Sample records for icesat geoscience laser

  1. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  2. Geoscience Laser Altimeter System (GLAS) for the ICESat Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiaoli; Ketchum, Eleanor A.; Millar, Pamela S.; Riris, Haris

    2002-01-01

    The Geoscience Laser Altimeter System (GLAS) is a new generation lidar and is the primary science payload for NASA's ICESat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical distribution of clouds and aerosols on a global scale. GLAS will be integrated onto a small spacecraft built by Ball Aerospace, and will be launched into a polar orbit with a 590-630 km altitude at an inclination of 94 degrees. ICESat is is currently planned to launch in winter 2002/03 and GLAS is designed to operate continuously in space for a minimum of 3 years. GLAS will measure the vertical distance from orbit to the Earth's surface with pulses from a ND:YAG laser at a 40 Hz rate. Each 6 nsec wide 1064 nm laser pulse is used to produce a single range measurement. On the surface, the laser footprints have 66 m diameter and approx. 170 m center-center spacings. The GLAS receiver uses a I m diameter telescope to detect laser backscatter and a Si APD to detect the 1064 nm signals. The detector's output is sampled by a digital ranging receiver, which records each transmitted pulse and surface echo waveform with 1 nsec (15 cm) resolution. Each echo pulse is digitized and is reported to ground with a record length of from 200 to 544 samples, depending on the spacecraft's location . The GLAS location and epoch times are measured by a precision GPS receiver carried on the ICESat spacecraft. Initial processing of the echo waveforms within GLAS permits discrimination between cloud and surface echoes for selecting appropriate waveform samples. This selection is guided by an on-board DEM which is used to set the boundaries for the echo pulse search algorithm. Subsequent ground-based echo pulse analysis, along with GPS-based clock frequency estimates, permit

  3. The Geoscience Laser Altimeter System (GLAS) Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, Robert S.; Yu, Anthony W.; Dallas, Joseph L.; Melak, Anthony; Lukemir, Alan; Ramos-Izqueirdo, L.; Mamakos, William

    2007-01-01

    The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. GLAS accommodates three, sequentially operated, diode-pumped, solid-state, Nd:YAG laser transmitters. The laser transmitter requirements, design and qualification test results for this space-based remote sensing instrument is summarized and presented

  4. In Orbit Performance of Si Avalanche Photodiode Single Photon Counting Modules in the Geoscience Laser Altimeter System on ICESat

    NASA Technical Reports Server (NTRS)

    Sun, X.; Jester, P. L.; Palm, S. P.; Abshire, J. B.; Spinhime, J. D.; Krainak, M. A.

    2006-01-01

    Si avalanche photodiode (APD) single photon counting modules (SPCMs) are used in the Geoscience Laser Altimeter System (GLAS) on Ice, Cloud, anti land Elevation Satellite (ICESat), currently in orbit measuring Earth surface elevation and atmosphere backscattering. These SPCMs are used to measure cloud and aerosol backscatterings to the GLAS laser light at 532-nm wavelength with 60-70% quantum efficiencies and up to 15 millions/s maximum count rates. The performance of the SPCMs has been closely monitored since ICESat launch on January 12, 2003. There has been no measurable change in the quantum efficiency, as indicated by the average photon count rates in response to the background light from the sunlit earth. The linearity and the afterpulsing seen from the cloud and surface backscatterings profiles have been the same as those during ground testing. The detector dark count rates monitored while the spacecraft was in the dark side of the globe have increased almost linearly at about 60 counts/s per day due to space radiation damage. The radiation damage appeared to be independent of the device temperature and power states. There was also an abrupt increase in radiation damage during the solar storm in 28-30 October 2003. The observed radiation damage is a factor of two to three lower than the expected and sufficiently low to provide useful atmosphere backscattering measurements through the end of the ICESat mission. To date, these SPCMs have been in orbit for more than three years. The accumulated operating time to date has reached 290 days (7000 hours). These SPCMs have provided unprecedented receiver sensitivity and dynamic range in ICESat atmosphere backscattering measurements.

  5. ICESAT Laser Altimeter Pointing, Ranging and Timing Calibration from Integrated Residual Analysis

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, D. D.; Carabajal, C. C.; Harding, D. H.; Bufton, J. L.; Williams, T. A.

    2003-01-01

    On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfully placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which has a primary measurement of short-pulse laser- ranging to the Earth s surface at 1064nm wavelength at a rate of 40 pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS s surface returns, the spots from which the laser energy reflects on the Earth s surface, is a critical issue in the scientific application of these data. Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. ICESat laser altimeter data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers in order to calibrate pointing, ranging and timing. The calibration methodology and current calibration results are discussed along with future efforts.

  6. ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; hide

    2001-01-01

    The Ice, Cloud and Land Elevation Satellite (ICESat) mission will measure changes in elevation of the Greenland and Antarctic ice sheets as part of NASA's Earth Observing System (EOS) of satellites. Time-series of elevation changes will enable determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. Other scientific objectives of ICESat include: global measurements of cloud heights and the vertical structure of clouds and aerosols; precise measurements of land topography and vegetation canopy heights; and measurements of sea ice roughness, sea ice thickness, ocean surface elevations, and surface reflectivity. The Geoscience Laser Altimeter System (GLAS) on ICESat has a 1064 nm laser channel for surface altimetry and dense cloud heights and a 532 nm lidar channel for the vertical distribution of clouds and aerosols. The accuracy of surface ranging is 10 cm, averaged over 60 m diameter laser footprints spaced at 172 m along-track. The orbital altitude will be around 600 km at an inclination of 94 deg with a 183-day repeat pattern. The onboard GPS receiver will enable radial orbit determinations to better than 5 cm, and star-trackers will enable footprints to be located to 6 m horizontally. The spacecraft attitude will be controlled to point the laser beam to within +/- 35 m of reference surface tracks at high latitudes. ICESat is designed to operate for 3 to 5 years and should be followed by successive missions to measure ice changes for at least 15 years.

  7. The ICESat/GLAS Instrument Operations Report. Volume 4

    NASA Technical Reports Server (NTRS)

    Jester, Peggy L.

    2012-01-01

    The Geoscience Laser Altimeter System (GLAS) was the primary instrument aboard the first ICESat spacecraft. ICESat's primary objectives are to determine the mass balance of the polar ice sheets and their contributions to global sea level change, and to obtain essential data for prediction of future changes in ice volume and sea-level. ICESat launched successfully from Vandenberg Air Force Base on January 12, 2003 23:45 UT. The ICESat science mission began in February 2003 and ended on October 11, 2009. De-orbit of the spacecraft occurred on August 30, 2010. This document focusses on the GLAS instrument operations during the ICESat mission. This document will not discuss science results.

  8. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms.

    Treesearch

    Michael A. Lefskya; Michael Keller; Yong Panga; Plinio B. de Camargod; Maria O. Hunter

    2007-01-01

    The vertical extent of waveforms collected by the Geoscience Laser Altimeter System (onboard ICESat - the Ice, Cloud, and land Elevation Satellite) increases as a function of terrain slope and footprint size (the area on the ground that is illuminated by the laser). Over sloped terrain, returns from both canopy and ground surfaces can occur at the same elevation. As a...

  9. ICESat Laser Altimeter Pointing, Ranging and Timing Calibration from Integrated Residual Analysis: A Summary of Early Mission Results

    NASA Technical Reports Server (NTRS)

    Lutchke, Scott B.; Rowlands, David D.; Harding, David J.; Bufton, Jack L.; Carabajal, Claudia C.; Williams, Teresa A.

    2003-01-01

    On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfUlly placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which consists of three near-infrared lasers that operate at 40 short pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS's surface returns, the spots from which the laser energy reflects on the Earth's surface, is a critical issue in the scientific application of these data Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. Early mission ICESat data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers resulting in a preliminary calibration of laser pointing, ranging and timing. The calibration methodology and early mission analysis results are summarized in this paper along with future calibration activities

  10. The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xia-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Laser In space Technology Experiment, Shuttle Laser Altimeter and the Mars Observer Laser Altimeter have demonstrated accurate measurements of atmospheric backscatter and Surface heights from space. The recent MOLA measurements of the Mars surface have 40 cm vertical resolution and have reduced the global uncertainty in Mars topography from a few km to about 5 m. The Geoscience Laser Altimeter System (GLAS) is a next generation lidar for Earth orbit being developed as part of NASA's Icesat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS is being developed to fly on a small dedicated spacecraft in a polar orbit with a 590 630 km altitude at inclination of 94 degrees. GLAS is scheduled to launch in the summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will continuously measure the vertical distance from orbit to the Earth's surface with 1064 nm pulses from a ND:YAG laser at a 40 Hz rate. Each 5 nsec wide laser pulse is used to produce a single range measurement, and the laser spots have 66 m diameter and about 170 m center-center spacings. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a 1 m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes

  11. On Orbit Receiver Performance Assessment of the Geoscience Laser Altimeter System (GLAS) on ICESAT

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Spinhirne, James D.; McGarry, Jan; Jester, Peggy L.; Yi, Donghui; Palm, Stephen P.; Lancaster, Redgie S.

    2006-01-01

    The GLAS instrument on the NASA's ICESat mission has provided over a billion measurements of the Earth surface elevation and atmosphere backscattering at both 532 and 1064-nm wavelengths. The receiver performance has stayed nearly unchanged since ICESat launch in January 2003. The altimeter receiver has achieved a less than 3-cm ranging accuracy when excluding the effects of the laser beam pointing angle determination uncertainties. The receiver can also detect surface echoes through clouds of one-way transmission as low as 5%. The 532-nm atmosphere backscattering receiver can measure aerosol and clouds with cross section as low as 1e-7/m.sr with a 1 second integration time and molecular backscattering from upper atmosphere with a 60 second integration time. The 1064-nm atmosphere backscattering receiver can measure aerosol and clouds with a cross section as low as 4e-6/m.sr. This paper gives a detailed assessment of the GLAS receiver performance based on the in-orbit calibration tests.

  12. In-Flight Thermal Performance of the Geoscience Laser Altimeter System (GLAS) Instrument

    NASA Technical Reports Server (NTRS)

    Grob, Eric; Baker, Charles; McCarthy, Tom

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS) instrument is NASA Goddard Space Flight Center's first application of Loop Heat Pipe technology that provides selectable/stable temperature levels for the lasers and other electronics over a widely varying mission environment. GLAS was successfully launched as the sole science instrument aboard the Ice, Clouds, and Land Elevation Satellite (ICESat) from Vandenberg AFB at 4:45pm PST on January 12, 2003. After SC commissioning, the LHPs started easily and have provided selectable and stable temperatures for the lasers and other electronics. This paper discusses the thermal development background and testing, along with details of early flight thermal performance data.

  13. Satellite and Instrument Influences on ICESat Waveforms

    NASA Astrophysics Data System (ADS)

    Webb, C. E.; Urban, T. J.; Neuenschwander, A. L.; Gutierrez, R.; Schutz, B. E.

    2007-12-01

    The White Sands Space Harbor (WSSH) has served as the principal ground calibration site throughout the Ice, Cloud and land Elevation Satellite (ICESat) mission. The Center for Space Research (CSR) at the University of Texas at Austin continues to conduct various experiments designed to validate the timing, geolocation and geometric characteristics of individual laser footprints on the surface. In addition, two airborne lidar surveys of the calibration site and surrounding area were conducted during the mission, first in 2003 and again in 2007. Chosen for its limited surface roughness and topographic flatness, this area has been targeted 3-4 times in each of the 12 ICESat mapping campaigns to date, yielding a significant altimetry data set. The derived surface elevations are compared with those from the airborne lidar surveys, as well as those obtained by the Shuttle Radar Topography Mission (SRTM). Furthermore, the Geoscience Laser Altimetry System (GLAS) onboard ICESat records a digitized waveform for each laser pulse returned from the surface. The two methods currently used to fit such signals in ICESat data processing are examined and compared for the WSSH waveforms. The first fits up to two distinct Gaussians and provides a surface elevation at the location of the maximum peak. The second fits up to six overlapping Gaussians and provides a surface elevation at the centroid of the pulse. Observed differences in the reported elevations are discussed in terms of the satellite's off-nadir targeting geometry, the laser energy, and the skewness of the returned waveforms.

  14. ICESat-2 simulated data from airborne altimetery

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Neumann, T.; Markus, T.; Brenner, A. C.; Barbieri, K.; Field, C.; Sirota, M.

    2010-12-01

    Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2015 and will carry onboard the Advanced Topographic Laser Altimeter System (ATLAS), which represents a new approach to spaceborne determination of surface elevations. Specifically, the current ATLAS design is for a micropulse, multibeam, photon-counting laser altimeter with lower energy, a shorter pulse width, and a higher repetition rate relative to the Geoscience Laser Altimeter (GLAS), the instrument that was onboard ICESat. Given the new and untested technology associated with ATLAS, airborne altimetry data is necessary (1) to test the proposed ATLAS instrument geometry, (2) to validate instrument models, and (3) to assess the atmospheric effects on multibeam altimeters. We present an overview of the airborne instruments and datasets intended to address the ATLAS instrument concept, including data collected over Greenland (July 2009) using an airborne SBIR prototype 100 channel, photon-counting, terrain mapping altimeter, which addresses the first of these 3 scientific concerns. Additionally, we present the plan for further simulator data collection over vegetated and ice covered regions using Multiple Altimeter Beam Experimental Lidar (MABEL), intended to address the latter two scientific concerns. As the ICESAT-2 project is in the design phase, the particular configuration of the ATLAS instrument may change. However, we expect this work to be relevant as long as ATLAS pursues a photon-counting approach.

  15. ICESat laser altimetry over small mountain glaciers

    NASA Astrophysics Data System (ADS)

    Treichler, Désirée; Kääb, Andreas

    2016-09-01

    Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003-2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs): the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs - a result of spatio-temporal merging - has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around -0.36 ± 0.07 m ice per year. This regional

  16. Vertical Accuracy Assessment of ZY-3 Digital Surface Model Using Icesat/glas Laser Altimeter Data

    NASA Astrophysics Data System (ADS)

    Li, G.; Tang, X.; Yuan, X.; Zhou, P.; Hu, F.

    2017-05-01

    The Ziyuan-3 (ZY-3) satellite, as the first civilian high resolution surveying and mapping satellite in China, has a very important role in national 1 : 50,000 stereo mapping project. High accuracy digital surface Model (DSMs) can be generated from the three line-array images of ZY-3, and ZY-3 DSMs of China can be produced without using any ground control points (GCPs) by selecting SRTM (Shuttle Radar Topography Mission) and ICESat/GLAS (Ice, Cloud, and land Elevation Satellite, Geo-science Laser Altimeter System) as the datum reference in the Satellite Surveying and Mapping Application Center, which is the key institute that manages and distributes ZY-3 products. To conduct the vertical accuracy evaluation of ZY-3 DSMs of China, three representative regions were chosen and the results were compared to ICESat/GLAS data. The experimental results demonstrated that the root mean square error (RMSE) elevation accuracy of the ZY-3 DSMs was better than 5.0 m, and it even reached to less than 2.5 m in the second region of eastern China. While this work presents preliminary results, it is an important reference for expanding the application of ZY-3 satellite imagery to widespread regions. And the satellite laser altimetry data can be used as referenced data for wide-area DSM evaluation.

  17. The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiao-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.

    1999-01-01

    Accurate measurements of surface heights and atmospheric backscatter have been demonstrated with the SLA, MOLA and LITE space lidar. Recent MOLA measurements of the Mars surface have 40 cm resolution and have reduced the global uncertainty in Mars topography from a few km to approx. 10 m. GLAS is a next generation lidar being developed as part of NASA's Icesat Mission for Earth orbit . The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, determine the height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS will fly on a small dedicated spacecraft in a polar orbit at 598 km altitude with an inclination of 94 degrees. GLAS is scheduled to launch in summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will measure the vertical distance to the ice sheet from orbit with 1064 nm pulses from a Nd:Yag laser at 40 Hz. Each 5 nsec wide laser pulse is used for a single range measurement. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a I m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser, Errors in knowledge of the laser beam pointing angle can bias height measurements of sloped

  18. ICESat-2 laser technology development

    NASA Astrophysics Data System (ADS)

    Edwards, Ryan; Sawruk, Nick W.; Hovis, Floyd E.; Burns, Patrick; Wysocki, Theodore; Rudd, Joe; Walters, Brooke; Fakhoury, Elias; Prisciandaro, Vincent

    2013-09-01

    A number of ICESat-2 system requirements drove the technology evolution and the system architecture for the laser transmitter Fibertek has developed for the mission.. These requirements include the laser wall plug efficiency, laser reliability, high PRF (10kHz), short-pulse (<1.5ns), relatively narrow spectral line-width, and wave length tunability. In response to these requirements Fibertek developed a frequency-doubled, master oscillator/power amplifier (MOPA) laser that incorporates direct pumped diode pumped Nd:YVO4 as the gain media, Another guiding force in the system design has been extensive hardware life testing that Fibertek has completed. This ongoing hardware testing and development evolved the system from the original baseline brass board design to the more robust flight laser system. The final design meets or exceeds all NASA requirements and is scalable to support future mission requirements.

  19. The ICESat-2 mission: design, status, applications and pre-launch performance assessments for monitoring cryopsheric changes

    NASA Astrophysics Data System (ADS)

    Neumann, T.; Markus, T.; Csatho, B. M.; Martino, A. J.

    2013-12-01

    NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is the next-generation orbiting laser altimeter, following the ICESat mission, which operated between 2003 and 2009. Its primary aim is to monitor sea-ice thickness and ice sheet elevation change at scales from outlet glaciers to the entire ice sheet, and enable global assessment of vegetation canopy height as established by ICESat. ICESat-2 is now in Phase C (Design and Development). It is scheduled to launch in 2016 on a Delta II rocket from Vandenberg Air Force Base in California. ICESat-2 will carry the Advanced Topographic Laser Altimeter System (ATLAS) and collect data to a latitudinal limit of 88 degrees. In contrast to Geoscience Laser Altimeter System (GLAS) on ICESat, ATLAS employs a 6-beam micro-pulse laser photon-counting approach. It uses a high repetition rate (10 kHz; resulting in 70 cm footprint spacing on the ground along the direction of travel) low-power laser in conjunction with single-photon sensitive detectors to measure ranges using 532 nm (green) laser light. In the polar regions, the 91-day repeat orbit pattern with a roughly monthly sub-cycle is designed to monitor seasonal and interannual variations of Greenland and Antarctic ice sheet elevations and monthly sea ice thickness changes. Dense ground-tracks over the rest of the globe achieved through a systematic sequence of off-nadir pointing (resulting in < 2 km ground-track spacing at the equator after two years) will enable measurements of land topography and vegetation canopy heights, allowing estimates of biomass and carbon in above-ground vegetation. While the ICESat-2 mission was optimized for cryospheric science, elevation measurements will be collected over land and oceans as well as histograms of backscatter from the atmosphere. These observations will provide a wealth of opportunities in addition to the primary science objectives, ranging from the retrieval of cloud properties, to river stages, to snow cover, to land

  20. ICESat-2 laser Nd:YVO4 amplifier

    NASA Astrophysics Data System (ADS)

    Sawruk, Nicholas W.; Burns, Patrick M.; Edwards, Ryan E.; Litvinovitch, Viatcheslav; Martin, Nigel; Witt, Greg; Fakhoury, Elias; Iskander, John; Pronko, Mark S.; Troupaki, Elisavet; Bay, Michael M.; He, Charles C.; Wang, Liqin L.; Cavanaugh, John F.; Farrokh, Babak; Salem, Jonathan A.; Baker, Eric

    2018-02-01

    We report on the cause and corrective actions of three amplifier crystal fractures in the space-qualified laser systems used in NASA Goddard Space Flight Center's (GSFC) Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The ICESat-2 lasers each contain three end-pumped Nd:YVOO4 amplifier stages. The crystals are clamped between two gold plated copper heat spreaders with an indium foil thermal interface material, and the crystal fractures occurred after multiple years of storage and over a year of operational run-time. The primary contributors are high compressive loading of the NdYVO4 crystals at the beginning of life, a time dependent crystal stress caused by an intermetallic reaction of the gold plating and indium, and slow crack growth resulting in a reduction in crystal strength over time. An updated crystal mounting scheme was designed, analyzed, fabricated and tested. Thee fracture slab failure analysis, finite-element modeling and corrective actions are presented.

  1. ICESat's First Year of Measurements Over the Polar Ice Sheets

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.

    2004-05-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission was developed to measure changes in elevation of the Greenland and Antarctic ice sheets. Its primary mission goal is to significantly refine estimates of polar ice sheet mass balance. Obtaining precise, spatially dense, ice sheet elevations through time is the first step towards this goal. ICESat data will then enable study of associations between observed ice changes and dynamic or climatic forcing factors, and thus enable improved estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat was launched on January 12, 2003 and acquired science data from February 20th to March 29th with the first of the three lasers of the Geoscience Laser Altimeter System (GLAS). Data acquisition with the second laser began on September 25th and continued until November 18th, 2003. For one-year change detection, the second laser is scheduled for operation from approximately February 17th to March 20th, 2004. Additional operational periods will be selected to 1) enable periodic measurements through the year, and 2) to support of other NASA Earth Science Enterprise missions and activities. To obtain these precise ice sheet elevations, GLAS has a 1064 nm wavelength laser operating at 40 Hz with a designed range precision of about 10 cm. The laser footprints are about 70 m in diameter on the Earth's surface and are spaced every 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The star-tracking attitude-determination system will enable laser footprints to be located to 6 m horizontally when attitude calibration is completed. The orbital altitude averages 600 km at an inclination of 94 degrees with coverage extending from 86 degrees N and S latitude. The spacecraft attitude can be controlled to point the laser beam to within 50 m of surface reference tracks over the ice sheets and to point off-nadir up to 5 degrees to

  2. Potential and limitations of satellite laser altimetry for monitoring water surface dynamics: ICESat for US lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Liu; Qigang, Jiang; Zhang, Xuesong

    Elevation measurements from the Ice, Cloud and Land Elevation Satellite (ICESat) have been applied to monitor dynamics of lakes and other surface water bodies. Despite such potential, the true utility of ICESat--more generally, satellite laser altimetry--for tracking surface water dynamics over time has not been adequately assessed, especially in the continental or global contexts. Here, we analyzed ICESat elevation data for the conterminous United States and examined the potential and limitations of satellite laser altimetry in measuring water-level dynamics. Owing to a lack of spatially-explicit ground-based water-level data, we first resorted to high-fidelity land elevation data acquired by airborne lidarmore » to quantify ICESat’s ranging accuracy. We then performed trend and frequency analyses to evaluate how reliably ICESat could capture water-level dynamics over a range of temporal scales, as compared to in-situ gauge measurements. Our analyses showed that ICESat had a vertical ranging error of 0.16 m at the footprint level—a limit on the detectable range of water-level dynamics. The sparsity of data over time was identified as a major factor limiting the use of ICESat for water dynamics studies. Of all the US lakes, only 361 had quality ICESat measurements for more than two flight passes. Even for those lakes with sufficient temporal coverage, ICESat failed to capture the true interannual water-level dynamics in 68% of the cases. Our frequency analysis suggested that even with a repeat cycle of two months, ICESat could capture only 60% of the variations in water-level dynamics for at most 34 % of the US lakes. To capture 60% of the water-level variation for most of the US lakes, a weekly repeat cycle (e.g., less than 5 days) is needed – a requirement difficult to meet in current designs of spaceborne laser altimetry. Overall, our results highlight that current or near-future satellite laser missions, though with high ranging accuracies, are unlikely

  3. ICESAT GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Borsa, Adrian A.; Fricker, Helen Amanda; Yi, Donghui; Dimarzio, John P.; Paolo, Fernando S.; Brunt, Kelly M.; Harding, David J.; Neumann, Gregory A.

    2017-01-01

    NASAs Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of earths ice sheet elevations, sea-ice thickness, and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to the earth's surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than anticipated, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as approximately 50 cm for ice- and snow-covered surfaces. We developed a correction for this saturation range bias based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates with those derived from Global Positioning System surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet.

  4. Geoscience Laser Altimeter System (GLAS) Loop Heat Pipes: An Eventual First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Grob, E.; Baker, C.; McCarthy, T.

    2004-01-01

    Goddard Space Flight Center's Geoscience Laser Altimeter System (GLAS) is the sole scientific instrument on the Ice, Cloud and land Elevation Satellite (ICESat) that was launched on January 12, 2003 from Vandenberg AFB. A thermal control architecture based on propylene Loop Heat Pipe technology was developed to provide selectable/stable temperature control for the lasers and other electronics over the widely varying mission environment. Following a nominal LHP and instrument start-up, the mission was interrupted with the failure of the first laser after only 36 days of operation. During the 5-month failure investigation, the two GLAS LHPs and the electronics operated nominally, using heaters as a substitute for the laser heat load. Just prior to resuming the mission, following a seasonal spacecraft yaw maneuver, one of the LHPs deprimed and created a thermal runaway condition that resulted in an emergency shutdown of the GLAS instrument. This paper presents details of the LHP anomaly, the resulting investigation and recovery, along with on-orbit flight data during these critical events.

  5. Performance of the GLAS Laser Transmitter in Space

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Afzal, Robert S.; Dallas, Joseph L.; Melak, Anthony; Mamakos, William

    2006-01-01

    The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results and in-flight performance for this space-based remote sensing instrument is summarized and presented.

  6. The Beauty and Complexity of the Brunt Ice Shelf from MOA and ICESat

    NASA Technical Reports Server (NTRS)

    Humbert, Angelika; Shuman, Christopher A.

    2005-01-01

    Beginning in February 2003, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) has determined surface elevations from approx. 86degN to 86degS latitude. To date, altimetry data have been acquired in a series of observation periods in repeated track patterns using all three Geoscience Laser Altimeter System (GLAS) lasers. This paper will focus on ice shelf elevation data that were obtained in 2003 across the Brunt Ice Shelf and the Stancomb-Wills Ice Tongue. Integrating the altimetry with the recently available MODIS Mosaic of Antarctica (MOA), quantifies the relative accuracy and precision of the resulting ice shelf elevations. Furthermore, the elevation data was processed onto an elevation grid, by regional interpolation across the area s complex glacial features only. Ice thickness estimation from the altimetry of the floating ice is discussed. ICESat operates at 40Hz and its elevation data is obtained every 172m along track. These elevations have a relative accuracy of about 14cm based on the standard deviation of low-slope crossover differences and a precision of close to 2cm for the Laser 2a, Release 21, GLA12 data used here.

  7. Digital elevation model of King Edward VII Peninsula, West Antarctica, from SAR interferometry and ICESat laser altimetry

    USGS Publications Warehouse

    Baek, S.; Kwoun, Oh-Ig; Braun, Andreas; Lu, Z.; Shum, C.K.

    2005-01-01

    We present a digital elevation model (DEM) of King Edward VII Peninsula, Sulzberger Bay, West Antarctica, developed using 12 European Remote Sensing (ERS) synthetic aperture radar (SAR) scenes and 24 Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles. We employ differential interferograms from the ERS tandem mission SAR scenes acquired in the austral fall of 1996, and four selected ICESat laser altimetry profiles acquired in the austral fall of 2004, as ground control points (GCPs) to construct an improved geocentric 60-m resolution DEM over the grounded ice region. We then extend the DEM to include two ice shelves using ICESat profiles via Kriging. Twenty additional ICESat profiles acquired in 2003-2004 are used to assess the accuracy of the DEM. After accounting for radar penetration depth and predicted surface changes, including effects due to ice mass balance, solid Earth tides, and glacial isostatic adjustment, in part to account for the eight-year data acquisition discrepancy, the resulting difference between the DEM and ICESat profiles is -0.57 ?? 5.88 m. After removing the discrepancy between the DEM and ICESat profiles for a final combined DEM using a bicubic spline, the overall difference is 0.05 ?? 1.35 m. ?? 2005 IEEE.

  8. ICESat (GLAS) Science Processing Software Document Series. Volume 3; GLAS Science Software Requirements Document; Ver 2.1

    NASA Technical Reports Server (NTRS)

    Jester, Peggy L.; Lee, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    This document addresses the software requirements of the Geoscience Laser Altimeter System (GLAS) Standard Data Software (SDS) supporting the GLAS instrument on the EOS ICESat Spacecraft. This Software Requirements Document represents the initial collection of the technical engineering information for the GLAS SDS. This information is detailed within the second of four main volumes of the Standard documentation, the Product Specification volume. This document is a "roll-out" from the governing volume outline containing the Concept and Requirements sections.

  9. Mapping the grounding zone of Ross Ice Shelf using ICESat laser altimetry

    USGS Publications Warehouse

    Brunt, Kelly M.; Fricker, Helen A.; Padman, Laurie; Scambos, Ted A.; O'Neel, Shad

    2010-01-01

    We use laser altimetry from the Ice, Cloud, and land Elevation Satellite (ICESat) to map the grounding zone (GZ) of the Ross Ice Shelf, Antarctica, at 491 locations where ICESat tracks cross the grounding line (GL). Ice flexure in the GZ occurs as the ice shelf responds to short-term sea-level changes due primarily to tides. ICESat repeat-track analysis can be used to detect this region of flexure since each repeated pass is acquired at a different tidal phase; the technique provides estimates for both the landward limit of flexure and the point where the ice becomes hydrostatically balanced. We find that the ICESat-derived landward limits of tidal flexure are, in many places, offset by several km (and up to ∼60 km) from the GL mapped previously using other satellite methods. We discuss the reasons why different mapping methods lead to different GL estimates, including: instrument limitations; variability in the surface topographic structure of the GZ; and the presence of ice plains. We conclude that reliable and accurate mapping of the GL is most likely to be achieved when based on synthesis of several satellite datasets

  10. ICESat and ICESat-2: Preparing to assess decadal-scale elevation change over the ice sheets

    NASA Astrophysics Data System (ADS)

    Webb, C. E.; Markus, T.; Neumann, T.; Anthony, M.

    2016-12-01

    One of the first, and most dramatic, assessments of elevation change to occur after the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) enters its science orbit in early 2018 will be to compare the altimetry data being collected to the baseline established by the original ICESat mission between 2003 and 2009. Both missions use altimeters that send laser pulses from the satellite to the Earth. By measuring the travel time, the range to the surface can be inferred, and then combined with the position of the satellite and the pointing direction of the laser to determine where the pulse landed on the surface and its height there. The first ICESat mission employed a single-beam, full-waveform altimeter with a near-infrared (1064-nm wavelength) laser pulsed at 40 Hz. This produced surface heights at 170-meter intervals along reference tracks that extended to +/- 86 degrees latitude. ICESat-2 will carry an altimeter that sends a green (532-nm wavelength) laser through a diffractive optical element to be split into six beams, and pulsed at 10kHz. This will yield overlapping footprints every 70 cm along each beam track, extending to +/-88 degrees latitude. Rather than capturing the full returned waveform, however, the altimeter will use photon-counting detectors to measure the travel times of individual photons. Once on the ground, these data will be used in the science data processing system to produce a latitude, longitude and ellipsoidal height, marking the location from which each photon returned from the surface. Higher-level data products will characterize the surface more precisely by aggregating photons to reduce noise along each of the six beam tracks. Here, we describe the ICESat and ICESat-2 measurements and ice sheet data products, and discuss possible methods for comparing them to assess elevation change over the Greenland and Antarctic ice sheets in the nine years between the two missions.

  11. Delta II ICESat-2 Booster Transport

    NASA Image and Video Library

    2018-04-17

    At Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster is transported to Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  12. Delta II ICESat-2 Booster Transport

    NASA Image and Video Library

    2018-04-17

    At Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster arrives at Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  13. Delta II ICESat-2 Booster Transport

    NASA Image and Video Library

    2018-04-17

    At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster is transported to Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  14. Geoscience Laser Altimetry System (GLAS) Loop Heat Pipe Anomaly and On Orbit Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Grob, Eric; Jester, Peggy

    2011-01-01

    The Geoscience Laser Altimetry System (GLAS) is the sole instrument on the ICESat Satellite. On day 230 of 2003, the GLAS Component Loop Heat Pipe (CLHP) entered a slow circulation mode that resulted in the main electronics box reaching its hot safing temperature, after which the entire instrument was turned off. The CLHP had a propylene working fluid and was actively temperature controlled via a heater on the compensation chamber. The slow circulation mode happened right after a planned propulsive yaw maneuver with the spacecraft. It took several days to recover the CLHP and ensure that it was still operational. The recovery occurred after the entire instrument was cooled to survival temperatures and the CLHP compensation chamber cycled on a survival heater. There are several theories as to why this slow circulation mode exhibited itself, including: accumulation of Non-Condensible Gas (NCG), the secondary wick being under designed or improperly implemented, or an expanded (post-launch) leak across the primary wick. Each of these is discussed in turn, and the secondary wick performance is identified as the most likely source of the anomalous behavior. After the anomaly, the CLHP was controlled to colder temperatures to improve its performance (as the surface tension increases with lower temperature, as does the volume of liquid in the compensation chamber) and only precursor pulses occurred later in the mission. After GLAS s last laser failed, in late 2009, a decision was made to conduct engineering tests of both LHPs to try and duplicate this flight anomaly. The engineering tests consisted of control setpoint changes, sink changes, and one similar propulsive Yaw maneuver. The only test that showed any similar anomaly precursors on the CLHP was the propulsive maneuver followed by a setpoint increase. The ICESat Satellite was placed in a decaying orbit and ended its mission on August 30, 2010 in Barents Sea.

  15. Overview of the ICESat Mission and Results

    NASA Astrophysics Data System (ADS)

    Zwally, H.

    2004-12-01

    NASA's Ice, Cloud, and Land Elevation Satellite (ICESat), launched in January, 2003, has been measuring surface elevations of ice and land, vertical distributions of clouds and aerosols, vegetation-canopy heights, and other features with unprecedented accuracy and sensitivity. The ICESat mission, which was designed to operate continuously for 3 to 5 years, has so far acquired science data during five periods of laser operation ranging from 33 to 54 days each. The primary purpose of ICESat has been to acquire time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and improve estimates of the present and future contributions to global sea level rise. ICEsat's atmospheric measurements are providing fundamentally new information on the precise vertical structure of clouds and aerosols. In particular, cloud heights are important for understanding radiation balance and their effects on climate change. Other applications include mapping of polar sea-ice freeboard and thickness, high-resolution mapping of ocean eddies, glacier topography, and lake and river levels. ICESat has a 1064 nm laser channel for near-surface altimetry with a designed range precision of 10 cm that is actually 2 cm on-orbit. Vertical distributions of clouds and aerosols are obtained with 75 m resolution from both the 1064 nm channel and the more sensitive 532 nm channel. The laser footprints are about 70 m spaced at 170 m along-track. The accuracy of the satellite-orbital heights is about 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibration is completed. The spacecraft attitude is controlled to point the laser beam to within 100 m (35 m goal) of reference surface tracks at high latitudes and to point off-nadir up to 5 degrees to targets of interest. The remaining laser lifetime will be used

  16. The Ice, Cloud, and land Elevation Satellite (ICESat) Summary Mission Timeline and Performance Relative to Pre-Launch Mission Success Criteria

    NASA Technical Reports Server (NTRS)

    Webb, Charles E.; Zwally H. Jay; Abdalati, Waleed

    2012-01-01

    The Ice, Cloud and land Elevation Satellite (ICESat) mission was conceived, primarily, to quantify the spatial and temporal variations in the topography of the Greenland and Antarctic ice sheets. It carried on board the Geoscience Laser Altimeter System (GLAS), which measured the round-trip travel time of a laser pulse emitted from the satellite to the surface of the Earth and back. Each range derived from these measurements was combined with precise, concurrent orbit and pointing information to determine the location of the laser spot centroid on the Earth. By developing a time series of precise topographic maps for each ice sheet, changes in their surface elevations can be used to infer their mass balances.

  17. Space Qualification of the Optical Filter Assemblies for the ICESat-2/ATLAS Instrument

    NASA Technical Reports Server (NTRS)

    Troupaki, Elisavet; Denny, Zachary; Wu, Stewart; Bradshaw, Heather; Smith, Kevin; Hults, Judy; Ramos-Izquierdo, Luis; Cook, William

    2015-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) will be the only instrument on the Ice, Cloud, and Land Elevation Satellite -2 (ICESat-2). ICESat-2 is the 2nd-generation of the orbiting laser altimeter ICESat, which will continue polar ice topography measurements with improved precision laser-ranging techniques. In contrast to the original ICESat design, ICESat-2 will use a micro-pulse, multi-beam approach that provides dense cross-track sampling to help scientists determine a surface's slope with each pass of the satellite. The ATLAS laser will emit visible, green laser pulses at a wavelength of 532 nm and a rate of 10 kHz and will be split into 6 beams. A set of six identical, thermally-tuned etalon filter assemblies will be used to remove background solar radiation from the collected signal while transmitting the laser light to the detectors. A seventh etalon assembly will be used to monitor the laser center wavelength during the mission. In this paper, we present the design and optical performance measurements of the ATLAS optical filter assemblies (OFA) in air and in vacuum before integration on the ATLAS instrument.

  18. Space Qualification of the Optical Filter Assemblies for the ICESat-2/ATLAS Instrument

    NASA Technical Reports Server (NTRS)

    Troupaki, E.; Denny, Z. H.; Wu, S.; Bradshaw, H. N.; Smith, K. A.; Hults, J. A.; Ramos-Izquierdo, L. A.; Cook, W. B.

    2015-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) will be the only instrument on the Ice, Cloud, and Land Elevation Satellite -2 (ICESat-2). ICESat-2 is the 2nd-generation of the orbiting laser altimeter ICESat, which will continue polar ice topography measurements with improved precision laser-ranging techniques. In contrast to the original ICESat design, ICESat-2 will use a micro-pulse, multi-beam approach that provides dense cross-track sampling to help scientists determine a surface's slope with each pass of the satellite. The ATLAS laser will emit visible, green laser pulses at a wavelength of 532 nm and a rate of 10 kHz and will be split into 6 beams. A set of six identical, thermally tuned optical filter assemblies (OFA) will be used to remove background solar radiation from the collected signal while transmitting the laser light to the detectors. A seventh assembly will be used to monitor the laser center wavelength during the mission. In this paper, we present the design and optical performance measurements of the ATLAS OFA in air and in vacuum prior to their integration on the ATLAS instrument.

  19. Decomposition Techniques for Icesat/glas Full-Waveform Data

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gao, X.; Li, G.; Chen, J.

    2018-04-01

    The geoscience laser altimeter system (GLAS) on the board Ice, Cloud, and land Elevation Satellite (ICESat), is the first long-duration space borne full-waveform LiDAR for measuring the topography of the ice shelf and temporal variation, cloud and atmospheric characteristics. In order to extract the characteristic parameters of the waveform, the key step is to process the full waveform data. In this paper, the modified waveform decomposition method is proposed to extract the echo components from full-waveform. First, the initial parameter estimation is implemented through data preprocessing and waveform detection. Next, the waveform fitting is demonstrated using the Levenberg-Marquard (LM) optimization method. The results show that the modified waveform decomposition method can effectively extract the overlapped echo components and missing echo components compared with the results from GLA14 product. The echo components can also be extracted from the complex waveforms.

  20. ICESat GLAS Elevation Changes and ALOS PALSAR InSAR Line-Of-Sight Changes on the Continuous Permafrost Zone of the North Slope, Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald

    2016-04-01

    Measuring centimeter-scale and smaller surface changes by satellite-based systems on the periglacial terrains and permafrost zones of the northern hemisphere is an ongoing challenge. We are investigating this challenge by using data from the NASA Ice, Cloud, and land Elevation Satellite Geoscience Laser Altimeter System (ICESat GLAS) and the JAXA Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) on the continuous permafrost zone of the North Slope, Alaska. Using the ICESat GLAS exact-repeat profiles in the analysis of ALOS PALSAR InSAR Line-Of-Sight (LOS) changes we find evidence of volume scattering over much of the tundra vegetation covered active-layer and surface scattering from river channel/banks (deposition and erosion), from rock outcropping bluffs and ridges. Pingos, ice-cored mounds common to permafrost terrains can be used as benchmarks for assessment of LOS changes. For successful InSAR processing, topographic and tropospheric phase cannot be assumed negligible and must be removed. The presence of significant troposphere phase in short-period repeat interferograms renders stacking ill suited for the task of deriving verifiable centimeter-scale surface deformation phase and reliable LOS changes. Ref.: Muskett, R.R. (2015), ICESat GLAS Elevation Changes and ALOS PALSAR InSAR Line-Of-Sight Changes on the Continuous Permafrost Zone of the North Slope, Alaska. International Journal of Geosciences, 6 (10), 1101-1115. doi:10.4236/ijg.2015.610086 http://www.scirp.org/Journal/PaperDownload.aspx?paperID=60406

  1. Advances in Measuring Antarctic Sea-Ice Thickness and Ice-Sheet Elevations with ICESat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2004-01-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice

  2. Global Lidar Measurements of Clouds and Aerosols from Space Using the Geoscience Laser Altimeter System (GLAS)

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Palm, S. P.; Welton, E. J.; Hart, W. D.; Spinhirne, J. D.; McGill, M.; Mahesh, A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Geoscience Laser Altimeter System (GLAS) is scheduled for launch on the ICESat satellite as part of the NASA EOS mission in 2002. GLAS will be used to perform high resolution surface altimetry and will also provide a continuously operating atmospheric lidar to profile clouds, aerosols, and the planetary boundary layer with horizontal and vertical resolution of 175 and 76.8 m, respectively. GLAS is the first active satellite atmospheric profiler to provide global coverage. Data products include direct measurements of the heights of aerosol and cloud layers, and the optical depth of transmissive layers. In this poster we provide an overview of the GLAS atmospheric data products, present a simulated GLAS data set, and show results from the simulated data set using the GLAS data processing algorithm. Optical results from the ER-2 Cloud Physics Lidar (CPL), which uses many of the same processing algorithms as GLAS, show algorithm performance with real atmospheric conditions during the Southern African Regional Science Initiative (SAFARI 2000).

  3. Delta II ICESat-2 Booster Arrival

    NASA Image and Video Library

    2018-03-09

    A United Launch Alliance Delta II booster arrives at NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California. It will be offloaded and begin preliminary checkouts and preflight processing for launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.

  4. Delta II ICESat-2 Fairing Cleaning and Sampling

    NASA Image and Video Library

    2018-04-06

    On Friday, April 6, 2018, in NASA’s Building 8337 at Vandenberg Air Force Base in California, a technician cleans and takes samples from the payload fairing the will protect NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite during launch. Liftoff atop a United Launch Alliance Delta II rocket is scheduled for Sept. 12, 2018, from Space Launch Complex-2 at Vandenberg. It will be the last for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  5. Delta II ICESat-2 Fairing Cleaning and Sampling

    NASA Image and Video Library

    2018-04-06

    On Friday, April 6, 2018, in NASA’s Building 8337 at Vandenberg Air Force Base in California, technicians and engineers clean and take samples from the payload fairing the will protect NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite during launch. Liftoff atop a United Launch Alliance Delta II rocket is scheduled for Sept. 12, 2018, from Space Launch Complex-2 at Vandenberg. It will be the last for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  6. Delta II ICESat-2 Fairing Cleaning and Sampling

    NASA Image and Video Library

    2018-04-06

    On Friday, April 6, 2018, in NASA’s Building 8337 at Vandenberg Air Force Base in California, technicians and engineers check samples during cleaning of the payload fairing that will protect NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite during launch. Liftoff atop a United Launch Alliance Delta II rocket is scheduled for Sept. 12, 2018, from Space Launch Complex-2 at Vandenberg. It will be the last for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  7. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  8. ICESat Observations of Southern Alaska Glaciers

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Molnia, Bruce F.; Mitchell, Darius

    2003-01-01

    In late February and March, 2003, the Ice, Cloud, and land Elevation Satellite (ICESat) measured ice and land elevations along profiles across southern Alaska. During this initial data acquisition stage ICESat observations were made on 8-day repeat tracks to enable calibration and validation of the ICESat data products. Each profile consists of a series of single point values derived from centroid elevations of an $\\approx$70 m diameter laser footprint. The points are s4pakated by $\\approx$172 m along track. Data siets of 8-day observations (an ascending and descending ground track) crossed the Bering and Malaspina Glacier. Following its 1993--1995 surge; the Bering Glacier has undergone major terminus retreat as well as ike thinning in the abtation zone. During the later part of the 20th century, parts of the Malaspina thinned by about 1 m/yr. The multiple observation profiles across the Bering and Malaspina piedmont lobes obtained in February/March are being geolocated on Landsat images and the elevation profiles will be used for a number o scientific objectives. Based on our simulations of ICESat performance over the varied ice surface of the Jakobshavn Glacier of GReenland, 2003, we expect to measure annual, and possibly seasonal, ice elevation changes on the large Alaskan glaciers. Using elevation data obtained from a second laser, we plan to estimate ice elevation changes on the Bering Glacier between March and October 2003.

  9. ICESat Science Investigator led Processing System (I-SIPS)

    NASA Astrophysics Data System (ADS)

    Bhardwaj, S.; Bay, J.; Brenner, A.; Dimarzio, J.; Hancock, D.; Sherman, M.

    2003-12-01

    The ICESat Science Investigator-led Processing System (I-SIPS) generates the GLAS standard data products. It consists of two main parts the Scheduling and Data Management System (SDMS) and the Geoscience Laser Altimeter System (GLAS) Science Algorithm Software. The system has been operational since the successful launch of ICESat. It ingests data from the GLAS instrument, generates GLAS data products, and distributes them to the GLAS Science Computing Facility (SCF), the Instrument Support Facility (ISF) and the National Snow and Ice Data Center (NSIDC) ECS DAAC. The SDMS is the Planning, Scheduling and Data Management System that runs the GLAS Science Algorithm Software (GSAS). GSAS is based on the Algorithm Theoretical Basis Documents provided by the Science Team and is developed independently of SDMS. The SDMS provides the processing environment to plan jobs based on existing data, control job flow, data distribution, and archiving. The SDMS design is based on a mission-independent architecture that imposes few constraints on the science code thereby facilitating I-SIPS integration. I-SIPS currently works in an autonomous manner to ingest GLAS instrument data, distribute this data to the ISF, run the science processing algorithms to produce the GLAS standard products, reprocess data when new versions of science algorithms are released, and distributes the products to the SCF, ISF, and NSIDC. I-SIPS has a proven performance record, delivering the data to the SCF within hours after the initial instrument activation. The I-SIPS design philosophy gives this system a high potential for reuse in other science missions.

  10. MABEL Photon-Counting Laser Altimetry Data in Alaska for ICESat-2 Simulations and Development

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly; Neumann, T. A.; Amundson, M.; Kavanaugh, J. L.; Moussavi, M. S.; Walsh, K. M.; Cook, W. B.; Markus, T.

    2016-01-01

    Multiple Altimeter Beam Experimental Lidar (MABEL) maps Alaskan crevasses in detail, using 50 of the expected along-track Advanced Topographic Laser Altimeter System (ATLAS) signal-photon densities over summer ice sheets. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) along-track data density, and spatial data density due to the multiple-beam strategy, will provide a new dataset to mid-latitude alpine glacier researchers.

  11. Simulation of ICESat-2 canopy height retrievals for different ecosystems

    NASA Astrophysics Data System (ADS)

    Neuenschwander, A. L.

    2016-12-01

    Slated for launch in late 2017 (or early 2018), the ICESat-2 satellite will provide a global distribution of geodetic measurements from a space-based laser altimeter of both the terrain surface and relative canopy heights which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to producing distribution of above ground vegetation structure. The ATLAS instrument designed for ICESat-2, will utilize a different technology than what is found on most laser mapping systems. The photon counting technology of the ATLAS instrument onboard ICESat-2 will record the arrival time associated with a single photon detection. That detection can occur anywhere within the vertical distribution of the reflected signal, that is, anywhere within the vertical distribution of the canopy. This uncertainty of where the photon will be returned from within the vegetation layer is referred to as the vertical sampling error. Preliminary simulation studies to estimate vertical sampling error have been conducted for several ecosystems including woodland savanna, montane conifers, temperate hardwoods, tropical forest, and boreal forest. The results from these simulations indicate that the canopy heights reported on the ATL08 data product will underestimate the top canopy height in the range of 1 - 4 m. Although simulation results indicate the ICESat-2 will underestimate top canopy height, there is, however, a strong correlation between ICESat-2 heights and relative canopy height metrics (e.g. RH75, RH90). In tropical forest, simulation results indicate the ICESat-2 height correlates strongly with RH90. Similarly, in temperate broadleaf forest, the simulated ICESat-2 heights were also strongly correlated with RH90. In boreal forest, the simulated ICESat-2 heights are strongly correlated with RH75 heights. It is hypothesized that the correlations between simulated ICESat-2 heights and canopy height metrics are a

  12. The ICESat-2 Mission: Concept, pre-launch activities, and opportunities

    NASA Astrophysics Data System (ADS)

    Markus, T.; Neumann, T.; Csatho, B. M.

    2011-12-01

    Ice sheet and sea level changes have been explicitly identified as a priority in the President's Climate Change Science Program, the Arctic Climate Impact Assessment, the 4th Assessment Report of the IPCC and other national and international policy documents. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for launch in early 2016. The primary aims of the ICESat-2 mission are to continue measurements of sea-ice thickness change, and ice sheet elevation changes at scales from outlet glaciers to the entire ice sheet as established by ICESat. In contrast to ICESat, ICESat-2 will employ a 6-beam micro-pulse laser photon-counting approach. The current concept uses a high repetition rate (10 kHz; equivalent to 70 cm on the ground) low-power laser in conjunction with single-photon sensitive detectors to measure range using ~532nm (green) light. The concept will enable the generation of seasonal maps of ice sheet elevation of Greenland and Antarctica, monthly maps of sea ice thickness of the polar ocean, a dense map of land elevation (2 km track spacing at the equator after two years) enabling the determination of canopy height, as well as ocean heights. While the mission has been optimized for cryospheric science and vast amount of high precision elevation measurements taken over land and over the ocean as well as of the atmosphere will provide scientists with a wealth of opportunities to explore the utility of ICESat-2. Those will range from the retrieval of cloud properties, to river stages, to snow cover, to land use changes and more. The presentation will review the measurement concept and physical principles of ICESat-2, current and planned activities to assess instrument performance and develop geophysical algorithms, as well as potential opportunities outside the main objectives of ICESat-2.

  13. Geoscience Laser Altimetry System (GLAS) On-Orbit Flight Report on the Propylene Loop Heat Pipes (LHPs)

    NASA Technical Reports Server (NTRS)

    Baker, Charles L.; Grob, Eric W.; McCarthy, Thomas V.; Nikitkin, Michael N.; Ancarrow, Walter C.

    2003-01-01

    The Geoscience Laser Altimetry System (GLAS) instrument which is the sole instrument on ICESat was launched on January 12, 2003. GLAS utilizes two actively controlled propylene Loop Heat Pipes (LHPs) as the core of its thermal system. The LHPs started quickly when the Dale Ohm starter heaters were powered and have as designed. The low control heater power and on-orbit tight temperature control appear independent of gravity effects when comparing ground testing to flight data. The use of coupling blocks was also unique to these LHPs. Their application reduced control heater power by reducing the subcooling from the radiator. The effectiveness in reducing subcooling of the coupler blocks decreased during flight from ground testing, but internal thermal isolation in the compensation chamber between the subcooled returning liquid increased in flight resulting in no net increase in control heater power versus ground measurements. Overall the application of LHPs in the thermal system for GLAS met instrument requirements and provided flexibility for the overall system as last minute requirements became known.

  14. ICESat Observations of Topographic Change in the Northern Segment of the 2004 Sumatra-Andaman Islands Earthquake Rupture Zone

    NASA Technical Reports Server (NTRS)

    Harding, David; Sauber, J.; Luthcke, S.; Carabajal, C.; Muller, J

    2005-01-01

    The Andaman Islands are located 120 km east of the Sunda trench in the northern quarter of the 1300 km long rupture zone of the 2004 Sumatra-Andaman Islands earthquake inferred from the distribution of aftershocks. Initial field reports indicate that several meters of uplift and up to a meter of submergence occurred on the western and eastern shorelines of the Andaman Islands, respectively, associated with the earthquake (Bilham, 2005). Satellite images also document uplift of western shoreline coral reef platforms above sea level. Body-wave (Ji, 2005; Yamamaka, 2005) and tide-gauge (Ortiz, 2005) slip inversions only resolve coseismic slip in the southern one-third to one-half of the rupture zone. The amount of coseismic slip in the Andaman Islands region is poorly constrained by these inversions. The Ice, Cloud, and land Elevation Satellite (ICESat), a part of the NASA Earth Observing System, is being used to document the spatial pattern of Andaman Islands vertical displacements in order to constrain models of slip distribution in the northern part of the rupture zone. ICESat carries the Geoscience Laser Altimeter System (GLAS) that obtains elevation measurements from 80 m diameter footprints spaced 175 m apart along profiles. For surfaces of low slope, single-footprint absolute elevation and horizontal accuracies of 10 cm and 6 m (1 sigma), respectively, referenced to the ITRF 2002 TOPEX/Poseidon ellipsoid are being obtained. Laser pulse backscatter waveforms enable separation of ground topography and overlying vegetation cover. During each 33-day observing period ICESat acquires three profiles crossing the Andaman Islands. A NNE-SSW oriented track consists of 1600 laser footprints along the western side of North, Middle, and South Andaman Islands and 240 laser footprints across the center of Great Andaman Island. Two NNW-SSE tracks consist of 440 footprints across Middle Andaman Island and 25 footprints across the west side of Sentinel Island. Cloud

  15. ICESat GLAS Elevation Changes and ALOS PALSAR InSAR Line-Of-Sight Changes on the Continuous Permafrost Zone of the North Slope, Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.

    2016-12-01

    Measuring centimeter-scale and smaller surface changes by satellite-based systems on the periglacial terrains and permafrost zones of the northern hemisphere is an ongoing challenge. We are investigating this challenge by using data from the NASA Ice, Cloud, and land Elevation Satellite Geoscience Laser Altimeter System (ICESat GLAS) and the JAXA Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) on the continuous permafrost zone of the North Slope, Alaska. Using the ICESat GLAS exact-repeat profiles in the analysis of ALOS PALSAR InSAR Line-Of-Sight (LOS) changes we find evidence of volume scattering over much of the tundra vegetation covered active-layer and surface scattering from river channel/banks (deposition and erosion), from rock outcropping bluffs and ridges. Pingos, ice-cored mounds common to permafrost terrains can be used as benchmarks for assessment of LOS changes. For successful InSAR processing, topographic and tropospheric phase cannot be assumed negligible and must be removed. The presence of significant troposphere phase in short-period repeat interferograms renders stacking ill suited for the task of deriving verifiable centimeter-scale surface deformation phase and reliable LOS changes. Ref.: Muskett, R.R. (2015), Int. Journal of Geosciences, 6 (10), 1101-1115. doi:10.4236/ijg.2015.610086 http://www.scirp.org/Journal/PaperDownload.aspx?paperID=60406

  16. Delta II ICESat-2 Booster Offload onto Transporter

    NASA Image and Video Library

    2018-04-16

    At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, a United Launch Alliance Delta II booster has been removed from its shipping container. Preliminary checkouts and preflight processing will begin leading to launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.

  17. Delta II ICESat-2 Booster Offload onto Transporter

    NASA Image and Video Library

    2018-04-16

    A United Launch Alliance Delta II booster arrives at NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California. It will be offloaded and begin preliminary checkouts and preflight processing for launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.

  18. Observations of Dust Using the NASA Geoscience Laser Altimeter System (GLAS): New New Measurements of Aerosol Vertical Distribution From Space

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    On January 12, 2003 NASA launched the first satellite-based lidar, the Geoscience Laser -Altimeter System (GLAS), onboard the ICESat spacecraft. The GLAS atmospheric measurements introduce a fundamentally new and important tool for understanding the atmosphere and climate. In the past, aerosols have only been studied from space using images gathered by passive sensors. Analysis of this passive data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth's climate. However, these images do not show the aerosol's vertical distribution. As a result, a key piece of information has been missing. The measurements now obtained by GLAS will provide information on the vertical distribution of aerosols and clouds, and improve our ability to study their transport processes and aerosol-cloud interactions. Here we show an overview of GLAS, provide an update of its current status, and present initial observations of dust profiles. In particular, a strategy of characterizing the height profile of dust plumes over source regions will be presented.

  19. Delta II ICESat-2 Booster Offload onto Transporter

    NASA Image and Video Library

    2018-04-16

    At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, a United Launch Alliance Delta II booster is removed from its shipping container. After it is offloaded, preliminary checkouts and preflight processing will begin leading to launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.

  20. ICESat-2: An overview of science objectives, status, data products and expected performance

    NASA Astrophysics Data System (ADS)

    Neumann, T.; Markus, T.; Anthony, M.

    2016-12-01

    NASA's Ice, Cloud, and land Elevation Satellite-2's (ICESat-2) mission objectives are to quantify polar ice sheet contributions to sea level change, quantify regional signatures of ice sheet changes to assess driving mechanisms, estimate sea ice thickness, and to enable measurements of canopy height as a basis for estimating large-scale biomass. With a scheduled launch date in late 2017 most of the flight hardware has been assembled, integrated and tested and algorithm implementation for its standard geophysical products is well underway. The spacecraft, built by Orbital ATK, is completed and is undergoing testing. ICESat-2's single instrument, the Advanced Topographic Laser Altimeter System (ATLAS), is built by NASA Goddard Space Flight Center and by the time of the Fall Meeting will be undergoing integration and testing with the spacecraft, becoming the ICESat-2 observatory. In parallel, high level geophysical data products and associated algorithms are in development using airborne laser altimeter data. This presentation will give an overview of the design of ICESat-2, of its hardware and software status, as well as examples of ICESat-2's coverage and what the data will look like.

  1. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Neumann, Tom; Martino, Anthony; Abdalati, Waleed; Brunt, Kelly; Csatho, Beata; Farrell, Sinead; Fricker, Helen; Gardner, Alex; Harding, David; hide

    2017-01-01

    The Ice, Cloud, and land Elevation Satellite (ICESat) mission used laser altimetry measurements to determine changes in elevations of glaciers and ice sheets, as well as sea ice thickness distribution. These measurements have provided important information on the response of the cryosphere (Earths frozen surfaces) to changes in atmosphere and ocean condition. ICESat operated from 2003-2009 and provided repeat altimetry measurements not only to the cryosphere scientific community but also to the ocean, terrestrial and atmospheric scientific communities. The conclusive assessment of significant ongoing rapid changes in the Earths ice cover, in part supported by ICESat observations, has strengthened the need for sustained, high accuracy, repeat observations similar to what was provided by the ICESat mission. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for planned launch in 2018. The primary scientific aims of the ICESat-2 mission are to continue measurements of sea ice freeboard and ice sheet elevation to determine their changes at scales from outlet glaciers to the entire ice sheet, and from 10s of meters to the entire polar oceans for sea ice freeboard. ICESat carried a single beam profiling laser altimeter that produced approximately 70 m diameter footprints on the surface of the Earth at approximately 150 m along-track intervals. In contrast, ICESat-2 will operate with three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. Each of the beams will have a nominal 17 m diameter footprint with an along-track sampling interval of 0.7 m. The differences in the ICESat-2 measurement concept are a result of overcoming some limitations associated with the approach used in the ICESat mission. The beam pair configuration of ICESat-2 allows for the determination of local cross-track slope, a significant factor in measuring elevation change

  2. NASA airborne laser altimetry and ICESat-2 post-launch data validation

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Neumann, T.; Studinger, M.; Hawley, R. L.; Markus, T.

    2016-12-01

    A series of NASA airborne lidars have made repeated surveys over an 11,000-m ground-based kinematic GPS traverse near Summit Station, Greenland. These ground-based data were used to assess the surface elevation bias and measurement precision of two airborne laser altimeters: Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS). Data from the ongoing monthly traverses allowed for the assessment of 8 airborne lidar campaigns; elevation biases for these altimeters were less than 12.2 cm, while assessments of surface measurement precision were less than 9.1 cm. Results from the analyses of the Greenland ground-based GPS and airborne lidar data provide guidance for validation strategies for Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products. Specifically, a nested approach to validation is required, where ground-based GPS data are used to constrain the bias and measurement precision of the airborne lidar data; airborne surveys can then be designed and conducted on longer length-scales to provide the amount of airborne data required to make more statistically meaningful assessments of satellite elevation data. This nested validation approach will continue for the ground-traverse in Greenland; further, the ICESat-2 Project Science Office has plans to conduct similar coordinated ground-based and airborne data collection in Antarctica.

  3. The ICESat-2 Mission: Concept, Pre-Launch Activities, and Opportunities

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Neumann, Tom; Csatho, Beata M.

    2011-01-01

    Ice sheet and sea level changes have been explicitly identified as a priority in the President's Climate Change Science Program, the Arctic Climate Impact Assessment, the 4th Assessment Report of the IPee and other national and international policy documents. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for launch in early 2016. The primary aims of the ICESat-2 mission are to continue measurements of sea-ice thickness change, and ice sheet elevation changes at scales from outlet glaciers to the entire ice sheet as established by ICES at. In contrast to ICES at, ICESat-2 will employ a 6-beam micro-pulse laser photon-counting approach. The current concept uses a high repetition rate (10 kHz; equivalent to 70 cm on the ground) low-power laser in conjunction with single-photon sensitive detectors to measure range using approximately 532nm (green) light. The concept will enable the generation of seasonal maps of ice sheet elevation of Greenland and Antarctica, monthly maps of sea ice thickness of the polar ocean, a dense map of land elevation (2 km track spacing at the equator after two years) enabling the determination of canopy height, as well as ocean heights. While the mission has been optimized for cryospheric science and vast amount of high precision elevation measurements taken over land and over the ocean as well as of the atmosphere will provide scientists with a wealth of opportunities to explore the utility of ICESat-2. Those will range from the retrieval of cloud properties, to river stages, to snow cover, to land use changes and more. The presentation will review the measurement concept and physical principles of ICESat-2, current and planned activities to assess instrument performance and develop geophysical algorithms, as well as potential opportunities outside the main objectives of ICESat-2.

  4. Recovery of the Three-Gorges Reservoir Impoundment Signal from ICESat altimetry and GRACE

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Boy, J.; Luthcke, S. B.; Harding, D. J.; Rowlands, D. D.; Lemoine, F. G.

    2006-12-01

    The Three Gorges Dam along the Yangtze River in China is one of the largest dams in the world. The water impoundment of the Three-Gorges Reservoir started in June 2003, and the volume of water will continuously increase up to about 40 km3 in 2009, over a length of about 600 km. Although water-level changes along the Yangtze River and the Three Gorges Reservoir are measured by in situ water gauges, access to these data can be quite difficult. Estimates of inland water height and extent can also be recovered from altimetry measurements performed from satellite platforms, such as those acquired by the Geoscience laser Altimetry System (GLAS) on board the Ice, Cloud and Land Elevation Satellite (ICESat). ICESat has produced a comprehensive, highly precise, set of along-track elevation measurements, every three months since its launch in 2003, which intersect the Yangtze River along its East-West extent. In addition, the water impoundment of major artificial reservoirs induces variations of global geodetic quantities, such as the gravity field and Earth rotation (Chao, 1995, Boy & Chao, 2002). Water level changes within the reservoir are compared to GRACE (Gravity Recovery And Climate Experiment) recovered water mass changes. In addition, we compare the GRACE observations of mass change in the Yangtze region to hydrological changes computed from different global soil-moisture and snow models, such as GLDAS (Global Land Data Assimilation System).

