Sample records for icf capsule implosion

  1. Implosion Dynamics and Mix in Double-Shell ICF Capsule Designs

    NASA Astrophysics Data System (ADS)

    Gunderson, Mark; Daughton, William; Simakov, Andrei; Wilson, Douglas; Watt, Robert; Delamater, Norman; Montgomery, David

    2015-11-01

    From an implosion dynamics perspective, double-shell ICF capsule designs have several advantages over the single-shell NIF ICF capsule point design. Double shell designs do not require precise shock sequencing, do not rely on hot spot ignition, have lower peak implosion speed requirements, and have lower convergence ratio requirements. However, there are still hurdles that must be overcome. The timing of the two main shocks in these designs is important in achieving sufficient compression of the DT fuel. Instability of the inner gold shell due to preheat from the hohlraum environment can disrupt the implosion of the inner pill. Mix, in addition to quenching burn in the DT fuel, also decreases the transfer of energy between the beryllium ablator and the inner gold shell during collision thus decreasing the implosion speed of the inner shell along with compression of the DT fuel. Herein, we will discuss practical implications of these effects on double-shell design we carry out in preparation for the NIF double-shell campaign. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  2. Multi-Fluid Interpenetration Mixing in X-ray and Directly Laser driven ICF Capsule Implosions

    NASA Astrophysics Data System (ADS)

    Wilson, Douglas

    2003-10-01

    Mix between a surrounding shell and the fuel leads to degradation in ICF capsule performance. Both indirectly (X-ray) and directly laser driven implosions provide a wealth of data to test mix models. One model, the multi-fluid interpenetration mix model of Scannapieco and Cheng (Phys. Lett. A., 299, 49, 2002), was implemented in an ICF code and applied to a wide variety of experiments (e.g. J. D. Kilkenny et al., Proc. Conf Plasm. Phys. Contr. Nuc. Fus. Res. 3, 29(1988), P. Amendt, R. E. Turner, O. L. Landen, Phy. Rev. Lett., 89, 165001 (2002), or Li et al., Phy. Rev. Lett, 89, 165002 (2002)). With its single adjustable parameter fixed, it replicates well the yield degradation with increasing convergence ratio for both directly and indirectly driven capsules. Often, but not always the ion temperatures with mixing are calculated to be higher than in an unmixed implosion, agreeing with observations. Comparison with measured directly driven implosion yield rates ( from the neutron temporal diagnostic or NTD) shows mixing increases rapidly during the burn. The model also reproduces the decrease of the fuel "rho-r" with fill gas pressure, measured by observing escaping deuterons or secondary neutrons. The mix model assumes fully atomically mixed constituents, but when experiments with deuterated plastic layers and 3He fuel are modeled, less that full atomic mix is appropriate. Applying the mix model to the ablator - solid DT interface in indirectly driven ignition capsules for the NIF or LMJ suggests that the capsules will ignite, but that burn after ignition may be somewhat degraded. Situations in which the Scannapieco and Cheng model fails to agree with experiments can guide us to improvements or the development of other models. Some directly driven symmetric implosions suggest that in highly mixed situations, a higher value of the mix parameter may needed. Others show the model underestimating the fuel burn temperature. This work was performed by the Los Alamos

  3. First beryllium capsule implosions on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.

    2016-05-15

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosionmore » shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less

  4. First beryllium capsule implosions on the National Ignition Facility

    DOE PAGES

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; ...

    2016-05-01

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosionmore » shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less

  5. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE PAGES

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; ...

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method describedmore » here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. Transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. Furthermore, we expect that the success of

  6. Capsule Ablator Inflight Performance Measurements Via Streaked Radiography Of ICF Implosions On The NIF*

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Tommasini, R.; Mackinnon, A.; MacPhee, A.; Meezan, N.; Olson, R.; Hicks, D.; LePape, S.; Izumi, N.; Fournier, K.; Barrios, M. A.; Ross, S.; Pak, A.; Döppner, T.; Kalantar, D.; Opachich, K.; Rygg, R.; Bradley, D.; Bell, P.; Hamza, A.; Dzenitis, B.; Landen, O. L.; MacGowan, B.; LaFortune, K.; Widmayer, C.; Van Wonterghem, B.; Kilkenny, J.; Edwards, M. J.; Atherton, J.; Moses, E. I.

    2016-03-01

    Streaked 1-dimensional (slit imaging) radiography of 1.1 mm radius capsules in ignition hohlraums was recently introduced on the National Ignition Facility (NIF) and gives an inflight continuous record of capsule ablator implosion velocities, shell thickness and remaining mass in the last 3-5 ns before peak implosion time. The high quality data delivers good accuracy in implosion metrics that meets our requirements for ignition and agrees with recently introduced 2-dimensional pinhole radiography. Calculations match measured trajectory across various capsule designs and laser drives when the peak laser power is reduced by 20%. Furthermore, calculations matching measured trajectories give also good agreement in ablator shell thickness and remaining mass.

  7. Measuring radial profiles of nuclear burn in ICF implosions at OMEGA and the NIF using proton emission imaging

    NASA Astrophysics Data System (ADS)

    Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M.; Zylstra, A.; Frenje, J.; Li, C. K.; Petrasso, R.; Marshall, F. J.; Sangster, T. C.; Hoffman, N. M.; Amendt, P. A.; Bellei, C.; Le Pape, S.; Wilks, S. C.

    2014-10-01

    Fusion reactions in ICF implosions of D3He-filled capsules produce 14.7-MeV D3He protons and 3-MeV DD protons. Measurements of the spatial distributions of the D3He and DD reactions are studied with a penumbral imaging system that utilizes a CR-39-based imaging detector to simultaneously record separate penumbral images of the two types of protons. Measured burn profiles are useful for studying implosion physics and provide a critical test for benchmarking simulations. Recent implosions at OMEGA of CD capsules containing 3He gas fill and SiO2 capsules containing low-pressure D3He gas were expected to have hollow D3He burn profiles (in the 3He-filled capsule, due to fuel-shell mix), but penumbral imaging showed that the reactions were centrally peaked due to enhanced ion diffusion. The imaging technique is to be implemented soon on the NIF. This work was supported in part by NLUF, DOE, and LLE.

  8. High-resolution Imaging of Deuterium-Tritium Capsule Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, Benjamin; Rygg, Ryan; Collins, Gilbert; Patel, Pravesh

    2017-10-01

    Highly-resolved 3-D simulations of inertial confinement fusion (ICF) implosions predict a hot spot plasma that exhibits complex micron-scale structure originating from a variety of 3-D perturbations. Experimental diagnosis of these conditions requires high spatial resolution imaging techniques. X-ray penumbral imaging can improve the spatial resolution over pinhole imaging while simultaneously increasing the detected photon yield at x-ray energies where the ablator opacity becomes negligible. Here we report on the first time-integrated x-ray penumbral imaging experiments of ICF capsule implosions at the National Ignition Facility that achieved spatial resolution as high as 4 micrometer. 6 to 30 keV hot spot images from layered DT implosions will be presented from a variety of experimental ICF campaigns, revealing previously unseen detail. It will be discussed how these and future results can be used to improve our physics understanding of inertially confined fusion plasmas by enabling spatially resolved measurements of hot spot properties, such as radiation energy, temperature or derived quantities. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  9. Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven

    2009-11-01

    Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.

  10. Impacts of Implosion Asymmetry And Hot Spot Shape On Ignition Capsules

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Yi, S. Austin; Batha, Steve

    2017-10-01

    Implosion symmetry plays a critical role in achieving high areal density and internal energy at stagnation during hot spot formation in ICF capsules. Asymmetry causes hot spot irregularity and stagnation de-synchronization that results in lower temperatures and areal densities of the hot fuel. These degradations significantly affect the alpha heating process in the DT fuel as well as on the thermonuclear performance of the capsules. In this work, we explore the physical factors determining the shape of the hot spot late in the implosion and the effects of shape on Î+/-particle transport. We extend our ignition theory [1-4] to include the hot spot shape and quantify the effects of the implosion asymmetry on both the ignition criterion and capsule performance. We validate our theory with the NIF existing experimental data Our theory shows that the ignition criterion becomes more restrictive with the deformation of the hot spot. Through comparison with the NIF data, we demonstrate that the shape effects on the capsules' performance become more explicit as the self-heating and yield of the capsules increases. The degradation of the thermonuclear burn by the hot spot shape for high yield shots to date can be as high as 20%. Our theory is in good agreement with the NIF data. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  11. Scaling of Liquid DT Layer Capsules to an ICF Burning Plasma

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Peterson, R. R.; Haines, B. M.; Yi, S. A.; Bradley, P. A.; Zylstra, A. B.; Kline, J. L.; Leeper, R. J.; Batha, S. H.

    2017-10-01

    Recent experiments at the NIF demonstrated cryogenic liquid DT layer ICF implosions. Unlike DT ice layer implosions, DT liquid layer designs can operate with low-to-moderate convergence ratio (12 implosion velocity and fuel adiabat requirements are relaxed. On the other hand, with larger hot spot size, the hot spot energy requirement for self-heating (Ehs) is increased (Ehs α Rhs2), and the required capsule-absorbed energy is increased. In this presentation, we will discuss the hot spot energy, hot spot pressure, cold fuel adiabat, and capsule-absorbed energy requirements for achieving self-heating and propagating burn with hot spot CR<20. This work was performed under the auspices of the U. S. DOE by LANL under contract DE-AC52-06NA25396.

  12. Effects of inhomogeneity at stagnation in 3D simulations of ICF implosions

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian

    2016-10-01

    The stagnation phase of an ICF implosion is characterized by a hotspot and dense fuel layer that are spatially and temporally inhomogeneous. Perturbation growth during the implosion results in significant asymmetry at stagnation while the hotspot size, density and temperature change rapidly, even in non-igniting capsules. Diagnosing these inhomogeneities is necessary to increase yield in ICF experiments. In this work, 3D radiation hydrodynamic simulations of perturbed indirect drive ICF capsules are carried out using the CHIMERA code. During the stagnation phase a suite of novel and computationally efficient simulation tools are used to produce synthetic time-resolved neutron spectra and images. These tools allow a detailed study of the effects of hotspot inhomogeneities on diagnostic signals. Results show that the burn-averaged ion temperature drops rapidly during thermonuclear burn as the hotspot evolves from a localised, shock-heated region to a more massive, non-uniform plasma. Primary DD and DT neutron spectra show that there is significant residual bulk fluid motion at stagnation, complicating the measurement of ion temperature. Different perturbation modes cause different levels of anisotropic spectra shifts and broadening. However, in all cases the discrepancies between the DD and DT spectra are a reliable indicator of residual motion at stagnation. The simulations are used to examine the relationship between neutron scattering and areal density (ρR). Three measures of areal density are simulated: downscattered neutron ratio, attenuated primary neutron yield and nT backscatter edge. Each of these diagnoses the magnitude and anisotropy of the ρR with varying success, with accuracy decreasing for higher mode perturbations. Contributions to the neutron energy spectra from T +T reactions, secondary DT reactions and deuteron break-up are also evaluated.

  13. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, J.W.K.

    1987-10-14

    Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

  14. Measuring spatial distributions of nuclear burn in ICF implosions at OMEGA and the NIF using proton emission imaging

    NASA Astrophysics Data System (ADS)

    Seguin, Fredrick; Rinderknecht, H. G.; Zylstra, A.; Sio, H.; Frenje, J.; Li, C. K.; Petrasso, R.; Rosenberg, M.; Marshall, F. J.; Sangster, T. C.; McKenty, P.; Craxton, S.; Rygg, J. R.; Le Pape, S.; Smalyuk, V.; Amendt, P. A.; Wilks, S. C.; MacKinnon, A.; Hoffman, N. M.

    2015-11-01

    Fusion reactions in ICF implosions of D3He-filled capsules produce 14.7-MeV D3He protons and 3-MeV DD protons. Spatial distributions of the D3He and DD reactions are studied with a penumbral imaging camera that utilizes a CR-39-based imaging detector to detect the protons. Up to three orthogonal cameras have been used simultaneously at OMEGA to study the 3-D structure of asymmetric implosions, and two orthogonal cameras have now been used to study an exploding-pusher implosion at the NIF. Recent data from OMEGA and from the NIF will be shown. This work was supported in part by NLUF, US DOE, and LLE.

  15. Measurement of Hydrodynamic Growth near Peak Velocity in an Inertial Confinement Fusion Capsule Implosion using a Self-Radiography Technique

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; MacPhee, A. G.; Scott, H. A.; Robey, H. F.; Landen, O. L.; Barrios, M. A.; Regan, S. P.; Schneider, M. B.; Hoppe, M.; Kohut, T.; Holunga, D.; Walters, C.; Haid, B.; Dayton, M.

    2016-07-01

    First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ =140 μ m , sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ˜7000 × . Measurements were made at convergences of ˜5 to ˜10 × at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both lines of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ˜2 × between the waist and the pole, showing asymmetry in the measured growth factors. These new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.

  16. Measurement of hydrodynamic growth near peak velocity in an inertial confinement fusion capsule implosion using a self-radiography technique

    DOE PAGES

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; ...

    2016-07-11

    First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ = 140 μm, sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ~7000×. Measurements were made at convergences of ~5 to ~10× at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both linesmore » of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ~2× between the waist and the pole, showing asymmetry in the measured growth factors. As a result, these new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.« less

  17. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-08-02

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  18. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-01-01

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  19. Influence and measurement of mass ablation in ICF implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, B K; Hicks, D; Velsko, C

    2007-09-05

    Point design ignition capsules designed for the National Ignition Facility (NIF) currently use an x-ray-driven Be(Cu) ablator to compress the DT fuel. Ignition specifications require that the mass of unablated Be(Cu), called residual mass, be known to within 1% of the initial ablator mass when the fuel reaches peak velocity. The specifications also require that the implosion bang time, a surrogate measurement for implosion velocity, be known to +/- 50 ps RMS. These specifications guard against several capsule failure modes associated with low implosion velocity or low residual mass. Experiments designed to measure and to tune experimentally the amount ofmore » residual mass are being developed as part of the National Ignition Campaign (NIC). Tuning adjustments of the residual mass and peak velocity can be achieved using capsule and laser parameters. We currently plan to measure the residual mass using streaked radiographic imaging of surrogate tuning capsules. Alternative techniques to measure residual mass using activated Cu debris collection and proton spectrometry have also been developed. These developing techniques, together with bang time measurements, will allow us to tune ignition capsules to meet NIC specs.« less

  20. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, Brian M., E-mail: bmhaines@lanl.gov

    2015-08-15

    In this paper, we perform a series of high-resolution 3D simulations of an OMEGA-type inertial confinement fusion (ICF) capsule implosion with varying levels of initial long-wavelength asymmetries in order to establish the physical energy loss mechanism for observed yield degradation due to long-wavelength asymmetries in symcap (gas-filled capsule) implosions. These simulations demonstrate that, as the magnitude of the initial asymmetries is increased, shell kinetic energy is increasingly retained in the shell instead of being converted to fuel internal energy. This is caused by the displacement of fuel mass away from and shell material into the center of the implosion duemore » to complex vortical flows seeded by the long-wavelength asymmetries. These flows are not fully turbulent, but demonstrate mode coupling through non-linear instability development during shell stagnation and late-time shock interactions with the shell interface. We quantify this effect by defining a separation lengthscale between the fuel mass and internal energy and show that this is correlated with yield degradation. The yield degradation shows an exponential sensitivity to the RMS magnitude of the long-wavelength asymmetries. This strong dependence may explain the lack of repeatability frequently observed in OMEGA ICF experiments. In contrast to previously reported mechanisms for yield degradation due to turbulent instability growth, yield degradation is not correlated with mixing between shell and fuel material. Indeed, an integrated measure of mixing decreases with increasing initial asymmetry magnitude due to delayed shock interactions caused by growth of the long-wavelength asymmetries without a corresponding delay in disassembly.« less

  1. Comparison of high-density carbon implosions in unlined uranium versus gold hohlraums

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Meezan, Nathan; Tommasini, Riccardo; Khan, Shahab; MacKinnon, Andrew; Berzak Hopkins, Laura; Divol, Laurent; Lepape, Sebastien; Moore, Alastair; Schneider, Marilyn; Pak, Arthur; Nikroo, Abbas; Landen, Otto

    2016-10-01

    In Inertial Confinement Fusion (ICF) implosions, laser energy is converted to x-ray radiation in hohlraums with High-Z walls. At radiation temperatures near 300 eV relevant for ICF experiments, the radiative losses in heating the wall are lower for U than for Au hohlraums. Furthermore, the intensity of the ``M-band'' x-rays with photon energies h ν >1.8 keV is lower for uranium, allowing for reduced capsule dopant concentrations employed to minimize inner ablator preheat and hence keep favorable fuel/ablator interface Atwood numbers. This in turn improves the ablator rocket efficiency and reduces the risk of polluting the hot-spot with emissive dopant material. The first uranium vacuum hohlraum experiments on the National Ignition Facility (NIF) with undoped high-density carbon (HDC, or diamond) capsules have demonstrated 30% lower ``M-band'' intensity relative to Au, resulting in lower inflight ablator thickness due to reduced preheat. In addition, fusion neutron yields are 2x higher in U than in Au hohlraums for D2-gas filled capsule implosions at ICF relevant velocities of 380 +/-20 km/s. These results have led the NIF ICF implosions to routinely employ U hohlraums. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Time-resolved Measurements of ICF Capsule Ablator Properties by Streaked X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Hicks, Damien

    2008-11-01

    Determining the capsule ablator thickness and peak laser or x-ray drive pressure required to optimize fuel compression is a critical part of ensuring ICF ignition on the NIF. If too little ablator is burned off, the implosion velocity will be too low for adequate final compression; if too much ablator is burned off, the fuel will be preheated or the shell will be broken up by growth of hydrodynamic instabilities, again compromising compression. Avoiding such failure modes requires having an accurate, in-flight measure of the implosion velocity, areal density, and remaining mass of the ablator near peak velocity. We present a new technique which achieves simultaneous time-resolved measurements of all these parameters in a single, area-backlit, x-ray streaked radiograph. This is accomplished by tomographic inversion of the radiograph to determine the radial density profile at each time step; scalar quantities such as the average position, areal density, and mass of the ablator can then be calculated by taking moments of this density profile. Details of the successful demonstration of this technique using backlit Cu-doped Be capsule implosions at the Omega facility will be presented. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and in collaboration with Brian Spears, David Braun, Peter Celliers, Gilbert Collins, and Otto Landen at LLNL and Rick Olson at SNL.

  3. Detection and use of HT and DT gamma rays to diagnose mix in ICF capsules

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Kim, Y. H.; Herrmann, H. W.; McEvoy, A. M.; Zylstra, A.; Leatherland, A.; Gales, S.

    2015-11-01

    Recent results from Omega capsule implosion experiments containing HT-rich gas mixtures indicate that the 19.8 MeV gamma ray from aneutronic HT fusion can be measured using existing time-resolved gas Cherenkov detectors (GCDs). Additional dedicated experiments to characterize HT- γ emission in ICF experiments already have been planned. The concurrent temporally-resolved measurement of both HT- γs and DT- γs opens the door for in-depth exploration of interface mix in gas-filled ICF capsules. We propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method uses a CD-lined plastic capsule filled with 50/50 HT gas and diagnosed using GCDs to temporally resolve both the HT ``clean'' and DT ``mix'' gamma ray burn histories. It will be shown that these burn history profiles are sensitive to the depth to which shell material mixes into the gas region. An experiment to observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion (λion ~Tion2 /Zion2 ρ) at the gas/shell interface. Since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also will be shown. This research supported by the US DOE/NNSA, performed in part at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  4. Understanding Yield Anomalies in ICF Implosions via Fully Kinetic Simulations

    NASA Astrophysics Data System (ADS)

    Taitano, William

    2017-10-01

    In the quest towards ICF ignition, plasma kinetic effects are among prime candidates for explaining some significant discrepancies between experimental observations and rad-hydro simulations. To assess their importance, high-fidelity fully kinetic simulations of ICF capsule implosions are needed. Owing to the extremely multi-scale nature of the problem, kinetic codes have to overcome nontrivial numerical and algorithmic challenges, and very few options are currently available. Here, we present resolutions of some long-standing yield discrepancy conundrums using a novel, LANL-developed, 1D-2V Vlasov-Fokker-Planck code iFP. iFP possesses an unprecedented fidelity and features fully implicit time-stepping, exact mass, momentum, and energy conservation, and optimal grid adaptation in phase space, all of which are critically important for ensuring long-time numerical accuracy of the implosion simulations. Specifically, we concentrate on several anomalous yield degradation instances observed in Omega campaigns, with the so-called ``Rygg effect'', or an anomalous yield scaling with the fuel composition, being a prime example. Understanding the physical mechanisms responsible for such degradations in non-ignition-grade Omega experiments is of great interest, as such experiments are often used for platform and diagnostic development, which are then used in ignition-grade experiments on NIF. In the case of Rygg's experiments, effects of a kinetic stratification of fuel ions on the yield have been previously proposed as the anomaly explanation, studied with a kinetic code FPION, and found unimportant. We have revisited this issue with iFP and obtained excellent yield-over-clean agreement with the original Rygg results, and several subsequent experiments. This validates iFP and confirms that the kinetic fuel stratification is indeed at the root of the observed yield degradation. This work was sponsored by the Metropolis Postdoctoral Fellowship, LDRD office, Thermonuclear Burn

  5. Kinetic simulation of hydrodynamic equivalent capsule implosions

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Le, Ari; Schmitt, Mark; Herrmann, Hans

    2016-10-01

    We have carried out simulations of direct-drive hydrodynamic equivalent capsule implosion experiments conducted on Omega laser facility at the Laboratory of Laser Energetics of the University of Rochester. The capsules had a glass shell (SiO2) 4.87 μm with an inner diameter of 1086 μm. One was filled with deuterium (D) and tritium (T) at 6.635 and 2.475 atmospheric pressure respectively. The other capsule with D, T, and He-3 at 2.475, 2.475, and 5.55 atmospheric pressure respectively. The capsules were imploded with 60 laser beams with a square pulse length of 0.6ns of total energy of 15.6 kJ. One-dimensional radiation hydrodynamic calculations with HYDRA and kinetic particle/hybrid simulations with LSP are carried out for the post-shot analysis. HYDRA outputs at 0.6ns are linked to LSP, in which the electrons are treated as a fluid while all the ion dynamics is simulated by the standard particle-in-cell technique. Additionally, simulations with the new photon package in LSP are initiated at the beginning of the implosion to include the implosion phase of the capsule. The simulation results of density, temperature, and velocity profiles of the electrons, D, T, He-3, and SiO2species are compared with HYDRA. Detail comparisons among the kinetic simulations, rad-hydro simulations, and experimental results of neutron yield, yield ratio, fusion burn histories, and shell convergence will be presented to assess plasma kinetic effects. Work performed under the auspices of the US DOE by the Los Alamos National Laboratory under Contract No. W7405-ENG-36.

  6. Dynamic Symmetry of Indirectly Driven ICF Capsules on NIF

    NASA Astrophysics Data System (ADS)

    Town, R. P. J.

    2013-10-01

    In order to achieve ignition it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the imploding capsule, hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine the sources of asymmetry and to measure the symmetry throughout the implosion has been developed and executed on the NIF. For the first time on NIF, two-dimensional radiographs of the capsule during its implosion phase have been measured to infer the symmetry of the radiation drive. Time dependent equatorial symmetry has been measured of gas-filled capsules and capsules with cryogenic DT layers. These measurements have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. The technique is being extended to study azimuthal symmetry by imaging along the hohlraum axis. We have also expanded our shock timing measurements by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing a measurement of asymmetries up to mode 4 in both the equatorial and azimuthal planes. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography using a wire-backlighter. In addition to x-ray diagnostics, a series of neutron and proton measurements of the low-mode areal density of the fuel at peak compression and at shock-flash time have been made. This talk will discuss the new imaging techniques, the results, and the analysis of the experiments done to date and their implication for ignition on NIF. The sensitivity of the in-flight and final implosion symmetry to imposed changes will be presented and compared to model predictions. This work performed under the

  7. On krypton-doped capsule implosion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Ma, T.; Nora, R.; Barrios, M. A.; Scott, H. A.; Schneider, M. B.; Berzak Hopkins, L.; Casey, D. T.; Hammel, B. A.; Jarrott, L. C.; Landen, O. L.; Patel, P. K.; Rosenberg, M. J.; Spears, B. K.

    2017-07-01

    This paper presents the spectroscopic aspects of using Krypton as a dopant in NIF capsule implosions through simulation studies and the first set of NIF experiments. Using a combination of 2D hohlraum and 1D capsule simulations with comprehensive spectroscopic modeling, the calculations focused on the effect of dopant concentration on the implosion, and the impact of gradients in the electron density and temperature to the Kr line features and plasma opacity. Experimental data were obtained from three NIF Kr-dopant experiments, performed with varying Kr dopant concentrations between 0.01% and 0.03%. The implosion performance, hotspot images, and detailed Kr spectral analysis are summarized relative to the predictions. Data show that fuel-dopant spectroscopy can serve as a powerful and viable diagnostic for inertial confinement fusion implosions.

  8. Spectroscopic diagnostics of NIF ICF implosions using line ratios of Kr dopant in the ignition capsule

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Ouart, Nicholas; Giuiani, John; Clark, Robert; Schneider, Marilyn; Scott, Howard; Chen, Hui; Ma, Tammy

    2017-10-01

    X ray spectroscopy is used on the NIF to diagnose the plasma conditions in the ignition target in indirect drive ICF implosions. A platform is being developed at NIF where small traces of krypton are used as a dopant to the fuel gas for spectroscopic diagnostics using krypton line emissions. The fraction of krypton dopant was varied in the experiments and was selected so as not to perturb the implosion. Our goal is to use X-ray spectroscopy of dopant line ratios produced by the hot core that can provide a precise measurement of electron temperature. Simulations of the krypton spectra using a 1 in 104 atomic fraction of krypton in direct-drive exploding pusher with a range of electron temperatures and densities show discrepancies when different atomic models are used. We use our non-LTE atomic model with a detailed fine-structure level atomic structure and collisional-radiative rates to investigate the krypton spectra at the same conditions. Synthetic spectra are generated with a detailed multi-frequency radiation transport scheme from the emission regions of interest to analyze the experimental data with 0.02% Kr concentration and compare and contrast with the existing simulations at LLNL. Work supported by DOE/NNSA; Part of this work was also done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  9. Data driven models of the performance and repeatability of NIF high foot implosions

    NASA Astrophysics Data System (ADS)

    Gaffney, Jim; Casey, Dan; Callahan, Debbie; Hartouni, Ed; Ma, Tammy; Spears, Brian

    2015-11-01

    Recent high foot (HF) inertial confinement fusion (ICF) experiments performed at the national ignition facility (NIF) have consisted of enough laser shots that a data-driven analysis of capsule performance is feasible. In this work we use 20-30 individual implosions of similar design, spanning laser drive energies from 1.2 to 1.8 MJ, to quantify our current understanding of the behavior of HF ICF implosions. We develop a probabilistic model for the projected performance of a given implosion and use it to quantify uncertainties in predicted performance including shot-shot variations and observation uncertainties. We investigate the statistical significance of the observed performance differences between different laser pulse shapes, ablator materials, and capsule designs. Finally, using a cross-validation technique, we demonstrate that 5-10 repeated shots of a similar design are required before real trends in the data can be distinguished from shot-shot variations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-674957.

  10. Asymetrically driven implosion experiment on the Laser MégaJoule

    NASA Astrophysics Data System (ADS)

    Philippe, Franck; Seytor, Patricia; Tassin, Veronique; Rosch, Rudolf; Villette, Bruno

    2017-10-01

    We report on the results of the first implosion experiments performed on the Laser MégaJoule (LMJ) facility. Their main purpose was to study implosion with large polar asymmetries of incident radiative flux on a capsule, while preserving azimuthal symmetry, in the context of ICF. In these experiments, one quad of LMJ is focused axially on a gold shield inside a hohlraum. The shield effectively divides the hohlraum in two compartments, and a capsule placed in the second compartment is indirectly driven by the x-ray flux generated in the first one. The subsequent asymmetric implosion is backlit by an x-ray source generated by another quad of LMJ and imaged with an x-ray microscope coupled to a framing camera. Time-gated x-ray radiographs of the imploding capsule and diode array measurements of the hohlraum x-ray emission are found to be in good agreement with FCI2 radiative hydrodynamics simulations.

  11. Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O. A.; Berzak-Hopkins, L. F.; Callahan, D. A.; Casey, D. T.; Clark, D.; Dewald, E. L.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Kozioziemski, B. J.; Kritcher, A. L.; Ma, T.; Nikroo, A.; Pak, A. E.; Parham, T. G.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Salmonson, J. D.; Springer, P. T.; Weber, C. R.; Zimmerman, G. B.; Kline, J. L.

