. Subsystem cost estimates were based on the utilization of existing components developed in previous space programs whenever necessary.

  8. Cold-end Subsystem Testing for the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell; Gibson, Marc; Ellis, David; Sanzi, James

    2013-01-01

    The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodium-potassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated cold-end fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to high-cost composite radiators in an end-to-end TDU test.

  9. Cold-End Subsystem Testing for the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Mazwell; Gibson, Marc; Ellis, David; Sanzi, James

    2013-01-01

    The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodiumpotassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated coldend fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to highcost composite radiators in an end-to-end TDU test.

  10. The precision-processing subsystem for the Earth Resources Technology Satellite.

    NASA Technical Reports Server (NTRS)

    Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.

    1972-01-01

    Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.

  11. Rumination and Default Mode Network Subsystems Connectivity in First-episode, Drug-Naive Young Patients with Major Depressive Disorder

    PubMed Central

    Zhu, Xueling; Zhu, Qiuling; Shen, Huaizhen; Liao, Weihua; Yuan, Fulai

    2017-01-01

    Neuroimaging evidence implicates the association between rumination and default mode network (DMN) in major depressive disorder (MDD). However, the relationship between rumination and DMN subsystems remains incompletely understood, especially in patients with MDD. Thirty-three first-episode drug-naive patients with MDD and thirty-three healthy controls (HCs) were enrolled and underwent resting-sate fMRI scanning. Functional connectivity analysis was performed based on 11 pre-defined regions of interest (ROIs) for three DMN subsystems: the midline core, dorsal medial prefrontal cortex (dMPFC) and medial temporal lobe (MTL). Compared with HCs group, patients with MDD exhibited increased within-system connectivity in the dMPFC subsystem and inter-system connectivity between the dMPFC and MTL subsystems. Decreased inter-system connectivity was identified between the midline core and dMPFC subsystem in MDD patients. Depressive rumination was positively correlated with within-system connectivity in the dMPFC subsystem (dMPFC-TempP) and with inter-system connectivity between the dMPFC and MTL subsystems (LTC-PHC). Our results suggest MDD may be characterized by abnormal DMN subsystems connectivity, which may contribute to the pathophysiology of the maladaptive self-focus in MDD patients. PMID:28225084

  12. Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.

  13. Human Factors Plan for the Aeronautical Information Subsystem

    DOT National Transportation Integrated Search

    1994-10-01

    This human factors plan covers the human factors effort for the development of the Aeronautical Information Subsystem (AIS) of the Operational Data Management System (ODMS). Broadly the goals of the human factors effort are to provide a user interfac...

  14. Statistical error model for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  15. Executive summary: Mod-1 wind turbine generator analysis and design report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Activities leading to the detail design of a wind turbine generator having a nominal rating of 1.8 megawatts are reported. Topics covered include (1) system description; (2) structural dynamics; (3) stability analysis; (4) mechanical subassemblies design; (5) power generation subsystem; and (6) control and instrumentation subsystem.

  16. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    NASA Technical Reports Server (NTRS)

    Tumer, Irem; Mehr, Ali Farhang

    2005-01-01

    In this paper, a two-level multidisciplinary design approach is described to optimize the effectiveness of ISHM s. At the top level, the overall safety of the mission consists of system-level variables, parameters, objectives, and constraints that are shared throughout the system and by all subsystems. Each subsystem level will then comprise of these shared values in addition to subsystem-specific variables, parameters, objectives and constraints. A hierarchical structure will be established to pass up or down shared values between the two levels with system-level and subsystem-level optimization routines.

  17. Short-Term Memory Maintenance of Object Locations during Active Navigation: Which Working Memory Subsystem Is Essential?

    PubMed Central

    Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.

    2011-01-01

    The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686

  18. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.

    PubMed

    Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio

    2015-04-21

    We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.

  19. A study of an orbital radar mapping mission to Venus. Volume 3: Parametric studies and subsystem comparisons

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Parametric studies and subsystem comparisons for the orbital radar mapping mission to planet Venus are presented. Launch vehicle requirements and primary orbiter propulsion system requirements are evaluated. The systems parametric analysis indicated that orbit size and orientation interrelated with almost all of the principal spacecraft systems and influenced significantly the definition of orbit insertion propulsion requirements, weight in orbit capability, radar system design, and mapping strategy.

  20. Approaches and Tools Used to Teach the Computer Input/Output Subsystem: A Survey

    ERIC Educational Resources Information Center

    Larraza-Mendiluze, Edurne; Garay-Vitoria, Nestor

    2015-01-01

    This paper surveys how the computer input/output (I/O) subsystem is taught in introductory undergraduate courses. It is important to study the educational process of the computer I/O subsystem because, in the curricula recommendations, it is considered a core topic in the area of knowledge of computer architecture and organization (CAO). It is…

  1. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    NASA Astrophysics Data System (ADS)

    Stenger, F. J.

    1982-12-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  2. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    NASA Technical Reports Server (NTRS)

    Stenger, F. J.

    1982-01-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  3. Statistical Rick Estimation for Communication System Design --- A Preliminary Look

    NASA Astrophysics Data System (ADS)

    Babuscia, A.; Cheung, K.-M.

    2012-02-01

    Spacecraft are complex systems that involve different subsystems with multiple relationships among them. For these reasons, the design of a spacecraft is a time-evolving process that starts from requirements and evolves over time across different design phases. During this process, a lot of changes can happen. They can affect mass and power at the component level, at the subsystem level, and even at the system level. Each spacecraft has to respect the overall constraints in terms of mass and power: for this reason, it is important to be sure that the design does not exceed these limitations. Current practice in system models primarily deals with this problem, allocating margins on individual components and on individual subsystems. However, a statistical characterization of the fluctuations in mass and power of the overall system (i.e., the spacecraft) is missing. This lack of adequate statistical characterization would result in a risky spacecraft design that might not fit the mission constraints and requirements, or in a conservative design that might not fully utilize the available resources. Due to the complexity of the problem and to the different expertise and knowledge required to develop a complete risk model for a spacecraft design, this article is focused on risk estimation for a specific spacecraft subsystem: the communication subsystem. The current research aims to be a proof of concept of a risk-based design optimization approach, which can then be further expanded to the design of other subsystems as well as to the whole spacecraft. The objective of this research is to develop a mathematical approach to quantify the likelihood that the major design drivers of mass and power of a space communication system would meet the spacecraft and mission requirements and constraints through the mission design lifecycle. Using this approach, the communication system designers will be able to evaluate and to compare different communication architectures in a risk

  4. Automated monitor and control for deep space network subsystems

    NASA Technical Reports Server (NTRS)

    Smyth, P.