  5. Lasers, penguins, and polar bears: Novel outreach and education approaches for NASA's ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Casasanto, Valerie A.; Campbell, Brian; Manrique, Adriana; Ramsayer, Kate; Markus, Thorsten; Neumann, Thomas

    2018-07-01

    NASA's Ice, Cloud, and land Elevation Satellite (ICESat-2), to be launched in 2018, will measure the height of Earth from space using lasers, collecting the most precise and detailed account yet of our planet's elevation. The mission will allow scientists to investigate how global warming is changing the planet's icy polar regions and to take stock of Earth's vegetation. ICESat-2's emphasis on polar ice, as well as its unique measurement approach, will provide an intriguing and accessible focus for the mission's education and outreach programs. Sea ice and land ice are areas that have experienced significant change in recent years. It is key to communicate why we are measuring these areas and their importance. ICESat-2 science data will provide much-needed answers to climate change questions such as, "Is the ice really melting in the polar regions?" and "What does studying Earth's frozen regions tell us about our changing climate?" In this paper, lessons-learned and novel techniques for engaging and educating all audiences in the mission will be discussed, such as including results of a unique collaboration with art design school the Savannah College of Art Design (SCAD) to create fun and exciting products such as animated characters and interactive stories. Future collaborations with wildlife researchers, a new citizen science program in collaboration with GLOBE, and evidence from other STEAM (Science, Technology, Engineering, Arts, Math) education approaches will also be detailed in this paper.

  6. First Assessments of Predicted ICESat-2 Performance Using Aircraft Data

    NASA Technical Reports Server (NTRS)

    Neumann, Thomas; Markus, Thorsten; Cook, William; Hancock, David; Brenner, Anita; Kelly, Brunt; DeMarco, Eugenia; Reed, Daniel; Walsh, Kaitlin

    2012-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key observations of ice sheet elevation change, sea ice freeboard, vegetation canopy height, earth surface elevation, and sea surface height. Scheduled for launch in mid-2016, ICESat-2 will use a high repetition rate (10 kHz), small footprint (10 m nominal ground diameter) laser, and a single-photon-sensitive detection strategy (photon counting) to measure precise range to the earth's surface. Using green light (532 nm), the six beams of ICESat-2 will provide improved spatial coverage compared with the single beam of ICESat, while the differences in transmit energy among the beams provide a large dynamic range. The six beams are arranged into three pairs of beams which allow slopes to measured on an orbit-by-orbit basis. In order to evaluate models of predicted ICESat-2 performance and provide ICESat-2-like data for algorithm development, an airborne ICESat-2 simulator was developed and first flown in 2010. This simulator, the Multiple Altimeter Beam Experimental Lidar (MABEL) was most recently deployed to Iceland in April 2012 and collected approx 85 hours of science data over land ice, sea ice, and calibration targets. MABEL uses a similar photon-counting measurement strategy to what will be used on ICESat-2. MABEL collects data in 16 green channels and an additional 8 channels in the infrared aligned across the direction of flight. By using NASA's ER-2 aircraft flying at 20km altitude, MABEL flies as close to space as is practical, and collects data through approx 95% of the atmosphere. We present background on the MABEL instrument, and data from the April 2012 deployment to Iceland. Among the 13 MABEL flights, we collected data over the Greenland ice sheet interior and outlet glaciers in the southwest and western Greenland, sea ice data over the Nares Strait and Greenland Sea, and a number of small glaciers and ice caps in Iceland and Svalbard

  7. A Range Correction for Icesat and Its Potential Impact on Ice-sheet Mass Balance Studies

    NASA Technical Reports Server (NTRS)

    Borsa, A. A.; Moholdt, G.; Fricker, H. A.; Brunt, Kelly M.

    2014-01-01

    We report on a previously undocumented range error in NASA's Ice, Cloud and land Elevation Satellite (ICESat) that degrades elevation precision and introduces a small but significant elevation trend over the ICESat mission period. This range error (the Gaussian-Centroid or 'G-C'offset) varies on a shot-to-shot basis and exhibits increasing scatter when laser transmit energies fall below 20 mJ. Although the G-C offset is uncorrelated over periods less than1 day, it evolves over the life of each of ICESat's three lasers in a series of ramps and jumps that give rise to spurious elevation trends of -0.92 to -1.90 cm yr(exp -1), depending on the time period considered. Using ICESat data over the Ross and Filchner-Ronne ice shelves we show that (1) the G-C offset introduces significant biases in ice-shelf mass balance estimates, and (2) the mass balance bias can vary between regions because of different temporal samplings of ICESat.We can reproduce the effect of the G-C offset over these two ice shelves by fitting trends to sample-weighted mean G-C offsets for each campaign, suggesting that it may not be necessary to fully repeat earlier ICESat studies to determine the impact of the G-C offset on ice-sheet mass balance estimates.

  8. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA's ICESat-2 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April

    2011-01-01

    The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.

  9. The Multiple Altimeter Beam Experimental Lidar (MABEL), an Airborne Simulator for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Markus, Thorsten; Scott, V. Stanley; Neumann, Thomas

    2012-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission is currently under development by NASA. The primary mission of ICESat-2 will be to measure elevation changes of the Greenland and Antarctic ice sheets, document changes in sea ice thickness distribution, and derive important information about the current state of the global ice coverage. To make this important measurement, NASA is implementing a new type of satellite-based surface altimetry based on sensing of laser pulses transmitted to, and reflected from, the surface. Because the ICESat-2 measurement approach is different from that used for previous altimeter missions, a high-fidelity aircraft instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to demonstrate the measurement concept and provide verification of the ICESat-2 methodology. The MABEL instrument will serve as a prototype for the ICESat-2 mission and also provides a science tool for studies of land surface topography. This paper outlines the science objectives for the ICESat-2 mission, the current measurement concept for ICESat-2, and the instrument concept and preliminary data from MABEL.

  10. ICESat-2 / ATLAS Flight Science Receiver Algorithms

    NASA Astrophysics Data System (ADS)

    Mcgarry, J.; Carabajal, C. C.; Degnan, J. J.; Mallama, A.; Palm, S. P.; Ricklefs, R.; Saba, J. L.

    2013-12-01

    NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be the single instrument on the ICESat-2 spacecraft which is expected to launch in 2016 with a 3 year mission lifetime. The ICESat-2 orbital altitude will be 500 km with a 92 degree inclination and 91-day repeat tracks. ATLAS is a single photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz and a 6 spot pattern on the Earth's surface. Without some method of eliminating solar background noise in near real-time, the volume of ATLAS telemetry would far exceed the normal X-band downlink capability. To reduce the data volume to an acceptable level a set of onboard Receiver Algorithms has been developed. These Algorithms limit the daily data volume by distinguishing surface echoes from the background noise and allow the instrument to telemeter only a small vertical region about the signal. This is accomplished through the use of an onboard Digital Elevation Model (DEM), signal processing techniques, and an onboard relief map. Similar to what was flown on the ATLAS predecessor GLAS (Geoscience Laser Altimeter System) the DEM provides minimum and maximum heights for each 1 degree x 1 degree tile on the Earth. This information allows the onboard algorithm to limit its signal search to the region between minimum and maximum heights (plus some margin for errors). The understanding that the surface echoes will tend to clump while noise will be randomly distributed led us to histogram the received event times. The selection of the signal locations is based on those histogram bins with statistically significant counts. Once the signal location has been established the onboard Digital Relief Map (DRM) is used to determine the vertical width of the telemetry band about the signal. The ATLAS Receiver Algorithms are nearing completion of the development phase and are currently being tested using a Monte Carlo Software Simulator that models the instrument, the orbit and the environment

  11. GPS-Based Precision Orbit Determination for a New Era of Altimeter Satellites: Jason-1 and ICESat

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, David D.; Lemoine, Frank G.; Zelensky, Nikita P.; Williams, Teresa A.

    2003-01-01

    Accurate positioning of the satellite center of mass is necessary in meeting an altimeter mission's science goals. The fundamental science observation is an altimetric derived topographic height. Errors in positioning the satellite's center of mass directly impact this fundamental observation. Therefore, orbit error is a critical Component in the error budget of altimeter satellites. With the launch of the Jason-1 radar altimeter (Dec. 2001) and the ICESat laser altimeter (Jan. 2003) a new era of satellite altimetry has begun. Both missions pose several challenges for precision orbit determination (POD). The Jason-1 radial orbit accuracy goal is 1 cm, while ICESat (600 km) at a much lower altitude than Jason-1 (1300 km), has a radial orbit accuracy requirement of less than 5 cm. Fortunately, Jason-1 and ICESat POD can rely on near continuous tracking data from the dual frequency codeless BlackJack GPS receiver and Satellite Laser Ranging. Analysis of current GPS-based solution performance indicates the l-cm radial orbit accuracy goal is being met for Jason-1, while radial orbit accuracy for ICESat is well below the 54x1 mission requirement. A brief overview of the GPS precision orbit determination methodology and results for both Jason-1 and ICESat are presented.

  12. The GLAS Algorithm Theoretical Basis Document for Precision Attitude Determination (PAD)

    NASA Technical Reports Server (NTRS)

    Bae, Sungkoo; Smith, Noah; Schutz, Bob E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) was the sole instrument for NASAs Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission. The primary purpose of the ICESat mission was to make ice sheet elevation measurements of the polar regions. Additional goals were to measure the global distribution of clouds and aerosols and to map sea ice, land topography and vegetation. ICESat was the benchmark Earth Observing System (EOS) mission to be used to determine the mass balance of the ice sheets, as well as for providing cloud property information, especially for stratospheric clouds common over polar areas.

  13. Mission design concepts for repeat groundtrack orbits and application to the ICESat mission

    NASA Astrophysics Data System (ADS)

    Pie, Nadege

    The primary objective of the NASA sponsored ICESat mission is to study the short and long term changes in the ice mass in the Greenland and Antarctica regions. The satellite was therefore placed into a frozen near-polar near-circular repeat groundtrack to ensure an adequate coverage of the polar regions while keeping the groundtrack periodic and reducing the variations in the orbital elements, and more specifically the semi-major axis of the ICESat orbit. After launch, a contingency plan had to be devised to compensate for a laser that dangerously compromised the lifetime of the ICESat mission. This new plan makes an intensive use of the ICESat subcycles, a characteristic of the repeat groundtrack orbits often over-looked. The subcycle of a repeat groundtrack orbit provide global coverage within a time shorter than the groundtrack repetition period. For a satellite with an off-nadir pointing capacity, the subcycles provide near-repeat tracks which represents added opportunity for altimetry measurement over a specific track. The ICESat subcycles were also used in a very innovative fashion to reposition the satellite within its repeat cycle via orbital maneuvers called phasing maneuver. The necessary theoretical framework is provided for the subcycle analysis and the implementation of phasing maneuvers for any future repeat orbit mission. In the perspective of performing cross-validation of missions like CryoSat using the ICESat off-nadir capacity, a study was conducted to determine the geolocations of crossovers between two different repeat groundtrack Keplerian orbits. The general analytical solution was applied to ICESat vs. several other repeat groundtrack orbit mission, including the future ICESat-II mission. ICESat's repeat groundtrack orbit was designed using a disturbing force model that includes only the Earth geopotential. Though the third body effect from the Sun and the Moon was neglected in the orbit design, it does in fact disrupt the repeatability

  14. Estimating Forest Canopy Heights and Aboveground Biomass with Simulated ICESat-2 Data

    NASA Astrophysics Data System (ADS)

    Malambo, L.; Narine, L.; Popescu, S. C.; Neuenschwander, A. L.; Sheridan, R.

    2016-12-01

    The Ice, Cloud and Land Elevation Satellite (ICESat) 2 is scheduled for launch in 2017 and one of its overall science objectives will be to measure vegetation heights, which can be used to estimate and monitor aboveground biomass (AGB) over large spatial scales. This study serves to develop a methodology for utilizing vegetation data collected by ICESat-2 that will be on a five-year mission from 2017, for mapping forest canopy heights and estimating aboveground forest biomass (AGB). The specific objectives are to, (1) simulate ICESat-2 photon-counting lidar (PCL) data, (2) utilize simulated PCL data to estimate forest canopy heights and propose a methodology for upscaling PCL height measurements to obtain spatially contiguous coverage and, (3) estimate and map AGB using simulated PCL data. The laser pulse from ICESat-2 will be divided into three pairs of beams spaced approximately 3 km apart, with footprints measuring approximately 14 m in diameter and with 70 cm along-track intervals. Using existing airborne lidar data (ALS) for Sam Houston National Forest (SHNF) and known ICESat-2 beam locations, footprints are generated along beam locations and PCL data are then simulated from discrete return lidar points within each footprint. By applying data processing algorithms, photons are classified into top of canopy points and ground surface elevation points to yield tree canopy height values within each ICESat-2 footprint. AGB is then estimated using simple linear regression that utilizes AGB from a biomass map generated with ALS data for SHNF and simulated PCL height metrics for 100 m segments along ICESat-2 tracks. Two approaches also investigated for upscaling AGB estimates to provide wall-to-wall coverage of AGB are (1) co-kriging and (2) Random Forest. Height and AGB maps, which are the outcomes of this study, will demonstrate how data acquired by ICESat-2 can be used to measure forest parameters and in extension, estimate forest carbon for climate change

  15. Precision and Deviation Comparison Between Icesat and Envisat in Typical Ice Gaining and Losing Regions of Antarctica

    NASA Astrophysics Data System (ADS)

    Du, W.; Chen, L.; Xie, H.; Hai, G.; Zhang, S.; Tong, X.

    2017-09-01

    This paper analyzes the precision and deviation of elevations acquired from Envisat and The Ice, Cloud and Land Elevation Satellite (ICESat) over typical ice gaining and losing regions, i.e. Lambert-Amery System (LAS) in east Antarctica, and Amundsen Sea Sector (ASS) in west Antarctica, during the same period from 2003 to 2008. We used GLA12 dataset of ICESat and Level 2 data of Envisat. Data preprocessing includes data filtering, projection transformation and track classification. Meanwhile, the slope correction is applied to Envisat data and saturation correction for ICESat data. Then the crossover analysis was used to obtain the crossing points of the ICESat tracks, Envisat tracks and ICESat-Envisat tracks separately. The two tracks we chose for cross-over analysis should be in the same campaign for ICESat (within 33 days) or the same cycle for Envisat (within 35 days).The standard deviation of a set of elevation residuals at time-coincident crossovers is calculated as the precision of each satellite while the mean value is calculated as the deviation of ICESat-Envisat. Generally, the ICESat laser altimeter gets a better precision than the Envisat radar altimeter. For Amundsen Sea Sector, the ICESat precision is found to vary from 8.9 cm to 17 cm and the Envisat precision varies from 0.81 m to 1.57 m. For LAS area, the ICESat precision is found to vary from 6.7 cm to 14.3 cm and the Envisat precision varies from 0.46 m to 0.81 m. Comparison result between Envisat and ICESat elevations shows a mean difference of 0.43 ±7.14 m for Amundsen Sea Sector and 0.53 ± 1.23 m over LAS.

  16. ICESat Lidar and Global Digital Elevation Models: Application to DESDynI

    NASA Technical Reports Server (NTRS)

    Carabajal, Claudia C.; Harding, David J.; Suchdeo, Vijay P.

    2010-01-01

    Geodetic control is extremely important in the production and quality control of topographic data sets, enabling elevation results to be referenced to an absolute vertical datum. Global topographic data with improved geodetic accuracy achieved using global Ground Control Point (GCP) databases enable more accurate characterization of land topography and its change related to solid Earth processes, natural hazards and climate change. The multiple-beam lidar instrument that will be part of the NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission will provide a comprehensive, global data set that can be used for geodetic control purposes. Here we illustrate that potential using data acquired by NASA's Ice, Cloud and land Elevation Satellite (ICEsat) that has acquired single-beam, globally distributed laser altimeter profiles (+/-86deg) since February of 2003 [1, 2]. The profiles provide a consistently referenced elevation data set with unprecedented accuracy and quantified measurement errors that can be used to generate GCPs with sub-decimeter vertical accuracy and better than 10 m horizontal accuracy. Like the planned capability for DESDynI, ICESat records a waveform that is the elevation distribution of energy reflected within the laser footprint from vegetation, where present, and the ground where illuminated through gaps in any vegetation cover [3]. The waveform enables assessment of Digital Elevation Models (DEMs) with respect to the highest, centroid, and lowest elevations observed by ICESat and in some cases with respect to the ground identified beneath vegetation cover. Using the ICESat altimetry data we are developing a comprehensive database of consistent, global, geodetic ground control that will enhance the quality of a variety of regional to global DEMs. Here we illustrate the accuracy assessment of the Shuttle Radar Topography Mission (SRTM) DEM produced for Australia, documenting spatially varying elevation biases of several meters

  17. Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, Thomas Allen; Walsh, Kaitlin M.; Markus, Thorsten

    2013-01-01

    The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05 degrees) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on approx. 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.

  18. Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, Thomas A.; Walsh, Kaitlin M.; Markus, Thorsten

    2014-01-01

    The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05?) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.

  19. Development Considerations for the ICESat-2 ATL18 Terrain and Canopy Global Gridded Product

    NASA Astrophysics Data System (ADS)

    Pitts, K. L.; Neuenschwander, A. L.

    2016-12-01

    The ICESat-2 mission, expected to launch in late 2017 or early 2018, will provide estimates of terrain and canopy heights along the satellite ground track which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to mapping the distribution of above ground vegetation structure. Shortly after launch of ICESat-2, the Global Ecosystem Dynamics Investigation (GEDI) mission will be placed on the International Space Station (ISS) and will also derive terrain and canopy heights using laser altimetry for latitudes covered by the ISS. NASA's GEDI mission is designed to capture forest structure in densely covered regions over a period of 12-18 months. This study will present the factors required to produce a global gridded product that fuses information from both ICESat-2 and GEDI. The gridded values from ICESat-2 will be calculated from the along-track geodetic measurements of the terrain and relative canopy heights (ATL08), but considerations must be made on how best to combine ICESat-2 terrain and canopy height estimates with GEDI terrain and canopy height estimates. In particular, factors such as phenology, spatial and temporal resolution, surface interpolation methods, and error propagation are presented.

  20. Methods for Combination of GRACE Gravimetry and ICESat Altimetry over Antarctica on Monthly Timescales

    NASA Astrophysics Data System (ADS)

    Hardy, R. A.; Nerem, R. S.; Wiese, D. N.

    2017-12-01

    Gravity and surface elevation change data altimetry provide different perspectives on mass variability in Antarctica. In anticipation of the concurrent operation of the successors of GRACE and ICESat, GRACE Follow-On and ICESat-2, we approach the problem of combining these data for enhanced spatial resolution and disaggregation of Antarctica's major mass transport processes. Using elevation changes gathered from over 500 million overlapping ICESat laser shot pairs between 2003 and 2009, we construct gridded models of Antarctic elevation change for each ICESat operational period. Comparing these elevation grids with temporally registered JPL RL05M mascon solutions, we exploit the relationship between surface mass flux and elevation change to inform estimates of effective surface density. These density estimates enable solutions for glacial isostatic adjustment and monthly estimates of surface mass change. These are used alongside spatial statistics from both the data and models of surface mass balance to produce enhanced estimates of Antarctic mass balance. We validate our solutions by modeling the effects of elastic loading and GIA from these solutions on the vertical motion of Antarctica's GNSS sites.

  1. A comparison and evaluation between ICESat/GLAS altimetry and mean sea level in Thailand

    NASA Astrophysics Data System (ADS)

    Naksen, Didsaphan; Yang, Dong Kai

    2015-10-01

    Surface elevation is one of the importance information for GIS. Usually surface elevation can acquired from many sources such as satellite imageries, aerial photograph, SAR data or LiDAR by photogrammetry, remote sensing methodology. However the most trust information describe the actual surface elevation is Leveling from terrestrial survey. Leveling is giving the highest accuracy but in the other hand is also long period process spending a lot of budget and resources, moreover the LiDAR technology is new era to measure surface elevation. ICESat/GLAS is spaceborne LiDAR platform, a scientific satellite lunched by NASA in 2003. The study area was located at the middle part of Thailand between 12. ° - 14° North and 98° -100° East Latitude and Longitude. The main idea is to compare and evaluate about elevation between ICESat/GLAS Altimetry and mean sea level of Thailand. Data are collected from various sources, including the ICESat/GLAS altimetry data product from NASA, mean sea level from Royal Thai Survey Department (RTSD). For methodology, is to transform ICESat GLA14 from TOPX/Poseidon-Jason ellipsoid to WGS84 ellipsoid. In addition, ICESat/GLAS altimetry that extracted form centroid of laser footprint and mean sea level were compared and evaluated by 1st Layer National Vertical Reference Network. The result is shown that generally the range of elevation between ICESat/GLAS and mean sea level is wildly from 0. 8 to 25 meters in study area.

  2. ICESat Calibration and Validation Experiments at White Sands, New Mexico, 2003-2010

    NASA Astrophysics Data System (ADS)

    Schutz, B. E.; Urban, T. J.

    2010-12-01

    The Center for Space Research (CSR) at the University of Texas at Austin has operated a primary site for ICESat cal/val activities near the White Sands Space Harbor (WSSH) area of the White Sands Missile Range, NM. This site was chosen for both geophysical (flat, reflective) and logistical (domestic, secure site) reasons. Before launch in 2003, a several-hundred-meter-scale grid comprised of hundreds of numbered PVC base-plates was installed at the chosen site to permanently mark the locations of various pieces of experiment hardware. In summary, CSR has supported four primary types of experiments at the cal/val site: (1) a permanent grid of laser retro-reflectors (corner cube reflectors) placed on top of poles of various known heights and collocated with 25 of the base plates, in use for the duration of the mission, (2) a set of computer-monitored position and timing detectors utilized for cal/val during the first three years of the project, (3) several camera-equipped aircraft flyovers of the area designed to capture images of the green and infrared footprints on the surface at the precise time of ICESat overflights, (4) elevation comparisons between the ICESat data and a high-resolution (1 m) DEM derived via small-footprint airborne lidar collections in 2003 and 2007. The experiments at WSSH were targeted by the ICESat spacecraft approximately four times per campaign, making this cal/val site one of the most sampled locations in the world. This presentation will chronicle the extensive collection of ICESat and experimental data collected at WSSH from 2003 to 2010.

  3. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and

  4. ICESat Contributions to Understanding Coastal Processes

    NASA Astrophysics Data System (ADS)

    Urban, T. J.; Schutz, B. E.; Neuenschwander, A. L.

    2006-12-01

    ICESat (Ice, Cloud, and land Elevation Satellite) has been obtaining global elevation measurements of the Earth since 2003. These data have shed new light in unprecedented detail over ice, land and ocean surfaces. In particular, coastal altimetry including transitions from land to water and back benefit from ICESat's small footprint (~70 m diameter), high resolution (40 Hz and 170 m spot separation), and high precision (3 cm over non-vegetated surfaces). ICESat data support a wide variety of interdisciplinary investigations incorporating other data such as GRACE, GPS, SRTM, InSAR, Landsat, radar altimetry (TOPEX/Jason/Envisat), airborne LIDAR, and tide gauges. This paper provides an introduction to the potential capabilities of using ICESat coastal data in cooperative efforts. Several examples of coastal topography and change detection are shown, including the Texas-Louisiana Gulf Coast and the Mississippi Delta.

  5. The fiber optic system for the advanced topographic laser altimeter system instrument (ATLAS)

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Thomes, W. Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-09-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  6. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.

    PubMed

    Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-08-28

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  7. The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  8. New Measurements of Aerosol Vertical Structure from Space Using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Ginoux, Paul; Colarco, Peter; Chin, Mian; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,

  9. New Measurements of Aerosol Vertical Structure from Space using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, E. J.; Spinhime, J.; Palm, S.; Hlavka, D.; Hart, W.; Ginoux, P.; Chin, M.; Colarco, P.

    2004-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth,s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GLAS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output.

  10. Evaluation of Aster Gdem v3 Using Icesat Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Boy, J.-P.

    2016-06-01

    We have used a set of Ground Control Points (GCPs) derived from altimetry measurements from the Ice, Cloud and land Elevation Satellite (ICESat) to evaluate the quality of the 30 m posting ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Global Digital Elevation Model (GDEM) V3 elevation products produced by NASA/METI for Greenland and Antarctica. These data represent the highest quality globally distributed altimetry measurements that can be used for geodetic ground control, selected by applying rigorous editing criteria, useful at high latitudes, where other topographic control is scarce. Even if large outliers still remain in all ASTER GDEM V3 data for both, Greenland and Antarctica, they are significantly reduced when editing ASTER by number of scenes (N≥5) included in the elevation processing. For 667,354 GCPs in Greenland, differences show a mean of 13.74 m, a median of -6.37 m, with an RMSE of 109.65 m. For Antarctica, 6,976,703 GCPs show a mean of 0.41 m, with a median of -4.66 m, and a 54.85 m RMSE, displaying smaller means, similar medians, and less scatter than GDEM V2. Mean and median differences between ASTER and ICESat are lower than 10 m, and RMSEs lower than 10 m for Greenland, and 20 m for Antarctica when only 9 to 31 scenes are included.

  11. Shuttle Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Garvin, James B.

    1999-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment that has flown twice; first on STS-72 in January 1996 and then on STS-85 in August 1997. Both missions produced successful laser altimetry and surface lidar data products from approximately 80 hours per mission of SLA data operations. A total of four Shuttle missions are planned for the SLA series. This paper documents SLA mission results and explains SLA pathfinder accomplishments at the mid-point in this series of Hitchhiker missions. The overall objective of the SLA mission series is the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for NASA operational space-based laser remote sensing devices. Future laser altimeter sensors will utilize systems and approaches being tested with SLA, including the Multi-Beam Laser Altimeter (MBLA) and the Geoscience Laser Altimeter System (GLAS). MBLA is the land and vegetation laser sensor for the NASA Earth System Sciences Pathfinder Vegetation Canopy Lidar (VCL) Mission, and GLAS is the Earth Observing System facility instrument on the Ice, Cloud, and Land Elevation Satellite (ICESat). The Mars Orbiting Laser Altimeter, now well into a multi-year mapping mission at the red planet, is also directly benefiting from SLA data analysis methods, just as SLA benefited from MOLA spare parts and instrument technology experience [5] during SLA construction in the early 1990s.

  12. Sumatra-Andaman Megathrust Earthquake Slip: Insights From Mechanical Modeling of ICESat Surface Deformation Measurements

    NASA Astrophysics Data System (ADS)

    Harding, D. J.; Miuller, J. R.

    2005-12-01

    Modeling the kinematics of the 2004 Great Sumatra-Andaman earthquake is limited in the northern two-thirds of the rupture zone by a scarcity of near-rupture geodetic deformation measurements. Precisely repeated Ice, Cloud, and Land Elevation Satellite (ICESat) profiles across the Andaman and Nicobar Islands provide a means to more fully document the spatial pattern of surface vertical displacements and thus better constrain geomechanical modeling of the slip distribution. ICESat profiles that total ~45 km in length cross Car Nicobar, Kamorta, and Katchall in the Nicobar chain. Within the Andamans, the coverage includes ~350 km on North, Central, and South Andaman Islands along two NNE and NNW-trending profiles that provide elevations on both the east and west coasts of the island chain. Two profiles totaling ~80 km in length cross South Sentinel Island, and one profile ~10 km long crosses North Sentinel Island. With an average laser footprint spacing of 175 m, the total coverage provides over 2700 georeferenced surface elevations measurements for each operations period. Laser backscatter waveforms recorded for each footprint enable detection of forest canopy top and underlying ground elevations with decimeter vertical precision. Surface elevation change is determined from elevation profiles, acquired before and after the earthquake, that are repeated with a cross-track separation of less than 100 m by precision pointing of the ICESat spacecraft. Apparent elevation changes associated with cross-track offsets are corrected according to local slopes calculated from multiple post-earthquake repeated profiles. The surface deformation measurements recorded by ICESat are generally consistent with the spatial distribution of uplift predicted by a preliminary slip distribution model. To predict co-seismic surface deformation, we apply a slip distribution, derived from the released energy distribution computed by Ishii et al. (2005), as the displacement discontinuity

  13. ICESat Observations of Arctic Sea Ice: A First Look

    NASA Technical Reports Server (NTRS)

    Kwok, Ron; Zwally, H. Jay; Yi, Dong-Hui

    2004-01-01

    Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice free-board along the altimeter tracks. This step is necessitated by the large uncertainties in the time-varying sea surface topography compared to that required for accurate determination of free-board. Unknown snow depth introduces the largest uncertainty in the conversion of free-board to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint.

  14. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    NASA Astrophysics Data System (ADS)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  15. Geoscience Laser Ranging System design and performance predictions

    NASA Technical Reports Server (NTRS)

    Anderson, Kent L.

    1991-01-01

    The Geoscience Laser System (GLRS) will be a high-precision distance-measuring instrument planned for deployment on the EOS-B platform. Its primary objectives are to perform ranging measurements to ground targets to monitor crustal deformation and tectonic plate motions, and nadir-looking altimetry to determine ice sheet thicknesses, surface topography, and vertical profiles of clouds and aerosols. The system uses a mode-locked, 3-color Nd:YAG laser source, a Microchannel Plate-PMT for absolute time-of-flight (TOF) measurement (at 532 nm), a streak camera for TOF 2-color dispersion measurement (532 nm and 355 nm), and a Si avalanche photodiode for altimeter waveform detection (1064 nm). The performance goals are to make ranging measurements to ground targets with about 1 cm accuracy, and altimetry height measurements over ice with 10 cm accuracy. This paper presents an overview of the design concept developed during a phase B study. System engineering issues and trade studies are discussed, with particular attention to error budgets and performance predictions.

  16. Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including

  17. Testing Land-Vegetation retrieval algorithms for the ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.

    2017-12-01

    The upcoming spaceborne satellite, the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), will provide topography and canopy profiles at the global scale using photon counting LiDAR. To prepare for the mission launch, the aim of this research is to develop a framework for retrieving ground and canopy height in different forest types and noise levels using two ICESat-2 testbed sensor data: MABEL (Multiple Altimeter Beam Experimental Lidar) data and simulated ICESat-2 data. The first step of the framework is to reduce as many noise photons as possible through grid statistical methods and cluster analysis. Subsequently, we employed the overlapping moving windows and estimated quantile heights in each window to characterize the possible ground and canopy top using the filtered photons. Both MABEL and simulated ICESat-2 data generated satisfactory results with reasonable accuracy, while the results of simulated ICESat-2 data were better than that of MABEL data with smaller root mean square errors (RMSEs). For example, the RMSEs of canopy top identification in various vegetation using simulated ICESat-2 data were less than 3.78 m comparing to 6.48 m for the MABE data. It is anticipated that the methodology will advance data processing of the ICESat-2 mission and expand potential applications of ICESat-2 data once available such as mapping vegetation canopy heights.

  18. The Geoscience Laser Altimetry/Ranging System (GLARS)

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Degnan, J. J.; Bufton, J. L.; Garvin, J. B.; Abshire, J. B.

    1986-01-01

    The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system.

  19. Preparing for ICESat-2: Simulated Geolocated Photon Data for Cryospheric Data Products

    NASA Astrophysics Data System (ADS)

    Harbeck, K.; Neumann, T.; Lee, J.; Hancock, D.; Brenner, A. C.; Markus, T.

    2017-12-01

    ICESat-2 will carry NASA's next-generation laser altimeter, ATLAS (Advanced Topographic Laser Altimeter System), which is designed to measure changes in ice sheet height, sea ice freeboard, and vegetation canopy height. There is a critical need for data that simulate what certain ICESat-2 science data products will "look like" post-launch in order to aid the data product development process. There are several sources for simulated photon-counting lidar data, including data from NASA's MABEL (Multiple Altimeter Beam Experimental Lidar) instrument, and M-ATLAS (MABEL data that has been scaled geometrically and radiometrically to be more similar to that expected from ATLAS). From these sources, we are able to develop simulated granules of the geolocated photon cloud product; also referred to as ATL03. These simulated ATL03 granules can be further processed into the upper-level data products that report ice sheet height, sea ice freeboard, and vegetation canopy height. For ice sheet height (ATL06) and sea ice height (ATL07) simulations, both MABEL and M-ATLAS data products are used. M-ATLAS data use ATLAS engineering design cases for signal and background noise rates over certain surface types, and also provides large vertical windows of data for more accurate calculations of atmospheric background rates. MABEL data give a more accurate representation of background noise rates over areas of water (i.e., melt ponds, crevasses or sea ice leads) versus land or solid ice. Through a variety of data manipulation procedures, we provide a product that mimics the appearance and parameter characterization of ATL03 data granules. There are three primary goals for generating this simulated ATL03 dataset: (1) allowing end users to become familiar with using the large photon cloud datasets that will be the primary science data product from ICESat-2, (2) the process ensures that ATL03 data can flow seamlessly through upper-level science data product algorithms, and (3) the process

  20. Antarctic Sea-Ice Freeboard and Estimated Thickness from NASA's ICESat and IceBridge Observations

    NASA Technical Reports Server (NTRS)

    Yi, Donghui; Kurtz, Nathan; Harbeck, Jeremy; Manizade, Serdar; Hofton, Michelle; Cornejo, Helen G.; Zwally, H. Jay; Robbins, John

    2016-01-01

    ICESat completed 18 observational campaigns during its lifetime from 2003 to 2009. Data from all of the 18 campaign periods are used in this study. Most of the operational periods were between 34 and 38 days long. Because of laser failure and orbit transition from 8-day to 91-day orbit, there were four periods lasting 57, 16, 23, and 12 days. IceBridge data from 2009, 2010, and 2011 are used in this study. Since 2009, there are 19 Airborne Topographic Mapper (ATM) campaigns, and eight Land, Vegetation, and Ice Sensor (LVIS) campaigns over the Antarctic sea ice. Freeboard heights are derived from ICESat, ATM and LVIS elevation and waveform data. With nominal densities of snow, water, and sea ice, combined with snow depth data from AMSR-E/AMSR2 passive microwave observation over the southern ocean, sea-ice thickness is derived from the freeboard. Combined with AMSR-E/AMSR2 ice concentration, sea-ice area and volume are also calculated. During the 2003-2009 period, sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of the growth and decay of the Antarctic pack ice. We found no significant trend of thickness or area for the Antarctic sea ice during the ICESat period. IceBridge sea ice freeboard and thickness data from 2009 to 2011 over the Weddell Sea and Amundsen and Bellingshausen Seas are compared with the ICESat results.

  1. Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data

    NASA Astrophysics Data System (ADS)

    Huang, Huabing; Liu, Caixia; Wang, Xiaoyi; Biging, Gregory S.; Chen, Yanlei; Yang, Jun; Gong, Peng

    2017-07-01

    Vegetation height is an important parameter for biomass assessment and vegetation classification. However, vegetation height data over large areas are difficult to obtain. The existing vegetation height data derived from the Ice, Cloud and land Elevation Satellite (ICESat) data only include laser footprints in relatively flat forest regions (<5°). Thus, a large portion of ICESat data over sloping areas has not been used. In this study, we used a new slope correction method to improve the accuracy of estimates of vegetation heights for regions where slopes fall between 5° and 15°. The new method enabled us to use more than 20% additional laser data compared with the existing vegetation height data which only uses ICESat data in relatively flat areas (slope < 5°) in China. With the vegetation height data extracted from ICESat footprints and ancillary data including Moderate Resolution Imaging Spectroradiometer (MODIS) derived data (canopy cover, reflectances and leaf area index), climate data, and topographic data, we developed a wall to wall vegetation height map of China using the Random Forest algorithm. We used the data from 416 field measurements to validate the new vegetation height product. The coefficient of determination (R2) and RMSE of the new vegetation height product were 0.89 and 4.73 m respectively. The accuracy of the product is significantly better than that of the two existing global forest height products produced by Lefsky (2010) and Simard et al. (2011), when compared with the data from 227 field measurements in our study area. The new vegetation height data demonstrated clear distinctions among forest, shrub and grassland, which is promising for improving the classification of vegetation and above-ground forest biomass assessment in China.

  2. Merging IceSAT GLAS and Terra MODIS Data in Order to Derive Forest Type Specific Tree Heights in the Central Siberian Boreal Forest

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, Guoqing; Kimes, Daniel; Kovacs, Katalin; Kharuk, Viatscheslav

    2006-01-01

    Mapping of boreal forest's type, biomass, and other structural parameters are critical for understanding of the boreal forest's significance in the carbon cycle, its response to and impact on global climate change. We believe the nature of the forest structure information available from MISR and GLAS can be used to help identify forest type, age class, and estimate above ground biomass levels beyond that now possible with MODIS alone. The ground measurements will be used to develop relationships between remote sensing observables and forest characteristics and provide new information for understanding forest changes with respect to environmental change. Lidar is a laser altimeter that determines the distance from the instrument to the physical surface by measuring the time elapsed between the pulse emission and the reflected return. Other studies have shown that the returned signal may identify multiple returns originating from trees, building and other objects and permits the calculation of their height. Studies using field data have shown that lidar data can provide estimates of structural parameters such as biomass, stand volume and leaf area index and allows remarkable differentiation between primary and secondary forest. NASA's IceSAT Geoscience Laser Altimeter System (GLAS) was launched in January 2003 and collected data during February and September of that year. This study used data acquired over our study sites in central Siberia to examine the GLAS signal as a source of forest height and other structural characteristics. The purpose of our Siberia project is to improve forest cover maps and produce above-ground biomass maps of the boreal forest in Northern Eurasia from MODIS by incorporating structural information inherent in the Terra MISR and ICESAT Geoscience Laser Altimeter System (GLAS) instruments. A number of forest cover classifications exist for the boreal forest. We believe the limiting factor in these products is the lack of structural

  3. Prospects of the ICESat-2 Laser Altimetry Mission for Savanna Ecosystem Structural Studies Based on Airborne Simulation Data

    NASA Technical Reports Server (NTRS)

    Gwenzi, David; Lefsky, Michael A.; Suchdeo, Vijay P.; Harding, David J.

    2016-01-01

    The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in an oak savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA's Goddard Space Flight Center. ATLAS-like data was generated using the MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we chose to use data from the near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an automated algorithm to identify cut off points where the cumulative density of photons from the highest elevation indicates the presence of the canopy top and likewise where such cumulative density from the lowest elevation indicates the mean terrain elevation. MABEL derived height metrics were moderately correlated to discrete return lidar (DRL) derived height metrics r(sub 2) and RMSE values ranging from 0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest correlations with DRL indices r(sub 2) ranging from 0.5 to 0.64 and RMSE from 3.6 m to 4.6 m). Simulations also indicated that the expected number of signal photons from ATLAS will be substantially lower, a situation that reduces canopy height estimation precision especially in areas of low density vegetation cover. On the basis of the

  4. Estimation of Greenland's Ice Sheet Mass Balance Using ICESat and GRACE Data

    NASA Astrophysics Data System (ADS)

    Slobbe, D.; Ditmar, P.; Lindenbergh, R.

    2007-12-01

    Data of the GRACE gravity mission and the ICESat laser altimetry mission are used to create two independent estimates of Greenland's ice sheet mass balance over the full measurement period. For ICESat data, a processing strategy is developed using the elevation differences of geometrically overlapping footprints of both crossing and repeated tracks. The dataset is cleaned using quality flags defined by the GLAS science team. The cleaned dataset reveals some strong, spatially correlated signals that are shown to be related to physical phenomena. Different processing strategies are used to convert the observed temporal height differences to mass changes for 6 different drainage systems, further divided into a region above and below 2000 meter elevation. The results are compared with other altimetry based mass balance estimates. In general, the obtained results confirm trends discovered by others, but we also show that the choice of processing strategy strongly influences our results, especially for the areas below 2000 meter. Furthermore, GRACE based monthly variations of the Earth's gravity field as processed by CNES, CSR, GFZ and DEOS are used to estimate the mass balance change for North and South Greenland. It is shown that our results are comparable with recently published GRACE estimates (mascon solutions). On the other hand, the estimates based on GRACE data are only partly confirmed by the ICESat estimates. Possible explanations for the obvious differences will be discussed.

  5. Estimating Antarctica land topography from GRACE gravity and ICESat altimetry data

    NASA Astrophysics Data System (ADS)

    Wu, I.; Chao, B. F.; Chen, Y.

    2009-12-01

    We propose a new method combining GRACE (Gravity Recovery and Climate Experiment) gravity and ICESat (Ice, Cloud, and land Elevation Satellite) altimetry data to estimate the land topography for Antarctica. Antarctica is the fifth-largest continent in the world and about 98% of Antarctica is covered by ice, where in-situ measurements are difficult. Some experimental airborne radar and ground-based radar data have revealed very limited land topography beneath heavy ice sheet. To estimate the land topography for the full coverage of Antarctica, we combine GRACE data that indicate the mass distribution, with data of ICESat laser altimetry that provide high-resolution mapping of ice topography. Our approach is actually based on some geological constraints: assuming uniform densities of the land and ice considering the Airy-type isostasy. In the beginning we construct an initial model for the ice thickness and land topography based on the BEDMAP ice thickness and ICESat data. Thereafter we forward compute the model’s gravity field and compare with the GRACE observed data. Our initial model undergoes the adjustments to improve the fit between modeled results and the observed data. Final examination is done by comparing our results with previous but sparse observations of ice thickness to reconfirm the reliability of our results. As the gravitational inversion problem is non-unique, our estimating result is just one of all possibilities constrained by available data in optimal way.

  6. The geoscience laser altimeter system (GLAS)

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Smith, James C.; Schutz, Bob E.

    1998-01-01

    GLAS is a space-based lidar designed for NASA's Earth Science Enterprise's Icesat Mission. It is being designed to precisely measure the heights of the polar ice sheets, to determine the height profiles of the Earth's land topography, and to profile the vertical structure of clouds and aerosols on a global scale. GLAS will fly on a small dedicated spacecraft in a polar orbit at 598 km altitude with an inclination of 94 degrees. The instrument is being developed to launch in July 2001 and to operate continuously at 40 Hz for a minimum of 3 years with a goal of 5 years.

  7. Art as a key tool for engaging the public with the ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Markus, T.

    2017-12-01

    NASA's Ice, Cloud, and land Elevation Satellite (ICESat-2), to be launched in the Fall of 2018, will measure the height of Earth from space using lasers, collecting the most precise and detailed account yet of our planet's elevation. The mission will allow scientists to investigate how global warming is changing the planet's icy polar regions and to take stock of Earth's vegetation. ICESat-2's emphasis on polar ice, as well as its unique measurement approach, has provided an intriguing and accessible focus for the mission's education and outreach programs. Sea ice and land ice are areas have experienced significant change in recent years. It is key to communicate what is happening, why we are measuring these areas and their importance to our global climate. Art is a powerful tool to inspire, engage, and provide an emotional connection to these remote areas. This paper will detail ICESat-2's art/science collaborations, including results from a unique collaboration with art and design school the Savannah College of Art Design (SCAD). Additional programs will be discussed including a multimedia live music program to engage on an emotional level, to communicate the importance of the polar regions to our global climate, and to inspire to take action.

  8. Estimates of forest canopy height and aboveground biomass using ICESat.

    Treesearch

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom Espirito-Santo; Maria O. Hunter; Raimundo de Oliveira Jr.

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  9. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument

    PubMed Central

    Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2017-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite – 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the “cryosphere” (as well as terrain) to provide data for assessing the earth’s global climate changes. Where ICESat’s instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here. PMID

  10. Snow Grain Size Retrieval over the Polar Ice Sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) Observations

    PubMed Central

    Yang, Yuekui; Marshak, Alexander; Han, Mei; Palm, Stephen P.; Harding, David J.

    2018-01-01

    Snow grain size is an important parameter for cryosphere studies. As a proof of concept, this paper presents an approach to retrieve this parameter over Greenland, East and West Antarctica ice sheets from surface reflectances observed with the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) at 1064 nm. Spaceborne lidar observations overcome many of the disadvantages in passive remote sensing, including difficulties in cloud screening and low sun angle limitations; hence tend to provide more accurate and stable retrievals. Results from the GLAS L2A campaign, which began on 25 September and lasted until 19 November, 2003, show that the mode of the grain size distribution over Greenland is the largest (~300 μm) among the three, West Antarctica is the second (~220 μm) and East Antarctica is the smallest (~190 μm). Snow grain sizes are larger over the coastal regions compared to inland the ice sheets. These results are consistent with previous studies. Applying the broadband snow surface albedo parameterization scheme developed by Garder and Sharp (2010) to the retrieved snow grain size, ice sheet surface albedo is also derived. In the future, more accurate retrievals can be achieved with multiple wavelengths lidar observations. PMID:29636591

  11. Snow Grain Size Retrieval over the Polar Ice Sheets with the Ice, Cloud and Land Elevation Satellite (ICESat) Observations

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Han, Mei; Palm, Stephen P.; Harding, David J.

    2016-01-01

    Snow grain size is an important parameter for cryosphere studies. As a proof of concept, this paper presents an approach to retrieve this parameter over Greenland, East and West Antarctica ice sheets from surface reflectances observed with the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) at 1064 nanometers. Spaceborne lidar observations overcome many of the disadvantages in passive remote sensing, including difficulties in cloud screening and low sun angle limitations; hence tend to provide more accurate and stable retrievals. Results from the GLAS L2A campaign, which began on 25 September and lasted until 19 November, 2003, show that the mode of the grain size distribution over Greenland is the largest (approximately 300 microns) among the three, West Antarctica is the second (220 microns) and East Antarctica is the smallest (190 microns). Snow grain sizes are larger over the coastal regions compared to inland the ice sheets. These results are consistent with previous studies. Applying the broadband snow surface albedo parameterization scheme developed by Garder and Sharp (2010) to the retrieved snow grain size, ice sheet surface albedo is also derived. In the future, more accurate retrievals can be achieved with multiple wavelengths lidar observations.

  12. Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument

    NASA Astrophysics Data System (ADS)

    Evans, T.

    The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.

  13. Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) using ICESat geodetic control

    USGS Publications Warehouse

    Carabajal, C.C.; Harding, D.J.; Boy, J.-P.; Danielson, Jeffrey J.; Gesch, D.B.; Suchdeo, V.P.

    2011-01-01

    Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (?? 86?? latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete ???50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m. ?? 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Using ICESat Geodetic Control

    NASA Technical Reports Server (NTRS)

    Carabajal, Claudia C.; Harding, David J.; Boy, Jean-Paul; Danielson, Jeffrey J.; Gesch, Dean B.; Suchdeo, Vijay P.

    2011-01-01

    Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m.

  15. Regional applicability of forest height and aboveground biomass models for the Geoscience Laser Altimeter System

    Treesearch

    Dirk Pflugmacher; Warren B. Cohen; Robert E. Kennedy; Michael. Lefsky

    2008-01-01

    Accurate estimates of forest aboveground biomass are needed to reduce uncertainties in global and regional terrestrial carbon fluxes. In this study we investigated the utility of the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite for large-scale biomass inventories. GLAS is the first spaceborne lidar sensor that will...

  16. Moving toward a Biomass Map of Boreal Eurasia based on ICESat GLAS, ASTER GDEM, and field measurements: Amount, Spatial distribution, and Statistical Uncertainties

    NASA Astrophysics Data System (ADS)

    Neigh, C. S.; Nelson, R. F.; Sun, G.; Ranson, J.; Montesano, P. M.; Margolis, H. A.

    2011-12-01

    The Eurasian boreal forest is the largest continuous forest in the world and contains a vast quantity of carbon stock that is currently vulnerable to loss from climate change. We develop and present an approach to map the spatial distribution of above ground biomass throughout this region. Our method combines satellite measurements from the Geoscience Laser Altimeter System (GLAS) that is carried on the Ice, Cloud and land Elevation Satellite ( ICESat), with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), and biomass field measurements collected from surveys from a number of different biomes throughout Boreal Eurasia. A slope model derived from the GDEM with quality control flags, and Moderate-resolution Imaging Spectroradiometer (MODIS) water mask was implemented to exclude poor quality GLAS shots and stratify measurements by MODIS International Geosphere Biosphere (IGBP) and World Wildlife Fund (WWF) ecozones. We derive equations from regional field measurements to estimate the spatial distribution of above ground biomass by land cover type within biome and present a map with uncertainties and limitations of this approach which can be used as a baseline for future studies.

  17. Laser Altimetry Sampling Strategies over Sea Ice

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Markus, Thorsten; Kwok, Ron; Connor, Laurence

    2011-01-01

    With the conclusion of the science phase of the Ice, Cloud and land Elevation Satellite (ICESat) mission in late 2009, and the planned launch of ICESat-2 in late 2015, NASA has recently established the IceBridge program to provide continuity between missions. A major goal of IceBridge is to obtain a sea-ice thickness time series via airborne surveys over the Arctic and Southern Oceans. Typically two laser altimeters, the Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS), are utilized during IceBridge flights. Using laser altimetry simulations of conventional analogue systems such as ICESat, LVIS and ATM, with the multi-beam system proposed for ICESat-2, we investigate differences in measurements gathered at varying spatial resolutions and the impact on sea-ice freeboard. We assess the ability of each system to reproduce the elevation distributions of two seaice models and discuss potential biases in lead detection and sea-surface elevation, arising from variable footprint size and spacing. The conventional systems accurately reproduce mean freeboard over 25km length scales, while ICESat-2 offers considerable improvements over its predecessor ICESat. In particular, its dense along-track sampling of the surface will allow flexibility in the algorithmic approaches taken to optimize the signal-to-noise ratio for accurate and precise freeboard retrieval.

  18. The GLAS Science Algorithm Software (GSAS) Detailed Design Document Version 6. Volume 16

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) is the primary instrument for the ICESat (Ice, Cloud and Land Elevation Satellite) laser altimetry mission. ICESat was the benchmark Earth Observing System (EOS) mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics. From 2003 to 2009, the ICESat mission provided multi-year elevation data needed to determine ice sheet mass balance as well as cloud property information, especially for stratospheric clouds common over polar areas. It also provided topography and vegetation data around the globe, in addition to the polar-specific coverage over the Greenland and Antarctic ice sheets.This document describes the detailed design of GLAS Science Algorithm Software (GSAS). The GSAS is used to create the ICESat GLAS standard data products. The National Snow and Ice Data Center (NSDIC) distribute these products. The document contains descriptions, flow charts, data flow diagrams, and structure charts for each major component of the GSAS. The purpose of this document is to present the detailed design of the GSAS. It is intended as a reference source to assist the maintenance programmer in making changes that fix or enhance the documented software.

  19. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  20. The GLAS Algorithm Theoretical Basis Document for Precision Orbit Determination (POD)

    NASA Technical Reports Server (NTRS)

    Rim, Hyung Jin; Yoon, S. P.; Schultz, Bob E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) was the sole instrument for NASA's Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission. The primary purpose of the ICESat mission was to make ice sheet elevation measurements of the polar regions. Additional goals were to measure the global distribution of clouds and aerosols and to map sea ice, land topography and vegetation. ICESat was the benchmark Earth Observing System (EOS) mission to be used to determine the mass balance of the ice sheets, as well as for providing cloud property information, especially for stratospheric clouds common over polar areas. The GLAS instrument operated from 2003 to 2009 and provided multi-year elevation data needed to determine changes in sea ice freeboard, land topography and vegetation around the globe, in addition to elevation changes of the Greenland and Antarctic ice sheets. This document describes the Precision Orbit Determination (POD) algorithm for the ICESat mission. The problem of determining an accurate ephemeris for an orbiting satellite involves estimating the position and velocity of the satellite from a sequence of observations. The ICESatGLAS elevation measurements must be very accurately geolocated, combining precise orbit information with precision pointing information. The ICESat mission POD requirement states that the position of the instrument should be determined with an accuracy of 5 and 20 cm (1-s) in radial and horizontal components, respectively, to meet the science requirements for determining elevation change.

  1. ICESat-2, its retrievals of ice sheet elevation change and sea ice freeboard, and potential synergies with CryoSat-2

    NASA Astrophysics Data System (ADS)

    Neumann, Thomas; Markus, Thorsten; Smith, Benjamin; Kwok, Ron

    2017-04-01

    Understanding the causes and magnitudes of changes in the cryosphere remains a priority for Earth science research. Over the past decade, NASA's and ESA's Earth-observing satellites have documented a decrease in both the areal extent and thickness of Arctic sea ice, and an ongoing loss of grounded ice from the Greenland and Antarctic ice sheets. Understanding the pace and mechanisms of these changes requires long-term observations of ice-sheet mass, sea-ice thickness, and sea-ice extent. NASA's ICESat-2 mission is the next-generation space-borne laser altimeter mission and will use three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. The spot size is 17 m with an along-track sampling interval of 0.7 m. This measurement concept is a result of the lessons learned from the original ICESat mission. The multi-beam approach is critical for removing the effects of ice sheet surface slope from the elevation change measurements of most interest. For sea ice, the dense spatial sampling (eliminating along-track gaps) and the small footprint size are especially useful for sea surface height measurements in the, often narrow, leads needed for sea ice freeboard and ice thickness retrievals. Currently, algorithms are being developed to calculate ice sheet elevation change and sea ice freeboard from ICESat-2 data. The orbits of ICESat-2 and Cryosat-2 both converge at 88 degrees of latitude, though the orbit altitude differences result in different ground track patterns between the two missions. This presentation will present an overview of algorithm approaches and how ICESat-2 and Cryosat-2 data may augment each other.

  2. Interpretation of ICESat-Derived Elevation Change on the Malaspina-Seward Glacier

    NASA Astrophysics Data System (ADS)

    Sauber, J.; Ramage, J.; Kopczynski, S.; Muskett, R.

    2005-12-01

    In this study, we report and interpret ICESat-derived short-term variability in surface elevation in the snow accumulation region of the Seward-Malaspina Glacier, one of the largest glacier systems in southern Alaska. The Seward-Malaspina complex consists of an extensive icefield, the upper Seward Glacier, and a narrower lower outlet glacier (lower Seward) through which ice drains to the enormous piedmont of the Malaspina Glacier. Although the upper Seward is just 80 km north of the Gulf of Alaska it has an environment more continental than maritime because of shielding afforded by high mountains to the south [Sharp, 1951]. The Malaspina Glacier by contrast lies completely within the moist maritime environment of the southern Alaska coast. In an earlier study of the Malaspina Glacier, we reported elevation differences between ICESat Laser 1-3 observations (February 2003 - November 2004) and a Shuttle Radar Topography Mission (SRTM)-derived DEM from February 2000 [Sauber et al., 2005]. Elevation decreases of up to 20-25 m over a 3-4 year time period were observed across the folded loop moraine on the southern portion of the piedmont lobe of the Malaspina Glacier. For the western portion of the Upper Seward we will estimate elevation change over a comparable time period by using an X-band InSAR-derived DEM from Intermap Tech. (Sept. 2000) and ICESat-derived elevations. Early field measurements (1945-1949) from the Upper Seward Glacier indicated an average annual net surplus of 75 cm water equivalent in the Upper Seward basin [Sharp, 1951]. However, even over this short time period, Sharp [1951] found large interannual variability in net accumulation of 41-168 cm. To further constrain and understand surface changes, we examined ICESat-derived elevations from a variable set of repeated ICESat upper Seward profiles made between Feb. 2003 and May 2005. Additionally we compared the elevation change profiles to snowmelt timing and ablation season length derived from the

  3. The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. Volume 8

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Quinn, Katherine J.

    2012-01-01

    NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.

  4. A sample design for globally consistent biomass estimation using lidar data from the Geoscience Laser Altimeter System (GLAS)

    Treesearch

    Sean P. Healey; Paul L. Patterson; Sassan S. Saatchi; Michael A. Lefsky; Andrew J. Lister; Elizabeth A. Freeman

    2012-01-01

    Lidar height data collected by the Geosciences Laser Altimeter System (GLAS) from 2002 to 2008 has the potential to form the basis of a globally consistent sample-based inventory of forest biomass. GLAS lidar return data were collected globally in spatially discrete full waveform "shots," which have been shown to be strongly correlated with aboveground forest...

  5. Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data

    NASA Astrophysics Data System (ADS)

    Slobbe, D. C.; Ditmar, P.; Lindenbergh, R. C.

    2009-01-01

    The focus of this paper is on the quantification of ongoing mass and volume changes over the Greenland ice sheet. For that purpose, we used elevation changes derived from the Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry mission and monthly variations of the Earth's gravity field as observed by the Gravity Recovery and Climate Experiment (GRACE) mission. Based on a stand alone processing scheme of ICESat data, the most probable estimate of the mass change rate from 2003 February to 2007 April equals -139 +/- 68 Gtonyr-1. Here, we used a density of 600+/-300 kgm-3 to convert the estimated elevation change rate in the region above 2000m into a mass change rate. For the region below 2000m, we used a density of 900+/-300 kgm-3. Based on GRACE gravity models from half 2002 to half 2007 as processed by CNES, CSR, DEOS and GFZ, the estimated mass change rate for the whole of Greenland ranges between -128 and -218Gtonyr-1. Most GRACE solutions show much stronger mass losses as obtained with ICESat, which might be related to a local undersampling of the mass loss by ICESat and uncertainties in the used snow/ice densities. To solve the problem of uncertainties in the snow and ice densities, two independent joint inversion concepts are proposed to profit from both GRACE and ICESat observations simultaneously. The first concept, developed to reduce the uncertainty of the mass change rate, estimates this rate in combination with an effective snow/ice density. However, it turns out that the uncertainties are not reduced, which is probably caused by the unrealistic assumption that the effective density is constant in space and time. The second concept is designed to convert GRACE and ICESat data into two totally new products: variations of ice volume and variations of snow volume separately. Such an approach is expected to lead to new insights in ongoing mass change processes over the Greenland ice sheet. Our results show for different GRACE solutions a snow

  6. Forest Aboveground Biomass Mapping and Canopy Cover Estimation from Simulated ICESat-2 Data

    NASA Astrophysics Data System (ADS)

    Narine, L.; Popescu, S. C.; Neuenschwander, A. L.

    2017-12-01

    The assessment of forest aboveground biomass (AGB) can contribute to reducing uncertainties associated with the amount and distribution of terrestrial carbon. With a planned launch date of July 2018, the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) will provide data which will offer the possibility of mapping AGB at global scales. In this study, we develop approaches for utilizing vegetation data that will be delivered in ICESat-2's land-vegetation along track product (ATL08). The specific objectives are to: (1) simulate ICESat-2 photon-counting lidar (PCL) data using airborne lidar data, (2) utilize simulated PCL data to estimate forest canopy cover and AGB and, (3) upscale AGB predictions to create a wall-to-wall AGB map at 30-m spatial resolution. Using existing airborne lidar data for Sam Houston National Forest (SHNF) located in southeastern Texas and known ICESat-2 beam locations, PCL data are simulated from discrete return lidar points. We use multiple linear regression models to relate simulated PCL metrics for 100 m segments along the ICESat-2 ground tracks to AGB from a biomass map developed using airborne lidar data and canopy cover calculated from the same. Random Forest is then used to create an AGB map from predicted estimates and explanatory data consisting of spectral metrics derived from Landsat TM imagery and land cover data from the National Land Cover Database (NLCD). Findings from this study will demonstrate how data that will be acquired by ICESat-2 can be used to estimate forest structure and characterize the spatial distribution of AGB.

  7. The GLAS Standard Data Products Specification-Data Dictionary, Version 1.0. Volume 15

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) is the primary instrument for the ICESat (Ice, Cloud and Land Elevation Satellite) laser altimetry mission. ICESat was the benchmark Earth Observing System (EOS) mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics. From 2003 to 2009, the ICESat mission provided multi-year elevation data needed to determine ice sheet mass balance as well as cloud property information, especially for stratospheric clouds common over polar areas. It also provided topography and vegetation data around the globe, in addition to the polar-specific coverage over the Greenland and Antarctic ice sheets.This document contains the data dictionary for the GLAS standard data products. It details the parameters present on GLAS standard data products. Each parameter is defined with a short name, a long name, units on product, type of variable, a long description and products that contain it. The term standard data products refers to those EOS instrument data that are routinely generated for public distribution. These products are distributed by the National Snow and Ice Data Center (NSDIC).

  8. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations

    NASA Astrophysics Data System (ADS)

    Yue, Linwei; Shen, Huanfeng; Zhang, Liangpei; Zheng, Xianwei; Zhang, Fan; Yuan, Qiangqiang

    2017-01-01

    The absence of a high-quality seamless global digital elevation model (DEM) dataset has been a challenge for the Earth-related research fields. Recently, the 1-arc-second Shuttle Radar Topography Mission (SRTM-1) data have been released globally, covering over 80% of the Earth's land surface (60°N-56°S). However, voids and anomalies still exist in some tiles, which has prevented the SRTM-1 dataset from being directly used without further processing. In this paper, we propose a method to generate a seamless DEM dataset blending SRTM-1, ASTER GDEM v2, and ICESat laser altimetry data. The ASTER GDEM v2 data are used as the elevation source for the SRTM void filling. To get a reliable filling source, ICESat GLAS points are incorporated to enhance the accuracy of the ASTER data within the void regions, using an artificial neural network (ANN) model. After correction, the voids in the SRTM-1 data are filled with the corrected ASTER GDEM values. The triangular irregular network based delta surface fill (DSF) method is then employed to eliminate the vertical bias between them. Finally, an adaptive outlier filter is applied to all the data tiles. The final result is a seamless global DEM dataset. ICESat points collected from 2003 to 2009 were used to validate the effectiveness of the proposed method, and to assess the vertical accuracy of the global DEM products in China. Furthermore, channel networks in the Yangtze River Basin were also extracted for the data assessment.

  9. KSC-02pd2052

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - The Ice, Cloud, and Land Elevation Satellite, or ICESat, undergoes final processing before launch. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. ICESat is scheduled for launch, with the Cosmic Hot Interstellar Plasma Spectrometer or CHIPSat, on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  10. KSC-02pd2050

    NASA Image and Video Library

    2002-10-24

    KENNEDY SPACE CENTER, FLA. - The Ice, Cloud, and Land Elevation Satellite, or ICESat, logo features an artist's rendition of the satellite orbiting the Earth. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. ICESat is scheduled for launch, with the Cosmic Hot Interstellar Plasma Spectrometer or CHIPSat, on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  11. KSC-02pd2051

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - The Ice, Cloud, and Land Elevation Satellite, or ICESat, undergoes final processing before launch. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. ICESat is scheduled for launch, with the Cosmic Hot Interstellar Plasma Spectrometer or CHIPSat, on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  12. Three Year Aging of Prototype Flight Laser at 10 Khz and 1 Ns Pulses with External Frequency Doubler for the Icesat-2 Mission

    NASA Technical Reports Server (NTRS)

    Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; hide

    2016-01-01

    We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 J/cm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 J/cm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.

  13. Three-year aging of prototype flight laser at 10 kHz and 1 ns pulses with external frequency doubler for ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; Culpepper, Charles F.; Strickler, Kathy

    2016-05-01

    We present the results of a three-year operational-aging test of a specially designed prototype flight laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and externally frequency-doubled. Fibertek designed and built the q-switched, 1064nm laser and this laser was in a sealed container of dry air pressurized to 1.3 atm. The external frequency doubler was in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm separately. The external frequency doubler consisted of a Lithium triborate, LiB3O5, non-critically phase-matched crystal. After some 1064 nm light was diverted for diagnostics, 13.7W of fundamental power was available to pump the doubling crystal. Between 8.5W and 10W of 532nm power was generated, depending on the level of stress and degradation. The test consisted of two stages, the first at 0.3 J/cm2 for almost 1 year, corresponding to expected operational conditions, and the second at 0.93 J/cm2 for the remainder of the experiment, corresponding to accelerated optical stress testing. We observed no degradation at the first stress-level and linear degradation at the second stress-level. The linear degradation was linked to doubler crystal output surface changes from laser-assisted contamination. We estimate the expected lifetime for the flight laser at 532 nm using fluence as the stress parameter. This work was done for NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.