    2016-05-01

    Encouraging results have been obtained using a strong first shock during the implosion of carbon-based ablator ignition capsules. These “high-foot” implosion results show that capsule performance deviates from 1D expectations as laser power and energy are increased. A possible cause of this deviation is the disruption of the hot spot by jets originating in the capsule fill tube. Nominally, a 10 μm outside diameter glass (SiO2) fill tube is used in these implosions. Simulations indicate that a thin coating of Au on this glass tube may lessen the hotspot disruption. These results and other mitigation strategies will be presented.

  12. Metal Alloy ICF Capsules Created by Electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.

    Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less

  13. Metal Alloy ICF Capsules Created by Electrodeposition

    DOE PAGES

    Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.

    2017-12-04

    Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less

  14. Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.

    2017-10-01

    The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.

  15. Positron Radiography of Ignition-Relevant ICF Capsules

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Chen, Hui; Field, John; Landen, Nino; Strozzi, David

    2017-10-01

    X-ray and neutron radiography are currently used to infer residual ICF shell and fuel asymmetries and areal density non-uniformities near and at peak compression that can impede ignition. Charged particles offer an alternative probe source that, in principle, are capable of radiographing the shell shape and areal density at arbitrary times, even in the presence of large x-ray self-emission. Laser-generated positrons are evaluated as a source to radiograph ICF capsules where current ultraintense laser facilities are capable of producing 2 ×1012 relativistic positrons in a narrow energy bandwidth and short duration. Monte Carlo simulations suggest that both the areal density and shell radius can be reconstructed for ignition-relevant capsules conditions between 0.002-2 g/cm2, and that this technique might be better suited to direct-drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD Program under project tracking code 17-ERD-010.

  16. Wetted foam liquid fuel ICF target experiments

    DOE PAGES

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; ...

    2016-05-26

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR~15), but will becomemore » less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.« less

  17. ARES Modeling of High-foot Implosions (NNSA Milestone #5466)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurricane, O. A.

    ARES “capsule only” simulations demonstrated results of applying an ASC code to a suite of high-foot ICF implosion experiments. While a capability to apply an asymmetric FDS drive to the capsule-only model using add-on Python routines exists, it was not exercised here. The ARES simulation results resemble the results from HYDRA simulations documented in A. Kritcher, et al., Phys. Plasmas, 23, 052709 (2016); namely, 1D simulation and data are in reasonable agreement for the lowest velocity experiments, but diverge from each other at higher velocities.

  18. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.

    Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ~1 mg/cc -1), high-temperature (T i ~keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers (N K ≡ λ ii/R). Anomalous trends in nuclear yields and burn-averaged ion temperatures in implosions with N K > 0.5, which have been interpreted as signaturesmore » of ion species separation and ion thermal decoupling, are found not to be consistent with single-species ion kinetic effects alone. Experimentally inferred Knudsen numbers predict an opposite yield trend to those observed, confirming the dominance of multi-species physics in these experiments. In contrast, implosions with N K ~ 0.01 follow the expected yield trend, suggesting single-species kinetic effects are dominant. In conclusion, the impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.« less

  19. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF

    DOE PAGES

    Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.; ...

    2017-04-20

    Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ~1 mg/cc -1), high-temperature (T i ~keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers (N K ≡ λ ii/R). Anomalous trends in nuclear yields and burn-averaged ion temperatures in implosions with N K > 0.5, which have been interpreted as signaturesmore » of ion species separation and ion thermal decoupling, are found not to be consistent with single-species ion kinetic effects alone. Experimentally inferred Knudsen numbers predict an opposite yield trend to those observed, confirming the dominance of multi-species physics in these experiments. In contrast, implosions with N K ~ 0.01 follow the expected yield trend, suggesting single-species kinetic effects are dominant. In conclusion, the impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.« less

  20. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE PAGES

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; ...

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightlymore » oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.« less

  1. Beryllium implosion experiments at high case-to-capsule ratio on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Zylstra, Alex; Yi, Austin; Kline, John; Kyrala, George; Loomis, Eric; Perry, Ted; Shah, Rahul; Batha, Steve; MacLaren, Steve; Ralph, Joe; Salmonson, Jay; Masse, Laurent; Nikroo, Abbas; Stadermann, Michael; Callahan, Debbie; Hurricane, Omar; Rice, Neal; Huang, Haibo; Kong, Casey

    2017-10-01

    Using beryllium as an ablator material has several potential advantages for inertial fusion because of its low opacity and thus higher ablation rate. This could enable novel designs taking advantage of the reduced ablation-front growth rate, or operating at lower radiation temperature. To investigate the integrated performance of beryllium implosions, we conducted a tuning campaign leading into DT layered implosions using a 900um radius capsule in a 6.72mm diameter hohlraum (case-to-capsule ratio CCR=3.7); the large CCR enables direct study of the 1-D implosion performance. The tuning campaign shots demonstrate excellent control over the shock timing and implosion symmetry at this CCR. Performance data from the DT experiments will also be discussed. This work was performed under the auspices of the U.S. DoE by LANL under contract DE-AC52-06NA52396.

  2. Techniques for Enhancing Implosion Performance on High-Foot Ignition Capsules on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O.; Berzak Hopkins, L. F.; Callahan, D. A.; Clark, D.; Haan, S. W.; Hinkel, D. E.; Ma, T.; Nikroo, A.; Pak, A. E.; Park, H. S.; Salmonson, J. D.; Weber, C. R.

    2016-10-01

    Two options that have the potential to improve implosion performance in the High-Foot series of ignition capsules on NIF will be presented. The first option explores changing the shape of the x-ray drive to include a 4th and even a 5th shock in the implosion. According to simulations, these extra shocks improve the configuration of the assembled fuel and lead to improved confinement and performance. A ``ramp compression'' between the foot of the drive and the main pulse is also investigated. The second option studies the effect of increasing the Si dopant in a thin-shell capsule. NIF shot N150211 produced relatively high fusion yield (7.6E15 neutrons) but may have suffered from shell burn through. Increasing the Si dopant may delay this burn through yet preserve high implosion velocity. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  3. High performance capsule implosions on the OMEGA Laser facility with rugby hohlraumsa)

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Amendt, P.; Park, H.-S.; Town, R. P. J.; Milovich, J. L.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Sorce, C.; Strozzi, D. J.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Liberatore, S.; Monteil, M.-C.; Séguin, F.; Rosenberg, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Stoeckl, C.; Nikroo, A.; Giraldez, E.

    2010-05-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly driven capsule implosions. This concept has recently been tested in a series of shots on the OMEGA laser facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. In this paper, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. The rugby hohlraums demonstrated 18% more x-ray drive energy as compared with the cylinders, and the high-performance design of these implosions (both cylinder and rugby) also provided ≈20× more deuterium (DD) neutrons than any previous indirectly driven campaign on OMEGA and ≈3× more than ever achieved on NOVA [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] implosions driven with nearly twice the laser energy. This increase in performance enables, for the first time, a measurement of the neutron burn history and imaging of the neutron core shapes in an indirectly driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D H3e rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in very good agreement. The design techniques employed in this campaign, e.g., smaller laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility [J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004)].

  4. High Performance Capsule Implosions on the Omega Laser Facility with Rugby Hohlraums

    NASA Astrophysics Data System (ADS)

    Robey, Harry F.

    2009-11-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly-driven capsule implosions [1]. This concept has recently been tested in a series of shots on the OMEGA laser facility at the Laboratory for Laser Energetics at the University of Rochester. In this talk, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. Not only did the rugby hohlraums demonstrate 18% more x-ray drive energy as compared with the cylinders, but the high-performance design of these implosions (both cylinder and rugby) also provided 20X more DD neutrons than any previous indirectly-driven campaign on Omega (and 3X more than ever achieved on Nova implosions driven with nearly twice the laser energy). This increase in performance enables, for the first time, a measurement of the neutron burn history of an indirectly-driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D^3He rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in excellent agreement. The design techniques employed in this campaign, e.g., smaller NIF-like laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility. [4pt] [1] P. Amendt, C. Cerjan, D. E. Hinkel, J. L. Milovich, H.-S. Park, and H. F. Robey, ``Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement'', Phys. Plasmas 15, 012702 (2008).

  5. Capsule physics comparison of different ablators for NIF implosion designs

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Kritcher, Andrea; Yi, Austin; Zylstra, Alex; Haan, Steven; Ralph, Joseph; Weber, Christopher

    2017-10-01

    Indirect drive implosion experiments on the Naitonal Ignition Facility (NIF) have now tested three different ablator materials: glow discharge polymer (GDP) plastic, high density carbon (HDC), and beryllium. How do these different ablator choices compare in current and future implosion experiments on NIF? What are the relative advantages and disadvantages of each? This talk compares these different ablator options in capsule-only simulations of current NIF experiments and proposed future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Using absolute x-ray spectral measurements to infer stagnation conditions in ICF implosions

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Benedetti, L. R.; Cerjan, C.; Clark, D. S.; Hurricane, O. A.; Izumi, N.; Jarrott, L. C.; Khan, S.; Kritcher, A. L.; Ma, T.; Macphee, A. G.; Landen, O.; Spears, B. K.; Springer, P. T.

    2016-10-01

    Measurements of the continuum x-ray spectrum emitted from the hot-spot of an ICF implosion can be used to infer a number thermodynamic properties at stagnation including temperature, pressure, and hot-spot mix. In deuterium-tritium (DT) layered implosion experiments on the National Ignition Facility (NIF) we field a number of x-ray diagnostics that provide spatial, temporal, and spectrally-resolved measurements of the radiated x-ray emission. We report on analysis of these measurements using a 1-D hot-spot model to infer thermodynamic properties at stagnation. We compare these to similar properties that can be derived from DT fusion neutron measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Isochoric Implosions for Fast Ignition

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Tabak, Max

    2006-10-01

    Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hotspot ignition counterpart. These gain models, however, all assume nearly uniform-density fuel assemblies. By contrast, typical ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hotspot. To realize fully the advantages of FI, then, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hotspots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters, i.e., accessible peak pressures, shell aspect ratios, etc. An implosion scheme is presented which meets all of these requirements, suggesting the possibility of genuinely isochoric implosions for FI.

  8. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    DOE PAGES

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.; ...

    2016-07-22

    Here, current indirect drive implosion experiments on the National Ignition Facility (NIF) are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries inmore » two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.« less

  9. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.

    2016-07-15

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy ofmore » capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.« less

  10. 2D Implosion Simulations with a Kinetic Particle Code

    NASA Astrophysics Data System (ADS)

    Sagert, Irina; Even, Wesley; Strother, Terrance

    2017-10-01

    Many problems in laboratory and plasma physics are subject to flows that move between the continuum and the kinetic regime. We discuss two-dimensional (2D) implosion simulations that were performed using a Monte Carlo kinetic particle code. The application of kinetic transport theory is motivated, in part, by the occurrence of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions, which cannot be fully captured by hydrodynamics simulations. Kinetic methods, on the other hand, are able to describe both, continuum and rarefied flows. We perform simple 2D disk implosion simulations using one particle species and compare the results to simulations with the hydrodynamics code RAGE. The impact of the particle mean-free-path on the implosion is also explored. In a second study, we focus on the formation of fluid instabilities from induced perturbations. I.S. acknowledges support through the Director's fellowship from Los Alamos National Laboratory. This research used resources provided by the LANL Institutional Computing Program.

  11. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.

    This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less

  12. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    DOE PAGES

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.; ...

    2017-03-21

    This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less

  13. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment

    DOE PAGES

    Le, Ari Yitzchak; Kwan, Thomas J. T.; Schmitt, Mark J.; ...

    2016-10-24

    The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Finally, diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.

  14. Fast-Ion Spectrometry of ICF Implosions and Laser-Foil Experiments at the Omega and MTW Laser Facilities

    NASA Astrophysics Data System (ADS)

    Sinenian, Nareg

    Fast ions generated from laser-plasma interactions (LPI) have been used to study inertial confinement fusion (ICF) implosions and laser-foil interactions. LPI, which vary in nature depending on the wavelength and intensity of the driver, generate hot electrons with temperatures ranging from tens to thousands of kilo-electron-volts. These electrons, which accelerate the ions measured in this work, can be either detrimental or essential to implosion performance depending on the ICF scheme employed. In direct-drive hot-spot ignition, hot electrons can preheat the fuel and raise the adiabat, potentially degrading compression in the implosion. The amount of preheat depends on the hot-electron source characteristics and the time duration over which electrons can deposit energy into the fuel. This time duration is prescribed by the evolution of a sheath that surrounds the implosion and traps electrons. Fast-ion measurements have been used to develop a circuit model that describes the time decay of the sheath voltage for typical OMEGA implosions. In the context of electron fast ignition, the produced fast ions are considered a loss channel that has been characterized for the first time. These ions have also been used as a diagnostic tool to infer the temperature of the hot electrons in fast-ignition experiments. It has also been shown that the hot-electron temperature scales with laser intensity as expected, but is enhanced by a factor of 2-3. This enhancement is possibly due to relativistic effects and leads to poor implosion performance. Finally, fast-ion generation by ultra-intense lasers has also been studied using planar targets. The mean and maximum energies of protons and heavy ions has been measured, and it has been shown that a two-temperature hot-electron distribution affects the energies of heavy ions and protons. This work is important for advanced fusion concepts that utilize ion beams and also has applications in medicine. (Copies available exclusively from

  15. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Weber, Christopher; Smalyuk, Vladimir; Robey, Harry; Kritcher, Andrea; Milovich, Jose; Salmonson, Jay

    2016-10-01

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or ``shimmed,'' so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N. B., E-mail: meezan1@llnl.gov; Hopkins, L. F. Berzak; Pape, S. Le

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape.more » Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.« less

  17. Measurement of inflight shell areal density perturbations in NIF capsule implosions near peak velocity

    NASA Astrophysics Data System (ADS)

    Hammel, B. A.; Pickworth, L.; Smalyuk, V.; Macphee, A.; Scott, H. A.; Robey, H.; Barrios, M.; Regan, S. P.

    2015-11-01

    Quantitative measurements of shell-RhoR perturbations in capsules near peak implosion velocity (PV) are challenging. An external backlighter samples both sides of the shell, unless a re-entrant cone is used (potentially perturbing implosion). Emission from the hot core, after shock-stagnation and prior to PV, has been used as a self-backlighter, providing a means to sample one side of the capsule. Adding high-Z gas (~ 1% Ar) to the capsule fill in Symcaps (4He), has produced a continuum backlighter with significant increase in emission at photon energies ~ 8 keV over nominal fills. From images of the transmitted self-emission, above and below the K-edge of an internally doped Cu layer, we infer the growth at PV of imposed perturbations (100 nm amplitude, mode 40). Prepared by LLNL under Contract DE-AC52-07NA27344.

  18. Wetted Foam Liquid DT Layer ICF Experiments at the NIF

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.

    2016-10-01

    A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12implosions will have understandable performance - providing a sound basis from which to determine the requirements for ICF ignition. This work was performed under the auspices of the U. S. DOE by LANL under contract DE-AC52-06NA25396.

  19. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Frenje, J. A.; Glenzer, S. H.; Hamza, A.; Hammel, B. A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kilkenny, J. D.; Kirkwood, R. K.; Kline, J. L.; Kyrala, G. A.; Marinak, M. M.; Meezan, N.; Meyerhofer, D. D.; Michel, P.; Munro, D. H.; Olson, R. E.; Nikroo, A.; Regan, S. P.; Suter, L. J.; Thomas, C. A.; Wilson, D. C.

    2011-05-01

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

  20. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landen, O. L.; Edwards, J.; Haan, S. W.

    2011-05-15

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analyticmore » models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.« less

  1. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.

    Hydrodynamic instability growth of the capsule support membranes (or “tents”) and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF). In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new “sub-scale” version of the existing x-ray radiography platform wasmore » developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ~2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ~3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. In conclusion, the effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.« less

  2. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

    DOE PAGES

    Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.; ...

    2017-10-20

    Hydrodynamic instability growth of the capsule support membranes (or “tents”) and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF). In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new “sub-scale” version of the existing x-ray radiography platform wasmore » developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ~2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ~3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. In conclusion, the effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.« less

  3. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.; Milovich, J.; Casey, D. T.; Weber, C. R.; Robey, H. F.; Chen, K.-C.; Clark, D. S.; Crippen, J.; Farrell, M.; Felker, S.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Stadermann, M.; Hsing, W. W.; Kroll, J. J.; Landen, O. L.; Nikroo, A.; Pickworth, L.; Rice, N.

    2017-10-01

    Hydrodynamic instability growth of the capsule support membranes (or "tents") and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF) [Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new "sub-scale" version of the existing x-ray radiography platform was developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ˜2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ˜3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. The effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.

  4. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions

    DOE PAGES

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; ...

    2015-10-14

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. Thus, with first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ = 0.1 to 100 g/cm 3 and T = 1,000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic targetmore » implosions on OMEGA using the FPEOS table of CH have predicted ~5% reduction in implosion velocity and ~30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ~10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered lights from ICF implosions.« less

  5. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions.

    PubMed

    Hu, S X; Collins, L A; Goncharov, V N; Kress, J D; McCrory, R L; Skupsky, S

    2015-10-01

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. With first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ=0.1to100g/cm(3) and T=1000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosions on OMEGA using the FPEOS table of CH have predicted ∼30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ∼5% reduction in implosion velocity that is caused by the ∼10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered light from ICF implosions.

  6. Simulation of alternate hohlraum shapes for improved inner beam propagation in indirectly-driven ICF implosions

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L. F.

    2017-10-01

    Recent indirectly-driven ICF experiments performed on the National Ignition Facility have shown that the propagation of the inner beam cones is impeded late in the laser pulse by the growth of a gold bubble, which is initiated at the location where the outer beams hit the hohlraum wall and which expands radially inward into the hohlraum as the implosion progresses. Late in time, this gold bubble intercepts a significant portion of the inner beams reducing the available energy reaching the waist of the hohlraum and affecting the implosion symmetry. Integrated hohlraum simulations of alternate hohlraum shapes using HYDRA are performed to explore options for reducing the impact of the gold bubble on inner beam propagation. The simulations are based on recent NIF implosions using High-Density Carbon (HDC) ablators, which have shown good performance, but which could benefit from improved inner beam propagation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  7. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF.

    PubMed

    Ma, T; Chen, H; Patel, P K; Schneider, M B; Barrios, M A; Casey, D T; Chung, H-K; Hammel, B A; Berzak Hopkins, L F; Jarrott, L C; Khan, S F; Lahmann, B; Nora, R; Rosenberg, M J; Pak, A; Regan, S P; Scott, H A; Sio, H; Spears, B K; Weber, C R

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  8. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    NASA Astrophysics Data System (ADS)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M. B.; Barrios, M. A.; Casey, D. T.; Chung, H.-K.; Hammel, B. A.; Berzak Hopkins, L. F.; Jarrott, L. C.; Khan, S. F.; Lahmann, B.; Nora, R.; Rosenberg, M. J.; Pak, A.; Regan, S. P.; Scott, H. A.; Sio, H.; Spears, B. K.; Weber, C. R.

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  9. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    DOE PAGES

    Ma, T.; Chen, H.; Patel, P. K.; ...

    2016-08-18

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. We describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.Published by AIP Publishing

  10. Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating

    NASA Astrophysics Data System (ADS)

    Taitano, W. T.; Simakov, A. N.; Chacón, L.; Keenan, B.

    2018-05-01

    Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICF capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original Rygg experiments [J. R. Rygg et al., Phys. Plasmas 13, 052702 (2006)]. We employ the same computational setup as in O. Larroche [Phys. Plasmas 19, 122706 (2012)], which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the

  11. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, R. E.; Leeper, R. J.

    2013-09-27

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ~34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid”more » (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.« less

  12. Magnetized HDC ignition capsules for yield enhancement and implosion magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Zimmerman, G.; Ho, D.; Perkins, J.; Logan, G.; Hawkins, S.; Rhodes, M.

    2014-10-01

    Imposing a magnetic field on capsules can turn capsules that fail, because of low 1-D margin, into igniting capsules that give yield in the MegaJoule range. The imposed magnetic field can be amplified by up to O(103) as it is being compressed by the imploding shell, e.g. if the initial field is 50 T, then the field in the hot spot of the assembled configuration can reach >104 T. (We are currently designing hardware that can provide a field in the 50 T range inside NIF hohlraums.) With this highly compressed field strength, the gyro radius of alpha particles becomes smaller than the hot spot size. Consequently, the heating of the hot spot becomes more efficient. The imposed field can also prevent hot electrons in the holhraum from reaching the capsule. We choose capsules with high-density carbon (HDC) ablators for this study. HDC capsules have good 1-D performance and also have short pulses (10 ns or less), allowing the use of low gas-filled or near-vacuum hohlraums which provide high coupling efficiency. We describe a 2-D simulation of a 3-shock HDC capsule. We will show detailed magnetohydrodynamic evolution of the implosion. HDC capsules with 2-shock pulses have low margin because of their high adiabat, and it is difficult to achieve ignition in realistic 2-D simulations. The improvement in performance for 2-shock magnetized capsules will be presented. This work was supported by LLNL Laboratory Directed Research and Development LDRD 14-ER-028 under Contract DE-AC52-07NA27344.

  13. Modeling ICF With RAGE, BHR, And The New Laser Package

    NASA Astrophysics Data System (ADS)

    Cliche, Dylan; Welser-Sherrill, Leslie; Haines, Brian; Mancini, Roberto

    2017-10-01

    Inertial Confinement Fusion (ICF) is one method used to obtain thermonuclear burn through the either direct or indirect ablation of a millimeter-scale capsule with several lasers. Although progress has been made in theory, experiment, and diagnostics, the community has yet to reach ignition. A way of investigating this is through the use of high performance computer simulations of the implosion. RAGE is an advanced 1D, 2D, and 3D radiation adaptive grid Eulerian code used to simulate hydrodynamics of a system. Due to the unstable nature of two unequal densities accelerating into one another, it is important to include a turbulence model. BHR is a turbulence model which uses Reynolds-averaged Navier-Stokes (RANS) equations to model the mixing that occurs between the shell and fusion fuel material. Until recently, it was still difficult to model direct drive experiments because there was no laser energy deposition model in RAGE. Recently, a new laser energy deposition model has been implemented using the same ray tracing method as the Mazinisin laser package used at the OMEGA laser facility at the Laboratory for Laser Energetics (LLE) in Rochester, New York. Using the new laser package along with BHR for mixing allows us to more accurately simulate ICF implosions and obtain spatially and temporally resolved information (e.g. position, temperature, density, and mix concentrations) to give insight into what is happening inside the implosion.

  14. Seeding of capsule instability growth by fill tubes and support rods for inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Macphee, Andrew; Casey, Daniel; Clark, Daniel; Field, John; Haan, Steven; Hammel, Bruce; Kroll, Jeremy; Landen, Otto; Martinez, David; Milovich, Jose; Nikroo, Abbas; Rice, Neal; Robey, Harry; Smalyuk, Vladimir; Stadermann, Michael; Weber, Christopher; Lawrence Livermore National Laboratory Collaboration; Atomics Collaboration, General

    2016-10-01

    Features associated with the target support tent and deuterium-tritium fuel fill tube and support rods can seed hydrodynamic instabilities leading to degraded performance for inertial confinement fusion (ICF) experiments at the National Ignition Facility. We performed in-flight radiography of ICF capsules in the vicinity of the capsule support tent and fill tube surrogates to investigate instability growth associated with these features. For both plastic and high density carbon ablators, the shadow of the 10 μm diameter glass fill-tube cast by the x-ray spots on the hohlraum wall were observed to imprint radial instabilities around the fill tube/capsule interface. Similarly, instability growth was observed for the shadow cast by 12 μm diameter silicon carbide capsule support rods mounted orthogonal to the fill tube as a tent alternative for a plastic ablator. The orientation of the shadows is consistent with raytracing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

    DOE PAGES

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; ...

    2016-04-01

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth & fuel adiabat, separately and controllably. Two principal conclusions are drawn from this study: 1) It is shown that an increase in laser picket energy reduces ablation-front instability growth in low-foot implosions resulting in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. 2.) It is shown that a decrease inmore » laser trough power reduces the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with no reduction in neutron yield. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less

  16. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    PubMed

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  17. Gas-filled Rugby hohlraum energetics and implosions experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, Alexis; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M. C.; Villette, B.; Reverdin, C.

    2010-11-01

    Recent experiments [1,2] have validated the x-ray drive enhancement provided by rugby-shaped hohlraums over cylinders in the indirect drive (ID) approach to inertial confinement fusion (ICF). This class of hohlraum is the baseline design for the Laser Mégajoule program, is also applicable to the National Ignition Facility and could therefore benefit ID Inertial Fusion Energy studies. We have carried out a serie of energetics and implosions experiments with OMEGA ``scale 1'' rugby hohlraums [1,2]. For empty hohlraums these experiments provide complementary measurements of backscattered light along 42 cone, as well as detailed drive history. In the case of gas-filled rugby hohlraums we have also study implosion performance (symmetry, yield, bangtime, hotspot spectra...) using a high contrast shaped pulse leading to a different implosion regime and for a range of capsule convergence ratios. These results will be compared with FCI2 hydrocodes calculations and future experimental campaigns will be suggested. [4pt] [1] F. Philippe et al., Phys. Rev. Lett. 104, 035004 (2010). [0pt] [2] H. Robey et al., Phys. Plasnas 17, 056313 (2010).

  18. Update on 2-D OMEGA Capsule Implosions

    NASA Astrophysics Data System (ADS)

    Bradley, Paul

    2017-10-01

    We have an upgraded laser energy deposition package in our AMR-Eulerian radiation-hydrodynamic code called RAGE. As part of our validation effort, we ran 2-D simulations for a series of OMEGA direct drive implosion capsules that have shell thickness ranging from 7.2 to 29.3 μm and different gas fills. These simulations include the effect of surface roughness, laser spot non-uniformity, the mounting stalk, and the glue spot. We examined the sensitivity of our simulated results to mesh resolution and mix model. Our simulated results compare well to the experimental yield, ion temperature, burn width, and x-ray size data. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy.

  19. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, R. E.; Leeper, R. J.

    2013-09-15

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ∼34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid”more » (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.« less

  20. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan

    2017-05-01

    Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has

  1. A New Theory of Mix in Omega Capsule Implosions

    NASA Astrophysics Data System (ADS)

    Knoll, Dana; Chacon, Luis; Rauenzahn, Rick; Simakov, Andrei; Taitano, William; Welser-Sherrill, Leslie

    2014-10-01

    We put forth a new mix model that relies on the development of a charge-separation electrostatic double-layer at the fuel-pusher interface early in the implosion of an Omega plastic ablator capsule. The model predicts a sizable pusher mix (several atom %) into the fuel. The expected magnitude of the double-layer field is consistent with recent radial electric field measurements in Omega plastic ablator implosions. Our theory relies on two distinct physics mechanisms. First, and prior to shock breakout, the formation of a double layer at the fuel-pusher interface due to fast preheat-driven ionization. The double-layer electric field structure accelerates pusher ions fairly deep into the fuel. Second, after the double-layer mix has occurred, the inward-directed fuel velocity and temperature gradients behind the converging shock transports these pusher ions inward. We first discuss the foundations of this new mix theory. Next, we discuss our interpretation of the radial electric field measurements on Omega implosions. Then we discuss the second mechanism that is responsible for transporting the pusher material, already mixed via the double-layer deep into the fuel, on the shock convergence time scale. Finally we make a connection to recent mix motivated experimental data on. This work conducted under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under Contract DE-AC52-06NA25396.

  2. Increased shell entropy as an explanation for observed decreased shell areal densities in OMEGA implosions

    NASA Astrophysics Data System (ADS)

    Hoffman, Nelson; Herrmann, Hans; Kim, Yongho

    2014-10-01

    A reduced ion-kinetic (RIK) model used in hydrodynamic simulations has had some success in explaining time- and space-averaged observables characterizing the fusion fuel in hot low-density ICF capsule implosions driven by 1-ns 60-beam laser pulses at OMEGA. But observables characterizing the capsule shell, e.g., the areal density of 12C in a plastic shell, have proved harder to explain. Recently we have found that assuming the shell has higher entropy than expected in a 1D laser-driven RIK simulation allows an explanation of the observed values of 12C areal density, and its dependence on initial shell thickness in a set of DT-filled plastic capsules. If, for example, a 15- μm CH shell implodes on an adiabat two to three times higher than predicted in a typical unmodified RIK simulation, the calculated burn-averaged shell areal density decreases from ~80 mg/cm2 in the unmodified simulation to the observed value of ~25 mg/cm2. We discuss possible mechanisms that could lead to increased entropy in such implosions. Research supported by U.S. Department of Energy under Contract DE-AC52-06NA25396.