    1989-01-01

    The problem of automating monitor and control loops for Deep Space Network (DSN) subsystems is considered and an overview of currently available automation techniques is given. The use of standard numerical models, knowledge-based systems, and neural networks is considered. It is argued that none of these techniques alone possess sufficient generality to deal with the demands imposed by the DSN environment. However, it is shown that schemes that integrate the better aspects of each approach and are referenced to a formal system model show considerable promise, although such an integrated technology is not yet available for implementation. Frequent reference is made to the receiver subsystem since this work was largely motivated by experience in developing an automated monitor and control loop for the advanced receiver.

  5. Pilot climate data system: User's guide for charts subsystem

    NASA Technical Reports Server (NTRS)

    Noll, C. E.

    1984-01-01

    The use of the Pilot Climate Data System's (PCDS) CHARTS Subsystem is described. This facility is an interactive software system for the graphical production and enhancement of text and viewgraph displays.

  6. Galileo IOV Electrical Power Subsystem Relies On Li-Ion Batter Charge Management Controlled By Hardware

    NASA Astrophysics Data System (ADS)

    Douay, N.

    2011-10-01

    In the frame of GALILEO In-Orbit Validation program which is composed of 4 satellites, Thales Alenia Space France has designed, developed and tested the Electrical Power Subsystem. Besides some classical design choices like: -50V regulated main power bus provided by the PCDU manufactured by Terma (DK), -Solar array, manufactured by Dutch-Space (NL), using Ga-As triple junction technology from Azur Space Power Solar GmbH, -SAFT (FR) Lithium-ion Battery for which cell package balancing function is required, -Solar Array Drive Mechanism, provided by RUAG Space Switzerland, to transfer the power. This subsystem features a fully autonomous, failure tolerant, battery charge management able to operate even after a complete unavailability of the on-board software. The battery charge management is implemented such that priority is always given to satisfy the satellite main bus needs in order to maintain the main bus regulation under MEA control. This battery charge management principle provides very high reliability and operational robustness. So, the paper describes : -the battery charge management concept using a combination of PCDU hardware and relevant battery lines monitoring, -the functional aspect of the single point failure free S4R (Sequential Switching Shunt Switch Regulator) and associated performances, -the failure modes isolated and passivated by this architecture. The paper will address as well the autonomous balancing function characteristics and performances.

  7. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 3. Subsystem Functional Description.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a detailed description of the subsystems that comprise the Satellite-Based Advanced Air Traffic Management System. Described in detail are the surveillance, navigation, communications, data processing, and airport subsystems. The ...

  8. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    NASA Technical Reports Server (NTRS)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, within a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability, and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation, testing results, and other information. Where appropriate, actual performance history was used to calculate failure rates for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to assess compliance with requirements and to highlight design or performance shortcomings for further decision making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability, and maintainability analysis, and present findings and observation based on analysis leading to the Ground Operations Project Preliminary Design Review milestone.

  9. Verification of the Sentinel-4 focal plane subsystem

    NASA Astrophysics Data System (ADS)

    Williges, Christian; Uhlig, Mathias; Hilbert, Stefan; Rossmann, Hannes; Buchwinkler, Kevin; Babben, Steffen; Sebastian, Ilse; Hohn, Rüdiger; Reulke, Ralf

    2017-09-01

    The Sentinel-4 payload is a multi-spectral camera system, designed to monitor atmospheric conditions over Europe from a geostationary orbit. The German Aerospace Center, DLR Berlin, conducted the verification campaign of the Focal Plane Subsystem (FPS) during the second half of 2016. The FPS consists, of two Focal Plane Assemblies (FPAs), two Front End Electronics (FEEs), one Front End Support Electronic (FSE) and one Instrument Control Unit (ICU). The FPAs are designed for two spectral ranges: UV-VIS (305 nm - 500 nm) and NIR (750 nm - 775 nm). In this publication, we will present in detail the set-up of the verification campaign of the Sentinel-4 Qualification Model (QM). This set up will also be used for the upcoming Flight Model (FM) verification, planned for early 2018. The FPAs have to be operated at 215 K +/- 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. The test campaign consists mainly of radiometric tests. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Selected test analyses and results will be presented.

  10. Custom electronic subsystems for the laboratory telerobotic manipulator

    NASA Technical Reports Server (NTRS)

    Glassell, R. L.; Butler, P. L.; Rowe, J. C.; Zimmermann, S. D.

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling.

  11. The Galileo Orbiter - Command and telemetry subsystems on their way to Jupiter

    NASA Astrophysics Data System (ADS)

    Erickson, James K.

    1990-09-01

    An overview is given of the Galileo command and telemetry subsystems, which exemplify the rigid time-synchronized systems required by TDM (time division multiplexing). The spacecraft clock is examined, along with some of the rationale for the development of the clock structure and timing to give a sense of the design imperatives for rigidly synchronized systems. Additional subjects include the structure of the science and engineering frames, emphasizing the subcommutated structure of the engineering frame and its relationship to the spacecraft clock; ground processing for and basic uses of the telemetry; the various message types used to transmit commands to the spacecraft; and the generation processes for the command message types.

  12. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 10. Subsystem Performance Requirements.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the results of the subsystem performance requirements study for an Advanced Air Traffic Management System (AATMS). The study determined surveillance and navigation subsystem requirements for terminal and enroute area operations. I...

  13. MARVEL: A knowledge-based productivity enhancement tool for real-time multi-mission and multi-subsystem spacecraft operations

    NASA Astrophysics Data System (ADS)

    Schwuttke, Ursula M.; Veregge, John, R.; Angelino, Robert; Childs, Cynthia L.

    1990-10-01

    The Monitor/Analyzer of Real-time Voyager Engineering Link (MARVEL) is described. It is the first automation tool to be used in an online mode for telemetry monitoring and analysis in mission operations. MARVEL combines standard automation techniques with embedded knowledge base systems to simultaneously provide real time monitoring of data from subsystems, near real time analysis of anomaly conditions, and both real time and non-real time user interface functions. MARVEL is currently capable of monitoring the Computer Command Subsystem (CCS), Flight Data Subsystem (FDS), and Attitude and Articulation Control Subsystem (AACS) for both Voyager spacecraft, simultaneously, on a single workstation. The goal of MARVEL is to provide cost savings and productivity enhancement in mission operations and to reduce the need for constant availability of subsystem expertise.

  14. The Fiber Optic Subsystem Components on Express Logistics Carrier for International Space Station

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Robert; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; Day, Lance

    2009-01-01

    ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.