  14. ICESat-2 bathymetry: an empirical feasibility assessment using MABEL

    NASA Astrophysics Data System (ADS)

    Forfinski, Nick; Parrish, Christopher

    2016-10-01

    The feasibility of deriving bathymetry from data acquired with ATLAS, the photon-counting lidar on NASA's upcoming ICESat-2 satellite, is assessed empirically by examining data from NASA's airborne ICESat-2 simulator, MABEL. The primary objectives of ICESat-2 will be to measure ice-sheet elevations, sea-ice thickness, and global biomass. However, the 6-beam, green-wavelength photon-counting lidar, combined with the 91-day repeat period and near-polar orbit, may provide unique opportunities to measure coastal bathymetry in remote, poorly-mapped areas of the globe. The study focuses on high-probability bottom returns in Keweenaw Bay, Lake Superior, acquired during the "Transit to KPMD" MABEL mission in August, 2012 at an AGL altitude of 20,000 m. Water-surface and bottom returns were identified and manually classified using MABEL Viewer, an in-house prototype data-explorer web application. Water-surface returns were observed in 12 green channels, and bottom returns were observed in 10 channels. Comparing each channel's mean water-surface elevation to a regional NOAA Nowcast water-level estimate revealed channel-specific elevation biases that were corrected for in our bathymetry estimation procedure. Additionally, a first-order refraction correction was applied to each bottom return. Agreement between the refraction-corrected depth profile and NOAA data acquired two years earlier by Fugro LADS with the LADS Mk II airborne system indicates that MABEL reliably detected bathymetry in depths up to 8 m, with an RMS difference of 0.7 m. In addition to feeding coastal bathymetry models, MABEL (and potentially ICESat-2 ATLAS) has the potential to seed algorithms for bathymetry retrieval from passive, multispectral satellite imagery by providing reference depths.

  15. Detecting elevation changes over mountain glaciers in Tibet and the Himalayas by TOPEX/Poseidon and Jason-2 radar altimeters: comparison with ICESat results

    NASA Astrophysics Data System (ADS)

    Hwang, C.; Cheng, Y. S.

    2015-12-01

    In most cases, mountain glaciers are narrow and situated over steep slopes. A laser-based altimeter such as ICESat has a small illuminated footprint at about 70 m, thus allowing to measure precise elevations over narrow mountain glaciers. However, unlike a typical radar altimeter mission, ICESat does not have repeat ground tracks (except in its early phase) to measure heights of a specific point at different times. Within a time span, usually a reference digital elevation model is used to compute height anomalies at ICESat's measurement sites over a designated area, which are then averaged to produce a representative height change (anomaly) in this area. In contrast, a radar altimeter such as TOPEX/Poseidon (TP; its follow-on missions are Jason-1 and -2), repeats its ground tracks at an even time interval (10 days for TP), but has a larger illuminated footprint than ICESat's (about 1 km or larger), making it difficult to measure precise elevations over narrow mountain glaciers. Here we demonstrate the potential of TP and Jason-2 radar altimeters in detecting elevation changes over mountain glaciers that are sufficiently wide and smooth. We select several glacier-covered sites in Mt. Tanggula (Tibet) and the Himalayas to experiment with methods that can generate precise height measurements from the two altimeters. Over the same spot, ranging errors due to slope, volume scattering and radar penetration can be common between repeat cycles, and may be reduced by differencing successive heights. We retracked radar waveforms and classify the surfaces using the SRTM-derived elevations. The effects of terrain and slope are reduced by fitting a surface to the height measurements from repeat cycles. We remove outlier heights and apply a smoothing filter to form final time series of glacier elevation change at the selected sites, which are compared with the results from ICESat (note the different mission times). Because TP and Jason-2 measure height changes every 10 days

  16. Three Three-Year Aging of Prototype Flight Laser at 10 kHz and 1 ns Pulses With External Frequency Doubler for ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; hide

    2016-01-01

    We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 Jcm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 Jcm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASAs Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.

  17. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass

    USGS Publications Warehouse

    Glenn, Nancy F.; Neuenschwander, Amy; Vierling, Lee A.; Spaete, Lucas; Li, Aihua; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan

    2016-01-01

    To estimate the potential synergies of OLI and ICESat-2 we used simulated ICESat-2 photon data to predict vegetation structure. In a shrubland environment with a vegetation mean height of 1 m and mean vegetation cover of 33%, vegetation photons are able to explain nearly 50% of the variance in vegetation height. These results, and those from a comparison site, suggest that a lower detection threshold of ICESat-2 may be in the range of 30% canopy cover and roughly 1 m height in comparable dryland environments and these detection thresholds could be used to combine future ICESat-2 photon data with OLI spectral data for improved vegetation structure. Overall, the synergistic use of Landsat 8 and ICESat-2 may improve estimates of above-ground biomass and carbon storage in drylands that meet these minimum thresholds, increasing our ability to monitor drylands for fuel loading and the potential to sequester carbon.

  18. Detection and Analysis of Complex Patterns of Ice Dynamics in Antarctica from ICESat Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, Gregory Scott

    There remains much uncertainty in estimating the amount of Antarctic ice mass change, its dynamic component, and its spatial and temporal patterns. This work remedies the limitations of previous studies by generating the first detailed reconstruction of total and dynamic ice thickness and mass changes across Antarctica, from ICESat satellite altimetry observations in 2003-2009 using the Surface Elevation Reconstruction and Change Detection (SERAC) method. Ice sheet thickness changes are calculated with quantified error estimates for each time when ICESat flew over a ground-track crossover region, at approximately 110,000 locations across the Antarctic Ice Sheet. The time series are partitioned into changes due to surficial processes and ice dynamics. The new results markedly improve the spatial and temporal resolution of surface elevation, volume, and mass change rates for the AIS, and can be sampled at annual temporal resolutions. The results indicate a complex spatiotemporal pattern of dynamic mass loss in Antarctica, especially along individual outlet glaciers, and allow for the quantification of the annual contribution of Antarctic ice loss to sea level rise. Over 5000 individual locations exhibit either strong dynamic ice thickness change patterns, accounting for approximately 500 unique spatial clusters that identify regions likely influenced by subglacial hydrology. The spatial distribution and temporal behavior of these regions reveal the complexity and short-time scale variability in the subglacial hydrological system. From the 500 unique spatial clusters, over 370 represent newly identified, and not previously published, potential subglacial water bodies indicating an active subglacial hydrological system over a much larger region than previously observed. These numerous new observations of dynamic changes provide more than simply a larger set of data. Examination of both regional and local scale dynamic change patterns across Antarctica shows newly

  19. Assessment of Cloud Screening with Apparent Surface Reflectance in Support of the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Palm, Stephen P.; Wang, Zhuosen; Schaaf, Crystal

    2011-01-01

    The separation of cloud and clear scenes is usually one of the first steps in satellite data analysis. Before deriving a geophysical product, almost every satellite mission requires a cloud mask to label a scene as either clear or cloudy through a cloud detection procedure. For clear scenes, products such as surface properties may be retrieved; for cloudy scenes, scientist can focus on studying the cloud properties. Hence the quality of cloud detection directly affects the quality of most satellite operational and research products. This is certainly true for the Ice, Cloud, and land Elevation Satellite-2 (lCESat-2), which is the successor to the ICESat-l. As a top priority mission, ICESat-2 will continue to provide measurements of ice sheets and sea ice elevation on a global scale. Studies have shown that clouds can significantly affect the accuracy of the retrieved results. For example, some of the photons (a photon is a basic unit of light) in the laser beam will be scattered by cloud particles on its way. So instead of traveling in a straight line, these photons are scattered sideways and have traveled a longer path. This will result in biases in ice sheet elevation measurements. Hence cloud screening must be done and be done accurately before the retrievals.

  20. NASA'S Earth Science Enterprise Embraces Active Laser Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.; Paules, Granville E., III

    1999-01-01

    Several objectives of NASA's Earth Science Enterprise are accomplished, and in some cases, uniquely enabled by the advantages of earth-orbiting active lidar (laser radar) sensors. With lidar, the photons that provide the excitation illumination for the desired measurement are both controlled and well known. The controlled characteristics include when and where the illumination occurs, the wavelength, bandwidth, pulse length, and polarization. These advantages translate into high signal levels, excellent spatial resolution, and independence from time of day and the sun's position. As the lidar technology has rapidly matured, ESE scientific endeavors have begun to use lidar sensors over the last 10 years. Several more lidar sensors are approved for future flight. The applications include both altimetry (rangefinding) and profiling. Hybrid missions, such as the approved Geoscience Laser Altimeter System (GLAS) sensor to fly on the ICESat mission, will do both at the same time. Profiling applications encompass aerosol, cloud, wind, and molecular concentration measurements. Recent selection of the PICASSO Earth System Science Pathfinder mission and the complementary CLOUDSAT radar-based mission, both flying in formation with the EOS PM mission, will fully exploit the capabilities of multiple sensor systems to accomplish critical science needs requiring such profiling. To round out the briefing a review of past and planned ESE missions will be presented.

  1. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    NASA Astrophysics Data System (ADS)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2017-07-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  2. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    NASA Astrophysics Data System (ADS)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2018-06-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  3. Elevation Change of Drangajokull, Iceland, from Cloud-Cleared ICESat Repeat Profiles and GPS Ground-Survey Data

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Sigurdsson, Oddur; Williams, Richard, Jr.; Hall, Dorothy K.

    2009-01-01

    Located on the Vestfirdir Northwest Fjords), DrangaJokull is the northernmost ice map in Iceland. Currently, the ice cap exceeds 900 m in elevation and covered an area of approx.l46 sq km in August 2004. It was about 204 sq km in area during 1913-1914 and so has lost mass during the 20th century. Drangajokull's size and accessibility for GPS surveys as well as the availability of repeat satellite altimetry profiles since late 2003 make it a good subject for change-detection analysis. The ice cap was surveyed by four GPS-equipped snowmobiles on 19-20 April 2005 and has been profiled in two places by Ice, Cloud. and land Elevation Satellite (ICESat) 'repeat tracks,' fifteen times from late to early 2009. In addition, traditional mass-balance measurements have been taken seasonally at a number of locations across the ice cap and they show positive net mass balances in 2004/2005 through 2006/2007. Mean elevation differences between the temporally-closest ICESat profiles and the GPS-derived digital-elevation model (DEM)(ICESat - DEM) are about 1.1 m but have standard deviations of 3 to 4 m. Differencing all ICESat repeats from the DEM shows that the overall elevation difference trend since 2003 is negative with losses of as much as 1.5 m/a from same season to same season (and similar elevation) data subsets. However, the mass balance assessments by traditional stake re-measurement methods suggest that the elevation changes where ICESat tracks 0046 and 0307 cross Drangajokull are not representative of the whole ice cap. Specifically, the area has experienced positive mass balance years during the time frame when ICESat data indicates substantial losses. This analysis suggests that ICESat-derived elevations may be used for multi-year change detection relative to other data but suggests that large uncertainties remain. These uncertainties may be due to geolocation uncertainty on steep slopes and continuing cloud cover that limits temporal and spatial coverage across the

  4. ICESat (GLAS) Science Processing Software Document Series. Volume 2; Science Data Management Plan; 4.0

    NASA Technical Reports Server (NTRS)

    Jester, Peggy L.; Hancock, David W., III

    1999-01-01

    This document provides the Data Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Facility (ISF) Software. This Plan addresses the identification, authority, and description of the interface nodes associated with the GLAS Standard Data Products and the GLAS Ancillary Data.

  5. A Geoscience Workforce Model for Non-Geoscience and Non-Traditional STEM Students

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2016-12-01

    The Summit on the Future of Geoscience Undergraduate Education has recently identified key professional skills, competencies, and conceptual understanding necessary in the development of undergraduate geoscience students (American Geosciences Institute, 2015). Through a comprehensive study involving a diverse range of the geoscience academic and employer community, the following professional scientist skills were rated highly important: 1) critical thinking/problem solving skills; 2) effective communication; 3) ability to access and integrate information; 4) strong quantitative skills; and 5) ability to work in interdisciplinary/cross cultural teams. Based on the findings of the study above, the New York City College of Technology (City Tech) has created a one-year intensive training program that focusses on the development of technical and non-technical geoscience skills for non-geoscience, non-traditional STEM students. Although City Tech does not offer geoscience degrees, the primary goal of the program is to create an unconventional pathway for under-represented minority STEM students to enter, participate, and compete in the geoscience workforce. The selected cohort of STEM students engage in year-round activities that include a geoscience course, enrichment training workshops, networking sessions, leadership development, research experiences, and summer internships at federal, local, and private geoscience facilities. These carefully designed programmatic elements provide both the geoscience knowledge and the non-technical professional skills that are essential for the geoscience workforce. Moreover, by executing this alternate, robust geoscience workforce model that attracts and prepares underrepresented minorities for geoscience careers, this unique pathway opens another corridor that helps to ameliorate the dire plight of the geoscience workforce shortage. This project is supported by NSF IUSE GEOPATH Grant # 1540721.

  6. Report from the School of Experience: Lessons-Learned on NASA's EOS/ICESat Mission

    NASA Technical Reports Server (NTRS)

    Anselm, William

    2003-01-01

    Abstract-NASA s Earth Observing System EOS) Ice, Cloud, and Land Elevation Satellite (ICESat) mission was one of the first missions under Goddard Space Flight Center s (then-) new Rapid Spacecraft Development Office. This paper explores the lessons-learned under the ICESat successful implementation and launch, focusing on four areas: Procurement., Management, Technical, and Launch and Early Operations. Each of these areas is explored in a practical perspective of communication, the viewpoint of the players, and the interactions among the organizations. Conclusions and lessons-learned are summarized in the final section.

  7. The GLAS Science Algorithm Software (GSAS) User's Guide Version 7

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) is the primary instrument for the ICESat (Ice, Cloud and Land Elevation Satellite) laser altimetry mission. ICESat was the benchmark Earth Observing System (EOS) mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics. From 2003 to 2009, the ICESat mission provided multi-year elevation data needed to determine ice sheet mass balance as well as cloud property information, especially for stratospheric clouds common over polar areas. It also provided topography and vegetation data around the globe, in addition to the polar-specific coverage over the Greenland and Antarctic ice sheets.This document is the final version of the GLAS Science Algorithm Software Users Guide document. It contains the instructions to install the GLAS Science Algorithm Software (GSAS) in the production environment that was used to create the standard data products. It also describes the usage of each GSAS program in that environment with their required inputs and outputs. Included are a number of utility programs that are used to create ancillary data files that are used in the processing but generally are not distributed to the public as data products. Of importance is the values for the large number of constants used in the GSAS algorithm during processing are provided in an appendix.

  8. Geoscience Academic Provenance: A Theoretical Framework for Understanding Geoscience Students' Pathways

    NASA Astrophysics Data System (ADS)

    Houlton, H.; Keane, C.

    2012-04-01

    The demand and employment opportunities for geoscientists in the United States are projected to increase 23% from 2008 to 2018 (Gonzales, 2011). Despite this trend, there is a disconnect between undergraduate geoscience students and their desire to pursue geoscience careers. A theoretical framework was developed to understand the reasons why students decide to major in the geosciences and map those decisions to their career aspirations (Houlton, 2010). A modified critical incident study was conducted to develop the pathway model from 17, one-hour long semi-structured interviews of undergraduate geoscience majors from two Midwest Research Institutions (Houlton, 2010). Geoscience Academic Provenance maps geoscience students' initial interests, entry points into the major, critical incidents and future career goals as a pathway, which elucidates the relationships between each of these components. Analyses identified three geoscience student population groups that followed distinct pathways: Natives, Immigrants and Refugees. A follow up study was conducted in 2011 to ascertain whether these students continued on their predicted pathways, and if not, reasons for attrition. Geoscientists can use this framework as a guide to inform future recruitment and retention initiatives and target these geoscience population groups for specific employment sectors.

  9. Fusion of GEDI, ICESAT2 & NISAR data for above ground biomass mapping in Sonoma County, California

    NASA Astrophysics Data System (ADS)

    Duncanson, L.; Simard, M.; Thomas, N. M.; Neuenschwander, A. L.; Hancock, S.; Armston, J.; Dubayah, R.; Hofton, M. A.; Huang, W.; Tang, H.; Marselis, S.; Fatoyinbo, T.

    2017-12-01

    Several upcoming NASA missions will collect data sensitive to forest structure (GEDI, ICESAT-2 & NISAR). The LiDAR and SAR data collected by these missions will be used in coming years to map forest aboveground biomass at various resolutions. This research focuses on developing and testing multi-sensor data fusion approaches in advance of these missions. Here, we present the first case study of a CMS-16 grant with results from Sonoma County, California. We simulate lidar and SAR datasets from GEDI, ICESAT-2 and NISAR using airborne discrete return lidar and UAVSAR data, respectively. GEDI and ICESAT-2 signals are simulated from high point density discrete return lidar that was acquired over the entire county in 2014 through a previous CMS project (Dubayah & Hurtt, CMS-13). NISAR is simulated from L-band UAVSAR data collected in 2014. These simulations are empirically related to 300 field plots of aboveground biomass as well as a 30m biomass map produced from the 2014 airborne lidar data. We model biomass independently for each simulated mission dataset and then test two fusion methods for County-wide mapping 1) a pixel based approach and 2) an object oriented approach. In the pixel-based approach, GEDI and ICESAT-2 biomass models are calibrated over field plots and applied in orbital simulations for a 2-year period of the GEDI and ICESAT-2 missions. These simulated samples are then used to calibrate UAVSAR data to produce a 0.25 ha map. In the object oriented approach, the GEDI and ICESAT-2 data are identical to the pixel-based approach, but calibrate image objects of similar L-band backscatter rather than uniform pixels. The results of this research demonstrate the estimated ability for each of these three missions to independently map biomass in a temperate, high biomass system, as well as the potential improvement expected through combining mission datasets.

  10. The Role of Geoscience Departments in Preparing Future Geoscience Professionals

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; MacDonald, H.; Manduca, C. A.

    2010-12-01

    The Building Strong Geoscience Departments program ran a workshop on the role of geoscience departments in preparing geoscience professionals. Workshop participants asserted that geoscience departments can help support the flow of geoscience graduates into the geoscience workforce by providing students with information about jobs and careers; providing experiences that develop career-oriented knowledge, attitudes and skills; encouraging exploration of options; and supporting students in their job searches. In conjunction with the workshop, we have developed a set of online resources designed to help geoscience departments support their students’ professional development in these ways. The first step toward sending geoscience graduates into related professions is making students aware of the wide variety of career options available in the geosciences and of geoscience employment trends. Successful means of achieving this include making presentations about careers (including job prospects and potential salaries) in geoscience classes, providing examples of practical applications of course content, talking to advisees about their career plans, inviting alumni to present at departmental seminars, participating in institutional career fairs, and publishing a departmental newsletter with information about alumni careers. Courses throughout the curriculum as well as co-curricular experiences can provide experiences that develop skills, knowledge, and attitudes that will be useful for a range of careers. Successful strategies include having an advisory board that offers suggestions about key knowledge and skills to incorporate into the curriculum, providing opportunities for students to do geoscience research, developing internship programs, incorporating professional skills training (such as HazMat training) into the curriculum, and teaching professionalism. Students may also benefit from involvement with the campus career center or from conducting informational

  11. Pre-Launch Performance Testing of the ICESat-2/ATLAS Flight Science Receiver Algorithms

    NASA Astrophysics Data System (ADS)

    Mcgarry, J.; Carabajal, C. C.; Saba, J. L.; Rackley, A.; Holland, S.

    2016-12-01

    NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be the single instrument on the ICESat-2 spacecraft which is expected to launch in late 2017 with a 3 year mission lifetime. The ICESat-2 planned orbital altitude is 500 km with a 92 degree inclination and 91-day repeat tracks. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz and a 6 spot pattern on the Earth's surface. Without some method of reducing the received data, the volume of ATLAS telemetry would far exceed the normal X-band downlink capability. To reduce the data volume to an acceptable level a set of onboard Receiver Algorithms has been developed. These Algorithms limit the daily data volume by distinguishing surface echoes from the background noise and allowing the instrument to telemeter data from only a small vertical region about the signal. This is accomplished through the use of an onboard Digital Elevation Model (DEM), signal processing techniques, and onboard relief and surface reference maps. The ATLAS Receiver Algorithms have been completed and have been verified during Instrument testing in the spacecraft assembly area at the Goddard Space Flight Center in late 2015 and early 2016. Testing has been performed at ambient temperature with a pressure of one atmosphere as well as at the expected hot and cold temperatures in a vacuum. Results from testing to date show the Receiver Algorithms have the ability to handle a wide range of signal and noise levels with a very good sensitivity at relatively low signal to noise ratios. Testing with the ATLAS instrument and flight software shows very good agreement with previous Simulator testing and all of the requirements for ATLAS Receiver Algorithms were successfully verified during Run for the Record Testing in December 2015. This poster will describe the performance of the ATLAS Flight Science Receiver Algorithms during the Run for Record and Comprehensive Performance Testing performed

  12. Lidar Technology at the Goddard Laser and Electro-Optics Branch

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser and Electro-Optics Branch at Goddard Space flight Center was established about three years ago to provide a focused center of engineering support and technology development in these disciplines with an emphasis on spaced based instruments for Earth and Space Science. The Branch has approximately 15 engineers and technicians with backgrounds in physics, optics, and electrical engineering. Members of the Branch are currently supporting a number of space based lidar efforts as well as several technology efforts aimed at enabling future missions. The largest effort within the Branch is support of the Ice, Cloud, and land Elevation Satellite (ICESAT) carrying the Geoscience Laser Altimeter System (GLAS) instrument. The ICESAT/GLAS primary science objectives are: 1) To determine the mass balance of the polar ice sheets and their contributions to global sea level change; and 2) To obtain essential data for prediction of future changes in ice volume and sea-level. The secondary science objectives are: 1) To measure cloud heights and the vertical structure of clouds and aerosols in the atmosphere; 2) To map the topography of land surfaces; and 3) To measure roughness, reflectivity, vegetation heights, snow-cover, and sea-ice surface characteristics. Our efforts have concentrated on the GLAS receiver component development, the Laser Reference Sensor for the Stellar Reference System, the GLAS fiber optics subsystems, and the prelaunch calibration facilities. We will report on our efforts in the development of the space qualified interference filter [Allan], etalon filter, photon counting detectors, etalor/laser tracking system, and instrument fiber optics, as well as specification and selection of the star tracker and development of the calibration test bed. We are also engaged in development work on lidar sounders for chemical species. We are developing new lidar technology to enable a new class of miniature lidar instruments that are compatible with small

  13. Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009)

    PubMed Central

    Liu, Hongxing; Chen, Yaning; Shu, Song; Wu, Qiusheng; Wang, Shujie

    2017-01-01

    This study utilizes ICESat Release 33 GLA14 data to analyse water level variation of Xinjiang’s lakes and reservoirs from 2003 to 2009. By using Landsat images, lakes and reservoirs with area larger than 1 km2 are numerically delineated with a software tool. Based on ICESat observations, we analyse the characteristics of water level variation in different geographic environments, as well as investigate the reasons for the variation. Results indicate that climatic warming contributes to rising water levels in lakes in mountainous areas, especially for lakes that are recharged by snow and glacial melting. For lakes in oases, the water levels are affected jointly by human activity and climate change, while the water levels of reservoirs are mainly affected by human activity. Comparing the annual average rates of water levels, those of lakes are higher than those of reservoirs in oasis areas. The main reasons for the decreasing water levels in desert regions are the reduction of recharged runoff and high evaporation. By analysing the variation of water levels and water volume in different geologic environments, it is found that water level and volume increased in mountainous regions, and decreased in oasis regions and desert regions. Finding also demonstrate that decreasing volume is greater than increasing volume, which results in decreasing total volume of Xinjiang lakes and reservoirs. PMID:28873094

  14. Mississippi State University’s Geoscience Education and Geocognition Research Program in the Department of Geosciences

    NASA Astrophysics Data System (ADS)

    McNeal, K.; Clary, R. M.; Sherman-Morris, K.; Kirkland, B.; Gillham, D.; Moe-Hoffman, A.

    2009-12-01

    The Department of Geosciences at Mississippi State University offers both a MS in Geosciences and a PhD in Earth and Atmospheric Sciences, with the possibility of a concentration in geoscience education. The department offers broad research opportunities in the geoscience sub-disciplines of Geology, Meteorology, GIS, and Geography. Geoscience education research is one of the research themes emphasized in the department and focuses on geoscience learning in traditional, online, field-based, and informal educational environments. Approximately 20% of the faculty are actively conducting research in geoscience education and incorporate both qualitative and quantitative research approaches in areas including: the investigation of effective teaching strategies, the implementation and evaluation of geoscience teacher professional development programs and diversity enhancement programs, the study of the history and philosophy of science in geoscience teaching, the exploration of student cognition and understanding of complex and dynamic earth systems, and the investigation of using visualizations to enhance learning in the geosciences. The inception and continued support of an active geoscience education research program is derived from a variety of factors including: (1) the development of the on-line Teachers in Geosciences (TIG) Masters Degree Program which is the primary teaching appointment for the majority of the faculty conducting geoscience education research, (2) the securing of federal funds to support geoscience education research, (3) the publication of high-quality peer-reviewed research papers in both geoscience education and traditional research domains, (4) the active contribution of the geoscience education faculty in their traditional research domains, (5) a faculty that greatly values teaching and recognizes the research area of geoscience education as a sub-domain of the broader geoscience disciplines, (6) the involvement of university faculty, outside

  15. Surface-Height Determination of Crevassed Glaciers-Mathematical Principles of an Autoadaptive Density-Dimension Algorithm and Validation Using ICESat-2 Simulator (SIMPL) Data

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute C.; Trantow, Thomas M.; Harding, David; Dabney, Philip W.

    2017-01-01

    Glacial acceleration is a main source of uncertainty in sea-level-change assessment. Measurement of ice-surface heights with a spatial and temporal resolution that not only allows elevation-change calculation, but also captures ice-surface morphology and its changes is required to aid in investigations of the geophysical processes associated with glacial acceleration.The Advanced Topographic Laser Altimeter System aboard NASAs future ICESat-2 Mission (launch 2017) will implement multibeam micropulse photon-counting lidar altimetry aimed at measuring ice-surface heights at 0.7-m along-track spacing. The instrument is designed to resolve spatial and temporal variability of rapidly changing glaciers and ice sheets and the Arctic sea ice. The new technology requires the development of a new mathematical algorithm for the retrieval of height information.We introduce the density-dimension algorithm (DDA) that utilizes the radial basis function to calculate a weighted density as a form of data aggregation in the photon cloud and considers density an additional dimension as an aid in auto-adaptive threshold determination. The auto-adaptive capability of the algorithm is necessary to separate returns from noise and signal photons under changing environmental conditions. The algorithm is evaluated using data collected with an ICESat-2 simulator instrument, the Slope Imaging Multi-polarization Photon-counting Lidar, over the heavily crevassed Giesecke Braer in Northwestern Greenland in summer 2015. Results demonstrate that ICESat-2 may be expected to provide ice-surface height measurements over crevassed glaciers and other complex ice surfaces. The DDA is generally applicable for the analysis of airborne and spaceborne micropulse photon-counting lidar data over complex and simple surfaces.

  16. The GLAS Standard Data Products Specification--Level 2, Version 9. Volume 14

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) is the primary instrument for the ICESat (Ice, Cloud and Land Elevation Satellite) laser altimetry mission. ICESat was the benchmark Earth Observing System (EOS) mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics. From 2003 to 2009, the ICESat mission provided multi-year elevation data needed to determine ice sheet mass balance as well as cloud property information, especially for stratospheric clouds common over polar areas. It also provided topography and vegetation data around the globe, in addition to the polar-specific coverage over the Greenland and Antarctic ice sheets.This document defines the Level-2 GLAS standard data products. This document addresses the data flow, interfaces, record and data formats associated with the GLAS Level 2 standard data products. The term standard data products refers to those EOS instrument data that are routinely generated for public distribution. The National Snow and Ice Data Center (NSDIC) distribute these products. Each data product has a unique Product Identification code assigned by the Senior Project Scientist. The Level 2 Standard Data Products specifically include those derived geophysical data values (i.e., ice sheet elevation, cloud height, vegetation height, etc.). Additionally, the appropriate correction elements used to transform the Level 1A and Level 1B Data Products into Level 2 Data Products are included. The data are packaged with time tags, precision orbit location coordinates, and data quality and usage flags.

  17. The GLAS Standard Data Products Specification-Level 1, Version 9

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) is the primary instrument for the ICESat (Ice, Cloud and Land Elevation Satellite) laser altimetry mission. ICESat was the benchmark Earth Observing System (EOS) mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics. From 2003 to 2009, the ICESat mission provided multi-year elevation data needed to determine ice sheet mass balance as well as cloud property information, especially for stratospheric clouds common over polar areas. It also provided topography and vegetation data around the globe, in addition to the polar-specific coverage over the Greenland and Antarctic ice sheets.This document defines the Level-1 GLAS standard data products. This document addresses the data flow, interfaces, record and data formats associated with the GLAS Level 1 standard data products. GLAS Level 1 standard data products are composed of Level 1A and Level 1B data products. The term standard data products refers to those EOS instrument data that are routinely generated for public distribution. The National Snow and Ice Data Center (NSDIC) distribute these products. Each data product has a unique Product Identification code assigned by the Senior Project Scientist. GLAS Level 1A and Level 1B Data Products are composed from those Level 0 data that have been reformatted or transformed to corrected and calibrated data in physical units at the full instrument rate and resolution.

  18. ICESat (GLAS) Science Processing Software Document Series. Volume 1; Science Software Management Plan; 3.0

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III

    1999-01-01

    This document provides the Software Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Terminal (IST) Software. For the I-SIPS Software, the SDS will produce Level 0, Level 1, and Level 2 data products as well as the associated product quality assessments and descriptive information. For the IST Software, the SDS will accommodate the GLAS instrument support areas of engineering status, command, performance assessment, and instrument health status.

  19. Initial Validation and Results of Geoscience Laser Altimeter System Optical Properties Retrievals

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Hart, W. D.; Pal, S. P.; McGill, M.; Spinhirne, J. D.

    2004-01-01

    Verification of Geoscience Laser Altimeter System (GLAS) optical retrievals is . problematic in that passage over ground sites is both instantaneous and sparse plus space-borne passive sensors such as MODIS are too frequently out of sync with the GLAS position. In October 2003, the GLAS Validation Experiment was executed from NASA Dryden Research Center, California to greatly increase validation possibilities. The high-altitude NASA ER-2 aircraft and onboard instrumentation of Cloud Physics Lidar (CPL), MODIS Airborne Simulator (MAS), and/or MODIS/ASTER Airborne Simulator (MASTER) under-flew seven orbit tracks of GLAS for cirrus, smoke, and urban pollution optical properties inter-comparisons. These highly calibrated suite of instruments are the best data set yet to validate GLAS atmospheric parameters. In this presentation, we will focus on the inter-comparison with GLAS and CPL and draw preliminary conclusions about the accuracies of the GLAS 532nm retrievals of optical depth, extinction, backscatter cross section, and calculated extinction-to-backscatter ratio. Comparisons to an AERONET/MPL ground-based site at Monterey, California will be attempted. Examples of GLAS operational optical data products will be shown.

  20. Water Level Monitoring on Tibetan Lakes Based on Icesat and Envisat Data Series

    NASA Astrophysics Data System (ADS)

    Li, H. W.; Qiao, G.; Wu, Y. J.; Cao, Y. J.; Mi, H.

    2017-09-01

    Satellite altimetry technique is an effective method to monitor the water level of lakes in a wide range, especially in sparsely populated areas, such as the Tibet Plateau (TP). To provide high quality data for time-series change detection of lake water level, an automatic and efficient algorithm for lake water footprint (LWF) detection in a wide range is used. Based on ICESat GLA14 Release634 data and ENVISat GDR 1Hz data, water level of 167 lakes were obtained from ICESat data series, and water level of 120 lakes were obtained from ENVISat data series. Among them, 67 lakes contained two data series. Mean standard deviation of all lakes is 0.088 meters (ICESat), 0.339 meters (ENVISat). Combination of multi-source altimetry data is helpful for us to get longer and more dense periods cover water level, study the lake level changes, manage water resources and understand the impacts of climate change better. In addition, the standard deviation of LWF elevation used to calculate the water level were analyzed by month. Based on lake data set for the TP from the 1960s, 2005, and 2014 in Scientific Data, it is found that the water level changes in the TP have a strong spatial correlation with the area changes.

  1. The Geoscience Alliance--A National Network for Broadening Participation of Native Americans in the Geosciences

    NASA Astrophysics Data System (ADS)

    Dalbotten, D. M.; Berthelote, A. R.

    2014-12-01

    The Geoscience Alliance is a national alliance of individuals committed to broadening participation of Native Americans in the geosciences. Native Americans in this case include American Indians, Alaska Natives and people of Native Hawai'ian ancestry. Although they make up a large percentage of the resource managers in the country, they are underrepresented in degrees in the geosciences. The Geoscience Alliance (GA) members are faculty and staff from tribal colleges, universities, and research centers; native elders and community members; industry, agency, and corporate representatives; students (K12, undergraduate, and graduate); formal and informal educators; and other interested individuals. The goals of the Geoscience Alliance are to 1) create new collaborations in support of geoscience education for Native American students, 2) establish a new research agenda aimed at closing gaps in our knowledge on barriers and best practices related to Native American participation in the geosciences, 3) increase participation by Native Americans in setting the national research agenda on issues in the geosciences, and particularly those that impact Native lands, 4) provide a forum to communicate educational opportunities for Native American students in the geosciences, and 5) to understand and respect indigenous traditional knowledge. In this presentation, we look at the disparity between numbers of Native Americans involved in careers related to the geosciences and those who are receiving bachelors or graduate degrees in the geosciences. We address barriers towards degree completion in the geosciences, and look at innovative programs that are addressing those barriers.

  2. Geoscience on television: a review of science communication literature in the context of geosciences

    NASA Astrophysics Data System (ADS)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.

    2016-06-01

    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society.

  3. Space-Borne Laser Altimeter Geolocation Error Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fang, J.; Ai, Y.

    2018-05-01

    This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  4. New approaches to observation and modeling of fast-moving glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Trantow, T.; Markle, M. J.; Medley, G.; Markus, T.; Neumann, T.

    2016-12-01

    In this paper, we will give an overview of several new approaches to remote-sensing observations and analysis and to modeling of fast glacier flow. The approaches will be applied in case studies of different types of fast-moving glaciers: (1) The Bering-Bagley Glacier System, Alaska (a surge-type glacier system), (2) Jakobshavn Isbræ, Greenland (a tide-water terminating fjord glacier and outlet of the Greenland Inland Ice), and (3) Icelandic Ice Caps (manifestations of the interaction of volcanic and glaciologic processes). On the observational side, we will compare the capabilities of lidar and radar altimeters, including ICESat's Geoscience Laser Altimeter System (GLAS), CryoSat-2's Synthetic Aperture Interferometric Radar Altimeter (SIRAL) and the future ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS), especially regarding retrieval of surface heights over crevassed regions as typical of spatial and temporal acceleration. Properties that can be expected from ICESat-2 ATLAS data will be illustrated based on analyses of data from ICESat-2 simulator instruments: the Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) and the Multiple Altimeter Beam Experimental Lidar (MABEL). Information from altimeter data will be augmented by an automated surface classification based on image data, which includes satellite imagery such as LANDSAT and WorldView as well as airborne video imagery of ice surfaces. Numerical experiments using Elmer/Ice will be employed to link parameters derived in observations to physical processes during the surge of the Bering Bagley Glacier System. This allows identification of processes that can be explained in an existing framework and processes that may require new concepts for glacier evolution. Topics include zonation of surge progression in a complex glacier system and crevassing as an indication, storage of glacial water, influence of basal topography and the role of friction laws.

  5. Geoscience on television: a review of science communication literature in the context of geosciences

    NASA Astrophysics Data System (ADS)

    Hut, Rolf; Land-Zandstra, Anne; Smeets, Ionica; Stoof, Cathelijne

    2016-04-01

    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society. This work is currently under review for publication in Hydrology and Earth System Sciences (HESS)

  6. ICESat-derived lithospheric flexure as caused by an endorheic lake's expansion on the Tibetan Plateau and the comparison to modeled flexural responses

    NASA Astrophysics Data System (ADS)

    Madson, Austin; Sheng, Yongwei; Song, Chunqiao

    2017-10-01

    A substantial and rapid expansion beginning in the late 1990s of Siling Co, the largest endorheic lake on the central Tibetan Plateau (TP), has caused a measurable lithospheric deflection in the region adjacent to the lake. Current broad-scale measuring of this flexural response is mainly derived from InSAR processing techniques or time-consuming field campaigns. The rheological constraints of the lithosphere from the underlying lithospheric response to large lake loads in this region are not well understood. This paper highlights a more efficient spaceborne LiDAR remote sensing technique to measure the deflection in the vicinity of Siling Co and to investigate the mechanisms of the observed lithospheric response in order to garner a better understanding of the local rheology. A lake-adjacent deflection rate and Siling Co water load variations are calculated utilizing the Geoscience Laser Altimeter System (GLAS) onboard NASA's Ice, Cloud and land Elevation Satellite (ICESat) and the joint NASA/USGS Landsat series of Earth observing satellites. A downward deflection rate of ∼5.6 mm/yr for the first 4 km of lake-adjacent land is calculated from the GLAS instrument, and this response is compared to the flexural outputs from a spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth model in order to better understand the underlying mechanisms of the lithospheric response to the rapid increase of Siling Co loads. The modeled elastic response is ∼6.9 times lower than the GLAS derived flexure, thereby providing further evidence that a purely elastic lithospheric response cannot explain the deflection in this region. The relationship between the modeled elastic response and the GLAS derived flexure is applied to a long-term lake load change dataset to create the longest-running flexural response curve as caused by the last ∼40 years of Siling Co load variations, and these results show an accumulated lake-adjacent flexure of ∼12.6 cm from an

  7. Testing of the Geoscience Laser Altimeter System (GLAS) Prototype Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Douglas, Donya; Ku, Jentung; Kaya, Tarik

    1998-01-01

    This paper describes the testing of the prototype loop heat pipe (LHP) for the Geoscience Laser Altimeter System (GLAS). The primary objective of the test program was to verify the loop's heat transport and temperature control capabilities under conditions pertinent to GLAS applications. Specifically, the LHP had to demonstrate a heat transport capability of 100 W, with the operating temperature maintained within +/-2K while the condenser sink was subjected to a temperature change between 273K and 283K. Test results showed that this loop heat pipe was more than capable of transporting the required heat load and that the operating temperature could be maintained within +/-2K. However, this particular integrated evaporator-compensation chamber design resulted in an exchange of energy between the two that affected the overall operation of the system. One effect was the high temperature the LHP was required to reach before nucleation would begin due to inability to control liquid distribution during ground testing. Another effect was that the loop had a low power start-up limitation of approximately 25 W. These Issues may be a concern for other applications, although it is not expected that they will cause problems for GLAS under micro-gravity conditions.

  8. Changes in the Earth's largest surge glacier system from satellite and airborne altimetry and imagery

    NASA Astrophysics Data System (ADS)

    Trantow, T.; Herzfeld, U. C.

    2015-12-01

    The Bering-Bagley Glacier System (BBGS), Alaska, one of the largest ice systems outside of Greenland and Antarctica, has recently surged (2011-2013), providing a rare opportunity to study the surge phenomenon in a large and complex system. Understanding fast-flowing glaciers and accelerations in ice flow, of which surging is one type, is critical to understanding changes in the cryosphere and ultimately changes in sea level. It is important to distinguish between types of accelerations and their consequences, especially between reversible or quasi-cyclic and irreversible forms of glacial acceleration, but current icesheet models treat all accelerating ice identically. Additionally, the surge provides an exceptional opportunity to study the influence of surface roughness and water content on return signals of altimeter systems. In this presentation, we analyze radar and laser altimeter data from CryoSat-2, NASA's Operation IceBridge (OIB), the ICESat Geoscience Laser Altimeter System (GLAS), ICESat-2's predecessor the Multiple Altimeter Beam Experimental Lidar (MABEL), and airborne laser altimeter and imagery campaigns by our research group. These measurements are used to study elevation, elevation change and crevassing throughout the glacier system. Analysis of the imagery from our airborne campaigns provides comprehensive characterizations of the BBGS surface over the course of the surge. Results from the data analysis are compared to numerical modeling experiments.

  9. Planetary geosciences, 1988

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  10. Analysis of ICESat Data Using Kalman Filter and Kriging to Study Height Changes in East Antarctica

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.

    2005-01-01

    We analyze ICESat derived heights collected between Feb. 03-Nov. 04 using a kriging/Kalman filtering approach to investigate height changes in East Antarctica. The model's parameters are height change to an a priori static digital height model, seasonal signal expressed as an amplitude Beta and phase Theta, and height-change rate dh/dt for each (100 km)(exp 2) block. From the Kalman filter results, dh/dt has a mean of -0.06 m/yr in the flat interior of East Antarctica. Spatially correlated pointing errors in the current data releases give uncertainties in the range 0.06 m/yr, making height change detection unreliable at this time. Our test shows that when using all available data with pointing knowledge equivalent to that of Laser 2a, height change detection with an accuracy level 0.02 m/yr can be achieved over flat terrains in East Antarctica.

  11. Developing a Geoscience Literacy Exam: Pushing Geoscience Literacy Assessment to New Levels

    NASA Astrophysics Data System (ADS)

    Iverson, E. A.; Steer, D. N.; Manduca, C. A.

    2012-12-01

    InTeGrate is a community effort aimed at improving geoscience literacy and building a workforce that can use geoscience to solve societal issues. As part of this work we have developed a geoscience literacy assessment instrument to measure students' higher order thinking. This assessment is an important part of the development of curricula designed to increase geoscience literacy for all undergraduate students. To this end, we developed the Geoscience Literacy Exam (GLE) as one of the tools to quantify the effectiveness of these materials on students' understandings of geoscience literacy. The InTeGrate project is a 5-year, NSF-funded STEP Center grant in its first year of funding. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The GLE instrument addresses content and concepts in the Earth, Climate, and Ocean Science literacy documents. The testing schema is organized into three levels of increasing complexity. Level 1 questions are single answer, understanding- or application-level multiple choice questions. For example, selecting which type of energy transfer is most responsible for the movement of tectonic plates. They are designed such that most introductory level students should be able to correctly answer after taking an introductory geoscience course. Level 2 questions are more advanced multiple answer/matching questions, at the understanding- through analysis-level. Students might be asked to determine the types of earth-atmosphere interactions that could result in changes to global temperatures in the event of a major volcanic eruption. Because the answers are more complicated, some introductory students and most advanced students should be able to respond correctly. Level 3 questions are analyzing- to evaluating-level short essays, such as describe the ways in which the atmosphere sustains life on Earth. These questions are designed such that introductory students could probably formulate a rudimentary response

  12. KSC-03pd0069

    NASA Image and Video Library

    2003-01-12

    VANDENBERG AFB, Calif. -- A Boeing Delta II rocket soars above the clouds here today at Vandenberg AFB, Calif. The NASA payloads aboard the rocket are the ICESat, an Ice Cloud and land Elevation Satellite, and CHIPSat, a Cosmic Hot Interstellar Plasma Spectrometer. ICESat, a 661-pound satellite, is a benchmark satellite for the Earth Observing System that will help scientists determine if the global sea level is rising or falling. It will observe the ice sheets that blanket the Earth’s poles to determine if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth’s atmosphere and climate affect polar ice masses and global sea level. The Geoscience Laser Altimeter System is the sole instrument on the satellite. CHIPSat, a suitcase-size 131-pound satellite, will provide information about the origin, physical processes and properties of the hot gas contained in the interstellar medium. This launch marks the first Delta from Vandenberg this year. (USAF photo by: SSgt. Lee A Osberry Jr.)

  13. KSC-03pd0068

    NASA Image and Video Library

    2003-01-12

    VANDENBERG AFB, Calif. -- A Boeing Delta II rocket soars above the clouds here today at Vandenberg AFB, Calif. The NASA payload aboard the rocket are the ICESat, an Ice Cloud and land Elevation Satellite, and CHIPSat, a Cosmic Hot Interstellar Plasma Spectrometer. ICESat, a 661-pound satellite, is a benchmark satellite for the Earth Observing System that will help scientists determine if the global sea level is rising or falling. It will observe the ice sheets that blanket the Earth’s poles to determine if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth’s atmosphere and climate affect polar ice masses and global sea level. The Geoscience Laser Altimeter System is the sole instrument on the satellite. CHIPSat, a suitcase-size 131-pound satellite, will provide information about the origin, physical processes and properties of the hot gas contained in the interstellar medium. This launch marks the first Delta from Vandenberg this year. (USAF photo by: SSgt Lee A Osberry Jr.)

  14. Validation of the ICEsat vegetation product using crown-area-weighted mean height derived using crown delineation with discrete return lidar data

    Treesearch

    Yong Pang; Michael Lefsky; Hans-Erik Andersen; Mary Ellen Miller; Kirk Sherrill

    2008-01-01

    The Geoscience Laser Altimeter System (GLAS), a spaceborne light detection and ranging (lidar) sensor, has acquired over 250 million lidar observations over forests globally, an unprecedented dataset of vegetation height information. To be useful, GLAS must be calibrated to measurements of height used in forestry inventory and ecology. Airborne discrete return lidar (...

  15. Effectiveness of Geosciences Exploration Summer Program (GeoX) for increasing awareness and Broadening Participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Garcia, S. J.; Houser, C.

    2013-12-01

    Summer research experiences are an increasingly popular means to increase awareness of and develop interest in the Geosciences and other STEM (Science, Technology, Engineering and Math) programs. Here we describe and report the preliminary results of a new one-week program at Texas A&M University to introduce first generation, women, and underrepresented high school students to opportunities and careers in the Geosciences. Short-term indicators in the form of pre- and post-program surveys of participants and their parents suggest that there is an increase in participant understanding of geosciences and interest in pursuing a degree in the geosciences. At the start of the program, the participants and their parents had relatively limited knowledge of the geosciences and very few had a friend or acquaintance employed in the geosciences. Post-survey results suggest that the students had an improved and nuanced understanding of the geosciences and the career opportunities within the field. A survey of the parents several months after the program had ended suggests that the participants had effectively communicated their newfound understanding and that the parents now recognized the geosciences as a potentially rewarding career. With the support of their parents 42% of the participants are planning to pursue an undergraduate degree in the geosciences compared to 62% of participants who were planning to pursue a geosciences degree before the program. It is concluded that future offerings of this and similar programs should also engage the parents to ensure that the geosciences are recognized as a potential academic and career path.

  16. Effectiveness of Geosciences Exploration Summer Program (GeoX) for Increasing Awareness and Knowledge of Geosciences

    ERIC Educational Resources Information Center

    Houser, Chris; Garcia, Sonia; Torres, Janet

    2015-01-01

    Summer research experiences are an increasingly popular means of increasing awareness of, and developing interest in, the geosciences and other science, technology, engineering, and math programs. We describe and report the preliminary results of a 1-wk Geosciences Exploration Summer Program in the College of Geosciences at Texas A&M…

  17. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  18. Comparison of Surface Elevation Changes of the Greenland and Antarctic Ice Sheets from Radar and Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Barbieri, Kristine; DiMarzio, John P.; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui

    2012-01-01

    A primary purpose of satellite altimeter measurements is determination of the mass balances of the Greenland and Antarctic ice sheets and changes with time by measurement of changes in the surface elevations. Since the early 1990's, important measurements for this purpose have been made by radar altimeters on ERS-l and 2, Envisat, and CryoSat and a laser altimeter on ICESat. One principal factor limiting direct comparisons between radar and laser measurements is the variable penetration depth of the radar signal and the corresponding location of the effective depth of the radar-measured elevation beneath the surface, in contrast to the laser-measured surface elevation. Although the radar penetration depth varies significantly both spatially and temporally, empirical corrections have been developed to account for this effect. Another limiting factor in direct comparisons is caused by differences in the size of the laser and radar footprints and their respective horizontal locations on the surface. Nevertheless, derived changes in elevation, dHldt, and time-series of elevation, H(t), have been shown to be comparable. For comparisons at different times, corrections for elevation changes caused by variations in the rate offrrn compaction have also been developed. Comparisons between the H(t) and the average dH/dt at some specific locations, such as the Vostok region of East Antarctic, show good agreement among results from ERS-l and 2, Envisat, and ICESat. However, Greenland maps of dHidt from Envisat and ICESat for the same time periods (2003-2008) show some areas of significant differences as well as areas of good agreement. Possible causes of residual differences are investigated and described.

  19. Geoscience is Important? Show Me Why

    NASA Astrophysics Data System (ADS)

    Boland, M. A.

    2017-12-01

    "The public" is not homogenous and no single message or form of messaging will connect the entire public with the geosciences. One approach to promoting trust in, and engagement with, the geosciences is to identify specific sectors of the public and then develop interactions and communication products that are immediately relevant to that sector's interests. If the content and delivery are appropriate, this approach empowers people to connect with the geosciences on their own terms and to understand the relevance of the geosciences to their own situation. Federal policy makers are a distinct and influential subgroup of the general public. In preparation for the 2016 presidential election, the American Geosciences Institute (AGI) in collaboration with its 51 member societies prepared Geoscience for America's Critical Needs: Invitation to a National Dialogue, a document that identified major geoscience policy issues that should be addressed in a national policy platform. Following the election, AGI worked with eight other geoscience societies to develop Geoscience Policy Recommendations for the New Administration and the 115th Congress, which outlines specific policy actions to address national issues. State and local decision makers are another important subgroup of the public. AGI has developed online content, factsheets, and case studies with different levels of technical complexity so people can explore societally-relevant geoscience topics at their level of technical proficiency. A related webinar series is attracting a growing worldwide audience from many employment sectors. Partnering with government agencies and other scientific and professional societies has increased the visibility and credibility of these information products with our target audience. Surveys and other feedback show that these products are raising awareness of the geosciences and helping to build reciprocal relationships between geoscientists and decision makers. The core message of all

  20. Defining the Geoscience Community through a Quantitative Perspective

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.

    2015-12-01

    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. These data cover the areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. The Workforce Program also considers economic changes in the United States and globally that can affect the supply and demand of the geoscience workforce. In order to have an informed discussion defining the modern geoscience community, it is essential to understand the current dynamics within the geoscience community and workforce. This presentation will provide a data-driven outlook of the current status of the geosciences in the workforce and within higher education using data collected by AGI, federal agencies and other stakeholder organizations. The data presented will highlight the various industries, including those industries with non-traditional geoscience jobs, the skills development of geoscience majors, and the application of these skills within the various industries in the workforce. This quantitative overview lays the foundation for further discussions related to tracking and understanding the current geoscience community in the United States, as well as establishes a baseline for global geoscience workforce comparisons in the future.

  1. Geoscience laser altimeter system-stellar reference system

    NASA Astrophysics Data System (ADS)

    Millar, Pamela S.; Sirota, J. Marcos

    1998-01-01

    GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with ~15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 km×100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to ~5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.

  2. Thermal Design, Tvac Testing, and Lessons Learned for Critical GSE of ATLAS and the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Bradshaw, Heather

    2016-01-01

    This presentation describes the thermal design of the three main of optical components which comprise the Bench Checkout Equipment (BCE) for the Advanced Topographic Laser Altimeter System (ATLAS) instrument, which is flying on the ICESat-2 mission. Thermal vacuum testing of these components is also described in this presentation, as well as a few lessons learned. These BCE components serve as critical GSE for the mission; their purpose is to verify ATLAS is performing well. It has been said that, in one light, the BCE is the most important part of ATLAS, since, without it, ATLAS cannot be aligned properly or its performance verified before flight. Therefore, careful attention was paid to the BCEs thermal design, development, and component-level Tvac testing prior to its use in instrument-level and spacecraft-level Tvac tests with ATLAS. This presentation describes that thermal design, development, and testing, as well as a few lessons learned.

  3. Teachers' Geoscience Career Knowledge and Implications for Enhancing Diversity in the Geosciences

    ERIC Educational Resources Information Center

    Sherman-Morris, Kathleen; Brown, Michael E.; Dyer, Jamie L.; McNeal, Karen S.; Rodgers, John C., III

    2013-01-01

    This study examines discrepancies between geoscience career knowledge and biology career knowledge among Mississippi science teachers. Principals and in-service teachers were also surveyed about their perception of geoscience careers and majors. Scores were higher for knowledge of what biologists do (at work) than about what geoscientists do.…

  4. A Foundational Approach to Designing Geoscience Ontologies

    NASA Astrophysics Data System (ADS)

    Brodaric, B.

    2009-05-01

    E-science systems are increasingly deploying ontologies to aid online geoscience research. Geoscience ontologies are typically constructed independently by isolated individuals or groups who tend to follow few design principles. This limits the usability of the ontologies due to conceptualizations that are vague, conflicting, or narrow. Advances in foundational ontologies and formal engineering approaches offer promising solutions, but these advanced techniques have had limited application in the geosciences. This paper develops a design approach for geoscience ontologies by extending aspects of the DOLCE foundational ontology and the OntoClean method. Geoscience examples will be presented to demonstrate the feasibility of the approach.

  5. Arctic Sea Ice Freeboard from Icebridge Acquisitions in 2009: Estimates and Comparisons with ICEsat

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Cunningham, Glenn F.; Manizade, S. S.; Krabill, W. B.

    2012-01-01

    During the spring of 2009, the Airborne Topographic Mapper (ATM) system on the IceBridge mission acquired cross-basin surveys of surface elevations of Arctic sea ice. In this paper, the total freeboard derived from four 2000 km transects are examined and compared with those from the 2009 ICESat campaign. Total freeboard, the sum of the snow and ice freeboards, is the elevation of the air-snow interface above the local sea surface. Prior to freeboard retrieval, signal dependent range biases are corrected. With data from a near co-incident outbound and return track on 21 April, we show that our estimates of the freeboard are repeatable to within 4 cm but dependent locally on the density and quality of sea surface references. Overall difference between the ATM and ICESat freeboards for the four transects is 0.7 (8.5) cm (quantity in bracket is standard deviation), with a correlation of 0.78 between the data sets of one hundred seventy-eight 50 km averages. This establishes a level of confidence in the use of ATM freeboards to provide regional samplings that are consistent with ICESat. In early April, mean freeboards are 41 cm and 55 cm over first year and multiyear sea ice (MYI), respectively. Regionally, the lowest mean ice freeboard (28 cm) is seen on 5 April where the flight track sampled the large expanse of seasonal ice in the western Arctic. The highest mean freeboard (71 cm) is seen in the multiyear ice just west of Ellesmere Island from 21 April. The relatively large unmodeled variability of the residual sea surface resolved by ATM elevations is discussed.

  6. Lessons Learned from the Advanced Topographic Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave

    2016-01-01

    The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.

  7. Antarctic Megadunes - Assessment of Topographic Form and Windward Progradation from ICESat Altimetry, 2003-2009

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.; Scambos, T. A.; Fahnestock, M. A.; Suchdeo, V. P.

    2011-12-01

    More than 900,000 square kilometers of East Antarctica are covered by distinctive megadune features (Fahnestock et al., 2000, Courville et al., 2007) as first defined by Swithinbank (1988). These long, undulating, sinuous dunes are due to persistent gravity-driven katabatic winds and spatially variable accumulation. In the field, they have a distinctive morphology, but characterization of the evolution of these active landscape features requires detailed elevation data as well as radar backscatter and grain size information. In this study, we utilize NASA's ICESat laser altimetry data during 2003-2009 (corrected for intercampaign biases) in the vicinity of an NSF-OPP funded research site near 80.78°S, 124.5°E, occupied and instrumented during the 2002-2003 and 2003-2004 summer seasons with additional limited field observations from January 2011. Using remote sensing data sets and field observations, we can characterize these features including their extent, variability, and elevation change with time. Field measurements from ground penetrating radar, automatic weather stations, surface photos, snowpits, and shallow cores provide in situ and subsurface information on local dune structure. Based on these data, Antarctic megadunes can be characterized as linear strips of higher accumulation (~30 to 80 kg m-2 a-1 maximum, typically toward the lower part of the range) consisting of fine-grained, wind-packed snow, generally forming 2-8 meter high, 1-2 km wide ridges up to 100 km long and separated by 2-6 km of near-zero-accumulation wind glaze regions. Glaze surfaces overlie extremely metamorphosed firn composed of very coarse recrystallized grains with poorly expressed layering. Our study extends site-specific results summarized in Courville et al. (2007) across the megadune study area with co-located MODIS-based Mosaic of Antarctica (MOA) images and surface optical grain size (e.g. Scambos et al., 2007), calibrated SAR backscatter data from the Radarsat Antarctic

  8. Recent Elevation Changes on Bagley Ice Valley, Guyot and Yahtse Glaciers, Alaska, from ICESat Altimetry, Star-3i Airborne, and SRTM Spaceborne DEMs

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.; Sauber, J. M.; Lingle, C. S.; Rabus, B. T.; Tangborn, W. V.; Echelmeyer, K. A.

    2005-12-01

    .5 m at 1562 m altitude, -2.6 ± 2.8 m at 1378 m altitude, 6.1 ± 3.5 m at 1142 m altitude, 1.4 ± 12.1 m at 1232 m altitude, -4.0 ± 4.2 m at 250 m to 1217 m altitude, -1.8 ± 3.3 m at 1200 m altitude, and 8.0 ± 6.4 m at 940 m altitude. One ICESat-derived track-to-DEM comparison on Guyot Glacier indicates a preliminary mean elevation change in the 478 m to 1150 m altitude range of -2.8 ± 14.1 m. Results, including additional comparisons to small-aircraft laser altimeter data, with more fully-corrected for estimated snow and ice accumulation / ablation between acquisitions times, will be presented. [Muskett, R.R., C.S. Lingle, W.V. Tangborn, and B.T. Rabus, Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska, GRL, 30 (16), 1857, doi:10.1029/2003GL017707, 2003.

  9. Geoscience Laser Altimeter System (GLAS) Final Test Report of DM LHP TV Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles

    2000-01-01

    Two loop heat pipes (LHPs) are to be used for thermal control of the Geoscience Laser Altimeter System (GLAS), planned for flight in 2001. One LHP will be used to transport 100 W from a laser to the radiator, the other will transport 210 W from electronic boxes to the radiator. In order to verify the LHP design for the GLAS application, an LHP Development Model has been fabricated, and ambient and thermal vacuum tested. Two aluminum blocks of 15 kg and 30 kg, respectively, were attached to the LHP to simulate the thermal masses connected to the heat sources. A 20 W starter heater was installed on the evaporator to aid the loop startup. A new concept to thermally couple the vapor and liquid line was also incorporated in the LHP design. Such a thermal coupling would reduce the power requirement on the compensation chamber in order to maintain the loop set point temperature. To avoid freezing of the liquid in the condenser during cold cases, propylene was selected as the working fluid. The LHP was tested under reflux mode and with adverse elevation. Tests conducted included start-up, power cycle, steady state and transient operation during hot and cold cases, and heater power requirements for the set point temperature control of the LHP. Test results showed very successful operation of the LHP under all conditions. The 20 W starter heater proved necessary in order to start the loop when a large thermal mass was attached to the evaporator. The thermal coupling between the liquid line and the vapor line significantly reduced the heater power required for loop temperature control, which was less than 5 watts in all cases, including a cold radiator. The test also demonstrated successful operation with a propylene working fluid, with successful startups with condenser temperatures as low as 100 C. Furthermore, the test demonstrated accurate control of the loop operating temperature within +/- 0.2 C, and a successful shutdown of the loop during the survival mode of

  10. Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data

    USGS Publications Warehouse

    Li, Ainong; Huang, Chengquan; Sun, Guoqing; Shi, Hua; Toney, Chris; Zhu, Zhiliang; Rollins, Matthew G.; Goward, Samuel N.; Masek, Jeffery G.

    2011-01-01

    Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps over large areas. This paper describes a Landsat–lidar fusion approach for modeling the height of young forests by integrating historical Landsat observations with lidar data acquired by the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation (ICESat) satellite. In this approach, “young” forests refer to forests reestablished following recent disturbances mapped using Landsat time-series stacks (LTSS) and a vegetation change tracker (VCT) algorithm. The GLAS lidar data is used to retrieve forest height at sample locations represented by the footprints of the lidar data. These samples are used to establish relationships between lidar-based forest height measurements and LTSS–VCT disturbance products. The height of “young” forest is then mapped based on the derived relationships and the LTSS–VCT disturbance products. This approach was developed and tested over the state of Mississippi. Of the various models evaluated, a regression tree model predicting forest height from age since disturbance and three cumulative indices produced by the LTSS–VCT method yielded the lowest cross validation error. The R2 and root mean square difference (RMSD) between predicted and GLAS-based height measurements were 0.91 and 1.97 m, respectively. Predictions of this model had much higher errors than indicated by cross validation analysis when evaluated using field plot data collected through the Forest Inventory and Analysis Program of USDA Forest Service. Much of these errors were due to a lack of separation between stand clearing and non-stand clearing

  11. Modeling the Height of Young Forests Regenerating from Recent Disturbances in Mississippi using Landsat and ICESat data

    NASA Technical Reports Server (NTRS)

    Li, Ainong; Huang, Chengquan; Sun, Guoqing; Shi, Hua; Toney, Chris; Zhu, Zhiliang; Rollins, Matthew G.; Goward, Samuel N.; Masek, Jeffrey G.

    2011-01-01

    Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps over large areas. This paper describes a Landsat-lidar fusion approach for modeling the height of young forests by integrating historical Landsat observations with lidar data acquired by the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation (ICESat) satellite. In this approach, "young" forests refer to forests reestablished following recent disturbances mapped using Landsat time-series stacks (LTSS) and a vegetation change tracker (VCT) algorithm. The GLAS lidar data is used to retrieve forest height at sample locations represented by the footprints of the lidar data. These samples are used to establish relationships between lidar-based forest height measurements and LTSS-VCT disturbance products. The height of "young" forest is then mapped based on the derived relationships and the LTSS-VCT disturbance products. This approach was developed and tested over the state of Mississippi. Of the various models evaluated, a regression tree model predicting forest height from age since disturbance and three cumulative indices produced by the LTSS-VCT method yielded the lowest cross validation error. The R(exp 2) and root mean square difference (RMSD) between predicted and GLAS-based height measurements were 0.91 and 1.97 m, respectively. Predictions of this model had much higher errors than indicated by cross validation analysis when evaluated using field plot data collected through the Forest Inventory and Analysis Program of USDA Forest Service. Much of these errors were due to a lack of separation between stand clearing and non-stand clearing disturbances in

  12. Illuminate Knowledge Elements in Geoscience Literature

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zheng, J. G.; Wang, H.; Fox, P. A.

    2015-12-01

    There are numerous dark data hidden in geoscience literature. Efficient retrieval and reuse of those data will greatly benefit geoscience researches of nowadays. Among the works of data rescue, a topic of interest is illuminating the knowledge framework, i.e. entities and relationships, embedded in documents. Entity recognition and linking have received extensive attention in news and social media analysis, as well as in bioinformatics. In the domain of geoscience, however, such works are limited. We will present our work on how to use knowledge bases on the Web, such as ontologies and vocabularies, to facilitate entity recognition and linking in geoscience literature. The work deploys an un-supervised collective inference approach [1] to link entity mentions in unstructured texts to a knowledge base, which leverages the meaningful information and structures in ontologies and vocabularies for similarity computation and entity ranking. Our work is still in the initial stage towards the detection of knowledge frameworks in literature, and we have been collecting geoscience ontologies and vocabularies in order to build a comprehensive geoscience knowledge base [2]. We hope the work will initiate new ideas and collaborations on dark data rescue, as well as on the synthesis of data and knowledge from geoscience literature. References: 1. Zheng, J., Howsmon, D., Zhang, B., Hahn, J., McGuinness, D.L., Hendler, J., and Ji, H. 2014. Entity linking for biomedical literature. In Proceedings of ACM 8th International Workshop on Data and Text Mining in Bioinformatics, Shanghai, China. 2. Ma, X. Zheng, J., 2015. Linking geoscience entity mentions to the Web of Data. ESIP 2015 Summer Meeting, Pacific Grove, CA.

  13. Fusion of Laser Altimetry Data with Dems Derived from Stereo Imaging Systems

    NASA Astrophysics Data System (ADS)

    Schenk, T.; Csatho, B. M.; Duncan, K.