  3. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang; Ding, Yongkun; Lan, Ke; Ye, Wenhua; Zhang, Weiyan

    2016-07-01

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting "tent." Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  4. A connection between mix and adiabat in ICF capsules

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Yi, Sunghuan (Austin); Batha, Steven

    2016-10-01

    We study the relationship between instability induced mix, preheat and the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. Our studies show that hydrodynamic instability not only directly affects the implosion, hot spot shape and mix, but also affects the thermodynamics of the capsule, such as, the adiabat of the DT fuel, and, in turn, affects the energy partition between the pusher shell (cold DT) and the hot spot. It was found that the adiabat of the DT fuel is sensitive to the amount of mix caused by Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the material interfaces due to its exponential dependence on the fuel entropy. An upper limit of mix allowed maintaining a low adiabat of DT fuel is derived. Additionally we demonstrated that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of the 3D effects and mix in the capsule experiments. Furthermore, from the observed neutron images and our physics model, we could infer the adiabat of the DT fuel in the capsule and determine the possible amount of mix in the hot spot (LA-UR-16-24880). This work was conducted under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  5. High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions

    DOE PAGES

    Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.; ...

    2017-04-24

    In this study, we present the results of high-resolution simulations of the implosion of high-convergence layered indirect-drive inertial confinement fusion capsules of the type fielded on the National Ignition Facility using the xRAGE radiation-hydrodynamics code. In order to evaluate the suitability of xRAGE to model such experiments, we benchmark simulation results against available experimental data, including shock-timing, shock-velocity, and shell trajectory data, as well as hydrodynamic instability growth rates. We discuss the code improvements that were necessary in order to achieve favorable comparisons with these data. Due to its use of adaptive mesh refinement and Eulerian hydrodynamics, xRAGE is particularlymore » well suited for high-resolution study of multi-scale engineering features such as the capsule support tent and fill tube, which are known to impact the performance of high-convergence capsule implosions. High-resolution two-dimensional (2D) simulations including accurate and well-resolved models for the capsule fill tube, support tent, drive asymmetry, and capsule surface roughness are presented. These asymmetry seeds are isolated in order to study their relative importance and the resolution of the simulations enables the observation of details that have not been previously reported. We analyze simulation results to determine how the different asymmetries affect hotspot reactivity, confinement, and confinement time and how these combine to degrade yield. Yield degradation associated with the tent occurs largely through decreased reactivity due to the escape of hot fuel mass from the hotspot. Drive asymmetries and the fill tube, however, degrade yield primarily via burn truncation, as associated instability growth accelerates the disassembly of the hotspot. Finally, modeling all of these asymmetries together in 2D leads to improved agreement with experiment but falls short of explaining the experimentally observed yield degradation

  6. Mitigation of X-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube

    NASA Astrophysics Data System (ADS)

    MacPhee, A. G.; Smalyuk, V. A.; Landen, O. L.; Weber, C. R.; Robey, H. F.; Alfonso, E. L.; Biener, J.; Bunn, T.; Crippen, J. W.; Farrell, M.; Felker, S.; Field, J. E.; Hsing, W. W.; Kong, C.; Milovich, J.; Moore, A.; Nikroo, A.; Rice, N.; Stadermann, M.; Wild, C.

    2018-05-01

    We report a reduced X-ray shadow imprint of hydrodynamic instabilities on the high-density carbon ablator surface of inertial confinement fusion (ICF) capsules using a reduced diameter fuel fill tube on the National Ignition Facility (NIF). The perturbation seed mass from hydrodynamic instabilities was reduced by approximately an order of magnitude by reducing both the diameter and wall thickness of the fill tube by ˜2×, consistent with analytical estimates. This work demonstrates a successful mitigation strategy for engineered features for ICF implosions on the NIF.

  7. Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.

    2018-03-01

    Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.

  8. Recent results from the first polar direct drive plastic capsule implosions on NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark J.

    2012-10-01

    Polar direct drive (PDD) offers a simplified platform for conducting strongly driven implosions on NIF to investigate mix, hydro-burn and ignition-relevant physics. Its successful use necessitates a firm understanding and predictive capability of its implosion characteristics including hydro performance, symmetry and yield. To assess this capability, the first two PDD implosions of deuterium filled CH capsules were recently conducted at NIF. The P2 Legendre mode symmetry seen in these implosions agreed with pre-shot predictions even though the 700kJ drive energy produced intensities that far exceeded thresholds for both Raman and Brillouin stimulated scattering. These shots were also the first to employ image backlighting driven by two laser quads. Preliminary results indicate that the yield from the uncoated 2.25 mm diameter, 42 μm thick, CH shells was reduced by about a factor of two owing to as-shot laser drive asymmetries. Similarly, a small (sim50 μm) centroid offset between the upper and lower shell hemispheres seen in the first shot appears to be indicative of the laser quad energies. Overall, the implosion trajectories agreed with pre-shot predictions of bangtime. The second shot incorporated an 80 ?m wide,10 ?m deep depression encircling the equator of the capsule. This engineered feature was imposed to test our capability to predict the effect of high-mode features on yield and mix. A predicted yield reduction factor of 3 was not observed.[4pt] In collaboration with P. A. Bradley, J. A. Cobble, P. Hakel, S. C. Hsu, N. S. Krasheninnikova, G. A. Kyrala, G. R. Magelssen, T. J. Murphy, K. A. Obrey, R. C. Shah, I. L. Tregillis and F. J. Wysocki of Los Alamos National Laboratory; M. Marinak, R. Wallace, T. Parham, M. Cowan, S. Glenn, R. Benedetti and the NIF Operations Team of Lawrence Livermore National Laboratory; R. S. Craxton and P. W. McKenty of the Univ. Rochester; P. Fitzsimmons and A. Nikroo of General Atomics; H. Rinderknecht, M. Rosenberg, and M. G

  9. Mitigate the tent-induced perturbation in ignition capsules by supersonic radiation propagation

    NASA Astrophysics Data System (ADS)

    Dai, Zhensheng; Gu, Jianfa; Zheng, Wudi

    2017-10-01

    In the inertial confinement fusion (ICF) scheme, to trap the alpha particle products of the D-T reaction, the capsules needs to be imploded and compressed with high symmetry In the laser indirect drive scheme, the capsules are held at the center of high-Z hohlraums by thin membranes (tents). However, the tents are recognized as one of the most important contributors to hot spot asymmetries, areal density perturbations and reduced performance. To improve the capsule implosion performance, various alternatives such as the micro-scale rods, a larger fill-tube and a low-density foam layer around the capsule have been presented. Our simulations show that the radiation propagates supersonically in the low-density foam layer and starts to ablate the capsule before the perturbations induced by the tents reach the ablating fronts. The tent induced perturbations are remarkably weakened when they are propagating in the blow-off plasma.

  10. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongsheng; Graduate School, China Academy of Engineering Physics, Beijing 100088; Gu, Jianfa

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting “tent.” Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates themore » ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.« less

  11. Experiments to measure ablative Richtmyer-Meshkov growth of Gaussian bumps in plastic capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, Eric; Batha, Steve; Sedillo, Tom

    2010-06-02

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities have been of primary concern to the ICF program since its inception. To achieve thermonuclear ignition at Megajoule class laser systems such as the NIF, targets must be designed for high implosion velocities, which requires higher in-flight aspect ratios (IFAR) and diminished shell stability. Controlling capsule perturbations is thus of the utmost importance. Recent simulations have shown that features on the outer surface of an ICF capsule as small as 10 microns wide and 100's of nanometers tall such as bumps,more » divots, or even dust particles can profoundly impact capsule performance by leading to material jetting or mix into the hotspot. Recent x-ray images of implosions on the NIF may be evidence of such mixing. Unfortunately, our ability to accurately predict these effects is uncertain due to disagreement between equation of state (EOS) models. In light of this, we have begun a campaign to measure the growth of isolated defects (Gaussian bumps) due to ablative Richtmyer-Meshkov in CH capsules to validate these models. The platform that has been developed uses halfraums with radiation temperatures near 75 eV (Rev. 4 foot-level) driven by 15-20 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sends a ~2.5 Mbar shock into a planar CH foil. Gaussian-shaped bumps (20 microns wide, 4-7 microns tall) are deposited onto the ablation side of the target. On-axis radiography with a saran (Cl He α - 2.8 keV) backlighter is used to measure bump evolution prior to shock breakout. Shock speed measurements will also be made with Omega's active shock breakout (ASBO) and streaked optical pyrometery (SOP) diagnostics in conjunction with filtered x-ray photodiode arrays (DANTE) to determine drive conditions in the target. These data will be used to discriminate between EOS models so that

  12. Visualizing density perturbations in the capsule shell in NIF implosions near peak velocity

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; Macphee, A.; Scott, H. A.; Robey, H. F.; Field, J.; Barrios, M.; Regan, S. P.

    2016-10-01

    Engineering features on the capsule (surface roughness, support structures, etc.) can introduce outer surface perturbations that are ultimately detrimental to the performance of the capsule. Recent experiments have assessed minimal support structures and alternate pulse shapes using a re-entrant cone and back lighter that is perturbing to the implosion below radii of 500 μ m. Emission from the hot core, after shock-stagnation and prior to peak velocity (PV), has been used as a self-backlighter, providing a means to sample one side of the capsule at smaller radii. Adding high-Z gas ( 1 % Ar) to the capsule fill in Symcaps (4He), has produced a continuum backlighter with significant increase in emission at hv 8 keV over nominal fills. High-resolution imaging diagnostics with photon energy selectivity form 2D images of the transmitted self-emission, above and below the K-edge of an internally doped Cu layer. We can infer from these images the growth at PV of outer surface perturbations. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697620.

  13. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.; Kline, J. L.; Zylstra, A. B.; Yi, S. A.; Biener, J.; Braun, T.; Kozioziemski, B. J.; Sater, J. D.; Bradley, P. A.; Peterson, R. R.; Haines, B. M.; Yin, L.; Berzak Hopkins, L. F.; Meezan, N. B.; Walters, C.; Biener, M. M.; Kong, C.; Crippen, J. W.; Kyrala, G. A.; Shah, R. C.; Herrmann, H. W.; Wilson, D. C.; Hamza, A. V.; Nikroo, A.; Batha, S. H.

    2016-12-01

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D2 and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (12 ICF experiments at the NIF utilized high convergence (CR >30 ) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

  14. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility.

    PubMed

    Olson, R E; Leeper, R J; Kline, J L; Zylstra, A B; Yi, S A; Biener, J; Braun, T; Kozioziemski, B J; Sater, J D; Bradley, P A; Peterson, R R; Haines, B M; Yin, L; Berzak Hopkins, L F; Meezan, N B; Walters, C; Biener, M M; Kong, C; Crippen, J W; Kyrala, G A; Shah, R C; Herrmann, H W; Wilson, D C; Hamza, A V; Nikroo, A; Batha, S H

    2016-12-09

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D_{2} and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (12ICF experiments at the NIF utilized high convergence (CR>30) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

  15. Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating

    DOE PAGES

    Taitano, William T.; Simakov, Andrei N.; Chacon, Luis; ...

    2018-04-09

    Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICFmore » capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original. We employ the same computational setup as in O. Larroche, which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule

  16. Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taitano, William T.; Simakov, Andrei N.; Chacon, Luis

    Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICFmore » capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original. We employ the same computational setup as in O. Larroche, which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule

  17. Rapid measurement and compensation method of eccentricity in automatic profile measurement of the ICF capsule.

    PubMed

    Li, Shaobai; Wang, Yun; Wang, Qi; Ma, Xianxian; Wang, Longxiao; Zhao, Weiqian; Zhang, Xusheng

    2018-05-10

    In this paper, we propose a new measurement and compensation method for the eccentricity of the inertial confinement fusion (ICF) capsule, which combines computer vision and the laser differential confocal method to align the capsule in rotation measurement. This technique measures the eccentricity of the capsule by obtaining the sub-pixel profile with a moment-based algorithm, then performs the preliminary alignment by the two-dimensional adjustment. Next, we use the laser differential confocal sensor to measure the height data of the equatorial surface of the capsule by turning it around, then obtain and compensate the remaining eccentricity ultimately. This method is a non-contact, automatic, rapid, high-precision measurement and compensation technique of eccentricity for the capsule. Theoretical analyses and preliminary experiments indicate that the maximum measurement range of eccentricity of this proposed method is 1.8 mm for the capsule with a diameter of 1 mm, and it could eliminate the eccentricity to less than 0.5 μm in 30 s.

  18. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. Here, we propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method usesmore » a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT "clean" and DT "mix" gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. Furthermore, we observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λ ii~T 2/Z 2ρ at the gas/shell interface. Finally, since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.« less

  19. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    DOE PAGES

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.; ...

    2016-05-26

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. Here, we propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method usesmore » a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT "clean" and DT "mix" gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. Furthermore, we observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λ ii~T 2/Z 2ρ at the gas/shell interface. Finally, since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.« less

  20. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.; McEvoy, A. M.; Zylstra, A.; Hammel, B. A.; Sepke, S. M.; Leatherland, A.; Gales, S.

    2016-05-01

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. We propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method uses a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT “clean” and DT “mix” gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. An experiment to observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λii∼T2/Z2ρ at the gas/shell interface. Since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.

  1. Planarization of Isolated Defects on ICF Target Capsule Surfaces by Pulsed Laser Ablation

    DOE PAGES

    Alfonso, Noel; Carlson, Lane C.; Bunn, Thomas L.

    2016-08-09

    Demanding surface quality requirements for inertial confinement fusion (ICF) capsules motivated the development of a pulsed laser ablation method to reduce or eliminate undesirable surface defects. The pulsed laser ablation technique takes advantage of a full surface (4π) capsule manipulation system working in combination with an optical profiling (confocal) microscope. Based on the defect topography, the material removal rate, the laser pulse energy and its beam profile, a customized laser raster pattern is derived to remove the defect. The pattern is a table of coordinates and number of pulses that dictate how the defect will be vaporized until its heightmore » is level with the capsule surface. This paper explains how the raster patterns are optimized to minimize surface roughness and how surface roughness after laser ablation is simulated. The simulated surfaces are compared with actual ablated surfaces. Large defects are reduced to a size regime where a tumble finishing process produces very high quality surfaces devoid of high mode defects. The combined polishing processes of laser ablation and tumble finishing have become routine fabrication steps for National Ignition Facility capsule production.« less

  2. Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments

    NASA Astrophysics Data System (ADS)

    Macfarlane, J. J.; Golovkin, I.; Kulkarni, S.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L. J.

    2013-10-01

    We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple 2-D plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and K α reemission from the dopant.

  3. Design options for reducing the impact of the fill-tube in ICF implosion experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Weber, Christopher R.; Berzak Hopkins, L. F.; Casey, D. T.; Clark, D. S.; Hammel, B. A.; Le Pape, S.; Macphee, A.; Milovich, J.; Pickworth, L. A.; Robey, H. F.; Smalyuk, V. A.; Stadermann, M.; Felker, S. J.; Nikroo, A.; Thomas, C. A.; Crippen, J.; Rice, N.

    2017-10-01

    Inertial Confinement Fusion (ICF) capsules on the National Ignition Facility (NIF) are filled with thermonuclear fuel through a fill-tube. When the capsule implodes, perturbations caused by the fill-tube allow ablator material to mix into the hot spot and reduce fusion performance. This talk will explore several design options that attempt to reduce this damaging effect. Reducing the diameter of the fill-tube and its entrance hole is the obvious course and has been tested in experiments. Simulations also show sensitivity to the amount of glue holding the fill-tube to the capsule and suggest that careful control of this feature can limit the amount of injected mass. Finally, an off-axis fill-tube reduces the initial squirt of material into the fuel and may be a way of further optimizing this engineering feature. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  4. Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments

    NASA Astrophysics Data System (ADS)

    Macfarlane, Joseph; Golovkin, I.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L.

    2012-10-01

    We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and Kα reemission from the dopant, and to study the sensitivity of the emergent spectra to the dopant and the hot spot and ablator conditions.

  5. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2014-02-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  6. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.

    2014-02-15

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs.more » DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.« less

  7. The high velocity, high adiabat, ``Bigfoot'' campaign and tests of indirect-drive implosion scaling

    NASA Astrophysics Data System (ADS)

    Casey, Daniel

    2017-10-01

    To achieve hotspot ignition, inertial confinement fusion (ICF) implosions must achieve high hotspot internal energy that is inertially confined by a dense shell of DT fuel. To accomplish this, implosions are designed to achieve high peak implosion velocity, good energy coupling between the hotspot and imploding shell, and high areal-density at stagnation. However, experiments have shown that achieving these simultaneously is extremely challenging, partly because of inherent tradeoffs between these three interrelated requirements. The Bigfoot approach is to intentionally trade off high convergence, and therefore areal-density, in favor of high implosion velocity and good coupling between the hotspot and shell. This is done by intentionally colliding the shocks in the DT ice layer. This results in a short laser pulse which improves hohlraum symmetry and predictability while the reduced compression improves hydrodynamic stability. The results of this campaign will be reviewed and include demonstrated low-mode symmetry control at two different hohlraum geometries (5.75 mm and 5.4 mm diameters) and at two different target scales (5.4 mm and 6.0 mm hohlraum diameters) spanning 300-430 TW in laser power and 0.8-1.7 MJ in laser energy. Results of the 10% scaling between these designs for the hohlraum and capsule will be presented. Hydrodynamic instability growth from engineering features like the capsule fill tube are currently thought to be a significant perturbation to the target performance and a major factor in reducing its performance compared to calculations. Evidence supporting this hypothesis as well as plans going forward will be presented. Ongoing experiments are attempting to measure the impact on target performance from increase in target scale, and the preliminary results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Imaging and spectroscopy of copper dopant migration of indirectly driven Beryllium capsule implosion on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Kyrala, George; Zylstra, A.; Yi, S. A.; Klline, J. L.; Shah, R. C.; Lopez, F. E.; Batha, S. A.; Doppner, T.; Thorn, D. B.; MacLaren, S.; Masters, N.; Callahan, D.; Hurricane, O.; Rice, N.; Huang, H.; Krauland, C. M.; MacDonald, M.

    2017-10-01

    Using beryllium, as an ablator material for indirectly driven inertial fusion, requires the use of a Copper dopant to block preheat from the hohlraum M-band radiation. However, due to the microstructure and imperfections of the capsule, some of the copper may be injected into the core of the implosion, affecting the yield and performance. Alternatively, the copper dopant may blow into the ablated plasma affecting the hohlraum performance as well. We will present some of data on time integrated imaging of the copper dopant into the core of the capsule using either the 2-dimensional multiple monochromatic imaging of the implosion, as well as the 1D spectrally resolved imaging of the copper dopant emission. In either case we found that the copper did migrate to the hot core, while fewer copper ions ablated into the hohlraum. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396, and by LLNL under Contract DE-AC52-07NA27344.

  9. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    PubMed

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-09

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  10. The Rocket Equation Improvement under ICF Implosion Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin; Zheng, Zhijian

    2013-10-01

    The ICF explosion process has been studied in details. The rocket equation has been improved in explosive process by introducing the pressure parameter of fuel. Some methods could be drawn by the improved rocket equation. And the methods could be used to improve ICF target design, driving pulse design and experimental design. The First is to increase ablation pressure. The second is to decrease pressure of fuel. The third is to use larger diameter of target sphere. And the forth is to a shorten driving pulse.

  11. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E. L.; Molvig, K.; Joglekar, A. S.

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  12. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE PAGES

    Vold, Erik Lehman; Joglekar, Archis S.; Ortega, Mario I.; ...

    2015-11-20

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  13. Capsule implosions for continuum x-ray backlighting of opacity samples at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Opachich, Y. P.; Heeter, R. F.; Barrios, M. A.; Garcia, E. M.; Craxton, R. S.; King, J. A.; Liedahl, D. A.; McKenty, P. W.; Schneider, M. B.; May, M. J.; Zhang, R.; Ross, P. W.; Kline, J. L.; Moore, A. S.; Weaver, J. L.; Flippo, K. A.; Perry, T. S.

    2017-06-01

    Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500-2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ˜20 μm thickness have been performed. X-ray yields of up to ˜1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ˜100 μm FWHM, with ˜350 ps pulse duration during the peak emission stage. Results are used to simulate transmission spectra for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.

  14. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility

    DOE PAGES

    Olson, R. E.; Leeper, R. J.; Kline, J. L.; ...

    2016-12-07

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D 2 and DT layer Inertial Confinement Fusion (ICF) implosions that can access low-to-moderate hot spot convergence ratio (1230) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CR’s of 12-17, and the hot spot formation is well understood, demonstratedmore » by good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.« less

  15. On the importance of minimizing "coast-time" in x-ray driven inertially confined fusion implosions

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Kritcher, A.; Callahan, D. A.; Landen, O.; Patel, P. K.; Springer, P. T.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kline, J.; Le Pape, S.; Ma, T.; MacPhee, A. G.; Moore, A.; Pak, A.; Park, H.-S.; Ralph, J.; Salmonson, J. D.; Widmann, K.

    2017-09-01

    By the time an inertially confined fusion (ICF) implosion has converged a factor of 20, its surface area has shrunk 400 × , making it an inefficient x-ray energy absorber. So, ICF implosions are traditionally designed to have the laser drive shut off at a time, toff, well before bang-time, tBT, for a coast-time of t coast = t B T - t o f f > 1 ns. High-foot implosions on NIF showed a strong dependence of many key ICF performance quantities on reduced coast-time (by extending the duration of laser power after the peak power is first reached), most notably stagnation pressure and fusion yield. Herein we show that the ablation pressure, pabl, which drives high-foot implosions, is essentially triangular in temporal shape, and that reducing tcoast boosts pabl by as much as ˜ 2 × prior to stagnation thus increasing fuel and hot-spot compression and implosion speed. One-dimensional simulations are used to track hydrodynamic characteristics for implosions with various coast-times and various assumed rates of hohlraum cooling after toff to illustrate how the late-time conditions exterior to the implosion can impact the fusion performance. A simple rocket model-like analytic theory demonstrates that reducing coast-time can lead to a ˜ 15 % higher implosion velocity because the reduction in x-ray absorption efficiency at late-time is somewhat compensated by small ( ˜ 5 % - 10 %) ablator mass remaining. Together with the increased ablation pressure, the additional implosion speed for short coast-time implosions can boost the stagnation pressure by ˜ 2 × as compared to a longer coast-time version of the same implosion. Four key dimensionless parameters are identified and we find that reducing coast-time to as little as 500 ps still provides some benefit. Finally, we show how the high-foot implosion data is consistent with the above mentioned picture.

  16. Developing one-dimensional implosions for inertial confinement fusion science

    DOE PAGES

    Kline, John L.; Yi, Sunghwan A.; Simakov, Andrei Nikolaevich; ...

    2016-12-12

    Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield overmore » the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. As a result, details for each of these approaches are described.« less

  17. Capsule implosions for continuum x-ray backlighting of opacity samples at the National Ignition Facility

    DOE PAGES

    Opachich, Y. P.; Heeter, R. F.; Barrios, M. A.; ...

    2017-06-08

    Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500–2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ~20 μm thickness have been performed. X-ray yields of up to ~1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ~100 μm FWHM, with ~350 ps pulse duration during the peak emission stage. Lastly, these results are used to simulate transmission spectramore » for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.« less

  18. Capsule implosions for continuum x-ray backlighting of opacity samples at the National Ignition Facility.

    PubMed

    Opachich, Y P; Heeter, R F; Barrios, M A; Garcia, E M; Craxton, R S; King, J A; Liedahl, D A; McKenty, P W; Schneider, M B; May, M J; Zhang, R; Ross, P W; Kline, J L; Moore, A S; Weaver, J L; Flippo, K A; Perry, T S

    2017-06-01

    Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500-2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ∼20  μ m thickness have been performed. X-ray yields of up to ∼1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ∼100  μ m FWHM, with ∼350 ps pulse duration during the peak emission stage. Results are used to simulate transmission spectra for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.

  19. The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Haines, Brian M.; Yi, S. A.; Olson, R. E.; Khan, S. F.; Kyrala, G. A.; Zylstra, A. B.; Bradley, P. A.; Peterson, R. R.; Kline, J. L.; Leeper, R. J.; Shah, R. C.

    2017-07-01

    The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).

  20. Capsule Shimming Developments for National Ignition Facility (NIF) Hohlraum Asymmetry Experiments

    DOE PAGES

    Rice, Neal G.; Vu, M.; Kong, C.; ...

    2017-12-20

    Capsule drive in National Ignition Facility (NIF) indirect drive implosions is generated by x-ray illumination from cylindrical hohlraums. The cylindrical hohlraum geometry is axially symmetric but not spherically symmetric causing capsule-fuel drive asymmetries. We hypothesize that fabricating capsules asymmetric in wall thickness (shimmed) may compensate for drive asymmetries and improve implosion symmetry. Simulations suggest that for high compression implosions Legendre mode P 4 hohlraum flux asymmetries are the most detrimental to implosion performance. General Atomics has developed a diamond turning method to form a GDP capsule outer surface to a Legendre mode P 4 profile. The P 4 shape requiresmore » full capsule surface coverage. Thus, in order to avoid tool-lathe interference flipping the capsule part way through the machining process is required. This flipping process risks misalignment of the capsule causing a vertical step feature on the capsule surface. Recent trials have proven this step feature height can be minimized to ~0.25 µm.« less

  1. On the importance of minimizing “coast-time” in x-ray driven inertially confined fusion implosions

    DOE PAGES

    Hurricane, O. A.; Kritcher, A.; Callahan, D. A.; ...

    2017-09-01

    By the time an inertially confined fusion (ICF) implosion has converged a factor of 20, its surface area has shrunk 400×, making it an inefficient x-ray energy absorber. So, ICF implosions are traditionally designed to have the laser drive shut off at a time, t off, well before bang-time, t BT, for a coast-time of t coast = t BT – t off > 1 ns. High-foot implosions on NIF showed a strong dependence of many key ICF performance quantities on reduced coast-time (by extending the duration of laser power after the peak power is first reached), most notably stagnationmore » pressure and fusion yield. Herein we show that the ablation pressure, p abl, which drives high-foot implosions, is essentially triangular in temporal shape, and that reducing t coast boosts p abl by as much as ~2× prior to stagnation thus increasing fuel and hot-spot compression and implosion speed. One-dimensional simulations are used to track hydrodynamic characteristics for implosions with various coast-times and various assumed rates of hohlraum cooling after t off to illustrate how the late-time conditions exterior to the implosion can impact the fusion performance. A simple rocket model-like analytic theory demonstrates that reducing coast-time can lead to a ~15% higher implosion velocity because the reduction in x-ray absorption efficiency at late-time is somewhat compensated by small (~5%–10%) ablator mass remaining. Together with the increased ablation pressure, the additional implosion speed for short coast-time implosions can boost the stagnation pressure by ~2× as compared to a longer coast-time version of the same implosion. Four key dimensionless parameters are identified and we find that reducing coast-time to as little as 500 ps still provides some benefit. Lastly, we show how the high-foot implosion data is consistent with the above mentioned picture.« less

  2. On the importance of minimizing “coast-time” in x-ray driven inertially confined fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurricane, O. A.; Kritcher, A.; Callahan, D. A.