  15. Advanced transportation system studies technical area 3: Alternate propulsion subsystem concepts, volume 2

    NASA Technical Reports Server (NTRS)

    Levak, Daniel

    1993-01-01

    The Alternate Propulsion Subsystem Concepts contract had five tasks defined for the first year. The tasks were: F-1A Restart Study, J-2S Restart Study, Propulsion Database Development, Space Shuttle Main Engine (SSME) Upper Stage Use, and CER's for Liquid Propellant Rocket Engines. The detailed study results, with the data to support the conclusions from various analyses, are being reported as a series of five separate Final Task Reports. Consequently, this volume only reports the required programmatic information concerning Computer Aided Design Documentation, and New Technology Reports. A detailed Executive Summary, covering all the tasks, is also available as Volume 1.

  16. Performance characterization of a Bosch CO sub 2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1980-01-01

    The performance of Bosch hardware at the subsystem level (up to five-person capacity) in terms of five operating parameters was investigated. The five parameters were: (1) reactor temperature, (2) recycle loop mass flow rate, (3) recycle loop gas composition (percent hydrogen), (4) recycle loop dew point and (5) catalyst density. Experiments were designed and conducted in which the five operating parameters were varied and Bosch performance recorded. A total of 12 carbon collection cartridges provided over approximately 250 hours of operating time. Generally, one cartridge was used for each parameter that was varied. The Bosch hardware was found to perform reliably and reproducibly. No startup, reaction initiation or carbon containment problems were observed. Optimum performance points/ranges were identified for the five parameters investigated. The performance curves agreed with theoretical projections.

  17. Interrater and Test-Retest Reliability and Minimal Detectable Change of the Balance Evaluation Systems Test (BESTest) and Subsystems With Community-Dwelling Older Adults.

    PubMed

    Wang-Hsu, Elizabeth; Smith, Susan S

    2017-01-10

    Falls are a common cause of injuries and hospital admissions in older adults. Balance limitation is a potentially modifiable factor contributing to falls. The Balance Evaluation Systems Test (BESTest), a clinical balance measure, categorizes balance into 6 underlying subsystems. Each of the subsystems is scored individually and summed to obtain a total score. The reliability of the BESTest and its individual subsystems has been reported in patients with various neurological disorders and cancer survivors. However, the reliability and minimal detectable change (MDC) of the BESTest with community-dwelling older adults have not been reported. The purposes of our study were to (1) determine the interrater and test-retest reliability of the BESTest total and subsystem scores; and (2) estimate the MDC of the BESTest and its individual subsystem scores with community-dwelling older adults. We used a prospective cohort methodological design. Community-dwelling older adults (N = 70; aged 70-94 years; mean = 85.0 [5.5] years) were recruited from a senior independent living community. Trained testers (N = 3) administered the BESTest. All participants were tested with the BESTest by the same tester initially and then retested 7 to 14 days later. With 32 of the participants, a second tester concurrently scored the retest for interrater reliability. Testers were blinded to each other's scores. Intraclass correlation coefficients [ICC(2,1)] were used to determine the interrater and test-retest reliability. Test-retest reliability was also analyzed using method error and the associated coefficients of variation (CVME). MDC was calculated using standard error of measurement. Interrater reliability (N = 32) of the BESTest total score was ICC(2, 1) = 0.97 (95% confidence interval [CI], 0.94-0.99). The ICCs for the individual subsystem scores ranged from 0.85 to 0.94. Test-retest reliability (N = 70) of the BESTest total score was ICC(2,1) = 0.93 (95% CI, 0.89-0.96). ICCs for the

  18. Design of a photovoltaic system for a southwest all-electric residence

    NASA Astrophysics Data System (ADS)

    Mehalick, E. M.; Obrien, G.; Tully, G. F.; Johnson, J.; Parker, J.

    1980-04-01

    The grid connected residential photovoltaic system for the Southwest is designed to meet both space conditioning requirements and all conventional electrical load requirements for an all-electric residence. The system is comprised of two major subsystems, the solar array and the power conditioning subsystem (PCS). An 8 kW peak photovoltaic array been designed for the house. The 93 square meters solar array uses a shingle solar cell module in a highly redundant series/parallel matrix. The photovoltaic generated power is supplied to a 10kVA power conversion subsystem which is controlled to track the solar array maximum power operating point and feed the 240 Vac output power directly to the house loads or back to the utility when excess power is generated. The photovoltaic power is isolated from the utility by a 15 kVA transformer. The house design and subsystem specifications are given in detail.

  19. Have pedestrian subsystem tests improved passenger car front shape?

    PubMed

    Li, Guibing; Wang, Fang; Otte, Dietmar; Cai, Zhihua; Simms, Ciaran

    2018-06-01

    Subsystem impactor tests are the main approaches for evaluation of safety performance of vehicle front design for pedestrian protection in legislative regulations. However, the main aspects of vehicle safety for pedestrians are shape and stiffness, and though it is clear that subsystem impact tests encourage lower vehicle front stiffness, it is unclear whether they promote improved vehicle front shapes for pedestrian protection. The purpose of this paper is therefore to investigate the effects of European pedestrian safety regulations on passenger car front shape and pedestrian injury risk using recent German In-Depth Accident Study (GIDAS) pedestrian collision data and numerical simulations. Firstly, a sample of 579 pedestrian collision cases involving 190 different car models between 2000-2015 extracted from the GIDAS was used to compare front-end shapes of passenger cars manufactured before and after the legislative pedestrian safety regulations were introduced in Europe. The focus was on changes in passenger car front shape and differences in pedestrian AIS2+ (Abbreviated Injury Scale at least level 2) leg, pelvis/femur and head injury risk observed in collisions. Multi-body simulations were also used to assess changes in vehicle aggressivity due to the observed changes in vehicle shape. The results show that newer passenger cars tend to have a flatter and wider bumper, higher bonnet leading edge, shorter and steeper bonnet and a shallower windscreen. Both the collision data and the numerical simulations indicate that newer passenger car front bumper designs are significantly safer for pedestrians' legs. However, the results also show that the higher bonnet leading edge in newer passenger cars is poor for pedestrian pelvis/femur protection, even though newer cars show an obviously lower AIS2+ injury risk to younger pedestrians in collisions. Newer cars have a lower AIS2+ head injury risk for pedestrians in collisions, but the numerical analysis indicate that

  20. Space Shuttle Orbital Drag Parachute Design

    NASA Technical Reports Server (NTRS)

    Meyerson, Robert E.

    2001-01-01

    The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.