    2016-06-01

    During the last two decades surface elevation data have been gathered over the Greenland Ice Sheet (GrIS) from a variety of different sensors including spaceborne and airborne laser altimetry, such as NASA's Ice Cloud and land Elevation Satellite (ICESat), Airborne Topographic Mapper (ATM) and Laser Vegetation Imaging Sensor (LVIS), as well as from stereo satellite imaging systems, most notably from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Worldview. The spatio-temporal resolution, the accuracy, and the spatial coverage of all these data differ widely. For example, laser altimetry systems are much more accurate than DEMs derived by correlation from imaging systems. On the other hand, DEMs usually have a superior spatial resolution and extended spatial coverage. We present in this paper an overview of the SERAC (Surface Elevation Reconstruction And Change detection) system, designed to cope with the data complexity and the computation of elevation change histories. SERAC simultaneously determines the ice sheet surface shape and the time-series of elevation changes for surface patches whose size depends on the ruggedness of the surface and the point distribution of the sensors involved. By incorporating different sensors, SERAC is a true fusion system that generates the best plausible result (time series of elevation changes) a result that is better than the sum of its individual parts. We follow this up with an example of the Helmheim gacier, involving ICESat, ATM and LVIS laser altimetry data, together with ASTER DEMs.

  14. Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick

    2008-01-01

    Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

  15. Inquiring with Geoscience Datasets: Instruction and Assessment

    NASA Astrophysics Data System (ADS)

    Zalles, D.; Quellmalz, E.; Gobert, J.

    2005-12-01

    This session will describe a new NSF-funded project in Geoscience education, Inquiring with Geoscience Data Sets. The goals of the project are to (1) Study the impacts on student learning of Web-based supplementary curriculum modules that engage secondary-level students in inquiry projects addressing important geoscience problems using an Earth System Science approach. Students will use technologies to access real data sets in the geosciences and to interpret, analyze, and communicate findings based on the data sets. The standards addressed will include geoscience concepts, inquiry abilities in NSES and Benchmarks for Science Literacy, data literacy, NCTM standards, and 21st-century skills and technology proficiencies (NETTS/ISTE). (2) Develop design principles, specification templates, and prototype exemplars for technology-based performance assessments that provide evidence of students' geoscientific knowledge and inquiry skills (including data literacy skills) and students' ability to access, use, analyze, and interpret technology-based geoscience data sets. (3) Develop scenarios based on the specification templates that describe curriculum modules and performance assessments that could be developed for other Earth Science standards and curriculum programs. Also to be described in the session are the project's efforts to differentiate among the dimensions of data literacy and scientific inquiry that are relevant for the geoscience discplines, and how recognition and awareness of the differences can be effectively channelled for the betterment of geoscience education.

  16. The Geosciences Institute for Research and Education: Bringing awareness of the geosciences to minorities in Detroit MI

    NASA Astrophysics Data System (ADS)

    Nalepa, N. A.; Murray, K. S.; Napieralski, J. A.

    2009-12-01

    According to recent studies, more than 40% of students within the Detroit Public Schools (DPS) drop out and only 21% graduate within 4 years. In an attempt to improve these statistics, The Geosciences Institute for Research and Education was developed by the University of Michigan-Dearborn (UM-D) and funded by two grants from the National Science Foundation’s (NSF) OEDG Program. The Geosciences Institute, a collaboration between the UM-D, DPS, and local corporations, aims to generate awareness of the geosciences to middle school students, facilitate an enthusiastic learning environment, encourage underrepresented minorities to stay in school, and consider the geosciences as a viable career option. This is accomplished by involving their teachers, UM-D faculty and students, and local geoscience professionals in community-based research problems relevant to SE Michigan. Students use the geosciences as a tool in which they are actively participating in research that is in their backyards. Through a mixture of field trips, participation, and demonstrational activities the students become aware of local environmental and social problems and how a background in the geosciences can prepare them. As part of the Geosciences Institute, students participate in three ongoing research projects with UM-D faculty: (1) build, install, and monitor groundwater wells along the Lower Rouge River, (2) collect soil samples from and mapping brownfields in SW Detroit, and (3) learn basic GPS and GIS skills to map local natural resources. The students also work with faculty on creating video diaries that record ideas, experiences, and impressions throughout the Institute, including during fieldtrips, modules, research, and editing. Finally, small teams of students collaborate to design and print a poster that summarizes their experience in the Institute. The Geosciences Institute concludes with a ceremony that celebrates student efforts (posters and videos) and involves school

  17. Enhancing Diversity in the Geosciences

    ERIC Educational Resources Information Center

    Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Rodrigue, Christine M.; Lee, Christopher T.; Behl, Richard J.; Larson, Daniel O.; Francis, Robert D.; Hold, Gregory

    2005-01-01

    An innovative interdisciplinary project at California State University, Long Beach, was designed to increase the attractiveness of the geosciences (physical geography, geology, and archaeology) to underrepresented groups. The goal was to raise awareness of the geosciences by providing summer research opportunities for underrepresented high school…

  18. Career Paths for Geosciences Students (Invited)

    NASA Astrophysics Data System (ADS)

    Bowers, T. S.; Flewelling, S. A.

    2013-12-01

    Current and future drivers of hiring in the geosciences include climate, environment, energy, georisk and litigation areas. Although climate is closely linked to the atmospheric sciences, hiring needs in the geosciences exist as well, in understanding potential impacts of climate change on coastal erosion and water resources. Where and how to consider carbon sequestration as a climate mitigation policy will also require geosciences expertise. The environmental sciences have long been a source of geosciences hiring, and have ongoing needs in the areas of investigation of contamination, and in fluid and chemical transport. The recent expansion of the energy sector in the U.S. is providing opportunities for the geosciences in oil and gas production, hydraulic fracturing, and in geothermal development. In georisk, expertise in earthquake and volcanic hazard prediction are increasingly important, particularly in population centers. Induced seismicity is a relatively new area of georisk that will also require geosciences skills. The skills needed in the future geosciences workforce are increasingly interdisciplinary, and include those that are both observational and quantitative. Field observations and their interpretation must be focused forward as well as backwards and include the ability to recognize change as it occurs. Areas of demand for quantitative skills include hydrological, geophysical, and geochemical modeling, math and statistics, with specialties such as rock mechanics becoming an increasingly important area. Characteristics that students should have to become successful employees in these sectors include strong communication skills, both oral and written, the ability to know when to stop "studying" and identify next steps, and the ability to turn research areas into solutions to problems.

  19. Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.

    2015-01-01

    Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65m or better.

  20. Using ICESat/GLAS Data Produced in a Self-Describing Format

    NASA Astrophysics Data System (ADS)

    Fowler, D. K.; Webster, D.; Fowler, C.; McAllister, M.; Haran, T. M.

    2015-12-01

    For the life of the ICESat mission and beyond, GLAS data have been distributed in binary format by NASA's National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) at the University of Colorado in Boulder. These data have been extremely useful but, depending on the users, not always the easiest to use. Recently, with release 33 and 34, GLAS data have been produced in an HDF5 format. The NSIDC User Services Office has found that most users find this HDF5 format to be more user friendly than the original binary format. Some of the advantages include being able to view the actual data using HDFView or any of a number of open source tools freely available for users to view and work with the data. Also with this format NSIDC DAAC has been able to provide more selective and specific services which include spatial subsetting, file stitching, and the much sought after parameter subsetting through the use of Reverb, the next generation Earth science discovery tool. The final release of GLAS data in 2014 and the ongoing user questions not just about the data, but about the mission, satellite platform, and instrument have also spurred NSIDC DAAC efforts to make all of the mission documents and information available to the public in one location. Thus was born the ICESat/GLAS Long Term Archive now available online. The data and specifics from this mission are archived and made available to the public at NASA's NSIDC DAAC.

  1. Striving to Diversify the Geosciences Workforce

    NASA Astrophysics Data System (ADS)

    Velasco, Aaron A.; Jaurrieta de Velasco, Edith

    2010-08-01

    The geosciences continue to lag far behind other sciences in recruiting and retaining diverse populations [Czujko and Henley, 2003; Huntoon and Lane, 2007]. As a result, the U.S. capacity for preparedness in natural geohazards mitigation, natural resource management and development, national security, and geosciences education is being undermined and is losing its competitive edge in the global market. Two key populations must be considered as the United States looks to build the future geosciences workforce and optimize worker productivity: the nation's youth and its growing underrepresented minority (URM) community. By focusing on both of these demographics, the United States can address the identified shortage of high-quality candidates for knowledge-intensive jobs in the geosciences, helping to develop the innovative enterprises that lead to discovery and new technology [see National Research Council (NRCd), 2007].

  2. Exploring Student-to-Workforce Transitions with the National Geoscience Exit Survey

    NASA Astrophysics Data System (ADS)

    Gonzales, L. M.; Keane, C. M.; Houlton, H. R.

    2011-12-01

    In 2011, the American Geological Institute (AGI) launched the first pilot of a National Geoscience Exit Survey in collaboration with 32 geoscience university departments. The survey collects data about demographics, high school and community college coursework, university degrees, financial aid, field and research experiences, internships, and when and why the student chose to pursue a geosciences degree. Additionally, the survey collects information about students' future academic and career plans, and gives participants the option to take part in a longitudinal survey to track long-term career trajectories of geosciences graduates. The survey also provides geoscience departments with the ability to add customized questions to collect data about important departmental-level topics. The National Geoscience Exit Survey will be available to all U.S. geoscience programs at two- and four-year colleges and universities by the end of the 2011-2012 academic year. We use the results of the National Geoscience Exit Survey to examine student preparation and transition into geosciences and non-geoscience careers. Preliminary results from the pilot survey indicated future academic and career trajectories for geoscience Bachelor's degree recipients included graduate school (53%) and pursuit of a geoscience career (45%), with some undergraduates keeping their options open for either trajectory. Twelve percent of Bachelor's degree recipients already accepted job offers with geoscience employers. For geoscience Master's degree recipients, 17% planned to continue in graduate school, 35% were seeking a geoscience job, and 42% had already accepted job offers with geoscience employers. Furthermore, the majority of those geoscience graduates who already accepted geoscience job offers had also interned previously with the employer.

  3. Tackling Strategies for Thriving Geoscience Departments

    NASA Astrophysics Data System (ADS)

    Wuebbles, Donald J.; Takle, Eugene S.

    2005-05-01

    Special sessions on thriving geosciences departments and on cyberinfrastructure in the geosciences highlighted the recent 5th AGU Meeting of Heads and Chairs of Earth and Space Science Departments. ``From Surviving to Thriving: Strategies for Advancing University Geoscience Programs in Times of Change'' was a topic that drew intense interest. This panel discussion, led by Don Wuebbles (University of Illinois), included panelists Eric Betterton (University of Arizona), Judy Curry (Georgia Institute of Technology), Heather MacDonald (College of William and Mary), and Jim Kirkpatrick (University of Illinois).

  4. Summaries of physical research in the geosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research inmore » geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less

  5. Summaries of FY 92 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries,more » equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less

  6. How Accessible Are the Geosciences? a Study of Professionally Held Perceptions and What They Mean for the Future of Geoscience Workforce Development

    NASA Astrophysics Data System (ADS)

    Atchison, C.; Libarkin, J. C.

    2014-12-01

    Individuals with disabilities are not entering pathways leading to the geoscience workforce; the reasons for which continue to elude access-focused geoscience educators. While research has focused on barriers individuals face entering into STEM disciplines, very little research has considered the role that practitioner perceptions play in limiting access and accommodation to scientific disciplines. The authors argue that changing the perceptions within the geoscience community is an important step to removing barriers to entry into the myriad fields that make up the geosciences. This paper reports on an investigation of the perceptions that geoscientist practitioners hold about opportunities for engagement in geoscience careers for people with disabilities. These perspectives were collected through three separate iterations of surveys at three professional geoscience meetings in the US and Australia between 2011 and 2012. Respondents were asked to indicate the extent to which individuals with specific types of disabilities would be able to perform various geoscientific tasks. The information obtained from these surveys provides an initial step in engaging the larger geoscience community in a necessary discussion of minimizing the barriers of access to include students and professionals with disabilities. The results imply that a majority of the geoscience community believes that accessible opportunities exist for inclusion regardless of disability. This and other findings suggest that people with disabilities are viewed as viable professionals once in the geosciences, but the pathways into the discipline are prohibitive. Perceptions of how individuals gain entry into the field are at odds with perceptions of accessibility. This presentation will discuss the common geoscientist perspectives of access and inclusion in the geoscience discipline and how these results might impact the future of the geoscience workforce pathway for individuals with disabilities.

  7. Nurturing a growing field: Computers & Geosciences

    NASA Astrophysics Data System (ADS)

    Mariethoz, Gregoire; Pebesma, Edzer

    2017-10-01

    Computational issues are becoming increasingly critical for virtually all fields of geoscience. This includes the development of improved algorithms and models, strategies for implementing high-performance computing, or the management and visualization of the large datasets provided by an ever-growing number of environmental sensors. Such issues are central to scientific fields as diverse as geological modeling, Earth observation, geophysics or climatology, to name just a few. Related computational advances, across a range of geoscience disciplines, are the core focus of Computers & Geosciences, which is thus a truly multidisciplinary journal.

  8. Laser Transmitter Design and Performance for the Slope Imaging Multi-Polarization Photon-Counting Lidar (SIMPL) Instrument

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Harding, David J.; Dabney, Philip W.

    2016-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) instrument is a polarimetric, two-color, multibeam push broom laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program and has been flown successfully on multiple airborne platforms since 2008. In this talk we will discuss the laser transmitter performance and present recent science data collected over the Greenland ice sheet and sea ice in support of the NASA Ice Cloud and land Elevation Satellite 2 (ICESat-2) mission to be launched in 2017.

  9. Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.

    2009-01-01

    Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.

  10. Examining sexism in the geosciences

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Do women geoscientists face worse obstacles because of their gender than women in other sciences? A recent survey by the Committee on Professionals in Science and Technology showed that women with geoscience bachelor's degrees start off at only 68% of their male colleagues' salaries, much lower than women in biology (92%), engineering (102%), chemistry (103%), and physics (111%).Women still lag behind men in geoscience degrees as well. In 1990, women received about one-third of geoscience bachelor's degrees, one-quarter of masters, and about one-fifth of Ph.D.'s, reports the American Geological Institute. In the sciences overall, women received about half of bachelor's degrees, 42% of masters, and about a third of Ph.D.'s in 1989, according to the National Research Council.

  11. Geospatial Technology and Geosciences - Defining the skills and competencies in the geosciences needed to effectively use the technology (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, A.

    2010-12-01

    Maps, spatial and temporal data and their use in analysis and visualization are integral components for studies in the geosciences. With the emergence of geospatial technology (Geographic Information Systems (GIS), remote sensing and imagery, Global Positioning Systems (GPS) and mobile technologies) scientists and the geosciences user community are now able to more easily accessed and share data, analyze their data and present their results. Educators are also incorporating geospatial technology into their geosciences programs by including an awareness of the technology in introductory courses to advanced courses exploring the capabilities to help answer complex questions in the geosciences. This paper will look how the new Geospatial Technology Competency Model from the Department of Labor can help ensure that geosciences programs address the skills and competencies identified by the workforce for geospatial technology as well as look at new tools created by the GeoTech Center to help do self and program assessments.

  12. Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute Christina; McDonald, Brian W.; Neumann, Thomas Allen; Wallin, Bruce F.; Neumann, Thomas A.; Markus, Thorsten; Brenner, Anita; Field, Christopher

    2014-01-01

    NASA's Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission is a decadal survey mission (2016 launch). The mission objectives are to measure land ice elevation, sea ice freeboard, and changes in these variables, as well as to collect measurements over vegetation to facilitate canopy height determination. Two innovative components will characterize the ICESat-2 lidar: 1) collection of elevation data by a multibeam system and 2) application of micropulse lidar (photon-counting) technology. A photon-counting altimeter yields clouds of discrete points, resulting from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of the returned points to reflectors of interest. The objective of this paper is to derive an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2 data, based on airborne observations with a Sigma Space micropulse lidar. The mathematical algorithm uses spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors, and geostatistical classification parameters and hyperparameters. Validation shows that ground and canopy elevation, and hence canopy height, can be expected to be observable with high accuracy by ICESat-2 for all expected beam energies considered for instrument design (93.01%-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp), and 72.85%-98.68% for 0.48 msp). The algorithm derived here is generally applicable for elevation determination from photoncounting lidar altimeter data collected over forested areas, land ice, sea ice, and land surfaces, as well as for cloud detection.

  13. Uncertainties in Ice-Sheet Altimetry from a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Varnai, Tamas; Wiscombe, Warren; Yang, Ping

    2010-01-01

    In support of the Ice, Cloud, and land Elevation Satellite (ICESat)-II mission, this paper studies the bias in surface-elevation measurements caused by undetected thin clouds. The ICESat-II satellite may only have a 1064-nm single-channel lidar onboard. Less sensitive to clouds than the 532-nm channel, the 1064-nm channel tends to miss thin clouds. Previous studies have demonstrated that scattering by cloud particles increases the photon-path length, thus resulting in biases in ice-sheet-elevation measurements from spaceborne lidars. This effect is referred to as atmospheric path delay. This paper complements previous studies in the following ways: First, atmospheric path delay is estimated over the ice sheets based on cloud statistics from the Geoscience Laser Altimeter System onboard ICESat and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua. Second, the effect of cloud particle size and shape is studied with the state-of-the-art phase functions developed for MODIS cirrus- cloud microphysical model. Third, the contribution of various orders of scattering events to the path delay is studied, and an analytical model of the first-order scattering contribution is developed. This paper focuses on the path delay as a function of telescope field of view (FOV). The results show that reducing telescope FOV can significantly reduce the expected path delay. As an example, the average path delays for FOV = 167 microrad (a 100-m-diameter circle on the surface) caused by thin undetected clouds by the 1064-nm channel over Greenland and East Antarctica are illustrated.

  14. Mass Balance of the West Antarctic Ice-Sheet from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robins, John; Saba, Jack L.; Yi, Donghui

    2011-01-01

    Mass balance estimates for 2003-2008 are derived from ICESat laser altimetry and compared with estimates for 1992-2002 derived from ERS radar altimetry. The net mass balance of 3 drainage systems (Pine Island, Thwaites/Smith, and the coast of Marie Bryd) for 2003-2008 is a loss of 100 Gt/yr, which increased from a loss of 70 Gt/yr for the earlier period. The DS including the Bindschadler and MacAyeal ice streams draining into the Ross Ice Shelf has a mass gain of 11 Gt/yr for 2003-2008, compared to an earlier loss of 70 Gt/yr. The DS including the Whillans and Kamb ice streams has a mass gain of 12 Gt/yr, including a significant thickening on the upper part of the Kamb DS, compared to a earlier gain of 6 Gt/yr (includes interpolation for a large portion of the DS). The other two DS discharging into the Ronne Ice Shelf and the northern Ellsworth Coast have a mass gain of 39 Gt/yr, compared to a gain of 4 Gt/yr for the earlier period. Overall, the increased losses of 30 Gt/yr in the Pine Island, Thwaites/Smith, and the coast of Marie Bryd DSs are exceeded by increased gains of 59 Gt/yr in the other 4 DS. Overall, the mass loss from the West Antarctic ice sheet has decreased to 38 Gt/yr from the earlier loss of 67 Gt/yr, reducing the contribution to sea level rise to 0.11 mm/yr from 0.19 mm/yr

  15. Summaries of FY 1993 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of themore » individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.« less

  16. Developing Geoscience Students' Quantitative Skills

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Hancock, G. S.

    2005-12-01

    Sophisticated quantitative skills are an essential tool for the professional geoscientist. While students learn many of these sophisticated skills in graduate school, it is increasingly important that they have a strong grounding in quantitative geoscience as undergraduates. Faculty have developed many strong approaches to teaching these skills in a wide variety of geoscience courses. A workshop in June 2005 brought together eight faculty teaching surface processes and climate change to discuss and refine activities they use and to publish them on the Teaching Quantitative Skills in the Geosciences website (serc.Carleton.edu/quantskills) for broader use. Workshop participants in consultation with two mathematics faculty who have expertise in math education developed six review criteria to guide discussion: 1) Are the quantitative and geologic goals central and important? (e.g. problem solving, mastery of important skill, modeling, relating theory to observation); 2) Does the activity lead to better problem solving? 3) Are the quantitative skills integrated with geoscience concepts in a way that makes sense for the learning environment and supports learning both quantitative skills and geoscience? 4) Does the methodology support learning? (e.g. motivate and engage students; use multiple representations, incorporate reflection, discussion and synthesis) 5) Are the materials complete and helpful to students? 6) How well has the activity worked when used? Workshop participants found that reviewing each others activities was very productive because they thought about new ways to teach and the experience of reviewing helped them think about their own activity from a different point of view. The review criteria focused their thinking about the activity and would be equally helpful in the design of a new activity. We invite a broad international discussion of the criteria(serc.Carleton.edu/quantskills/workshop05/review.html).The Teaching activities can be found on the

  17. Quantifying Seasonal Skill in Coupled Sea Ice Models using Freeboard Measurements from Spaceborne Laser Altimeters

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Bench, K.; Maslowski, W.; Farrell, S. L.; Richter-Menge, J.

    2016-12-01

    We have developed a method to quantitatively assess the skill of predictive sea ice models using freeboard measurements from spaceborne laser altimeters. The method evaluates freeboard from the Regional Arctic System Model (RASM) against those derived from NASA ICESat and Operation IceBridge (OIB) missions along individual ground tracks, and assesses the variance- and correlation-weighted model skill. This allows quantifying the accuracy of sea ice volume simulations and taking measurement error into account. As part of this work, we inter-compare simulations with two different sea ice rheologies: one using Elastic-Viscous-Plastic (EVP), and the other using Elastic-Anisotropic-Plastic (EAP) ice mechanics. Both are simulated for 2004 and 2007, during which ICESat was in operation. RASM variance skill scores ranged from 0.712 to 0.824 and correlation skill scores were between 0.319 and 0.511, with EAP providing a better estimate of spatial ice volume variance, but with a larger bias in the central Arctic relative to EVP. The skill scores were calculated for monthly periods and require little adaption to rate short-term operational forecasts of the Arctic. This work will help quantify model limitations and facilitate optimal use of ICESat-2 freeboard measurements after that satellite is launched next year.

  18. Creating Geoscience Leaders

    NASA Astrophysics Data System (ADS)

    Buskop, J.; Buskop, W.

    2013-12-01

    The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.

  19. Integrating geoscience and Native American experiences through a multi-state geoscience field trip for high school students

    NASA Astrophysics Data System (ADS)

    Kelso, P. R.; Brown, L. M.; Spencer, M.; Sabatine, S.; Goetz, E. R.

    2012-12-01

    Lake Superior State University (LSSU) developed the GRANITE (Geological Reasoning And Natives Investigating The Earth) to engage high school students in the geosciences. The GRANITE program's target audience is Native American high school students and other populations underrepresented in the geosciences. Through the GRANITE program students undertake a variety of field and laboratory geosciences activities that culminates in a two week summer geoscience field experience during which they travel from Michigan to Wyoming. The sites students visit were selected because of their interesting and diverse geologic features and because in many cases they have special significance to Native American communities. Examples of the processes and localities studied by GRANITE students include igneous processes at Bear Butte, SD (Mato Paha) and Devil's Tower, WY (Mato Tipila); sedimentary processes in the Badlands, SD (Mako Sica) and Black Hills, SD (Paha Sapa); karst processes at Wind Cave, SD (Wasun Niye) and Vore Buffalo Jump; structural processes at Van Hise rock, WI and Dillon normal fault Badlands, SD; hydrologic and laucustrine processes along the Great Lakes and at the Fond du Lac Reservation, MN; fluvial processes along the Mississippi and Missouri rivers; geologic resources at the Homestake Mine, SD and Champion Mine, MI; and metamorphic processes at Pipestone, MN and Baraboo, WI. Through the GRANITE experience students develop an understanding of how geoscience is an important part of their lives, their communities and the world around them. The GRANITE program also promotes each student's growth and confidence to attend college and stresses the importance of taking challenging math and science courses in high school. Geoscience career opportunities are discussed at specific geologic localities and through general discussions. GRANITE students learn geosciences concepts and their application to Native communities and society in general through activities and

  20. Geoscience Education Research: A Brief History, Context and Opportunities

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Manduca, C. A.; Kastens, K. A.

    2011-12-01

    DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding (NRC, 2011). In the geosciences, content knowledge derives from all the "spheres, the complex interactions of components of the Earth system, applications of first principles from allied sciences, an understanding of "deep time", and approaches that emphasize the interpretive and historical nature of geoscience. Insights gained from the theory and practice of the cognitive and learning sciences that demonstrate how people learn, as well as research on learning from other STEM disciplines, have helped inform the development of geoscience curricular initiatives. The Earth Science Curriculum Project (1963) was strongly influenced by Piaget and emphasized hands-on, experiential learning. Recognizing that education research was thriving in related STEM disciplines a NSF report (NSF 97-171) recommended "... that GEO and EHR both support research in geoscience education, helping geoscientists to work with colleagues in fields such as educational and cognitive psychology, in order to facilitate development of a new generation of geoscience educators." An NSF sponsored workshop, Bringing Research on Learning to the Geosciences (2002) brought together geoscience educators and cognitive scientists to explore areas of mutual interest, and identified a research agenda that included study of spatial learning, temporal learning, learning about complex systems, use of visualizations in geoscience learning, characterization of expert learning, and learning environments. Subsequent events have focused on building new communities of scholars, such as the On the Cutting Edge faculty professional development workshops, extensive collections of online resources, and networks of scholars that have addressed teaching

  1. KSC-02pd2030

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The first stage of a Delta II rocket arrives at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  2. KSC-02pd2032

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., watch as the first stage of the Delta II rocket is raised to a vertical position. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  3. KSC-02pd2046

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., the second stage of a Delta II rocket sits mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  4. KSC-02pd2036

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is ready to be lifted up the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  5. KSC-02pd2045

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., help guide the interstage of the Delta II rocket into position for mating with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  6. KSC-02pd2031

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is in the process of being raised to a vertical position on NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  7. KSC-02pd2038

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The interstage of the Delta II rocket arrives at NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  8. KSC-02pd2037

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is moved into place in the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  9. KSC-02pd2043

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., help guide the interstage of the Delta II rocket into position for mating with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  10. KSC-02pd2034

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers check the lower end of the first stage of the Delta II rocket before it is lifted up the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  11. KSC-02pd2047

    NASA Image and Video Library

    2002-10-24

    KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., a solid rocket booster is lifted into an upright position for mating to a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  12. KSC-02pd2033

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is raised to a vertical position at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  13. KSC-02pd2044

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., help guide the interstage of the Delta II rocket toward the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  14. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.

    2013-12-01

    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader

  15. Teaching Geoethics Across the Geoscience Curriculum

    NASA Astrophysics Data System (ADS)

    Mogk, David; Bruckner, Monica; Kieffer, Susan; Geissman, John; Reidy, Michael; Taylor, Shaun; Vallero, Daniel

    2015-04-01

    Training in geoethics is an important part of pre-professional development of geoscientists. Professional societies, governmental agencies, and employers of the geoscience workforce increasingly expect that students have had some training in ethics to guide their professional lives, and the public demands that scientists abide by the highest standards of ethical conduct. The nature of the geosciences exposes the profession to ethical issues that derive from our work in a complex, dynamic Earth system with an incomplete geologic record and a high degree of uncertainty and ambiguity in our findings. The geosciences also address topics such as geohazards and resource development that have ethical dimensions that impact on the health, security, public policies, and economic well-being of society. However, there is currently no formal course of study to integrate geoethics into the geoscience curriculum and few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. The workshop addressed topics such as where and how should geoethics be taught in a range of courses including introductory courses for non-majors, as embedded modules in existing geoscience courses, or as a dedicated course for majors on geoethics; what are the best pedagogic practices in teaching ethics, including lessons learned from cognate disciplines (philosophy, biology, engineering); what are the goals for teaching geoethics, and what assessments can be used to demonstrate mastery of ethical principles; what resources currently exist to support teaching geoethics, and what new resources are needed? The workshop also explored four distinct but related aspects of geoethics: 1) Geoethics and self: what are the internal attributes of a geoscientist that establish the ethical

  16. Geoscience Diversity Enhancement Project: Student Responses.

    ERIC Educational Resources Information Center

    Rodrigue, Christine M.; Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Ramirez-Herrera, Maria Teresa; Behl, Richard; Francis, Robert D.; Larson, Daniel O.; Hazen, Crisanne

    This paper describes an interdisciplinary project at California State University (Long Beach) designed to increase the attractiveness of the geosciences to underrepresented groups. The project is called the Geoscience Diversity Enhancement Project (GDEP). It is a 3-year program which began in the fall of 2001 with funding from the National Science…

  17. Highlighting Successful Strategies for Engaging Minority Students in the Geosciences

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2017-12-01

    Igniting interest and creativity in students for the geosciences oftentimes require innovation, bold `outside-the-box' thinking, and perseverance, particularly for minority students for whom the preparation for the discipline and its lucrative pathways to the geoscience workforce are regrettably unfamiliar and woefully inadequate. The enrollment, retention, participation, and graduation rates of minority students in STEM generally and in the geosciences particularly remain dismally low. However, a coupled, strategic geoscience model initiative at the New York City College of Technology (City Tech) of the City University of New York has been making steady in-roads of progress, and it offers practical solutions to improve minority student engagement in the geosciences. Aided by funding from the National Science Foundation (NSF), two geoscience-centric programs were created from NSF REU and NSF IUSE grants, and these programs have been successfully implemented and administered at City Tech. This presentation shares the hybrid geoscience research initiatives, the multi-tiered mentoring structures, the transformative geoscience workforce preparation, and a plethora of other vital bastions of support that made the overall program successful. Minority undergraduate scholars of the program have either moved on to graduate school, to the geoscience workforce, or they persist with greater levels of success in their STEM disciplines.

  18. Geoscience and the 21st Century Workforce

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Bralower, T. J.; Blockstein, D.; Keane, C. M.; Kirk, K. B.; Schejbal, D.; Wilson, C. E.

    2013-12-01

    Geoscience knowledge and skills play new roles in the workforce as our society addresses the challenges of living safely and sustainably on Earth. As a result, we expect a wider range of future career opportunities for students with education in the geosciences and related fields. A workshop offered by the InTeGrate STEP Center on 'Geoscience and the 21st Century Workforce' brought together representatives from 24 programs with a substantial geoscience component, representatives from different employment sectors, and workforce scholars to explore the intersections between geoscience education and employment. As has been reported elsewhere, employment in energy, environmental and extractive sectors for geoscientists with core geology, quantitative and communication skills is expected to be robust over the next decade as demand for resources grow and a significant part of the current workforce retires. Relatively little is known about employment opportunities in emerging areas such as green energy or sustainability consulting. Employers at the workshop from all sectors are seeking the combination of strong technical, quantitative, communication, time management, and critical thinking skills. The specific technical skills are highly specific to the employer and employment needs. Thus there is not a single answer to the question 'What skills make a student employable?'. Employers at this workshop emphasized the value of data analysis, quantitative, and problem solving skills over broad awareness of policy issues. Employers value the ability to articulate an appropriate, effective, creative solution to problems. Employers are also very interested in enthusiasm and drive. Participants felt that the learning outcomes that their programs have in place were in line with the needs expressed by employers. Preparing students for the workforce requires attention to professional skills, as well as to the skills needed to identify career pathways and land a job. This critical

  19. Visual Analytics for Heterogeneous Geoscience Data

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.

    2017-12-01

    Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We

  20. Refined Simulation of Satellite Laser Altimeter Full Echo Waveform

    NASA Astrophysics Data System (ADS)

    Men, H.; Xing, Y.; Li, G.; Gao, X.; Zhao, Y.; Gao, X.

    2018-04-01

    The return waveform of satellite laser altimeter plays vital role in the satellite parameters designation, data processing and application. In this paper, a method of refined full waveform simulation is proposed based on the reflectivity of the ground target, the true emission waveform and the Laser Profile Array (LPA). The ICESat/GLAS data is used as the validation data. Finally, we evaluated the simulation accuracy with the correlation coefficient. It was found that the accuracy of echo simulation could be significantly improved by considering the reflectivity of the ground target and the emission waveform. However, the laser intensity distribution recorded by the LPA has little effect on the echo simulation accuracy when compared with the distribution of the simulated laser energy. At last, we proposed a refinement idea by analyzing the experimental results, in the hope of providing references for the waveform data simulation and processing of GF-7 satellite in the future.

  1. Translational Geoscience: Converting Geoscience Innovation into Societal Impacts

    NASA Astrophysics Data System (ADS)

    Schiffries, C. M.

    2015-12-01

    Translational geoscience — which involves the conversion of geoscience discovery into societal, economic, and environmental impacts — has significant potential to generate large benefits but has received little systematic attention or resources. In contrast, translational medicine — which focuses on the conversion of scientific discovery into health improvement — has grown enormously in the past decade and provides useful models for other fields. Elias Zerhouni [1] developed a "new vision" for translational science to "ensure that extraordinary scientific advances of the past decade will be rapidly captured, translated, and disseminated for the benefit of all Americans." According to Francis Collins, "Opportunities to advance the discipline of translational science have never been better. We must move forward now. Science and society cannot afford to do otherwise." On 9 July 2015, the White House issued a memorandum directing U.S. federal agencies to focus on translating research into broader impacts, including commercial products and decision-making frameworks [3]. Natural hazards mitigation is one of many geoscience topics that would benefit from advances in translational science. This paper demonstrates that natural hazards mitigation can benefit from advances in translational science that address such topics as improving emergency preparedness, communicating life-saving information to government officials and citizens, explaining false positives and false negatives, working with multiple stakeholders and organizations across all sectors of the economy and all levels of government, and collaborating across a broad range of disciplines. [1] Zerhouni, EA (2005) New England Journal of Medicine 353(15):1621-1623. [2] Collins, FS (2011) Science Translational Medicine 3(90):1-6. [3] Donovan, S and Holdren, JP (2015) Multi-agency science and technology priorities for the FY 2017 budget. Executive Office of the President of the United States, 5 pp.

  2. A Library Network for the Geosciences.

    ERIC Educational Resources Information Center

    Olsen, Wallace C.

    The concept paper prepared by the American Geological Institute (AGI) Committee on Geoscience Information is evaluated and areas which need more detailed plans if the geoscience community is to be persuaded of the need for a library network are discussed. For example: the concept plan does not display adequate awareness or concern for the role of…

  3. An outline of planetary geoscience. [philosophy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A philosophy for planetary geoscience is presented to aid in addressing a number of major scientific questions; answers to these questions should constitute the basic geoscientific knowledge of the solar system. However, any compilation of major questions or basic knowledge in planetary geoscience involves compromises and somewhat arbitrary boundaries that reflect the prevalent level of understanding at the time.

  4. Social Technologies to Jump Start Geoscience Careers

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; Martinez, Cynthia; Gonzales, Leila

    2010-05-01

    Collaborative and social technologies have been increasingly used to facilitate distributed data collection and observation in science. However, "Web 2.0" and basic social media are seeing limited coordinated use in building student and early-career geoscientists knowledge and understanding of the profession and career for which they have undertaken. The current generation of geology students and early career professionals are used to ready access to myriad of information and interaction opportunities, but they remain largely unaware about the geoscience profession, what the full scope of their opportunities are, and how to reach across institutional and subdisciplinary boundaries to build their own professional network. The American Geological Institute Workforce Program has tracked and supported the human resources of the geosciences since 1952. With the looming retirement of Baby Boomers, increasing demand for quality geoscientists, and a continued modest supply of students entering the geosciences, AGI is working to strengthen the human resource pipeline in the geosciences globally. One aspect of this effort is the GeoConnection Network, which is an integrated set of social networking, media sharing and communication Web 2.0 applications designed to engage students in thinking about careers in the geosciences and enabling them to build their own personal professional network. Developed by the American Geological Institute (AGI), GeoConnection links practicing and prospective geoscientists in an informal setting to share information about the geoscience profession, including student and career opportunities, current events, and future trends in the geosciences. The network includes a Facebook fan page, YouTube Channel, Twitter account and GeoSpectrum blog, with the goal of helping science organizations and departments recruit future talent to the geoscience workforce. On the social-networking platform, Facebook, the GeoConnection page is a forum for students and

  5. Diversifying Geoscience by Preparing Faculty as Workshop Leaders to Promote Inclusive Teaching and Inclusive Geoscience Departments

    NASA Astrophysics Data System (ADS)

    Macdonald, H.; Manduca, C. A.; Beane, R. J.; Doser, D. I.; Ebanks, S. C.; Hodder, J.; McDaris, J. R.; Ormand, C. J.

    2017-12-01

    Efforts to broaden participation in the geosciences require that faculty implement inclusive practices in their teaching and their departments. Two national projects are building the capacity for faculty and departments to implement inclusive practices. The NAGT/InTeGrate Traveling Workshops Program (TWP) and the Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project each prepares a cadre of geoscience educators to lead workshops that provide opportunities for faculty and departments across the country to enhance their abilities to implement inclusive teaching practices and develop inclusive environments with the goal of increasing diversity in the geosciences. Both projects prepare faculty to design and lead interactive workshops that build on the research base, emphasize practical applications and strategies, enable participants to share their knowledge and experience, and include time for reflection and action planning. The curriculum common to both projects includes a framework of support for the whole student, supporting all students, data on diversity in the geosciences, and evidence-based strategies for inclusive teaching and developing inclusive environments that faculty and departments can implement. Other workshop topics include classroom strategies for engaging all students, addressing implicit bias and stereotype threat, and attracting diverse students to departments or programs and helping them thrive. Online resources for each project provide support beyond the workshops. The TWP brings together educators from different institutional types and experiences to develop materials and design a workshop offered to departments and organizations nationwide that request the workshop; the workshop leaders then customize the workshop for that audience. In SAGE 2YC, a team of leaders used relevant literature to develop workshop materials intended for re-use, and designed a workshop session for SAGE 2YC Faculty Change Agents, who

  6. Geoscience as an Agent for Change in Higher Education

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Orr, C. H.; Kastens, K.

    2016-12-01

    As our society becomes more aware of the realities of the resource and environmental challenges that face us, we have the opportunity to educate more broadly about the role of geoscience in addressing these challenges. The InTeGrate STEP Center is using three strategies to bring learning about the Earth to a wider population of undergraduate students: 1) infusing geoscience into disciplinary courses throughout the curriculum; 2) creating interdisciplinary or transdisciplinary courses with a strong geoscience component that draw a wide audience; and 3) embedding more opportunities to learn about the methods of geoscience and their application to societal challenges in courses for future teachers. InTeGrate is also bringing more emphasis on geoscience in service to societal challenges to geoscience students in introductory geoscience courses and courses for geoscience majors. Teaching science in a societal context is known to make science concepts more accessible for many learners, while learning to use geoscience to solve real world, interdisciplinary problems better prepares students for the 21stcentury workforce and for the decisions they will make as individuals and citizens. InTeGrate has developed materials and models that demonstrate a wide variety of strategies for increasing opportunities to learn about the Earth in a societal context that are freely available on the project website (http://serc.carleton.edu/integrate) and that form the foundation of ongoing professional development opportunities nationwide. The strategies employed by InTeGrate reflect a systems approach to educational transformation, the importance of networks and communities in supporting change, and the need for resources designed for adaptability and use. The project is demonstrating how geoscience can play a larger role in higher education addressing topics of wide interest including 1) preparing a competitive workforce by increasing the STEM skills of students regardless of their major

  7. USA Science and Engineering Festival 2014

    NASA Image and Video Library

    2014-04-25

    An attendee of the USA Science and Engineering Festival is measured by a laser at the NASA Stage. A NASA Staff member describes the Ice, Cloud, and land Elevation Satellite (ICESat) mission, which operated from 2003-2009, and pioneered the use of laser altimeters in space to study the elevation of the Earth's surface and its changes. ICESat-2 is a follow-on mission to continue the ICESat observations and is scheduled to launch in 2017. The USA Science and Engineering Festival took place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  8. The pre-college teaching of geosciences in the USA

    NASA Astrophysics Data System (ADS)

    Stewart, R.

    2003-04-01

    Most students in the USA learn about the earth in elementary and middle school, with most of the learning in middle schools (students who are 12 to 15 years old). A few students study geosciences in high school (ages 15 to 19). In some states, for example Texas, the high-school courses are being de-emphasized, and very few students take geoscience courses after they are 15 years old. As a result, most high-school graduates know little about such important issues as global warming, air pollution, or water quality. In the USA, the geoscience curriculum is guided by national and state standards for teaching mathematics and science. But the guidance is weak. Curricula are determined essentially by local school boards and teachers with some overview by state governments. For example, the State of Texas requires all students to pass standardized examinations in science at grades 5,10, and 11. The tests are based on the Texas Essential Knowledge and Skills, the state's version of the national standards. The teaching of the geosciences, especially oceanography, is hindered by the weak guidance provided by the national standards. Because of the lack of strong guidance, textbooks include far too much material with very weak ties between the geosciences. As a result, students learn many disconnected facts, not earth system science. Improvements in the teaching of the geosciences requires a clear statement of the important in the geosciences. Why must they be taught? What must be taught? What are the major themes of geoscience research? What is important for all to know?

  9. Ethnic differences in geoscience attitudes of college students

    NASA Astrophysics Data System (ADS)

    Whitney, David J.; Behl, Richard J.; Ambos, Elizabeth L.; Francis, R. Daniel; Holk, Gregory; Larson, Daniel O.; Lee, Christopher T.; Rodrique, Christine M.; Wechsler, Suzanne P.

    While a gender balance remains elusive in the geosciences [de Wet et al., 2002], the underrepresentation of ethnic minorities in these fields is at least as great a concern.A number of cultural and social factors have been proposed to explain the poor ethnic minority representation in the geosciences, including limited exposure to nature, deficient academic preparation, inadequate financial resources to pursue higher education, ignorance of career opportunities in the geosciences, insufficient family support, and misconceptions of the field.

  10. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  11. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard William

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds on an earlier examination of student perceptions conducted at Northern Arizona University in 2008 and 2009 but shifts the focus to high school students, a demographic not explored before in this context. The study consisted of three phases each examining a different facet of the advanced geoscience education issue. Phase 1 examined 572 public high schools in 500 school districts across Pennsylvania and evaluated the health of the state's advanced geoscience education through the use of an online survey instrument where districts identified the nature of their geoscience programs (if any). Phase 2 targeted two groups of students at one suburban Philadelphia high school with an established advanced geoscience courses and compared the attitudes and perceptions of those who had been exposed to the curricula to a similar group of students who had not. Descriptive and statistically significant trends were then identified in order to assess the impact of an advanced geoscience education. Phase 3 of the study qualitatively explored the particular attitudes and perceptions of a random sampling of the advanced geoscience study group through the use of one-on-one interviews that looked for more in-depth patterns of priorities and values when students considered such topics as course enrollment, career selection and educational priorities. The results of the study revealed that advanced geoscience coursework was available to only 8% of the state's 548,000 students, a percentage significantly below that of the other typical K-12 science fields. It also exposed several statistically significant differences between the perceptions and

  12. Building Strong Geoscience Departments: Resources and Opportunities

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; MacDonald, R. H.; Feiss, P. G.; Richardson, R. M.; Ormand, C. J.

    2008-12-01

    The Building Strong Geoscience Departments program aims to foster communication and sharing among geoscience departments in order to allow for rapid dissemination of strong ideas and approaches. Sponsored by NAGT, AGI, AGU, and GSA, the project has developed a rich set of web resources, offered workshops on topics from recruiting students to developing a curriculum for the future, and hosted on-line discussion of high interest topics including accreditation. Online resources (http://serc.carleton.edu/departments/index.html) feature successful strategies and specific examples from a wide variety of geoscience departments across North America. These resources address student recruitment, development and assessment of curricula and programs, preparing students for careers, and the future of geoscience. This year the program will offer two new workshops (http://serc.carleton.edu/departments/workshops/index.html). The first, in February, will focus on assessing geoscience programs. Departments are increasingly called upon to assess the impact of their programs on students and to measure the degree to which they meet stated goals. This workshop will showcase the methods and instruments that geoscience departments are using for this assessment, as well as providing opportunities to learn more about evaluation theory and practice from experts in the field. The second workshop, in June, is designed to help departmental teams develop practical solutions to the challenges they currently face. Building on past workshops in this series, participants will help shape the focus of the workshop to meet their needs in areas such as curriculum, assessment, programming, recruitment, or management. A goal of this workshop is to put into broader use the wealth of examples and ideas documented on the project website.

  13. Native Geosciences: Strengthening the Future Through Tribal Traditions

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.; Quigley, I.; Douville, V.; Hollow Horn Bear, D.

    2008-12-01

    Native people have lived for millennia in distinct and unique ways in our natural sacred homelands and environments. Tribal cultures are the expression of deep understandings of geosciences shared through oral histories, language and ceremonies. Today, Native people as all people are living in a definite time of change. The developing awareness of "change" brings forth an immense opportunity to expand and elevate Native geosciences knowledge, specifically in the areas of earth, wind, fire and water. At the center of "change" is the need to balance the needs of the people with the needs of the environment. Native tradition and our inherent understanding of what is "sacred above is sacred below" is the foundation for an emerging multi-faceted approach to increasing the representation of Natives in geosciences. The approach is also a pathway to assist in Tribal language revitalization, connection of oral histories and ceremonies as well as building an intergenerational teaching/learning community. Humboldt State University, Sinte Gleska University and South Dakota School of Mines and Technology in partnership with Northern California (Hoopa, Yurok, & Karuk) and Great Plains (Lakota) Tribes have nurtured Native geosciences learning communities connected to Tribal Sacred Sites and natural resources. These sites include the Black Hills (Mato Paha, Mato Tiplia, Hinhan Kaga Paha, Mako Sica etc.), Klamath River (Ishkêesh), and Hoopa Valley (Natinixwe). Native geosciences learning is centered on the themes of earth, wind, fire and water and Native application of remote sensing technologies. Tribal Elders and Native geoscientists work collaboratively providing Native families in-field experiential intergenerational learning opportunities which invite participants to immerse themselves spiritually, intellectually, physically and emotionally in the experiences. Through this immersion and experience Native students and families strengthen the circle of our future Tribal

  14. LIME: 3D visualisation and interpretation of virtual geoscience models

    NASA Astrophysics Data System (ADS)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  15. An Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation of the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute C.; McDonald, Brian W.; Wallins, Bruce F.; Markus, Thorsten; Neumann, Thomas A.; Brenner, Anita

    2012-01-01

    The Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission has been selected by NASA as a Decadal Survey mission, to be launched in 2016. Mission objectives are to measure land ice elevation, sea ice freeboard/ thickness and changes in these variables and to collect measurements over vegetation that will facilitate determination of canopy height, with an accuracy that will allow prediction of future environmental changes and estimation of sea-level rise. The importance of the ICESat-2 project in estimation of biomass and carbon levels has increased substantially, following the recent cancellation of all other planned NASA missions with vegetation-surveying lidars. Two innovative components will characterize the ICESat-2 lidar: (1) Collection of elevation data by a multi-beam system and (2) application of micropulse lidar (photon counting) technology. A micropulse photon-counting altimeter yields clouds of discrete points, which result from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of returned points to reflectors of interest including canopy and ground in forested areas. The objective of this paper is to derive and validate an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2-type data. Data are based on airborne observations with a Sigma Space micropulse lidar and vary with respect to signal strength, noise levels, photon sampling options and other properties. A mathematical algorithm is developed, using spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors and geostatistical classification parameters and hyperparameters. Validation shows that the algorithm works very well and that ground and canopy elevation, and hence canopy height, can be expected to be observable with a high accuracy during the ICESat

  16. Portrayal of the Geosciences in the New York Times

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Lindstrom, A.

    2017-12-01

    An analysis of the portrayal of science, including the geosciences, in the New York Times shows that geoscience topics dominate front-page science coverage, appearing significantly more often than articles concerning biology, chemistry, or physics. This is significant because the geosciences are sometimes portrayed (in most high schools, for example) as being of less significance or importance than the other sciences, yet their portrayal in what is arguably the leading U.S. newspaper shows just the opposite - that the geosciences are the most relevant and newsworthy of the sciences. We analyzed NY Times front pages and Tuesday "Science Times" sections for 2012 - 2015, and looked at many parameters including science discipline, the kind of article (research, policy, human-interest, etc.), correlations to the "big ideas" of the Next Generation Science Standards, and for the geosciences, a break-down of sub-disciplines. For the front pages, we looked at both full articles and call-outs to articles on later pages. For front-page full articles, geoscience-related articles were more frequent (almost 60%) than biology, chemistry, and physics combined. Including call-outs to later articles, the geosciences still made the most front-page appearances (almost 40%), and this included the fact that 1/3 of front-page science articles were medicine-related, which accounted for nearly all of the biology and chemistry articles. Interestingly, what the NY Times perceived as "science" differed significantly: 60% of all Tuesday "Science Times" articles were medicine-related, and even removing these, biology (40%) edged the geosciences (35%) as the most frequent Science Times articles. Of the front-page geoscience articles, the topics were dominated each year by natural hazards, natural resources, and human impacts, with the percentage of human-impact-related articles almost doubling over the 4 years. The most significant 4-year trend was in the attention paid to climate change. For

  17. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  18. Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM

    NASA Astrophysics Data System (ADS)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    An acute STEM crisis exists nationally, and the problem is even more dire among the geosciences. Since about the middle of the last century, fewer undergraduate and graduate degrees have been granted in the geosciences than in any other STEM fields. To help in ameliorating this geoscience plight, particularly from among members of racial and ethnic groups that are underrepresented in STEM fields, the New York City College of Technology (City Tech) launched a vibrant geoscience program and convened a community of STEM students who are interested in learning about the geosciences. This program creates and introduces geoscience knowledge and opportunities to a diverse undergraduate student population that was never before exposed to geoscience courses at City Tech. This geoscience project is funded by the NSF OEDG program, and it brings awareness, knowledge, and geoscience opportunities to City Tech's students in a variety of ways. Firstly, two new geoscience courses have been created and introduced. One course is on Environmental Remote Sensing, and the other course is an Introduction to the Physics of Natural Disasters. The Remote Sensing course highlights the physical and mathematical principles underlying remote sensing techniques. It covers the radiative transfer equation, atmospheric sounding techniques, interferometric and lidar systems, and an introduction to image processing. Guest lecturers are invited to present their expertise on various geoscience topics. These sessions are open to all City Tech students, not just to those students who enroll in the course. The Introduction to the Physics of Natural Disasters course is expected to be offered in Spring 2013. This highly relevant, fundamental course will be open to all students, especially to non-science majors. The course focuses on natural disasters, the processes that control them, and their devastating impacts to human life and structures. Students will be introduced to the nature, causes, risks

  19. Monitoring Reservoir Storage in South Asia from Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Gao, H.; Naz, B.

    2013-12-01

    Realtime reservoir storage information is essential for accurate flood monitoring and prediction in South Asia, where the fatality rate (by area) due to floods is among the highest in the world. However, South Asia is dominated by international river basins where communications among neighboring countries about reservoir storage and management are extremely limited. In this study, we use a suite of NASA satellite observations to achieve high quality estimation of reservoir storage and storage variations at near realtime in South Asia. The monitoring approach employs vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 250 m MOD13Q1 product and the surface elevation data from the Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat). This approach contains four steps: 1) identifying the reservoirs with ICESat GLAS overpasses and extracting the elevation data for these locations; 2) using the K-means method for water classification from MODIS andapplying a novel post-classification algorithm to enhance water area estimation accuracy; 3) deriving the relationship between the MODIS water surface area and the ICESat elevation; and 4) estimating the storage of reservoirs over time based on the elevation-area relationship and the MODIS water area time series. For evaluation purposes, we compared the satellite-based reservoir storage with gauge observations for 16 reservoirs in South Asia. The storage estimates were highly correlated with observations (R = 0.92 to 0.98), with values for the normalized root mean square error (NRMSE) ranging from 8.7% to 25.2%. Using this approach, storage and storage variations were estimated for 16 South Asia reservoirs from 2000 to 2012.

  20. Ka`Imi`Ike: Explorations in the Geosciences from an Indigenous Perspective

    NASA Astrophysics Data System (ADS)

    Gibson, B. A.; Puniwai, N.; Sing, D.; Ziegler-Chong, S.

    2006-12-01

    The Ka `Imi `Ike Program is a recent initiative at the University of Hawai`i whose mission is to recruit and retain Native Hawaiian and Pacific Islanders (NHPI) to disciplines within the geosciences. The Program seeks to create pathways for NHPI students interested in geoscience disciplines through various venues and activities, including linking science with culture and community through a summer boarding experience for incoming freshman or sophomore University of Hawaii students. The 3-week institute, Explorations in Geosciences, was offered for the first time in Summer 2006. The 10 college students who participated were introduced to mentor geoscientists to learn more about the different disciplines and the pathways the scientists took in their careers. Hands-on activities trained students in current technology (such as GPS) and exposed them to how the technology was used in different research applications. A key and crucial component of the Explorations in Geosciences summer program was that "local" or Native Hawaiian role models were selected as the geoscience mentors whenever possible and mostly local and regional examples of geoscience phenomena were used. Moreover, the "science" learned throughout the summer program was linked to local Traditional Environmental Knowledge (TEK) by a Native Hawaiian kumu (teacher). The merging of "western" science with traditional knowledge reinforced geoscience concepts, and afforded the students an opportunity to better understand how a career in the geosciences could be beneficial to them and their community. At the end of the summer institute, the students had to give a final presentation of what geoscience concepts and careers they thought were most interesting to them, and how the program impacted their view of the geosciences. They also had to keep a daily journal which outlined their thoughts about the topics presented each day of the summer institute. Preliminary assessment reveals that several of the students came

  1. An Ontology for Representing Geoscience Theories and Related Knowledge

    NASA Astrophysics Data System (ADS)

    Brodaric, B.

    2009-12-01

    Online scientific research, or e-science, is increasingly reliant on machine-readable representations of scientific data and knowledge. At present, much of the knowledge is represented in ontologies, which typically contain geoscience categories such as ‘water body’, ‘aquifer’, ‘granite’, ‘temperature’, ‘density’, ‘Co2’. While extremely useful for many e-science activities, such categorical representations constitute only a fragment of geoscience knowledge. Also needed are online representations of elements such as geoscience theories, to enable geoscientists to pose and evaluate hypotheses online. To address this need, the Science Knowledge Infrastructure ontology (SKIo) specializes the DOLCE foundational ontology with basic science knowledge primitives such as theory, model, observation, and prediction. Discussed will be SKIo as well as its implementation in the geosciences, including case studies from marine science, environmental science, and geologic mapping. These case studies demonstrate SKIo’s ability to represent a wide spectrum of geoscience knowledge types, to help fuel next generation e-science.

  2. GIRAF 2009 - Taking action on geoscience information across Africa

    NASA Astrophysics Data System (ADS)

    Asch, Kristine

    2010-05-01

    A workshop in Windhoek Between 16 and 20 March 2009 97 participants from 26 African nations, plus four European countries, and representatives from UNESCO, ICSU and IUGS-CGI, held a workshop at the Namibian Geological Survey in Windhoek. The workshop - GIRAF 2009 - Geoscience InfoRmation In Africa - was organised by the Federal Institute for Geosciences and Natural Resources (BGR) and the Geological Survey of Namibia (GSN) at the Namibian Ministry for Mines and Energy and was mainly financed by the German Federal Ministry for Economic Cooperation and Development (BMZ), supported by the IUGS Commission for the Management and Application of Geoscience Information (CGI). The participants came to Namibia to discuss one of the most topical issues in the geological domain - geoscience information and informatics. A prime objective was to set up a pan-African network for exchanging knowledge about geoscience information. GIRAF 2009 builds on the results of a preparatory workshop organised by the CGI and funded by the IUGS, which was held in June 2006 in Maputo at the 21st Colloquium on African Geology - CAG21. This preparatory workshop concentrated on identifying general problems and needs of African geological institutions in discussion with representatives of African geological surveys, universities, private companies and non-governmental organisations. The GIRAF 2009 workshop used the results of this discussion to plan and design its programme Aims In detail the five aims of the GIRAF2009 workshop were: to bring together relevant African authorities, national experts and stakeholders in geoscience information; to initiate the building of a pan-African geoscience information knowledge network to exchange and share geoscience information knowledge and best practice; to integrate the authorities, national experts and experts across Africa into global geoinformation initiatives; to develop a strategic plan for Africa's future in geoscience information; to make Africa a

  3. Remotely-sensed near real-time monitoring of reservoir storage in India

    NASA Astrophysics Data System (ADS)

    Tiwari, A. D.; Mishra, V.

    2017-12-01

    Real-time reservoir storage information at a high temporal resolution is crucial to mitigate the influence of extreme events like floods and droughts. Despite large implications of near real-time reservoir monitoring in India for water resources and irrigation, remotely sensed monitoring systems have been lacking. Here we develop remotely sensed real-time monitoring systems for 91 large reservoirs in India for the period from 2000 to 2017. For the reservoir storage estimation, we combined Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day 250 m Enhanced Vegetation Index (EVI), and Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) ICESat/GLAS elevation data. Vegetation data with the highest temporal resolution available from the MODIS is at 16 days. To increase the temporal resolution to 8 days, we developed the 8-day composite of near infrared, red, and blue band surface reflectance. Surface reflectance 8-Day L3 Global 250m only have NIR band and Red band, therefore, surface reflectance of 8-Day L3 Global at 500m is used for the blue band, which was regridded to 250m spatial resolution. An area-elevation relationship was derived using area from an unsupervised classification of MODIS image followed by an image enhancement and elevation data from ICESat/GLAS. A trial and error method was used to obtain the area-elevation relationship for those reservoirs for which ICESat/GLAS data is not available. The reservoir storages results were compared with the gauge storage data from 2002 to 2009 (training period), which were then evaluated for the period of 2010 to 2016. Our storage estimates were highly correlated with observations (R2 = 0.6 to 0.96), and the normalized root mean square error (NRMSE) ranged between 10% and 50%. We also developed a relationship between precipitation and reservoir storage that can be used for prediction of storage during the dry season.

  4. Why did you decide to become a Geoscience Major: A Critical Incident Study for the Development of Recruiting Programs for Inspiring Interests in the Geosciences Amongst Pre-College Students

    NASA Astrophysics Data System (ADS)

    Carrick, T. L.; Miller, K. C.; Levine, R.; Martinez-Sussmann, C.; Velasco, A. A.

    2011-12-01

    Anecdotally, it is often stated that the majority of students that enter the geosciences usually do so sometime after their initial entrance into college. With the objective of providing concrete and useful information for individuals developing programs for inspiring interest in the Geosciences amongst pre-college students and trying to increase the number of freshman Geoscience majors, we conducted a critical incident study. Twenty-two students, who were undergraduate or graduate Geoscience majors, were asked, "Why did you decide to major in the Geosciences?" in a series of interviews. Their responses were then used to identify over 100 critical incidents, each of which described a specific behavior that was causally responsible for a student's choice to major in Geoscience. Using these critical incidents, we developed a preliminary taxonomy that is comprised of three major categories: Informal Exposure to the Geosciences (e.g., outdoor experiences, family involvement), Formal Exposure to the Geosciences (e.g., academic experiences, program participation) and a Combined Informal and Formal Exposure (e.g., media exposure). Within these three main categories we identified thirteen subcategories. These categories and subcategories, describe, classify, and provide concrete examples of strategies that were responsible for geosciences career choices. As a whole, the taxonomy is valuable as a new, data-based guide for designing geosciences recruitment programs for the pre-college student population.

  5. The Geoscience Ambassador: Training opportunities and skill development for tomorrow's geoscientists

    NASA Astrophysics Data System (ADS)

    Price, Louise

    2017-04-01

    How can high schools geoscience teachers engage younger students who are not taught geoscience subjects at lower key stages? As passionate practitioners of learning, high school teachers are in a seemingly ideal position to inspire young learners to study and pursue a career in the field of geoscience. However, recruitment of students is often challenging if students do not have the opportunity to study the subjects first. For geoscience subjects such as geology to remain sustainable and viable at A-level, it is imperative that high schools invest time and effort in improving student awareness of subjects which students can access later in their academic career. Perhaps one of the greatest, most accessible and overlooked promotional tools for a geoscience subject are the students themselves. In 2016/2017, a new scheme at Hessle High School and Sixth Form in Yorkshire, United Kingdom, offered senior A-level geology students the opportunity to become "Geoscience Ambassadors". These students were recruited to act as champions for their geoscience subject (geology) to support with inspiring and engaging younger students who may otherwise not choose the subject. The traditional method of disseminating learning is to offer "train the trainer" sessions where training is delivered to peers for onward cascaded teaching and education. On returning from the 2016 Geosciences Information for Teachers (GIFT) workshop at EGU, training was provided to other teaching professionals on the activities and key learning points, the training was also disseminated to an enthusiastic group of A-level students to enable them to become Geoscience Ambassadors. This cascade approach moves away from the tradition of training high school staff alone on new pedagogies but additionally trains young and enthusiastic 17 year olds to work with groups of younger students in the local and regional area. Students use their newly discovered knowledge and skills to inspire younger students with their

  6. The Role of Introductory Geosciences in Students' Quantitative Literacy

    NASA Astrophysics Data System (ADS)

    Wenner, J. M.; Manduca, C.; Baer, E. M.

    2006-12-01

    Quantitative literacy is more than mathematics; it is about reasoning with data. Colleges and universities have begun to recognize the distinction between mathematics and quantitative literacy, modifying curricula to reflect the need for numerate citizens. Although students may view geology as 'rocks for jocks', the geosciences are truthfully rife with data, making introductory geoscience topics excellent context for developing the quantitative literacy of students with diverse backgrounds. In addition, many news items that deal with quantitative skills, such as the global warming phenomenon, have their basis in the Earth sciences and can serve as timely examples of the importance of quantitative literacy for all students in introductory geology classrooms. Participants at a workshop held in 2006, 'Infusing Quantitative Literacy into Introductory Geoscience Courses,' discussed and explored the challenges and opportunities associated with the inclusion of quantitative material and brainstormed about effective practices for imparting quantitative literacy to students with diverse backgrounds. The tangible results of this workshop add to the growing collection of quantitative materials available through the DLESE- and NSF-supported Teaching Quantitative Skills in the Geosciences website, housed at SERC. There, faculty can find a collection of pages devoted to the successful incorporation of quantitative literacy in introductory geoscience. The resources on the website are designed to help faculty to increase their comfort with presenting quantitative ideas to students with diverse mathematical abilities. A methods section on "Teaching Quantitative Literacy" (http://serc.carleton.edu/quantskills/methods/quantlit/index.html) focuses on connecting quantitative concepts with geoscience context and provides tips, trouble-shooting advice and examples of quantitative activities. The goal in this section is to provide faculty with material that can be readily incorporated

  7. Developing Short-Term Indicators of Recruitment and Retention in the Geosciences

    NASA Astrophysics Data System (ADS)

    Fuhrman, M.; Gonzalez, R.; Levine, R.

    2004-12-01

    The NSF Opportunities for Enhancing Diversity in the Geosciences (OEDG) program awards grants to projects that are intended to increase participation in geoscience careers by members of groups that have been traditionally underrepresented in the geosciences. OEDG grantee projects use a variety of strategies intended to influence the attitudes, beliefs, and behaviors of underrepresented students at levels from K-12 to graduate school. The ultimate criterion for assessing the success of a project is the number of underrepresented minority students who become geoscientists (and who would not have otherwise become geoscientists). For most projects this criterion can only be observed in the distant future. In order to develop shorter-term indicators of program success, researchers at AIR developed a conceptual framework based on a review of the literature and discussion with geoscientists. This model allowed us to identify an extensive, but not fully comprehensive, set of indicators. There are undoubtedly other potential indicators of recruitment and retention in the geosciences. The research literature reviewed was a general literature, dealing with science, technology, engineering, and/or mathematics (STEM) college major or career choice by individuals who are underrepresented group members, so the model is based on indicators of retention in a general STEM career path rather than a specific geoscience path. Nonetheless, it is our belief that retention in STEM is critical for retention in geoscience. In the past year, AIR staff have conducted a critical incident study to further refine this model. This study focused on factors unique to the geosciences. The goal was to learn about behaviors that encouraged or discouraged someone from becoming a geoscientist, where individual behaviors are termed as "incidents." The preliminary data, the impact of this pilot study on the model, and the revised model will be presented. Some examples of behaviors our study found that

  8. Developing Resources for Teaching Ethics in Geoscience

    NASA Astrophysics Data System (ADS)

    Mogk, David W.; Geissman, John W.