    By the time an inertially confined fusion (ICF) implosion has converged a factor of 20, its surface area has shrunk 400×, making it an inefficient x-ray energy absorber. So, ICF implosions are traditionally designed to have the laser drive shut off at a time, t off, well before bang-time, t BT, for a coast-time of t coast = t BT – t off > 1 ns. High-foot implosions on NIF showed a strong dependence of many key ICF performance quantities on reduced coast-time (by extending the duration of laser power after the peak power is first reached), most notably stagnationmore » pressure and fusion yield. Herein we show that the ablation pressure, p abl, which drives high-foot implosions, is essentially triangular in temporal shape, and that reducing t coast boosts p abl by as much as ~2× prior to stagnation thus increasing fuel and hot-spot compression and implosion speed. One-dimensional simulations are used to track hydrodynamic characteristics for implosions with various coast-times and various assumed rates of hohlraum cooling after t off to illustrate how the late-time conditions exterior to the implosion can impact the fusion performance. A simple rocket model-like analytic theory demonstrates that reducing coast-time can lead to a ~15% higher implosion velocity because the reduction in x-ray absorption efficiency at late-time is somewhat compensated by small (~5%–10%) ablator mass remaining. Together with the increased ablation pressure, the additional implosion speed for short coast-time implosions can boost the stagnation pressure by ~2× as compared to a longer coast-time version of the same implosion. Four key dimensionless parameters are identified and we find that reducing coast-time to as little as 500 ps still provides some benefit. Lastly, we show how the high-foot implosion data is consistent with the above mentioned picture.« less

  3. Thin Shell evolution of NIF capsule with asymmetric drive and the resulting neutron diagnostics

    NASA Astrophysics Data System (ADS)

    Buchoff, Michael; Hammer, Jim

    2015-11-01

    One of the major impediments to achieving ignition via ICF is the non-spherical implosion arising from small asymmetries in the drive forcing the collapse of the capsule. Likewise, an experimental diagnostic for quantifying the characteristics of the implosion asymmetry is the final state neutrons, whose number and velocity distributions are not experimentally consistent with the expectation of a spherical implosion. In principle, connecting these initial and final state asymmetries could be solved via hydrodynamic simulations, but due to the multiple scales traversed throughout this process, these calculations are difficult and expensive, leaving much of the potential drive asymmetry profiles unexplored. In this work, we solve the resulting analytic equations from the thin-shell model proposed by Ott et. al. to evolve the capsule over a range of different drive asymmetries from its initial state (when the shell aspect ratio is much greater than 1) to a radius of roughly 250 microns, consisting of a layer of dense CH, a cold layer of dense DT, and a warm core of sparsely distributed DT. At this stage, more tractable hydrodynamical simulations are performed in the ARES code suite, determining the distribution of neutron from thermonuclear yield. These and future results allow for a multitude of tests of asymmetric sources to compare with and potentially guide experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    PubMed

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  5. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shapemore » closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10 16 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.« less

  6. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    DOE PAGES

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.; ...

    2015-07-28

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shapemore » closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10 16 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.« less

  7. Effect of Symmetry on Performance of Imploding Capsules using the Big Foot Design

    NASA Astrophysics Data System (ADS)

    Khan, Shahab; Casey, Daniel; Baker, Kevin; Thomas, Cliff; Nora, Ryan; Spears, Brian; Benedetti, Laura; Izumi, Nobuhiko; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; National Ignition Facility Collaboration

    2017-10-01

    At the National Ignition Facility, several simultaneous designs are investigated for optimizing Inertial Confinement Fusion (ICF) energy gain of indirectly driven imploding fuel capsules. Relatively high neutron yield has been achieved while exhibiting a non-symmetric central core and/or shell. While developing the ``Big Foot'' design, several tuning steps were undertaken to minimize the asymmetry of both the central hot core as well as the shell. Surrogate capsules (symcaps) were utilized in the 2-D Radiography platform to assess both the shell and central core symmetry. The results of the tuning experiments are presented. In addition, a comparison of performance and shape metrics demonstrates that improving symmetry of the implosion can yield better performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-683471.

  8. The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules

    DOE PAGES

    Haines, Brian M.; Yi, S. A.; Olson, R. E.; ...

    2017-07-10

    The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. In this paper, we present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surfacemore » roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Finally and nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).« less

  9. Testing low-mode symmetry control with low-adiabat, extended pulse-lengths in BigFoot implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hohenberger, Matthias; Casey, D. T.; Thomas, C. A.; Baker, K. L.; Spears, B. K.; Khan, S. F.; Hurricane, O. A.; Callahan, D.

    2017-10-01

    The Bigfoot approach to indirect-drive inertial confinement fusion (ICF) has been developed as a compromise trading high-convergence and areal densities for high implosion velocities, large adiabats and hydrodynamic stability. Shape control and predictability are maintained by using relatively short laser pulses and merging the shocks within the DT-ice layer. These design choices ultimately limit the theoretically achievable performance, and one strategy to increase the 1-D performance is to reduce the shell adiabat by extending the pulse shape. However, this can result in loss of low-mode symmetry control, as the hohlraum ``bubble,'' the high-Z material launched by the outer-cone beams during the early part of the laser pulse, has more time to expand and will eventually intercept inner-cone beams preventing them from reaching the hohlraum waist, thus losing equatorial capsule drive. We report on experimental results exploring shape control and predictability with extended pulse shapes in BigFoot implosions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  10. New tuning method of the low-mode asymmetry for ignition capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng; Zou, Shiyang

    2015-12-15

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the hot spot and the surrounding main fuel layer show obvious P2 asymmetries. This may be caused by the large positive P2 radiation flux asymmetry during the peak pulse resulting form the poor propagation of the inner laser beam in the gas-filled hohlraum. The symmetry evolution of ignition capsule implosions is investigated by applying P2 radiation flux asymmetries during different time intervals. A series of two-dimensional simulation results show that a positive P2 flux asymmetry during the peak pulse results in a positive P2 shell ρR asymmetry;more » while an early time positive P2 flux asymmetry causes a negative P2 in the fuel ρR shape. The opposite evolution behavior of shell ρR asymmetry is used to develop a new tuning method to correct the radiation flux asymmetry during the peak pulse by adding a compensating same-phased P2 drive asymmetry during the early time. The significant improvements of the shell ρR symmetry, hot spot shape, hot spot internal energy, and neutron yield indicate that the tuning method is quite effective. The similar tuning method can also be used to control the early time drive asymmetries.« less

  11. Impact of flows on ion temperatures inferred from neutron spectra in asymmetrically driven OMEGA DT implosions

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Aappelbe, B.; Chittenden, J.; Walsh, C.; Knauer, J. P.; Glebov, V. Yu.; Forrest, C.; Marshall, F.; Michel, T.; Stoeckl, C.; Sangster, T. C.; Zylstra, A.

    2016-10-01

    Ion temperatures (Tion) in Inertial Confinement Fusion (ICF) experiments have traditionally been inferred from the broadening of primary neutron spectra. Directional motion (flow) of the fuel at burn, expected to arise due to asymmetries imposed by engineering features (such as stalks, fill tubes, tents, or capsule imperfections) or drive non-uniformity, also impacts broadening and may lead to artificially inflated ``Tion'' values. Flow due to low-mode asymmetries is expected to give rise to line-of-sight variations in measured Tion, as observed in OMEGA cryogenic DT implosions but not in similar experiments at the NIF. In this presentation we report on an OMEGA experiment with intentionally asymmetric drive, designed to test the ability to accurately predict and measure line-of-sight differences in apparent Tion due to low-mode asymmetry-seeded flows. The results provide insight into the complexity of hot-spot dynamics, which is a problem that must be mastered to achieve ICF ignition. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  12. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.

    2018-01-01

    Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.

  13. Hot spot mix in ICF implosions on the NIF

    NASA Astrophysics Data System (ADS)

    Ma, Tammy

    2016-10-01

    In the quest to achieve ignition through the inertial confinement fusion scheme, one of the critical challenges is to drive a symmetric implosion at high velocity without hydrodynamic instabilities becoming detrimental. These instabilities, primarily at the ablation front and the fuel-ablator interface, can cause mix of the higher-Z shell into the hot spot, resulting in increased radiation loss and thus reduced temperature and neutron yield. To quantify the level of mix, we developed a model that infers the level of hot spot contamination using the ratio of the enhanced x-ray production relative to the neutron yield. Applying this methodology to the full ensemble of indirect-drive National Ignition Facility (NIF) cryogenically layered DT implosions provides insight on the sensitivity of performance to the level of ablator-hot spot mix. In particular, the improvement seen with the High Foot design can be primarily attributed to a reduction in ablation-front instability mix that enabled the implosions to be pushed to higher velocity and performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC.

  14. Assessment of the impact that the capsule fill tube has on implosions conducted with high density carbon ablators

    NASA Astrophysics Data System (ADS)

    Pak, Arthur; Benedetti, L. R.; Berzak Hopkins, L. F.; Clark, D.; Divol, L.; Dewald, E. L.; Fittinghoff, D.; Izumi, N.; Khan, S. F.; Landen, O.; Lepape, S.; Ma, T.; Marley, E.; Nagel, S.; Volegov, P.; Weber, C.; Bradley, D. K.; Callahan, D.; Grim, G.; Hurricane, O. A.; Patel, P.; Schneider, M. B.; Edwards, M. J.

    2017-10-01

    In recent inertial confinement implosion experiments conducted at the National Ignition Facility, bright and spatially localized x-ray emission within the hot spot at stagnation has been observed. This emission is associated with higher Z ablator material that is injected into the hot spot by the hydrodynamic perturbation induced by the 5-10 um diameter capsule fill tube. The reactivity of the DT fuel and subsequent yield of the implosion are strongly dependent on the density, temperature, and confinement time achieved throughout the stagnation of the implosion. Radiative losses from higher Z ablator material that mixes into the hot spot as well as non-uniformities in the compression and confinement induced by the fill tube perturbation can degrade the yield of the implosion. This work will examine the impact to conditions at stagnation that results from the fill tube perturbation. This assessment will be based from a pair of experiments conducted with a high density carbon ablator where the only deliberate change was reduction in fill tube diameter from 10 to 5 um. An estimate of the radiative losses and impact on performance from ablator mix injected into the hot spot by the fill tube perturbation will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to themore » predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.« less

  16. Kinetic physics in ICF: present understanding and future directions

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; Collins, G.

    2018-06-01

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (〈Ti 〉) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred 〈Ti 〉. Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior; the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.

  17. Thin Shell Model for NIF capsule stagnation studies

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Buchoff, M.; Brandon, S.; Field, J. E.; Gaffney, J.; Kritcher, A.; Nora, R. C.; Peterson, J. L.; Spears, B.; Springer, P. T.

    2015-11-01

    We adapt the thin shell model of Ott et al. to asymmetric ICF capsule implosions on NIF. Through much of an implosion, the shell aspect ratio is large so the thin shell approximation is well satisfied. Asymmetric pressure drive is applied using an analytic form for ablation pressure as a function of the x-ray flux, as well as time-dependent 3D drive asymmetry from hohlraum calculations. Since deviations from a sphere are small through peak velocity, we linearize the equations, decompose them by spherical harmonics and solve ODE's for the coefficients. The model gives the shell position, velocity and areal mass variations at the time of peak velocity, near 250 microns radius. The variables are used to initialize 3D rad-hydro calculations with the HYDRA and ARES codes. At link time the cold fuel shell and ablator are each characterized by a density, adiabat and mass. The thickness, position and velocity of each point are taken from the thin shell model. The interior of the shell is filled with a uniform gas density and temperature consistent with the 3/2PV energy found from 1D rad-hydro calculations. 3D linked simulations compare favorably with integrated simulations of the entire implosion. Through generating synthetic diagnostic data, the model offers a method for quickly testing hypothetical sources of asymmetry and comparing with experiment. Prepared by LLNL under Contract DE-AC52-07NA27344.

  18. Design Options for the High-Foot Ignition Capsule Series on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O. A.; Berzak Hopkins, L. F.; Callahan, D. A.; Clark, D.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Ma, T.; Pak, A. E.; Park, H.-S.; Salmonson, J. D.; Weber, C. R.; Zimmerman, G. B.; Olson, R. E.; Kline, J. L.; Leeper, R. J.

    2015-11-01

    Several options exist for improving implosion performance in the High-Foot series of ignition capsules on NIF. One option is to modify the fill tube used to supply DT to the capsule. Simulations indicate that a gold-coated glass tube may reduce implosion hydro effects and allow fielding a larger diameter tube capable of supporting the capsule, eliminating the need for the nominal tent support. A second option adds a fourth shock to the implosion history. According to simulation, this extra shock improves fuel confinement and capsule performance. A third option studies the feasibility of holding the DT fuel in liquid form in a foam layer inside the shell. This ``wetted foam'' concept, advanced by Olson, has existed for several years and may allow some control over the convergence of the capsule during implosion. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  19. Large-scale 3D simulations of ICF and HEDP targets

    NASA Astrophysics Data System (ADS)

    Marinak, Michael M.

    2000-10-01

    The radiation hydrodynamics code HYDRA continues to be developed and applied to 3D simulations of a variety of targets for both inertial confinement fusion (ICF) and high energy density physics. Several packages have been added enabling this code to perform ICF target simulations with similar accuracy as two-dimensional codes of long-time historical use. These include a laser ray trace and deposition package, a heavy ion deposition package, implicit Monte Carlo photonics, and non-LTE opacities, derived from XSN or the linearized response matrix approach.(R. More, T. Kato, Phys. Rev. Lett. 81, 814 (1998), S. Libby, F. Graziani, R. More, T. Kato, Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, (AIP, New York, 1997).) LTE opacities can also be calculated for arbitrary mixtures online by combining tabular values generated by different opacity codes. Thermonuclear burn, charged particle transport, neutron energy deposition, electron-ion coupling and conduction, and multigroup radiation diffusion packages are also installed. HYDRA can employ ALE hydrodynamics; a number of grid motion algorithms are available. Multi-material flows are resolved using material interface reconstruction. Results from large-scale simulations run on up to 1680 processors, using a combination of massively parallel processing and symmetric multiprocessing, will be described. A large solid angle simulation of Rayleigh-Taylor instability growth in a NIF ignition capsule has resolved simultaneously the full spectrum of the most dangerous modes that grow from surface roughness. Simulations of a NIF hohlraum illuminated with the initial 96 beam configuration have also been performed. The effect of the hohlraum’s 3D intrinsic drive asymmetry on the capsule implosion will be considered. We will also discuss results from a Nova experiment in which a copper sphere is crushed by a planar shock. Several interacting hydrodynamic instabilities, including

  20. Higher Velocity High-Foot Implosions on the National Ignition Facility Laser

    NASA Astrophysics Data System (ADS)

    Callahan, Debra

    2014-10-01

    After the end of the National Ignition Campaign on the National Ignition Facility (NIF) laser, we began a campaign to test capsule performance using a modified laser pulse-shape that delivers higher power early in the pulse (``high foot''). This pulse-shape trades one-dimensional performance (peak compression) for increased hydrodynamic stability. The focus of the experiments this year have been to improve performance by increasing the implosion velocity using higher laser power/energy, depleted uranium hohlraums, and thinner capsules. While the mix of ablator material into the hotspot has been low for all of these implosions, the challenge has been to keep the implosion shape under control. As the peak laser power is increased, the plasma density in the hohlraum is increased - making it more and more challenging for the inner cone beams to reach the midplane of the hohlraum and resulting in an oblate implosion. Depleted uranium hohlraums have higher albedo than Au hohlraums, which leads to additional drive and improved implosion shape. Thinner ablators increase the velocity by reducing the amount of payload; thinner ablators also put less mass into the hohlraum which results in improved inner beam propagation. These techniques have allowed us to push the capsule to higher and higher velocity. In parallel with this effort, we are exploring other hohlraums such as the rugby shaped hohlraum to allow us to push these implosions further. This talk will summarize the progress of the high foot campaign in terms of both capsule and hohlraum performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Kinetic physics in ICF: present understanding and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less

  2. Kinetic physics in ICF: present understanding and future directions

    DOE PAGES

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; ...

    2018-03-19

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less

  3. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Hinkel, D. E.; Eder, D. C.; Jones, O. S.; Haan, S. W.; Hammel, B. A.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Suter, L. J.; Town, R. P. J.

    2013-05-01

    More than two dozen inertial confinement fusion ignition experiments with cryogenic deuterium-tritium layers have now been performed on the National Ignition Facility (NIF) [G. H. Miller et al., Opt. Eng. 443, 2841 (2004)]. Each of these yields a wealth of data including neutron yield, neutron down-scatter fraction, burn-averaged ion temperature, x-ray image shape and size, primary and down-scattered neutron image shape and size, etc. Compared to 2-D radiation-hydrodynamics simulations modeling both the hohlraum and the capsule implosion, however, the measured capsule yield is usually lower by a factor of 5 to 10, and the ion temperature varies from simulations, while most other observables are well matched between experiment and simulation. In an effort to understand this discrepancy, we perform detailed post-shot simulations of a subset of NIF implosion experiments. Using two-dimensional HYDRA simulations [M. M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).] of the capsule only, these simulations represent as accurately as possible the conditions of a given experiment, including the as-shot capsule metrology, capsule surface roughness, and ice layer defects as seeds for the growth of hydrodynamic instabilities. The radiation drive used in these capsule-only simulations can be tuned to reproduce quite well the measured implosion timing, kinematics, and low-mode asymmetry. In order to simulate the experiments as accurately as possible, a limited number of fully three-dimensional implosion simulations are also being performed. Despite detailed efforts to incorporate all of the effects known and believed to be important in determining implosion performance, substantial yield discrepancies remain between experiment and simulation. Some possible alternate scenarios and effects that could resolve this discrepancy are discussed.

  4. New and improved CH implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Doeppner, T.; Kritcher, A. L.; Ralph, J. E.; Jarrott, L. C.; Albert, F.; Benedetti, L. R.; Field, J. E.; Goyon, C. S.; Hohenberger, M.; Izumi, N.; Milovich, J. L.; Bachmann, B.; Casey, D. T.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.

    2017-10-01

    Improvements to the hohlraum for CH implosions have resulted in near-record hot spot pressures, 225 Gbar. Implosion symmetry and laser energy coupling are improved by using a hohlraum that, compared to the previous high gas-fill hohlraum, is longer, larger, at lower gas fill density, and is fielded at zero wavelength separation to minimize cross-beam energy transfer. With a capsule at 90% of its original size in this hohlraum, implosion symmetry changes from oblate to prolate, at 33% cone fraction. Simulations highlight improved inner beam propagation as the cause of this symmetry change. These implosions have produced the highest yield for CH ablators at modest power and energy, i.e., 360 TW and 1.4 MJ. Upcoming experiments focus on continued improvement in shape as well as an increase in implosion velocity. Further, results and future plans on an increase in capsule size to improve margin will also be presented. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  5. Use of d-3He proton spectroscopy as a diagnostic of shell rho r in capsule implosion experiments with approximately 0.2 NIF scale high temperature Hohlraums at Omega.

    PubMed

    Delamater, N D; Wilson, D C; Kyrala, G A; Seifter, A; Hoffman, N M; Dodd, E; Singleton, R; Glebov, V; Stoeckl, C; Li, C K; Petrasso, R; Frenje, J

    2008-10-01

    We present the calculations and preliminary results from experiments on the Omega laser facility using d-(3)He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell rho r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 microm length x 1200 microm diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell rho r, since the d-(3)He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated rho r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule rho r changes. Proton stopping models are used to infer shell unablated mass and shell rho r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.

  6. Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA

    DOE PAGES

    Igumenshchev, I. V.; Goncharov, V. N.; Marshall, F. J.; ...

    2016-05-04

    The effects of large-scale (with Legendre modes ≲10) laser-imposed nonuniformities in direct-drive cryogenic implosions on the OMEGA laser system are investigated using three-dimension hydrodynamic simulations performed using a newly developed code ASTER. Sources of these nonuniformities include an illumination pattern produced by 60 OMEGA laser beams, capsule offsets (~10 to 20 μm), and imperfect pointing, energy balance, and timing of the beams (with typical σ rms ~10 μm, 10%, and 5 ps, respectively). Two implosion designs using 26-kJ triple-picket laser pulses were studied: a nominal design, in which a 880-μm-diameter capsule is illuminated by the same-diameter beams, and a “R75”more » design using a capsule of 900 μm in diameter and beams of 75% of this diameter. Simulations found that nonuniformities because of capsule offsets and beam imbalance have the largest effect on implosion performance. These nonuniformities lead to significant distortions of implosion cores resulting in an incomplete stagnation. The shape of distorted cores is well represented by neutron images, but loosely in x-rays. Simulated neutron spectra from perturbed implosions show large directional variations and up to ~ 2 keV variation of the hot spot temperature inferred from these spectra. The R75 design is more hydrodynamically efficient because of mitigation of crossed-beam energy transfer, but also suffers more from the nonuniformities. Furthermore, simulations predict a performance advantage of this design over the nominal design when the target offset and beam imbalance σ rms are reduced to less than 5 μm and 5%, respectively.« less

  7. Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igumenshchev, I. V.; Goncharov, V. N.; Marshall, F. J.

    The effects of large-scale (with Legendre modes ≲10) laser-imposed nonuniformities in direct-drive cryogenic implosions on the OMEGA laser system are investigated using three-dimension hydrodynamic simulations performed using a newly developed code ASTER. Sources of these nonuniformities include an illumination pattern produced by 60 OMEGA laser beams, capsule offsets (~10 to 20 μm), and imperfect pointing, energy balance, and timing of the beams (with typical σ rms ~10 μm, 10%, and 5 ps, respectively). Two implosion designs using 26-kJ triple-picket laser pulses were studied: a nominal design, in which a 880-μm-diameter capsule is illuminated by the same-diameter beams, and a “R75”more » design using a capsule of 900 μm in diameter and beams of 75% of this diameter. Simulations found that nonuniformities because of capsule offsets and beam imbalance have the largest effect on implosion performance. These nonuniformities lead to significant distortions of implosion cores resulting in an incomplete stagnation. The shape of distorted cores is well represented by neutron images, but loosely in x-rays. Simulated neutron spectra from perturbed implosions show large directional variations and up to ~ 2 keV variation of the hot spot temperature inferred from these spectra. The R75 design is more hydrodynamically efficient because of mitigation of crossed-beam energy transfer, but also suffers more from the nonuniformities. Furthermore, simulations predict a performance advantage of this design over the nominal design when the target offset and beam imbalance σ rms are reduced to less than 5 μm and 5%, respectively.« less

  8. Measurement of the hot spot electron temperature in NIF ICF implosions using Krypton x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M.; Barrios, M.; Berzak Hopkins, L.; Casey, D.; Chung, H.-K.; Hammel, B.; Jarrott, C.; Nora, R.; Pak, A.; Scott, H.; Spears, B.; Weber, C.

    2015-11-01

    The inference of ion temperature from neutron spectral measurements in indirect-drive ICF implosions is known to be sensitive to non-thermal velocity distributions in the fuel. The electron temperature (Te) inferred from dopant line ratios should not be sensitive to these bulk motions and hence may be a better measure of the thermal temperature of the hot spot. Here we describe a series of experiments to be conducted on the NIF where a small concentration of a mid-Z dopant (Krypton) is added to the fuel gas. The x-ray spectra is measured and the electron temperature is inferred from Kr line ratios. We also quantify the level of radiative cooling in the hot spot due to this mid-Z dopant. These experiments represent the first direct measurement of hot spot Te using spectroscopy, and we will describe the considerations for applying x-ray spectroscopy in such dense and non-uniform hot spots. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    PubMed

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  10. Polar tent for reduced perturbation of NIF ignition capsules

    NASA Astrophysics Data System (ADS)

    Hammel, B. A.; Pickworth, L.; Stadermann, M.; Field, J.; Robey, H.; Scott, H. A.; Smalyuk, V.

    2016-10-01

    In simulations, a tent that contacts the capsule near the poles and departs tangential to the capsule surface greatly reduces the capsule perturbation, and the resulting mass injected into the hot-spot, compared to current capsule support methods. Target fabrication appears feasible with a layered tent (43-nm polyimide + 8-nm C) for increased stiffness. We are planning quantitative measurements of the resulting shell- ρR perturbation near peak implosion velocity (PV) using enhanced self-emission backlighting, achieved by adding 1% Ar to the capsule fill in Symcaps (4He + H). Layered DT implosions are also planned for an integrated test of capsule performance. We will describe the design and simulation predictions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  11. In-flight neutron spectra as an ICF diagnostic for implosion asymmetries

    NASA Astrophysics Data System (ADS)

    Cerjan, C.; Sayre, D. B.; Sepke, S. M.

    2018-02-01

    The yield and spectral shape of the neutrons produced during in-flight reactions provide stringent constraints upon the symmetry of the fully compressed fuel conditions in Inertial Confinement Fusion implosions. Neutron production from a specific deuterium gas-filled implosion is simulated in detail and compared with the experimental neutron spectra along two lines-of-sight. An approximate reactivity formulation is applied to obtain further insight into the underlying fuel configuration. This analysis suggests that the differences observed in the observed spectra correspond to angularly dependent triton velocity distributions created by an asymmetric plasma configuration.

  12. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  13. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  14. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE PAGES

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; ...

    2016-03-14

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  15. Two-dimensional implosion simulations with a kinetic particle code [2D implosion simulations with a kinetic particle code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy

    Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less

  16. Two-dimensional implosion simulations with a kinetic particle code [2D implosion simulations with a kinetic particle code

    DOE PAGES

    Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy

    2017-05-17

    Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less

  17. Imaging of High-Z doped, Imploded Capsule Cores

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.; Edwards, M. John; Suter, Larry J.

    2006-10-01

    The ability to correctly ascertain the shape of imploded fusion capsules is critical to be able to achieve the spherical symmetry needed to maximize the energy yield of proposed fusion experiments for the National Ignition Facility. Implosion of the capsule creates a hot, dense core. The introduction of a high-Z dopant into the gas-filled core of the capsule increases the amount of bremsstrahlung radiation produced in the core and should make the imaging of the imploded core easier. Images of the imploded core can then be analyzed to ascertain the symmetry of the implosion. We calculate that the addition of Ne gas into a deuterium gas core will increase the amount of radiation emission while preserving the surrogacy of the radiation and hydrodynamics in the indirect drive NIF hohlraum in the proposed cryogenic hohlraums. The increased emission will more easily enable measurement of asymmetries and tuning of the implosion.

  18. High-resolution, detailed simulations of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, Daniel

    2015-11-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3-D) character of the flow, accurately modeling NIF implosions remains at the edge of current radiation hydrodynamics simulation capabilities. This talk describes the current state of progress of 3-D, high-resolution, capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Most importantly, it is found that a single, standard simulation methodology appears adequate to model both implosion types and gives confidence that such a model can be used to guide future implosion designs toward ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

  19. Zonal flow generation in inertial confinement fusion implosions

    DOE PAGES

    Peterson, J. L.; Humbird, K. D.; Field, J. E.; ...

    2017-03-06

    A supervised machine learning algorithm trained on a multi-petabyte dataset of inertial confinement fusion simulations has identified a class of implosions that robustly achieve high yield, even in the presence of drive variations and hydrodynamic perturbations. These implosions are purposefully driven with a time-varying asymmetry, such that coherent flow generation during hotspot stagnation forces the capsule to self-organize into an ovoid, a shape that appears to be more resilient to shell perturbations than spherical designs. Here this new class of implosions, whose configurations are reminiscent of zonal flows in magnetic fusion devices, may offer a path to robust inertial fusion.

  20. Zonal flow generation in inertial confinement fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J. L.; Humbird, K. D.; Field, J. E.

    A supervised machine learning algorithm trained on a multi-petabyte dataset of inertial confinement fusion simulations has identified a class of implosions that robustly achieve high yield, even in the presence of drive variations and hydrodynamic perturbations. These implosions are purposefully driven with a time-varying asymmetry, such that coherent flow generation during hotspot stagnation forces the capsule to self-organize into an ovoid, a shape that appears to be more resilient to shell perturbations than spherical designs. Here this new class of implosions, whose configurations are reminiscent of zonal flows in magnetic fusion devices, may offer a path to robust inertial fusion.

  1. Anomalous yield reduction in direct-drive DT implosions due to 3He addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Hans W; Langenbrunner, James R; Mack, Joseph M

    2008-01-01

    Glass capsules were imploded in direct drive on the OMEGA laser [T. R. Boehly et aI., Opt. Commun. 133, 495, 1997] to look for anomalous degradation in deuterium/tritium (DT) yield (i.e., beyond what is predicted) and changes in reaction history with {sup 3}He addition. Such anomalies have previously been reported for D/{sup 3}He plasmas, but had not yet been investigated for DT/{sup 3}He. Anomalies such as these provide fertile ground for furthering our physics understanding of ICF implosions and capsule performance. A relatively short laser pulse (600 ps) was used to provide some degree of temporal separation between shock andmore » compression yield components for analysis. Anomalous degradation in the compression component of yield was observed, consistent with the 'factor of two' degradation previously reported by MIT at a 50% {sup 3}He atom fraction in D{sub 2} using plastic capsules [Rygg et aI., Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT, but consistent with LANL results in D{sub 2}/{sup 3}He [Wilson, et aI., lml Phys: Conf Series 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression ofcapsules containing {sup 3}He. Leading candidate explanations are poorly understood Equation-of-State (EOS) for gas mixtures, and unanticipated particle pressure variation with increasing {sup 3}He addition.« less

  2. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less

  3. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE PAGES

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; ...

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less

  4. Positron radiography of ignition-relevant ICF capsules

    DOE PAGES

    Williams, G. J.; Chen, Hui; Field, J. E.; ...