  1. Remote Operations of the Deep Space Network Radio Science Subsystem

    NASA Astrophysics Data System (ADS)

    Caetta, J.; Asmar, S.; Abbate, S.; Connally, M.; Goltz, G.

    1998-04-01

    The capability for scientists to remotely control systems located at the Deep Space Network facilities only recently has been incorporated in the design and implementation of new equipment. However, time lines for the implementation, distribution, and operational readiness of such systems can extend much farther into the future than the users can wait. The Radio Science Systems Group was faced with just that circumstance; new hardware was not scheduled to become operational for several years, but the increasing number of experiments and configurations for Cassini, Galileo, Mars missions, and other flight projects made that time frame impractical because of the associated increasing risk of not acquiring critical data. Therefore, a method of interfacing with the current radio science subsystem has been developed and used with a high degree of success, although with occasional problems due to this capability not having been originally designed into the system. This article discusses both the method and the problems involved in integrating this new (remote) method of control with a legacy system.

  2. A statistical approach to deriving subsystem specifications. [for spacecraft shock and vibrational environment tests

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1974-01-01

    In order to produce cost effective environmental test programs, the test specifications must be realistic and to be useful, they must be available early in the life of a program. This paper describes a method for achieving such specifications for subsystems by utilizing the results of a statistical analysis of data acquired at subsystem mounting locations during system level environmental tests. The paper describes the details of this statistical analysis. The resultant recommended levels are a function of the subsystems' mounting location in the spacecraft. Methods of determining this mounting 'zone' are described. Recommendations are then made as to which of the various problem areas encountered should be pursued further.

  3. Dynamical generation of noiseless quantum subsystems

    PubMed

    Viola; Knill; Lloyd

    2000-10-16

    We combine dynamical decoupling and universal control methods for open quantum systems with coding procedures. By exploiting a general algebraic approach, we show how appropriate encodings of quantum states result in obtaining universal control over dynamically generated noise-protected subsystems with limited control resources. In particular, we provide a constructive scheme based on two-body Hamiltonians for performing universal quantum computation over large noiseless spaces which can be engineered in the presence of arbitrary linear quantum noise.

  4. OAO-C end-of-mission power subsystem engineering evaluation

    NASA Technical Reports Server (NTRS)

    Tasevoli, M.

    1982-01-01

    The battery performance on both Orbiting Astronomical Observatory missions was excellent. The end-of-mission power subsystem tests on the battery and the solar arrays provides a real-time degradation analysis for these two components.

  5. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    NASA Astrophysics Data System (ADS)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  6. Implementation and evaluation of shared-memory communication and synchronization operations in MPICH2 using the Nemesis communication subsystem.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buntinas, D.; Mercier, G.; Gropp, W.

    2007-09-01

    This paper presents the implementation of MPICH2 over the Nemesis communication subsystem and the evaluation of its shared-memory performance. We describe design issues as well as some of the optimization techniques we employed. We conducted a performance evaluation over shared memory using microbenchmarks. The evaluation shows that MPICH2 Nemesis has very low communication overhead, making it suitable for smaller-grained applications.

  7. Optimal subsystem approach to multi-qubit quantum state discrimination and experimental investigation

    NASA Astrophysics Data System (ADS)

    Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun

    2018-02-01

    Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.

  8. 4MOST fiber feed preliminary design: prototype testing and performance

    NASA Astrophysics Data System (ADS)

    Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.

    2016-08-01

    The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.

  9. Interdisciplinary and multilevel optimum design. [in aerospace structural engineering

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1987-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  10. Development of a HTS transceiver sub-system for 3G mobile communication TD-SCDMA base station

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; He, Xiaofeng; Wang, Yuehui; Duan, Tao; Wang, Guizhen; Zhang, Yan; Li, Chunguang; Zhang, Qiang; Li, Hong; He, Yusheng

    2010-02-01

    A prototype of a high temperature superconducting (HTS) transceiver sub-system for applications in a TD-SCDMA, one of the third generation (3G) communication standards, base station has been developed. Both the HTS sub-system and the conventional counterpart have been implemented into a TD-SCDMA commercial communication network and comparison test studies were carried out. The measured results showed that the HTS sub-system could remarkably improve the RF performance of both transmitting and receiving chains.

  11. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    NASA Astrophysics Data System (ADS)

    Bin Mansoor, Saad; Sami Yilbas, Bekir

    2015-08-01

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron-phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system.

  12. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities

    PubMed Central

    Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin

    2016-01-01

    Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a “system of systems” could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method. PMID:27347965

  13. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities.

    PubMed

    Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin

    2016-06-24

    Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a "system of systems" could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method.

  14. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 3: General purpose spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) general purpose aircraft segment are presented. The satellite is designed to provide attitude stabilization, electrical power, and a communications data handling subsystem which can support various mission peculiar subsystems. The various specifications considered include the following: (1) structures subsystem, (2) thermal control subsystem, (3) communications and data handling subsystem module, (4) attitude control subsystem module, (5) power subsystem module, and (6) electrical integration subsystem.

  15. Design-to-cost

    NASA Technical Reports Server (NTRS)

    Bradley, F. E.

    1974-01-01

    Attempts made to design to costs equipment, vehicles and subsystems for various space projects are discussed. A systematic approach, based on mission requirement analysis, definition of a mission baseline design, benefit and cost analysis, and a benefit-cost analysis was proposed for implementing the cost control program.

  16. Independent Orbiter Assessment (IOA): Analysis of the landing/deceleration subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.; Beaird, H. G.; Weissinger, W. D.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Landing/Deceleration Subsystem hardware. The Landing/Deceleration Subsystem is utilized to allow the Orbiter to perform a safe landing, allowing for landing-gear deploy activities, steering and braking control throughout the landing rollout to wheel-stop, and to allow for ground-handling capability during the ground-processing phase of the flight cycle. Specifically, the Landing/Deceleration hardware consists of the following components: Nose Landing Gear (NLG); Main Landing Gear (MLG); Brake and Antiskid (B and AS) Electrical Power Distribution and Controls (EPD and C); Nose Wheel Steering (NWS); and Hydraulics Actuators. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the lack of redundancy in the Landing/Deceleration Subsystems there is a high number of critical items.

  17. ORION mobile unit design

    NASA Technical Reports Server (NTRS)

    Brunn, D. L.; Wu, S. C.; Thom, E. H.; Mclaughlin, F. D.; Sweetser, B. M.

    1980-01-01

    An overview of the design of the ORION mobile system is presented. System capability and performance characteristics are outlined. Functional requirements and key performance parameters are stated for each of the nine subsystems. A master design and implementation schedule is given.