    2014-11-01

    Ethics education is an increasingly important component of the pre-professional training of geoscientists. Geoethics encompasses the values and professional standards required of geoscientists to work responsibly in any geoscience profession and in service to society. Funding agencies (e.g., the National Science Foundation, the National Institutes of Health) require training of graduate students in the responsible conduct of research; employers are increasingly expecting their workers to have basic training in ethics; and the public demands the highest standards of ethical conduct by scientists. However, there is currently no formal course of instruction in ethics in the geoscience curriculum, and few faculty members have the experience, resources, and sometimes willingness required to teach ethics as a component of their geoscience courses.

  9. Development of a multi-sensor elevation time series pole-ward of 86°S in support of altimetry validation and ice sheet mass balance studies

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Brunt, K. M.; Casey, K.; Medley, B.; Neumann, T.; Manizade, S.; Linkswiler, M. A.

    2015-12-01

    In order to produce a cross-calibrated long-term record of ice-surface elevation change for input into ice sheet models and mass balance studies it is necessary to "link the measurements made by airborne laser altimeters, satellite measurements of ICESat, ICESat-2, and CryoSat-2" [IceBridge Level 1 Science Requirements, 2012] and determine the biases and the spatial variations between radar altimeters and laser altimeters using different wavelengths. The convergence zones of all ICESat tracks (86°S) and all ICESat-2 and CryoSat-2 tracks (88°S) are in regions of relatively low accumulation, making them ideal for satellite altimetry calibration. In preparation for ICESat-2 validation, the IceBridge and ICESat-2 science teams have designed IceBridge data acquisitions around 86°S and 88°S. Several aspects need to be considered when comparing and combining elevation measurements from different radar and laser altimeters, including: a) foot print size and spatial sampling pattern; b) accuracy and precision of each data sets; c) varying signal penetration into the snow; and d) changes in geodetic reference frames over time, such as the International Terrestrial Reference Frame (ITRF). The presentation will focus on the analysis of several IceBridge flights around 86 and 88°S with the LVIS and ATM airborne laser altimeters and will evaluate the accuracy and precision of these data sets. To properly interpret the observed elevation change (dh/dt) as mass change, however, the various processes that control surface elevation fluctuations must be quantified and therefore future work will quantify the spatial variability in snow accumulation rates pole-ward of 86°S and in particular around 88°S. Our goal is to develop a cross-validated multi-sensor time series of surface elevation change pole-ward of 86°S that, in combination with measured accumulation rates, will support ICESat-2 calibration and validation and ice sheet mass balance studies.

  10. High Demand, Core Geosciences, and Meeting the Challenges through Online Approaches

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; Leahy, P. Patrick; Houlton, Heather; Wilson, Carolyn

    2014-05-01

    As the geosciences has evolved over the last several decades, so too has undergraduate geoscience education, both from a standpoint of curriculum and educational experience. In the United States, we have been experiencing very strong growth in enrollments in geoscience, as well as employment demand for the last 7 years. That growth has been largely fueled by all aspects of the energy boom in the US, both from the energy production side and the environmental management side. Interestingly the portfolio of experiences and knowledge required are strongly congruent as evidenced from results of the American Geosciences Institute's National Geoscience Exit Survey. Likewise, the demand for new geoscientists in the US is outstripping even the nearly unprecedented growth in enrollments and degrees, which is calling into question the geosciences' inability to effectively reach into the largest growing segments of the U.S. College population - underrepresented minorities. We will also examine the results of the AGI Survey on Geoscience Online Learning and examine how the results of that survey are rectified with Peter Smith's "Middle Third" theory on "wasted talent" because of spatial, economic, and social dislocation. In particular, the geosciences are late to the online learning game in the United States and most faculty engaged in such activities are "lone wolves" in their department operating with little knowledge of the support structures that exist in such development. Yet the most cited barriers for faculty not engaging actively in online learning is the assertion that laboratory and field experiences will be lost and thus fight engaging in this medium. However, the survey shows that faculty are discovering novel approaches to address these issues, many of which have great application to enabling geoscience programs in the United States to meet the expanding demand for geoscience degrees.

  11. KSC-02pd2042

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., watch as the interstage of the Delta II rocket is lifted to a level where it can be mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  12. KSC-02pd2060

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - A second stage is lifted at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., for placement atop a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  13. KSC-02pd2041

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The interstage of the Delta II rocket is lifted up the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The interstage will eventually house the second stage and will be mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  14. KSC-02pd2057

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - At NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., the launch tower has been rolled back to reveal a Delta II rocket with its solid rocket boosters attached. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  15. KSC-02pd2061

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - A second stage is lifted into place at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., atop a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  16. KSC-02pd2049

    NASA Image and Video Library

    2002-10-24

    KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., a solid rocket booster is lifted into an upright position beside the Delta II rocket to which it will be attached. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  17. KSC-02pd2039

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - On NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., the interstage of the Delta II rocket is ready to be lifted up the tower for mating with the first stage (seen behind it). The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  18. KSC-02pd2059

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - A second stage is lifted at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., for placement on a Delta II rocket The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  19. KSC-02pd2040

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers at the base of the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., watch as the interstage of the Delta II rocket is lifted up the tower. The interstage will eventually house the second stage and will be mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  20. KSC-02pd2048

    NASA Image and Video Library

    2002-10-24

    KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., a solid rocket booster is lifted into an upright position as preparations continue to mate it to a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  1. KSC-02pd2062

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - A second stage is inserted into an interstage atop a Delta II rocket at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  2. KSC-02pd2035

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - With the transporter moved from below, the first stage of the Delta II rocket is suspended in air waiting to be lifted up the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  3. KSC-02pd2058

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - The second stage arrives at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., for placement on a Delta II rocket The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  4. KSC-02pd2063

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - A second stage is inserted and secured into an interstage atop a Delta II rocket at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  5. Broadening Participation in the Geosciences through Participatory Research

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Hodgson, A.; Wagner, R.; Bennett, B.

    2009-12-01

    In spite of many efforts, the geosciences remain less diverse than the overall population of the United States and even other sciences. This lack of diversity threatens the quality of the science, the long-term viability of our workforce, and the ability to leverage scientific insight in service of societal needs. Drawing on new research into diversity specific to geosciences, this talk will explore underlying causes for the lack of diversity in the atmospheric and related sciences. Causes include the few geoscience majors available at institutions with large minority enrollment; a historic association of the geosciences with extractive industries which are negatively perceived by many minority communities, and the perception that science offers less opportunity for service than other fields. This presentation suggests a new approach - community-based participatory research (CBPR). In CBPR, which was first applied in the field of rural development and has been used for many years in biomedical fields, scientists and community leaders work together to design a research agenda that simultaneously advances basic understanding and addresses community priorities. Good CBPR integrates research, education and capacity-building. A CBRP approach to geoscience can address the perceived lack of relevance and may start to ameliorate a history of negative experiences of geosciences. Since CBPR works best when it is community-initiated, it can provide an ideal place for Minority-Serving Institutions to launch their own locally-relevant programs in the geosciences. The presentation will conclude by describing three new examples of CBPR. The first is NCAR’s partnerships to explore climate change and its impact on Tribal lands. The second approach a Denver-area listening conference that will identify and articulate climate-change related priorities in the rapidly-growing Denver-area Latino community. Finally, we will describe a Google-funded project that brings together

  6. NASA's Long-Term Archive (LTA) of ICESat Data at the National Snow and Ice Data Center (NSIDC)

    NASA Astrophysics Data System (ADS)

    Fowler, D. K.; Moses, J. F.; Dimarzio, J. P.; Webster, D.

    2011-12-01

    Data Stewardship, preservation, and reproducibility are becoming principal parts of a data manager's work. In an era of distributed data and information systems, where the host location ought to be transparent to the internet user, it is of vital importance that organizations make a commitment to both current and long-term goals of data management and the preservation of scientific data. NASA's EOS Data and Information System (EOSDIS) is a distributed system of discipline-specific archives and mission-specific science data processing facilities. Satellite missions and instruments go through a lifecycle that involves pre-launch calibration, on-orbit data acquisition and product generation, and final reprocessing. Data products and descriptions flow to the archives for distribution on a regular basis during the active part of the mission. However there is additional information from the product generation and science teams needed to ensure the observations will be useful for long term climate studies. Examples include ancillary input datasets, product generation software, and production history as developed by the team during the course of product generation. These data and information will need to be archived after product data processing is completed. Using inputs from the USGCRP Workshop on Long Term Archive Requirements (1998), discussions with EOS instrument teams, and input from the 2011 ESIPS Federation meeting, NASA is developing a set of Earth science data and information content requirements for long term preservation that will ultimately be used for all the EOS missions as they come to completion. Since the ICESat/GLAS mission is one of the first to come to an end, NASA and NSIDC are preparing for long-term support of the ICESat mission data now. For a long-term archive, it is imperative that there is sufficient information about how products were prepared in order to convince future researchers that the scientific results are accurate, understandable

  7. Recently Identified Changes to the Demographics of the Current and Future Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2014-12-01

    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. Much of these trends are displayed in detail in AGI's Status of the Geoscience Workforce reports. In May, AGI released the Status of the Geoscience Workforce 2014, which updates these trends since the 2011 edition of this report. These updates highlight areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. Some examples of these changes include the increase in the number of states that will allow a high school course of earth sciences as a credit for graduation and the increasing importance of two-year college students as a talent pool for the geosciences, with over 25% of geoscience bachelor's graduates attending a two-year college for at least a semester. The continued increase in field camp hinted that these programs are at or reaching capacity. The overall number of faculty and research staff at four-year institutions increased slightly, but the percentages of academics in tenure-track positions continued to slowly decrease since 2009. However, the percentage of female faculty rose in 2013 for all tenure-track positions. Major geoscience industries, such as petroleum and mining, have seen an influx of early-career geoscientists. Demographic trends in the various industries in the geoscience workforce forecasted a shortage of approximately 135,000 geoscientists in the next decade—a decrease from the previously predicted shortage of 150,000 geoscientists. These changes and other changes identified in the Status of the Geoscience Workforce will be addressed in this talk.

  8. Receiver Design, Performance Analysis, and Evaluation for Space-Borne Laser Altimeters and Space-to-Space Laser Ranging Systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1996-01-01

    This progress report consists of two separate reports. The first one describes our work on the use of variable gain amplifiers to increase the receiver dynamic range of space borne laser altimeters such as NASA's Geoscience Laser Altimeter Systems (GLAS). The requirement of the receiver dynamic range was first calculated. A breadboard variable gain amplifier circuit was made and the performance was fully characterized. The circuit will also be tested in flight on board the Shuttle Laser Altimeter (SLA-02) next year. The second report describes our research on the master clock oscillator frequency calibration for space borne laser altimeter systems using global positioning system (GPS) receivers.

  9. InTeGrate: Transforming the Teaching of Geoscience and Sustainability

    NASA Astrophysics Data System (ADS)

    Blockstein, D.; Manduca, C. A.; Bralower, T. J.; Castendyk, D.; Egger, A. E.; Gosselin, D. C.; Iverson, E. A.; Matson, P. A.; MacGregor, J.; Mcconnell, D. A.; Mogk, D. W.; Nevle, R. J.; Oches, E. A.; Steer, D. N.; Wiese, K.

    2012-12-01

    InTeGrate is an NSF-funded community project to improve geoscience literacy and build a workforce that can apply geoscience principles to address societal issues. Three workshops offered this year by InTeGrate and its partner, On the Cutting Edge, addressed strategies for bringing together geoscience and sustainability within geoscience courses and programs, in interdisciplinary courses and programs, and in courses and programs in other disciplines or schools including arts and humanities, health science, and business. Participants in all workshops described the power of teaching geoscience in the context of sustainability and the utility of this approach in engaging students with geoscience, including student populations not traditionally represented in the sciences. Faculty involved in both courses and programs seek to teach important skills including the ability to think about systems and to make connections between local observations and challenges and global phenomena and issues. Better articulation of these skills, including learning outcomes and assessments, as well as documenting the relationship between these skills and employment opportunities were identified as important areas for further work. To support widespread integration of geoscience and sustainability concepts, these workshops initiated collections describing current teaching activities, courses, and programs. InTeGrate will continue to build these collections in collaboration with On the Cutting Edge and Building Strong Geoscience Departments, and through open contributions by individual faculty and programs. In addition, InTeGrate began developing new teaching modules and courses. Materials for use in introductory geoscience and environmental science/studies courses, distance learning courses, and courses for education majors are being developed and tested by teams of faculty drawn from at least three institutions, including several members from two-year colleges. An assessment team is

  10. Immersive Virtual Reality Field Trips in the Geosciences: Integrating Geodetic Data in Undergraduate Geoscience Courses

    NASA Astrophysics Data System (ADS)

    La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.

    2017-12-01

    High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our

  11. Supporting Geoscience Students at Two-Year Colleges: Career Preparation and Academic Success

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Kirk, K. B.; Layou, K.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.

    2013-12-01

    Two-year colleges play an important role in developing a competent and creative geoscience workforce, teaching science to pre-service K-12 teachers, producing earth-science literate citizens, and providing a foundation for broadening participation in the geosciences. The Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project has developed web resources for geoscience faculty on the preparation and support of students in two-year colleges (2YCs). Online resources developed from two topical workshops and several national, regional, and local workshops around the country focus on two main categories: Career Preparation and Workforce Development, and Supporting Student Success in Geoscience at Two-year Colleges. The Career Preparation and Workforce Development resources were developed to help faculty make the case that careers in the geosciences provide a range of possibilities for students and to support preparation for the geoscience workforce and for transfer to four-year programs as geoscience majors. Many two-year college students are unaware of geoscience career opportunities and these materials help illuminate possible futures for them. Resources include an overview of what geoscientists do; profiles of possible careers along with the preparation necessary to qualify for them; geoscience employer perspectives about jobs and the knowledge, skills, abilities and attitudes they are looking for in their employees; employment trends in sectors of the economy that employ geoscience professionals; examples of geotechnician workforce programs (e.g. Advanced Technological Education Centers, environmental technology programs, marine technician programs); and career resources available from professional societies. The website also provides information to support student recruitment into the geosciences and facilitate student transfer to geoscience programs at four- year colleges and universities, including sections on advising support before

  12. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.

    2012-12-01

    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong

  13. New Resources on the Building Strong Geoscience Departments Website

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; Manduca, C. A.; MacDonald, H.

    2009-12-01

    The Building Strong Geoscience Departments program aims to foster communication and sharing among geoscience departments in order to allow for rapid dissemination of strong ideas and approaches. Sponsored by NAGT, AGI, AGU, and GSA, the project has developed a rich set of web resources and offered workshops on high-interest topics, such as recruiting students, curriculum development, and program assessment. The Building Strong Geoscience Departments website has a growing collection of resources, drawn from workshop discussions and presentations, showcasing how geoscience departments approach curriculum revision, student recruitment, and program assessment. Recruitment resources consist of specific examples of a wide variety of successful approaches to student recruitment from departments at a wide array of institutions. Curricular feature pages framing the process of curriculum development or revision and a collection of dozens of geoscience curricula, searchable by degree program name. Each curriculum in the collection includes a diagram of the course sequence and structure. Program assessment resources include a collection of assessment instruments, ranging from alumni surveys and student exit interviews to course evaluations and rubrics for assessing student work, and a collection of assessment planning documents, ranging from mission and vision statements through student learning goals and outcomes statements to departmental assessment plans and guidelines for external reviews. These recruitment strategies, curricula, and assessment instruments and documents have been contributed by the geoscience community. In addition, we are developing a collection of case studies of individual departments, highlighting challenges they have faced and the strategies they have used to successfully overcome those challenges. We welcome additional contributions to all of these collections. These online resources support the Building Strong Geoscience Departments Visiting

  14. Geoscience Education Research, Development, and Practice at Arizona State University

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.

    2009-12-01

    Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional

  15. Learning from One Another: On-line Resources for Geoscience Departments

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; MacDonald, R. H.; Feiss, P. G.; Richardson, R. R.; Ormand, C.

    2007-12-01

    Geoscience departments are facing times of great change, bringing both opportunity and challenge. While each department is unique with its own mission, institutional setting, strengths and assets, they share much in common and are all much better positioned to maximize gains and minimize losses if they are well informed of the experiences of other geoscience departments. To this end, over the past four years the Building Strong Geoscience Departments project has offered workshops and sessions at professional society meetings to foster sharing and discussion among geoscience departments in the United States and Canada. Topics that have sparked extended discussion include: Where are the geosciences headed from the standpoints of scientific research and employment? How are departments responding to new interdisciplinary opportunities in research and teaching? What are the threats and opportunities facing geoscience departments nationwide? How are departments recruiting students and faculty? What do geoscience department programs look like both from the standpoint of curriculum and activities beyond the curriculum? How do geoscience programs prepare students for professional careers? What makes a department strong in the eyes of the faculty or the eyes of the institution? This rich discussion has included voices from community colleges, four year colleges and universities, comprehensive and research universities, and minority serving institutions. Participants agree that these discussions have helped them in thinking strategically about their own departments, have provided valuable ideas and resources, and have lead to changes in their program and activities. A central aspect of the project has been the development of a website that captures the information shared at these meetings and provides resources that support departments in exploring these topics. The website (serc.carleton.edu/departments) is a community resource and all departments are invited to both learn

  16. Preparing Future Geoscience Professionals: Needs, Strategies, Programs, and Online Resources

    NASA Astrophysics Data System (ADS)

    Macdonald, H.; Manduca, C. A.; Ormand, C. J.; Dunbar, R. W.; Beane, R. J.; Bruckner, M.; Bralower, T. J.; Feiss, P. G.; Tewksbury, B. J.; Wiese, K.

    2011-12-01

    Geoscience faculty, departments, and programs play an important role in preparing future geoscience professionals. One challenge is supporting the diversity of student goals for future employment and the needs of a wide range of potential employers. Students in geoscience degree programs pursue careers in traditional geoscience industries; in geoscience education and research (including K-12 teaching); and opportunities at the intersection of geoscience and other fields (e.g., policy, law, business). The Building Strong Geoscience Departments project has documented a range of approaches that departments use to support the development of geoscience majors as professionals (serc.carleton.edu/departments). On the Cutting Edge, a professional development program, supports graduate students and post-doctoral fellows interested in pursuing an academic career through workshops, webinars, and online resources (serc.carleton.edu/NAGTWorkshops/careerprep). Geoscience departments work at the intersection of student interests and employer needs. Commonly cited program goals that align with employer needs include mastery of geoscience content; field experience; skill in problem solving, quantitative reasoning, communication, and collaboration; and the ability to learn independently and take a project from start to finish. Departments and faculty can address workforce issues by 1) implementing of degree programs that develop the knowledge, skills, and attitudes that students need, while recognizing that students have a diversity of career goals; 2) introducing career options to majors and potential majors and encouraging exploration of options; 3) advising students on how to prepare for specific career paths; 4) helping students develop into professionals, and 5) supporting students in the job search. It is valuable to build connections with geoscience employers, work with alumni and foster connections between students and alumni with similar career interests, collaborate with

  17. The ENGAGE Workshop: Encouraging Networks between Geoscientists and Geoscience Education Researchers

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; LaDue, N.; Taber, J.

    2015-12-01

    The geoscience education community has made great strides in the study of teaching and learning at the undergraduate level, particularly with respect to solid earth geology. Nevertheless, the 2012 National Research Council report, Discipline-based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering suggests that the geosciences lag behind other science disciplines in the integration of education research within the discipline and the establishment of a broad research base. In January 2015, early career researchers from earth, atmospheric, ocean, and polar sciences and geoscience education research (GER) gathered for the ENGAGE workshop. The primary goal of ENGAGE was to broaden awareness of discipline-based research in the geosciences and catalyze relationships and understanding between these groups of scientists. An organizing committee of geoscientists and GERs designed a two-day workshop with a variety of activities to engage participants in the establishment of a shared understanding of education research and the development of project ideas through collaborative teams. Thirty-three participants were selected from over 100 applicants, based on disciplinary diversity and demonstrated interest in geoscience education research. Invited speakers and panelists also provided examples of successful cross-disciplinary collaborations. As a result of this workshop, participants indicated that they gained new perspectives on geoscience education and research, networked outside of their discipline, and are likely to increase their involvement in geoscience education research. In fact, 26 of 28 participants indicated they are now better prepared to enter into cross-disciplinary collaborations within the next year. The workshop evaluation revealed that the physical scientists particularly valued opportunities for informal networking and collaborative work developing geoscience education research projects. Meanwhile, GERs valued

  18. Academic provenance: Investigation of pathways that lead students into the geosciences

    NASA Astrophysics Data System (ADS)

    Houlton, Heather R.

    Pathways that lead students into the geosciences as a college major have not been fully explored in the current literature, despite the recent studies on the "geoscience pipeline model." Anecdotal evidence suggests low quality geoscience curriculum in K-12 education, lack of visibility of the discipline and lack of knowledge about geoscience careers contribute to low geoscience enrollments at universities. This study investigated the reasons why college students decided to major in the geosciences. Students' interests, experiences, motivations and desired future careers were examined to develop a pathway model. In addition, self-efficacy was used to inform pathway analyses, as it is an influential factor in academic major and career choice. These results and interpretations have strong implications for recruitment and retention in academia and industry. A semi-structured interview protocol was developed, which was informed by John Flanagan's critical incident theory. The responses to this interview were used to identify common experiences that diverse students shared for reasons they became geoscience majors. Researchers used self-efficacy theory by Alfred Bandura to assess students' pathways. Seventeen undergraduate geoscience majors from two U.S. Midwest research universities were sampled for cross-comparison and analysis. Qualitative analyses led to the development of six categorical steps for the geoscience pathway. The six pathway steps are: innate attributes/interest sources, pre-college critical incidents, college critical incidents, current/near future goals, expected career attributes and desired future careers. Although, how students traversed through each step was unique for individuals, similar patterns were identified between different populations in our participants: Natives, Immigrants and Refugees. In addition, critical incidents were found to act on behavior in two different ways: to support and confirm decision-making behavior (supportive critical

  19. Impacting earthquake science and geoscience education: Educational programming to earthquake relocation

    NASA Astrophysics Data System (ADS)

    Carrick, Tina Louise

    This dissertation is comprised of four studies: three related to research on geoscience education and another seismological study of the South Island of New Zealand. The geoscience education research is grounded in 10 years of data collection and its implications for best practices for recruitment and retention of underrepresented minority students into higher education in the geosciences. The seismological component contains results from the relocation of earthquakes from the 2009 Dusky Sound Mw 7.8 event, South Island, New Zealand. In recent years, many have cited a major concern that U.S. is not producing enough STEM graduates to fit the forecasted economic need. This situation is exacerbated by the fact that underrepresented minorities are becoming a growing portion of the population, and people in these groups enter STEM careers at rates much smaller than their proportion of the populations. Among the STEM disciplines the Geosciences are the worst at attracting young people from underrepresented minorities. This dissertation reports on results the Pathways program at the University of Texas at El Paso Pathways which sought to create a geoscience recruitment and training network in El Paso, Texas to increase the number of Hispanic Americans students to attain higher degrees and increase the awareness of the geosciences from 2002-2012. Two elements of the program were a summer program for high school students and an undergraduate research program conducted during the academic year, called PREP. Data collected from pre- and post-surveys from the summer program showed statistically significant positive changes in attitudes towards the geosciences. Longitudinal data shows a strong positive correlation of the program with retention of participants in the geoscience pipeline. Results from the undergraduate research program show that it produced far more women and minority geoscience professionals than national norms. Combination of the institutional data, focus

  20. Quantitative Literacy: Geosciences and Beyond

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; McCallum, W. G.

    2002-12-01

    Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.

  1. Mission Performance of the GLAS Thermal Control System - 7 Years In Orbit

    NASA Technical Reports Server (NTRS)

    Grob, Eric W.

    2010-01-01

    ICESat (Ice, Cloud and land Elevation Satellite) was launched in 2003 carrying a single science instrument - the Geoscience Laser Altimeter System (GLAS). Its primary mission was to measure polar ice thickness. The GLAS thermal control architecture utilized propylene Loop Heat Pipe (LHP) technology to provide selectable and stable temperature control for the lasers and other electronics over a widely varying mission thermal environment. To minimize expected degradation of the radiators, Optical Solar Reflectors (OSRs) were used for both LHP radiators to minimize degradation caused by UV exposure in the various spacecraft attitudes necessary throughout the mission. Developed as a Class C mission, with selective redundancy, the thermal architecture was single st ring, except for temperature sensors used for heater control during normal operations. Although originally planned for continuous laser operations over the nominal three year science mission, laser anomalies limited operations to discrete measurement campaigns repeated throughout the year. For trending of the science data, these periods were selected to occur at approximately the same time each year, which resulted in operations during similar attitudes and beta angles. Despite the laser life issues, the LHPs have operated nearly continuously over this time, being non-operational for only brief periods. Using mission telemetry, this paper looks at the performance of the thermal subsystem during these periods and provides an assessment of radiator degradation over the mission lifetime.

  2. The Non-traditional Student, a new Geoscience Resource

    NASA Astrophysics Data System (ADS)

    Ferrell, R.; Anderson, L.; Bart, P.; Lorenzo, J. M.; Tomkin, J.

    2004-12-01

    The LSU GAEMP (Geoscience Alliance to Enhance Minority Participation) program targets non-traditional students, those without an undergraduate degree in geoscience, in its efforts to attract African American and Hispanic students from minority serving institutions (MSIs) to pursue careers in geology and geophysics. Faculty collaborators at nine MSIs (seven HBCUs and two HSIs) work closely with LSU faculty to advertise the program and to select student participants. The enthusiastic cooperation of the MSI Professors is crucial to success. The ideal student is a junior-level, high academic achiever with a major in one of the basic sciences, mathematics, engineering or computer science. A special summer course uses a focus on research to introduce basic geoscience concepts. Students are encouraged to design a cooperative research project to complete during their last year at their home institution and to apply for GAEMP graduate fellowships leading directly to an M.S. or Ph.D. in Geoscience. There are several reasons for the emphasis on these students 1. They have special knowledge and skills to use in graduate programs in geophysics, geochemistry, geobiology, etc. 2. Third-year students have demonstrated their ability to succeed in the academic world and are ready to select a graduate program that will enhance their employment prospects. 3. The MSIs, especially some of the physics programs at the collaborating HBCUs, provide well-trained, highly motivated graduates who have compiled excellent records in highly ranked graduate programs. This pool of talent is not available in the geosciences because most MSIs do not have geoscience degree programs. 4. This group provides a unique niche for focus as there are many programs concentrating on K-12 students and the recruitment of traditional majors. In the first year of GAEMP, 12 students participated in the summer program, six elected to pursue research projects and expressed interest in applying for the fellowships, and

  3. The Quantitative Preparation of Future Geoscience Graduate Students

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Hancock, G. S.

    2006-12-01

    Modern geoscience is a highly quantitative science. In February, a small group of faculty and graduate students from across the country met to discuss the quantitative preparation of geoscience majors for graduate school. The group included ten faculty supervising graduate students in quantitative areas spanning the earth, atmosphere, and ocean sciences; five current graduate students in these areas; and five faculty teaching undergraduate students in the spectrum of institutions preparing students for graduate work. Discussion focused in four key ares: Are incoming graduate students adequately prepared for the quantitative aspects of graduate geoscience programs? What are the essential quantitative skills are that are required for success in graduate school? What are perceived as the important courses to prepare students for the quantitative aspects of graduate school? What programs/resources would be valuable in helping faculty/departments improve the quantitative preparation of students? The participants concluded that strengthening the quantitative preparation of undergraduate geoscience majors would increase their opportunities in graduate school. While specifics differed amongst disciplines, a special importance was placed on developing the ability to use quantitative skills to solve geoscience problems. This requires the ability to pose problems so they can be addressed quantitatively, understand the relationship between quantitative concepts and physical representations, visualize mathematics, test the reasonableness of quantitative results, creatively move forward from existing models/techniques/approaches, and move between quantitative and verbal descriptions. A list of important quantitative competencies desirable in incoming graduate students includes mechanical skills in basic mathematics, functions, multi-variate analysis, statistics and calculus, as well as skills in logical analysis and the ability to learn independently in quantitative ways

  4. Identifying Important Career Indicators of Undergraduate Geoscience Students Upon Completion of Their Degree

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2012-12-01

    The American Geosciences Institute (AGI) decided to create the National Geoscience Student Exit Survey in order to identify the initial pathways into the workforce for these graduating students, as well as assess their preparedness for entering the workforce upon graduation. The creation of this survey stemmed from a combination of experiences with the AGI/AGU Survey of Doctorates and discussions at the following Science Education Research Center (SERC) workshops: "Developing Pathways to Strong Programs for the Future", "Strengthening Your Geoscience Program", and "Assessing Geoscience Programs". These events identified distinct gaps in understanding the experiences and perspectives of geoscience students during one of their most profound professional transitions. Therefore, the idea for the survey arose as a way to evaluate how the discipline is preparing and educating students, as well as identifying the students' desired career paths. The discussions at the workshops solidified the need for this survey and created the initial framework for the first pilot of the survey. The purpose of this assessment tool is to evaluate student preparedness for entering the geosciences workforce; identify student decision points for entering geosciences fields and remaining in the geosciences workforce; identify geosciences fields that students pursue in undergraduate and graduate school; collect information on students' expected career trajectories and geosciences professions; identify geosciences career sectors that are hiring new graduates; collect information about salary projections; overall effectiveness of geosciences departments regionally and nationally; demonstrate the value of geosciences degrees to future students, the institutions, and employers; and establish a benchmark to perform longitudinal studies of geosciences graduates to understand their career pathways and impacts of their educational experiences on these decisions. AGI's Student Exit Survey went through

  5. Promoting the Geosciences for Minority Students in the Urban Coastal Environment of New York City

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.

    2013-12-01

    The 'Creating and Sustaining Diversity in the Geo-Sciences among Students and Teachers in the Urban Coastal Environment of New York City' project was awarded to New York City College of Technology (City Tech) by the National Science Foundation to promote the geosciences for students in middle and high schools and for undergraduates, especially for those who are underrepresented minorities in STEM. For the undergraduate students at City Tech, this project: 1) created and introduced geoscience knowledge and opportunities to its diverse undergraduate student population where geoscience is not currently taught at City Tech; and 2) created geoscience articulation agreements. For the middle and high schools, this project: 1) provided inquiry-oriented geoscience experiences (pedagogical and research) for students; 2) provided standards-based professional development (pedagogical and research) in Earth Science for teachers; 3) developed teachers' inquiry-oriented instructional techniques through the GLOBE program; 4) increased teacher content knowledge and confidence in the geosciences; 5) engaged and intrigued students in the application of geoscience activities in a virtual environment; 6) provided students and teachers exposure in the geosciences through trip visitations and seminars; and 7) created community-based geoscience outreach activities. Results from this program have shown significant increases in the students (grades 6-16) understanding, participation, appreciation, and awareness of the geosciences. Geoscience modules have been created and new geosciences courses have been offered. Additionally, students and teachers were engaged in state-of-the-art geoscience research projects, and they were involved in many geoscience events and initiatives. In summary, the activities combined geoscience research experiences with a robust learning community that have produced holistic and engaging stimuli for the scientific and academic growth and development of grades 6

  6. The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns Across a Boreal Forest Gradient

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Rosette, J.; Sun, G.; North, P.; Nelson, R. F.; Dubayah, R. O.; Ranson, K. J.; Kharuk, V.

    2014-01-01

    The Forest Light (FLIGHT) radiative transfer model was used to examine the uncertainty of vegetation structure measurements from NASA's planned ICESat-2 photon counting light detection and ranging (LiDAR) instrument across a synthetic Larix forest gradient in the taiga-tundra ecotone. The simulations demonstrate how measurements from the planned spaceborne mission, which differ from those of previous LiDAR systems, may perform across a boreal forest to non-forest structure gradient in globally important ecological region of northern Siberia. We used a modified version of FLIGHT to simulate the acquisition parameters of ICESat-2. Modeled returns were analyzed from collections of sequential footprints along LiDAR tracks (link-scales) of lengths ranging from 20 m-90 m. These link-scales traversed synthetic forest stands that were initialized with parameters drawn from field surveys in Siberian Larix forests. LiDAR returns from vegetation were compiled for 100 simulated LiDAR collections for each 10 Mg · ha(exp -1) interval in the 0-100 Mg · ha(exp -1) above-ground biomass density (AGB) forest gradient. Canopy height metrics were computed and AGB was inferred from empirical models. The root mean square error (RMSE) and RMSE uncertainty associated with the distribution of inferred AGB within each AGB interval across the gradient was examined. Simulation results of the bright daylight and low vegetation reflectivity conditions for collecting photon counting LiDAR with no topographic relief show that 1-2 photons are returned for 79%-88% of LiDAR shots. Signal photons account for approximately 67% of all LiDAR returns, while approximately 50% of shots result in 1 signal photon returned. The proportion of these signal photon returns do not differ significantly (p greater than 0.05) for AGB intervals greater than 20 Mg · ha(exp -1). The 50m link-scale approximates the finest horizontal resolution (length) at which photon counting LiDAR collection provides strong model

  7. Using Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) in a range of geoscience applications

    NASA Astrophysics Data System (ADS)

    Daniels, M. D.; Kerkez, B.; Chandrasekar, V.; Graves, S. J.; Stamps, D. S.; Dye, M. J.; Keiser, K.; Martin, C. L.; Gooch, S. R.

    2016-12-01

    Cloud-Hosted Real-time Data Services for the Geosciences, or CHORDS, addresses the ever-increasing importance of real-time scientific data, particularly in mission critical scenarios, where informed decisions must be made rapidly. Part of the broader EarthCube initiative, CHORDS seeks to investigate the role of real-time data in the geosciences. Many of the phenomenon occurring within the geosciences, ranging from hurricanes and severe weather, to earthquakes, volcanoes and floods, can benefit from better handling of real-time data. The National Science Foundation funds many small teams of researchers residing at Universities whose currently inaccessible measurements could contribute to a better understanding of these phenomenon in order to ultimately improve forecasts and predictions. This lack of easy accessibility prohibits advanced algorithm and workflow development that could be initiated or enhanced by these data streams. Often the development of tools for the broad dissemination of their valuable real-time data is a large IT overhead from a pure scientific perspective, and could benefit from an easy to use, scalable, cloud-based solution to facilitate access. CHORDS proposes to make a very diverse suite of real-time data available to the broader geosciences community in order to allow innovative new science in these areas to thrive. We highlight the recently developed CHORDS portal tools and processing systems aimed at addressing some of the gaps in handling real-time data, particularly in the provisioning of data from the "long-tail" scientific community through a simple interface deployed in the cloud. Examples shown include hydrology, atmosphere and solid earth sensors. Broad use of the CHORDS framework will expand the role of real-time data within the geosciences, and enhance the potential of streaming data sources to enable adaptive experimentation and real-time hypothesis testing. CHORDS enables real-time data to be discovered and accessed using

  8. Gulf Coast Disaster Management: Forest Damage Detection and Carbon Flux Estimation

    NASA Astrophysics Data System (ADS)

    Maki, A. E.; Childs, L. M.; Jones, J.; Matthews, C.; Spindel, D.; Batina, M.; Malik, S.; Allain, M.; Brooks, A. O.; Brozen, M.; Chappell, C.; Frey, J. W.

    2008-12-01

    Along the Gulf Coast and Eastern Seaboard, tropical storms and hurricanes annually cause defoliation and deforestation amongst coastal forests. After a severe storm clears, there is an urgent need to assess impacts on timber resources for targeting state and national resources to assist in recovery. It is important to identify damaged areas following the storm, due to their increased probability of fire risk, as well as the effect upon the carbon budget. Better understanding and management of the immediate and future effects on the carbon cycle in the coastal forest ecosystem is especially important. Current methods of detection involve assessment through ground-based field surveys, aerial surveys, computer modeling of meteorological data, space-borne remote sensing, and Forest Inventory and Analysis field plots. Introducing remotely-sensed data from NASA and NASA-partnered Earth Observation Systems (EOS), this project seeks to improve the current methodology and focuses on a need for methods that are more synoptic than field surveys and more closely linked to the phenomenology of tree loss and damage than passive remote sensing methods. The primary concentration is on the utilization of Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) data products to detect changes in forest canopy height as an indicator of post-hurricane forest disturbances. By analyzing ICESat data over areas affected by Hurricane Katrina, this study shows that ICESsat is a useful method of detecting canopy height change, though further research is needed in mixed forest areas. Other EOS utilized in this study include Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and the NASA verified and validated international Advanced Wide Field Sensor (AWiFS) sensor. This study addresses how NASA could apply ICESat data to contribute to an improved method of detecting hurricane-caused forest damage in coastal areas; thus to pinpoint areas more

  9. Summaries of FY 1996 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and ismore » also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.« less

  10. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Field, Christopher T.; Sun, Xiaoli

    1996-01-01

    We report here the design and the performance measurements of the breadboard receiver of the Geoscience Laser Altimeter System (GLAS). The measured ranging accuracy was better than 2 cm and 10 cm for 5 ns and 30 ns wide received laser pulses under the expected received signal level, which agreed well with the theoretical analysis. The measured receiver sensitivity or the link margin was also consistent with the theory. The effects of the waveform digitizer sample rate and resolution were also measured.

  11. Teaching All Geoscience Students: Lessons Learned From Two-Year Colleges

    NASA Astrophysics Data System (ADS)

    Baer, Eric; Blodgett, Robert H.; Macdonald, R. Heather

    2013-11-01

    Geoscience faculty at 2-year colleges (2YCs) are at the forefront of efforts to improve student learning and success while at the same time broadening participation in the geosciences. Faculty of 2YCs instruct large numbers of students from underrepresented minority groups and many students who are the first in their families to pursue higher education. Geoscience classes at 2YCs also typically have large enrollments of nontraditional students, English language learners, and students with learning disabilities.

  12. Building a Community for Art and Geoscience

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Ellins, K. K.

    2014-12-01

    Several new avenues are in place for building and supporting a community of people interested in the art and geoscience connections. Although sessions advocating for art in teaching geoscience have been scattered through geoscience professional meetings for several decades, there is now a sustained presence of artists and geoscientists with their research and projects at the annual meeting of the American Geophysical Union. In 2011, 13 abstracts were submitted and, in 2013, 20 talks and posters were presented at the annual meeting. Participants have requested more ways to connect with each other as well as advocate for this movement of art and science to others. Several words can describe new initiatives to do this: Social, Collaborative, Connected, Informed, Networked, and Included. Social activities of informal dinners, lunches, and happy hour for interested people in the past year have provided opportunity for presenters at AGU to spend time getting to know one another. This has resulted in at least two new collaborative projects. The nascent Bella Roca and more established Geology in Art websites and their associated blogs at www.bellaroca.org and http://geologyinart.blogspot.com, respectively are dedicated to highlighting the work of artists inspired by the geosciences, connecting people and informing the community of exhibits and opportunities for collaboration. Bella Roca with its social media of Facebook (Bella Roca) and Twitter (@BellRocaGeo), is a direct outgrowth of the recent 2012 and 2013 AGU sessions and, hopefully, can be grown and sustained for this community. Articles in professional journals will also help inform the broader geoscience community of the benefit of engaging with artists and designers for both improved science knowledge and communication. Organizations such as Leonardo, the International Society for the Arts, Sciences and Technology, the Art Science Gallery in Austin, Texas also promote networking among artists and scientists with

  13. Writing fiction about geoscience

    NASA Astrophysics Data System (ADS)

    Andrews, S.

    2013-12-01

    Employment in geology provides excellent preparation for writing mystery novels that teach geoscience. While doing pure research at the USGS under the mentorship of Edwin D. McKee, I learned that the rigors of the scientific method could be applied not only to scientific inquiry but to any search for what is true, including the art of storytelling (the oldest and still most potent form of communication), which in turn supports science. Geoscience constructs narratives of what has happened or what might happen; hence, to communicate my findings, I must present a story. Having developed my writing skills while preparing colleague-reviewed papers (which required that I learn to set my ego aside and survive brutal critiques), the many rounds of edits required to push a novel through a publishing house were a snap. My geoscience training for becoming a novelist continued through private industry, consultancy, and academia. Employment as a petroleum geologist added the pragmatism of bottom-line economics and working to deadlines to my skill set, and nothing could have prepared me for surviving publishers' rejections and mixed reviews better than having to pitch drilling projects to jaded oil patch managers, especially just before lunchtime, when I was all that stood between them and their first martinis of the day. Environmental consulting was an education in ignorant human tricks and the politics of resource consumption gone astray. When teaching at the college level and guest lecturing at primary and secondary schools, my students taught me that nothing was going to stick unless I related the story of geoscience to their lives. When choosing a story form for my novels, I found the mystery apropos because geoscientists are detectives. Like police detectives, we work with fragmentary and often hidden evidence using deductive logic, though our corpses tend to be much, much older or not dead yet. Throughout my career, I learned that negative stereotypes about scientists

  14. Geoinformatics: Transforming data to knowledge for geosciences

    USGS Publications Warehouse

    Sinha, A.K.; Malik, Z.; Rezgui, A.; Barnes, C.G.; Lin, K.; Heiken, G.; Thomas, W.A.; Gundersen, L.C.; Raskin, R.; Jackson, I.; Fox, P.; McGuinness, D.; Seber, D.; Zimmerman, H.

    2010-01-01

    An integrative view of Earth as a system, based on multidisciplinary data, has become one of the most compelling reasons for research and education in the geosciences. It is now necessary to establish a modern infrastructure that can support the transformation of data to knowledge. Such an information infrastructure for geosciences is contained within the emerging science of geoinformatics, which seeks to promote the utilizetion and integration of complex, multidisciplinary data in seeking solutions to geosciencebased societal challenges.

  15. Lessons Learned for Recruiting and Retaining Native Hawaiians in the Geosciences

    NASA Astrophysics Data System (ADS)

    Gibson, B. A.; Brock, L.; Levine, R.; Spencer, L.; Wai, B.; Puniwai, N.

    2008-12-01

    Many Native Hawaiian and Pacific Island (NHPI) college students are unaware of the majors or career possibilities within geoscience disciplines. This notably can be seen by the low number of NHPI students who graduate with a bachelor's degree in an ocean or Earth science-related field within the University of Hawaii (UH) System. To help address this disparity, the Ka'Imi'Ike Program, which is funded through the Opportunities for Enhancing Diversity in the Geosciences (OEDG) Program at NSF, was started at the University of Hawaii at Manoa to attract and support NHPI students in the geosciences. A key component of the program is the recruiting of NHPI students to disciplines in the geosciences through linking geoscience concepts with their culture and community. This includes a 3-week Explorations in the Geosciences summer institute that introduces incoming freshmen and current UH sophomores to the earth, weather, and ocean sciences via hands-on field and lab experiences. Ka'Imi'Ike also provides limited support for current geoscience majors through scholarships and internship opportunities. Results from student journals and pre- and post- questionnaires given to students during the summer institute have shown the program to be successful in increasing student interest and knowledge of the geoscience disciplines. Demonstrating the links between scientific thought and NHPI culture has been crucial to peaking the students' interest in the geosciences. The results also show that there is a need to include more specifics related to local career options, especially information that can be shared with the students' family and community as our data show that parents play a formidable role in the career path a student chooses. Moreover, in order to provide a more contiguous pipeline of support for NHPI students, Ka'Imi'Ike is beginning to network its students from the summer institute to other programs, such as the C-MORE Scholars Program, which offer undergraduate research

  16. Developing a Program to Increase Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Prendeville, J. C.

    2001-05-01

    The Geosciences have a history of poor participation by minorities- African Americans, Hispanics, Native Americans and persons with disabilities. Demographic data concerning population trends over the next decades make it clear that, without intervention, underrepresentation of these groups in the geosciences will only worsen. The Directorate for Geosciences of the National Science Foundation has acknowledged the problem of underrepresentation and the loss of intellectual resources that it represents. The Directorate has established a program to create a pool of students from underrepresented groups who will take their place in the future as both scientific researchers and educators, as well as scientifically knowledgeable citizens. The strategy employed in developing the Geosciences Diversity program emphasizes community direction and inclusion. Steps in developing the program included examining data that demonstrate where the "leaks" in the educational pipeline occur; reviewing the programs that are offered by the NSF, by other federal agencies and by professional societies; and gaining insights from individuals who have developed or managed programs that have similar goals.

  17. PROGRESS (PROmoting Geoscience Research Education and SuccesS): a novel mentoring program for retaining undergraduate women in the geosciences

    NASA Astrophysics Data System (ADS)

    Clinton, Sandra; Adams, Amanda; Barnes, Rebecca; Bloodhart, Brittany; Bowker, Cheryl; Burt, Melissa; Godfrey, Elaine; Henderson, Heather; Hernandez, Paul; Pollack, Ilana; Sample McMeeking, Laura Beth; Sayers, Jennifer; Fischer, Emily

    2017-04-01

    Women still remain underrepresented in many areas of the geosciences, and this underrepresentation often begins early in their university career. In 2015, an interdisciplinary team including expertise in the geosciences (multiple sub-disciplines), psychology, education and STEM persistence began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in geoscience fields. The developed program (PROGRESS) focuses on mentoring undergraduate female students, starting in their 1st and 2nd year, from two geographically disparate areas of the United States: the Carolinas in the southeastern part of the United States and the Front Range of the Rocky Mountains in the western part of the United States. The two regions were chosen due to their different student demographics, as well as the differences in the number of working female geoscientists in the region. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. Four cohorts of students were recruited and participated in our professional development workshops (88 participants in Fall 2015 and 94 participants in Fall 2016). Components of the workshops included perceptions of the geosciences, women in STEM misconceptions, identifying personal strengths, coping strategies, and skills on building their own personal network. The web-platform (http://geosciencewomen.org/), designed to enable peer-mentoring and provide resources, was launched in the fall of 2015 and is used by both cohorts in conjunction with social media platforms. We will present an overview of the major components of the program, discuss lessons learned during 2015 that were applied to 2016, and share preliminary analyses of surveys and interviews with study participants from the first two years of a five-year longitudinal study that follows PROGRESS participants and a control group.

  18. Due Diligence for Students - Geoscience Skills and Demographic Data for Career Planning

    NASA Astrophysics Data System (ADS)

    Keane, C. M.

    2001-05-01

    A major focus of the American Geological Institute's Human Resources program has been providing demographic and employment data so that students and mentors can better understand the dynamics of a career in the geosciences. AGI has a long history of collecting these data for the geoscience community, including 46 years of geoscience enrollments, periodic comprehensive surveys of employment in the discipline, and working closely with other organizations that collect these data. AGI has launched a new suite of surveys to examine the skills desired by employers and the skills provided through a geoscience education. Historical demographic and enrollment data allow a number of the major trends to be examined. These trends include the dominance of industry as employer in the geosciences and how the cyclicity of geoscience employment has become more complex with the development of the environmental sector over the last 30 years. Additionally, demographics are changing rapidly, with a geoscience workforce that is changing rapidly in age, gender, and background. The discipline may also be facing a change in the nature of geoscience employment, with chronic shortages of skilled geoscientists, but will job opportunities actually increase. This may not be as paradoxical as it appears. The geoindustries are attempting to adjust their strategies to dampen business cycles, which then may lead to more stable employment levels for geoscientists, but they are also broadening their vision of who can become competent geoscientists.

  19. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  20. The use of geoscience methods for terrestrial forensic searches

    NASA Astrophysics Data System (ADS)

    Pringle, J. K.; Ruffell, A.; Jervis, J. R.; Donnelly, L.; McKinley, J.; Hansen, J.; Morgan, R.; Pirrie, D.; Harrison, M.

    2012-08-01

    Geoscience methods are increasingly being utilised in criminal, environmental and humanitarian forensic investigations, and the use of such methods is supported by a growing body of experimental and theoretical research. Geoscience search techniques can complement traditional methodologies in the search for buried objects, including clandestine graves, weapons, explosives, drugs, illegal weapons, hazardous waste and vehicles. This paper details recent advances in search and detection methods, with case studies and reviews. Relevant examples are given, together with a generalised workflow for search and suggested detection technique(s) table. Forensic geoscience techniques are continuing to rapidly evolve to assist search investigators to detect hitherto difficult to locate forensic targets.

  1. Greenland uplift and regional sea level changes from ICESat observations and GIA modelling

    NASA Astrophysics Data System (ADS)

    Spada, G.; Ruggieri, G.; Sørensen, L. S.; Nielsen, K.; Melini, D.; Colleoni, F.

    2012-06-01

    We study the implications of a recently published mass balance of the Greenland ice sheet (GrIS), derived from repeated surface elevation measurements from NASA's ice cloud and land elevation satellite (ICESat) for the time period between 2003 and 2008. To characterize the effects of this new, high-resolution GrIS mass balance, we study the time-variations of various geophysical quantities in response to the current mass loss. They include vertical uplift and subsidence, geoid height variations, global patterns of sea level change (or fingerprints), and regional sea level variations along the coasts of Greenland. Long-wavelength uplifts and gravity variations in response to current or past ice thickness variations are obtained solving the sea level equation, which accounts for both the elastic and the viscoelastic components of deformation. To capture the short-wavelength components of vertical uplift in response to current ice mass loss, which is not resolved by satellite gravity observations, we have specifically developed a high-resolution regional elastic rebound (ER) model. The elastic component of vertical uplift is combined with estimates of the viscoelastic displacement fields associated with the process of glacial-isostatic adjustment (GIA), according to a set of published ice chronologies and associated mantle rheological profiles. We compare the sensitivity of global positioning system (GPS) observations along the coasts of Greenland to the ongoing ER and GIA. In notable contrast with past reports, we show that vertical velocities obtained by GPS data from five stations with sufficiently long records and from one tide gauge at the GrIS margins can be reconciled with model predictions based on the ICE-5G deglaciation model and the ER associated with the new ICESat-derived mass balance.

  2. Geoscience Diversity Experiential Simulations (GeoDES) Workshop Report

    NASA Astrophysics Data System (ADS)

    Houlton, H. R.; Chen, J.; Brown, B.; Samuels, D.; Brinkworth, C.

    2017-12-01

    The geosciences have to solve increasingly complex problems relating to earth and society, as resources become limited, natural hazards and changes in climate impact larger communities, and as people interacting with Earth become more interconnected. However, the profession has dismally low representation from geoscientists who are from diverse racial, ethnic, or socioeconomic backgrounds, as well as women in leadership roles. This underrepresentation also includes individuals whose gender identity/expression is non-binary or gender-conforming, or those who have physical, cognitive, or emotional disabilities. This lack of diversity ultimately impacts our profession's ability to produce our best science and work with the communities that we strive to protect and serve as stewards of the earth. As part of the NSF GOLD solicitation, we developed a project (Geoscience Diversity Experiential Simulations) to train 30 faculty and administrators to be "champions for diversity" and combat the hostile climates in geoscience departments. We hosted a 3-day workshop in November that used virtual simulations to give participants experience in building the skills to react to situations regarding bias, discrimination, microaggressions, or bullying often cited in geoscience culture. Participants interacted with avatars on screen, who responded to participants' actions and choices, given certain scenarios. The scenarios are framed within a geoscience perspective; we integrated qualitative interview data from informants who experienced inequitable judgement, bias, discrimination, or harassment during their geoscience careers. The simulations gave learners a safe environment to practice and build self-efficacy in how to professionally and productively engage peers in difficult conversations. In addition, we obtained pre-workshop survey data about participants' understanding regarding Diversity, Equity, and Inclusion practices, as well as observation data of participants' responses

  3. A Concept of an Information System for the Geosciences.

    ERIC Educational Resources Information Center

    American Geological Inst., Washington, DC.

    The American Geological Institute's Committee on Geoscience Information prepared this report as the terminal point to the first phase of its long-term goal, to develop a system for facilitating information transfer in the geosciences. The Concept report was presented by Dr. William Hambleton, chairman of the AGI Committee on Geoscience…

  4. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  5. Closing the Geoscience Talent Gap

    NASA Astrophysics Data System (ADS)

    Keane, C. M.

    2007-12-01

    The geosciences, like most technical professions, are facing a critical talent gap into the future, with too few new students entering the profession and too many opportunities for that supply. This situation has evolved as a result of multiple forces, including increased commodity prices, greater strain on water resources, development encroachment on hazardous terrain, and the attrition of Baby Boomers from the workforce. Demand is not the only issue at hand, the legacy of lagging supplies of new students and consequently new professionals has enhanced the problem. The supply issue is a result of the fallout from the 1986 oil bust and the unsubstantiated hopes for an environmental boom in the 1990"s, coupled by the lengthening of academic careers, indefinitely delaying the predicted exodus of faculty. All of these issues are evident in the data collected by AGI, its Member Societies, and the federal government. Two new factors are beginning to play an increased role in the success or failure of geosciences programs: namely student attitudes towards careers and the ability for departments to successfully bridge the demands of the incoming student with the requirements for an individual to succeed in the profession. An issue often lost for geosciences departments is that 95% of geoscientists in the United States work in the private sector or for government agencies, and that those employers drive the profession forward in the long term. Departments that manage to balance the student needs with an end source of gainful employment are witnessing great success and growth. Currently, programs with strong roots in mining, petroleum, and groundwater hydrology are booming, as are graduate programs with strong technology components. The challenge is recognizing the booms, busts, and long-term trends and positioning programs to weather the changes yet retain the core of their program. This level of planning coupled with a profession-wide effort to improve initial recruitment

  6. Geoscience Education Research: The Role of Collaborations with Education Researchers and Cognitive Scientists

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.

    2011-12-01

    Geoscience Education Research aims to improve geoscience teaching and learning by understanding clearly the characteristics of geoscience expertise, the path from novice to expert, and the educational practices that can speed students along this path. In addition to expertise in geoscience and education, this research requires an understanding of learning -the domain of cognitive scientists. Beginning in 2002, a series of workshops and events focused on bringing together geoscientists, education researchers, and cognitive scientists to facilitate productive geoscience education research collaborations. These activities produced reports, papers, books, websites and a blog developing a research agenda for geoscience education research at a variety of scales: articulating the nature of geoscience expertise, and the overall importance of observation and a systems approach; focusing attention on geologic time, spatial skills, field work, and complex systems; and identifying key research questions in areas where new technology is changing methods in geoscience research and education. Cognitive scientists and education researchers played critical roles in developing this agenda. Where geoscientists ask questions that spring from their rich understanding of the discipline, cognitive scientists and education researchers ask questions from their experience with teaching and learning in a wide variety of disciplines and settings. These interactions tend to crystallize the questions of highest importance in addressing challenges of geoscience learning and to identify productive targets for collaborative research. Further, they serve as effective mechanisms for bringing research techniques and results from other fields into geoscience education. Working productively at the intersection of these fields requires teams of cognitive scientists, geoscientists, and education reserachers who share enough knowledge of all three domains to have a common articulation of the research

  7. Teaching Structure from Motion to Undergraduates: New Learning Module for Field Geoscience Courses

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, B. A.; Shervais, K.; Crosby, C. J.; Douglas, B. J.; Crosby, B. T.; Charlevoix, D. J.

    2016-12-01

    With photogrammetry use expanding rapidly, it is essential to integrate these methods into undergraduate geosciences courses. The NSF-funded "GEodetic Tools for Societal Issues" (GETSI) project has recently published a module for field geoscience courses called "Analyzing High Resolution Topography with TLS and SfM" (serc.carleton.edu/getsi/teaching_materials/high-rez-topo/index.html). Structure from motion (SfM) and terrestrial laser scanning (TLS) are two valuable methods for generating high-resolution topographic landscape models. In addition to teaching the basic surveying methods, the module includes several specific applications that are tied to societally important geoscience research questions. The module goals are that students will be able to: 1) design and conduct a complex TLS and/or SfM survey to address a geologic research question; 2) articulate the societal impetus for answering a given research question; and 3) justify why TLS and/or SfM is the appropriate method in some circumstances. The module includes 6 units: Unit 1-TLS Introduction, Unit 1-SfM Introduction, Unit 2 Stratigraphic Section Survey, Unit 3 Fault Scarp Survey, Unit 4 Geomorphic Change Detection Survey, and Unit 5 Summative Assessment. One or both survey methods can be taught. Instructors choose which application/s to use from Units 2-4. Unit 5 Summative Assessment is flexibly written and can be used to assess any of the learned applications or others such as dinosaur tracks or seismic trench photomosaics. Prepared data sets are also provided for courses unable to visit the field. The included SfM learning manuals may also be of interest to researchers seeking to start with SfM; these are "SfM Guide of Instructors and Investigators" and "SfM Data Exploration and Processing Manual (Agisoft)". The module is appropriate for geoscience courses with field components such as field methods, geomorphology, geophysics, tectonics, and structural geology. All GETSI modules are designed and

  8. Visualizing Geoscience Concepts Through Textbook Art (Invited)

    NASA Astrophysics Data System (ADS)

    Marshak, S.

    2013-12-01

    Many, if not most, college students taking an introductory geoscience course purchase, borrow, download, or rent one of several commercial textbooks currently available. Art used in such books has evolved significantly over the past three decades. Concepts once conveyed only by black-and-white line drawings, drawn by hand in ink, have gradually been replaced by full-color images produced digitally. Multiple high-end graphics programs, when used in combination, can yield images with super-realistic textures and palettes so that, in effect, anything that a book author wants to be drawn can be drawn. Because of the time and skill level involved in producing the art, the process commonly involves professional artists. In order to produce high-quality geoscience art that can help students (who are, by definition, non-experts) understand concepts, develop geoscience intuition, and hone their spatial-visualization skills, an author must address two problems. First, design a figure which can convey complex concepts through visual elements that resonate with students. Second, communicate the concepts to a professional artist who does not necessarily have personal expertise in geoscience, so that the figure rendered is both technically correct and visually engaging. The ultimate goal of geoscience art in textbooks is to produce an image that avoids unnecessary complexity that could distract from the art's theme, includes sufficient realism for a non-expert to relate the image to the real world, provides a personal context in which to interpret the figure, and has a layout that conveys relationships among multiple components of the art so that the art tells a coherent story. To accomplish this goal, a chain of choices--about perspective, sizes, colors, texture, labeling, captioning, line widths, and fonts--must be made in collaboration between the author and artist. In the new world of computer-aided learning, figures must also be able to work both on the computer screen and

  9. A framework for high-school teacher support in Geosciences

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Mair, A.; Schaller, G.; Koeberl, C.

    2012-04-01

    To attract future geoscientists in the classroom and share the passion for science, successful geoscience education needs to combine modern educational tools with applied science. Previous outreach efforts suggest that classroom-geoscience teaching tremendously benefits from structured, prepared lesson plans in combination with hands-on material. Building on our past experience, we have developed a classroom-teaching kit that implements interdisciplinary exercises and modern geoscientific application to attract high-school students. This "Mobile Phone Teaching Kit" analyzes the components of mobile phones, emphasizing the mineral compositions and geologic background of raw materials. Also, as geoscience is not an obligatory classroom topic in Austria, and university training for upcoming science teachers barely covers geoscience, teacher training is necessary to enhance understanding of the interdisciplinary geosciences in the classroom. During the past year, we have held teacher workshops to help implementing the topic in the classroom, and to provide professional training for non-geoscientists and demonstrate proper usage of the teaching kit. The material kit is designed for classroom teaching and comes with a lesson plan that covers background knowledge and provides worksheets and can easily be adapted to school curricula. The project was funded by kulturkontakt Austria; expenses covered 540 material kits, and we reached out to approximately 90 schools throughout Austria and held a workshop in each of the nine federal states in Austria. Teachers received the training, a set of the material kit, and the lesson plan free of charge. Feedback from teachers was highly appreciative. The request for further material kits is high and we plan to expand the project. Ultimately, we hope to enlighten teachers and students for the highly interdisciplinary variety of geosciences and a link to everyday life.

  10. International Convergence on Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Atkinson, R.; Arctur, D. K.; Cox, S.; Jackson, I.; Nativi, S.; Wyborn, L. A.

    2012-04-01

    There is growing international consensus on addressing the challenges to cyber(e)-infrastructure for the geosciences. These challenges include: Creating common standards and protocols; Engaging the vast number of distributed data resources; Establishing practices for recognition of and respect for intellectual property; Developing simple data and resource discovery and access systems; Building mechanisms to encourage development of web service tools and workflows for data analysis; Brokering the diverse disciplinary service buses; Creating sustainable business models for maintenance and evolution of information resources; Integrating the data management life-cycle into the practice of science. Efforts around the world are converging towards de facto creation of an integrated global digital data network for the geosciences based on common standards and protocols for data discovery and access, and a shared vision of distributed, web-based, open source interoperable data access and integration. Commonalities include use of Open Geospatial Consortium (OGC) and ISO specifications and standardized data interchange mechanisms. For multidisciplinarity, mediation, adaptation, and profiling services have been successfully introduced to leverage the geosciences standards which are commonly used by the different geoscience communities -introducing a brokering approach which extends the basic SOA archetype. Principal challenges are less technical than cultural, social, and organizational. Before we can make data interoperable, we must make people interoperable. These challenges are being met by increased coordination of development activities (technical, organizational, social) among leaders and practitioners in national and international efforts across the geosciences to foster commonalities across disparate networks. In doing so, we will 1) leverage and share resources, and developments, 2) facilitate and enhance emerging technical and structural advances, 3) promote

  11. Undergraduate research projects help promote diversity in the geosciences

    USGS Publications Warehouse

    Young, De'Etra; Trimboli, Shannon; Toomey, Rick S.; Byl, Thomas D.

    2016-01-01

    A workforce that draws from all segments of society and mirrors the ethnic, racial, and gender diversity of the United States population is important. The geosciences (geology, hydrology, geospatial sciences, environmental sciences) continue to lag far behind other science, technology, engineering and mathematical (STEM) disciplines in recruiting and retaining minorities (Valsco and Valsco, 2010). A report published by the National Science Foundation in 2015, “Women, Minorities, and Persons with Disabilities in Science and Engineering” states that from 2002 to 2012, less than 2% of the geoscience degrees were awarded to African-American students. Data also show that as of 2012, approximately 30% of African-American Ph.D. graduates obtained a bachelor’s degree from a Historic Black College or University (HBCU), indicating that HBCUs are a great source of diverse students for the geosciences. This paper reviews how an informal partnership between Tennessee State University (a HBCU), the U.S. Geological Survey, and Mammoth Cave National Park engaged students in scientific research and increased the number of students pursuing employment or graduate degrees in the geosciences.

  12. Toward an automated parallel computing environment for geosciences

    NASA Astrophysics Data System (ADS)

    Zhang, Huai; Liu, Mian; Shi, Yaolin; Yuen, David A.; Yan, Zhenzhen; Liang, Guoping

    2007-08-01

    Software for geodynamic modeling has not kept up with the fast growing computing hardware and network resources. In the past decade supercomputing power has become available to most researchers in the form of affordable Beowulf clusters and other parallel computer platforms. However, to take full advantage of such computing power requires developing parallel algorithms and associated software, a task that is often too daunting for geoscience modelers whose main expertise is in geosciences. We introduce here an automated parallel computing environment built on open-source algorithms and libraries. Users interact with this computing environment by specifying the partial differential equations, solvers, and model-specific properties using an English-like modeling language in the input files. The system then automatically generates the finite element codes that can be run on distributed or shared memory parallel machines. This system is dynamic and flexible, allowing users to address different problems in geosciences. It is capable of providing web-based services, enabling users to generate source codes online. This unique feature will facilitate high-performance computing to be integrated with distributed data grids in the emerging cyber-infrastructures for geosciences. In this paper we discuss the principles of this automated modeling environment and provide examples to demonstrate its versatility.