    2017-12-11

    Laser-generated positrons are evaluated as a probe source to radiograph in-flight ignition-relevant inertial confinement fusion capsules. Current ultraintense laser facilities are capable of producing 2 ×10 12 relativistic positrons in a narrow energy bandwidth and short time duration. Monte Carlo simulations suggest that the unique characteristics of such positrons allow for the reconstruction of both capsule shell radius and areal density between 0.002 and 2g/cm 2. The energy-downshifted positron spectrum and angular scattering of the source particles are sufficient to constrain the conditions of the capsule between preshot and stagnation. Here, we evaluate the effects of magnetic fields near themore » capsule surface using analytic estimates where it is shown that this diagnostic can tolerate line integrated field strengths of 100 T mm.« less

  5. Positron radiography of ignition-relevant ICF capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, G. J.; Chen, Hui; Field, J. E.

    Laser-generated positrons are evaluated as a probe source to radiograph in-flight ignition-relevant inertial confinement fusion capsules. Current ultraintense laser facilities are capable of producing 2 ×10 12 relativistic positrons in a narrow energy bandwidth and short time duration. Monte Carlo simulations suggest that the unique characteristics of such positrons allow for the reconstruction of both capsule shell radius and areal density between 0.002 and 2g/cm 2. The energy-downshifted positron spectrum and angular scattering of the source particles are sufficient to constrain the conditions of the capsule between preshot and stagnation. Here, we evaluate the effects of magnetic fields near themore » capsule surface using analytic estimates where it is shown that this diagnostic can tolerate line integrated field strengths of 100 T mm.« less

  6. Positron radiography of ignition-relevant ICF capsules

    NASA Astrophysics Data System (ADS)

    Williams, G. J.; Chen, Hui; Field, J. E.; Landen, O. L.; Strozzi, D. J.

    2017-12-01

    Laser-generated positrons are evaluated as a probe source to radiograph in-flight ignition-relevant inertial confinement fusion capsules. Current ultraintense laser facilities are capable of producing 2 × 1012 relativistic positrons in a narrow energy bandwidth and short time duration. Monte Carlo simulations suggest that the unique characteristics of such positrons allow for the reconstruction of both capsule shell radius and areal density between 0.002 and 2 g/cm2. The energy-downshifted positron spectrum and angular scattering of the source particles are sufficient to constrain the conditions of the capsule between preshot and stagnation. We evaluate the effects of magnetic fields near the capsule surface using analytic estimates where it is shown that this diagnostic can tolerate line integrated field strengths of 100 T mm.

  7. Modeling of Low Feed-Through CD Mix Implosions

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; MacLaren, Steven; Greenough, Jeff; Casey, Daniel; Dittrich, Tom; Kahn, Shahab; Kyrala, George; Ma, Tammy; Salmonson, Jay; Smalyuk, Vladimir; Tipton, Robert

    2015-11-01

    The CD Mix campaign previously demonstrated the use of nuclear diagnostics to study the mix of separated reactants in plastic capsule implosions at the National Ignition Facility. However, the previous implosions suffered from large instability growth seeded from perturbations on the outside of the capsule. Recently, the separated reactants technique has been applied to two platforms designed to minimize this feed-through and isolate local mix at the gas-ablator interface: the Two Shock (TS) and Adiabat-Shaped (AS) Platforms. Additionally, the background contamination of Deuterium in the gas has been greatly reduced, allowing for simultaneous observation of TT, DT, and DD neutrons, which respectively give information about core gas performance, gas-shell atomic mix, and heating of the shell. In this talk, we describe efforts to model these implosions using high-resolution 2D ARES simulations with both a Reynolds-Averaged Navier Stokes method and an enhanced diffusivity model. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-674867.

  8. Hot spot temperature measurements in DT layered implosions

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Ma, T.; Macphee, A.; Callahan, D.; Chen, H.; Cerjan, C.; Clark, D.; Edgell, D.; Hurricane, O.; Izumi, N.; Khan, S.; Jarrott, L.; Kritcher, A.; Springer, P.

    2015-11-01

    The temperature of the burning DT hot spot in an ICF implosion is a crucial parameter in understanding the thermodynamic conditions of the fuel at stagnation and and the performance of the implosion in terms of alpha-particle self-heating and energy balance. The continuum radiation spectrum emitted from the hot spot provides an accurate measure of the emissivity-weighted electron temperature. Absolute measurements of the emitted radiation are made with several independent instruments including spatially-resolved broadband imagers, and space- and time-integrated monochromatic detectors. We present estimates of the electron temperature in DT layered implosions derived from the radiation spectrum most consistent with the available measurements. The emissivity-weighted electron temperatures are compared to the neutron-averaged apparent ion temperatures inferred from neutron time-of-flight detectors. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Unique capabilities for ICF and HEDP research with the KrF laser

    NASA Astrophysics Data System (ADS)

    Obenschain, Stephen; Bates, Jason; Chan, Lop-Yung; Karasik, Max; Kehne, David; Sethian, John; Serlin, Victor; Weaver, James; Oh, Jaechul; Jenkins, Bruce; Lehmberg, Robert; Hegeler, Frank; Terrell, Stephen; Aglitskiy, Yefim; Schmitt, Andrew

    2014-10-01

    The krypton-fluoride (KrF) laser provides the shortest wavelength, broadest bandwidth and most uniform target illumination of all developed high-energy lasers. For directly driven targets these characteristics result in higher and more uniform ablation pressures as well as higher intensity thresholds for laser-plasma instability. The ISI beam smoothing scheme implemented on the NRL Nike KrF facility allows easy implementation of focal zooming where the laser radial profile is varied during the laser pulse. The capability for near continuous zooming with KrF would be valuable towards minimizing the effects of cross beam energy transport (CBET) in directly driven capsule implosions. The broad bandwidth ISI beam smoothing that is utilized with the Nike KrF facility may further inhibit certain laser plasma instability. In this presentation we will summarize our current understanding of laser target interaction with the KrF laser and the benefits it provides for ICF and certain HEDP experiments. Status and progress in high-energy KrF laser technology will also be discussed. Work supported by the Deparment of Energy, NNSA.

  10. Validating Hydrodynamic Growth in National Ignition Facility Implosions

    NASA Astrophysics Data System (ADS)

    Peterson, J. Luc

    2014-10-01

    The hydrodynamic growth of capsule imperfections can threaten the success of inertial confinement fusion implosions. Therefore, it is important to design implosions that are robust to hydrodynamic instabilities. However, the numerical simulation of interacting Rayleigh-Taylor and Richtmyer-Meshkov growth in these implosions is sensitive to modeling uncertainties such as radiation drive and material equations of state, the effects of which are especially apparent at high mode number (small perturbation wavelength) and high convergence ratio (small capsule radius). A series of validation experiments were conducted at the National Ignition Facility to test the ability to model hydrodynamic growth in spherically converging ignition-relevant implosions. These experiments on the Hydro-Growth Radiography platform constituted direct measurements of the growth of pre-imposed imperfections up to Legendre mode 160 and a convergence ratio of greater than four using two different laser drives: a ``low-foot'' drive used during the National Ignition Campaign and a larger adiabat ``high-foot'' drive that is modeled to be relatively more robust to ablation front hydrodynamic growth. We will discuss these experiments and how their results compare to numerical simulations and analytic theories of hydrodynamic growth, as well as their implications for the modeling of future designs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. LANL Q2 2016 Quarterly Progress Report. Science Campaign and ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Melissa Rae

    2016-04-07

    This progress report includes highlights for the Science Campaign and ICF about Advanced Certification and Assessment Methodologies, Implosion Hydrodynamics (C-1, SCE), Materials and Nuclear Science (C-1, C-2), Capabilities for Nuclear Intelligence, and High Energy Density Science (C-1, C-4, C-10). Upcoming meetings, briefings, and experiments are then listed for April and May.

  12. First measurements of deuterium-tritium and deuterium-deuterium fusion reaction yields in ignition-scalable direct-drive implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, C. J.; Radha, P. B.; Knauer, J. P.

    In this study, the deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes, aremore » not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.« less

  13. First measurements of deuterium-tritium and deuterium-deuterium fusion reaction yields in ignition-scalable direct-drive implosions

    DOE PAGES

    Forrest, C. J.; Radha, P. B.; Knauer, J. P.; ...

    2017-03-03

    In this study, the deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes, aremore » not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.« less

  14. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  15. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less

  16. A technique for extending by ~10 3 the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA a)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sio, H.; Séguin, F. H.; Frenje, J. A.

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D 3He-, D 2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10 2 for obtaining the spectral shape, and by 10 3 for mean energy (ρR) measurement, corresponding to proton fluences of 10 8 and 10 9 cm -2, respectively. Finally, using this new technique, ρR asymmetries can be measuredmore » during both shock and compression burn (proton yield ~10 8 and ~10 12, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±~10 mg/cm 2.« less

  17. Measurements of Deuterium-Tritium Fuel Fractionation from Kinetic Effects in Ignition-Relevant Direct-Drive Cryogenic Implosions

    NASA Astrophysics Data System (ADS)

    Forrest, C.; Glebov, V. Yu.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.

    2016-10-01

    Measurements of DT and DD reaction yields have been studied using ignition-relevant, cryogenically cooled deuterium-tritium gas-filled cryogenic DT targets in inertial confinement fusion (ICF) implosions. In these experiments, carried out at the Omega Laser Facility, highresolution time-of-flight spectroscopy was used to measure the primary neutron peak distribution required to infer the DT and DD reaction yields. From these measurements, it will be shown that the yield ratio has a χ2/per degree of freedom of 0.67 as compared with the measured fraction of the target fuel composition. This observation indicates that kinetic effects leading to species separation are insignificant in ICF ignition-relevant DT implosions on OMEGA. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Viscosity Control Experiment Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Heidi E.; Bradley, Paul Andrew

    Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modifymore » viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.« less

  19. Analysis of NIF experiments with the minimal energy implosion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, B., E-mail: bcheng@lanl.gov; Kwan, T. J. T.; Wang, Y. M.

    2015-08-15

    We apply a recently developed analytical model of implosion and thermonuclear burn to fusion capsule experiments performed at the National Ignition Facility that used low-foot and high-foot laser pulse formats. Our theoretical predictions are consistent with the experimental data. Our studies, together with neutron image analysis, reveal that the adiabats of the cold fuel in both low-foot and high-foot experiments are similar. That is, the cold deuterium-tritium shells in those experiments are all in a high adiabat state at the time of peak implosion velocity. The major difference between low-foot and high-foot capsule experiments is the growth of the shock-inducedmore » instabilities developed at the material interfaces which lead to fuel mixing with ablator material. Furthermore, we have compared the NIF capsules performance with the ignition criteria and analyzed the alpha particle heating in the NIF experiments. Our analysis shows that alpha heating was appreciable only in the high-foot experiments.« less

  20. Symmetry Tuning with Cone Powers for Defect Induced Mix Experiment Implosions

    NASA Astrophysics Data System (ADS)

    Krasheninnikova, N.; Schmitt, M.; Murphy, T.; Cobble, J.; Tregillis, I.; Kyrala, G.; Bradley, P.; Hakel, P.; Hsu, S.; Kanzleiter, R.; Obrey, K.; Baumgaertel, J.; Batha, S.; DIME Team

    2013-10-01

    Recent DIME campaigns have demonstrated the effectiveness of cone power tuning to control the implosion symmetry in PDD configuration. DIME aims to assess the effects of mix on thermonuclear burn during a thin-shell capsule implosion. Plastic shell capsules doped with mid-Z material and filled with 5 atm of DD, are ablatively driven in a PDD laser configuration to a CR of ~7. Time-gated, spectrally and spatially resolved, dopant emission images characterize mix and temperature morphology during the implosion, while neutron diagnostics concurrently give the information about burn. Symmetry should be maintained throughout the implosions to achieve high neutron yield and optimum spectroscopic signal. 2D and 3D computer simulations using code HYDRA were performed to validate and optimize implosion symmetry using cone power tuning. In particular, Omega campaign confirmed P2 tunability with cone powers while experiments on NIF demonstrated that by reducing the energy in polar cones P2 was reduced to <1%. However, during NIF campaigns, self-emission images revealed a complex internal structure around the equator, which was not seen in HYDRA simulations and could be attributed to LPI effects. Subsequent DIME campaigns on NIF were able to eliminate this equatorial feature by reducing the laser drive substantiating the LPI hypothesis. Work performed by LANL under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the USDoE.

  1. Polar-Direct-Drive Defect Implosions at OMEGA inPreparation for Experiments at NIF

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Schmitt, M. J.; Murphy, T. J.; Tregillis, I. L.; Wysocki, F. J.; Obrey, K. D.; Magelssen, G. R.; Glebov, V.; Bradley, P. A.; Hsu, S. C.; Krasheninnikova, N. V.; Batha, S. H.

    2011-10-01

    The Defect-Implosion (DIME) campaign involves compressing perturbed spherical capsules with polar direct drive (PDD). For direct-drive implosions at NIF, PDD will be used. We have done simulations and experiments at OMEGA to test our modeling capability for equatorial-plane defects in fusion capsules and for PDD at NIF. Since PDD is anisotropic, we show the results of 0th hydrodynamics of implosions and perturbation-driven features near stagnation. Later presentations discuss defect-induced mix and neutronics, and laser pointing for NIF experiments. Prototype OMEGA shots used 865- μm diameter CH shells filled with 5 atm of D2. Machined channels 30- μm wide and up to 9- μm deep formed the defects. This work has been performed under the auspices of the US DOE, contract number DE-AC52-06NA25396.

  2. Capsule Performance Optimization in the National Ignition Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landen, O L; MacGowan, B J; Haan, S W

    2009-10-13

    A capsule performance optimization campaign will be conducted at the National Ignition Facility to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting themore » key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.« less

  3. Capsule performance optimization in the national ignition campaign

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; MacGowan, B. J.; Haan, S. W.; Edwards, J.

    2010-08-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [1] to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  4. Hydro-scaling of DT implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Spears, Brian; Clark, Dan

    2017-10-01

    Recent implosion experiments on the National Ignition Facility (NIF) exceed 50 kJ in fusion yield and exhibit yield amplifications of >2.5-3x due to alpha-particle self-heating of the hot-spot. Two methods to increase the yield are (i) to improve the implosion quality, or stagnation pressure, at fixed target scale (by increasing implosion velocity, reducing 3D effects, etc.), and (ii) to hydrodynamically scale the capsule and absorbed energy. In the latter case the stagnation pressure remains constant, but the yield-in the absence of alpha-heating-increases as Y S 4 . 5 , where the capsule radius is increased by S, and the absorbed energy by S3 . With alpha-heating the increase with scale is considerably stronger. We present projections in the performance of current DT experiments, and the extrapolations to ignition, based on applying hydro-scaling theory and accounting for the effect of alpha-heating. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Subscale HDC implosions driven at high radiation temperature using advanced hohlraums

    NASA Astrophysics Data System (ADS)

    Ho, D.; Amendt, P.; Jones, O.; Berzak Hopkins, L.; Le Pape, S.

    2017-10-01

    Implosions using HDC ablators have received increased attention because of shorter pulse length and can access higher implosion velocity than CH ablators. Recent HDC midscale (979 m radius) implosion experiments have achieved DT neutron yields of 1.5e16. Our 2D simulations show that subscale (890 m radius) HDC capsules can achieve robust high-yield performance if driven at high enough radiation temperature 330 eV, because the penalty for less fuel mass can be offset by higher implosion velocity. To achieve 330 eV will likely require the use of innovative hohlraum concepts, e.g., subscale rugby-shaped hohlraum using 1.3 MJ of laser energy without incurring a risk of high laser backscatter. Radiation symmetry is currently under study. Confidence in our modeling of HDC implosions is high in part because our 2D modeling of recent HDC implosions experiments show good agreement with data. Work performed under auspices of U.S. DOE by LLNL under 15-ERD-058.

  6. X-ray penumbral imaging diagnostic developments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, B.; Abu-Shawareb, H.; Alexander, N.; Ayers, J.; Bailey, C. G.; Bell, P.; Benedetti, L. R.; Bradley, D.; Collins, G.; Divol, L.; Döppner, T.; Felker, S.; Field, J.; Forsman, A.; Galbraith, J. D.; Hardy, C. M.; Hilsabeck, T.; Izumi, N.; Jarrot, C.; Kilkenny, J.; Kramer, S.; Landen, O. L.; Ma, T.; MacPhee, A.; Masters, N.; Nagel, S. R.; Pak, A.; Patel, P.; Pickworth, L. A.; Ralph, J. E.; Reed, C.; Rygg, J. R.; Thorn, D. B.

    2017-08-01

    X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material mix in ICF implosions.

  7. A technique for extending by ∼10{sup 3} the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sio, H., E-mail: hsio@mit.edu; Séguin, F. H.; Frenje, J. A.

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D{sup 3}He-, D{sub 2}-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10{sup 2} for obtaining the spectral shape, and by 10{sup 3} for mean energy (ρR) measurement, corresponding to proton fluences of 10{sup 8} and 10{sup 9} cm{sup −2}, respectively. Using this new technique, ρR asymmetries can be measured duringmore » both shock and compression burn (proton yield ∼10{sup 8} and ∼10{sup 12}, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±∼10 mg/cm{sup 2}.« less

  8. High-density carbon capsule experiments on the national ignition facility

    DOE PAGES

    Ross, J. S.; Ho, D.; Milovich, J.; ...

    2015-02-25

    Indirect-drive implosions with a high-density carbon (HDC) capsule were conducted on the National Ignition Facility (NIF) to test HDC properties as an ablator material for inertial confinement fusion. In this study, a series of five experiments were completed with 76-μm-thick HDC capsules using a four-shock laser pulse optimized for HDC. The pulse delivered a total energy of 1.3 MJ with a peak power of 360 TW. The experiment demonstrated good laser to target coupling (~90 %) and excellent nuclear performance. Lastly, a deuterium and tritium gas-filled HDC capsule implosion produced a neutron yield of 1.6×10 15 ± 3×10 13, amore » yield over simulated in one dimension of 70%.« less

  9. Measurement of inflight shell areal density near peak velocity using a self backlighting technique

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; MacPhee, A. G.; Scott, H. A.; Robey, H. F.; Landen, O. L.; Barrios, M. A.; Regan, S. P.; Schneider, M. B.; Hoppe, M., Jr.; Kohut, T.; Holunga, D.; Walters, C.; Haid, B.; Dayton, M.

    2016-05-01

    The growth of perturbations in inertial confinement fusion (ICF) capsules can lead to significant variation of inflight shell areal density (ρR), ultimately resulting in poor compression and ablator material mixing into the hotspot. As the capsule is accelerated inward, the perturbation growth results from the initial shock-transit through the shell and then amplification by Rayleigh-Taylor as the shell accelerates inwards. Measurements of ρR perturbations near peak implosion velocity (PV) are essential to our understanding of ICF implosions because they reflect the integrity of the capsule, after the inward acceleration growth is complete, of the actual shell perturbations including native capsule surface roughness and “isolated defects”. Quantitative measurements of shell-ρR perturbations in capsules near PV are challenging, requiring a new method with which to radiograph the shell. An innovative method, utilized in this paper, is to use the self-emission from the hotspot to “self- backlight” the shell inflight. However, with nominal capsule fills there is insufficient self-emission for this method until the capsule nears peak compression (PC). We produce a sufficiently bright continuum self-emission backlighter through the addition of a high-Z gas (∼ 1% Ar) to the capsule fill. This provides a significant (∼10x) increase in emission at hυ∼8 keV over nominal fills. “Self backlit” radiographs are obtained for times when the shock is rebounding from the capsule center, expanding out to meet the incoming shell, providing a means to sample the capsule optical density though only one side, as it converges through PV.

  10. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited).

    PubMed

    Kyrala, G A; Dixit, S; Glenzer, S; Kalantar, D; Bradley, D; Izumi, N; Meezan, N; Landen, O L; Callahan, D; Weber, S V; Holder, J P; Glenn, S; Edwards, M J; Bell, P; Kimbrough, J; Koch, J; Prasad, R; Suter, L; Kline, J L; Kilkenny, J

    2010-10-01

    Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.

  11. Capsule Performance Optimization for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, Otto

    2009-11-01

    The overall goal of the capsule performance optimization campaign is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. This will be accomplished using a variety of targets that will set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix. The targets include high Z re-emission spheres setting foot symmetry through foot cone power balance [1], liquid Deuterium-filled ``keyhole'' targets setting shock speed and timing through the laser power profile [2], symmetry capsules setting peak cone power balance and hohlraum length [3], and streaked x-ray backlit imploding capsules setting ablator thickness [4]. We will show how results from successful tuning technique demonstration shots performed at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design meet the required sensitivity and accuracy. We will also present estimates of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors, and show that these get reduced after a number of shots and iterations to meet an acceptable level of residual uncertainty. Finally, we will present results from upcoming tuning technique validation shots performed at NIF at near full-scale. Prepared by LLNL under Contract DE-AC52-07NA27344. [4pt] [1] E. Dewald, et. al. Rev. Sci. Instrum. 79 (2008) 10E903. [0pt] [2] T.R. Boehly, et. al., Phys. Plasmas 16 (2009) 056302. [0pt] [3] G. Kyrala, et. al., BAPS 53 (2008) 247. [0pt] [4] D. Hicks, et. al., BAPS 53 (2008) 2.

  12. ICF Implosions, Space-Charge Electric Fields, and Their Impact on Mix and Compression

    NASA Astrophysics Data System (ADS)

    Knoll, Dana; Chacon, Luis; Simakov, Andrei

    2013-10-01

    The single-fluid, quasi-neutral, radiation hydrodynamics codes, used to design the NIF targets, predict thermonuclear ignition for the conditions that have been achieved experimentally. A logical conclusion is that the physics model used in these codes is missing one, or more, key phenomena. Two key model-experiment inconsistencies on NIF are: 1) a lower implosion velocity than predicted by the design codes, and 2) transport of pusher material deep into the hot spot. We hypothesize that both of these model-experiment inconsistencies may be a result of a large, space-charge, electric field residing on the distinct interfaces in a NIF target. Large space-charge fields have been experimentally observed in Omega experiments. Given our hypothesis, this presentation will: 1) Develop a more complete physics picture of initiation, sustainment, and dissipation of a current-driven plasma sheath / double-layer at the Fuel-Pusher interface of an ablating plastic shell implosion on Omega, 2) Characterize the mix that can result from a double-layer field at the Fuel-Pusher interface, prior to the onset of fluid instabilities, and 3) Quantify the impact of the double-layer induced surface tension at the Fuel-Pusher interface on the peak observed implosion velocity in Omega.

  13. Diagnosing residual motion via the x-ray self emission from indirectly driven inertial confinement implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, A., E-mail: pak5@llnl.gov; Field, J. E.; Benedetti, L. R.

    2014-11-15

    In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of themore » x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.« less

  14. Numerical modeling of the sensitivity of x-ray driven implosions to low-mode flux asymmetries.

    PubMed

    Scott, R H H; Clark, D S; Bradley, D K; Callahan, D A; Edwards, M J; Haan, S W; Jones, O S; Spears, B K; Marinak, M M; Town, R P J; Norreys, P A; Suter, L J

    2013-02-15

    The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF) [1], to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P(4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P(4) shapes may be unquantifiable for DT layered capsules. Instead the positive P(4) asymmetry "aliases" itself as an oblate P(2) in the x-ray images. Correction of this apparent P(2) distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations.

  15. A near one-dimensional 2-shock indirectly driven implosion at convergence ratio 30

    NASA Astrophysics Data System (ADS)

    MacLaren, Steve

    2017-10-01

    Inertial confinement fusion implosions at the National Ignition Facility, while successfully demonstrating self-heating due to alpha-particle deposition, have fallen short of the performance predicted by one-dimensional multi-physics implosion simulations. The current understanding, based on simulations as well as experimental evidence, suggests that the principle reason for the disagreement is a breeching of the cold fuel assembly at stagnation which would otherwise completely confine the hot spot. 3-D simulations indicate a combination of low-mode symmetry swings and ablation-front hydrodynamic instability seeded by engineering features such as the capsule tent and fill tube lead to localized thinning and perforation of the stagnated fuel, resulting in a loss of hot spot pressure and energy. We describe a short series of experiments on the NIF designed specifically to avoid these issues in order to understand if, once they are removed, a suspended-fuel-layer deuterium-tritium implosion can achieve 1-D simulated performance. The particular implosion system combines a thick capsule shell with an elevated initial ablation temperature to minimize the ablation front perturbations from the engineering features, and incorporates a large ratio of hohlraum-to-capsule radius as a means to permit a higher degree of control over implosion symmetry. The resulting implosion at a convergence ratio of 30 was not perfectly spherically symmetric as observed by both neutron and time-resolved x-ray imaging diagnostics. However, the stagnation observables match closely the performance predicted by 1D simulations, including, when some hot spot motion is accounted for, the apparent ion temperature. We present this result along with the design for an upcoming 2-shock experiment to test whether this level of agreement with the 1D model can be achieved in the self-heating regime. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under

  16. Machining of Two-Dimensional Sinusoidal Defects on Ignition-Type Capsules to Study Hydrodynamic Instability at the National Ignition Facility

    DOE PAGES

    Giraldez, E. M.; Hoppe Jr., M. L.; Hoover, D. E.; ...

    2016-07-07

    Hydrodynamic instability growth and its effects on capsule implosion performance are being studied at the National Ignition Facility (NIF). Experimental results have shown that low-mode instabilities are the primary culprit for yield degradation. Ignition type capsules with machined 2D sinusoidal defects were used to measure low-mode hydrodynamic instability growth in the acceleration phase of the capsule implosion. The capsules were imploded using ignition-relevant laser pulses and the ablation-front modulation growth was measured using x-ray radiography. The experimentally measured growth was in good agreement with simulations.

  17. First Measurements of Deuterium-Tritium and Deuterium-Deuterium Fusion Reaction Yields in Ignition-Scalable Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Radha, P. B.; Knauer, J. P.; Glebov, V. Yu.; Goncharov, V. N.; Regan, S. P.; Rosenberg, M. J.; Sangster, T. C.; Shmayda, W. T.; Stoeckl, C.; Gatu Johnson, M.

    2017-03-01

    The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997), 10.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012), 10.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.

  18. Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, D.  T.; Woods, D. T.; Smalyuk, V. A.

    2015-05-19

    The ablator couples energy between the driver and fusion fuel in inertial confinement fusion (ICF). Because of its low opacity, high solid density, and material properties, beryllium has long been considered an ideal ablator for ICF ignition experiments at the National Ignition Facility. We report here the first indirect drive Be implosions driven with shaped laser pulses and diagnosed with fusion yield at the OMEGA laser. The results show good performance with an average DD neutron yield of ~2 × 10⁹ at a convergence ratio of R₀/R ~ 10 and little impact due to the growth of hydrodynamic instabilities andmore » mix. In addition, the effect of adding an inner liner of W between the Be and DD is demonstrated.« less

  19. A near one-dimensional indirectly driven implosion at convergence ratio 30

    NASA Astrophysics Data System (ADS)

    MacLaren, S. A.; Masse, L. P.; Czajka, C. E.; Khan, S. F.; Kyrala, G. A.; Ma, T.; Ralph, J. E.; Salmonson, J. D.; Bachmann, B.; Benedetti, L. R.; Bhandarkar, S. D.; Bradley, P. A.; Hatarik, R.; Herrmann, H. W.; Mariscal, D. A.; Millot, M.; Patel, P. K.; Pino, J. E.; Ratledge, M.; Rice, N. G.; Tipton, R. E.; Tommasini, R.; Yeamans, C. B.

    2018-05-01

    Inertial confinement fusion cryogenic-layered implosions at the National Ignition Facility, while successfully demonstrating self-heating due to alpha-particle deposition, have fallen short of the performance predicted by one-dimensional (1D) multi-physics implosion simulations. The current understanding, from experimental evidence as well as simulations, suggests that engineering features such as the capsule tent and fill tube, as well as time-dependent low-mode asymmetry, are to blame for the lack of agreement. A short series of experiments designed specifically to avoid these degradations to the implosion are described here in order to understand if, once they are removed, a high-convergence cryogenic-layered deuterium-tritium implosion can achieve the 1D simulated performance. The result is a cryogenic layered implosion, round at stagnation, that matches closely the performance predicted by 1D simulations. This agreement can then be exploited to examine the sensitivity of approximations in the model to the constraints imposed by the data.

  20. Capsule performance optimization in the National Ignition Campaigna)

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Kyrala, G. A.; Michel, P.; Milovich, J.; Munro, D. H.; Nikroo, A.; Olson, R. E.; Robey, H. F.; Spears, B. K.; Thomas, C. A.; Weber, S. V.; Wilson, D. C.; Marinak, M. M.; Suter, L. J.; Hammel, B. A.; Meyerhofer, D. D.; Atherton, J.; Edwards, J.; Haan, S. W.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.

    2010-05-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  1. Capsule performance optimization in the National Ignition Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landen, O. L.; Bradley, D. K.; Braun, D. G.