  18. Modular space station detailed preliminary design. Volume 1: Sections 1 through 4.4

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed configuration and subsystems preliminary design data are presented for the modular space station concept. Each module comprising the initial space station is described in terms of its external and internal configuration, its functional responsibilities to the initial cluster, and its orbital build up sequence. Descriptions of the subsequent build up to the growth space station are also presented. Analytical and design techniques, tradeoff considerations, and depth of design detail are discussed for each subsystem. The subsystems include the following: structural/mechanical; crew habitability and protection; experiment support; electrical power; environmental control/life support; guidance, navigation, and control; propulsion; communications; data management; and onboard checkout subsystems. The interfaces between the station and other major elements of the program are summarized. The rational for a zero-gravity station, in lieu of one with artificial-gravity capability, is also summarized.

  19. Magellan attitude and articulation control subsystem closed loop testing

    NASA Technical Reports Server (NTRS)

    Olschansky, David G.

    1987-01-01

    In the spring of 1989, the Magellan spacecraft will embark on a two-year mission to map the surface of the planet Venus. Guiding it there will be the Attitude and Articulation Control Subsystem (AACS). To ensure reliable operations the AACS is being put through a rigorous test program at Martin Marietta Denver Aerospace. Before Magellan ever leaves the Space Shuttle bay from which it is to be launched, its components will have flown a simulated spaceflight in a ground-based lab. The primary objectives of the test program are to verify form, fit, and function of the AACS, particularly subsystem external interfaces and functional operation of the flight software. This paper discusses the Magellan Closed Loop Test Systems which makes realistic tests possible by simulating the dynamic and 'visual' flight environment for AACS components in the lab.

  20. Space telescope optical telescope assembly/scientific instruments. Phase B: -Preliminary design and program definition study; Volume 2A: Planetary camera report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.

  1. Molten salt thermal energy storage subsystem for solar thermal central receiver plants

    NASA Astrophysics Data System (ADS)

    Wells, P. B.; Nassopoulos, G. P.

    1982-02-01

    The development of a low cost thermal energy storage subsystem for large solar plants is described. Molten nitrate salt is used as both the solar plant working fluid and the storage medium. The storage system consists of a specially designed hot tank to hold salt at a storage temperature of 839K (1050 deg F) and a separate carbon steel cold tank to hold the salt after its thermal energy has been extracted to generate steam. The hot tank is lined with insulating firebrick to reduce the shell temperature to 561K (550 deg F) so that a low cost carbon steel shell is used. The internal insulation is protected from the hot salt by a unique metal liner with orthogonal corrugations to allow for numerous cycles of thermal expansion and contraction. A preliminary design for a large commercial size plant (1200 MWh sub +), a laboratory test program for the critical components, and the design, construction, and test of a small scale (7 MWH sub t) research experiment at the Central Receiver Test Facility in Albuquerque, New Mexico is described.

  2. Lacie phase 1 Classification and Mensuration Subsystem (CAMS) rework experiment

    NASA Technical Reports Server (NTRS)

    Chhikara, R. S.; Hsu, E. M.; Liszcz, C. J.

    1976-01-01

    An experiment was designed to test the ability of the Classification and Mensuration Subsystem rework operations to improve wheat proportion estimates for segments that had been processed previously. Sites selected for the experiment included three in Kansas and three in Texas, with the remaining five distributed in Montana and North and South Dakota. The acquisition dates were selected to be representative of imagery available in actual operations. No more than one acquisition per biophase were used, and biophases were determined by actual crop calendars. All sites were worked by each of four Analyst-Interpreter/Data Processing Analyst Teams who reviewed the initial processing of each segment and accepted or reworked it for an estimate of the proportion of small grains in the segment. Classification results, acquisitions and classification errors and performance results between CAMS regular and ITS rework are tabulated.

  3. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Ogasawara, K.; Ebert, R. W.; McComas, D. J.; Allegrini, F.; Weidner, S. E.; Alexander, N.; Livi, S. A.

    2015-05-01

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ˜10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ˜30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  4. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas.

    PubMed

    Desai, M I; Ogasawara, K; Ebert, R W; McComas, D J; Allegrini, F; Weidner, S E; Alexander, N; Livi, S A

    2015-05-01

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  5. Computer Simulation of the Circulation Subsystem of a Library

    ERIC Educational Resources Information Center

    Shaw, W. M., Jr.

    1975-01-01

    When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)

  6. Principal Components Analysis of a JWST NIRSpec Detector Subsystem

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting; hide

    2013-01-01

    We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements

  7. Resilient help to switch and overlap hierarchical subsystems in a small human group

    PubMed Central

    Fujii, K.; Yokoyama, K.; Koyama, T.; Rikukawa, A.; Yamada, H.; Yamamoto, Y.

    2016-01-01

    Groups of social organisms in nature are resilient systems that can overcome unpredicted threats by helping its members. These social organisms are assumed to behave both autonomously and cooperatively as individuals, the helper, the helped and other part of a group depending on the context such as emergencies. However, the structure and function of these resilient actions, such as how helpers help colleagues and how the helper’s action is effective at multiple subsystem scales remain unclear. Here we investigated the behaviour of organised and efficient small human groups in a ballgame defence, and identified three principles of hierarchical resilient help when under attack. First, at a present high emergency level, the helper simply switched the local roles in the attacked subsystem with the helped. Second, at an intermediate emergency level, the helpers effectively acted in overlapping subsystems. Third, for the most critical emergency, the helpers globally switched the action on the overall system. These resilient actions to the benefit of the system were assumed to be observed in only humans, which help colleagues at flexibly switched and overlapped hierarchical subsystem. We suggest that these multi-layered helping behaviours can help to understand resilient cooperation in social organisms and human groups. PMID:27045443

  8. Development of low-noise CCD drive electronics for the world space observatory ultraviolet spectrograph subsystem

    NASA Astrophysics Data System (ADS)

    Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris

    2016-07-01

    World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass

  9. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    PubMed

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  10. Building the IOOS data management subsystem

    USGS Publications Warehouse

    de La Beaujardière, J.; Mendelssohn, R.; Ortiz, C.; Signell, R.

    2010-01-01

    We discuss progress to date and plans for the Integrated Ocean Observing System (IOOS??) Data Management and Communications (DMAC) subsystem. We begin by presenting a conceptual architecture of IOOS DMAC. We describe work done as part of a 3-year pilot project known as the Data Integration Framework and the subsequent assessment of lessons learned. We present work that has been accomplished as part of the initial version of the IOOS Data Catalog. Finally, we discuss near-term plans for augmenting IOOS DMAC capabilities.

  11. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Schmidt, G. R.