  13. Information needs and behaviors of geoscience educators: A grounded theory study

    NASA Astrophysics Data System (ADS)

    Aber, Susan Ward

    2005-12-01

    Geoscience educators use a variety of resources and resource formats in their classroom teaching to facilitate student understanding of concepts and processes that define subject areas considered in the realm of geoscience. In this study of information needs and behaviors of geoscience educators, the researcher found that participants preferred visual media such as personal photographic and digital images, as well as published figures, animations, and cartoons, and that participants bypassed their academic libraries to meet these information needs. In order to investigate the role of information in developing introductory geoscience course and instruction, a grounded theory study was conducted through a qualitative paradigm with an interpretive approach and naturalistic inquiry. The theoretical and methodological framework was constructivism and sense-making. Research questions were posited on the nature of geoscience subject areas and the resources and resource formats used in conveying geoscience topics to science and non-science majors, as well as educators' preferences and concerns with curriculum and instruction. The underlying framework was to investigate the place of the academic library and librarian in the sense-making, constructivist approach of geoscience educators. A purposive sample of seven geoscience educators from four universities located in mid-western United States was identified as exemplary teachers by department chairpersons. A triangulation of data collection methods included semi-structured interviews, document reviews, and classroom observations. Data were analyzed using the constant comparative method, which included coding, categorizing, and interpreting for patterns and relationships. Contextual factors were identified and a simple model resulted showing the role of information in teaching for these participants. While participants developed lectures and demonstrations using intrapersonal knowledge and personal collections, one barrier

  14. Height Distribution Between Cloud and Aerosol Layers from the GLAS Spaceborne Lidar in the Indian Ocean Region

    NASA Technical Reports Server (NTRS)

    Hart, William D.; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis L.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS), a nadir pointing lidar on the Ice Cloud and land Elevation Satellite (ICESat) launched in 2003, now provides important new global measurements of the relationship between the height distribution of cloud and aerosol layers. GLAS data have the capability to detect, locate, and distinguish between cloud and aerosol layers in the atmosphere up to 40 km altitude. The data product algorithm tests the product of the maximum attenuated backscatter coefficient b'(r) and the vertical gradient of b'(r) within a layer against a predetermined threshold. An initial case result for the critical Indian Ocean region is presented. From the results the relative height distribution between collocated aerosol and cloud shows extensive regions where cloud formation is well within dense aerosol scattering layers at the surface. Citation: Hart, W. D., J. D. Spinhime, S. P. Palm, and D. L. Hlavka (2005), Height distribution between cloud and aerosol layers from the GLAS spaceborne lidar in the Indian Ocean region,

  15. The IUGS Task Group on Global Geoscience Professionalism - promoting professional skills professionalism in the teaching, research and application of geoscience for the protection and education of the public

    NASA Astrophysics Data System (ADS)

    Allington, Ruth; Fernandez-Fuentes, Isabel

    2013-04-01

    A new IUGS Task Group entitled the Task Group on Global Geoscience Professionalism was formed in 2012 and launched at a symposium at the 341GC in Brisbane on strengthening communication between fundamental and applied geosciences and between geoscientists and public. The Task Group aims to ensure that the international geoscience community is engaged in a transformation of its profession so as to embed the need for a professional skills base alongside technical and scientific skills and expertise, within a sound ethical framework in all arenas of geoscience practice. This needs to be established during training and education and reinforced as CPD throughout a career in geoscience as part of ensuring public safety and effective communication of geoscience concepts to the public. The specific objective of the Task Group on Global Geoscience Professionalism that is relevant to this poster session is: • To facilitate a more 'joined up' geoscience community fostering better appreciation by academics and teachers of the professional skills that geoscientists need in the workplace, and facilitate better communication between academic and applied communities leading to more effective application of research findings and technology to applied practitioners and development of research programmes that truly address urgent issues. Other Task Group objectives are: • To provide a specific international forum for discussion of matters of common concern and interest among geoscientists and geoscientific organizations involved in professional affairs, at the local, national and international level; • To act as a resource to IUGS on professional affairs in the geosciences as they may influence and impact "Earth Science for the Global Community" in general - both now and in the future; • To offer and provide leadership and knowledge transfer services to countries and geoscientist communities around the world seeking to introduce systems of professional governance and self

  16. Growing Community Roots for the Geosciences in Miami, Florida, A Program Aimed at High School and Middle School Students to Increase Awareness of Career and Educational Opportunities in the Geosciences

    NASA Astrophysics Data System (ADS)

    Whitman, D.; Hickey-Vargas, R.; Gebelein, J.; Draper, G.; Rego, R.

    2013-12-01

    Growing Community Roots for the Geosciences is a 2-year pilot recruitment project run by the Department of Earth and Environment at Florida International University (FIU) and funded by the NSF OEDG (Opportunities for Enhancing Diversity in the Geosciences) program. FIU, the State University of Florida in Miami is a federally recognized Minority Serving Institution with over 70% of the undergraduate population coming from groups underrepresented in the geoscience workforce. The goal of this project is to inform students enrolled in the local middle and high schools to career opportunities in the geosciences and to promote pathways for underrepresented groups to university geoscience degree programs. The first year's program included a 1-week workshop for middle school teachers and a 2-week summer camp aimed at high school students in the public school system. The teacher workshop was attended by 20 teachers who taught comprehensive and physical science in grades 6-8. It included lectures on geoscience careers, fundamental concepts of solid earth and atmospheric science, hands on exercises with earth materials, fossils and microscopy, interpretation of landform with Google Earth imagery, and a field trip to a local working limestone quarry. On the first day of the workshop, participants were surveyed on their general educational background in science and their familiarity and comfort with teaching basic geoscience concepts. On the final day, the teachers participated in a group discussion where we discussed how to make geoscience topics and careers more visible in the school curriculum. The 2-week summer camp was attended by 21 students entering grades 9-12. The program included hands on exercises on geoscience and GIS concepts, field trips to local barrier islands, the Everglades, a limestone quarry and a waste to energy facility, and tours of the NOAA National Hurricane Center and the FIU SEM lab. Participants were surveyed on their general educational background

  17. Teaching GeoEthics Across the Geoscience Curriculum

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Geissman, J. W.; Kieffer, S. W.; Reidy, M.; Taylor, S.; Vallero, D. A.; Bruckner, M. Z.

    2014-12-01

    Ethics education is an increasingly important component of the pre-professional training of geoscientists. Funding agencies (NSF) require training of graduate students in the responsible conduct of research, employers are increasingly expecting their workers to have basic training in ethics, and the public demands that scientists abide by the highest standards of ethical conduct. Yet, few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. Workshop goals included: examining where and how geoethics topics can be taught from introductory courses for non-majors to modules embedded in "core" geoscience majors courses or dedicated courses in geoethics; sharing best pedagogic practices for "what works" in ethics education; developing a geoethics curriculum framework; creating a collection of online instructional resources, case studies, and related materials; applying lessons learned about ethics education from sister disciplines (biology, engineering, philosophy); and considering ways that geoethics instruction can contribute to public scientific literacy. Four major themes were explored in detail: (1) GeoEthics and self: examining the internal attributes of a geoscientist that establish the ethical values required to successfully prepare for and contribute to a career in the geosciences; (2) GeoEthics and the geoscience profession: identifying ethical standards expected of geoscientists if they are to contribute responsibly to the community of practice; (3) GeoEthics and society: exploring geoscientists' responsibilities to effectively and responsibly communicate the results of geoscience research to inform society about issues ranging from geohazards to natural resource utilization in order to protect public health, safety, and economic

  18. National Association of Geoscience Teachers (NAGT) support for the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Buhr Sullivan, S. M.; Awad, A. A.; Manduca, C. A.

    2014-12-01

    The Next Generation Science Standards (NGSS) represents the best opportunity for geosciences education since 1996, describing a vision of teaching excellence and placing Earth and space science on a par with other disciplines. However, significant, sustained support and relationship-building between disciplinary communities must be forthcoming in order to realize the potential. To realize the vision, teacher education, curricula, assessments, administrative support and workforce/college readiness expectations must be developed. The National Association of Geoscience Teachers (NAGT), a geoscience education professional society founded in 1938, is comprised of members across all educational contexts, including undergraduate faculty, pre-college teachers, informal educators, geoscience education researchers and teacher educators. NAGT support for NGSS includes an upcoming workshop in collaboration with the American Geosciences Institute, deep collections of relevant digital learning resources, pertinent interest groups within the membership, professional development workshops, and more. This presentation will describe implications of NGSS for the geoscience education community and highlight some opportunities for the path forward.

  19. Geoscience Laser Altimeter System (GLAS) Instrument: Flight Loop Heat Pipe (LHP) Acceptance Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with

  20. Engaging teachers & students in geosciences by exploring local geoheritage sites

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Gierke, J. S.

    2014-12-01

    Understanding geoscience concepts and the interactions of Earth system processes in one's own community has the potential to foster sound decision making for environmental, economic and social wellbeing. School-age children are an appropriate target audience for improving Earth Science literacy and attitudes towards scientific practices. However, many teachers charged with geoscience instruction lack awareness of local geological significant examples or the pedagogical ability to integrate place-based examples into their classroom practice. This situation is further complicated because many teachers of Earth science lack a firm background in geoscience course work. Strategies for effective K-12 teacher professional development programs that promote Earth Science literacy by integrating inquiry-based investigations of local and regional geoheritage sites into standards based curriculum were developed and tested with teachers at a rural school on the Hannahville Indian Reservation located in Michigan's Upper Peninsula. The workshops initiated long-term partnerships between classroom teachers and geoscience experts. We hypothesize that this model of professional development, where teachers of school-age children are prepared to teach local examples of earth system science, will lead to increased engagement in Earth Science content and increased awareness of local geoscience examples by K-12 students and the public.

  1. Sustaining Public Communication of Geoscience in the Mass Media Market

    NASA Astrophysics Data System (ADS)

    Keane, Christopher

    2017-04-01

    Most public communication about geoscience is either performed as a derivative of a research program or as part of one-off funded outreach activities. Few efforts are structured to both educate the public about geoscience while also attempting to establish a sustainable funding model. EARTH Magazine, a non-profit publications produced by the American Geosciences Institute, is a monthly geoscience news and information magazine geared towards the public. Originally a profession-oriented publication, titled Geotimes, the publication shifted towards public engagement in the 1990s, completing that focus in 1998. Though part of a non-profit institute, EARTH is not a recipient of grants or contributions to offset its costs and thus must strive to "break even" to sustain its operations and further its mission. How "break even" is measured in a mission-based enterprise incorporates a number of factors, including financial, but also community impact and offsets to other investments. A number of strategies and their successes and failures, both editorially in its focus on audience in scope, tone, and design, and from an operational perspective in the rapidly changing world of magazines, will be outlined. EARTH is now focused on exploring alternative distribution channels, new business models, and disaggregation as means towards broader exposure of geoscience to the widest audience possible.

  2. GeoSegmenter: A statistically learned Chinese word segmenter for the geoscience domain

    NASA Astrophysics Data System (ADS)

    Huang, Lan; Du, Youfu; Chen, Gongyang

    2015-03-01

    Unlike English, the Chinese language has no space between words. Segmenting texts into words, known as the Chinese word segmentation (CWS) problem, thus becomes a fundamental issue for processing Chinese documents and the first step in many text mining applications, including information retrieval, machine translation and knowledge acquisition. However, for the geoscience subject domain, the CWS problem remains unsolved. Although a generic segmenter can be applied to process geoscience documents, they lack the domain specific knowledge and consequently their segmentation accuracy drops dramatically. This motivated us to develop a segmenter specifically for the geoscience subject domain: the GeoSegmenter. We first proposed a generic two-step framework for domain specific CWS. Following this framework, we built GeoSegmenter using conditional random fields, a principled statistical framework for sequence learning. Specifically, GeoSegmenter first identifies general terms by using a generic baseline segmenter. Then it recognises geoscience terms by learning and applying a model that can transform the initial segmentation into the goal segmentation. Empirical experimental results on geoscience documents and benchmark datasets showed that GeoSegmenter could effectively recognise both geoscience terms and general terms.

  3. DC Rocks! Using Place-Based Learning to Introduce Washington DC's K-12 Students to the Geosciences

    NASA Astrophysics Data System (ADS)

    Mayberry, G. C.; Mattietti, G. K.

    2017-12-01

    The Washington DC area has interesting geology and a multitude of agencies that deal with the geosciences, yet K-12 public school students in DC, most of whom are minorities, have limited exposure to the geosciences. Geoscience agencies in the DC area have a unique opportunity to address this by introducing the geosciences to local students who otherwise may not have such an opportunity, by highlighting the geology in the students' "backyard," and by leveraging partnerships among DC-based geoscience-related agencies. The USGS and George Mason University are developing a project called DC Rocks, which will give DC's students an exciting introduction into the world of geoscience with place-based learning opportunities that will make geoscience relevant to their lives and their futures. Both the need in DC and the potential for lasting impact are great; the geosciences have the lowest racial diversity of all the science, technology, engineering, and math (STEM) fields, 89% of students in DC public schools are minorities, and there is no dedicated geoscience curriculum in DC. DC Rocks aims to give these students early exposure to the earth sciences, and encourage them to consider careers in the profession. DC Rocks will work with partner agencies to apply several methods that are recommended by researchers to increase the participation of minority students in the geosciences, including providing profoundly positive experiences that spark interest in the geosciences (Levine et al., 2007); increasing students' sense of belonging in the geosciences (Huntoon, et al, 2016); and place-based teaching practices that emphasize the study of local sites (Semken, 2005), such as DC's Rock Creek Park. DC Rocks will apply these methods by coordinating local geoscientists and resources to provide real-world examples of the geosciences' impact on students' lives. Through the DC Rocks website, educators will be able to request geoscience-related resources such as class presentations by

  4. Opportunities at Geoscience in Veracruz

    NASA Astrophysics Data System (ADS)

    Welsh-Rodríguez, C.

    2006-12-01

    The State of Veracruz is located in the central part of the Gulf of Mexico. It has enormous natural, economic and cultural wealth, is the third most populous state in Mexico, with nearly 33 % of the nation's water resources. It has an enormous quantity of natural resources, including oil, and is strategically located in Mexico. On one hand, mountains to the east are a natural border on the other lies the Gulf of Mexico. Between these two barriers are located tropical forests, mountain forests, jungles, wetlands, reefs, etc., and the land is one of the richest in biodiversity within the Americas. Veracruz, because of its geographical characteristics, presents an opportunity for research and collaboration in the geosciences. The region has experienced frequent episodes of torrential rainfalls, which have caused floods resulting in large amounts of property damage to agriculture, housing, infrastructure and, in extreme situations, loss of human life. In 2004 Veracruz University initiated a bachelor degree in Geography, which will prepare professionals to use their knowledge of geosciences to understand and promote integrated assessment of the prevailing problems in the State. Along with the geography program, the Earth Science Center offers other research programs in seismology, vulcanology, climatology, sustainable development and global change. Because of these characteristics, Veracruz is an optimal environment for active research in the geosciences, as well as for sharing the results of this research with educators, students, and all learners. We look forward to facilitating these efforts in the coming years.

  5. GPS: Geoscience Partnership Study

    ERIC Educational Resources Information Center

    Schuster, Dwight

    2010-01-01

    To promote and expand geoscience literacy in the United States, meaningful partnerships between research scientists and educators must be developed and sustained. For two years, science and education faculty from an urban research university and secondary science teachers from a large urban school district have prepared 11th and 12th grade…

  6. Be Explicit: Geoscience Program Design to Prepare the Next Generation of Geoscientists

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.

    2015-12-01

    The work of geoscientists is to engage inquiry, discovery and exploration of Earth history and processes, and increasingly, to apply this knowledge to the "grand challenges" that face humanity. Geoscience as a discipline is confronted with an incomplete geologic record, observations or data that are often ambiguous or uncertain, and a need to grasp abstract concepts such as temporal reasoning ('deep time'), spatial reasoning over many orders of magnitude, and complex system behavior. These factors provide challenges, and also opportunities, for training future geoscientists. Beyond disciplinary knowledge, it is also important to provide opportunities for students to engage the community of practice and demonstrate how to "be" a geoscientist. Inculcation of geoscience "ways of knowing" is a collective responsibility for geoscientists (teaching faculty and other professionals), at all instructional levels, in all geoscience disciplines, and for all students. A whole-student approach is recommended. Geoscience programs can be designed to focus on student success by explictly: 1) defining programmatic student learning outcomes , 2) embedding assessments throughout the program to demonstrate mastery, 3) aligning course sequences to reinforce and anticipate essential concepts/skills, 4) preparing students to be life-long learners; 5) assigning responsibilities to courses/faculty to ensure these goals have been met; 6) providing opportunities for students to "do" geoscience (research experiences), and 7) modeling professional behaviors in class, field, labs, and informal settings. Extracurricular departmental activities also contribute to student development such as journal clubs, colloquia, field trips, and internships. Successful design of geoscience department programs is informed by: the AGI Workforce program and Summit on the Future of Geoscience Education that define pathways for becoming a successful geoscientist; training in Geoethics; Geoscience Education

  7. Geoscience Academic Provenance: A Comparison of Undergraduate Students' Pathways to Faculty Pathways

    NASA Astrophysics Data System (ADS)

    Houlton, H. R.; Keane, C. M.; Wilson, C. E.

    2012-12-01

    Most Science, Technology, Engineering and Mathematics (STEM) disciplines have a direct recruiting method of high school science courses to supply their undergraduate majors. However, recruitment and retention of students into geoscience academic programs, who will be the future workforce, remains an important issue. The geoscience community is reaching a critical point in its ability to supply enough geoscientists to meet the current and near-future demand. Previous work done by Houlton (2010) determined that undergraduate geoscience majors follow distinct pathways when pursuing their degree and career. These pathways are comprised of students' interests, experiences, goals and career aspirations, which are depicted in six pathway steps. Three population groups were determined from the original 17 participants, which exhibited differences in pathway trajectories. Continued data collection efforts developed and refined the pathway framework. As part of an informal workshop activity, data were collected from 27 participants who are underrepresented minority early-career and future faculty in the geosciences. In addition, 20 geoscience departments' Heads and Chairs participated in an online survey about their pathway trajectories. Pathways were determined from each of these new sample populations and compared against the original geoscience undergraduate student participants. Several pathway components consistently spanned across sample populations. Identification of these themes have illuminated broad geoscience-related interests, experiences and aspirations that can be used to broadly impact recruitment and retention initiatives for our discipline. Furthermore, fundamental differences between participants' ages, stages in career and racial/ethnic backgrounds have exhibited subtle nuances in their geoscience pathway trajectories. In particular, those who've had research experiences, who think "creativity" is an important aspect of a geoscience career and those who

  8. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  9. Outdoor Experiential Learning to Increase Student Interest in Geoscience Careers

    NASA Astrophysics Data System (ADS)

    Lazar, K.; Moysey, S. M.

    2017-12-01

    Outdoor-focused experiential learning opportunities are uncommon for students in large introductory geology courses, despite evidence that field experiences are a significant pathway for students to enter the geoscience pipeline. We address this deficiency by creating an extracurricular program for geology service courses that allows students to engage with classmates to foster a positive affective environment in which they are able to explore their geoscience interests, encouraged to visualize themselves as potential geoscientists, and emboldened to continue on a geoscience/geoscience-adjacent career path. Students in introductory-level geology courses were given pre- and post-semester surveys to assess the impact of these experiential learning experiences on student attitudes towards geoscience careers and willingness to pursue a major/minor in geology. Initial results indicate that high achieving students overall increase their interest in pursuing geology as a major regardless of their participation in extracurricular activities, while low achieving students only demonstrate increased interest in a geology major if they did not participate in extra credit activities. Conversely, high achieving, non-participant students showed no change in interest of pursuing a geology minor, while high achieving participants were much more likely to demonstrate interest in a minor at the end of the course. Similar to the trends of interest in a geology major, low achieving students only show increased interest in a minor if they were non-participants. These initial results indicate that these activities may be more effective in channeling students towards geology minors rather than majors, and could increase the number of students pursuing geoscience-related career paths. There also seem to be several competing factors at play affecting the different student populations, from an increased interest due to experience or a displeasure that geology is not simply `rocks for jocks

  10. Website Resources and Support for Two-Year College Geoscience Educators

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Macdonald, H.; Blodgett, R. H.; Manduca, C. A.; Maier, M.

    2011-12-01

    Geoscience faculty at two-year colleges (2YC) face a number of challenges, from the wide diversity of the student population to being isolated from other geoscience faculty. Several projects have developed web resources that address some of these issues by providing professional development, teaching materials, and opportunities to connect with their colleagues at other institutions. The Role of Two-Year Colleges in Geoscience Education and in Broadening Participation in the Geosciences project brought together 2YC faculty from across the country for a planning workshop to discuss these issues and propose strategies and mechanisms to strengthen the 2YC geoscience education community (http://serc.carleton.edu/geo2yc/index.html). The website now hosts more than 30 essays on the state of 2YC education, teaching activities, and course descriptions submitted by 2YC faculty as well as an email discussion list and other ways of networking and discussing important. One outcome of this work is that the National Association of Geoscience Teachers has created a division for 2YC faculty so that members can network with each other and discuss solutions to pressing issues. (http://nagt.org/nagt/divisions/2yc/index.html) The On the Cutting Edge program has an array of professional development resources available (http://serc.carleton.edu/NAGTWorkshops/). Over its decade of work, the program has developed resources on topics of interest to 2YC faculty including: teaching introductory courses, the affective domain, teaching with data, metacognition, online courses, teaching about hazards, and many others. There are also extensive collections of teaching activities and visualizations. In addition, the program continues to hold face-to-face and virtual professional development workshops and webinars that are accessible to 2YC faculty and can help them feel less isolated The Starting Point: Teaching Introductory Geoscience (http://serc.carleton.edu/introgeo) website is specifically

  11. Teaching Introductory Geoscience: A Cutting Edge Workshop Report

    NASA Astrophysics Data System (ADS)

    Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.

    2008-12-01

    Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website: http://serc.carleton.edu/NAGTWorkshops/intro/index.html.

  12. Challenges of the NGSS for Future Geoscience Education

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Lopez, R. E.; Messina, P.; Speranza, P.

    2013-12-01

    The new Next Generation Science Standards (NGSS), which spell out a set of K-12 performance expectations for life science, physical science, and Earth and space science (ESS), pose a variety of opportunities and challenges for geoscience education. Among the changes recommended by the NGSS include establishing ESS on an equal footing with both life science and physical sciences, at the full K-12 level. This represents a departure from the traditional high school curriculum in most states. In addition, ESS is presented as a complex, integrated, interdisciplinary, quantitative Earth Systems-oriented set of sciences that includes complex and politically controversial topics such as climate change and human impacts. The geoscience communities will need to mobilize in order to assist and aid in the full implementation of ESS aspects of the NGSS in as many states as possible. In this context, the NGSS highlight Earth and space science to an unprecedented degree. If the NGSS are implemented in an optimal manner, a year of ESS will be taught in both middle and high school. In addition, because of the complexity and interconnectedness of the ESS content (with material such as climate change and human sustainability), it is recommended (Appendix K of the NGSS release) that much of it be taught following physics, chemistry, and biology. However, there are considerable challenges to a full adoption of the NGSS. A sufficient work force of high school geoscientists qualified in modern Earth Systems Science does not exist and will need to be trained. Many colleges do not credit high school geoscience as a lab science with respect to college admission. The NGSS demand curricular practices that include analyzing and interpreting real geoscience data, and these curricular modules do not yet exist. However, a concerted effort on the part of geoscience research and education organizations can help resolve these challenges.

  13. Building an Outdoor Classroom for Field Geology: The Geoscience Garden

    ERIC Educational Resources Information Center

    Waldron, John W. F.; Locock, Andrew J.; Pujadas-Botey, Anna

    2016-01-01

    Many geoscience educators have noted the difficulty that students experience in transferring their classroom knowledge to the field environment. The Geoscience Garden, on the University of Alberta North Campus, provides a simulated field environment in which Earth Science students can develop field observation skills, interpret features of Earth's…

  14. Information extraction and knowledge graph construction from geoscience literature

    NASA Astrophysics Data System (ADS)

    Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo; Chen, Jingwen

    2018-03-01

    Geoscience literature published online is an important part of open data, and brings both challenges and opportunities for data analysis. Compared with studies of numerical geoscience data, there are limited works on information extraction and knowledge discovery from textual geoscience data. This paper presents a workflow and a few empirical case studies for that topic, with a focus on documents written in Chinese. First, we set up a hybrid corpus combining the generic and geology terms from geology dictionaries to train Chinese word segmentation rules of the Conditional Random Fields model. Second, we used the word segmentation rules to parse documents into individual words, and removed the stop-words from the segmentation results to get a corpus constituted of content-words. Third, we used a statistical method to analyze the semantic links between content-words, and we selected the chord and bigram graphs to visualize the content-words and their links as nodes and edges in a knowledge graph, respectively. The resulting graph presents a clear overview of key information in an unstructured document. This study proves the usefulness of the designed workflow, and shows the potential of leveraging natural language processing and knowledge graph technologies for geoscience.

  15. Continental Scale Vegetation Structure Mapping Using Field Calibrated Landsat, ALOS Palsar And GLAS ICESat

    NASA Astrophysics Data System (ADS)

    Scarth, P.; Phinn, S. R.; Armston, J.; Lucas, R.

    2015-12-01

    Vertical plant profiles are important descriptors of canopy structure and are used to inform models of biomass, biodiversity and fire risk. In Australia, an approach has been developed to produce large area maps of vertical plant profiles by extrapolating waveform lidar estimates of vertical plant profiles from ICESat/GLAS using large area segmentation of ALOS PALSAR and Landsat satellite image products. The main assumption of this approach is that the vegetation height profiles are consistent across the segments defined from ALOS PALSAR and Landsat image products. More than 1500 field sites were used to develop an index of fractional cover using Landsat data. A time series of the green fraction was used to calculate the persistent green fraction continuously across the landscape. This was fused with ALOS PALSAR L-band Fine Beam Dual polarisation 25m data and used to segment the Australian landscapes. K-means clustering then grouped the segments with similar cover and backscatter into approximately 1000 clusters. Where GLAS-ICESat footprints intersected these clusters, canopy profiles were extracted and aggregated to produce a mean vertical vegetation profile for each cluster that was used to derive mean canopy and understorey height, depth and density. Due to the large number of returns, these retrievals are near continuous across the landscape, enabling them to be used for inventory and modelling applications. To validate this product, a radiative transfer model was adapted to map directional gap probability from airborne waveform lidar datasets to retrieve vertical plant profiles Comparison over several test sites show excellent agreement and work is underway to extend the analysis to improve national biomass mapping. The integration of the three datasets provide options for future operational monitoring of structure and AGB across large areas for quantifying carbon dynamics, structural change and biodiversity.

  16. The Best and the Brightest in Geosciences: Broadening Representation in the Field

    NASA Astrophysics Data System (ADS)

    Myles, L.

    2017-12-01

    Geoscience research in government agencies and universities across the US is anchored by data collection from field and lab experiments. In these settings, the composition and the culture of the environment can be less welcoming for individuals from groups that are traditionally underrepresented in the geosciences. Ongoing efforts to address diversity and inclusion in the field and lab include top-down approaches that provide support and training for established geoscience leaders and bottom-up approaches that offer research internships and fellowships for students. To achieve success, effective strategies for broadening representation in the field must be developed and shared across the geosciences community to advance scientific innovation and create opportunities for success.

  17. Research Reproducibility in Geosciences: Current Landscape, Practices and Perspectives

    NASA Astrophysics Data System (ADS)

    Yan, An

    2016-04-01

    Reproducibility of research can gauge the validity of its findings. Yet currently we lack understanding of how much of a problem research reproducibility is in geosciences. We developed an online survey on faculty and graduate students in geosciences, and received 136 responses from research institutions and universities in Americas, Asia, Europe and other parts of the world. This survey examined (1) the current state of research reproducibility in geosciences by asking researchers' experiences with unsuccessful replication work, and what obstacles that lead to their replication failures; (2) the current reproducibility practices in community by asking what efforts researchers made to try to reproduce other's work and make their own work reproducible, and what the underlying factors that contribute to irreproducibility are; (3) the perspectives on reproducibility by collecting researcher's thoughts and opinions on this issue. The survey result indicated that nearly 80% of respondents who had ever reproduced a published study had failed at least one time in reproducing. Only one third of the respondents received helpful feedbacks when they contacted the authors of a published study for data, code, or other information. The primary factors that lead to unsuccessful replication attempts are insufficient details of instructions in published literature, and inaccessibility of data, code and tools needed in the study. Our findings suggest a remarkable lack of research reproducibility in geoscience. Changing the incentive mechanism in academia, as well as developing policies and tools that facilitate open data and code sharing are the promising ways for geosciences community to alleviate this reproducibility problem.

  18. NSF-Sponsored Summit on the Future of Undergraduate Geoscience Education: outcomes

    NASA Astrophysics Data System (ADS)

    Mosher, S.

    2014-12-01

    The NSF-sponsored Summit on the Future of Undergraduate Geoscience Education made major progress toward developing a collective community vision for the geosciences. A broad spectrum of the geoscience education community, ~200 educators from research universities/four and two year colleges, focused on preparation of undergraduates for graduate school and future geoscience careers, pedagogy, use of technology, broadening participation/retention of underrepresented groups, and preparation of K-12 science teachers. Participants agreed that key concepts, competencies and skills learned throughout the curriculum were more important than specific courses. Concepts included understanding Earth as complex, dynamic system, deep time, evolution of life, natural resources, energy, hazards, hydrogeology, surface processes, Earth materials and structure, and climate change. Skills/competencies included ability to think spatially and temporally, reason inductively and deductively, make and use indirect observations, engage in complex open, coupled systems thinking, and work with uncertainty, non-uniqueness, and incompleteness, as well as critical thinking, problem solving, communication, and ability to think like a scientist and continue to learn. Successful ways of developing these include collaborative, integrative projects involving teams, interdisciplinary projects, fieldwork and research experiences, as well as flipped classrooms and integration and interactive use of technology, including visualization, simulation, modeling and analysis of real data. Wider adoption of proven, effective best practices is our communities' main pedagogical challenge, and we focused on identifying implementation barriers. Preparation of future teachers in introductory and general geoscience courses by incorporating Next Generation Science Standards and using other sciences/math to solve real world geoscience problems should help increase diversity and number of future geoscientists and

  19. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    ERIC Educational Resources Information Center

    Schmidt, Richard William

    2013-01-01

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds…

  20. Enhancing Geoscience Education within a Minority-Serving Preservice Teacher Population

    ERIC Educational Resources Information Center

    Ellins, Katherine K.; Olson, Hilary Clement

    2012-01-01

    The University of Texas Institute for Geophysics and Huston-Tillotson University collaborated on a proof of concept project to offer a geoscience course to undergraduate students and preservice teachers in order to expand the scope of geoscience education within the local minority student and teacher population. Students were exposed to rigorous…

  1. Improving Undergraduate STEM Education: Pathways into Geoscience (IUSE: GEOPATHS) - A National Science Foundation Initiative

    NASA Astrophysics Data System (ADS)

    Jones, B.; Patino, L. C.

    2016-12-01

    Preparation of the future professional geoscience workforce includes increasing numbers as well as providing adequate education, exposure and training for undergraduates once they enter geoscience pathways. It is important to consider potential career trajectories for geoscience students, as these inform the types of education and skill-learning required. Recent reports have highlighted that critical thinking and problem-solving skills, spatial and temporal abilities, strong quantitative skills, and the ability to work in teams are among the priorities for many geoscience work environments. The increasing focus of geoscience work on societal issues (e.g., climate change impacts) opens the door to engaging a diverse population of students. In light of this, one challenge is to find effective strategies for "opening the world of possibilities" in the geosciences for these students and supporting them at the critical junctures where they might choose an alternative pathway to geosciences or otherwise leave altogether. To address these and related matters, The National Science Foundation's (NSF) Directorate for Geosciences (GEO) has supported two rounds of the IUSE: GEOPATHS Program, to create and support innovative and inclusive projects to build the future geoscience workforce. This program is one component in NSF's Improving Undergraduate STEM Education (IUSE) initiative, which is a comprehensive, Foundation-wide effort to accelerate the quality and effectiveness of the education of undergraduates in all of the STEM fields. The two tracks of IUSE: GEOPATHS (EXTRA and IMPACT) seek to broaden and strengthen connections and activities that will engage and retain undergraduate students in geoscience education and career pathways, and help prepare them for a variety of careers. The long-term goal of this program is to dramatically increase the number and diversity of students earning undergraduate degrees or enrolling in graduate programs in geoscience fields, as well as

  2. Building Strong Geoscience Departments Through the Visiting Workshop Program

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; Manduca, C. A.; Macdonald, H.; Bralower, T. J.; Clemens-Knott, D.; Doser, D. I.; Feiss, P. G.; Rhodes, D. D.; Richardson, R. M.; Savina, M. E.

    2011-12-01

    The Building Strong Geoscience Departments project focuses on helping geoscience departments adapt and prosper in a changing and challenging environment. From 2005-2009, the project offered workshop programs on topics such as student recruitment, program assessment, preparing students for the workforce, and strengthening geoscience programs. Participants shared their departments' challenges and successes. Building on best practices and most promising strategies from these workshops and on workshop leaders' experiences, from 2009-2011 the project ran a visiting workshop program, bringing workshops to 18 individual departments. Two major strengths of the visiting workshop format are that it engages the entire department in the program, fostering a sense of shared ownership and vision, and that it focuses on each department's unique situation. Departments applied to have a visiting workshop, and the process was highly competitive. Selected departments chose from a list of topics developed through the prior workshops: curriculum and program design, program elements beyond the curriculum, recruiting students, preparing students for the workforce, and program assessment. Two of our workshop leaders worked with each department to customize and deliver the 1-2 day programs on campus. Each workshop incorporated exercises to facilitate active departmental discussions, presentations incorporating concrete examples drawn from the leaders' experience and from the collective experiences of the geoscience community, and action planning to scaffold implementation. All workshops also incorporated information on building departmental consensus and assessing departmental efforts. The Building Strong Geoscience Departments website complements the workshops with extensive examples from the geoscience community. Of the 201 participants in the visiting workshop program, 140 completed an end of workshop evaluation survey with an overall satisfaction rating of 8.8 out of a possible 10

  3. Spatiotemporal Thinking in the Geosciences

    NASA Astrophysics Data System (ADS)

    Shipley, T. F.; Manduca, C. A.; Ormand, C. J.; Tikoff, B.

    2011-12-01

    Reasoning about spatial relations is a critical skill for geoscientists. Within the geosciences different disciplines may reason about different sorts of relationships. These relationships may span vastly different spatial and temporal scales (from the spatial alignment in atoms in crystals to the changes in the shape of plates). As part of work in a research center on spatial thinking in STEM education, we have been working to classify the spatial skills required in geology, develop tests for each spatial skill, and develop the cognitive science tools to promote the critical spatial reasoning skills. Research in psychology, neurology and linguistics supports a broad classification of spatial skills along two dimensions: one versus many objects (which roughly translates to object- focused and navigation focused skills) and static versus dynamic spatial relations. The talk will focus on the interaction of space and time in spatial cognition in the geosciences. We are working to develop measures of skill in visualizing spatiotemporal changes. A new test developed to measure visualization of brittle deformations will be presented. This is a skill that has not been clearly recognized in the cognitive science research domain and thus illustrates the value of interdisciplinary work that combines geosciences with cognitive sciences. Teaching spatiotemporal concepts can be challenging. Recent theoretical work suggests analogical reasoning can be a powerful tool to aid student learning to reason about temporal relations using spatial skills. Recent work in our lab has found that progressive alignment of spatial and temporal scales promotes accurate reasoning about temporal relations at geological time scales.

  4. Proposed Grand Challenges in Geoscience Education Research: Articulating a Community Research Agenda

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; St John, K. K.; Teasdale, R.; Ryker, K.; Riggs, E. M.; Pyle, E. J.; Petcovic, H. L.; McNeal, K.; McDaris, J. R.; Macdonald, H.; Kastens, K.; Cervato, C.

    2017-12-01

    Fourteen ago the Wingspread Project helped establish geoscience education research (GER) as an important research field and highlighted major research questions for GER at the time. More recently, the growth and interest in GER is evident from the increase in geoscience education research articles, the establishment of the NAGT GER Division, the creation of the GER Toolbox, an increase in GER graduate programs, and the growth of tenure-eligible GER faculty positions. As an emerging STEM education research field, the GER community is examining the current state of their research and considering the best course forward so that it can have the greatest collective impact on advancing teaching and learning in the geosciences. As part of an NSF-funded effort to meet this need, 45 researchers drafted priority research questions, or "Grand Challenges", that span 10 geoscience education research themes. These include research on: students' conceptual understanding of the solid and the fluid Earth, K-12 teacher preparation, teaching about Earth in the context of societal problems, access and success of underrepresented groups in the geosciences, spatial and temporal reasoning, quantitative reasoning and use of models, instructional strategies to improve geoscience learning, students' self-regulated learning, and faculty professional development and institutional change. For each theme, several Grand Challenges have been proposed; these have undergone one round of peer-review and are now ready for the AGU community to critically examine the proposed Grand Challenges and make suggestions on strategies for addressing them: http://nagt.org/nagt/geoedresearch/grand_challenges/feedback.html. We seek perspectives from geoscience education researchers, scholars, and reflective educators. It is our vision that the final outcomes of this community-grounded process will be a published guiding framework to (1) focus future GER on questions of high interest to the geoscience education

  5. We Can Recruit Minorities Into The Geosciences

    NASA Astrophysics Data System (ADS)

    O'Connell, S.

    2011-12-01

    Despite the dismal numbers, efforts to recruit minorities into the geosciences are improving, thanks in part to NSF's "Opportunities for Enhancing Diversity in the Geosciences" (OEDG) initiative. At Wesleyan University, a small liberal arts college in Connecticut, we have significantly increased our recruitment of minority students. Twenty percent (four students) of the class of 2013 are African American. Most of the recruitment is done on an individual basis and working in conjunction with the "Dean for Diversity and Student Engagement" and courting minority students in introductory classes. The Dean for Diversity and Student Engagement is aware of our interest in increasing diversity and that we are able to hire minority students during the academic year and through the summer with OEDG funds. When she identifies minority students who might be interested in the geosciences, she refers them to faculty in the Earth and Environmental Sciences Department. Our faculty can provide employment, mentoring and a variety of geo-related experiences. Courting students in introductory courses can include inviting them to lunch or other activity, and attending sports, theater or dance events in which they are participating. Not all efforts result in new majors. Courses in ancillary sciences may be stumbling blocks and higher grades in less demanding courses have lured some students into other majors. Nevertheless, we now have a large enough cohort of minority students so that minority students from other majors visit their friends in our labs. A critical mass? Even a student, who chooses another major, may continue an interest in geoscience and through outreach efforts and discussions with younger family members, may provide a bridge that becomes a conduit for future students.

  6. An Effective Model for Enhancing Underrepresented Minority Participation and Success in Geoscience Undergraduate Research

    ERIC Educational Resources Information Center

    Blake, Reginald A.; Liou-Mark, Janet; Chukuigwe, Chinedu

    2013-01-01

    Geoscience research is a fundamental portal through which geoscience knowledge may be acquired and disseminated. A viable model to introduce, stimulate, and prolong geoscience education has been designed and implemented at the New York City College of Technology through a National Science Foundation (NSF) Research Experiences for Undergraduates…

  7. Academic Provenance: Mapping Geoscience Students' Academic Pathways to their Career Trajectories

    NASA Astrophysics Data System (ADS)

    Houlton, H. R.; Gonzales, L. M.; Keane, C. M.

    2011-12-01

    Targeted recruitment and retention efforts for the geosciences have become increasingly important with the growing concerns about program visibility on campuses, and given that geoscience degree production remains low relative to the demand for new geoscience graduates. Furthermore, understanding the career trajectories of geoscience degree recipients is essential for proper occupational placement. A theoretical framework was developed by Houlton (2010) to focus recruitment and retention efforts. This "pathway model" explicitly maps undergraduate students' geoscience career trajectories, which can be used to refine existing methods for recruiting students into particular occupations. Houlton's (2010) framework identified three main student population groups: Natives, Immigrants or Refugees. Each student followed a unique pathway, which consisted of six pathway steps. Each pathway step was comprised of critical incidents that influenced students' overall career trajectories. An aggregate analysis of students' pathways (Academic Provenance Analysis) showed that different populations' pathways exhibited a deviation in career direction: Natives indicated intentions to pursue industry or government sectors, while Immigrants intended to pursue academic or research-based careers. We expanded on Houlton's (2010) research by conducting a follow-up study to determine if the original participants followed the career trajectories they initially indicated in the 2010 study. A voluntary, 5-question, short-answer survey was administered via email. We investigated students' current pathway steps, pathway deviations, students' goals for the near future and their ultimate career ambitions. This information may help refine Houlton's (2010) "pathway model" and may aid geoscience employers in recruiting the new generation of professionals for their respective sectors.

  8. Automatic User Interface Generation for Visualizing Big Geoscience Data

    NASA Astrophysics Data System (ADS)

    Yu, H.; Wu, J.; Zhou, Y.; Tang, Z.; Kuo, K. S.

    2016-12-01

    Along with advanced computing and observation technologies, geoscience and its related fields have been generating a large amount of data at an unprecedented growth rate. Visualization becomes an increasingly attractive and feasible means for researchers to effectively and efficiently access and explore data to gain new understandings and discoveries. However, visualization has been challenging due to a lack of effective data models and visual representations to tackle the heterogeneity of geoscience data. We propose a new geoscience data visualization framework by leveraging the interface automata theory to automatically generate user interface (UI). Our study has the following three main contributions. First, geoscience data has its unique hierarchy data structure and complex formats, and therefore it is relatively easy for users to get lost or confused during their exploration of the data. By applying interface automata model to the UI design, users can be clearly guided to find the exact visualization and analysis that they want. In addition, from a development perspective, interface automaton is also easier to understand than conditional statements, which can simplify the development process. Second, it is common that geoscience data has discontinuity in its hierarchy structure. The application of interface automata can prevent users from suffering automation surprises, and enhance user experience. Third, for supporting a variety of different data visualization and analysis, our design with interface automata could also make applications become extendable in that a new visualization function or a new data group could be easily added to an existing application, which reduces the overhead of maintenance significantly. We demonstrate the effectiveness of our framework using real-world applications.

  9. Choosing the Geoscience Major: Important Factors, Race/Ethnicity, and Gender

    ERIC Educational Resources Information Center

    Stokes, Philip J.; Levine, Roger; Flessa, Karl W.

    2015-01-01

    Geoscience faces dual recruiting challenges: a pending workforce shortage and a lack of diversity. Already suffering from low visibility, geoscience does not resemble the makeup of the general population in terms of either race/ethnicity or gender and is among the least diverse of all science, technology, engineering, and math fields in the U.S.…

  10. 76 FR 12136 - Advisory Committee for Geosciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Geosciences; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Geosciences (1755). Dates: April 13, 2011; 8:30 a.m.- 5 p.m., April 14, 2011; 8:30 a.m...

  11. AMIDST: Attracting Minorities to Geosciences Through Involved Digital Story Telling

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Ohler, J.; Cooper, C.; McDermott, M.; Heinrich, J.; Johnson, R.; Leeper, L.; Polk, N.; Wimer, T.

    2009-12-01

    Attracting Minorities to Geosciences Through Involved Digital Story Telling (AMIDST) is a project funded by the Geoscience Directorate of the National Science Foundation through their program entitled Opportunities for Enhancing Diversity in Geosciences. This project centers around the idea of integrating place-based geoscience education with culturally sensitive digital story telling, to engage and attract Alaska’s native and rural children from grades 3 through 5 to geosciences. In Spring 2008 we brought together a team 2 native elders, a group of scientists and technicians, an evaluator, 2 teachers and their 24 third grade students from Fairbanks (interior Alaska) to create computer-based digital stories around the geoscience themes of permafrost, and forest fires. These two to four minutes digital narratives consisted of a series of images accompanied by music and a voice-over narration by the children. In Fall 2008 we worked with a similar group from Nome (coastal town in western Alaska). The geoscience themes were climate change, and gold in Alaska. This time the students used the same kind of “green screen” editing so prevalent in science fiction movies. Students enacted and recorded their stories in front of a green screen and in post-production replaced the green background with photos, drawings and scientific illustrations related to their stories. Evaluation involved pre and post project tests for all participants, mid-term individual interviews and exit-interviews of selected participants. Project final assessment results from an independent education evaluator showed that both students and teachers improved their geo science content knowledge about permafrost, forest fires, gold mining, and sea ice changes. Teachers and students went through a very steep learning curve and gained experience and new understanding in digital storytelling in the context of geologic phenomena of local interest. Children took pride in being creators, directors and

  12. Sustainable Agriculture as a Recruitment Tool for Geoscience Majors

    NASA Astrophysics Data System (ADS)

    Enright, K. P.; Gilbert, L. A.; McGillis, A.

    2014-12-01

    Small-scale agriculture has exploded with popularity in recent years, as teenagers and college students gain interest in local food sources. Outdoor experiences, including gardening and farming, are often among the motivations for students to take their first geoscience courses in college. The methods and theories of small agriculture translate well into geologic research questions, especially in the unique setting of college campus farms and gardens. We propose an activity or assignment to engage student-farmers in thinking about geosciences, and connect them with geoscience departments as a gateway to the major and career field. Furthermore, the activity will encourage a new generation of passionate young farmers to integrate the principles of earth science into their design and implementation of more sustainable food systems. The activity includes mapping, soil sampling, and interviewing professionals in agriculture and geology, and results in the students writing a series of recommendations for their campus or other farm. The activity includes assessment tools for instructors and can be used to give credit for a summer farming internship or as part of a regular course. We believe reaching out to students interested in farming could be an important recruitment tool for geosciences and helps build interdisciplinary and community partnerships.

  13. Accessible Earth: Enhancing diversity in the Geosciences through accessible course design

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Lamb, D. A.

    2017-12-01

    The tradition of field-based instruction in the geoscience curriculum, which culminates in a capstone geological field camp, presents an insurmountable barrier to many disabled students who might otherwise choose to pursue geoscience careers. There is a widespread perception that success as a practicing geoscientist requires direct access to outcrops and vantage points available only to those able to traverse inaccessible terrain. Yet many modern geoscience activities are based on remotely sensed geophysical data, data analysis, and computation that take place entirely from within the laboratory. To challenge the perception of geoscience as a career option only for the non-disabled, we have created the capstone Accessible Earth Study Abroad Program, an alternative to geologic field camp for all students, with a focus on modern geophysical observation systems, computational thinking, data science, and professional development.In this presentation, we will review common pedagogical approaches in geosciences and current efforts to make the field more inclusive. We will review curricular access and inclusivity relative to a wide range of learners and provide examples of accessible course design based on our experiences in teaching a study abroad course in central Italy, and our plans for ongoing assessment, refinement, and dissemination of the effectiveness of our efforts.

  14. Future of the geoscience profession

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carleton, A.T.

    1995-05-01

    I want to discuss the future of the energy industry and the geoscience profession. That`s you and me. Is there a future for us? Will there be a need for petroleum? What will we use for energy in the future? Over the past several years, those of us in the energy business have witnessed remarkable changes in our industry and our profession. We must be able to change with the conditions if we are to survive them. To do so, some idea of what the future holds is essential. I will discuss what that future may be and will covermore » these topics: world population and energy demand, exploration and production outlook, environmental considerations, geoscience demographics, education, technology, and government. Much of the statistical data and some of the projections I will discuss have been taken from the report of AAPG`s 21st Century Committee, of which I was a member.« less

  15. Alliances for Undergraduate Research in the Geosciences Through Collaborative Recruitment

    NASA Astrophysics Data System (ADS)

    Pandya, R.; Eriksson, S.; Haacker-Santos, R.; Calhoun, A.

    2006-12-01

    Undergraduate research is a key strategy for encouraging students to pursue graduate school and careers in science end engineering. In the geosciences, where participation by members of underrepresented groups is among the lowest of any science field, these programs must continue and strengthen their efforts to engage students from historically underrepresented groups. A significant limitation on our ability to engage students from historically underrepresented groups comes from the expense, in terms of time and resources, of promoting these career options to talented undergraduates considering a host of STEM careers. Another hurdle is our ability to match students with research projects tailored to their interests. Further complicating this is the challenge of matching students who have culturally motivated geographic constraints—for example, Native students who seek to serve their local community—to relevant opportunities. As a result, we believe that a number of highly qualified students never fully consider careers in the geosciences. To address these obstacles, we propose an alliance of undergraduate research programs in the geosciences. In this model, all members of the alliance would share recruiting, and students would submit a single application forwarded to all alliance members. The Alliance could offer applicants multiple research opportunities, from across the alliance, tailored to fit the applicant's needs and interests. This strategy has proven very effective in other fields; for example, the Leadership Alliance allows 32 member institutions to offer internships and fellowships through one central application process. SOARS and RESESS, programs in atmospheric science and geophysics, respectively, have done this co-recruiting for two years. There are many benefits to this type of alliance. First, it would allow programs to leverage and coordinate their recruiting investments. From our experience with SOARS and RESESS, much of the effort in

  16. Volcanic eruption crisis and the challenges of geoscience education in Indonesia

    NASA Astrophysics Data System (ADS)

    Hariyono, E.; Liliasari, Tjasyono, B.; Madlazim

    2016-02-01

    The study aims was to describe of the profile of geoscience education conducted at the institution of teacher education for answer challenges of volcanic eruption crisis in Indonesia. The method used is descriptive analysis based on result of test and interview to 31 students of physics pre-service teachers about volcanoes through field study. The results showed that the students have a low understanding of volcanic material and there are several problems associated with the volcanoes concept. Other facts are geoscience learning does not support to the formation of geoscience knowledge and skills, dominated by theoretical studies and less focused on effort to preparing students towards disasters particularly to the volcanic eruption. As a recommendation, this require to restructuring geoscience education so as relevant with the social needs. Through courses accordingly, we can greatly help student's physics prospective teacher to improve their participations to solve problems of volcanic eruption crisis in the society.

  17. The IS-GEO RCN: Fostering Collaborations for Intelligent Systems Research to Support Geosciences

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Pierce, S. A.

    2016-12-01

    Geoscience problems are complex and often involve data that changes across space and time. Frequently geoscience knowledge and understanding provides valuable information and insight for problems related to energy, water, climate, mineral resources, and our understanding of how the Earth evolves through time. Simultaneously, many grand challenges in the geosciences cannot be addressed without the aid of computational support and innovations. Intelligent and Information Systems (IS) research includes a broad range of computational methods and topics such as knowledge representation, information integration, machine learning, robotics, adaptive sensors, and intelligent interfaces. IS research has a very important role to play in accelerating the speed of scientific discovery in geosciences and thus in solving challenges in geosciences. Many aspects of geosciences (GEO) research pose novel open problems for intelligent systems researchers. To develop intelligent systems with sound knowledge of theory and practice, it is important that GEO and IS experts collaborate. The EarthCube Research Coordination Network for Intelligent Systems for Geosciences (IS-GEO RCN) represents an emerging community of interdisciplinary researchers producing fundamental new capabilities for understanding Earth systems. Furthermore, the educational component aims to identify new approaches to teaching students in this new interdisciplinary area, seeking to raise a new generation of scientists that are better able to apply IS methods and tools to geoscience challenges of the future. By providing avenues for IS and GEO researchers to work together, the IS-GEO RCN will serve as both a point of contact, as well as an avenue for educational outreach across the disciplines for the nascent community of research and practice. The initial efforts are focused on connecting the communities in ways that help researchers understand opportunities and challenges that can benefit from IS-GEO collaborations

  18. Engaging Engineering Students in Geoscience through Case Studies and Active Learning

    ERIC Educational Resources Information Center

    Holley, Elizabeth A.

    2017-01-01

    This study reports on a case study-based curricular intervention designed to help undergraduate engineering students make connections between geoscience and its applications. Teaching through case studies resulted in a measurable and significant improvement in the confidence that students had in their ability to apply geoscience concepts in an…

  19. Increasing Diversity in the Geosciences: Recruitment Programs and Student Self-Efficacy

    ERIC Educational Resources Information Center

    Baber, Lorenzo D.; Pifer, Meghan J.; Colbeck, Carol; Furman, Tanya

    2010-01-01

    Using a conceptual framework constructed around self-efficacy, this study explores specific recruitment programs that may contribute to the development of self-efficacy for students of color in the geosciences. This mixed methods study of geoscience education includes quantitative analysis of the Summer Experience in Earth and Mineral Science…

  20. Geoscience Digital Data Resource and Repository Service

    NASA Astrophysics Data System (ADS)

    Mayernik, M. S.; Schuster, D.; Hou, C. Y.

    2017-12-01

    The open availability and wide accessibility of digital data sets is becoming the norm for geoscience research. The National Science Foundation (NSF) instituted a data management planning requirement in 2011, and many scientific publishers, including the American Geophysical Union and the American Meteorological Society, have recently implemented data archiving and citation policies. Many disciplinary data facilities exist around the community to provide a high level of technical support and expertise for archiving data of particular kinds, or for particular projects. However, a significant number of geoscience research projects do not have the same level of data facility support due to a combination of several factors, including the research project's size, funding limitations, or topic scope that does not have a clear facility match. These projects typically manage data on an ad hoc basis without limited long-term management and preservation procedures. The NSF is supporting a workshop to be held in Summer of 2018 to develop requirements and expectations for a Geoscience Digital Data Resource and Repository Service (GeoDaRRS). The vision for the prospective GeoDaRRS is to complement existing NSF-funded data facilities by providing: 1) data management planning support resources for the general community, and 2) repository services for researchers who have data that do not fit in any existing repository. Functionally, the GeoDaRRS would support NSF-funded researchers in meeting data archiving requirements set by the NSF and publishers for geosciences, thereby ensuring the availability of digital data for use and reuse in scientific research going forward. This presentation will engage the AGU community in discussion about the needs for a new digital data repository service, specifically to inform the forthcoming GeoDaRRS workshop.

  1. Geoscience Education Research Methods: Thinking About Sample Size

    NASA Astrophysics Data System (ADS)

    Slater, S. J.; Slater, T. F.; CenterAstronomy; Physics Education Research

    2011-12-01

    Geoscience education research is at a critical point in which conditions are sufficient to propel our field forward toward meaningful improvements in geosciences education practices. Our field has now reached a point where the outcomes of our research is deemed important to endusers and funding agencies, and where we now have a large number of scientists who are either formally trained in geosciences education research, or who have dedicated themselves to excellence in this domain. At this point we now must collectively work through our epistemology, our rules of what methodologies will be considered sufficiently rigorous, and what data and analysis techniques will be acceptable for constructing evidence. In particular, we have to work out our answer to that most difficult of research questions: "How big should my 'N' be??" This paper presents a very brief answer to that question, addressing both quantitative and qualitative methodologies. Research question/methodology alignment, effect size and statistical power will be discussed, in addition to a defense of the notion that bigger is not always better.

  2. EarthConnections: Integrating Community Science and Geoscience Education Pathways for More Resilient Communities.

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2017-12-01

    To develop a diverse geoscience workforce, the EarthConnections collective impact alliance is developing regionally focused, Earth education pathways. These pathways support and guide students from engagement in relevant, Earth-related science at an early age through the many steps and transitions to geoscience-related careers. Rooted in existing regional activities, pathways are developed using a process that engages regional stakeholders and community members with EarthConnections partners. Together they connect, sequence, and create multiple learning opportunities that link geoscience education and community service to address one or more local geoscience issues. Three initial pilots are demonstrating different starting points and strategies for creating pathways that serve community needs while supporting geoscience education. The San Bernardino pilot is leveraging existing academic relationships and programs; the Atlanta pilot is building into existing community activities; and the Oklahoma Tribal Nations pilot is co-constructing a pathway focus and approach. The project is using pathway mapping and a collective impact framework to support and monitor progress. The goal is to develop processes and activities that can help other communities develop similar community-based geoscience pathways. By intertwining Earth education with local community service we aspire to increase the resilience of communities in the face of environmental hazards and limited Earth resources.

  3. The role of digital cartographic data in the geosciences

    USGS Publications Warehouse

    Guptill, S.C.

    1983-01-01

    The increasing demand of the Nation's natural resource developers for the manipulation, analysis, and display of large quantities of earth-science data has necessitated the use of computers and the building of geoscience information systems. These systems require, in digital form, the spatial data on map products. The basic cartographic data shown on quadrangle maps provide a foundation for the addition of geological and geophysical data. If geoscience information systems are to realize their full potential, large amounts of digital cartographic base data must be available. A major goal of the U.S. Geological Survey is to create, maintain, manage, and distribute a national cartographic and geographic digital database. This unified database will contain numerous categories (hydrography, hypsography, land use, etc.) that, through the use of standardized data-element definitions and formats, can be used easily and flexibly to prepare cartographic products and perform geoscience analysis. ?? 1983.

  4. Leveraging biology interest to broaden participation in the geosciences

    NASA Astrophysics Data System (ADS)

    Perin, S.; Conner, L.; Oxtoby, L.

    2017-12-01

    It has been well documented that female participation in the geoscience workforce is low. By contrast, the biology workforce has largely reached gender parity. These trends are rooted in patterns of interest among youth. Specifically, girls tend to like biology and value social and societal connections to science (Brotman & Moore 2008). Our NSF-funded project, "BRIGHT Girls," offers two-week summer academies to high school-aged girls, in which the connections between the geosciences and biology are made explicit. We are conducting qualitative research to trace the girls' identity work during this intervention. Using team-based video interaction analysis, we are finding that the fabric of the academy allows girls to "try on" new possible selves in science. Our results imply that real-world, interdisciplinary programs that include opportunities for agency and authentic science practice may be a fruitful approach for broadening participation in the geosciences.

  5. An Earth Hazards Camp to Encourage Minority Participation in the Geosciences

    ERIC Educational Resources Information Center

    Sherman-Morris, Kathleen; Clary, Renee M.; McNeal, Karen S.; Diaz-Ramirez, Jairo; Brown, Michael E.

    2017-01-01

    Summer camps have proven to be effective tools to engage students in the geosciences. Findings from this study highlight perceptions and experiences of middle school students from predominantly African American school districts in Mississippi who attended a 3-d residence camp focused on increasing interest in the geosciences through an earth…

  6. Communicating Geosciences with Policy-makers: a Grand Challenge for Academia

    NASA Astrophysics Data System (ADS)

    Harrison, W. J.; Walls, M. R.; Boland, M. A.

    2015-12-01

    Geoscientists interested in the broader societal impacts of their research can make a meaningful contribution to policy making in our changing world. Nevertheless, policy and public decision making are the least frequently cited Broader Impacts in proposals and funded projects within NSF's Geosciences Directorate. Academic institutions can play a lead role by introducing this societal dimension of our profession to beginning students, and by enabling interdisciplinary research and promoting communication pathways for experienced career geoscientists. Within the academic environment, the public interface of the geosciences can be presented through curriculum content and creative programs. These include undergraduate minors in economics or public policy designed for scientists and engineers, and internships with policy makers. Federal research institutions and other organizations provide valuable policy-relevant experiences for students. Academic institutions have the key freedom of mission to tackle interdisciplinary research challenges at the interface of geoscience and policy. They develop long-standing relationships with research partners, including national laboratories and state geological surveys, whose work may support policy development and analysis at local, state, regional, and national levels. CSM's Payne Institute for Earth Resources awards mini-grants for teams of researchers to develop collaborative research efforts between engineering/science and policy researchers. Current work in the areas of nuclear generation and the costs of climate policy and on policy alternatives for capturing fugitive methane emissions are examples of work at the interface between the geosciences and public policy. With academic engagement, geoscientists can steward their intellectual output when non-scientists translate geoscience information and concepts into action through public policies.

  7. Variability in Annual and Average Mass Changes in Antarctica from 2004 to 2009 using Satellite Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B. M.; Schenk, A. F.

    2016-12-01

    We present a new record of Antarctic ice thickness changes, reconstructed from ICESat laser altimetry observations, from 2004-2009, at over 100,000 locations across the Antarctic Ice Sheet (AIS). This work generates elevation time series at ICESat groundtrack crossover regions on an observation-by-observation basis, with rigorous, quantified, error estimates using the SERAC approach (Schenk and Csatho, 2012). The results include average and annual elevation, volume and mass changes in Antarctica, fully corrected for glacial isostatic adjustment (GIA) and known intercampaign biases; and partitioned into contributions from surficial processes (e.g. firn densification) and ice dynamics. The modular flexibility of the SERAC framework allows for the assimilation of multiple ancillary datasets (e.g. GIA models, Intercampaign Bias Corrections, IBC), in a common framework, to calculate mass changes for several different combinations of GIA models and IBCs and to arrive at a measure of variability from these results. We are able to determine the effect these corrections have on annual and average volume and mass change calculations in Antarctica, and to explore how these differences vary between drainage basins and with elevation. As such, this contribution presents a method that compliments, and is consistent with, the 2012 Ice sheet Mass Balance Inter-comparison Exercise (IMBIE) results (Shepherd 2012). Additionally, this work will contribute to the 2016 IMBIE, which seeks to reconcile ice sheet mass changes from different observations,, including laser altimetry, using a different methodologies and ancillary datasets including GIA models, Firn Densification Models, and Intercampaign Bias Corrections.

  8. Geoscience Education and Global Development

    ERIC Educational Resources Information Center

    Locke, Sharon; Libarkin, Julie; Chang, Chun-Yen

    2012-01-01

    A fundamental goal of geoscience education is ensuring that all inhabitants of the planet have knowledge of the natural processes that shape the physical environment, and understand how the actions of humans have an impact on the Earth on local, regional, and global scales. Geoscientists accept that deep understanding of natural processes requires…

  9. Voluntarism and Diversification of Undergraduate Geoscience Programs.

    ERIC Educational Resources Information Center

    Greenberg, Jeffrey King

    1990-01-01

    Strategies that can be used to revitalize geoscience education are discussed. Stressed are the ideas of providing voluntary assistance to science and science teacher education and program diversification. (CW)

  10. EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences

    NASA Astrophysics Data System (ADS)

    Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn

    2017-04-01

    EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.

  11. AWG, Enhancing Professional Skills, Providing Resources and Assistance for Women in the Geosciences

    NASA Astrophysics Data System (ADS)

    Sundermann, C.; Cruse, A. M.; AssociationWomen Geoscientists

    2011-12-01

    The Association for Women Geoscientists (AWG) was founded in 1977. AWG is an international organization, with ten chapters, devoted to enhancing the quality and level of participation of women in geosciences, and introducing women and girls to geoscience careers. Our diverse interests and expertise cover the entire spectrum of geoscience disciplines and career paths, providing unexcelled networking and mentoring opportunities to develop leadership skills. Our membership is brought together by a common love of earth, atmospheric and ocean sciences, and the desire to ensure rewarding opportunities for women in the geosciences. AWG offers a variety of scholarships, including the Chrysalis scholarship for women who are returning to school after a life-changing interruption, and the Sands and Takken awards for students to make presentations at professional meetings. AWG promotes professional development through workshops, an online bi-monthly newsletter, more timely e-mailed newsletters, field trips, and opportunities to serve in an established professional organization. AWG recognizes the work of outstanding women geoscientists and of outstanding men supporters of women in the geosciences. The AWG Foundation funds ten scholarships, a Distinguished Lecture Program, the Geologist-in-the-Parks program, Science Fair awards, and numerous Girl Scout programs. Each year, AWG sends a contingent to Congressional Visits Day, to help educate lawmakers about the unique challenges that women scientists face in the geoscience workforce.

  12. Potential Elevation Biases for Laser Altimeters from Subsurface Scattered Photons: Laboratory and Model Exploration of Green Light Scattering in Snow

    NASA Astrophysics Data System (ADS)

    Greeley, A.; Neumann, T.; Markus, T.; Kurtz, N. T.; Cook, W. B.