    2010-05-15

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition designmore » and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.« less

  2. Streaked X Ray Spectra from Polar Direct Drive Capsules with an Equatorial Defect

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Bradley, P. A.; Cobble, J. A.; Hsu, S. C.; Krasheninnikova, N. S.; Magelssen, G. R.; Schmitt, M. J.; Tregillis, I. L.; Wysocki, F. J.

    2011-10-01

    In the Defect Implosion Experiment (DIME) on Omega, capsules with an equatorial ``trench'' defect have been imploded to study defect-induced mix processes. The capsules contain layers doped with titanium and/or vanadium, with doped layers in contact with the deuterium fill gas on some targets, and separated from the gas by a layer of undoped plastic in others. Streaked x-ray spectra from the capsule implosions provide information on conditions in the mix layer. Polar direct drive was utilized in preparation for experiments planned for the National Ignition Facility in 2012. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  3. Optimizing implosion yields using rugby-shaped hohlraums

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Robey, H.; Amendt, P.; Philippe, F.; Casner, A.; Caillaud, T.; Bourgade, J.-L.; Landoas, O.; Li, C. K.; Petrasso, R.; Seguin, F.; Rosenberg, M.; Glebov, V. Yu.

    2009-11-01

    We present the first experimental results on optimizing capsule implosion experiments by using rugby-shaped hohlraums [1] on the Omega laser, University of Rochester. This campaign compared D2-filled capsule performance between standard cylindrical Au hohlraums and rugby-shaped hohlraums for demonstrating the energetics advantages of the rugby geometry. Not only did the rugby-shaped hohlraums show nearly 20% more x-ray drive energy over the cylindrical hohlraums, but also the high-performance design of the capsules provided nearly 20 times more DD neutrons than in any previous Omega hohlraum campaigns, thereby enabling use of neutron temporal diagnostics. Comparison with simulations on neutron burn histories, x-ray core imaging, backscattered laser light and radiation temperature are presented. [1] P. Amendt et al., Phys. Plasmas 15, 012702 (2008)

  4. X-ray driven implosions at ignition relevant velocities on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N. B.; MacKinnon, A. J.; Hicks, D. G.

    2013-05-15

    Backlit convergent ablator experiments on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] are indirect drive implosions that study the inflight dynamics of an imploding capsule. Side-on, backlit radiography provides data used by the National Ignition Campaign to measure time-dependent properties of the capsule ablator including its center of mass radius, velocity, and unablated mass. Previously, Callahan [D. A. Callahan et al., Phys. Plasmas 19, 056305 (2012)] and Hicks [D. H. Hicks et al., Phys. Plasmas 19, 122702 (2012)] reported backlit convergent ablator experiments demonstrating velocities approaching those required for ignition. This paper focusesmore » on implosion performance data in the “rocket curve” plane, velocity vs. ablator mass. These rocket curve data, along with supporting numerical simulations, show that the nominal 195 μm-thick ignition capsule would reach the ignition velocity goal V = 370 km/s with low ablator mass remaining–below the goal of M = 0.25 mg. This finding led to experiments with thicker capsule ablators. A recent symmetry capsule experiment with a 20 μm thicker capsule driven by 520 TW, 1.86 MJ laser pulse (along with a companion backlit convergent ablator experiment) appears to have demonstrated V≥350 km/s with ablator mass remaining above the ignition goal.« less

  5. Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandarkar, N.; Horwood, C.; Bunn, T.

    For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percentmore » gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.« less

  6. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Perkins, L. J.; Ho, D. D.-M.; Logan, B. G.; Zimmerman, G. B.; Rhodes, M. A.; Strozzi, D. J.; Blackfield, D. T.; Hawkins, S. A.

    2017-06-01

    We examine the potential that imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under implosion compression may relax the conditions required for ignition and propagating burn in indirect-drive inertial confinement fusion (ICF) targets. This may allow the attainment of ignition, or at least significant fusion energy yields, in presently performing ICF targets on the National Ignition Facility (NIF) that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation [Doeppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. Results of detailed two-dimensional radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction, and potential stabilization of higher-mode Rayleigh-Taylor instabilities. Optimum initial applied fields are found to be around 50 T. Given that the full plasma structure at capsule stagnation may be governed by three-dimensional resistive magneto-hydrodynamics, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to further assess the potential of applied magnetic fields to ICF ignition and burn on NIF.

  7. Multiple Experimental Platform Consistency at NIF

    NASA Astrophysics Data System (ADS)

    Benedetti, L. R.; Barrios, M. A.; Bradley, D. K.; Eder, D. C.; Khan, S. F.; Izumi, N.; Jones, O. S.; Ma, T.; Nagel, S. R.; Peterson, J. L.; Rygg, J. R.; Spears, B. K.; Town, R. P.

    2013-10-01

    ICF experiments at NIF utilize several platforms to assess different metrics of implosion quality. In addition to the point design-a target capsule of DT ice inside a thin plastic ablator-notable platforms include: (i) Symmetry Capsules(SymCaps), mass-adjusted CH capsules filled with DT gas for similar hydrodynamic performance without the need for a DT crystal; (ii) D:3He filled SymCaps, designed for low neutron yield implosions to accommodate a variety of x-ray and optical diagnostics; and (iii) Convergent Ablators, SymCaps coupled with x-radiography to assess in-flight velocity and symmetry of the implosion over ~1 ns before stagnation and burn. These platforms are expected to be good surrogates for one another, and their hohlraum and implosion performance variations have been simulated in detail. By comparing results of similar experiments, we isolate platform-specific variations. We focus on the symmetry, convergence, and timing of x-ray emission as observed in each platform as this can be used to infer stagnation pressure and temperature. This work performed under the auspices of the U.S. Dept. of Energy by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-640865.

  8. Improving cryogenic deuterium–tritium implosion performance on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangster, T. C.; Goncharov, V. N.; Betti, R.

    2013-05-15

    A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented.more » The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat–IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.« less

  9. Improving cryogenic deuterium tritium implosion performance on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangster, T. C.; Goncharov, V. N.; Betti, R.

    2013-01-01

    A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented.more » The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat–IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.« less

  10. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilacher, F.; Radha, P. B.; Forrest, C.

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for

  11. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    DOE PAGES

    Weilacher, F.; Radha, P. B.; Forrest, C.

    2018-04-26

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for

  12. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Weilacher, F.; Radha, P. B.; Forrest, C.

    2018-04-01

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium-tritium (D-T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. It is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D-D and D-T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D-D reaction, whereas they insignificantly influence the inferred D-T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. This code will continue to be used for post-processing detailed hydrodynamic simulations

  13. Measurements of an ablator-gas atomic mix in indirectly driven implosions at the National Ignition Facility.

    PubMed

    Smalyuk, V A; Tipton, R E; Pino, J E; Casey, D T; Grim, G P; Remington, B A; Rowley, D P; Weber, S V; Barrios, M; Benedetti, L R; Bleuel, D L; Bradley, D K; Caggiano, J A; Callahan, D A; Cerjan, C J; Clark, D S; Edgell, D H; Edwards, M J; Frenje, J A; Gatu-Johnson, M; Glebov, V Y; Glenn, S; Haan, S W; Hamza, A; Hatarik, R; Hsing, W W; Izumi, N; Khan, S; Kilkenny, J D; Kline, J; Knauer, J; Landen, O L; Ma, T; McNaney, J M; Mintz, M; Moore, A; Nikroo, A; Pak, A; Parham, T; Petrasso, R; Sayre, D B; Schneider, M B; Tommasini, R; Town, R P; Widmann, K; Wilson, D C; Yeamans, C B

    2014-01-17

    We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294  eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations.

  14. First Measurements of Deuterium-Tritium and Deuterium-Deuterium Fusion Reaction Yields in Ignition-Scalable Direct-Drive Implosions.

    PubMed

    Forrest, C J; Radha, P B; Knauer, J P; Glebov, V Yu; Goncharov, V N; Regan, S P; Rosenberg, M J; Sangster, T C; Shmayda, W T; Stoeckl, C; Gatu Johnson, M

    2017-03-03

    The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)OPCOB80030-401810.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.

  15. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF.

    PubMed

    Ma, T; Izumi, N; Tommasini, R; Bradley, D K; Bell, P; Cerjan, C J; Dixit, S; Döppner, T; Jones, O; Kline, J L; Kyrala, G; Landen, O L; LePape, S; Mackinnon, A J; Park, H-S; Patel, P K; Prasad, R R; Ralph, J; Regan, S P; Smalyuk, V A; Springer, P T; Suter, L; Town, R P J; Weber, S V; Glenzer, S H

    2012-10-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  16. Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility

    DOE PAGES

    Simakov, A. N.; Wilson, D. C.; Yi, S. A.; ...

    2017-05-10

    When used with 1.06-mm beryllium (Be) capsules on the National Ignition Facility, gold hohlraums with the inner diameter of 5.75 mm and helium gas fill density of 1.6 mg/cm 3 exhibit significant drive degradation due to laser energy backscatter (of order 14%–17%) and “missing” X-ray drive energy (about 32% during the main pulse). Also, hard to simulate cross-beam energy transfer (CBET) must be used to control the implosion symmetry. Larger, 6.72-mm hohlraums with fill densities ≤0.6 mg/cm 3 generally offer improved drive efficiency, reduced hot-electron preheat, and better control of the implosion symmetry without CBET. Recently, we carried out anmore » exploratory campaign to evaluate performance of 1.06-mm Be capsules in such hohlraums and determine optimal hohlraum parameters. Specifically, we performed in this paper a hohlraum fill-density scan with a three-shock, 9.5-ns laser pulse and found that an appropriate axial laser repointing and azimuthal outer-quad splitting resulted in significantly improved hohlraum energetics at fill densities ≤0.3 mg/cm 3 (with backscattered and “missing” energies being of about 5% and 23% of the total laser energy, respectively). The capsule shape at stagnation was slightly oblate and improved with lowering the fill density. We also performed an implosion with a lower-picket, 12.6-ns pulse at the hohlraum fill density of 0.15 mg/cm 3 to observe comparable hohlraum energetics (about 3% of backscattered and 27% of “missing” energy) but an even more oblate implosion shape. Finally, achieving symmetric implosions of 1.06-mm Be capsules in low-fill, 6.72-mm gold hohlraums with reasonably low-adiabat pulses may not be feasible. However, symmetric implosions have recently been successfully demonstrated in such hohlraums with 0.8-mm Be capsules.« less

  17. Implosion spectroscopy in Rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Philippe, Franck; Tassin, Veronique; Bitaud, Laurent; Seytor, Patricia; Reverdin, Charles

    2014-10-01

    The rugby hohlraum concept has been validated in previous experiments on the OMEGA laser facility. This new hohlraum type can now be used as a well-characterized experimental platform to study indirect drive implosion, at higher radiation temperatures than would be feasible at this scale with classical cylindrical hohlraums. Recent experiments have focused on the late stages of implosion and hotspot behavior. The capsules included both a thin buried Titanium tracer layer, 0-3 microns from the inner surface, Argon dopant in the deuterium gas fuel and Germanium doped CH shells, providing a variety of spectral signatures of the plasma conditions in different parts of the target. X-ray spectroscopy and imaging were used to study compression, Rayleigh-Taylor instabilities growth at the inner surface and mix between the shell and gas.

  18. The Crystal Backlighter Imager: a spherically-bent crystal imager for radiography on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hall, Gareth; Krauland, Christine; Buscho, Justin; Hibbard, Robin; McCarville, Thomas; Lowe-Webb, Roger; Ayers, Shannon; Kalantar, Daniel; Kohut, Thomas; Kemp, G. Elijah; Bradley, David; Bell, Perry; Landen, Otto; Brewster, Nathaniel; Piston, Kenneth

    2017-10-01

    The Crystal Backlighter Imager (CBI) is a quasi-monochromatic, near-normal incidence, spherically-bent crystal imager being developed for the NIF, which will allow ICF capsule implosions to be radiographed close to stagnation for the first time. This has not been possible using the previous pinhole-based area-backlighter configuration, as the self-emission from the capsule hotspot overwhelms the backlighter in the final stages of the implosion. CBI mitigates the broadband self-emission from the capsule hot spot by using the extremely narrow bandwidth (a few eV) inherent to imagers based on near-normal-incidence Bragg x-ray optics. The development of a diagnostic with the capability to image the capsule during the final stages of the implosion (r less than 200um) is important, as it will allow the shape, integrity and density of the shell to be measured, and will allow the evolution of features, such as the fill tube and capsule support structure, to be imaged close to bang time. The concept and operation of the 11.6keV CBI diagnostic will be discussed, and the first results from experiments on the NIF will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. Simulations of the impact of localized defects on ICF implosions

    NASA Astrophysics Data System (ADS)

    Milovich, Jose; Robey, Harry; Weber, Christopher; Sepke, Scott; Clark, Daniel; Koning, Joe; Smalyuk, Vladimir; Martinez, David

    2016-10-01

    Recent experiments have identified the tent membranes that support the capsule as a source of a large azimuthal perturbation at the point of departure from the surface. Highly-resolved 2D simulations have shown that vorticity generated by the interaction of the ablated capsule material and the tent allows for the penetration of cold ablator material into the burning hot-spot likely cooling the central burning plasma. These observations have motivated the search for alternative supporting methods. One of the techniques being considered uses the existing fill-tube (needed to deliver the cryogenic fuel) supported against gravity by a thin rod (cantilever) spanning the hohlraum diameter. Recent experiments have assessed the perturbation induced on the target as the rod is positioned along the fill-tube at different distances from the capsule surface and found optical-depth modulations oriented along the cantilever direction, possibly caused by laser spot shadowing or hydro-coupling. To fully understand the data we have undertaken an extensive study of highly-resolved 2D integrated simulations abled to resolve the 12 um diameter cantilever. Results of our computations and comparison with the experiments will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Development of Eulerian Code Modeling for ICF Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Paul A.

    2014-02-27

    One of the most pressing unexplained phenomena standing in the way of ICF ignition is understanding mix and how it interacts with burn. Experiments were being designed and fielded as part of the Defect-Induced Mix Experiment (DIME) project to obtain data about the extent of material mix and how this mix influenced burn. Experiments on the Omega laser and National Ignition Facility (NIF) provided detailed data for comparison to the Eulerian code RAGE1. The Omega experiments were able to resolve the mix and provide “proof of principle” support for subsequent NIF experiments, which were fielded from July 2012 through Junemore » 2013. The Omega shots were fired at least once per year between 2009 and 2012. RAGE was not originally designed to model inertial confinement fusion (ICF) implosions. It still lacks lasers, so the code has been validated using an energy source. To test RAGE, the simulation output is compared to data and by means of postprocessing tools that were developed. Here, the various postprocessing tools are described with illustrative examples.« less

  1. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    NASA Astrophysics Data System (ADS)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  2. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng

    2016-08-15

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and themore » final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.« less

  3. Implosion dynamics measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness

  4. Implosion dynamics measurements at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used tomore » establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  5. Convergent Geometry Foam Buffered Direct Drive Experiments*

    NASA Astrophysics Data System (ADS)

    Watt, R. G.; Wilson, D. C.; Hollis, R. V.; Gobby, P. L.; Chrien, R. E.; Mason, R. J.; Kopp, R. A.; Willi, O.; Iwase, A.; Barringer, L. H.; Gaillard, R.; Kalantar, D. H.; Lerche, R. A.; MacGowan, B.; Nelson, M.; Phillips, T.; Knauer, J. P.; McKenty, P. W.

    1996-11-01

    A serious concern for directly driven ICF implosions is the asymmetry imparted to the capsule by laser drive non-uniformities, particularly the ``early time imprint'' remaining despite the use of random phase plates and smoothing with spectral dispersion. The use of a foam buffer has been proposed as a means to reduce this imprint. Two types of convergent geometry tests of the technique to correct static nonuniformities have been studied to date; cylindrical implosions at the Trident and Vulcan lasers, and spherical implosions at the NOVA laser, all using 527 nm laser drive. Cylindrical implosions used end on x-ray backlighter imaging of inner surface disruption due an intentional hole in the drive footprint, using 50 mg/cc acyrlate foam with a thin Au preheat layer. Spherical implosions used 50 mg/cc polystyrene foam plus Au to study yield and imploded core symmetry of capsules with and without a foam buffer, in comparison to ``clean 1D'' calculations. For thick enough layers, all cases showed improvement. Details of the experiments and theoretical unpinnings will be shown. *Work performed under US DOE Contract No. W-7405-Eng-36.

  6. Impact of flows on ion temperatures inferred from neutron spectra in asymmetrically driven OMEGA DT implosions

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Frenje, J.; Lahmann, B.; Seguin, F.; Petrasso, R.; Appelbe, B.; Chittenden, J.; Walsh, C.; Delettrez, J.; Igumenshchev, I.; Knauer, J. P.; Glebov, V. Yu.; Forrest, C.; Grimble, W.; Marshall, F.; Michel, T.; Stoeckl, C.; Haines, B. M.; Zylstra, A. B.

    2017-10-01

    Ion temperatures (Tion) in Inertial Confinement Fusion (ICF) experiments have traditionally been inferred from the broadening of primary neutron spectra. Directional motion (flow) of the fuel at burn, expected to arise due to asymmetries imposed by e.g. engineering features or drive non-uniformity, also impacts broadening and may lead to artificially inflated ``Tion'' values. Flow due to low-mode asymmetries is expected to give rise to line-of-sight variations in measured Tion, as observed in OMEGA cryogenic DT implosions but not in similar experiments at the NIF. In this presentation, we report on OMEGA experiments with intentional drive asymmetry designed for testing the ability to accurately predict and measure line-of-sight differences in apparent Tion due to low-mode asymmetry-seeded flows. The measurements are contrasted to CHIMERA, RAGE and ASTER simulations, providing insight into implosion dynamics and the relative importance of laser drive non-uniformity, stalk and offset as sources of asymmetry. The results highlight the complexity of hot-spot dynamics, which is a problem that must be mastered to achieve ICF ignition. This work was supported in part by the U.S. DOE, NLUF and LLE.

  7. Ignition and pusher adiabat

    DOE PAGES

    Cheng, B. L.; Kwan, T. J. T.; Wang, Y. M.; ...

    2018-05-18

    In the last five years, large amounts of high quality experimental data in inertial confinement fusion (ICF) were produced at the National Ignition Facility (NIF). From the NIF data, we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition in ICF and identified the critical physical issues important to achieve ignition, such as implosion energetics, pusher adiabat, tamping effects in fuel confinement, and confinement time. In this article, we will present recently developed TN ignition theory and implosion scaling laws [1, 2] characterizing the thermodynamic properties of the hot spot and the TN ignition metrics atmore » NIF. We compare our theoretical predictions with NIF data with good agreement between theory and experiments. We will also demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium-tritium and on the neutron yields of ICF capsules. Applications [3–5] to NIF experiments and physical explanations of the discrepancies among theory, data and simulations will be presented. In our theory, the actual adiabat of the cold DT fuel can be inferred from neutron image data of a burning capsule. With the experimentally inferred hot spot mix, the CH mix in the cold fuel could be estimated, as well as the preheat. Finally, possible path forwards to reach high yields are discussed.« less

  8. Downscattered Neutron Imaging for ICF

    NASA Astrophysics Data System (ADS)

    Moran, Michael; Haan, Steven; Hatchett, Stephen; Izumi, Nobuhiko; Koch, Jeffrey; Lerche, Richard; Phillips, Thomas

    2002-11-01

    Diagnostics which measure the performance of implosions are critical for the success of ignition. Neutron yield, fusion-burn time history, and images are examples of important diagnostics. Neutron and x-ray images will record the geometries of compressed targets during the fusion-burn process. Such images provide a critical test of the accuracy of numerical modeling of ICF experiments. Imaging of downscattered neutrons, by using energy-resolved detection, offers the intriguing advantage of being able to provide independent images of burning and non-burning regions of the nuclear fuel. The usefulness of downscattered neutron imaging depends on both the information content of the data and on the quality of the data that can be recorded. The information content will relate to the characteristic neutron spectra that are associated with emission from different regions of the source. Numerical modeling of ICF fusion burn will be required to interpret the corresponding energy-dependent images. The exercise will be useful only if the images can be recorded with sufficient definition to reveal the spatial and energy-dependent features of interest. Several options are being evaluated with respect to the feasibility of providing the desired simultaneous spatial and energy resolution. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  9. Neutron spectrometry - An essential tool for diagnosing implosions at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackinnon, A J; Johnson, M G; Frenje, J A

    DT neutron yield (Y{sub n}), ion temperature (T{sub i}) and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-Time-Of-Flight (nTOF) spectrometers and a Magnetic Recoil Spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the redundancy required for reliable measurements of Yn, Ti and dsr. From the measured dsr value, an areal density ({rho}R) is determined from the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6) x dsr{submore » 10-12 MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration. The spectrometers are now performing to the required accuracy, as indicated by the good agreement between the different measurements over several commissioning shots. In addition, recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental Ignition Threshold Factor (ITFx) which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.« less

  10. Ignition and pusher adiabat

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F.

    2018-07-01

    In the last five years, large amounts of high quality data on inertial confinement fusion (ICF) experiments were produced at the National Ignition Facility (NIF). From this data we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition and identified critical issues that must be addressed to achieve a burning hotspot, such as implosion energetics, pusher adiabat, tamping effects, and confinement time. In this paper we present a review of recently developed TN ignition and implosion scaling theory (Cheng et al 2013 Phys. Rev. E 88 041101; Cheng et al 2014 Phys. Plasmas 21 10270) that characterizes the thermodynamic properties of the hotspot and the ignition criteria for ICF. We compare our theoretical predictions with NIF data and find good agreement between theory and experiments. We demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium–tritium (DT) gas, and thus on the integrated performance of ICF capsules. Theoretical analysis of NIF experiments (Cheng et al 2015 Phys. Plasmas 22 082704; Melvin et al 2015 Phys. Plasmas 22 022708; Cheng et al 2016 Phys. Plasmas 23 120702) and physical explanations of the discrepancies between theory, data, and simulations are presented. It is shown that the true experimental adiabat of the cold DT fuel can be inferred from neutron image data of a capsule implosion. We show that the ablator mix and preheat in the cold fuel can be estimated from the experimentally inferred hotspot mix. Finally, possible paths forward to reach higher yields at NIF implied by the theory are discussed.

  11. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    DOE PAGES

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less

  12. Prolate-Spheroid (``Rugby-Shaped'') Hohlraum for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Vandenboomgaerde, M.; Bastian, J.; Casner, A.; Galmiche, D.; Jadaud, J.-P.; Laffite, S.; Liberatore, S.; Malinie, G.; Philippe, F.

    2007-08-01

    A novel rugby-ball shaped hohlraum is designed in the context of the indirect-drive scheme of inertial-confinement fusion (ICF). Experiments were performed on the OMEGA laser and are the first use of rugby hohlraums for ICF studies. Analysis of experimental data shows that the hohlraum energetics is well understood. We show that the rugby-ball shape exhibits advantages over cylinder, in terms of temperature and of symmetry control of the capsule implosion. Simulations indicate that rugby hohlraum driven targets may be candidates for ignition in a context of early Laser MegaJoule experiments with reduced laser energy.

  13. Development of new platforms for hydrodynamic instability and asymmetry measurements in deceleration phase of indirectly-driven implosions on NIF

    NASA Astrophysics Data System (ADS)

    Pickworth, Louisa

    2017-10-01

    Hydrodynamic instabilities and asymmetries are a major obstacle in the quest to achieve ignition as they cause pre-existing capsule perturbations to grow and ultimately quench the fusion burn in experiments at the National Ignition Facility (NIF). This talk will review recent developments of the experimental platforms and techniques to measure high-mode instabilities and low-mode asymmetries in the deceleration phase of implosions. These new platforms provide a natural link between the acceleration-phase experiments and neutron performance of layered deuterium-tritium implosions. In one innovative technique, self-emission from the hot spot was enhanced with argon dopant to ``self-backlight'' the shell in-flight around peak compression. Experiments with pre-imposed 2-D perturbations measured instability growth factors, while experiments with 3-D, ``native-roughness'' perturbations measured shell integrity in the deceleration phase of implosions. In a complimentary technique, the inner surface of the shell, along with its low-mode asymmetries and high-mode perturbations were visualized in implosions using x-ray emission of a high-Z dopant added to the inner surface of the capsule. These new measurements were instrumental in revealing unexpected surprises and providing improved understanding of the role of instabilities and asymmetries on implosion performance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  15. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designsa)

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-01

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium-tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF "path" to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ˜2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP-based properties of DT

  16. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; Boehly, T. R.

    2015-05-15

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into accountmore » in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κ{sub QMD}), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ∼2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP

  17. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE PAGES

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; ...

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (K QMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  18. Ion Implantation Doping of Inertial Confinement Fusion Targets

    DOE PAGES

    Shin, S. J.; Lee, J. R. I.; van Buuren, T.; ...

    2017-12-19

    Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here in this study, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for themore » entire range of ion doses studied (2 × 10 14 to 1 × 10 16 cm -2) and for annealing temperatures up to 700°C. Lastly, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~10 17 cm -2.« less

  19. Ion Implantation Doping of Inertial Confinement Fusion Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, S. J.; Lee, J. R. I.; van Buuren, T.

    Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here in this study, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for themore » entire range of ion doses studied (2 × 10 14 to 1 × 10 16 cm -2) and for annealing temperatures up to 700°C. Lastly, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~10 17 cm -2.« less

  20. T-T Neutron Spectrum from Inertial Confinement Implosions

    NASA Astrophysics Data System (ADS)

    Bacher, A. D.; Casey, D. T.; Frenje, J. A.; Gatu Johnson, M. J.; Manuel, M.; Sinenian, N.; Zylstra, A. B.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu; Radha, P. B.; Meyerhofer, D. D.; Sangster, T. C.; McNabb, D. P.; Amendt, P. A.; Boyd, R. N.; Caggiano, J. A.; Hatchett, S. P.; Pino, J. E.; Quaglioni, S.; Rygg, J. R.; Thompson, I. J.; Herrmann, H. W.; Kim, Y. H.

    2013-08-01

    A new technique that uses inertial confinement implosions for measuring low-energy nuclear reactions important to nuclear astrophysics is described. Simultaneous measurements of n-D and n-T elastic scattering at 14.1 MeV using deuterium-tritium gas-filled capsules provide a proof of principle for this technique. Measurements have been made of D(d,p)T (dd) and T(t,2n)4He (tt) reaction yields relative to the D(t,n)4He (dt) reaction yield for deuterium-tritium mixtures with f T / f D between 0.62 and 0.75 and for a wide range of ion temperatures to test our understanding of the implosion processes. Measurements of the shape of the neutron spectrum from the T(t,2n)4He reaction have been made for each of these target configurations.

  1. Neutron spectrometry-An essential tool for diagnosing implosions at the National Ignition Facility (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M. Gatu; Frenje, J. A.; Casey, D. T.

    2012-10-15

    DT neutron yield (Y{sub n}), ion temperature (T{sub i}), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y{sub n}, T{sub i}, and dsr. From the measured dsr value, an areal density ({rho}R) is determined through the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6)more » Multiplication-Sign dsr{sub 10-12MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.« less

  2. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...

    2015-08-27

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  3. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Town, R. P. J.; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Döppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Kline, J. L.; Kyrala, G. A.; Ma, T.; Milovich, J. L.; Moody, J. D.; Nagel, S. R.; Pak, A.; Peterson, J. L.; Robey, H. F.; Ross, J. S.; Scott, R. H. H.; Spears, B. K.; Edwards, M. J.; Kilkenny, J. D.; Landen, O. L.

    2014-05-01

    In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.

  4. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  5. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, B K; Glenzer, S; Edwards, M J

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called themore » experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.« less

  6. Performance metrics for inertial confinement fusion implosions: Aspects of the technical framework for measuring progress in the National Ignition Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, Brian K.; Glenzer, S.; Edwards, M. J.