    2001-01-01

    Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) > 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha < 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains > 100.

  12. The OCLC Serials Sub-System: A First Evaluation.

    ERIC Educational Resources Information Center

    Edgar, Neal L.; And Others

    This examination of the OCLC serials control sub-system points to positive and negative aspects of the OCLC system as they relate to serials, and evaluates the system's serials cataloging capabilities. While this report assumes a knowledge of the basic operations of OCLC, it describes the system in general, its function in cataloging, and its…

  13. Laser communication experiment. Volume 1: Design study report: Spacecraft transceiver. Part 3: LCE design specifications

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The requirements for the design, fabrication, performance, and testing of a 10.6 micron optical heterodyne receiver subsystem for use in a laser communication system are presented. The receiver subsystem, as a part of the laser communication experiment operates in the ATS 6 satellite and in a transportable ground station establishing two-way laser communications between the spacecraft and the transportable ground station. The conditions under which environmental tests are conducted are reported.

  14. Revealing electronic open quantum systems with subsystem TDDFT.

    PubMed

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  15. Revealing electronic open quantum systems with subsystem TDDFT

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-01

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  16. Multi-Mission Automated Task Invocation Subsystem

    NASA Technical Reports Server (NTRS)

    Cheng, Cecilia S.; Patel, Rajesh R.; Sayfi, Elias M.; Lee, Hyun H.

    2009-01-01

    Multi-Mission Automated Task Invocation Subsystem (MATIS) is software that establishes a distributed data-processing framework for automated generation of instrument data products from a spacecraft mission. Each mission may set up a set of MATIS servers for processing its data products. MATIS embodies lessons learned in experience with prior instrument- data-product-generation software. MATIS is an event-driven workflow manager that interprets project-specific, user-defined rules for managing processes. It executes programs in response to specific events under specific conditions according to the rules. Because requirements of different missions are too diverse to be satisfied by one program, MATIS accommodates plug-in programs. MATIS is flexible in that users can control such processing parameters as how many pipelines to run and on which computing machines to run them. MATIS has a fail-safe capability. At each step, MATIS captures and retains pertinent information needed to complete the step and start the next step. In the event of a restart, this information is retrieved so that processing can be resumed appropriately. At this writing, it is planned to develop a graphical user interface (GUI) for monitoring and controlling a product generation engine in MATIS. The GUI would enable users to schedule multiple processes and manage the data products produced in the processes. Although MATIS was initially designed for instrument data product generation,

  17. The HEAO experience - design through operations

    NASA Technical Reports Server (NTRS)

    Hoffman, D. P.

    1983-01-01

    The design process and performance of the NASA High Energy Astronomy Observatories (HEAO-1, 2, and 3) are surveyed from the initiation of the program in 1968 through the end of HEAO-3 operation in May, 1981, with a focus on the attitude control and determination subsystem (ACDS). The science objectives, original and revised overall design concepts, final design for each spacecraft, and details of the ACDS designs are discussed, and the stages of the ACDS design process, including redefinition to achieve 50 percent cost reduction, detailed design of common and mission-unique hardware and software, unit qualification, subsystem integration, and observatory-level testing, are described. Overall and ACDS performance is evaluated for each mission and found to meet or exceed design requirements despite some difficulties arising from errors in startracker-ACDS-interface coordination and from gyroscope failures. These difficulties were resolved by using the flexibility of the software design. The implicationns of the HEAO experience for the design process of future spacecraft are suggested.

  18. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOEpatents

    Cole, Rossa W.; Zoll, August H.

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  19. Principles of control for decoherence-free subsystems.

    PubMed

    Cappellaro, P; Hodges, J S; Havel, T F; Cory, D G

    2006-07-28

    Decoherence-free subsystems (DFSs) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem theoretically exist, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFSs. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two physical qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.

  20. Space shuttle orbiter leading-edge flight performance compared to design goals

    NASA Technical Reports Server (NTRS)

    Curry, D. M.; Johnson, D. W.; Kelly, R. E.

    1983-01-01

    Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.

  1. A Design for Composing and Extending Vehicle Models

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Neuhaus, Jason R.

    2003-01-01

    The Systems Development Branch (SDB) at NASA Langley Research Center (LaRC) creates simulation software products for research. Each product consists of an aircraft model with experiment extensions. SDB treats its aircraft models as reusable components, upon which experiments can be built. SDB has evolved aircraft model design with the following goals: 1. Avoid polluting the aircraft model with experiment code. 2. Discourage the copy and tailor method of reuse. The current evolution of that architecture accomplishes these goals by reducing experiment creation to extend and compose. The architecture mechanizes the operational concerns of the model's subsystems and encapsulates them in an interface inherited by all subsystems. Generic operational code exercises the subsystems through the shared interface. An experiment is thus defined by the collection of subsystems that it creates ("compose"). Teams can modify the aircraft subsystems for the experiment using inheritance and polymorphism to create variants ("extend").

  2. Operation of the yield estimation subsystem

    NASA Technical Reports Server (NTRS)

    Mccrary, D. G.; Rogers, J. L.; Hill, J. D. (Principal Investigator)

    1979-01-01

    The organization and products of the yield estimation subsystem (YES) are described with particular emphasis on meteorological data acquisition, yield estimation, crop calendars, weekly weather summaries, and project reports. During the three phases of LACIE, YES demonstrated that it is possible to use the flow of global meteorological data and provide valuable information regarding global wheat production. It was able to establish a capability to collect, in a timely manner, detailed weather data from all regions of the world, and to evaluate and convert that data into information appropriate to the project's needs.

  3. Conceptual design of a synchronous Mars telecommunications satellite

    NASA Technical Reports Server (NTRS)

    Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.

    1989-01-01

    Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.

  4. Failure detection and recovery in the assembly/contingency subsystem

    NASA Technical Reports Server (NTRS)

    Gantenbein, Rex E.

    1993-01-01

    The Assembly/Contingency Subsystem (ACS) is the primary communications link on board the Space Station. Any failure in a component of this system or in the external devices through which it communicates with ground-based systems will isolate the Station. The ACS software design includes a failure management capability (ACFM) that provides protocols for failure detection, isolation, and recovery (FDIR). The the ACFM design requirements as outlined in the current ACS software requirements specification document are reviewed. The activities carried out in this review include: (1) an informal, but thorough, end-to-end failure mode and effects analysis of the proposed software architecture for the ACFM; and (2) a prototype of the ACFM software, implemented as a C program under the UNIX operating system. The purpose of this review is to evaluate the FDIR protocols specified in the ACS design and the specifications themselves in light of their use in implementing the ACFM. The basis of failure detection in the ACFM is the loss of signal between the ground and the Station, which (under the appropriate circumstances) will initiate recovery to restore communications. This recovery involves the reconfiguration of the ACS to either a backup set of components or to a degraded communications mode. The initiation of recovery depends largely on the criticality of the failure mode, which is defined by tables in the ACFM and can be modified to provide a measure of flexibility in recovery procedures.