    2015-12-01

    Existing visible light laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographic Laser Altimeter System) on NASA's upcoming ICESat-2 mission - and ATM (Airborne Topographic Mapper) on NASA's Operation IceBridge mission provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters like sea ice freeboard and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons travelling into snow, ice, or water before scattering back to the altimeter receiving system (subsurface photons) travel farther and longer than photons scattering off the surface only, causing a bias in the measured elevation. We seek to identify subsurface photons in a laboratory setting using a flight-tested laser altimeter (MABEL) and to quantify their effect on surface elevation estimates for laser altimeter systems. We also compare these estimates with previous laboratory measurements of green laser light transmission through snow, as well as Monte Carlo simulations of backscattered photons from snow.

  13. Development of Elevation and Relief Databases for ICESat-2/ATLAS Receiver Algorithms

    NASA Astrophysics Data System (ADS)

    Leigh, H. W.; Magruder, L. A.; Carabajal, C. C.; Saba, J. L.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    The Advanced Topographic Laser Altimeter System (ATLAS) is planned to launch onboard NASA's ICESat-2 spacecraft in 2016. ATLAS operates at a wavelength of 532 nm with a laser repeat rate of 10 kHz and 6 individual laser footprints. The satellite will be in a 500 km, 91-day repeat ground track orbit at an inclination of 92°. A set of onboard Receiver Algorithms has been developed to reduce the data volume and data rate to acceptable levels while still transmitting the relevant ranging data. The onboard algorithms limit the data volume by distinguishing between surface returns and background noise and selecting a small vertical region around the surface return to be included in telemetry. The algorithms make use of signal processing techniques, along with three databases, the Digital Elevation Model (DEM), the Digital Relief Map (DRM), and the Surface Reference Mask (SRM), to find the signal and determine the appropriate dynamic range of vertical data surrounding the surface for downlink. The DEM provides software-based range gating for ATLAS. This approach allows the algorithm to limit the surface signal search to the vertical region between minimum and maximum elevations provided by the DEM (plus some margin to account for uncertainties). The DEM is constructed in a nested, three-tiered grid to account for a hardware constraint limiting the maximum vertical range to 6 km. The DRM is used to select the vertical width of the telemetry band around the surface return. The DRM contains global values of relief calculated along 140 m and 700 m ground track segments consistent with a 92° orbit. The DRM must contain the maximum value of relief seen in any given area, but must be as close to truth as possible as the DRM directly affects data volume. The SRM, which has been developed independently from the DEM and DRM, is used to set parameters within the algorithm and select telemetry bands for downlink. Both the DEM and DRM are constructed from publicly available digital

  14. Role Models and Mentors in Mid-Pipeline Retention of Geoscience Students, Newark, NJ

    NASA Astrophysics Data System (ADS)

    Gates, A. E.; Kalczynski, M. J.

    2012-12-01

    Undergraduate minority students retained enthusiasm for majoring in the geosciences by a combination of working with advanced minority mentors and role models as well as serving as role models for middle and high school students in Geoscience Education programs in Newark, NJ. An academic year program to interest 8-10th grade students from the Newark Public schools in the Geosciences employs minority undergraduate students from Rutgers University and Essex Community College as assistants. There is an academic year program (Geoexplorers) and a science festival (Dinosaur Day) at the Newark Museum that employs Rutgers University students and a summer program that employs Rutgers and Essex Community College students. All students are members of the Garden State LSAMP and receive any needed academic support from that program. The students receive mentoring from minority graduate students, project personnel and participating Newark Public School teachers, many of whom are from minority groups. The main factor in success and retention, however, is their role as authorities and role models for the K-12 students. The assistants are respected and consulted by the K-12 students for their knowledge and authority in the geosciences. This positive feedback shows them that they can be regarded as geoscientists and reinforces their self-image and enthusiasm. It further reinforces their knowledge of Geoscience concepts. It also binds the assistants together into a self-supporting community that even extends to the non-participating minority students in the Rutgers program. Although the drop-out rate among minority Geoscience majors was high (up to 100%) prior to the initiation of the program, it has dropped to 0% over the past 3 years with 2 participants now in PhD programs and 2 others completing MS degrees this year. Current students are seriously considering graduate education. Prior to this program, only one minority graduate from the program continued to graduate school in the

  15. Application of glas laser altimetry to detect elevation changes in East Antarctica

    NASA Astrophysics Data System (ADS)

    Scaioni, M.; Tong, X.; Li, R.

    2013-10-01

    In this paper the use of ICESat/GLAS laser altimeter for estimating multi-temporal elevation changes on polar ice sheets is afforded. Due to non-overlapping laser spots during repeat passes, interpolation methods are required to make comparisons. After reviewing the main methods described in the literature (crossover point analysis, cross-track DEM projection, space-temporal regressions), the last one has been chosen for its capability of providing more elevation change rate measurements. The standard implementation of the space-temporal linear regression technique has been revisited and improved to better cope with outliers and to check the estimability of model's parameters. GLAS data over the PANDA route in East Antarctica have been used for testing. Obtained results have been quite meaningful from a physical point of view, confirming the trend reported by the literature of a constant snow accumulation in the area during the two past decades, unlike the most part of the continent that has been losing mass.

  16. Geoscience salaries up by 10.8%

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    According to a recent salary survey of over 4000 scientists in all fields by Research and Development (March 1984) geoscientists ranked fourth place for 1984. Mathematics, aeronautical engineering, and metallurgy had higher median salaries, but the discipline of geoscience had a higher median salary than that of physics, chemical engineering, mechanical engineering, electrical engineering, ceramics, chemistry, industrial engineering, biology, and other fields of research and development. The 1984 median salary for geoscientists was $40,950, up from the median value by 10.8%. In 1983, geoscience was ranked in ninth place.The geoscientist profile for 1984 was not unusual. The median age was 47.5 years, and the median years of experience was 18. Geoscientists are the best educated. Eighty-two percent of the geoscientists polled had advanced degrees beyond the bachelor's degree. Fifty-six percent of the geoscientists had the Ph.D. degree.

  17. Summaries of FY 1994 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scopemore » of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.« less

  18. Attracting and Retaining Undergraduate Students in the Geosciences: A Multipronged Approach

    NASA Astrophysics Data System (ADS)

    Chantale Damas, M.

    2017-04-01

    The geosciences are taught at relatively few colleges and universities in the United States. Furthermore, fewer students are selecting the geosciences as careers and where the loss of retired scientists is significant. Thus, new approaches and strategies are needed to attract and retain students in the geosciences. The aim of this project is to both increase the diversity and visibility of the geosciences at the undergraduate level. Using both an interdisciplinary and inter-institutional approach, the Queensborough Community College (QCC) of the City University of New York (CUNY) has been very successful at engaging students in educational activities and applied research in solar, geospace, and atmospheric physics, under the umbrella discipline of space weather. As an interdisciplinary field, space weather offers students a great opportunity to study the Sun-Earth connection. Additionally, students also receive support through several partner institutions including the NASA Goddard Spaceflight Center (GSFC) Community Coordinated Modeling Center (CCMC), four-year colleges and universities, and other summer research programs. With its institutional partners, QCC has implemented a year-long program with two components: 1) during the academic year, students are enrolled in a course-based introductory research (CURE) where they conduct research on real-world problems; and 2) during the summer, students are placed in research internships at partner institutions. This poster will describe these approaches, as well as present best strategies that are used to attract and retain students in the geosciences.

  19. Programming and Technology for Accessibility in Geoscience

    NASA Astrophysics Data System (ADS)

    Sevre, E.; Lee, S.

    2013-12-01

    Many people, students and professors alike, shy away from learning to program because it is often believed to be something scary or unattainable. However, integration of programming into geoscience education can be a valuable tool for increasing the accessibility of content for all who are interested. It is my goal to dispel these myths and convince people that: 1) Students with disabilities can use programming to increase their role in the classroom, 2) Everyone can learn to write programs to simplify daily tasks, 3) With a deep understanding of the task, anyone can write a program to do a complex task, 4) Technology can be combined with programming to create an inclusive environment for all students of geoscience, and 5) More advanced knowledge of programming and technology can lead geoscientists to create software to serve as assistive technology in the classroom. It is my goal to share my experiences using technology to enhance the classroom experience as a way of addressing the aforementioned issues. Through my experience, I have found that programming skills can be included and learned by all to enhance the content of courses without detracting from curriculum. I hope that, through this knowledge, geoscience courses can become more accessible for people with disabilities by including programming and technology to the benefit of all involved.

  20. Recruiting and Supporting Diverse Geoscience and Environmental Science Students

    NASA Astrophysics Data System (ADS)

    Doser, Diane I.; Manduca, Cathy; Rhodes, Dallas

    2014-08-01

    Producing a workforce that will be successful in meeting global environmental and resource challenges requires that we attract diverse students into the geosciences, support them fully in our programs, and assist them as they move into the profession. However, geoscience has the lowest ethnic and racial diversity of any of the science, technology, engineering, and mathematics (STEM) disciplines (National Science Foundation (NSF), "Women, Minorities, and Persons with Disabilities in Science and Engineering," http://www.nsf.gov/statistics/wmpd/2013/start.cfm) and is often viewed as a difficult choice for students with physical disabilities.

  1. The [Geo]Scientific Method; Hypothesis Testing and Geoscience Proposal Writing for Students

    ERIC Educational Resources Information Center

    Markley, Michelle J.

    2010-01-01

    Most undergraduate-level geoscience texts offer a paltry introduction to the nuanced approach to hypothesis testing that geoscientists use when conducting research and writing proposals. Fortunately, there are a handful of excellent papers that are accessible to geoscience undergraduates. Two historical papers by the eminent American geologists G.…

  2. Engaging secondary students in geoscience investigations through the use of low-cost instrumentation

    NASA Astrophysics Data System (ADS)

    Dunn, A. L.; Hansen, W.; Healy, S.

    2010-12-01

    Many of the future challenges facing the United States, such as climate change, securing energy resources, soil degradation, water resources, and atmospheric pollution, are part of the domain of geosciences. Currently, our colleges and universities are not graduating enough geoscience majors to meet this demand, with only 0.27% of all bachelor's degrees granted in geoscience fields in 2006, the fewest in any scientific field (NSF 2008). Moreover, undergraduate recruitment in geosciences from traditionally underrepresented groups is significantly poorer than other STEM fields, with underrepresented groups comprising just 5% of total geoscience bachelor’s degrees awarded (Czujko 2004). Undergraduate geoscience programs therefore have a critical need to not just grow in size, but to expand the spectrum of students within their programs to better reflect the country’s diversity. In 2009, Worcester State College (WSC) initiated an effort as part of NSF's Opportunities for Enhancing Diversity in the Geosciences Program to address this problem on a local scale. Through this program, we are creating a pipeline for diversity in the geosciences through a multi-faceted approach involving teacher training, high school internships, and a co-enrollment and scholarship program between Worcester Public Schools and WSC. Worcester, Massachusetts has a median household income of 43,779, 13,902 below the median household income for Massachusetts, and 24% of the city’s children live below the poverty line. Worcester is a diverse city: 19% of the population is Latino, 9% African-American, and 7% Asian-American, with over 18% foreign-born residents. This diversity is reflected in the city’s school system, where over 80 languages are spoken. In July 2010, the program was initiated with a week-long teacher training workshop. The participants were middle and high school science teachers from Worcester and the surrounding area. The workshop focused on issues of sustainability related

  3. Web-based Academic Roadmaps for Careers in the Geosciences

    NASA Astrophysics Data System (ADS)

    Murray, D. P.; Veeger, A. I.; Grossman-Garber, D.

    2007-12-01

    To a greater extent than most science programs, geology is underrepresented in K-12 curricula and the media. Thus potential majors have scant knowledge of academic requirements and career trajectories, and their idea of what geologists do--if they have one at all--is outdated. We have addressed these concerns by developing a dynamic, web-based academic roadmap for current and prospective students, their families, and others who are contemplating careers in the geosciences. The goals of this visually attractive "educational pathway" are to not only improve student recruitment and retention, but to empower student learning by creating better communication and advising tools that can render our undergraduate program transparent for learners and their families. Although we have developed academic roadmaps for four environmental and life science programs at the University of Rhode Island, we focus here on the roadmap for the geosciences, which illustrates educational pathways along the academic and early-career continuum for current and potential (i.e., high school) students who are considering the earth sciences. In essence, the Geosciences Academic Roadmap is a "one-stop'" portal to the discipline. It includes user- friendly information about our curriculum, outcomes (which at URI are tightly linked to performance in courses and the major), extracurricular activities (e.g., field camp, internships), careers, graduate programs, and training. In the presentation of this material extensive use is made of streaming video, interviews with students and earth scientists, and links to other relevant sites. Moreover, through the use of "Hot Topics", particular attention is made to insure that examples of geoscience activities are not only of relevance to today's students, but show geologists using the modern methods of the discipline in exciting ways. Although this is a "work-in-progress", evaluation of the sites, by high school through graduate students, has been strongly

  4. "YouTube Geology" - Increasing Geoscience Visibility Through Short Films

    NASA Astrophysics Data System (ADS)

    Piispa, E. J.; Lerner, G. A.

    2016-12-01

    Researchers have the responsibility to communicate their science to a broad audience: scientists, non-scientist, young and old. Effective ways of reaching these groups include using pathways that genuinely spark interest in the target audience. Communication techniques should evolve as the means of communication evolve. Here we talk about our experiences using short films to increase geoscience visibility and appreciation. At a time when brevity and quick engagement are vital to capturing people's attention, creating videos that fit popular formats is an effective way to draw and hold people's interest, and spreading these videos on popular sites is a good way to reach a non-academic audience. Creating videos that are fun, exciting, and catchy in order to initially increase awareness and interest is equally important as the educational content. The visual medium can also be powerful way to make complex scientific concepts seem less intimidating. We have experimented with this medium of geoscience communication by creating a number of short films that target a variety of audiences: short summaries of research topics, mock movie trailers, course advertisements, fieldwork highlight reels and geology lessons for elementary school children. Our two rules of thumb are to put the audience first and use style as a vital element. This allows for the creation of films that are more engaging and often less serious than standard informational (and longer-format) videos. Science does not need to be dry and dull - it can be humorous and entertaining while remaining highly accurate. Doing these short films has changed our own mindset as well - thinking about what to film while doing research helps keep the practical applications of our research in focus. We see a great deal of potential for collaboration between geoscientists and amateur or professional filmmakers creating hip and edgy videos that further raise awareness and interest. People like movies. We like movies. We like

  5. GOLD: Building capacity for broadening participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Adams, Amanda; Patino, Lina; Jones, Michael B.; Rom, Elizabeth

    2017-04-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved minorities, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in broadening participation in STEM and the geosciences. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies that empower people who wish to have an impact, and make them effective as leaders in that capacity for sustained periods of time, must be cultivated through professional development. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional

  6. Examining the Professional Development Experiences and Non-Technical Skills Desired for Geoscience Employment

    NASA Astrophysics Data System (ADS)

    Houlton, H. R.; Ricci, J.; Wilson, C. E.; Keane, C.

    2014-12-01

    Professional development experiences, such as internships, research presentations and professional network building, are becoming increasingly important to enhance students' employability post-graduation. The practical, non-technical skills that are important for succeeding during these professional development experiences, such as public speaking, project management, ethical practices and writing, transition well and are imperative to the workplace. Thereby, graduates who have honed these skills are more competitive candidates for geoscience employment. Fortunately, the geoscience community recognizes the importance of these professional development opportunities and the skills required to successfully complete them, and are giving students the chance to practice non-technical skills while they are still enrolled in academic programs. The American Geosciences Institute has collected data regarding students' professional development experiences, including the preparation they receive in the corresponding non-technical skills. This talk will discuss the findings of two of AGI's survey efforts - the Geoscience Student Exit Survey and the Geoscience Careers Master's Preparation Survey (NSF: 1202707). Specifically, data highlighting the role played by internships, career opportunities and the complimentary non-technical skills will be discussed. As a practical guide, events informed by this research, such as AGI's professional development opportunities, networking luncheons and internships, will also be included.

  7. The Global ASTER Geoscience and Mineralogical Maps

    NASA Astrophysics Data System (ADS)

    Abrams, M.

    2017-12-01

    In 2012, Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) released 17 Geoscience mineral maps for the continent of Australia We are producing the CSIRO Geoscience data products for the entire land surface of the Earth. These maps are created from Advanced Spacecraft Thermal Emission and Reflection Radiometer (ASTER) data, acquired between 2000 and 2008. ASTER, onboard the United States' Terra satellite, is part of NASA's Earth Observing System. This multispectral satellite system has 14 spectral bands spanning: the visible and near-infrared (VNIR) @ 15 m pixel resolution; shortwave-infrared (SWIR) @ 30 m pixel resolution; and thermal infrared (TIR) @ 90 m pixel resolution. In a polar-orbit, ASTER acquires a 60 km swath of data.The CSIRO maps are the first continental-scale mineral maps generated from an imaging satellite designed to measure clays, quartz and other minerals. Besides their obvious use in resource exploration, the data have applicability to climatological studies. Over Australia, these satellite mineral maps improved our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map showed how kaolinite has developed over tectonically stable continental crust in response to deep weathering. The same clay composition map, in combination with one sensitive to water content, enabled the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust. This product was also used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The two-year project is undertaken by JPL with collaboration from CSIRO. JPL has in-house the entire ASTER global archive of Level 1B image data—more than 1,500,000 scenes. This cloud-screened and vegetation-masked data set will be the basis for creation

  8. Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-02-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  9. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  10. Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; McKinley, Jennifer

    2005-03-01

    One hundred years ago Georg Popp became the first scientist to present in court a case where the geological makeup of soils was used to secure a criminal conviction. Subsequently there have been significant advances in the theory and practice of forensic geoscience: many of them subsequent to the seminal publication of "Forensic Geology" by Murray and Tedrow [Murray, R., Tedrow, J.C.F. 1975 (republished 1986). Forensic Geology: Earth Sciences and Criminal Investigation. Rutgers University Press, New York, 240 pp.]. Our review places historical development in the modern context of how the allied disciplines of geology (mineralogy, sedimentology, microscopy), geophysics, soil science, microbiology, anthropology and geomorphology have been used as tool to aid forensic (domestic, serious, terrorist and international) crime investigations. The latter half of this paper uses the concept of scales of investigation, from large-scale landforms through to microscopic particles as a method of categorising the large number of geoscience applications to criminal investigation. Forensic geoscience has traditionally used established non-forensic techniques: 100 years after Popp's seminal work, research into forensic geoscience is beginning to lead, as opposed to follow other scientific disciplines.

  11. Professional Development Opportunities for Two-Year College Geoscience Faculty: Issues, Opportunities, and Successes

    NASA Astrophysics Data System (ADS)

    Baer, E. M.; Macdonald, H.; McDaris, J. R.; Granshaw, F. D.; Wenner, J. M.; Hodder, J.; van der Hoeven Kraft, K.; Filson, R. H.; Guertin, L. A.; Wiese, K.

    2011-12-01

    Two-year colleges (2YCs) play a critical role in geoscience education in the United States. Nearly half of the undergraduate students who take introductory geoscience do so at a 2YC. With awide reach and diverse student populations, 2YCs may be key to producing a well-trained, diverse and sufficiently large geoscience workforce. However, faculty at 2YCs often face many barriers to professional development including lack of financial resources, heavy and inflexible teaching loads, lack of awareness of opportunities, and few professional development resources/events targeted at their needs. As an example, at the 2009 GSA meeting in Portland, fewer than 80 of the 6500 attendees were from community colleges, although this was more than twice the 2YC faculty attendance the previous year. Other issues include the isolation described by many 2YC geoscience faculty who may be the only full time geoscientist on a campus and challenges faced by adjunct faculty who may have even fewer opportunities for professional development and networking with other geoscience faculty. Over the past three years we have convened several workshops and events for 2YC geoscience faculty including technical sessions and a workshop on funding opportunities for 2YC faculty at GSA annual meetings, a field trip and networking event at the fall AGU meeting, a planning workshop that examined the role of 2YCs in geoscience education and in broadening participation in the geosciences, two workshops supporting use of the 'Math You Need, When You Need It' educational materials that included a majority of 2YC faculty, and marine science summer institutes offered by COSEE-Pacific Partnerships for 2YC faculty. Our experience indicates that 2YC faculty desire professional development opportunities when the experience is tailored to the needs and character of their students, programs, and institutions. The content of the professional development opportunity must be useful to 2YC faculty -workshops and

  12. The Atmospheric Channels of GLAS: Near Real-Time Global Lidar Remote Sensing of Clouds and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Hlavka, Dennis; Hart, Bill; Welton, E. Judd; Spinhirne, James

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS) will be placed into orbit in 2001 aboard the Ice, Cloud and Land Elevation Satellite (ICESat). From its nearly polar orbit (94 degree inclination), GLAS will provide continuous global measurements of the vertical distribution of clouds and aerosols while simultaneously providing high accuracy topographic profiling of surface features. During the mission, which is slated to last 3 to 5 years, the data collected by GLAS will be in near-real time to produce level 1 and 2 data products at the NASA GLAS Science Computing Facility (SCF) at Goddard Space Flight Center in Greenbelt, Maryland. The atmospheric products include cloud and aerosol layer heights, planetary boundary layer depth, polar stratospheric clouds and thin cloud and aerosol optical depth. These products will be made available to the science community within days of their creation. The processing algorithms must be robust, adaptive, efficient, and clever enough to run autonomously for the widely varying atmospheric conditions that will be encountered. This paper presents an overview of the GLAS atmospheric data products and briefly discusses the design of the processing algorithms.

  13. The Evolution of Building a Diverse Geosciences in the United States

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; Houlton, Heather; Leahy, P. Patrick

    2016-04-01

    Since the 1960s, the United States has had numerous systematic efforts to support diversity in all parts of society. The American Geosciences Institute has had active ongoing research and diversity promotion programs in the geosciences since 1972. Over this time, the drivers and goals of promoting a diverse discipline have evolved, including in the scope and definition of diversity. The success of these efforts have been mixed, largely driven by wildly different responses by specific gender and racial subsets of the population. Some critical cultural barriers have been solidly identified and mitigation approaches promoted. For example, the use of field work in promotion of geoscience careers and education programs is viewed as a distinct negative by many African American and Hispanic communities as it equates geoscience as non-professional work. Similarly, efforts at improving gender diversity have had great success, especially in the private sector, as life-balance policies and mitigations of implicit biases have been addressed. Yet success in addressing some of these cultural and behavioral issues has also started to unveil other overarching factors, such as the role of socio-economic and geographic location. Recent critical changes in the definition of diversity that have been implemented will be discussed. These include dropping Asian races as underrepresented, the introduction of the multiracial definition, evolution of the nature of gender, and the increased awareness of persons with disabilities as a critical diverse population. This has been coupled with dramatic changes in the drivers for promoting diversity in the geosciences in the U.S. from a moral and ethical good to one of economic imperative and recognizing the way to access the best talent in the population as the U.S. rapidly approaches being a majority minority society. These changes are leading to new approaches and strategies, for which we will highlight specific programmatic efforts both by AGI

  14. SUNY Oneonta Earth Sciences Outreach Program (ESOP) - Generating New Drilling Prospects for Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Ebert, J. R.

    2010-12-01

    The SUNY Oneonta ESOP is a National Science Foundation-funded program that, since 2005, has striven to address the dearth of students graduating with baccalaureate degrees in geoscience disciplines. In large part, its goal has been to provide talented STEM-oriented students with dual-enrollment college-level geoscience programs run by their local teachers for college credit. These high-school upperclassman experiences have been shown to be effective in recruiting talented students to geoscience fields, and we believe that this program is a model by which more baccalaureate programs can locate "new drilling prospects" to keep the pipeline of talented and trained geoscientists flowing into the workforce. In this presentation, we will highlight the current efforts to expand ESOP to other high schools around the country and in recruiting other colleges and universities to create their own dual-enrollment programs. We will also highlight how a senior-level geoscience course is ideal for providing students with meaningful geoscience inquiry experiences, and how we plan to support such efforts through the online teaching and learning cohorts designed to foster collaborative inquiry activities.

  15. State of the art of geoscience libraries and information services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruett, N.J.

    Geoscience libraries and geoscience information services are closely related. Both are trying to meet the needs of the geoscientists for information and data. Both are also being affected by many trends: increased availability of personal computers; decreased costs of machine readable storage; increased availability of maps in digital format (Pallatto, 1986); progress in graphic displays and in developing Geographic Information System, (GIS) (Kelly and Phillips, 1986); development in artificial intelligence; and the availability of new formats (e.g. CD-ROM). Some additional factors are at work at changing the role of libraries: libraries are coming to recognize the impossibility of collecting everythingmore » and the validity of Bradford's Law unobtrustive studies of library reference services have pointed out that only 50% of the questions are answered correctly it is clear that the number of databases is increasing although good figures for specifically geoscience databases are not available; lists of numeric database are beginning to appear; evaluative (as opposed to purely descriptive) reviews of available bibliographic databases are beginning to appear; more and more libraries are getting online catalogs and results of studies of users of online catalog are being used to improve catalog design; and research is raising consciousness about the value of; and research is raising consciousness about the value of information. All these trends are having or will have an effect on geoscience information.« less

  16. Development of the Virginia Tech Department of Geosciences MEDL-CMC

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.

    2016-12-01

    In 2015 the Virginia Tech Department of Geosciences took a leading role in increasing the level of support for Geoscience instructors by investing in the development of the Geosciences Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC). The MEDL-CMC is an innovative curriculum materials center designed to foster new collaborative teaching and learning environments by providing hands-on physical models combined with education technology for instructors and outreach coordinators. The mission of the MEDL-CMC is to provide advanced curriculum material resources for the purpose of increasing and sustaining high impact instructional capacity in STEM education for both formal and informal learning environments. This presentation describes the development methods being used to implement the MEDL-CMC. Major development methods include: (1) adopting a project management system to support collaborations with stakeholders, (2) using a diversified funding approach to achieve financial sustainability and the ability to evolve with the educational needs of the community, and (3) establishing a broad collection of systems-based physical analog models and data collection tools to support integrated sciences such as the geosciences. Discussion will focus on how these methods are used for achieving organizational capacity in the MEDL-CMC and on their intended role in reducing instructor workload in planning both classroom activities and research grant broader impacts.

  17. Geoscience meets the four horsemen?: Tracking the rise of neocatastrophism

    NASA Astrophysics Data System (ADS)

    Marriner, Nick; Morhange, Christophe; Skrimshire, Stefan

    2010-10-01

    Although it is acknowledged that there has been an exponential growth in neocatastrophist geoscience inquiry, the extent, chronology and origin of this mode have not been precisely scrutinized. In this study, we use the bibliographic research tool Scopus to explore 'catastrophic' words replete in the earth and planetary science literature between 1950 and 2009, assessing when, where and why catastrophism has gained new currency amongst the geoscience community. First, we elucidate an exponential rise in neocatastrophist research from the 1980s onwards. We then argue that the neocatastrophist mode came to prominence in North America during the 1960s and 1970s before being more widely espoused in Europe, essentially after 1980. We compare these trends with the EM-DAT disaster database, a worldwide catalogue that compiles more than 11,000 natural disasters stretching back to 1900. The findings imply a clear link between anthropogenically forced global change and an increase in disaster research (r 2 = 0.73). Finally, we attempt to explain the rise of neocatastrophism by highlighting seven non-exhaustive factors: (1) the rise of applied geoscience; (2) inherited geological epistemology; (3) disciplinary interaction and the diffusion of ideas from the planetary to earth sciences; (4) the advent of radiometric dating techniques; (5) the communications revolution; (6) webometry and the quest for high-impact geoscience; and (7) popular cultural frameworks.

  18. Gender differences in recommendation letters for postdoctoral fellowships in geoscience

    NASA Astrophysics Data System (ADS)

    Dutt, Kuheli; Pfaff, Danielle L.; Bernstein, Ariel F.; Dillard, Joseph S.; Block, Caryn J.

    2016-11-01

    Gender disparities in the fields of science, technology, engineering and mathematics, including the geosciences, are well documented and widely discussed. In the geosciences, despite receiving 40% of doctoral degrees, women hold less than 10% of full professorial positions. A significant leak in the pipeline occurs during postdoctoral years, so biases embedded in postdoctoral processes, such as biases in recommendation letters, may be deterrents to careers in geoscience for women. Here we present an analysis of an international data set of 1,224 recommendation letters, submitted by recommenders from 54 countries, for postdoctoral fellowships in the geosciences over the period 2007-2012. We examine the relationship between applicant gender and two outcomes of interest: letter length and letter tone. Our results reveal that female applicants are only half as likely to receive excellent letters versus good letters compared to male applicants. We also find no evidence that male and female recommenders differ in their likelihood to write stronger letters for male applicants over female applicants. Our analysis also reveals significant regional differences in letter length, with letters from the Americas being significantly longer than any other region, whereas letter tone appears to be distributed equivalently across all world regions. These results suggest that women are significantly less likely to receive excellent recommendation letters than their male counterparts at a critical juncture in their career.

  19. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  20. Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau

    NASA Astrophysics Data System (ADS)

    Satge, Frédéric; Denezine, Matheus; Pillco, Ramiro; Timouk, Franck; Pinel, Sébastien; Molina, Jorge; Garnier, Jérémie; Seyler, Frédérique; Bonnet, Marie-Paule

    2016-11-01

    Previously available only over the Continental United States (CONUS), the 1 arc-second mesh size (spatial resolution) SRTM-GL1 (Shuttle Radar Topographic Mission - Global 1) product has been freely available worldwide since November 2014. With a relatively small mesh size, this digital elevation model (DEM) provides valuable topographic information over remote regions. SRTM-GL1 is assessed for the first time over the South American Andean Plateau in terms of both the absolute and relative vertical point-to-point accuracies at the regional scale and for different slope classes. For comparison, SRTM-v4 and GDEM-v2 Global DEM version 2 (GDEM-v2) generated by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) are also considered. A total of approximately 160,000 ICESat/GLAS (Ice, Cloud and Land Elevation Satellite/Geoscience Laser Altimeter System) data are used as ground reference measurements. Relative error is often neglected in DEM assessments due to the lack of reference data. A new methodology is proposed to assess the relative accuracies of SRTM-GL1, SRTM-v4 and GDEM-v2 based on a comparison with ICESat/GLAS measurements. Slope values derived from DEMs and ICESat/GLAS measurements from approximately 265,000 ICESat/GLAS point pairs are compared using quantitative and categorical statistical analysis introducing a new index: the False Slope Ratio (FSR). Additionally, a reference hydrological network is derived from Google Earth and compared with river networks derived from the DEMs to assess each DEM's potential for hydrological applications over the region. In terms of the absolute vertical accuracy on a global scale, GDEM-v2 is the most accurate DEM, while SRTM-GL1 is more accurate than SRTM-v4. However, a simple bias correction makes SRTM-GL1 the most accurate DEM over the region in terms of vertical accuracy. The relative accuracy results generally did not corroborate the absolute vertical accuracy. GDEM-v2 presents the lowest statistical

  1. Broadening Pathways to Geosciences with an Integrated Program at The University of Michigan

    NASA Astrophysics Data System (ADS)

    Dick, G.; Munson, J.

    2017-12-01

    Low participation of under-represented minorities (URM) in the geosciences is an acute issue at the University of Michigan (U-M), where the number of undergraduate URM students majoring in the Department of Earth and Environmental Sciences (EES) is typically 5% of total majors. The goal of our project is to substantially increase the number and success rate of underrepresented minorities majoring in EES at U-M. We are pursuing this goal with five primary objectives: (i) inspire and recruit high schools seniors to pursue geoscience at U-M, especially through hands-on experiences including field trips; (ii) establish infrastructure to support students interested in geosciences through the critical juncture between high school and college; (iii) increase the number of URM students transferring from community college; (iv) develop student interest in geosciences through research and field experiences; (v) expose students to career opportunities in the geosciences. To accomplish these objectives we are leveraging existing programs, including Earth Camp, Foundations for Undergraduate Teaching: Uniting Research and Education (FUTURE), M-Sci, and college academic advisors. Throughout our interactions with students from high-school through college, we expose them to career opportunities in the geosciences, including private industry, academia, and government agencies. Evaluation of the program revealed three main conclusions: (i) the program increased student interest in pursuing an earth science degree; (ii) participating students showed a marked increase in awareness about the various opportunities that are available with an earth science degree including pathways to graduate school and earth science careers; (iii) field trips were the most effective route for achieving outcomes (i) and (ii).

  2. Creating a Linked Data Hub in the Geosciences

    NASA Astrophysics Data System (ADS)

    Narock, T. W.; Rozell, E. A.; Robinson, E. M.

    2012-12-01

    Linked data is a paradigm for publishing data on the Web by using, among other things, non-proprietary data formats and resolvable identifiers for things in your dataset. One linked data initiative, DBPedia, is widely used as a "crystallization point" for linked data on the Web. It serves as a hub for links from external datasets covering a broad variety of domains. Within the Earth Science Information Partnership (ESIP) efforts have begun to create a similar crystallization point for linked data in the geosciences. The initial project was created by converting more than 100,000 abstracts from the American Geophysical Union (AGU) into linked data using the Resource Description Framework. Like the Wikipedia data DBPedia is derived from, AGU publications have extremely broad coverage of topics in the geosciences. To better characterize the network, we have linked this AGU data to ESIP meeting and membership data, as well as to National Science Foundation-funded research projects. In doing so, we can visualize connections between different collaborative clusters like the ESIP Community or NSF grantees within the broader Geosciences communities that attend AGU conferences. Efforts to extend this project include - the ability to annotate abstracts, provide links to referenced tools or datasets, and the enabling of a crowd-sourcing approach to co-reference resolution.

  3. ICESat Observations of Seasonal and Interannual Variations of Sea-Ice Freeboard and Estimated Thickness in the Weddell Sea, Antarctica (2003-2009)

    NASA Technical Reports Server (NTRS)

    Yi, Donghui; Robbins, John W.

    2010-01-01

    Sea-ice freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea ice, to estimate sea-ice thickness. Sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) pack ice. During October-November, sea ice grows to its seasonal maximum both in area and thickness; the mean freeboards are 0.33-0.41 m and the mean thicknesses are 2.10-2.59 m. During February-March, thinner sea ice melts away and the sea-ice pack is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35-0.46 m and the mean thicknesses are 1.48-1.94 m. During May-June, the mean freeboards and thicknesses are 0.26-0.29 m and 1.32-1.37 m, respectively. The 6 year trends in sea-ice extent and volume are (0.023+/-0.051) x 10(exp 6)sq km/a (0.45%/a) and (0.007+/-1.0.092) x 10(exp 3)cu km/a (0.08%/a); however, the large standard deviations indicate that these positive trends are not statistically significant.

  4. Wakimoto discusses role as NSF's incoming assistant director of geosciences

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    Roger Wakimoto's adrenaline “is starting to pump,” the incoming assistant director for geosciences (GEO) at the U.S. National Science Foundation (NSF) told Eos during an exclusive interview at this month's AGU Fall Meeting in San Francisco. Wakimoto, whose scientific expertise is in extreme weather, is scheduled to take charge as head of the NSF directorate for geosciences starting in February 2013. During his 4-year appointment at NSF, Wakimoto, 59 and an avowed workaholic, will head up the GEO directorate, which has about an $880 million annual funding portfolio and provides about 55% of federal funding for geosciences basic research at U.S. academic institutions. The directorate currently includes the divisions of atmospheric and geospace sciences, Earth sciences, and ocean sciences. In addition, NSF's Office of Polar Programs is slated to become a GEO division under a realignment plan announced on 7 September; Wakimoto said that shift had “no bearing” on his decision to accept the position.

  5. Future Employment Opportunities for US Geoscience Graduates - a View From Historical Trends

    NASA Astrophysics Data System (ADS)

    Keane, C. M.; Milling, M. E.

    2005-12-01

    The geosciences in the United States has experienced a number of major booms and busts, but today has become, as a discipline, less dependent on the immediate fortunes of the natural resources industries. However, the actual employment distribution has not changed substantially in the last fifteen years, with the petroleum industry remaining by and far the single largest employer of geoscientists in the United States, and even more as a level of contributing to GNP. However, most of the geoscience professional ranks in industry were filled prior to and during the last major boom which ended in 1986. Most of this workforce is now heading into retirement and though total geoscience workforce demand is not likely to grow; substantial employment opportunities do and will exist as these individuals retire. However, this picture is more complicated than in the past. Most industries, both the traditional geoscience employers, such as petroleum, mining, and environment, and non-traditional, such as telecommunications, are increasingly global in their operations and perspectives. This increasing globalization means that US graduates now compete not only against graduates from other schools in the US, but throughout the world. When coupled with preferences for not hiring people in as expatriates for overseas assignment, US graduates face an increasingly competitive, but rewarding job market. The proverbial leveling of the playing field is also seen in the rapid rise in international membership of traditionally American professional and scientific societies. This internationalization is hardly discouraged within the culture of science, and is one that US students will need to embrace to compete effectively in the future for employment in the geosciences. One major change that will be necessitated is the adjustment of parts of academia to the new realities of preparing students for future employment within the discipline. Currently most US geoscience graduate programs are

  6. Out of Boom and Bust, but Where to now for Geoscience Departments?

    NASA Astrophysics Data System (ADS)

    Keane, C. M.

    2005-12-01

    For most of the last 50 years, the fortunes of geoscience programs at the university level have waxed and waned with the health of the natural resources industries. These industries, and petroleum in particular, have experience major boom and bust cycles, of which geoscience programs often mirrored. This relationship began to change in the early 1990's when many geosciences programs began to offer environmental concentrations. This shift only lasted about five years before job opportunities began to decline in that field as well. By the mid 1990s, for the first time, the fortunes of geoscience departments began to mirror the overall trend of the other physical sciences - and just at the wrong time. The dot-com boom put negative pressure on enrollments, but since 2001, the geosciences, like many sciences, have now begun to experience 4-6 percent enrollment growth each year. Through all of this a number of departments have largely remained strong, and continue to grow. The trends of growth through the past twenty-five years gives us some insight into what healthy departments are doing right, and what opportunities exist for future growth for all programs. Two aspects of successful programs of particular note are those that retained strong, core basic geology academic programs, and those that continue to actively produce master's students. In particular, the master's level poses a unique opportunity for departmental growth. In other science disciplines, combined science master's with MBA's are generating substantial revenue for schools and enhancing the science program's status within the university community and the potential employer pool. However, though the number of master's degrees awarded in the geosciences has remained relatively steady, the number of schools that are actually awarding degrees has shrunk substantially, with the historically strong departments producing a large proportion of master's recipients. The challenge is to now 'read the tea leaves' of

  7. Multiple Strategies for Multiple Audiences: SJSU's Contributions to the Geoscience Education Community

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.

    2007-12-01

    Pre- and in-service teachers nationwide face increasing qualification and credentialing demands. This may be particularly true for secondary (9-12) science teachers and multiple subject (K-8) faculty. Traditional B.S. programs in Physics, Chemistry, Biology rarely require geoscience courses, yet those candidates wishing to pursue high school teaching may need to demonstrate Earth science content competency to qualify for a credential. If successful, they will likely be asked to teach a geoscience course at some point during their careers. Even more daunting is the plight of those in the K-8 arena: many current and prospective teachers have been forced to minimize science electives in lieu of increasing education requirements. National, state, and local teaching standards call for escalating emphases on the four geoscience sub- disciplines: geology, meteorology, oceanography, and space science. How can current and future teachers establish geoscience content and pedagogy competency when undergraduate curricula often substitute other (albeit valuable) requirements? How can current and future K-12 educators supplement their academic knowledge to substantiate "highly qualified" status, and (perhaps more importantly) to feel comfortable enough to share geoscience concepts with their students? How can we in higher education assist this population of already overcommitted, less experienced teachers? San Jose State University has developed a multi-pronged approach to meet several concurrent demands. Faculty from SJSU's Geology Department and Program in Science Education developed a course, Earth Systems and the Environment, that satisfies all four geoscience sub-disciplines' required content for teachers. While it is intended for future K-8 educators, it also carries general education certification, and has been adapted and delivered online since 2005. SJSU's in-service community can enroll in the 3 graduate credit, ESSEA (Earth Systems Science Education Alliance) courses

  8. An Analysis of NSF Geosciences 2009 Research Experience for Undergraduate Site Programs

    NASA Astrophysics Data System (ADS)

    Sanchez, S. C.; Patino, L. C.; Rom, E. L.; Weiler, S. C.

    2009-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students the opportunity to conduct research at different institutions and in areas that may not be available in their home campuses. The Geosciences REU Sites foster research opportunities in areas closely aligned with undergraduate majors and facilitates discovery of the multidisciplinary nature of the Geosciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the 50 active REU Sites; over 70% of the surveys were returned with the requested information. The internet is the most widely used mechanism to recruit participants, but the survey did not distinguish among different tools like websites, emails, social networks, etc. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores. At least 40% of the participants come from non-PhD granting institutions. Among the participants, gender distribution is balanced, with a slightly larger number of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; more than 75% of the participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. There are some clear similarities among

  9. Theoretical Perspectives on Increasing Recruitment and Retention of Underrepresented Students in the Geosciences

    ERIC Educational Resources Information Center

    Callahan, Caitlin N.; LaDue, Nicole D.; Baber, Lorenzo D.; Sexton, Julie; Kraft, Katrien J. van der Hoeven; Zamani-Gallaher, Eboni M.

    2017-01-01

    For decades, programs targeting the recruitment and retention of underrepresented minorities (URM) have had local success in broadening participation in the geosciences. Meanwhile, national graduation rates of URM geoscience majors fall below the national graduation rates of URM STEM majors, generally. In this literature review, we summarize…

  10. Engaging Undergraduates in the New York City S-SAFE Internship Program: An Impetus to Raise Geoscience Awareness

    ERIC Educational Resources Information Center

    Blake, Reginald A.; Liou-Mark, Janet; Blackburn, Noel; Chan, Christopher; Yuen-Lau, Laura

    2015-01-01

    To engender and raise awareness to the geosciences, a geoscience research project and a corresponding geoscience internship program were designed around plume dispersion dynamics within and above the New York City subway system. Federal, regional, and local agencies partnered with undergraduate students from minority-serving institutions to…

  11. A Unique Partnership to Promote Diversity in the Geosciences, San Jose, California

    NASA Astrophysics Data System (ADS)

    Sedlock, R.; Metzger, E.; Johnson, D.

    2006-12-01

    We report here on a particularly satisfying partnership of academic institutions that focuses on enhancing the participation of underrepresented students in the geosciences. The Bay Area Earth Science Institute (BAESI) at San José State University (SJSU) has provided professional development opportunities to over 1,500 area teachers since 1990. BAESI offerings include summer and weekend workshops, field trips, classroom visits, and a lending library of curricula, sample sets, A/V materials, and equipment. The National Hispanic University (NHU) is a private, non-profit university that enrolls about 700 students, 80% of whom are of Hispanic descent. Another 13% are from other minority groups, 74% are from low-income families, and 70% are women. NHU houses the Latino College Preparatory Academy (LCPA), a charter high school that provides an alternative for students who struggle in traditional schools due to language issues. In the 1990s, administrators at SJSU and NHU set up formal agreements about course articulation, reciprocity, and joint degree programs. In 2002, informal discussions between BAESI and NHU staff led to collaboration on an NSF proposal to strengthen NHU's geoscience curriculum. Since then, the scope of BAESI-NHU actions has expanded greatly: (1) NHU and LCPA staff attended a week-long BAESI professional development workshop funded by NSF, and have attended numerous BAESI field trips. (2) BAESI staff visit NHU and LCPA classrooms to showcase SJSU's Geology Department and to enrich existing Chemistry and Physics classes with geoscience applications. (3) A nascent "Geologist-In-Residence" program pairs SJSU geology students with teachers at LCPA. (4) NHU students have interned with Metzger on local research projects. (5) BAESI brokered donation of an extensive USGS rock collection to NHU. (6) NHU, BAESI, and NASA-Ames staff collaborate on an online Earth Science curriculum for middle-school teachers. (7) We will adapt BAESI summer workshops to a one

  12. Field Studies—Essential Cognitive Foundations for Geoscience Expertise

    NASA Astrophysics Data System (ADS)

    Goodwin, C.; Mogk, D. W.

    2010-12-01

    Learning in the field has traditionally been one of the fundamental components of the geoscience curriculum. Field experiences have been attributed to having positive impacts on cognitive, affective, metacognitive, mastery of skills and social components of learning geoscience. The development of geoscience thinking, and of geoscience expertise, encompasses a number of learned behaviors that contribute to the progress of Science and the development of scientists. By getting out into Nature, students necessarily engage active and experiential learning. The open, dynamic, heterogeneous and complex Earth system provides ample opportunities to learn by inquiry and discovery. Learning in this environment requires that students make informed decisions and to think critically about what is important to observe, and what should be excluded in the complex overload of information provided by Nature. Students must learn to employ the full range of cognitive skills that include observation, description, interpretation, analysis and synthesis that lead to “deep learning”. They must be able to integrate and rationalize observations of Nature with modern experimental, analytical, theoretical, and modeling approaches to studying the Earth system, and they must be able to iterate between what is known and what is yet to be discovered. Immersion in the field setting provides students with a sense of spatial and temporal scales of natural phenomena that can not be derived in other learning environments. The field setting provides strong sensory inputs that stimulate cognition and memories that will be available for future application. The field environment also stimulates strong affective responses related to motivation, curiosity, a sense of “ownership” of field projects, and inclusion in shared experiences that carry on throughout professional careers. The nature of field work also contains a strong metacognitive component, as students learn to be aware of what and how they

  13. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.

    2015-12-01

    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns

  14. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Science.gov Websites

    Materials Science Nanodevices & Microsystems Radiation Effects & High Energy Density Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High variety of scales, including mechanical, thermal, and chemical effects Improve the understanding of

  15. Status and Future of Lunar Geoscience.

    ERIC Educational Resources Information Center

    1986

    A review of the status, progress, and future direction of lunar research is presented in this report from the lunar geoscience working group of the National Aeronautics and Space Administration. Information is synthesized and presented in four major sections. These include: (1) an introduction (stating the reasons for lunar study and identifying…

  16. Topography of the Flattest Surface on Earth: using ICESAT, GPS, and MISR to Measure Salt Surface Topography on Salar de Uyuni, Bolivia

    NASA Technical Reports Server (NTRS)

    Comstock, Robert L.; Bills, Bruce G.

    2004-01-01

    Salt flats are aptly named: they are composed largely of salt, and are maintained as nearly equipotential surfaces via frequent flooding. The salar de Uyuni, on the Altiplano in southwestern Bolivia, is the largest salt flat on Earth, with an area of 9,800 sq km. Except for a few bedrock islands, it has less than 40 cm of relief. The upper-most salt unit averages 5 m thick and contains 50 cu km of nearly pure halite. It includes most of the salt that was in solution in paleolake Minchin, which attained a maximum area of 60,000 sq km and a maximum depth of 150 m, roughly 15 kyr ago. Despite approx. 10 m of differential isostatic rebound since deposition, the salar surface has been actively maintained as an extraordinarily flat and smooth surface by annual flooding during the rainy season. We have used the strong optical absorption properties of water in the visible band to map spatial variations in water depth during a time when the salar was flooded. As water depth increases, the initially pure white surface appears both darker and bluer. We utilized MISR images taken during the interval from April to November 2001. The red and infra-red bands (672 and 867 nm wavelength) were most useful since the water depth is small and the absorption at those wavelengths is quite strong. Nadir pointed MISR images have 275 m spatial resolution. To aid in our evaluation of water depth variations over the saiar surface, we utilized two sources of direct topographic measurements: several ICESAT altimetry tracks cross the area, and a 40x50 km GPS grid was surveyed to calibrate ICESAT. A difficulty in using these data types is that both give salt surface elevations relative to the ellipsoid, whereas the water surface will, in the absence of wind or tidal disturbances, follow an equipotential surface. Geoid height is not known to the required accuracy of a few cm in the central Andes. As a result, before comparing optical absorption from MISR to salt surface topography from GPS or

  17. An Integrative and Collaborative Approach to Creating a Diverse and Computationally Competent Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Moore, S. L.; Kar, A.; Gomez, R.

    2015-12-01

    A partnership between Fort Valley State University (FVSU), the Jackson School of Geosciences at The University of Texas (UT) at Austin, and the Texas Advanced Computing Center (TACC) is engaging computational geoscience faculty and researchers with academically talented underrepresented minority (URM) students, training them to solve grand challenges . These next generation computational geoscientists are being trained to solve some of the world's most challenging geoscience grand challenges requiring data intensive large scale modeling and simulation on high performance computers . UT Austin's geoscience outreach program GeoFORCE, recently awarded the Presidential Award in Excellence in Science, Mathematics and Engineering Mentoring, contributes to the collaborative best practices in engaging researchers with URM students. Collaborative efforts over the past decade are providing data demonstrating that integrative pipeline programs with mentoring and paid internship opportunities, multi-year scholarships, computational training, and communication skills development are having an impact on URMs developing middle skills for geoscience careers. Since 1997, the Cooperative Developmental Energy Program at FVSU and its collaborating universities have graduated 87 engineers, 33 geoscientists, and eight health physicists. Recruited as early as high school, students enroll for three years at FVSU majoring in mathematics, chemistry or biology, and then transfer to UT Austin or other partner institutions to complete a second STEM degree, including geosciences. A partnership with the Integrative Computational Education and Research Traineeship (ICERT), a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at TACC provides students with a 10-week summer research experience at UT Austin. Mentored by TACC researchers, students with no previous background in computational science learn to use some of the world's most powerful high performance

  18. Tube Maps for Effective Geoscience Career Planning and Development

    NASA Astrophysics Data System (ADS)

    Keane, C. M.; Wilson, C. E.; Houlton, H. R.

    2013-12-01

    One of the greatest challenges faced by students and new graduates is the advice that they must take charge of their own career planning. This is ironic as new graduates are least prepared to understand the full spectrum of options and the potential pathways to meeting their personal goals. We will examine the rationale, tools, and utility of an approach aimed at assisting individuals in career planning nicknamed a "tube map." In particular, this approach has been used in support of geoscientist recruitment and career planning in major European energy companies. By utilizing information on the occupational sequences of geoscience professionals within an organization or a community, a student or new hire can quickly understand the proven pathways towards their eventual career goals. The tube map visualizes the career pathways of individuals in the form of a subway map, with specific occupations represented as "stations" and pathway interconnections represented as "transfers." The major application of this approach in the energy sector was to demonstrate both the logical career pathways to either senior management or senior technical positions, as well as present the reality that time must be invested in "lower level" jobs, thereby nullifying a persistent overinflated sense of the speed of upward mobility. To this end, we have run a similar occupational analysis on several geoscience employers, including one with somewhat non-traditional geoscience positions and another that would be considered a very traditional employer. We will examine the similarities and differences between the resulting 'tube maps,' critique the tools used to create the maps, and assess the utility of the product in career development planning for geoscience students and new hires.

  19. Data Stewardship and Long-Term Archive of ICESat Data at the National Snow and Ice Data Center (NSIDC)

    NASA Astrophysics Data System (ADS)

    Fowler, D. K.; Moses, J. F.; Duerr, R. E.; Webster, D.; Korn, D.

    2010-12-01

    Data Stewardship is becoming a principal part of a data manager’s work at NSIDC. It is vitally important that our organization makes a commitment to both current and long-term goals of data management and the preservation of our scientific data. Data must be available to researchers not only during active missions, but long after missions end. This includes maintaining accurate documentation, data tools, and a knowledgeable user support staff. NSIDC is preparing for long-term support of the ICESat mission data. Though ICESat has seen its last operational day, the data is still being improved and NSIDC is scheduled to archive the final release, Release 33, starting late in 2010. This release will include the final adjustments to the processing algorithms and will produce the best possible products to date. Along with the higher-level data sets, all supporting documentation will be archived at NSIDC. For the long-term archive, it is imperative that there is sufficient information about how products were prepared in order to convince future researchers that the scientific results are reproducible. The processing algorithms along with the Level 0 and ancillary products used to create the higher-level products will be archived and made available to users. This can enable users to examine production history, to derive revised products and to create their own products. Also contained in the long-term archive will be pre-launch, calibration/validation, and test data. These data are an important part of the provenance which must be preserved. For longevity, we’ll need to archive the data and documentation in formats that will be supported in the years to come.

  20. Linking Undergraduate Geoscience and Education Departments

    NASA Astrophysics Data System (ADS)

    Ireton, F. W.; McManus, D. A.

    2001-05-01

    In many colleges and universities students who have declared a major in one of the geosciences are often ineligible to take the education courses necessary for state certification. In order to enroll in education courses to meet the state's Department of Education course requirements for a teaching credential, these students must drop their geoscience major and declare an education major. Students in education programs in these universities may be limited in the science classes they take as part of their degree requirements. These students face the same problem as students who have declared a science major in that course work is not open to them. As a result, universities too often produce science majors with a weak pedagogy background or education majors with a weak Earth and space sciences background. The American Geophysical Union (AGU) formed a collaboration of four universities with strong, yet separate science and education departments, to provide the venue for a one week NSF sponsored retreat to allow the communication necessary for solutions to these problems to be worked out by faculty members. Each university was represented by a geoscience department faculty member, an education department faculty member, and a K-12 master teacher selected by the two faculty members. This retreat was followed by a second retreat that focused on community colleges in the Southwest United States. Change is never easy and Linkages has shown that success for a project of this nature requires the dedication of not only the faculty involved in the project, but colleagues in their respective schools as well as the administration when departmental cultural obstacles must be overcome. This paper will discuss some of the preliminary work accomplished by the schools involved in the project.

  1. Evaluating Geoscience Students' Spatial Thinking Skills in a Multi-Institutional Classroom Study

    ERIC Educational Resources Information Center

    Ormand, Carol J.; Manduca, Cathryn; Shipley, Thomas F.; Tikoff, Basil; Harwood, Cara L.; Atit, Kinnari; Boone, Alexander P.

    2014-01-01

    Spatial thinking skills are critical to success in many subdisciplines of the geosciences. We tested students' spatial skills in geoscience courses at three institutions (a public research university, a comprehensive university, and a liberal arts college, all in the midwest) over a two-year period. We administered standard psychometric tests of…

  2. Student Enrollment in Geoscience Departments. 1982-1983.

    ERIC Educational Resources Information Center

    American Geological Inst., Washington, DC.

    Presented in table format are student enrollment data for geoscience disciplines at colleges and universities in the United States and Canada. Subfields for both countries include: geology; geophysics; oceanography; marine science; geological engineering; geophysical engineering; geochemistry; hydrology; mineralogy; paleontology; soil science;…

  3. Open Geoscience Database

    NASA Astrophysics Data System (ADS)

    Bashev, A.

    2012-04-01

    Currently there is an enormous amount of various geoscience databases. Unfortunately the only users of the majority of the databases are their elaborators. There are several reasons for that: incompaitability, specificity of tasks and objects and so on. However the main obstacles for wide usage of geoscience databases are complexity for elaborators and complication for users. The complexity of architecture leads to high costs that block the public access. The complication prevents users from understanding when and how to use the database. Only databases, associated with GoogleMaps don't have these drawbacks, but they could be hardly named "geoscience" Nevertheless, open and simple geoscience database is necessary at least for educational purposes (see our abstract for ESSI20/EOS12). We developed a database and web interface to work with them and now it is accessible at maps.sch192.ru. In this database a result is a value of a parameter (no matter which) in a station with a certain position, associated with metadata: the date when the result was obtained; the type of a station (lake, soil etc); the contributor that sent the result. Each contributor has its own profile, that allows to estimate the reliability of the data. The results can be represented on GoogleMaps space image as a point in a certain position, coloured according to the value of the parameter. There are default colour scales and each registered user can create the own scale. The results can be also extracted in *.csv file. For both types of representation one could select the data by date, object type, parameter type, area and contributor. The data are uploaded in *.csv format: Name of the station; Lattitude(dd.dddddd); Longitude(ddd.dddddd); Station type; Parameter type; Parameter value; Date(yyyy-mm-dd). The contributor is recognised while entering. This is the minimal set of features that is required to connect a value of a parameter with a position and see the results. All the complicated data

  4. Transforming Indigenous Geoscience Education and Research (TIGER)

    NASA Astrophysics Data System (ADS)

    Berthelote, A. R.

    2014-12-01

    American Indian tribes and tribal confed­erations exert sovereignty over about 20% of all the freshwater resources in the United States. Yet only about 30 Native American (NA) students receive bachelor's degrees in the geosci­ences each year, and few of those degrees are in the field of hydrology. To help increase the ranks of NA geoscientists,TIGER builds upon the momentum of Salish Kootenai College's newly accredited Hydrology Degree Program. It allows for the development and implementation of the first Bachelor's degree in geosciences (hydrology) at a Tribal College and University (TCU). TIGER integrates a solid educational research-based framework for retention and educational preparation of underrepresented minorities with culturally relevant curriculum and socio-cultural supports, offering a new model for STEM education of NA students. Innovative hydrology curriculum is both academically rigorous and culturally relevant with concurrent theoretical, conceptual, and applied coursework in chemical, biological, physical and managerial aspects of water resources. Educational outcomes for the program include a unique combination of competencies based on industry recognized standards (e.g., National Institute of Hydrologists), input from an experienced External Advisory Board (EAB), and competencies required for geoscientists working in critical NA watersheds, which include unique competencies, such as American Indian Water Law and sovereignty issues. TIGER represents a unique opportunity to capitalize on the investments the geoscience community has already made into broadening the participation of underrepresented minorities and developing a diverse workforce, by allowing SKC to develop a sustainable and exportable program capable of significantly increasing (by 25 to 75%) the National rate of Native American geoscience graduates.

  5. Retention of Women in Geoscience Undergraduate and Graduate Education at Caltech

    NASA Astrophysics Data System (ADS)

    Alexander, C. J.

    2001-12-01

    Institutional barriers encountered by women in undergraduate and graduate schools may take many forms, but can also be as simple as a lack of community support. In the 1990's the California Institute of Technology (Caltech) made a commitment to the retention of women in their graduate and undergraduate schools. Their program included mentoring, focussed tutoring, self-esteem support groups, and other retention efforts. Under this program, the attrition rate of women has dramatically slowed. In this paper, we will discuss recent data from the American Geological Institude chronicling the enrollment and successes of women in the geosciences, the program instituted by Caltech, possible causes of attrition among women in the geosciences, as well as potential programs to address these problems. We will also present, from the nationwide study, data on geoscience departments which have been relatively successful at retaining and graduating women in Earth and Space Sciences.

  6. Enabling Big Geoscience Data Analytics with a Cloud-Based, MapReduce-Enabled and Service-Oriented Workflow Framework

    PubMed Central

    Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew

    2015-01-01

    Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists. PMID:25742012

  7. Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework.

    PubMed

    Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew

    2015-01-01

    Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists.

  8. Developing Effective K-16 Geoscience Research Partnerships.

    ERIC Educational Resources Information Center

    Harnik, Paul J.; Ross, Robert M.

    2003-01-01

    Discusses the benefits of research partnerships between scientists and K-16 students. Regards the partnerships as effective vehicles for teaching scientific logic, processes, and content by integrating inquiry-based educational approaches with innovative research questions. Reviews integrated research and education through geoscience partnerships.…

  9. Field research internships: Why they impact students' decisions to major in the geosciences

    NASA Astrophysics Data System (ADS)

    Kortz, K. M.; Cardace, D.; Savage, B.; Rieger, D.

    2017-12-01

    Although internships have been shown to retain geoscience students, little research has been done on what components of research or field experiences during an internship impact students' decisions to major in the geosciences. We created and led a short, two-week field-based internship for 5 introductory-level students to conduct research and create a poster to present their results. In addition to the two professors leading the internship and the 5 interns, there were 2 masters students and 1 community college student who were returning to the field area to collect data for their own projects. These students also helped to guide and mentor the interns. The interns were diverse in many aspects: 3 were female, 2 were non-white, 3 were community college students (1 4YC student was a transfer), 2 were first-generation college students, and their ages ranged from 18 to 33. Based on our evaluation, we found that the research experience increased students' self-efficacy in the geosciences through various means, increased their connection with mentors and other individuals who could serve as resources, gave them a sense of belonging to the geoscience culture, increased their knowledge of geoscience career paths and expectations, helped them make connections with Earth, and maintained their interest. These factors have been described in the literature as leading to retention, and we propose that field-based internships are successful for recruitment or retention in the geosciences because they influence so many of these affective and cognitive components at once. In particular, the social aspect of internships plays a fundamental role in their success because many of these factors require close and sustained interactions with other people. An implication of this research is that these affective components, including social ones, should be explicitly considered in the design and implementation of internships to best serve as a recruitment and retention strategy.

  10. Geo-Needs: Investigating Models for Improved Access to Geosciences at Two-Year and Minority-Serving Colleges

    NASA Astrophysics Data System (ADS)

    Her, X.; Turner, S. P.; LaDue, N.; Bentley, A. P.; Petcovic, H. L.; Mogk, D. W.; Cartwright, T.

    2015-12-01

    Geosciences are an important field of study for the future of energy, water, climate resilience, and infrastructure in our country. Geoscience related job growth is expected to steeply climb in the United States, however many of these positions will be left unfilled. One untapped population of Americans is ethnic minorities, who have historically been underrepresented in the geosciences. In 2010, the Bureau of Labor Statistics (BLS) reported that black and Hispanics only make 8.1% of geoscience related jobs, while making up nearly 30% of Americans. This pattern of underrepresentation has been attributed to 1) minority serving institutions lacking geoscience programs, 2) low interest in the outdoors due to a lack of opportunity, and 3) negative and low prestigious perceptions of geoscientists. Our project focuses specifically on the first barrier. Preliminary research suggests that only 2.5% of institutions with geoscience programs (n= 609) are also minority serving. The goals of the Geo-Needs project are to identify obstacles to and opportunities for better use of existing educational resources in two-year and minority-serving institutions, and to explore "ideal" models of resources, partnerships, and other support for geoscience faculty and students in these institutions. Four focus group meetings were held in August 2015 bringing administrators, instructors, resource providers, and education researchers together to discuss and develop these models. Activities at the meetings included small and whole group prompted discussion, guest speakers, gallery walks, and individual reflection. Content from the focus group meetings is available at the project's website: http://serc.carleton.edu/geoneeds/index.html. Findings from the meetings can be used to inform future efforts aimed toward broadening access to the geosciences at two-year and minority-serving institutions.

  11. The Oil Game: Generating Enthusiasm for Geosciences in Urban Youth in Newark, NJ

    ERIC Educational Resources Information Center

    Gates, Alexander E.; Kalczynski, Michael J.

    2016-01-01

    A hands-on game based upon principles of oil accumulation and drilling was highly effective at generating enthusiasm toward the geosciences in urban youth from underrepresented minority groups in Newark, NJ. Participating 9th-grade high school students showed little interest in the geosciences prior to participating in the oil game, even if they…

  12. Agent Based Modeling Applications for Geosciences

    NASA Astrophysics Data System (ADS)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  13. Summary of the Journal of Geoscience Education Urban Theme Issue (Published in November, 2004)

    NASA Astrophysics Data System (ADS)

    Abolins, M. J.

    2004-12-01

    The urban geoscience education theme issue includes twelve manuscripts describing efforts to make geoscience more inclusive. These efforts reflect two central beliefs: (1) that urban geoscience education more effectively serves urban residents (slightly more than 80% of the American population) and (2) that urban education encourages minority participation in the geosciences. These convictions spawned educational programs serving many different kinds of learners. Educators developed unique curricula to meet the needs of each audience, but most curricula incorporate content associated with the built environment. The following paragraphs summarize audience characteristics and curricular content. Audience Urban geoscience education served many different kinds of learners. Although most programs targeted an audience with a specific level of educational experience (e.g., elementary school students) at a specific location (e.g., Syracuse, NY), audience characteristics varied greatly from one program to another: (1) Participants included elementary, middle, and high school students, undergraduates (both majors and non-majors), K-12 teachers (both pre-service and in-service), graduate students, realtors, and community members. (2) At least three programs served populations with substantial numbers of African American, Hispanic, and Asian American students. (3) Audiences were drawn from every corner of the nation except the Pacific Northwest and Florida and resided in cities varying greatly in population. These cities included the nation's largest combined metropolitan area (New York City, NY-NJ-CT-PA), other metropolitan areas containing populations of over one million, and communities as small as Ithaca, NY (population: 96,501). As illustrated by the preceding examples, urban geoscience education served learners with different levels of educational experience, some programs focused on minority learners, and program participants lived in cities both big and small. Content

  14. Characterizing Strong Geoscience Departments: Results of a National Survey

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.