  5. Multilayer network of language: A unified framework for structural analysis of linguistic subsystems

    NASA Astrophysics Data System (ADS)

    Martinčić-Ipšić, Sanda; Margan, Domagoj; Meštrović, Ana

    2016-09-01

    Recently, the focus of complex networks' research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we introduce the multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax and co-occurrence) and a subword-level (syllables and graphemes) network layers, from four variations of original text (in the modeled language). The analysis and comparison of layers at the word and subword-levels are employed in order to determine the mechanism of the structural influences between linguistic units and subsystems. The obtained results suggest that there are substantial differences between the networks' structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword-level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems

  6. Pulse-modulated dual-gas control subsystem for space cabin atmosphere

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for use in a closed manned cabin, such as the Space Shuttle Orbiter. This subsystem uses the Perkin Elmer mass spectrometer for continuous measurement of major atmospheric constituents (H2, H2O, N2, O2, and CO2). The O2 and N2 analog signals are used as inputs to the controller, which produces a pulse-frequency-modulated output to operate the N2 gas admission solenoid valve and an on-off signal to operate the O2 valve. The proportional controller characteristic results in improved control accuracy as compared with previously used on-off controllers having significant dead-band. A 60-day evaluation test was performed on the ACS during which operation was measured at various values of control setpoint and simulated cabin leakage.

  7. Multi-sensor Navigation System Design

    DOT National Transportation Integrated Search

    1971-03-01

    This report treats the design of naviggation systems that collect data from two or more on-board measurement subsystems and precess this data in an on-board computer. Such systems are called Multi-sensor Navigation Systems. : The design begins with t...

  8. Mark 4A DSN receiver-exciter and transmitter subsystems

    NASA Technical Reports Server (NTRS)

    Wick, M. R.

    1986-01-01

    The present configuration of the Mark 4A DSN Receiver-Exciter and Transmitter Subsystems is described. Functional requirements and key characteristics are given to show the differences in the capabilities required by the Networks Consolidation task for combined High Earth Orbiter and Deep Space Network tracking support.

  9. Exploiting the locality of periodic subsystem density-functional theory: efficient sampling of the Brillouin zone.

    PubMed

    Genova, Alessandro; Pavanello, Michele

    2015-12-16

    In order to approximately satisfy the Bloch theorem, simulations of complex materials involving periodic systems are made n(k) times more complex by the need to sample the first Brillouin zone at n(k) points. By combining ideas from Kohn-Sham density-functional theory (DFT) and orbital-free DFT, for which no sampling is needed due to the absence of waves, subsystem DFT offers an interesting middle ground capable of sizable theoretical speedups against Kohn-Sham DFT. By splitting the supersystem into interacting subsystems, and mapping their quantum problem onto separate auxiliary Kohn-Sham systems, subsystem DFT allows an optimal topical sampling of the Brillouin zone. We elucidate this concept with two proof of principle simulations: a water bilayer on Pt[1 1 1]; and a complex system relevant to catalysis-a thiophene molecule physisorbed on a molybdenum sulfide monolayer deposited on top of an α-alumina support. For the latter system, a speedup of 300% is achieved against the subsystem DTF reference by using an optimized Brillouin zone sampling (600% against KS-DFT).

  10. Comparing the performance of the public, social security and private health subsystems in Argentina by core dimensions of primary health care.

    PubMed

    Yavich, Natalia; Báscolo, Ernesto Pablo; Haggerty, Jeannie

    2016-06-01

    Most Latin American health systems are comprised of public (PubS), social security (SSS) and private (PrS) subsystems. These subsystems coexist, causing health care fragmentation and population segmentation. To estimate the extent of subsystem cross-coverage in a geographically bounded population (Rosario city) and to compare the subsystems' performance on primary health care (PHC) dimensions. Through a cross-sectional, interviewer-administered survey to a representative sample (n = 822) of the Rosario population, we measured the percentage of cross-coverage (people with usual source of care in one subsystem but also covered by another subsystem) and the health services' performance by core PHC dimensions, as reported by each subsystem's usual users. We compared the subsystems' performance using chi-square analysis and one-way analysis of variance testing. We analyzed whether the observed differences were coherent with the predominant institutional and organizational features of each subsystem. Overall, 39.3% of the population was affiliated with the PubS, 44.8% with the SSS and 15.9% with the PrS. Cross-coverage was reported by 40.6% of respondents. The performance of the PubS was weak on accessibility but strong on person-and-community-oriented care, the opposite of the PrS. The SSS combined the strengths of the other two subsystems. Rosario's health system has a high percentage of cross-coverage, contributing to issues of fragmentation, segmentation, financial inequity and inefficiency. The overall performance of the SSS was better than that of the PrS and PubS, though each subsystem had a particular performance pattern with areas of strength and weakness that were consistent with their institutional and organizational profiles. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Satellite Power System (SPS) microwave subsystem impacts and benefits

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1977-01-01

    The impacts and benefits to society of the microwave subsystem resulting from the developing, construction and operating of a space solar power to earth, electric power delivery system are presented and discussed. The primary benefit (usable energy) is conveyed mainly in the fundamental frequency portion of the RF radiation beam that is intercepted and converted to electric power output. The small fraction of the microwave and other electromagnetic energy that does not end up in the electric utility grid, yields most of the subsystem impacts. The impacts range from harmonics and noise radiated by the transmitting antenna, through potential interference with ionospheric communications and navigation caused by the power beam heating the ionosphere, to the potential large land area requirements for the rectennas and low level microwave radiation around the rectennas. Additional benefits range from a very low level of waste heat liberated and lack of atmospheric emissions including noise while operating to having no residual ionizing radiation from the rectenna when it is deactivated.

  12. Designing communication and remote controlling of virtual instrument network system

    NASA Astrophysics Data System (ADS)

    Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.

  13. Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan

    NASA Astrophysics Data System (ADS)

    Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.

    2007-12-01

    The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.

  14. Orbital Maneuvering system design evolution

    NASA Technical Reports Server (NTRS)

    Gibson, C.; Humphries, C.

    1985-01-01

    Preliminary design considerations and changes made in the baseline space shuttle orbital maneuvering system (OMS) to reduce cost and weight are detailed. The definition of initial subsystem requirements, trade studies, and design approaches are considered. Design features of the engine, its injector, combustion chamber, nozzle extension and bipropellant valve are illustrated and discussed. The current OMS consists of two identical pods that use nitrogen tetroxide (NTO) and monomethylhydrazine (MMH) propellants to provide 1000 ft/sec of delta velocity for a payload of 65,000 pounds. Major systems are pressurant gas storage and control, propellant storage supply and quantity measurement, and the rocket engine, which includes a bipropellant valve, an injector/thrust chamber, and a nozzle. The subsystem provides orbit insertion, circularization, and on orbit and deorbit capability for the shuttle orbiter.

  15. ALSAT-2A power subsystem behavior during launch, early operation, and in-orbit test

    NASA Astrophysics Data System (ADS)

    Larbi, N.; Attaba, M.; Beaufume, E.

    2012-09-01

    In 2006, Algerian Space Agency (ASAL) decided to design and built two optical Earth observation satellites. The first one, ALSAT-2A, was integrated and tested as a training and cooperation program with EADS Astrium. The second satellite ALSAT-2B will be integrated by ASAL engineers in the Satellite Development Center (CDS) at Oran in Algeria. On 12th July 2010, Algeria has launched ALSAT-2A onboard an Indian rocket PSLV-C15 from the Sriharikota launch base, Chennaï. ALSAT-2A is the first Earth observation satellite of the AstroSat-100 family; the design is based on the Myriade platform and comprising the first flight model of the New Astrosat Observation Modular Instrument (NAOMI). This Instrument offers a 2.5m ground resolution for the PAN channel and a 10m ground resolution for four multi-spectral channels which provides high imaging quality. The operations are performed from ALSAT-2 ground segment located in Ouargla (Algeria) and after the test phase ALSAT-2A provides successful images. ALSAT-2A electrical power subsystem (EPS) is composed of a Solar Array Generator (SAG ), a Li-ion battery dedicated to power storage and energy source during eclipse or high consumption phases and a Power Conditioning and Distribution Unit (PCDU). This paper focuses primarily on ALSAT-2A electrical power subsystem behavior during Launch and Early OPeration (LEOP) as well as In Orbit Test (IOT). The telemetry data related to the SAG voltage, current and temperature will be analyzed in addition to battery temperature, voltage, charge and discharge current. These parameters will be studied in function of satellite power consumption.

  16. Imaging Survey of Subsystems in Secondary Components to Nearby Southern Dwarfs

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2014-10-01

    To improve the statistics of hierarchical multiplicity, secondary components of wide nearby binaries with solar-type primaries were surveyed at the SOAR telescope for evaluating the frequency of subsystems. Images of 17 faint secondaries were obtained with the SOAR Adaptive Module that improved the seeing; one new 0.''2 binary was detected. For all targets, photometry in the g', i', z' bands is given. Another 46 secondaries were observed by speckle interferometry, resolving 7 close subsystems. Adding literature data, the binarity of 95 secondary components is evaluated. We found that the detection-corrected frequency of secondary subsystems with periods in the well-surveyed range from 103 to 105 days is 0.21 ± 0.06—same as the normal frequency of such binaries among solar-type stars, 0.18. This indicates that wide binaries are unlikely to be produced by dynamical evolution of N-body systems, but are rather formed by fragmentation. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory, the University of North Carolina at Chapel Hill, and Michigan State University.

  17. Satellite Power Systems (SPS) concept definition study (Exhibit D). Volume 7: System/subsystems requirements databook

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    This volume summarizes the basic requirements used as a guide to systems analysis, and is a basis for the selection of candidate Satellite Power Systems (SPS) point designs. Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured, these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point designs. Included is an updated version of earlier Rockwell concepts using klystrons as the specific microwave power amplification approach, as well as a more in-depth definition, analysis and preliminary point design on two concepts based on the use of advanced solid state technology to accomplish the task of high power amplification of the 2.45 GHz transmitted power beam to the Earth receiver. Finally, a preliminary definition of a concept using magnetrons as the microwave power amplifiers is presented.

  18. Preliminary subsystem designs for the Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Described herein is a series of design studies concerning the Assured Crew Return Vehicle (ACRV). Study topics include a braking and landing system for the ACRV, ACRV growth options, and the design impacts of ACRV's role as a medical emergency vehicle. Four alternate designs are presented for the ACRV braking and landing system. Options presented include ballistic and lifting body reentries; the use of high-lift, high-payload aerodynamic decelerators, as well as conventional parachutes; landing systems designed for water landings, land landings or both; and an aerial recovery system. Uses of the ACRV or a similarly designed vehicle in several roles for possible future space missions are discussed, along with the required changes to the ACRV to allow it to perform these missions optimally. The impacts on the design of the ACRV due to its role as an emergency vehicle were studied and are presented here. This study included the design of a stretcher-like system to transport an ill or injured crewmember safely within the ACRV; a compilation of necessary medical equipment and decisions on how or where to store it; and recommendations about internal and external vehicle characteristics that will ease the transport of the ill or injured crewmember and allow for swift and easy ingress/egress of the vehicle.

  19. Internationally Educated Health Professionals in Canada: Navigating Three Policy Subsystems Along the Pathway to Practice.

    PubMed

    Paul, Robert; Martimianakis, Maria Athina Tina; Johnstone, Julie; McNaughton, Nancy; Austin, Zubin

    2017-05-01

    The integration of internationally educated health professionals (IEHPs) into the health workforces of their adopted countries is an issue that has challenged policy makers and policy scholars for decades. In this article, the authors explore the implications of the ideological underpinnings of the policy subsystems that IEHPs must navigate in seeking employment in Canada, with a focus on Ontario.Using a policy subsystem approach, in 2015 the authors analyzed a large preexisting data set composed of articles, governmental reports, Web sites, and transcripts of interviews and focus groups conducted in Ontario with IEHPs, health care executives, human resource managers, and job counselors to IEHPs. Through this analysis, they identified three policy subsystems-the immigration system, the educational and licensure/regulatory system, and the health human resources system-that conflict ideologically and, as a result, create barriers to IEHP integration.To make substantive progress on IEHP integration in Canada, four questions should be considered. First, how can researchers bring new research methods to bear to explore why no jurisdiction has been able to create an integrated pathway to practice for IEHPs? Second, how and to what end are the institutions within the three policy subsystems regulating the IEHP pathway to practice? Third, how might the educational and licensure/regulatory policy subsystem create alternative health care employment options for IEHPs? Finally, how might health professions educators pursue a leadership role in the creation of an overarching institution to manage the pathway to practice for IEHPs?

  20. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.