    2005-12-01

    In a follow up to a survey of geoscience departments drawn primarily from American Association of Universities (AAU) institutions, we have expanded the number and type of departments to include a much broader range of institutions and to address key issues about factors that department heads and chairs feel are indicative of strong departments. The previous survey, completed at a very high rate of return, indicated that the biggest opportunities at AAU institutions included large, community-wide initiatives, while the biggest threats included declining resources and associated issues such as faculty retention. The new survey follows on a workshop, Building Strong Geoscience Departments, held in February 2005 at which 25 participants discussed the state of geoscience departments and developed ideas for strengthening departments. The new survey addresses departmental demographics of a much broader range of departments and institutions, including two year, primarily undergraduate, and graduate degree-granting departments/institutions. In addition to perceived threats and opportunities, the survey includes aspects and characteristics of strong departments. For example, department heads and chairs respond to a variety of possible attributes of strong departments, including: 1) Defining the mission of the department in such a way that it is aligned with the institutional vision; 2) Taking a proactive stance in building modern and dynamic geoscience curricula and, as appropriate, research agendas; 3) Working effectively as a department team; 4) Acknowledging that recruitment, development, and retention of students, faculty, and staff are key elements of departmental success and working effectively in these areas; 5) Developing strong departmental leaders now and for the future; 6) Communicating success, using effective metrics, to colleagues, senior administrators, students, donors, and friends; and 7) Forging strategic partnerships within the university (e.g., with

  15. An End-to-End Description of the Data Flow of AMSR-E and GLAS Data Products: Product Generation Through Product Delivery to Users

    NASA Astrophysics Data System (ADS)

    Lutz, B. J.; Marquis, M.

    2001-12-01

    The Aqua and ICESat missions are components of the Earth Observing System (EOS). The Advanced Microwave Scanning Radiometer (AMSR-E) instrument will fly on the Aqua satellite planned for launch in Spring 2002. AMSR-E is a passive microwave instrument, modified from the AMSR instrument, which will be deployed on the Japanese Advanced Earth Observing Satellite-II (ADEOS-II). AMSR-E will observe the atmosphere, land, oceans, and cryosphere, yielding measurements of precipitation, cloud water, water vapor, surface wetness, sea surface temperatures, oceanic wind speed, sea ice concentrations, snow depth, and snow water content. The Geoscience Laser Altimeter System (GLAS) instrument will fly aboard the ICESat satellite scheduled for launch in Summer 2002. This instrument will measure ice-sheet topography and temporal changes in topography; cloud heights, planetary boundary heights and aerosol vertical structure; and land and water topography. The GLAS and AMSR-E teams have both chosen to utilize Science Investigator-led Processing Systems (SIPS) to process their respective EOS data products. The SIPS facilities are funded by the Earth Science Data and Information System (ESDIS) Project at NASA's Goddard Space Flight Center and operated under the direction of a science team leader. The SIPS capitalize upon the scientific expertise of the science teams and the distributed processing capabilities of their institutions. The SIPS are charged with routine production of their respective EOS data products for archival at a Distributed Active Archive Center (DAAC). The National Snow and Ice Data Center (NSIDC) DAAC in Boulder, Colorado will archive all AMSR-E and GLAS data products. The NSIDC DAAC will distribute these data products to users throughout the world. The SIPS processing flows of both teams are rather complex. The AMSR-E SIPS is composed of three separate processing facilities (Japan, California, and Alabama). The ICESat SIPS is composed of one main processing center

  16. Systems, Society, Sustainability and the Geosciences: A Workshop to Create New Curricular Materials to Integrate Geosciences into the Teaching of Sustainability

    NASA Astrophysics Data System (ADS)

    Gosselin, D. C.; Manduca, C. A.; Oches, E. A.; MacGregor, J.; Kirk, K. B.

    2012-12-01

    Sustainability is emerging as a central theme for teaching about the environment, whether it be from the perspective of science, economics, or society. The Systems, Society, Sustainability and the Geosciences workshop provided 48 undergraduate faculty from 46 institutions a forum to discuss the challenges and possibilities for integrating geoscience concepts with a range of other disciplines to teach about the fundamentals of sustainability. Participants from community college to doctorate-granting universities had expertise that included geosciences, agriculture, biological sciences, business, chemistry, economics, ethnic studies, engineering, environmental studies, environmental education, geography, history, industrial technology, landscape design, philosophy, physics, and political science. The workshop modeled a range of teaching strategies that encouraged participants to network and collaborate, share successful strategies and materials for teaching sustainability, and identify opportunities for the development of new curricular materials that will have a major impact on the integration of geosciences into the teaching of sustainability. The workshop design provided participants an opportunity to reflect upon their teaching, learning, and curriculum. Throughout the workshop, participants recorded their individual and collective ideas in a common online workspace to which all had access. A preliminary synthesis of this information indicates that the concept of sustainability is a strong organizing principle for modern, liberal education requiring systems thinking, synthesis and contributions from all disciplines. Sustainability is inherently interdisciplinary and provides a framework for educational collaboration between and among geoscientists, natural/physical scientists, social scientists, humanists, engineers, etc.. This interdisciplinary framework is intellectually exciting and productive for educating students at all levels of higher education

  17. The Geoscience Diversity Enhancement Program (GDEP): A Model for Faculty and Student Engagement in Urban Geoscience Research

    NASA Astrophysics Data System (ADS)

    Ambos, E. L.; Lee, C.; Behl, R.; Francis, R. D.; Holk, G.; Larson, D.; Rodrigue, C.; Wechsler, S.; Whitney, D.

    2004-12-01

    For the past three years (2002-2004) faculty in the departments of geological sciences, geography, and anthropology at California State University, Long Beach have joined to offer an NSF-funded (GEO-0119891) eight-week summer research experience to faculty and students at Long Beach area high schools and community colleges. GDEP's goal is to increase the numbers of students from underrepresented groups (African-American, Hispanic, American Indian, Pacific Islander, and disabled) enrolling in baccalaureate degree programs in the geosciences. The major strategies to achieve this goal all tie to the concept of research-centered experiences, which might also be termed inquiry-based instruction. More than fifteen (15) separate and diverse geoscience research studies have been conducted. These include such disparate topics as geochemical studies of fault veins, GPS/GIS surveys of vegetation patterns for fire hazard assessment, and seismic studies of offshore fault systems. As the program has matured, research projects have become more interdisciplinary, and faculty research teams have expanded. Whereas the first year, each CSULB faculty member tended to lead her/his project as a separate endeavor, by the third summer, faculty were collaborating in research teams. Several projects have involved community-based research, at sites within an hour's drive from the urban Long Beach campus. For example, last summer, four faculty linked together to conduct a comprehensive geography and geology study of an Orange County wilderness area, resulting in creation of maps, brochures, and websites for use by the general public. Another faculty group conducted geophysical surveys at an historic archaeological site in downtown Los Angeles, producing maps of underground features that will be incorporated into a cultural center and museum. Over the past three summers, the program has grown to involve more than 25 high school and community college students, and more than 30 CSULB, high

  18. Geosciences Information for Teachers (GIFT) in Catalonia

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Cacho, Isabel; Calvo, Eva; Demol, Ben; Sureda, Catalina; Artigas, Carme; Vilaplana, Miquel; Porbellini, Danilo; Rubio, Eduard

    2010-05-01

    CATAGIFT is the acronym of the project supported by the Catalan Government (trough the AGAUR agency) to support the activities of the EGU Committee on Education in Catalonia. The objective of this project is two-fold: 1) To establish a coordinated action to support the participation of three Catalan science teachers of primary and secondary schools in the GIFT Symposium, held each year during the General Assembly of the European Geosciences Union (EGU). 2) To produce a video documentary each year on hot topics in geosciences. The documentary is produced in Catalan, Spanish and English and is distributed to the Catalan science teachers attending the annual meeting organized by the Institute of Education Sciences and the Faculty of Geology of the University together with the CosmoCaixa Museum of Barcelona, to the international teachers attending the EGU GIFT Workshop, and to other schools in the Spanish territory. In the present-day context of science dissemination through documentaries and television programs there is a dominance of products of high technical quality and very high costs sold and broadcasted world wide. The wide spread of such products tends to standardize scientific information, not only in its content, but also in the format used for communicating science to the general public. In the field of geosciences in particular, there is a scarcity of products that combine high scientific quality and accessible costs to illustrate aspects of the natural life of our planet Earth through the results of the work of individual researchers and / or research groups. The scientific documentaries produced by CATAGIFT pursue the objective to support primary and secondary school teachers to critically interpret scientific information coming from the different media (television, newspapers, magazines, audiovisual products), in a way that they can transmit to their students. CataGIFT has created a series of documentaries called MARENOSTRUM TERRANOSTRA designed and

  19. The YES Africa 2011 Symposium: A Key to Developing the Future Geoscience Workforce in Africa

    NASA Astrophysics Data System (ADS)

    Nkhonjera, E.

    2011-12-01

    Africa is facing serious challenges in geoscience education. This has been as a result of absence of or very young/small Earth Science Departments in some universities (e.g., Mauritius, Namibia, Botswana, Swaziland, Malawi): Limited capacity (staff and equipment needed for practicals) to cope with the growing number of students, compounded by brain drain of academic staffs and the fact that current tertiary programmes do not seem to produce graduates suitable for the industry are some of the contributing factors to the challenges, (UNESCO-AEON Report, 2009). As such Earth Science studies in Africa have been one of the career paths that has not been promoted or highly preferred by many students. In January 2011, the YES Network African chapter was launched through the YES Africa 2011 Symposium that took place at the University of Johannesburg South Africa in Conjunction with the 23rd Colloquium of Africa Geology from the 08-14th January 2011. The YES Africa 2011 Symposium was organized by five YES African National networks from Southern, Central, Eastern and Northern Africa to bring young geoscientists from all regions of Africa together to present their research about African geoscience topics. The symposium also included roundtable discussions about increasing the involvement of youth's participation in geoscience issues in Africa, about how to increase the number of youths in African geosciences education university programs, and about how to promote geoscience careers to university students in Africa c. Roundtable discussions revealed that many African colleges and universities do not provide adequate infrastructure and resources to support the students studying in the department. As such, most students graduate with poor preparation for geoscience careers, having gained a theoretical understanding of geology, but not the practical application of the discipline. The recommendations from the YES Africa 2011 Symposium also highlighted on the best ways of

  20. Mathematics Prerequisites for Introductory Geoscience Courses: Using Technology to Help Solve the Problem

    NASA Astrophysics Data System (ADS)

    Burn, H. E.; Wenner, J. M.; Baer, E. M.

    2011-12-01

    The quantitative components of introductory geoscience courses can pose significant barriers to students. Many academic departments respond by stripping courses of their quantitative components or by attaching prerequisite mathematics courses [PMC]. PMCs cause students to incur additional costs and credits and may deter enrollment in introductory courses; yet, stripping quantitative content from geoscience courses masks the data-rich, quantitative nature of geoscience. Furthermore, the diversity of math skills required in geoscience and students' difficulty with transferring mathematical knowledge across domains suggest that PMCs may be ineffective. Instead, this study explores an alternative strategy -- to remediate students' mathematical skills using online modules that provide students with opportunities to build contextual quantitative reasoning skills. The Math You Need, When You Need It [TMYN] is a set of modular online student resources that address mathematical concepts in the context of the geosciences. TMYN modules are online resources that employ a "just-in-time" approach - giving students access to skills and then immediately providing opportunities to apply them. Each module places the mathematical concept in multiple geoscience contexts. Such an approach illustrates the immediate application of a principle and provides repeated exposure to a mathematical skill, enhancing long-term retention. At the same time, placing mathematics directly in several geoscience contexts better promotes transfer of learning by using similar discourse (words, tools, representations) and context that students will encounter when applying mathematics in the future. This study uses quantitative and qualitative data to explore the effectiveness of TMYN modules in remediating students' mathematical skills. Quantitative data derive from ten geoscience courses that used TMYN modules during the fall 2010 and spring 2011 semesters; none of the courses had a PMC. In all courses

  1. The Person Behind the Picture: Influence of Social and Cultural Capital on Geoscience Career Pathways

    NASA Astrophysics Data System (ADS)

    Rappolee, E.; Libarkin, J. C.; McCallum, C.; Kurz, S.

    2017-12-01

    The amalgamation of fields in the geosciences share one desire: a better understanding of the natural world and the relationship humans have with that world. As issues such as climate change and clean water become globally recognized the geoscience job market grows. To insure these issues are resolved in ways that are fully representative of the entire human population, attention has been turned to increasing diversity of scientists in the geosciences. This study is based in the theory of social and cultural capital, types of non-financial wealth obtained by individuals and groups through connections and experiences. In particular, we investigated how individuals accessed specific resources and opportunities which eventually led to their entering the geosciences. Surveys were distributed to volunteers at a multinational geoscience conference held in fall of 2016. These surveys asked participants to "draw a picture of the people and experiences that have influenced your career up to this point." Nearly 150 completed drawings were coded through a thematic content analysis, wherein salient characteristics of drawings were documented and later grouped into common themes. We found that specific people (family, professors, peers) provided access to resources (education, museums, parks) as well as experiences (camping, traveling, research) that were instrumental in career building. Correlation analysis revealed two representative models of the drawings. These models aligned with the constructs of social and cultural capital. Cultural capital was more prevalent in majority white than nonwhite participants, suggesting different pathways into geoscience careers. We hope this research will inspire future work as well as highlight ways in which social and cultural capital can become accessible to future generations to produce a system with equal opportunities and increase diversity in the geosciences, resulting in better decision-making on global issues.

  2. Building on the Success of Increasing Diversity in the Geosciences: A Bridging Program From Middle School to College

    NASA Astrophysics Data System (ADS)

    Kovacs, T.; Robinson, D.; Suleiman, A.; Maggi, B.

    2004-12-01

    A bridging program to increase the diversity in the geosciences was created at Hampton University (HU) to inspire underrepresented minorities to pursue an educational path that advances them towards careers in the geosciences. Three objectives were met to achieve this goal. First, we inspired a diverse population of middle and high school students outside of the classroom by providing an after school geoscience club, a middle school geoscience summer enrichment camp, and a research/mentorship program for high school students. Second, we helped fill the need for geoscience curriculum content requested of science teachers who work primarily with underrepresented middle school populations by providing a professional development workshop at HU led by geoscience professors, teachers, and science educators. Third, we built on the successful atmospheric sciences research and active Ph.D. program by developing our geoscience curriculum including the formation of a new space, earth, and atmospheric sciences minor. All workshops, camps, and clubs have been full or nearly full each year despite restrictions on participants repeating any of the programs. The new minor has 11 registered undergraduates and the total number of students in these classes has been increasing. Participants of all programs gave the quality of the program good ratings and participant perceptions and knowledge improved throughout the programs based on pre-, formative, and summative assessments. The ultimate goal is to increase the number of degrees granted to underrepresented minorities in the geosciences. We have built a solid foundation with our minor that prepares students for graduate degrees in the geosciences and offer a graduate degree in physics with a concentration in the atmospheric sciences. However, it's from the geoscience pipeline that students will come into our academic programs. We expect to continue to develop these formal and informal education programs to increase our reputation and

  3. Ethical considerations in developing the next generation of geoscientists and defining a common cause for the geosciences

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; Boland, Maeve

    2017-04-01

    Much of the discussion about ethics in geoscience centers around the ethical use of the science in a societal context or the social and professional conduct between individuals within the geoscience community. Little has been discussed about the challenges and ethical issues associated with the discipline's effort to build its future workforce in light of cyclical hiring, tightening research budgets, and rapidly evolving skill demands for professional geoscientists. Many geoscientists assume that the profession is underappreciated by society and insufficiently visible to students in higher education. Yet, at least in the United States, we are coming out of nearly a decade of record geoscience undergraduate enrollments and graduate programs that are operating at full capacity. During this time we have witnessed several fundamental shifts in the hiring demands for geoscientists, but in aggregate, have not seen any decrease in hiring of new graduates. The formal education system has not been able to respond to rapid changes in the skills required by employers and is producing a proportion of students unprepared to engage in a career as a geoscientist and, in some cases, unaware of the realities of business cycles and the need for professional and geographic mobility. Another problem for the future workforce is the lack of a fundamental rationale for the geosciences. Currently, the geosciences do not have a substantive vision for their role in society that can define the perception and destiny of the geosciences. During the Cold War and the Space Race, for example, advances in geoscience helped shape the next steps by society. Several initiatives, such as Resourcing Future Generations, are proposing research and social context frameworks for the geosciences that address critical global priorities, such as the Sustainable Development Goals. These projects may establish long-term trends and momentum that the discipline can build around. But what is the discipline's, and

  4. Ice elevations and surface change on the Malaspina Glacier, Alaska

    USGS Publications Warehouse

    Sauber, J.; Molnia, B.; Carabajal, C.; Luthcke, S.; Muskett, R.

    2005-01-01

    Here we use Ice, Cloud and land Elevation Satellite (ICESat)-derived elevations and surface characteristics to investigate the Malaspina Glacier of southern Alaska. Although there is significant elevation variability between ICESat tracks on this glacier, we were able to discern general patterns in surface elevation change by using a regional digital elevation model (DEM) as a reference surface. Specifically, we report elevation differences between ICESat Laser 1-3 observations (February 2003 - November 2004) and a Shuttle Radar Topography Mission (SRTM)-derived DEM from February 2000. Elevation decreases of up to 20-25 m over a 3-4 year time period were observed across the folded loop moraine on the southern portion of the Malaspina Glacier. Copyright 2005 by the American Geophysical Union.

  5. Geoscience information integration and visualization research of Shandong Province, China based on ArcGIS engine

    NASA Astrophysics Data System (ADS)

    Xu, Mingzhu; Gao, Zhiqiang; Ning, Jicai

    2014-10-01

    To improve the access efficiency of geoscience data, efficient data model and storage solutions should be used. Geoscience data is usually classified by format or coordinate system in existing storage solutions. When data is large, it is not conducive to search the geographic features. In this study, a geographical information integration system of Shandong province, China was developed based on the technology of ArcGIS Engine, .NET, and SQL Server. It uses Geodatabase spatial data model and ArcSDE to organize and store spatial and attribute data and establishes geoscience database of Shangdong. Seven function modules were designed: map browse, database and subject management, layer control, map query, spatial analysis and map symbolization. The system's characteristics of can be browsed and managed by geoscience subjects make the system convenient for geographic researchers and decision-making departments to use the data.

  6. Science in the Mountains: A Unique Research Experience to Enhance Diversity in the Geosciences

    ERIC Educational Resources Information Center

    Hallar, A. Gannet; McCubbin, Ian B.; Hallar, Brittan; Levine, Roger; Stockwell, William R.; Lopez, Jimena P.; Wright, Jennifer M.

    2010-01-01

    Ethnic and racial minorities constitute an important part of the geosciences community because of their diverse perspectives and backgrounds. However, the geosciences have the poorest diversity record of all the science and engineering fields. Recruitment of minorities is important and numerous programs are focusing on engaging students in…

  7. Meeting the Challenges for Gender Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M. A.; Kastens, K. A.; Miller, R. B.; Mutter, J. C.; Pfirman, S. L.

    2003-12-01

    Women are now routinely chief scientists on major cruises, lead field parties to all continents, and have risen to leadership positions in professional organizations, academic departments and government agencies including major funding agencies. They teach at all levels, advise research students, make research discoveries and receive honors in recognition of their achievements. Despite these advances, women continue to be under-represented in the earth, ocean, and atmospheric sciences. As of 1997 women received only 29% of the doctorates in the earth, atmospheric, and oceanographic sciences and accounted for only 13% of employed Ph.D.s in these fields. Women's salaries also lag: the median annual salary for all Ph.D. geoscientists was \\60,000; for women the figure is \\47,000. Solving the problem of gender imbalance in the geosciences requires understanding of the particular obstacles women face in our field. The problem of under-representation of women requires that earth science departments, universities and research centers, funding agencies, and professional organizations like AGU take constructive action to recognize the root causes of the evident imbalance, and enact corrective policies. We have identified opportunities and challenges for each of these groups. A systematic study of the flux of women at Columbia University enabled a targeted strategy towards improving gender diversity based on the observed trends. The challenge for academic institutions is to document the flux of scientists and develop an appropriate strategy to balance the geoscience demographics. Based on the MIT study, an additional challenge faces universities and research centers. To enhance gender diversity these institutions need to develop transparency in promotion processes and open distribution of institutional resources. The challenge for granting agencies is to implement policies that ease the burden of extensive fieldwork on parents. Many fields of science require long work hours

  8. Leveraging Global Geo-Data and Information Technologies to Bring Authentic Research Experiences to Students in Introductory Geosciences Courses

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.

    2014-12-01

    The 2012 PCAST report identified the improvement of "gateway" science courses as critical to increasing the number of STEM graduates to levels commensurate with national needs. The urgent need to recruit/ retain more STEM graduates is particularly acute in the geosciences, where growth in employment opportunities, an aging workforce and flat graduation rates are leading to substantial unmet demand for geoscience-trained STEM graduates. The need to increase the number of Bachelors-level geoscience graduates was an identified priority at the Summit on the Future of Undergraduate Geoscience Education (http://www.jsg.utexas.edu/events/future-of-geoscience-undergraduateeducation/), as was the necessity of focusing on 2-year colleges, where a growing number of students are being introduced to geosciences. Undergraduate research as an instructional tool can help engage and retain students, but has largely not been part of introductory geoscience courses because of the challenge of scaling such activities for large student numbers. However, burgeoning information technology resources, including publicly available earth and planetary data repositories and freely available, intuitive data visualization platforms makes structured, in-classroom investigations of geoscience questions tractable, and open-ended student inquiry possible. Examples include "MARGINS Mini-Lessons", instructional resources developed with the support of two NSF-DUE grant awards that involve investigations of marine geosciences data resources (overseen by the Integrated Earth Data Applications (IEDA) portal: www.iedadata.org) and data visualization using GeoMapApp (www.geomapapp.org); and the growing suite of Google-Earth based data visualization and exploration activities overseen by the Google Earth in Onsite and Distance Education project (geode.net). Sample-based investigations are also viable in introductory courses, thanks to remote instrument operations technologies that allow real student

  9. Reaching Beyond the Geoscience Stigma: Strategies for Success

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.

    2004-12-01

    The geosciences have traditionally been viewed with less "academic prestige" than other science curricula. Among the effects of this perception are depressed K-16 enrollments; state standards' relegation of Earth and space science concepts to earlier grades; Earth Science assignments to lower-performing students, and sometimes even to under-qualified teachers: all of which simply confirm the misconceptions. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course is one way to enhance student understanding of the geosciences. Research demonstrates that reversing the traditional science course sequence (by offering Physics in the ninth grade) improves student success in subsequent science courses. The "Physics First" movement continues to gain momentum offering a possible niche for the Earth and space sciences beyond middle school. It is also critical to bridge the information gap for those with little or no prior exposure to the Earth sciences, particularly K-12 educators. An Earth systems course developed at San José State University is aligned to our state's standards; it is approved to satisfy geoscience subject matter competency by the California Commission on Teacher Credentialing, making it a popular offering for pre- and in-service teachers. Expanding our audience beyond the Bay Area, the Earth Systems Science Education Alliance courses infuse real-world and hands-on learning in a cohesive online curriculum. Through these courses teachers gain knowledge, share effective pedagogies, and build geography-independent communities.

  10. Place in the City: Place-Based Learning in a Large Urban Undergraduate Geoscience Program

    ERIC Educational Resources Information Center

    Kirkby, Kent C.

    2014-01-01

    One of my principal goals at the University of Minnesota is to transform the university's entry-level geoscience program into an effective ''concluding'' geoscience course that provides students with a clear understanding of the many interactions between Earth processes and human society. Although place-based learning appeared to be a promising…

  11. Strength Through Options: Providing Choices for Undergraduate Education in the Geosciences

    NASA Astrophysics Data System (ADS)

    Furman, T.; Freeman, K. H.; Faculty, D.

    2003-12-01

    Undergraduate major enrollments in the Department of Geosciences at Penn State have held steady over the past 5 years despite generally declining national trends. We have successfully recruited and retained new students through intensive advising coupled with innovative curricular revision aimed to meet an array of students' educational and career goals. Our focus is on degree programs that reflect emerging interdisciplinary trends in both employment and student interest, and are designed to attract individuals from underrepresented groups. In addition to a traditional Geosciences BS program we offer a rigorous integrated Earth Sciences BS and a Geosciences BA tailored to students with interests in education and environmental law. The Earth Sciences BS incorporates course work from Geosciences, Geography and Meterology, and requires completion of an interdisciplinary minor (e.g., Climatology, Marine Sciences, Global Business Strategies). A new Geobiology BS program will attract majors with interests at the intersection of the earth and life sciences. The curriculum includes both paleontological and biogeochemical coursework, and is also tailored to accommodate pre-medicine students. We are working actively to recruit African-American students. A new minor in Science and Technology in Africa crosses disciplinary boundaries to educate students from the humanities as well as sciences. Longitudinal recruitment programs include summer research group experiences for high school students, summer research mentorships for college students, and dual undergraduate degree programs with HBCUs. Research is a fundamental component of every student's degree program. We require a capstone independent thesis as well as a field program for Geosciences and Geobiology BS students, and we encourage all students to pursue research as early as the freshman year. A new 5-year combined BS-MS program will enable outstanding students to carry their undergraduate research further before

  12. OERL: A Tool For Geoscience Education Evaluators

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.

    2002-12-01

    The Online Evaluation Resource Library (OERL) is a Web-based set of resources for improving the evaluation of projects funded by the Directorate for Education and Human Resources (EHR) of the National Science Foundation (NSF). OERL provides prospective project developers and evaluators with material that they can use to design, conduct, document, and review evaluations. OERL helps evaluators tackle the challenges of seeing if a project is meeting its implementation and outcome-related goals. Within OERL is a collection of exemplary plans, instruments, and reports from evaluations of EHR-funded projects in the geosciences and in other areas of science and mathematics. In addition, OERL contains criteria about good evaluation practices, professional development modules about evaluation design and questionnaire development, a dictionary of key evaluation terms, and links to evaluation standards. Scenarios illustrate how the resources can be used or adapted. Currently housed in OERL are 137 instruments, and full or excerpted versions of 38 plans and 60 reports. 143 science and math projects have contributed to the collection so far. OERL's search tool permits the launching of precise searches based on key attributes of resources such as their subject area and the name of the sponsoring university or research institute. OERL's goals are to 1) meet the needs for continuous professional development of evaluators and principal investigators, 2) complement traditional vehicles of learning about evaluation, 3) utilize the affordances of current technologies (e.g., Web-based digital libraries, relational databases, and electronic performance support systems) for improving evaluation practice, 4) provide anytime/anyplace access to update-able resources that support evaluators' needs, and 5) provide a forum by which professionals can interact on evaluation issues and practices. Geoscientists can search the collection of resources from geoscience education projects that have

  13. A Model Collaborative Platform for Geoscience Education

    NASA Astrophysics Data System (ADS)

    Fox, S.; Manduca, C. A.; Iverson, E. A.

    2012-12-01

    Over the last decade SERC at Carleton College has developed a collaborative platform for geoscience education that has served dozens of projects, thousands of community authors and millions of visitors. The platform combines a custom technical infrastructure: the SERC Content Management system (CMS), and a set of strategies for building web-resources that can be disseminated through a project site, reused by other projects (with attribution) or accessed via an integrated geoscience education resource drawing from all projects using the platform. The core tools of the CMS support geoscience education projects in building project-specific websites. Each project uses the CMS to engage their specific community in collecting, authoring and disseminating the materials of interest to them. At the same time the use of a shared central infrastructure allows cross-fertilization among these project websites. Projects are encouraged to use common templates and common controlled vocabularies for organizing and displaying their resources. This standardization is then leveraged through cross-project search indexing which allow projects to easily incorporate materials from other projects within their own collection in ways that are relevant and automated. A number of tools are also in place to help visitors move among project websites based on their personal interests. Related links help visitors discover content related topically to their current location that is in a 'separate' project. A 'best bets' feature in search helps guide visitors to pages that are good starting places to explore resources on a given topic across the entire range of hosted projects. In many cases these are 'site guide' pages created specifically to promote a cross-project view of the available resources. In addition to supporting the cross-project exploration of specific themes the CMS also allows visitors to view the combined suite of resources authored by any particular community member. Automatically

  14. Integrated Design for Geoscience Education with Upward Bound Students

    NASA Astrophysics Data System (ADS)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.

    2009-05-01

    Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive

  15. Sustaining a Global Geoscience Workforce-The Case for International Collaboration

    NASA Astrophysics Data System (ADS)

    Leahy, P. P.; Keane, C. M.

    2013-05-01

    Maintaining an adequate global supply of qualified geoscientists is a major challenge facing the profession. With global population expected to exceed 9 billion by midcentury, the demand for geoscience expertise is expected to dramatically increase if we are to provide to society the resource base, environmental quality, and resiliency to natural hazards that is required to meet future global demands. The American Geoscience Institute (AGI) has for the past 50 years tracked the supply of geoscientists and their various areas of specialty for the US. However, this is only part of the necessary workforce analysis, the demand side must also be determined. For the past several years, AGI has worked to acquire estimates for workforce demand in the United States. The analysis suggests that by 2021 there will be between 145,000 to 202,000 unfilled jobs in the US. This demand can be partially filled with an increase in graduates (which is occurring at an insufficient pace in the US to meet full demand), increased migration of geoscientists internationally to the US (a challenge since demands are increasing globally), and more career placement of bachelor degree recipients. To understand the global workforce dynamic, it is critical that accurate estimates of global geoscience supply, demand and retirement be available. Although, AGI has focused on the US situation, it has developed international collaborations to acquire workforce data. Among the organizations that have contributed are UNESCO, the International Union of Geological Sciences (IUGS), the Young Earth-Scientists Network, and the Geological Society of Africa. Among the areas of international collaboration, the IUGS Task Group on Global Geoscience Workforce enables the IUGS to take a leadership role in raising the quality of understanding of workforce across the world. During the course of the taskforce's efforts, several key understandings have emerged. First, the general supply of geoscientists is quantifiable

  16. Virtual Reality as a Story Telling Platform for Geoscience Communication

    NASA Astrophysics Data System (ADS)

    Lazar, K.; Moysey, S. M.

    2017-12-01

    Capturing the attention of students and the public is a critical step for increasing societal interest and literacy in earth science issues. Virtual reality (VR) provides a means for geoscience engagement that is well suited to place-based learning through exciting and immersive experiences. One approach is to create fully-immersive virtual gaming environments where players interact with physical objects, such as rock samples and outcrops, to pursue geoscience learning goals. Developing an experience like this, however, can require substantial programming expertise and resources. At the other end of the development spectrum, it is possible for anyone to create immersive virtual experiences with 360-degree imagery, which can be made interactive using easy to use VR editing software to embed videos, audio, images, and other content within the 360-degree image. Accessible editing tools like these make the creation of VR experiences something that anyone can tackle. Using the VR editor ThingLink and imagery from Google Maps, for example, we were able to create an interactive tour of the Grand Canyon, complete with embedded assessments, in a matter of hours. The true power of such platforms, however, comes from the potential to engage students as content authors to create and share stories of place that explore geoscience issues from their personal perspective. For example, we have used combinations of 360-degree images with interactive mapping and web platforms to enable students with no programming experience to create complex web apps as highly engaging story telling platforms. We highlight here examples of how we have implemented such story telling approaches with students to assess learning in courses, to share geoscience research outcomes, and to communicate issues of societal importance.

  17. Addressing Issues of Broadening Participation Highlighted in the Report on the Future of Undergraduate Geoscience Education

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Manduca, C. A.; Macdonald, H.; Iverson, E. A. R.

    2015-12-01

    The final report for the Summit on the Future of Geoscience Education lays out a consensus on issues that must be tackled by the geoscience community collectively if there are to be enough qualified people to fill the large number of expected geoscience job vacancies over the coming decade. Focus areas cited in the report include: Strengthening the connections between two-year colleges and four-year institutions Sharing and making use of successful recruitment and retention practices for students from underrepresented groups Making students aware of high-quality job prospects in the geosciences as well as its societal relevance The InTeGrate STEP Center for the Geosciences, the Supporting and Advancing Geoscience Education at Two-Year Colleges (SAGE 2YC) program, and the Building Strong Geoscience Departments (BSGD) project together have developed a suite of web resources to help faculty and program leaders begin to address these and other issues. These resources address practices that support the whole student, both in the classroom and as a part of the co-curriculum as well as information on geoscience careers, guidance for developing coherent degree programs, practical advice for mentoring and advising, and many others. In addition to developing web resources, InTeGrate has also undertaken an effort to profile successful program practices at a variety of institutions. An analysis of these data shows several common themes (e.g. proactive marketing, community building, research experiences) that align well with the existing literature on what works to support student success. But there are also indications of different approaches and emphases between Minority Serving Institutions (MSIs) and Primarily White Institutions (PWIs) as well as between different kinds of MSIs. Highlighting the different strategies in use can point both MSIs and PWIs to possible alternate solutions to the challenges their students face. InTeGrate - http

  18. Smartphones: Powerful Tools for Geoscience Education

    NASA Astrophysics Data System (ADS)

    Johnson, Zackary I.; Johnston, David W.

    2013-11-01

    Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.

  19. Alternative conceptions of introductory geoscience students and a method to decrease them

    NASA Astrophysics Data System (ADS)

    Kortz, Karen Melissa

    College students often leave introductory geoscience courses with alternative conceptions, and these alternative conceptions are a barrier to their grasp of geological conceptions. This dissertation clarifies the problem and suggests pedagogical strategies for correcting it. It is an integration of research on students' conceptions of geoscience topics with the application of that knowledge to the development of materials to change these conceptions to be more scientifically accurate. This research identifies and documents alternative conceptions students have in several key geoscience topics and the consequences of these alternative conception in terms of preventing understanding. After documenting the alternative conceptions, I investigate their sources. In addition, I develop ways in which the alternative conceptions can be addressed in classrooms in terms of non-traditional teaching techniques, and I assess the success of these methods. Chapter 1 addresses alternative conceptions in general introductory geoscience topics. I use known student alternative conceptions to develop a series of interactive materials to help reduce students' alternative conceptions. After their development, I assess the efficacy of these materials, and my research indicates that they are successful in helping students better learn the geoscience concepts. Chapter 2 deals with a particularly difficult topic for students---that of phylogenetic systematics. Students have an intuitive way of categorizing organisms, and this categorization is different from the system used by experts within the field. My investigation indicates the conceptual change required of students to fully understand the topic leads to great difficulties with learning. Drawing upon results of the research in Chapter 1, I developed and assessed interactive materials to help students better understand phylogenetic systematics. Using the insight gained from Chapters 1 and 2, Chapters 3 and 4 further examine students

  20. Geophysical Research Letters: New policies improve top-cited geosciences journal

    USGS Publications Warehouse

    Calais, Eric; Diffenbaugh, Noah; D'Odorico, Paolo; Harris, Ruth; Knorr, Wolfgang; Lavraud, Benoit; Mueller, Anne; Peterson, William; Rignot, Eric; Srokosz, Meric; Strutton, Peter; Tyndall, Geoff; Wysession, Michael; Williams, Paul

    2010-01-01

    Geophysical Research Letters (GRL) is the American Geophysical Union's premier journal of fast, groundbreaking communication. It rapidly publishes high- impact,letter-length articles, and it is the top-cited multidisciplinary geosciences journal over the past 10 years, with an impact factor that increased again in 2009, to 3.204. For manuscripts submitted to GRL, the median time to first and final decision is 23 and 27 days, respectively—a 35% improvement since 2007—and the median time from submission to publication is 13 weeks for 90% of GRL papers—a 25% improvement since 2007. Among high-impact publications in the geosciences, GRL has the fastest turnaround.

  1. Building Bridges Between Geoscience and Data Science through Benchmark Data Sets

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Ebert-Uphoff, I.; Demir, I.; Gel, Y.; Hill, M. C.; Karpatne, A.; Güereque, M.; Kumar, V.; Cabral, E.; Smyth, P.

    2017-12-01

    The changing nature of observational field data demands richer and more meaningful collaboration between data scientists and geoscientists. Thus, among other efforts, the Working Group on Case Studies of the NSF-funded RCN on Intelligent Systems Research To Support Geosciences (IS-GEO) is developing a framework to strengthen such collaborations through the creation of benchmark datasets. Benchmark datasets provide an interface between disciplines without requiring extensive background knowledge. The goals are to create (1) a means for two-way communication between geoscience and data science researchers; (2) new collaborations, which may lead to new approaches for data analysis in the geosciences; and (3) a public, permanent repository of complex data sets, representative of geoscience problems, useful to coordinate efforts in research and education. The group identified 10 key elements and characteristics for ideal benchmarks. High impact: A problem with high potential impact. Active research area: A group of geoscientists should be eager to continue working on the topic. Challenge: The problem should be challenging for data scientists. Data science generality and versatility: It should stimulate development of new general and versatile data science methods. Rich information content: Ideally the data set provides stimulus for analysis at many different levels. Hierarchical problem statement: A hierarchy of suggested analysis tasks, from relatively straightforward to open-ended tasks. Means for evaluating success: Data scientists and geoscientists need means to evaluate whether the algorithms are successful and achieve intended purpose. Quick start guide: Introduction for data scientists on how to easily read the data to enable rapid initial data exploration. Geoscience context: Summary for data scientists of the specific data collection process, instruments used, any pre-processing and the science questions to be answered. Citability: A suitable identifier to

  2. Native Geosciences: Pathways to Traditional Knowledge in Modern Research and Education

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2010-12-01

    Native people have lived for millennia in distinct and unique ways in our natural sacred homelands and environments. Tribal cultures are the expression of deep understandings of geosciences shared through oral histories, language, traditional practices and ceremonies. Today, Native people as all people are living in a definite time of change. The developing awareness of "change" brings forth an immense opportunity to expand, elevate and incorporate Traditional Native geosciences knowledge into modern research and education to expand understandings for all learners. At the center of "change" is the need to balance the needs of the people with the needs of the environment. Native traditions and our inherent understanding of what is "sacred above is sacred below" is the foundation for a multi-faceted approach for increasing the representation of Natives in geosciences. The approach is centered on the incorporation of traditional knowledge into modern research/education. The approach is also a pathway to assist in Tribal language revitalization, connection of oral histories and ceremonies to place and building an intergenerational teaching/learning community. Humboldt State University, Sinte Gleska University and Tribes in Northern California (Hoopa, Yurok, & Karuk) and Great Plains (Lakota) Tribes have nurtured Native geosciences learning and research communities connected to Tribal Sacred Sites and natural resources. Native geoscience learning is centered on the themes of earth, wind, fire and water and the Native application of remote sensing technologies. Tribal Elders and Native geoscientists work collaboratively providing Native families in-field experiential intergenerational learning opportunities which invite participants to immerse themselves spiritually, intellectually, physically and emotionally in the experiences. Through this immersion and experience Native students and families strengthen the circle of our future Tribal communities and a return to

  3. Integrating Semantic Information in Metadata Descriptions for a Geoscience-wide Resource Inventory.

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Richard, S. M.; Gupta, A.; Valentine, D.; Whitenack, T.; Ozyurt, I. B.; Grethe, J. S.; Schachne, A.

    2016-12-01

    Integrating semantic information into legacy metadata catalogs is a challenging issue and so far has been mostly done on a limited scale. We present experience of CINERGI (Community Inventory of Earthcube Resources for Geoscience Interoperability), an NSF Earthcube Building Block project, in creating a large cross-disciplinary catalog of geoscience information resources to enable cross-domain discovery. The project developed a pipeline for automatically augmenting resource metadata, in particular generating keywords that describe metadata documents harvested from multiple geoscience information repositories or contributed by geoscientists through various channels including surveys and domain resource inventories. The pipeline examines available metadata descriptions using text parsing, vocabulary management and semantic annotation and graph navigation services of GeoSciGraph. GeoSciGraph, in turn, relies on a large cross-domain ontology of geoscience terms, which bridges several independently developed ontologies or taxonomies including SWEET, ENVO, YAGO, GeoSciML, GCMD, SWO, and CHEBI. The ontology content enables automatic extraction of keywords reflecting science domains, equipment used, geospatial features, measured properties, methods, processes, etc. We specifically focus on issues of cross-domain geoscience ontology creation, resolving several types of semantic conflicts among component ontologies or vocabularies, and constructing and managing facets for improved data discovery and navigation. The ontology and keyword generation rules are iteratively improved as pipeline results are presented to data managers for selective manual curation via a CINERGI Annotator user interface. We present lessons learned from applying CINERGI metadata augmentation pipeline to a number of federal agency and academic data registries, in the context of several use cases that require data discovery and integration across multiple earth science data catalogs of varying quality

  4. Video diaries on social media: Creating online communities for geoscience research and education

    NASA Astrophysics Data System (ADS)

    Tong, V.

    2013-12-01

    Making video clips is an engaging way to learn and teach geoscience. As smartphones become increasingly common, it is relatively straightforward for students to produce ';video diaries' by recording their research and learning experience over the course of a science module. Instead of keeping the video diaries for themselves, students may use the social media such as Facebook for sharing their experience and thoughts. There are some potential benefits to link video diaries and social media in pedagogical contexts. For example, online comments on video clips offer useful feedback and learning materials to the students. Students also have the opportunity to engage in geoscience outreach by producing authentic scientific contents at the same time. A video diary project was conducted to test the pedagogical potential of using video diaries on social media in the context of geoscience outreach, undergraduate research and teaching. This project formed part of a problem-based learning module in field geophysics at an archaeological site in the UK. The project involved i) the students posting video clips about their research and problem-based learning in the field on a daily basis; and ii) the lecturer building an online outreach community with partner institutions. In this contribution, I will discuss the implementation of the project and critically evaluate the pedagogical potential of video diaries on social media. My discussion will focus on the following: 1) Effectiveness of video diaries on social media; 2) Student-centered approach of producing geoscience video diaries as part of their research and problem-based learning; 3) Learning, teaching and assessment based on video clips and related commentaries posted on Facebook; and 4) Challenges in creating and promoting online communities for geoscience outreach through the use of video diaries. I will compare the outcomes from this study with those from other pedagogical projects with video clips on geoscience, and

  5. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations

    PubMed Central

    de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria

    2018-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; p<0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964

  6. Creating and maintaining a successful geoscience pathway from 2YC to 4YC for Native Hawaiian Students: First Steps

    NASA Astrophysics Data System (ADS)

    Guidry, M.; Eschenberg, A.; McCoy, F. W.; McManus, M. A.; Lee, K.; DeLay, J. K.; Taylor, S. V.; Dire, J.; Krupp, D.

    2017-12-01

    In the Fall of 2015, the two four year (4YC) institutions within the University of Hawaii (UH) system offering baccalaureate degrees in geosciences enrolled only six Native Hawaiian (NH) students out of a total of 194 students in geoscience degree programs. This percentage (3%) of NH students enrolled in geosciences is far lower than the percentage of NH students enrolled at any single institution in the UH system, which ranges from 14 to 42%. At the same time, only six (3%) of the 194 students enrolled in geoscience baccalaureate programs were transfer students from the UH community colleges. Of these six transfer students, three were NH. This reflects the need for increased transfer of NH in the geosciences from two year (2YC) to 4YC. In the Fall of 2015, UH Manoa's (UHM) School of Ocean and Earth Science and Technology (SOEST) accounted for only 0.14% of transfer students from UH community colleges. This compares to 5% in the UHM School of Engineering and 27% in the UHM College of Arts and Sciences. As part of the first year of a multi-institutional five-year NSF TCUP-PAGE (Tribal Colleges and Universities Program - PArtnerships for Geoscience Education) award, we review our first steps and strategies for building a successful and sustainable geoscience transfer pathway for Native Hawaiian and community college students into the three undergraduate geoscience programs (Atmospheric Sciences, Environmental Sciences, and Geology & Geophysics) within SOEST.

  7. Integration and initial operation of the multi-component large ring laser structure ROMY

    NASA Astrophysics Data System (ADS)

    Schreiber, Karl Ulrich; Igel, Heiner; Wassermann, Joachim; Gebauer, André; Simonelli, Andrea; Bernauer, Felix; Donner, Stefanie; Hadziioannou, Celine; Egdorf, Sven; Wells, Jon-Paul

    2017-04-01

    Rotation sensing for the geosciences requires a high sensor resolution of the order of 10 pico- radians per second or even less. An optical Sagnac interferometer offers this sensitivity, provided that the scale factor can be made very large. We have designed and built a multi- component ring laser system, consisting of 4 individual large ring lasers, each covering an area of more than 62 square m. The rings are orientated in the shape of a tetrahedron, so that all 3 spatial directions are covered, allowing also for some redundancy. We report on the initial operation of the free running gyroscopes in their underground facility in order to establish a performance estimate for the ROMY ring laser structure. Preliminary results suggest that the quantum noise limit is lower than that of the G ring laser.

  8. Recruitment Strategies for Geoscience Majors: Conceptual Framework and Practical Suggestions

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Eyles, C.; Ormand, C. J.

    2009-12-01

    One characteristic of strong geoscience departments is that they recruit and retain quality students. In a survey to over 900 geoscience departments in the US and Canada several years ago nearly 90% of respondents indicated that recruiting and retaining students was important. Two years ago we offered a pre-GSA workshop on recruiting and retaining students that attracted over 30 participants from over 20 different institutions, from liberal arts colleges to state universities to research intensive universities. Since then we have sought additional feedback from a presentation to the AGU Heads & Chairs at a Fall AGU meeting, and most recently from a workshop on strengthening geoscience programs in June 2009. In all of these settings, a number of themes and concrete strategies have emerged. Key themes included strategies internal to the department/institution; strategies that reach beyond the department/institution; determining how scalable/transferable strategies that work in one setting are to your own setting; identifying measures of success; and developing or improving on an existing action plan specific to your departmental/institutional setting. The full results of all of these efforts to distill best practices in recruiting students will be shared at the Fall AGU meeting, but some of the best practices for strategies local to the department/institution include: 1) focusing on introductory classes (having the faculty who are most successful in that setting teach them, having one faculty member make a common presentation to all classes about what one can do with a geoscience major, offering topical seminars, etc.); 2) informing students of career opportunities (inviting alumni back to talk to students, using AGI resources, etc.,); 3) creating common space for students to work, study, and be a community; 4) inviting all students earning an ‘A’ (or ‘B’) in introductory classes to a departmental event just for them; and 5) creating a field trip for incoming

  9. Texas A&M Geosciences and the growing importance of transfer students

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.

    2012-12-01

    Texas A&M University at College Station is the flagship university for the Texas A&M System, and is a major destination for transfer students, both from inside and outside the A&M system. The College of Geosciences consists of four academic departments and organized research centers spanning geoscience disciplines of Geology & Geophysics, Geography, Oceanography and Atmospheric Sciences. Two additional interdisciplinary degree programs offer undergraduate degrees in Environmental Geosciences and Environmental Studies and graduate degrees in Water and Hydrological Sciences. The College has increased its undergraduate enrollment and graduation numbers substantially in recent years, growing from 105 Baccalaureate graduates in 2006-07 College-wide to 187 in 2010-11. This 80% growth over this time period has greatly outpaced the undergraduate degree completion growth rate of 10% for the University as a whole. While the College of Geosciences is still the smallest at A&M in terms of overall B.S. graduation rate, it is by far the fastest growing of the nine undergraduate degree-granting colleges over the last five years. A significant number of our incoming and graduating undergraduate students are transfers from primarily 2-year colleges, mostly concentrated in the southeastern portion of Texas. University-wide between 2006 and 2010, 23-25% of degree recipients entered as transfer students. In the College of Geosciences transfer students are an even more significant portion of our graduating students, making up 34-35% of graduates during the same period. Most of the recent undergraduate enrollment growth in the College, however, has come from an increase in first-time freshmen and not from an increase in transfer admissions. Recent efforts to reinvigorate transfer admissions have sharply reversed this trend. Current enrollment data shows that incoming transfer students this year once again more closely mirror historic graduation rates with 34% of our new students

  10. AGI's Earth Science Week and Education Resources Network: Connecting Teachers to Geoscience Organizations and Classroom Resources that Support NGSS Implementation

    NASA Astrophysics Data System (ADS)

    Robeck, E.; Camphire, G.; Brendan, S.; Celia, T.

    2016-12-01

    There exists a wide array of high quality resources to support K-12 teaching and motivate student interest in the geosciences. Yet, connecting teachers to those resources can be a challenge. Teachers working to implement the NGSS can benefit from accessing the wide range of existing geoscience resources, and from becoming part of supportive networks of geoscience educators, researchers, and advocates. Engaging teachers in such networks can be facilitated by providing them with information about organizations, resources, and opportunities. The American Geoscience Institute (AGI) has developed two key resources that have great value in supporting NGSS implement in these ways. Those are Earth Science Week, and the Education Resources Network in AGI's Center for Geoscience and Society. For almost twenty years, Earth Science Week, has been AGI's premier annual outreach program designed to celebrate the geosciences. Through its extensive web-based resources, as well as the physical kits of posters, DVDs, calendars and other printed materials, Earth Science Week offers an array of resources and opportunities to connect with the education-focused work of important geoscience organizations such as NASA, the National Park Service, HHMI, esri, and many others. Recently, AGI has initiated a process of tagging these and other resources to NGSS so as to facilitate their use as teachers develop their instruction. Organizing Earth Science Week around themes that are compatible with topics within NGSS contributes to the overall coherence of the diverse array of materials, while also suggesting potential foci for investigations and instructional units. More recently, AGI has launched its Center for Geoscience and Society, which is designed to engage the widest range of audiences in building geoscience awareness. As part of the Center's work, it has launched the Education Resources Network (ERN), which is an extensive searchable database of all manner of resources for geoscience

  11. GeoX: A New Pre-college Program to Attract Underrepresented Minorities and First Generation Students to the Geosciences

    NASA Astrophysics Data System (ADS)

    Miller, K. C.; Garcia, S. J.; Houser, C.; GeoX Team

    2011-12-01

    An emerging challenge in science, technology, engineering and math (STEM) education is the recruitment of underrepresented groups in those areas of the workforce. This paper describes the structure and first-year results of the Geosciences Exploration Summer Program (GeoX) at Texas A&M University. Recent evidence suggest that pipeline programs should target junior and senior high school students who are beginning to seriously consider future career choices and appropriate college programs. GeoX is an overnight program that takes place during the summer at Texas A&M University. Over the course of a week, GeoX participants interact with faculty from the College of Geosciences, administrators, current students, and community leaders through participation in inquiry-based learning activities, field trips, and evening social events. The aim of this project is to foster a further interest in pursuing geosciences as an undergraduate major in college and thereby increase participation in the geosciences by underrepresented ethnic minority students. With funding from industry and private donors, high achieving rising junior and rising senior students, with strong interest in science and math, were invited to participate in the program. Students and their parents were interviewed before and after the program to determine if it was successful in introducing and enhancing awareness of the: 1) various sub-disciplines in the geosciences, 2) benefits of academia and research, 3) career opportunities in each of those fields and 4) college admission process including financial aid and scholarship opportunities. Results of the survey suggest that the students had a very narrow and stereotypical view of the geosciences that was almost identical to the views of their parents. Following the program, the students had a more expanded and positive view of the geosciences compared to the pre-program survey and compared to their parents. While it remains to be seen how many of those

  12. Accessible Earth: Enhancing diversity in the Geosciences through accessible course design and Experiential Learning Theory

    NASA Astrophysics Data System (ADS)

    Bennett, Rick; Lamb, Diedre

    2017-04-01

    The tradition of field-based instruction in the geoscience curriculum, which culminates in a capstone geological field camp, presents an insurmountable barrier to many disabled students who might otherwise choose to pursue geoscience careers. There is a widespread perception that success as a practicing geoscientist requires direct access to outcrops and vantage points available only to those able to traverse inaccessible terrain. Yet many modern geoscience activities are based on remotely sensed geophysical data, data analysis, and computation that take place entirely from within the laboratory. To challenge the perception of geoscience as a career option only for the able bodied, we have created the capstone Accessible Earth Study Abroad Program, an alternative to geologic field camp with a focus on modern geophysical observation systems, computational thinking, and data science. In this presentation, we will report on the theoretical bases for developing the course, our experiences in teaching the course to date, and our plan for ongoing assessment, refinement, and dissemination of the effectiveness of our efforts.

  13. Diversifying the Geosciences: Examples from the Arctic

    NASA Astrophysics Data System (ADS)

    Holmes, R. M.

    2017-12-01

    Like other realms of the geosciences, the scientists who comprise the Arctic research community tends to be white and male. For example, a survey of grants awarded over a 5-year period beginning in 2010 by NSF's Arctic System Science and Arctic Natural Sciences programs showed that over 90% of PIs were white whereas African Americans, Hispanics, and Native Americans together accounted for only about 1% of PIs. Over 70% of the PIs were male. I will suggest that involving diverse upper-level undergraduate students in authentic field research experiences may be one of the shortest and surest routes to diversifying the Arctic research community, and by extension, the geoscientific research community overall. Upper-level undergraduate students are still open to multiple possibilities, but an immersive field research experience often helps solidify graduate school and career trajectories. Though an all-of-the-above strategy is needed, focusing on engaging a diverse cohort of upper-level undergraduate students may provide one of the most efficient means of diversifying the geosciences over the coming years and decades.

  14. Resources and Approaches for Teaching Quantitative and Computational Skills in the Geosciences and Allied Fields

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Mcfadden, R. R.; Manduca, C. A.; Kempler, L. A.

    2016-12-01

    Teaching with data, simulations, and models in the geosciences can increase many facets of student success in the classroom, and in the workforce. Teaching undergraduates about programming and improving students' quantitative and computational skills expands their perception of Geoscience beyond field-based studies. Processing data and developing quantitative models are critically important for Geoscience students. Students need to be able to perform calculations, analyze data, create numerical models and visualizations, and more deeply understand complex systems—all essential aspects of modern science. These skills require students to have comfort and skill with languages and tools such as MATLAB. To achieve comfort and skill, computational and quantitative thinking must build over a 4-year degree program across courses and disciplines. However, in courses focused on Geoscience content it can be challenging to get students comfortable with using computational methods to answers Geoscience questions. To help bridge this gap, we have partnered with MathWorks to develop two workshops focused on collecting and developing strategies and resources to help faculty teach students to incorporate data, simulations, and models into the curriculum at the course and program levels. We brought together faculty members from the sciences, including Geoscience and allied fields, who teach computation and quantitative thinking skills using MATLAB to build a resource collection for teaching. These materials, and the outcomes of the workshops are freely available on our website. The workshop outcomes include a collection of teaching activities, essays, and course descriptions that can help faculty incorporate computational skills at the course or program level. The teaching activities include in-class assignments, problem sets, labs, projects, and toolboxes. These activities range from programming assignments to creating and using models. The outcomes also include workshop

  15. Pathways to the Geosciences through 2YR Community Colleges: A Strategic Recruitment Approach being used at Texas A&M University

    NASA Astrophysics Data System (ADS)

    Houser, C.; Nunez, J.; Miller, K. C.

    2016-12-01

    Department and college operating budgets are increasingly tide to enrollment and student credit hour production, which requires geoscience programs to develop strategic recruitment programs to ensure long-term stability, but also to increase institutional support. There is evidence that proactive high school recruitment programs are successful in engaging students in the geosciences, particularly those that involve the parents, but these programs typically have relatively low-yields and are relatively expensive. This means that increased enrollment of undergraduates in geosciences programs and participation by under-represented groups depends on innovative and effective recruitment and retention practices. The College of Geosciences at Texas A&M University has recently developed a Pathways to the Geosciences program that facilitates the transfer of students from 2-year institutions by providing direction to students interested in the geosciences from one of our partner institutions: Blinn College, Lee College, Houston Community College, San Jacinto College and Lone Star College. Each of the partner institutions offer disciplinary majors related to the geosciences, providing a gateway for students to discover and consider the geosciences starting in their freshman year. The guided pathways provide much needed direction without restricting options and allow students to see connections between courses and their career goals. In its first year, the Pathways to the Geosciences program has resulted in a significant increase in transfer applications and admissions from the partner institutions by 74% and 107% respectively. The program has been successful because we have been proactive in helping students at the partner institutions find the information they need to effectively transfer to a 4-year program. The increase in applications is evidence that students from our partner institutions are being intentional in following a pathway to a major in the College of

  16. Ranging error analysis of single photon satellite laser altimetry under different terrain conditions

    NASA Astrophysics Data System (ADS)

    Huang, Jiapeng; Li, Guoyuan; Gao, Xiaoming; Wang, Jianmin; Fan, Wenfeng; Zhou, Shihong

    2018-02-01

    Single photon satellite laser altimeter is based on Geiger model, which has the characteristics of small spot, high repetition rate etc. In this paper, for the slope terrain, the distance of error's formula and numerical calculation are carried out. Monte Carlo method is used to simulate the experiment of different terrain measurements. The experimental results show that ranging accuracy is not affected by the spot size under the condition of the flat terrain, But the inclined terrain can influence the ranging error dramatically, when the satellite pointing angle is 0.001° and the terrain slope is about 12°, the ranging error can reach to 0.5m. While the accuracy can't meet the requirement when the slope is more than 70°. Monte Carlo simulation results show that single photon laser altimeter satellite with high repetition rate can improve the ranging accuracy under the condition of complex terrain. In order to ensure repeated observation of the same point for 25 times, according to the parameters of ICESat-2, we deduce the quantitative relation between the footprint size, footprint, and the frequency repetition. The related conclusions can provide reference for the design and demonstration of the domestic single photon laser altimetry satellite.

  17. International Geoscience Workforce Trends: More Challenges for Federal Agencies

    NASA Astrophysics Data System (ADS)

    Groat, C. G.

    2005-12-01

    Concern about the decreasing number of students entering undergraduate geoscience programs has been chronic and, at times, acute over the past three decades. Despite dwindling populations of undergraduate majors, graduate programs have remained relatively robust, bolstered by international students. With Increasing competition for graduate students by universities in Europe, Japan, Australia, and some developing countries, and with procedural challenges faced by international students seeking entry into the United States and its universities, this supply source is threatened. For corporations operating on a global scale, the opportunity to employ students from and trained in the regions in which they operate is generally a plus. For U.S. universities that have traditionally supplied this workforce, the changing situation poses challenges, but also opportunities for creative international partnerships. Federal government science agencies face more challenges than opportunities in meeting workforce needs under both present and changing education conditions. Restrictions on hiring non-U.S. citizens into the permanent workforce have been a long-standing issue for federal agencies. Exceptions are granted only where they can document the absence of eligible U.S.-citizen candidates. The U.S. Geological Survey has been successful in doing this in its Mendenhall Postdoctoral Research Fellowship Program, but there has been no solution to the broader limitation. Under current and forecast workforce recruitment conditions, creativity, such as that evidenced by the Mendenhall program,will be necessary if federal agencies are to draw from the increasingly international geoscience talent pool. With fewer U.S. citizens in U.S. geoscience graduate programs and a growing number of advanced-degreed scientists coming from universities outside the U.S., the need for changes in federal hiring policies is heightened. The near-term liklihood of this is low and combined with the decline in

  18. Geoscience Information Network (USGIN) Solutions for Interoperable Open Data Access Requirements

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Richard, S. M.; Patten, K.

    2014-12-01

    The geosciences are leading development of free, interoperable open access to data. US Geoscience Information Network (USGIN) is a freely available data integration framework, jointly developed by the USGS and the Association of American State Geologists (AASG), in compliance with international standards and protocols to provide easy discovery, access, and interoperability for geoscience data. USGIN standards include the geologic exchange language 'GeoSciML' (v 3.2 which enables instant interoperability of geologic formation data) which is also the base standard used by the 117-nation OneGeology consortium. The USGIN deployment of NGDS serves as a continent-scale operational demonstration of the expanded OneGeology vision to provide access to all geoscience data worldwide. USGIN is developed to accommodate a variety of applications; for example, the International Renewable Energy Agency streams data live to the Global Atlas of Renewable Energy. Alternatively, users without robust data sharing systems can download and implement a free software packet, "GINstack" to easily deploy web services for exposing data online for discovery and access. The White House Open Data Access Initiative requires all federally funded research projects and federal agencies to make their data publicly accessible in an open source, interoperable format, with metadata. USGIN currently incorporates all aspects of the Initiative as it emphasizes interoperability. The system is successfully deployed as the National Geothermal Data System (NGDS), officially launched at the White House Energy Datapalooza in May, 2014. The USGIN Foundation has been established to ensure this technology continues to be accessible and available.

  19. Developing a geoscience knowledge framework for a national geological survey organisation

    NASA Astrophysics Data System (ADS)

    Howard, Andrew S.; Hatton, Bill; Reitsma, Femke; Lawrie, Ken I. G.

    2009-04-01

    Geological survey organisations (GSOs) are established by most nations to provide a geoscience knowledge base for effective decision-making on mitigating the impacts of natural hazards and global change, and on sustainable management of natural resources. The value of the knowledge base as a national asset is continually enhanced by the exchange of knowledge between GSOs as data and information providers and the stakeholder community as knowledge 'users and exploiters'. Geological maps and associated narrative texts typically form the core of national geoscience knowledge bases, but have some inherent limitations as methods of capturing and articulating knowledge. Much knowledge about the three-dimensional (3D) spatial interpretation and its derivation and uncertainty, and the wider contextual value of the knowledge, remains intangible in the minds of the mapping geologist in implicit and tacit form. To realise the value of these knowledge assets, the British Geological Survey (BGS) has established a workflow-based cyber-infrastructure to enhance its knowledge management and exchange capability. Future geoscience surveys in the BGS will contribute to a national, 3D digital knowledge base on UK geology, with the associated implicit and tacit information captured as metadata, qualitative assessments of uncertainty, and documented workflows and best practice. Knowledge-based decision-making at all levels of society requires both the accessibility and reliability of knowledge to be enhanced in the grid-based world. Establishment of collaborative cyber-infrastructures and ontologies for geoscience knowledge management and exchange will ensure that GSOs, as knowledge-based organisations, can make their contribution to this wider goal.

  20. Intersection of Hip-Hop and Geoscience: Changes in The Climate

    NASA Astrophysics Data System (ADS)

    López, R. D.; Heraldo, S. E.; Nawman, M. A.; Gerry, V. R.; Gerry, M. A.

    2017-12-01

    Professionals and educators in the science, technology, engineering, art, and mathematics (STEAM) field rely heavily on scientific communication to convey innovations, concepts, and evidence-based policy. The geosciences presents itself as a unique field to communicate respective scientific endeavors, as research efforts have direct impacts on the Earth's resources and understanding natural processes. Several of the authors have previously composed musical pieces that integrated Earth Sciences with music, utilizing this as mechanism to not only foster creativity, but to also establish more dynamic outreach efforts. Unfortunately, geoscience does not readily present itself as a field that is easily accessible to minorities - particularly women, people of color, and those from disadvantaged communities. However, music is somewhat of a universal form of communication that is accessible to everyone. It is through the intersection of hip-hop and geoscience, that topics can be introduced to communities in unique ways. Flows in Hydrogeology was a previous project that several of the authors produced as a means to connect with youth who identify with the hip-hop community, while encouraging inquiry in the STEAM fields. Several of the authors grew up and still reside in some of the most violent cities in the United States of America. The authors have utilized their respective backgrounds in both upbringing and career endeavors to help bridge the gap between science and disadvantaged communities. The musical piece, Changes in the Climate, illustrates the power of understanding the changes in one's life and surrounding world via delivery of concepts with hip-hop and rap. Therefore this musical composition not only integrates STEAM and music, but also serves as mechanism for outreach and encouraging diversity. Such actions could yield the success of accessing untapped potential, while fostering unique opportunities for future collaboration between professionals in geoscience