    The National Ignition Campaign (NIC) uses non-igniting 'tritium hydrogen deuterium (THD)' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off-nominal implosions. We will focus on the development of an experimental implosion performance metricmore » called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.« less

  7. The High-Foot Implosion Campaign on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hurricane, Omar

    2013-10-01

    The `High-Foot' platform manipulates the laser pulse-shape coming from the National Ignition Facility (NIF) laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This tactic gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. This approach is generally consistent with the philosophy laid out in a recent international workshop on the topic of ignition science on NIF [``Workshop on the Science of Fusion Ignition on NIF,'' Lawrence Livermore National Laboratory Report, LLNL-TR-570412 (2012). Op cit. V. Gocharov and O.A. Hurricane, ``Panel 3 Report: Implosion Hydrodynamics,'' LLNL-TR-562104 (2012)]. Side benefits our the High-Foot pulse-shape modification appear to be improvements in hohlraum behavior--less wall motion achieved through higher pressure He gas fill and improved inner cone laser beam propagation. Another consequence of the `High-Foot' is a higher fuel adiabat, so there is some relation to direct-drive experiments performed at the Laboratory for Laser Energetics (LLE). In this talk, we will cover the various experimental and theoretical motivations for the High-Foot drive as well as cover the experimental results that have come out of the High-Foot experimental campaign. Most notably, at the time of this writing record DT layer implosion performance with record low levels of inferred mix and excellent agreement with one-dimensional implosion models without the aid of mix models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. First liquid-layer implosion experiments at the NIF

    NASA Astrophysics Data System (ADS)

    Zylstra, Alex

    2017-10-01

    Replacing the standard ice layer in an ignition design with a liquid layer allows fielding the target with a higher central vapor pressure, leading to reduced implosion convergence ratio (CR). At lower CR, the implosions are expected to be more robust to instabilities and asymmetries than standard ice-layer designs, and are also unique in that the hot spot can be primarily formed from material originating in the central fuel vapor. The first liquid-layer implosions on the National Ignition Facility (NIF) have been performed by wicking the liquid fuel into a supporting foam that lines the inside surface of the capsule. A series of shots has been conducted between CR of 12 and 20 using a HDC ablator driven by a 3-shock pulse in a near-vacuum Au hohlraum. At the lowest CR the implosion performance is well predicted by 2-D radiation-hydrodynamics calculations. However, as the CR is increased the nominal simulations do not capture the experimentally observed trends. Data-based models suggest that the hot spot formation is unexpectedly suppressed at higher convergence. The data could be explained by reduced hydrodynamic coupling efficiency, or an anomalously enhanced thermal conductivity in the mixed DT/foam material. We show that the latter hypothesis can explain observed trends in several experimental metrics, including the yield, ion temperature, and burn duration. This work was performed under the auspices of the U.S. DoE by LANL under contract DE-AC52-06NA52396.

  9. Implosion symmetry and ρR measurements on the National Ignition Facility from nascent 27-31 MeV tertiary protons (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Petrasso, Richard D.

    1997-01-01

    Tertiary protons with birth energies from ˜27 to 30.8 MeV result from the implosion of ignition-scale inertial confinement fusion targets, such as those planned for the National Ignition Facility (NIF). Measurement of the tertiaries' slowing can provide a determination of the imploded areal density of the fuel capsule, as well as implosion asymmetry that results from anisotropy of the areal density and plasma temperature. In order to determine the utility of tertiaries for all phases of the NIF, we analyze three representative cases: a gas capsule (0.7 kJ yield); a cryogenic fuel capsule that fails to ignite (15 kJ); and a cryogenic fuel capsule that ignites and burns (13 000 kJ). In each case, tertiaries escape from the capsule and convey critical information about implosion dynamics. In addition, we show that for some gas-capsule implosions anticipated on OMEGA, tertiaries may be the only species of energetic charged particles that can determine the fuel areal density. Presently, we are building a charge-coupled device (CCD)-based charged particle spectrometer for OMEGA and for NOVA. In addition to the tertiaries, the spectrometers are sensitive to a variety of the energetic charged particles, such as knock-on protons, deuterons, and tritons, and 3He-burnup protons. In fact the latter set of charged particles will usually be the dominant signal. We will describe the basic features of the spectrometers and the measured response of the CCDs to 1-5 MeV protons, 1-5 MeV alphas, and 14 MeV neutrons (and associated gammas), the latter constitute the principal source of noise. This work is done in collaboration with C. K. Li, D. Hicks, and F. Seguin of MIT; with B. Burke of LL/MIT; with M. Cable, S. Pollaine, S. Haan, T. Bernat, T. Phillips, and J. Kilkenny of LLNL; with J, Knauer, S. Cremer, C. Verdon, and B. Kremens of University of Rochester; and with C. Ruiz and R. Leeper of SNL. This work is supported in part by LLNL Subcontract B313875 and University of Rochester

  10. Cryogenic thermonuclear fuel implosions on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.

    2012-05-15

    The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses themore » initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 {mu}m diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 {+-} 3) {mu}m, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 {+-} 0.09) g cm{sup -2} result in fuel densities approaching 600 g cm{sup -3}. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 {+-} 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 10{sup 15} that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7.5{+-}0.1) Multiplication-Sign 10{sup 14} which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 {+-} 30) ps. These indirect-drive implosions result in the highest areal

  11. Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Berzak Hopkins, L. F.; Ma, T.; Ralph, J. E.; Albert, F.; Benedetti, L. R.; Celliers, P. M.; Döppner, T.; Goyon, C. S.; Izumi, N.; Jarrott, L. C.; Khan, S. F.; Kline, J. L.; Kritcher, A. L.; Kyrala, G. A.; Nagel, S. R.; Pak, A. E.; Patel, P.; Rosen, M. D.; Rygg, J. R.; Schneider, M. B.; Turnbull, D. P.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.

    2016-11-01

    Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4 ×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

  12. Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility.

    PubMed

    Hinkel, D E; Berzak Hopkins, L F; Ma, T; Ralph, J E; Albert, F; Benedetti, L R; Celliers, P M; Döppner, T; Goyon, C S; Izumi, N; Jarrott, L C; Khan, S F; Kline, J L; Kritcher, A L; Kyrala, G A; Nagel, S R; Pak, A E; Patel, P; Rosen, M D; Rygg, J R; Schneider, M B; Turnbull, D P; Yeamans, C B; Callahan, D A; Hurricane, O A

    2016-11-25

    Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

  13. Hydrodynamic instability growth of three-dimensional modulations in radiation-driven implosions with “low-foot” and “high-foot” drives at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalyuk, V. A.; Weber, C. R.; Robey, H. F.

    Hydrodynamic instability growth has been studied using three-dimensional (3-D) broadband modulations by comparing “high-foot” and “low-foot” spherical plastic (CH) capsule implosions at the National Ignition Facility (NIF). The initial perturbations included capsule outer-surface roughness and capsule-mounting membranes (“tents”) that were similar to those used in a majority of implosions on NIF. The tents with thicknesses of 31-nm, 46-nm, and 109-nm were used in the experiments. The outer-surface roughness in the “low-foot” experiment was similar to the standard specification, while it was increased by ~4 times in the “high-foot” experiment to compensate for the reduced growth. The ablation-front instability growth wasmore » measured using a Hydrodynamic Growth Radiography platform at a convergence ratio of 3. The dominant capsule perturbations, generated by the tent mountings, had measured perturbation amplitudes comparable to the capsule thickness with the “low-foot” drive. These tent perturbations were reduced by ~3 to 10 times in implosions with the “high-foot” drive. Unexpectedly, the measured perturbations with initially thinner tents were either larger or similar to the measured perturbations with thicker tents for both “high-foot” and “low-foot” drives. While the measured instability growth of 3-D broadband perturbations was also significantly reduced by ~5 to 10 times with the “high-foot” drive, compared to the “low-foot” drive, the growth mitigation was stronger than expected based on previous “growth-factor” results measured with two-dimensional modulations. Lastly, one of the hypotheses to explain the results is based on the 3-D modulations of the oxygen content in the bulk of the capsule having a stronger effect on the overall growth of capsule perturbations than the outer-surface capsule roughness.« less

  14. Hydrodynamic instability growth of three-dimensional modulations in radiation-driven implosions with “low-foot” and “high-foot” drives at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Weber, C. R.; Robey, H. F.; ...

    2017-04-11

    Hydrodynamic instability growth has been studied using three-dimensional (3-D) broadband modulations by comparing “high-foot” and “low-foot” spherical plastic (CH) capsule implosions at the National Ignition Facility (NIF). The initial perturbations included capsule outer-surface roughness and capsule-mounting membranes (“tents”) that were similar to those used in a majority of implosions on NIF. The tents with thicknesses of 31-nm, 46-nm, and 109-nm were used in the experiments. The outer-surface roughness in the “low-foot” experiment was similar to the standard specification, while it was increased by ~4 times in the “high-foot” experiment to compensate for the reduced growth. The ablation-front instability growth wasmore » measured using a Hydrodynamic Growth Radiography platform at a convergence ratio of 3. The dominant capsule perturbations, generated by the tent mountings, had measured perturbation amplitudes comparable to the capsule thickness with the “low-foot” drive. These tent perturbations were reduced by ~3 to 10 times in implosions with the “high-foot” drive. Unexpectedly, the measured perturbations with initially thinner tents were either larger or similar to the measured perturbations with thicker tents for both “high-foot” and “low-foot” drives. While the measured instability growth of 3-D broadband perturbations was also significantly reduced by ~5 to 10 times with the “high-foot” drive, compared to the “low-foot” drive, the growth mitigation was stronger than expected based on previous “growth-factor” results measured with two-dimensional modulations. Lastly, one of the hypotheses to explain the results is based on the 3-D modulations of the oxygen content in the bulk of the capsule having a stronger effect on the overall growth of capsule perturbations than the outer-surface capsule roughness.« less

  15. 3D Simulations of NIF Wetted Foam Experiments to Understand the Transition from 2D to 3D Implosion Behavior

    NASA Astrophysics Data System (ADS)

    Haines, Brian; Olson, Richard; Yi, Austin; Zylstra, Alex; Peterson, Robert; Bradley, Paul; Shah, Rahul; Wilson, Doug; Kline, John; Leeper, Ramon; Batha, Steve

    2017-10-01

    The high convergence ratio (CR) of layered Inertial Confinement Fusion capsule implosions contribute to high performance in 1D simulations yet make them more susceptible to hydrodynamic instabilities, contributing to the development of 3D flows. The wetted foam platform is an approach to hot spot ignition to achieve low-to-moderate convergence ratios in layered implosions on the NIF unobtainable using an ice layer. Detailed high-resolution modeling of these experiments in 2D and 3D, including all known asymmetries, demonstrates that 2D hydrodynamics explain capsule performance at CR 12 but become less suitable as the CR increases. Mechanisms for this behavior and detailed comparisons of simulations to experiments on NIF will be presented. To evaluate the tradeoff between increased instability and improved 1D performance, we present a full-scale wetted foam capsule design with 17

  16. Relationship between symmetry and laser pulse shape in low-fill hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.

    2017-10-01

    Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  17. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosionmore » phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of

  18. PhD Dissertation Proposal - Introduction to Dark Mix Concept: Gamma Measurements of Capsule Mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meaney, Kevin Daniel

    Presentation slides: Intro to Inertial Confinement Fusion; Types of Mixture in ICF capsules; Previous mixture experiments; Dark Mix Concept; Measuring Dark Mix with Gamma Cherenkov Detector; Dissertation Outline.

  19. Mix Model Comparison of Low Feed-Through Implosions

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; MacLaren, S.; Greenough, J.; Casey, D.; Dewald, E.; Dittrich, T.; Khan, S.; Ma, T.; Sacks, R.; Salmonson, J.; Smalyuk, V.; Tipton, R.; Kyrala, G.

    2016-10-01

    The CD Mix campaign previously demonstrated the use of nuclear diagnostics to study the mix of separated reactants in plastic capsule implosions at the NIF. Recently, the separated reactants technique has been applied to the Two Shock (TS) implosion platform, which is designed to minimize this feed-through and isolate local mix at the gas-ablator interface and produce core yields in good agreement with 1D clean simulations. The effects of both inner surface roughness and convergence ratio have been probed. The TT, DT, and DD neutron signals respectively give information about core gas performance, gas-shell atomic mix, and heating of the shell. In this talk, we describe efforts to model these implosions using high-resolution 2D ARES simulations. Various methods of interfacial mix will be considered, including the Reynolds-Averaged Navier Stokes (RANS) KL method as well as and a multicomponent enhanced diffusivity model with species, thermal, and pressure gradient terms. We also give predictions of a upcoming campaign to investigate Mid-Z mixing by adding a Ge dopant to the CD layer. LLNL-ABS-697251 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Evidence for Stratification of Deuterium-Tritium Fuel in Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Manuel, M. J.-E.; Rinderknecht, H. G.; Sinenian, N.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu; Meyerhofer, D. D.; Sangster, T. C.; McNabb, D. P.; Amendt, P. A.; Boyd, R. N.; Rygg, J. R.; Herrmann, H. W.; Kim, Y. H.; Bacher, A. D.

    2012-02-01

    Measurements of the D(d,p)T (dd) and T(t,2n)He4 (tt) reaction yields have been compared with those of the D(t,n)He4 (dt) reaction yield, using deuterium-tritium gas-filled inertial confinement fusion capsule implosions. In these experiments, carried out on the OMEGA laser, absolute spectral measurements of dd protons and tt neutrons were obtained. From these measurements, it was concluded that the dd yield is anomalously low and the tt yield is anomalously high relative to the dt yield, an observation that we conjecture to be caused by a stratification of the fuel in the implosion core. This effect may be present in ignition experiments planned on the National Ignition Facility.

  1. Evidence for stratification of deuterium-tritium fuel in inertial confinement fusion implosions.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Manuel, M J-E; Rinderknecht, H G; Sinenian, N; Séguin, F H; Li, C K; Petrasso, R D; Radha, P B; Delettrez, J A; Glebov, V Yu; Meyerhofer, D D; Sangster, T C; McNabb, D P; Amendt, P A; Boyd, R N; Rygg, J R; Herrmann, H W; Kim, Y H; Bacher, A D

    2012-02-17

    Measurements of the D(d,p)T (dd) and T(t,2n)(4)He (tt) reaction yields have been compared with those of the D(t,n)(4)He (dt) reaction yield, using deuterium-tritium gas-filled inertial confinement fusion capsule implosions. In these experiments, carried out on the OMEGA laser, absolute spectral measurements of dd protons and tt neutrons were obtained. From these measurements, it was concluded that the dd yield is anomalously low and the tt yield is anomalously high relative to the dt yield, an observation that we conjecture to be caused by a stratification of the fuel in the implosion core. This effect may be present in ignition experiments planned on the National Ignition Facility.

  2. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm 2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  3. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.; ...

    2013-10-19

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm 2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  4. Hybrid strategy for increasing fusion performance and stagnation pressure in x-ray driven inertially confined fusion implosions on the NIF

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Edwards, M. J.; Casey, D.; Doeppner, T.; Hohenberger, M.; Hinkel, D.; Berzak Hopkins, L.; Le Pape, S.; MacLaren, S.; Masse, L.; Thomas, C.; Zylstra, A.

    2017-10-01

    Post NIC (2012), more stable and lower convergence implosions were developed and used as part of a `basecamp' strategy to identify obstacles to further performance. From 2013-2015 by probing away from a conservative working implosion in-steps towards conditions of higher velocity and compression, `Fuel Gain' and alpha-heating were obtained. In the process, performance cliffs unrelated to `mix' were identified the most impactful of which were symmetry control of the implosion and hydro seeded by engineering features. From 2015-2017 we focused on mitigating poor symmetry control and engineering improvements on fill-tubes and capsule mounting techniques. The results were more efficient implosions that can obtain the same performance levels as the earlier implosions, but with less laser energy. Presently, the best of these implosions is poised to step into a burning plasma state. Here, we describe the next step in our strategy that involves using the data we've acquired across parameter space to make a step to the largest symmetric implosions that can be fielded on NIF with the energy available. We describe the key principles that form the foundation of this approach. Performed under the auspices of U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Kritcher, A. L.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.

    2016-05-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.

  6. How to apply the ICF and ICF core sets for low back pain.

    PubMed

    Stier-Jarmer, Marita; Cieza, Alarcos; Borchers, Michael; Stucki, Gerold

    2009-01-01

    To introduce the International Classification of Functioning, Disability and Health (ICF) as conceptual model and classification and the ICF Core Sets as a way to specify functioning for a specific health condition such as Low Back Pain, and to illustrate the application of the ICF and ICF Core Sets in the context of clinical practice, the planning and reporting of studies and the comparison of health status measures. A decision-making and consensus process was performed to develop the ICF Core Sets for Low Back Pain, the linking procedure was applied as basis for the content comparison of health-status measures and the Rehab-Cycle was used to exemplify the application of the ICE and ICF Core Sets in clinical practice. Two different ICF Core Sets, namely, a comprehensive and a brief, are presented, three different health-status measures were linked to the ICF and compared and a case example of a patient with Low back Pain was described based on the Rehab-Cycle. The ICF is a promising new framework and classification to assess the impact of Low Back Pain. The ICF and practical tools, such as the ICF Core Sets for Low Back Pain, are useful for clinical practice, outcome and rehabilitation research, education, health statistics, and regulation.

  7. First shock tuning and backscatter measurements for large case-to-capsule ratio beryllium targets

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Yi, Austin; Kline, John; Kyrala, George; Simakov, Andrei; Wilson, Doug; Ralph, Joe; Dewald, Eduard; Strozzi, David; Celliers, Peter; Millot, Marius; Tommasini, Riccardo

    2016-10-01

    The current under performance of target implosions on the National Ignition Facility (NIF) has necessitated scaling back from high convergence ratio to access regimes of reduced physics uncertainties. These regimes, we expect, are more predictable by existing radiation hydrodynamics codes giving us a better starting point for isolating key physics questions. One key question is the lack of predictable in-flight and hot spot shape due to a complex hohlraum radiation environment. To achieve more predictable, shape tunable implosions we have designed and fielded a large 4.2 case-to-capsule ratio (CCR) target at the NIF using 6.72 mm diameter Au hohlraums and 1.6 mm diameter Cu-doped Be capsules. Simulations show that at these dimensions during a 10 ns 3-shock laser pulse reaching 270 eV hohlraum temperatures, the interaction between hohlraum and capsule plasma, which at lower CCR lead to beam propagation impedance by artificial plasma stagnation, are reduced. In this talk we will present measurements of early time drive symmetry using two-axis line-imaging velocimetry (VISAR) and streaked radiography measuring velocity of the imploding shell and their comparisons to post-shot calculations using the code HYDRA (Lawrence Livermore National Laboratory).

  8. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  9. Planar hydrodynamic instability computations and experiments with rugby-shaped hohlraums at the Omega laser

    NASA Astrophysics Data System (ADS)

    Vandenboomgaerde, M.; Liberatore, S.; Galmiche, D.; Casner, A.; Huser, G.; Jadaud, J. P.; Villette, B.

    2008-05-01

    Implosion of inertial confinement fusion (ICF) capsule is very sensitive to the growth of sphericity perturbations. The control of the feeding of such perturbations and their transport ('feedthrough') through the ablator is a key point to reach ignition. Since 2002 [1, 2], experiments have been designed and performed on the Omega laser facility in order to study these phenomena in planar geometry. A new 'rugby shaped' hohlraum was used [3, 4]. We present experimental results and comparisons with numerical simulations.

  10. Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Radha, P. B.

    2004-11-01

    Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ < 10) and intermediate modes (20 < ℓ < 50) occurring from single-beam laser nonuniformities. The neutron production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The neutron-rate curves for the thinner shells, however, have significantly lower amplitudes and widths closer to 1-D results, indicating shell breakup during the acceleration phase. The simulation results are consistent with experimental observations. Previously, the stability of plastic-shell implosions had been correlated to a static ``mix-width'' at the boundary of the gas and plastic pusher estimated using a variety of experimental observables and an assumption of spherical symmetry. Results of these 2-D simulations provide a comprehensive understanding of warm-target implosion dynamics without assumptions of spherical symmetry and serve to answer the question of the hydrodynamic surrogacy between these plastic-shell implosions and the cryogenic ignition designs.

  11. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  12. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; ...

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  13. Gamma-based Measurement of ``Dark Mix'' in ICF Capsules

    NASA Astrophysics Data System (ADS)

    Meaney, Kevin; Herrmann, H.; Kim, Yh; Zylstra, Ab; Geppert-Kleinrath, H.; Hoffman, Nm; Yi, As

    2017-10-01

    Mix of capsule ablator material into the fusion fuel is a source of yield degradation in inertial confinement fusion. Jetting or chunk mix, such as the elusive ``meteors'' that have been observed at NIF, can be difficult to diagnose because the chunks may not get hot enough to excite dopant x-rays, nor atomized enough for separated-reactants to fuse. Using the gamma reaction history (GRH-6m) diagnostic, (n,n') gammas from strategically placed carbon layer within a beryllium capsule gives a measure of the time-resolved areal density of this carbon during the burn and hence an indication of the compression and spatial distribution of this layer. As the carbon moves further from the fuel, the areal density nominally decreases as 1/r2 for unablated material. However, mix of this carbon into the cold dense fuel layer or hot spot will have a significant effect on the carbon gamma signal. Different types of mix (e.g., jetting, Rayleigh-Taylor fingers, diffusive, ...) as well as features that can seed this mix (eg., tents, fill,...) will be discussed along with their expected effect on the carbon signal. The design for upcoming OMEGA shots, which will demonstrate this technique, and the potential for use on the NIF will be presented.

  14. Optimization of Capsule Symmetry in Z-Pinch Driven Hohlraums

    NASA Astrophysics Data System (ADS)

    Vesey, R. A.; Cuneo, M.; Hanson, D.; Porter, J.; Mehlhorn, T.; Ruggles, L.; Simpson, W.; Vargas, M.; Hammer, J.; Landen, O.

    1999-11-01

    The uniformity of the radiation flux incident on the capsule is a critical issue for indirect drive fusion using the z-pinch driven hohlraum high-yield concept(J.H. Hammer et al., Phys. Plas. 6), 2129 (1999).. Experiments on the Z accelerator at Sandia have demonstrated the ability to diagnose the uniformity of the flux striking a foam ball (surrogate capsule)(P.A. Amendt et al., Phys. Plas. 4), 1862 (1997); S.G. Glendinning et al. Rev. Sci. Instrum. 70, 536 (1999).. These single-sided drive experiments have been modeled using radiosity and radiation-hydrodynamics codes, yielding agreement with the measured ablation rate vs. angle on the foam ball. Flux uniformity at the 1-2% level needed for high-convergence capsule implosions requires a 2-sided drive (top and bottom z-pinch) configuration. Constrained optimization methods have identified hohlraum geometries with improved symmetry.

  15. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-12-01

    While progress towards hot-spot ignition has been made achieving an alpha-heating dominated state in high-foot implosion experiments [Hurricane et al., Nat. Phys. 12, 800 (2016)] on the National Ignition Facility, improvements are needed to increase the fuel compression for the enhancement of the neutron yield. A strategy is proposed to improve the fuel compression through the recompression of a shock/compression wave generated by the end of the main drive portion of a high-foot pulse shape. Two methods for the peak pulse recompression, namely, the decompression-and-recompression (DR) and simple recompression schemes, are investigated and compared. Radiation hydrodynamic simulations confirm that the peak pulse recompression can clearly improve fuel compression without significantly compromising the implosion stability. In particular, when the convergent DR shock is tuned to encounter the divergent shock from the capsule center at a suitable position, not only the neutron yield but also the stability of stagnating hot-spot can be noticeably improved, compared to the conventional high-foot implosions [Hurricane et al., Phys. Plasmas 21, 056314 (2014)].

  16. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, George H.; Hora, H.; Badziak, J.

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authorsmore » showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B{sup 11} with proton clusters imbedded. This then makes p-B{sup 11} fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B{sup 11} power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion

  17. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    PubMed

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  18. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules

    DOE PAGES

    Orth, Charles D.

    2016-02-23

    We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot “mix” may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields — not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or “grains” of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation, and (2) this solid material spalls under shock loading and sudden decompression. Finally, we describe this mix mechanism, support it with simulationsmore » and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.« less

  19. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.

    PubMed

    Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-04-10

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165  μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  20. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ma, T.; Hurricane, O. A.; Callahan, D. A.; Barrios, M. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S. W.; Hinkel, D. E.; Berzak Hopkins, L. F.; Le Pape, S.; MacPhee, A. G.; Pak, A.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P.; Cerjan, C. J.; Church, J. A.; Dixit, S.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Field, J.; Fittinghoff, D. N.; Frenje, J. A.; Gatu Johnson, M.; Grim, G.; Guler, N.; Hatarik, R.; Herrmann, H. W.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Knauer, J.; Kohut, T.; Kozioziemski, B.; Kritcher, A.; Kyrala, G.; Landen, O. L.; MacGowan, B. J.; Mackinnon, A. J.; Meezan, N. B.; Merrill, F. E.; Moody, J. D.; Nagel, S. R.; Nikroo, A.; Parham, T.; Ralph, J. E.; Rosen, M. D.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M. B.; Shaughnessy, D.; Spears, B. K.; Town, R. P. J.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-04-01

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μ m in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1 /2 the neutron yield coming from α -particle self-heating.

  1. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, T.; Hurricane, O. A.; Callahan, D. A.

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Earlier resultsmore » have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.« less

  2. Large Survey of Neutron Spectrum Moments Due to ICF Drive Asymmetry

    NASA Astrophysics Data System (ADS)

    Field, J. E.; Munro, D.; Spears, B.; Peterson, J. L.; Brandon, S.; Gaffney, J. A.; Hammer, J.; Langer, S.; Nora, R. C.; Springer, P.; ICF Workflow Collaboration Collaboration

    2016-10-01

    We have recently completed the largest HYDRA simulation survey to date ( 60 , 000 runs) of drive asymmetry on the new Trinity computer at LANL. The 2D simulations covered a large space of credible perturbations to the drive of ICF implosions on the NIF. Cumulants of the produced birth energy spectrum for DD and DT reaction neutrons were tallied using new methods. Comparison of the experimental spectra with our map of predicted spectra from simulation should provide a wealth of information about the burning plasma region. We report on our results, highlighting areas of agreement (and disagreement) with experimental spectra. We also identify features in the predicted spectra that might be amenable to measurement with improved diagnostics. Prepared by LLNL under Contract DE-AC52-07NA27344. IM release #: LLNL-PROC-697321.

  3. Buoyancy instability of homologous implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy andmore » vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C) |N0|ti, where C is the convergence ratio of the implosion, N 0 is the initial buoyancy frequency and t i is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N 0|t s), where N 0 is the buoyancy frequency at stagnation and t s is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest-growing modes and that high mode numbers are required to reach this limit (Legendre mode

  4. Progress Toward Ignition on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, R L

    2011-10-17

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays formore » symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The

  5. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    DOE PAGES

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; ...

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm 2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  6. Enthalpy generation from mixing in hohlraum-driven targets

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Milovich, Jose

    2016-10-01

    The increase in enthalpy from the physical mixing of two initially separated materials is analytically estimated and applied to ICF implosions and gas-filled hohlraums. Pressure and temperature gradients across a classical interface are shown to be the origin of enthalpy generation from mixing. The amount of enthalpy generation is estimated to be on the order of 100 Joules for a 10 micron-scale annular mixing layer between the solid deuterium-tritium fuel and the undoped high-density carbon ablator of a NIF-scale implosion. A potential resonance is found between the mixing layer thickness and gravitational (Cs2/ g) and temperature-gradient scale lengths, leading to elevated enthalpy generation. These results suggest that if mixing occurs in current capsule designs for the National Ignition Facility, the ignition margin may be appreciably eroded by the associated enthalpy of mixing. The degree of enthalpy generation from mixing of high- Z hohlraum wall material and low- Z gas fills is estimated to be on the order of 100 kJ or more for recent NIF-scale hohlraum experiments, which is consistent with the inferred missing energy based on observed delays in capsule implosion times. Work performed under the auspices of Lawrence Livermore National Security, LLC (LLNS) under Contract No. DE-AC52-07NA27344.

  7. Symmetry control strategies in low gas-fill hohlraum

    NASA Astrophysics Data System (ADS)

    Goyon, Clement; Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N. B.; Dewald, E.; Ho, D. D.; Weber, C.; Khan, S. F.; Ma, T.; Milovich, J. L.; Moore, A. S.; Benedetti, R.; Pak, A. E.; Ross, J. S.; Nagel, S. R.; Grim, G. P.; Volegov, P.; Biener, J.; Nikroo, A.; Callahan, D. A.; Hurricane, O. A.; Hsing, W. W.; Town, R. P.; Edwards, M. J.

    2017-10-01

    The primary neutron yield record, to-date, for an ICF implosion on the NIF (1.47*1016) has been achieved using a doped HDC capsule (D =1.82 mm) in an unlined DU hohlraum (D =6.20 mm, L = 11.3 mm) filled with a low He gas-fill (0.3 mg/cc). This platform uses a new ``drooping'' pulse designed to keep high remaining mass and short coasting time. Prior to the high convergence (27x) cryogenic DT implosion, our ability to tune hot spot symmetry using this new pulse was tested at lower convergence (15x) using DD gas-filled capsules. Hot spot symmetry was tuned using beam pointing, gas-fill density, and power balance between outer and inner beams. The main metrics to assess the efficiency of each change are the implosion shape (time resolved X-ray emission of the hot spot) and DD neutron yield. In addition, we will describe the irradiation pattern obtained in each case using X-ray (soft and hard) diagnostics and the laser coupling to the hohlraum. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  8. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L. A.; Boehly, T. R.; Ding, Y. H.

    Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less

  9. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.

    2018-05-01

    Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.

  10. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    DOE PAGES

    Collins, L. A.; Boehly, T. R.; Ding, Y. H.; ...

    2018-03-23

    Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less

  11. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.

    PubMed

    Ma, T; Patel, P K; Izumi, N; Springer, P T; Key, M H; Atherton, L J; Benedetti, L R; Bradley, D K; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D S; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Epstein, R; Glenn, S; Grim, G; Haan, S W; Hammel, B A; Hicks, D; Hsing, W W; Jones, O S; Khan, S F; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Le Pape, S; MacGowan, B J; Mackinnon, A J; MacPhee, A G; Meezan, N B; Moody, J D; Pak, A; Parham, T; Park, H-S; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Smalyuk, V; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Lindl, J D; Edwards, M J; Glenzer, S H; Moses, E I

    2013-08-23

    Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

  12. Investigation of Electric and Self-Generated Magnetic Fields in Implosion Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N.; Li, C. K.; Zylstra, A. B.; Petrasso, R. D.

    2013-10-01

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA laser were investigated using proton radiography. The experiments use plastic-shell targets with various surface defects (glue spot, wire, and stalk mount) to seed perturbations and generate localized electromagnetic fields at the ablation surface and in the plasma corona surrounding the targets. Proton radiographs show features from these perturbations and quasi-spherical multiple shell structures around the capsules at earlier times of implosions (up to ~700 ps for a 1-ns laser pulse) indicating the development of the fields. Two-dimensional magnetohydrodynamic simulations of these experiments predict the growth of magnetic fields up to several MG. The simulated distributions of electromagnetic fields were used to produce proton images, which show good agreement with experimental radiographs. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N. B.; Mackinnon, A. J.; Ho, D. D.; Jones, O. S.; Khan, S.; Milovich, J. L.; Ross, J. S.; Amendt, P.; Casey, D.; Celliers, P. M.; Pak, A.; Peterson, J. L.; Ralph, J.; Rygg, J. R.

    2015-05-01

    Recent experiments at the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] have explored driving high-density carbon ablators with near-vacuum hohlraums, which use a minimal amount of helium gas fill. These hohlraums show improved efficiency relative to conventional gas-filled hohlraums in terms of minimal backscatter, minimal generation of suprathermal electrons, and increased hohlraum-capsule coupling. Given these advantages, near-vacuum hohlraums are a promising choice for pursuing high neutron yield implosions. Long pulse symmetry control, though, remains a challenge, as the hohlraum volume fills with material. Two mitigation methodologies have been explored, dynamic beam phasing and increased case-to-capsule ratio (larger hohlraum size relative to capsule). Unexpectedly, experiments have demonstrated that the inner laser beam propagation is better than predicted by nominal simulations, and an enhanced beam propagation model is required to match measured hot spot symmetry. Ongoing work is focused on developing a physical model which captures this enhanced propagation and on utilizing the enhanced propagation to drive longer laser pulses than originally predicted in order to reach alpha-heating dominated neutron yields.

  14. Exploring the dynamics of kinetic/multi-ion effects and ion-electron equilibration rates in ICF plasmas at OMEGA

    NASA Astrophysics Data System (ADS)

    Sio, H.

    2017-10-01

    During the last few years, an increasing number of experiments have shown that kinetic and multi-ion-fluid effects do impact the performance of an ICF implosion. Observations include: increasing yield degradation as the implosion becomes more kinetic; thermal decoupling between ion species; anomalous yield scaling for different fuel mixtures; ion diffusion; and fuel stratification. The common theme in these experiments is that the results are based on time-integrated nuclear observables that are affected by an accumulation of effects throughout the implosion, which complicate interpretation of the data. A natural extension of these studies is therefore to conduct time-resolved measurements of multiple nuclear-burn histories to explore the dynamics of kinetic/multi-ion effects in the fuel and their impact on the implosion performance. This was accomplished through simultaneous, high-precision measurements of the relative timing of the onset, bang time and duration of DD, D3He, DT and T3He burn from T3He (with trace D) or D3He gas-filled implosions using the new Particle X-ray Temporal Diagnostic (PXTD) on OMEGA. As the different reactions have different temperature sensitivities, Ti(t) was determined from the data. Uniquely to the PXTD, several x-ray emission histories (in different energy bands) were also measured, from which a spatially averaged Te(t) was also determined. The inferred Ti(t) and Te(t) data have been used to experimentally explore ion-electron equilibration rates and the Coulomb Logarithm for various plasma conditions. Finally, the implementation and use of PXTD, which represents a significant advance at OMEGA, have laid the foundation for implementing a Te(t) measurement in support of the main cryogenic DT programs at OMEGA and the NIF. This work was supported in part by the US DOE, LLE, LLNL, and DOE NNSA SSGF.

  15. Advances in shock timing experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  16. Progress Toward Modeling Spectroscopic Signatures of Mix on Omega and NIF

    NASA Astrophysics Data System (ADS)

    Tregillis, I. L.; Schmitt, M. J.; Hsu, S. C.; Wysocki, F. J.; Cobble, J. A.; Murphy, T. J.

    2011-10-01

    Defect-induced mix processes may degrade the performance of ICF and ICF-like targets at Omega and NIF. An improved understanding of the relevant physics requires an experimental program built on a foundation of radiation-hydrodynamic simulations plus reliable synthetic diagnostic outputs. To that end, the Applications of Ignition (AoI) and Defect Implosion Experiment (DIME) efforts at LANL have focused on directly driven plastic capsules containing high-Z dopants and manufactured with an equatorial ``trench'' defect. One of the key diagnostic techniques for detecting and diagnosing the migration of dopant material into the hot core is Multi-Monochromatic X-ray Imaging (MMI). This talk will focus on recent efforts to model spectroscopic signatures of mix processes in AoI/DIME capsules via simulated MMI-type diagnostic instruments. It will also include data from recent Omega shots and calculations in support of Tier 1 experiments at NIF in FY2012. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  17. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    NASA Astrophysics Data System (ADS)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  18. Anomalous DD and TT yields relative to the DT yield in inertial-confinement-fusion implosions

    NASA Astrophysics Data System (ADS)

    Casey, Daniel T.

    2011-10-01

    Measurements of the D(d,p)T (DD), T(t,2n)4He (TT) and D(t,n)4He (DT) reactions have been conducted using deuterium-tritium gas-filled inertial confinement fusion (ICF) implosions. In these experiments, which were carried out at the OMEGA laser facility, absolute spectral measurements of the DD protons and TT neutrons were conducted and compared to neutron-time-of-flight measured DT-neutron yields. From these measurements, it is concluded that the DD yield is anomalously low and the TT yield is anomalously high relative to the DT yield, an effect that is enhanced with increasing ion temperature. These results can be explained by an enrichment of tritium in the core of an ICF implosion, which may be present in ignition experiments planned on the National Ignition Facility. In addition, the spectral measurements of the TT-neutron spectrum were conducted for the first time at reactant central-mass energies in the range of 15-30 keV. The results from these measurements indicate that the TT reaction proceeds primarily through the direct three-body reaction channel, producing a continuous TT-neutron spectrum in the range 0 - 9.5 MeV. This work was conducted in collaboration with J. A. Frenje, M. Gatu Johnson, M. J.-E. Manuel, H. G. Rinderknecht, N. Sinenian, F. H. Seguin, C. K. Li, R. D. Petrasso, P. B. Radha, J. A. Delettrez, V. Yu Glebov, D. D. Meyerhofer, T. C. Sangster, D. P. McNabb, P. A. Amendt, R. N. Boyd, J. R. Rygg, H. W. Herrmann, Y. H. Kim, G. P. Grim and A. D. Bacher. This work was supported in part by the U.S. Department of Energy (Grant No. DE-FG03-03SF22691), LLE (subcontract Grant No. 412160-001G), LLNL (subcontract Grant No. B504974).

  19. A Phoswich Detector System to Measure Sub-Second Half-Lives using ICF Reactions

    NASA Astrophysics Data System (ADS)

    Coats, Micah; Cook, Katelyn; Yuly, Mark; Padalino, Stephen; Sangster, Craig; Regan, Sean

    2017-10-01

    The 3H(t,γ)6He cross section has not been measured at any bombarding energy due to the difficulties of simultaneously producing both a tritium beam and target at accelerator labs. An alternative technique may be to use an ICF tt implosion at the OMEGA Laser Facility. The 3H(t,γ)6He cross section could be determined in situ by measuring the beta decay of 6He beginning a few milliseconds after the shot along with other ICF diagnostics. A dE-E phoswich system capable of surviving in the OMEGA target chamber was tested using the SUNY Geneseo pelletron to create neutrons via 2H(d,n)3He and subsequently 6He via 9Be(n,α)6He in a beryllium target. The phoswich dE-E detector system was used to select beta decay events and measure the 807 ms half-life of 6He. It is composed of a thin, 2 ns decay time dE scintillator optically coupled to a thick, 285 ns E scintillator, with a linear gate to separate the short dE pulse from the longer E tail. Funded in part by a Grant from the DOE through the Laboratory for Laser Energetics.

  20. Measurements of Reduced Hydrodynamic Instability Growth in Adiabat Shaped Implosions at the NIF

    NASA Astrophysics Data System (ADS)

    Casey, Daniel; Macphee, Andrew; Milovich, Jose; Smalyuk, Vladimir; Clark, Dan; Robey, Harry; Peterson, Luc; Baker, Kevin; Weber, Chris

    2015-11-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Radiographic measurements of ablation front perturbation growth were performed using adiabat-shaped drives which are shown to have lower ablation front growth than the low foot drive. This is partly due to faster Richtmyer-Meshkov (RM) oscillations during the shock transit phase of the implosion moving the node in the growth factor spectrum to lower mode numbers reducing the peak growth amplitude. This is demonstrated experimentally by a reversal of the perturbation phase at higher mode numbers (120-160). These results show that the ablation front growth and fuel adiabat can be controlled somewhat-independently and are providing insight into new, more stable, ignition designs. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  1. Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries

    DOE PAGES

    Scott, R. H. H.; Clark, D. S.; Bradley, D. K.; ...

    2013-02-01

    In this study, the sensitivity of inertial confinement fusion implosions of the type performed on the National Ignition Facility (NIF) [1] to low-mode flux asymmetries has been investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P4), resulting from associated low order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the DT “ice” layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of kinetic to internal energy of the central hot spot, thus reducing neutron yield. Furthermore, synthetic gated x-ray images indicate that the P4 component of hotmore » spot self-emission shape is insensitive to P4 hot spot shapes, and a positive P4 asymmetry aliases itself as a negative or oblate P2 in these images. Correction of this apparent P2 distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed post-shot 2D simulations.« less

  2. Exploration of kinetic and multiple-ion-fluids effects in D3He and T3He gas-filled ICF implosions using multiple nuclear reaction histories

    NASA Astrophysics Data System (ADS)

    Sio, Hong; Rinderknecht, Hans; Rosenberg, Michael; Zylstra, Alex; Séguin, Fredrick; Gatu Johnson, Maria; Li, Chikang; Petrasso, Richard; Hoffman, Nelson; Kagan, Krigory; Molvig, Kim; Amendt, Peter; Bellei, Claudio; Wilks, Scott; Stoeckl, Christian; Glebov, Vladimir; Betti, Riccardo; Sangster, Thomas; Katz, Joseph

    2014-10-01

    To explore kinetic and multi-ion-fluid effects in D3He and T3He gas-filled shock-driven implosions, multiple nuclear reaction histories were measured using the upgraded Particle Temporal Diagnostic (PTD) on OMEGA. For D3He gas-filled implosions, the relative timing of the DD and D3He reaction histories were measured with 20 ps precision. For T3He gas-filled implosions (with 1-2% deuterium), the relative timing of the DT and D3He reaction histories were measured with 10 ps precision. The observed differences between the reaction histories on these two OMEGA experiments are contrasted to 1-D single-ion hydro simulations for different gas-fill pressure and gas mixture. This work is supported in part by the U.S. DOE, LLNL, LLE, and NNSA SSGF.

  3. High Foot Implosion Experiments in Rugby Hohlraums

    NASA Astrophysics Data System (ADS)

    Ralph, Joseph; Leidinger, J.-P.; Callahan, D.; Kaiser, P.; Morice, O.; Marion, D.; Moody, J. D.; Ross, J. S.; Amendt, P.; Kritcher, A. L.; Milovich, J. L.; Strozzi, D.; Hinkel, D.; Michel, P.; Berzak Hopkins, L.; Pak, A.; Dewald, E. L.; Divol, L.; Khan, S.; Rygg, R.; Hurricane, O.; Lawrence Livermore National Lab Team; CEA/DAM Team

    2015-11-01

    The rugby hohlraum design is aimed at providing uniform x-ray drive on the capsule while minimizing the need for crossed beam energy transfer (CBET). As part of a series of experiments at the NIF using rugby hohlraums, design improvements in dual axis shock tuning experiments produced some of the most symmetric shocks measured on implosion experiments at the NIF. Additionally, tuning of the in-flight shell and hot spot shape have demonstrated that capsules can be tuned between oblate and prolate with measured velocities of nearly 340 km/s. However, these experimental measurements were accompanied by high levels of Stimulated Raman Scattering (SRS) that may result from the long inner beam path length, reamplification of the inner SRS by the outers, significant (CBET) or a combination of these. All rugby shots results were achieved with lower levels of hot electrons that can preheat the DT fuel layer for increased adiabat and reduced areal density. Detailed results from these experiments and those planned throughout the summer will be presented and compared with results obtained from cylindrical hohlraums. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Lab under Contract DE-AC52-07NA27344.

  4. X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube

    DOE PAGES

    MacPhee, A. G.; Casey, D. T.; Clark, D. S.; ...

    2017-03-30

    Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ~2 using in-flight x-ray radiography. The initial seed due to shadow imprintmore » is estimated to be equivalent to ~50–100 nm of solid ablator material. As a result, this discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.« less

  5. X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Casey, D. T.; Clark, D. S.

    Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ~2 using in-flight x-ray radiography. The initial seed due to shadow imprintmore » is estimated to be equivalent to ~50–100 nm of solid ablator material. As a result, this discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.« less

  6. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    DOE PAGES

    Pak, A.; Divol, L.; Gregori, G.; ...

    2013-05-20

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less

  7. First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; Divol, L.; Mackinnon, A. J.; Ho, D. D.; Hohenberger, M.; Jones, O. S.; Kyrala, G.; Milovich, J. L.; Pak, A.; Ralph, J. E.; Ross, J. S.; Benedetti, L. R.; Biener, J.; Bionta, R.; Bond, E.; Bradley, D.; Caggiano, J.; Callahan, D.; Cerjan, C.; Church, J.; Clark, D.; Döppner, T.; Dylla-Spears, R.; Eckart, M.; Edgell, D.; Field, J.; Fittinghoff, D. N.; Gatu Johnson, M.; Grim, G.; Guler, N.; Haan, S.; Hamza, A.; Hartouni, E. P.; Hatarik, R.; Herrmann, H. W.; Hinkel, D.; Hoover, D.; Huang, H.; Izumi, N.; Khan, S.; Kozioziemski, B.; Kroll, J.; Ma, T.; MacPhee, A.; McNaney, J.; Merrill, F.; Moody, J.; Nikroo, A.; Patel, P.; Robey, H. F.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M.; Sepke, S.; Stadermann, M.; Stoeffl, W.; Thomas, C.; Town, R. P. J.; Volegov, P. L.; Wild, C.; Wilde, C.; Woerner, E.; Yeamans, C.; Yoxall, B.; Kilkenny, J.; Landen, O. L.; Hsing, W.; Edwards, M. J.

    2015-05-01

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ˜3.5 ) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 ×1015 neutrons, with 20% calculated alpha heating at convergence ˜27 × .

  8. First high-convergence cryogenic implosion in a near-vacuum hohlraum

    DOE PAGES

    Berzak Hopkins, L.  F.; Meezan, N.  B.; Le Pape, S.; ...

    2015-04-29

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated inmore » a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.« less

  9. A 2D and 3D Code Comparison of Turbulent Mixing in Spherical Implosions

    NASA Astrophysics Data System (ADS)

    Flaig, Markus; Thornber, Ben; Grieves, Brian; Youngs, David; Williams, Robin; Clark, Dan; Weber, Chris

    2016-10-01

    Turbulent mixing due to Richtmyer-Meshkov and Rayleigh-Taylor instabilities has proven to be a major obstacle on the way to achieving ignition in inertial confinement fusion (ICF) implosions. Numerical simulations are an important tool for understanding the mixing process, however, the results of such simulations depend on the choice of grid geometry and the numerical scheme used. In order to clarify this issue, we compare the simulation codes FLASH, TURMOIL, HYDRA, MIRANDA and FLAMENCO for the problem of the growth of single- and multi-mode perturbations on the inner interface of a dense imploding shell. We consider two setups: A single-shock setup with a convergence ratio of 4, as well as a higher convergence multi-shock setup that mimics a typical NIF mixcap experiment. We employ both singlemode and ICF-like broadband perturbations. We find good agreement between all codes concerning the evolution of the mix layer width, however, the are differences in the small scale mixing. We also develop a Bell-Plesset model that is able to predict the mix layer width and find excellent agreement with the simulation results. This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government.

  10. Addressing Common Technical challenges in Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, Donald A.

    2016-09-22

    The implosion phase for Inertial Confinement Fusion (ICF) occurs from initiation of the drive until just before stagnation. Evolution of the shell and fusion fuel during the implosion phase is affected by the initial conditions of the target, the drive history. Poor performing implosions are a result of the behavior that occurs during the implosion phase such as low mode asymmetries, mixing of the ablator into the fuel, and the hydrodynamic evolution of initial target features and defects such as the shell mounting hardware. The ultimate results of these effects can only be measured at stagnation. However, studying the implosionmore » phase can be effective for understanding and mitigating these effects and for of ultimately improving the performance of ICF implosions. As the ICF program moves towards the 2020 milestone to “determine the efficacy of ignition”, it will be important to understand the physics that occurs during the implosion phase. This will require both focused and integrated experiments. Focused experiments will provide the understanding and the evidence needed to support any determination concerning the efficacy of ignition.« less

  11. Wellbottom fluid implosion treatment system

    DOEpatents

    Brieger, Emmet F.

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  12. ICF Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less

  13. Anomalous yield reduction in direct-drive deuterium/tritium implosions due to 3He addition

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Langenbrunner, J. R.; Mack, J. M.; Cooley, J. H.; Wilson, D. C.; Evans, S. C.; Sedillo, T. J.; Kyrala, G. A.; Caldwell, S. E.; Young, C. S.; Nobile, A.; Wermer, J.; Paglieri, S.; McEvoy, A. M.; Kim, Y.; Batha, S. H.; Horsfield, C. J.; Drew, D.; Garbett, W.; Rubery, M.; Glebov, V. Yu.; Roberts, S.; Frenje, J. A.

    2009-05-01

    Glass capsules were imploded in direct drive on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with H3e addition. Such anomalies have previously been reported for D/H3e plasmas but had not yet been investigated for DT/H3e. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the "factor of 2" degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50% H3e atom fraction in D2 using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D2/H3e [Wilson et al., J. Phys.: Conf. Ser. 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression of capsules containing H3e. Leading candidate explanations are poorly understood equation of state for gas mixtures and unanticipated particle pressure variation with increasing H3e addition.

  14. BOOK REVIEW: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    1999-06-01

    higher ablation rates and is less sensitive to hot electron preheat. A potential disadvantage of indirect drive is the larger scale length of the plasma travelled by the laser beam from the inlet hole to the hohlraum wall. Parametric instabilities in hohlraums have problems because of energy loss and coupling. One of the most important issues for indirect drive is a radiation drive concept which is essentially independent of the driver, such as laser or particle beam. The historical progress of ICF in the USA mainly depended upon the resolution of the fusion database for weaponry. This was a reason to choose indirect drive as the main scheme. Several structures of hohlraum target are described which for a long time were closed to the public. As the minimum energy for ignition depends strongly on the achievable implosion velocity, a great deal of benefit is derived from operating at the highest possible hohlraum temperature and in-flight aspect ratio (IFAR). The conclusion of Chapters 3, 4 and 5 is that achieving an implosion velocity of 3 × 107cm/s with an IFAR-30 Fermi degenerated shell would require a minimum drive temperature of about 200 eV. The hydrodynamic instability, ignition threshold and capsule gain are discussed in Chapter 6. The RT hydrodynamic instability began at the upper limit of the IFAR and hence at the peak implosion velocity. The growth rate of the instability in the acceleration phase was found to be suppressed by the ablation flow at Osaka. Instability during the deceleration phase was primarily stabilized by electron conduction. The combined effects of acceleration, feed-through and deceleration show that the principal modes contributing to perturbations in the fuel have spherical harmonic mode numbers less than about 30-40. The higher modes are rapidly reduced by rarefaction. The lower modes are killed by so-called `fire polishing'. The target uniformity and irradiation uniformity are very effective at suppressing instabilities. The maximum

  15. ``Green's function'' approach & low-mode asymmetries

    NASA Astrophysics Data System (ADS)

    Masse, Laurent; Clark, Dan; Salmonson, Jay; MacLaren, Steve; Ma, Tammy; Khan, Shahab; Pino, Jesse; Ralph, Jo; Czajka, C.; Tipton, Robert; Landen, Otto; Kyrala, Georges; 2 Team; 1 Team

    2017-10-01

    Long wavelength, low mode asymmetries are believed to play a leading role in limiting the performance of current ICF implosions on NIF. These long wavelength modes are initiated and driven by asymmetries in the x-ray flux from the hohlraum; however, the underlying hydrodynamics of the implosion also act to amplify these asymmetries. The work presented here aim to deepen our understanding of the interplay of the drive asymmetries and the underlying implosion hydrodynamics in determining the final imploded configuration. This is accomplished through a synthesis of numerical modeling, analytic theory, and experimental data. In detail, we use a Green's function approach to connect the drive asymmetry seen by the capsule to the measured inflight and hot spot symmetries. The approach has been validated against a suite of numerical simulations. Ultimately, we hope this work will identify additional measurements to further constrain the asymmetries and increase hohlraum illumination design flexibility on the NIF. The technique and derivation of associated error bars will be presented. LLC, (LLNS) Contract No. DE-AC52-07NA27344.

  16. BigFoot: a program to reduce risk for indirect drive laser fusion

    NASA Astrophysics Data System (ADS)

    Thomas, Cliff

    2017-10-01

    The conventional approach to inertial confinement fusion (ICF) with indirect drive is to design for high convergence (40), DT areal density, and target gain. By construction, this strategy is challenged by low-mode control of the implosion (Legendre P2 and P4), instability, and difficulties interpreting data. Here we consider an alternative - an approach to ICF that emphasizes control. To begin, we optimize for hohlraum predictability, and coupling to the capsule. Rather than focus on density, we work on making a high-energy hotspot we can diagnose and ``tune'' at low convergence (20). Though gain is reduced, this makes it possible to study (and improve) stagnation physics in a regime relevant to ignition (1E16-1E17). Further improvements can then be made with small, incremental increases in areal density, target scale, etc. Details regarding the ``BigFoot'' platform and pulse are reported, including recent findings. Work that could enable additional improvements in capsule stability and hohlraum control will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Novel characterization of capsule x-ray drive at the National Ignition Facility.

    PubMed

    MacLaren, S A; Schneider, M B; Widmann, K; Hammer, J H; Yoxall, B E; Moody, J D; Bell, P M; Benedetti, L R; Bradley, D K; Edwards, M J; Guymer, T M; Hinkel, D E; Hsing, W W; Kervin, M L; Meezan, N B; Moore, A S; Ralph, J E

    2014-03-14

    Indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%-25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the data from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.

  18. Effects of preheat and mix on the fuel adiabat of an imploding capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.

    We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, M clean=M DT ≥ 0:98 is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effectsmore » and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot.« less

  19. Effects of preheat and mix on the fuel adiabat of an imploding capsule

    DOE PAGES

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; ...

    2016-12-01

    We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, M clean=M DT ≥ 0:98 is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effectsmore » and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot.« less

  20. Examining the radiation drive asymmetries present in the high foot series of implosion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pak, A.; Divol, L.; Kritcher, A. L.; Ma, T.; Ralph, J. E.; Bachmann, B.; Benedetti, L. R.; Casey, D. T.; Celliers, P. M.; Dewald, E. L.; Döppner, T.; Field, J. E.; Fratanduono, D. E.; Berzak Hopkins, L. F.; Izumi, N.; Khan, S. F.; Landen, O. L.; Kyrala, G. A.; LePape, S.; Millot, M.; Milovich, J. L.; Moore, A. S.; Nagel, S. R.; Park, H.-S.; Rygg, J. R.; Bradley, D. K.; Callahan, D. A.; Hinkel, D. E.; Hsing, W. W.; Hurricane, O. A.; Meezan, N. B.; Moody, J. D.; Patel, P.; Robey, H. F.; Schneider, M. B.; Town, R. P. J.; Edwards, M. J.

    2017-05-01

    This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10% to -5%, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additional negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ˜2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. These data indicate that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.

  1. Examining the radiation drive asymmetries present in the high foot series of implosion experiments at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, A.; Divol, L.; Kritcher, A. L.

    This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10 to -5 %, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additionalmore » negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ~2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. This data indicates that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.« less

  2. Examining the radiation drive asymmetries present in the high foot series of implosion experiments at the National Ignition Facility

    DOE PAGES

    Pak, A.; Divol, L.; Kritcher, A. L.; ...

    2017-03-24

    This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10 to -5 %, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additionalmore » negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ~2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. This data indicates that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.« less

  3. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.

    PubMed

    Park, H-S; Hurricane, O A; Callahan, D A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; Ma, T; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Kline, J L

    2014-02-07

    This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot. Indeed, the observed hot spot mix in these implosions was low and the measured neutron yields were typically 50% (or higher) of the yields predicted by simulation. On one high performing shot (N130812), 1.7 MJ of laser energy at a peak power of 350 TW was used to obtain a peak hohlraum radiation temperature of ∼300  eV. The resulting experimental neutron yield was (2.4±0.05)×10(15) DT, the fuel ρR was (0.86±0.063)  g/cm2, and the measured Tion was (4.2±0.16)  keV, corresponding to 8 kJ of fusion yield, with ∼1/3 of the yield caused by self-heating of the fuel by α particles emitted in the initial reactions. The generalized Lawson criteria, an ignition metric, was 0.43 and the neutron yield was ∼70% of the value predicted by simulations that include α-particle self-heating.

  4. A Close-Coupled, Heavy Ion ICF Target

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    1998-11-01

    A ``close-coupled'' version of the distributed radiator, heavy ion ICF target has produced gain > 130 from 3.1 MJ of ion beam energy. To achieve these results, we reduced the hohlraum dimensions by 27% from our previous designs(M. Tabak, D. Callahan-Miller, D. D.-M. Ho, G. B. Zimmerman, Nuc. Fusion, 38, 509 (1998)) (M. Tabak, D. A. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) while driving the same capsule. This reduced the beam energy required from 5.9-6.5 MJ to 3.1 MJ. The smaller hohlraum resulted in a smaller beam spot; elliptically shaped beams with effective radius 1.7 mm were used in this design. In addition to describing this target, we will discuss the effect of the close-coupled hohlraum on the Rayleigh-Taylor instability and scaling this design down to 1.5-2 MJ for an ETF (Engineering Test Facility).

  5. Symmetry tuning for DIME Campaign

    NASA Astrophysics Data System (ADS)

    Krasheninnikova, Natalia; Schmitt, Mark; Tregillis, Ian; Bradley, P.; Cobble, J.; Kyrala, G.; Murphy, T.; Obrey, K.; Hsu, S.; Shah, R.; Batha, S.; Craxton, S.; McKenty, P.

    2012-10-01

    Defect Induced Mix Experiment (DIME) investigates the effects of 4 pi as well as surface feature-driven mix on the directly driven ICF capsule implosion. To minimize the effects of the laser-drive asymmetry, beam pointings, pulse shape, and the energy distribution between the lasers need to be optimized for a particular capsule and shot energy. In support of the DIME experimental campaigns on OMEGA and NIF, symmetry tuning was performed with the rad-hydro code HYDRA. To assess the impact on the symmetry, synthetic radiographs and self-emission images were examined and compared with the experimental results from OMEGA and NIF shots. The dynamics of the capsules imploded under polar direct drive conditions were compared with symmetrically driven ones and the effects of cross-beam transfer and the laser imprinting on the symmetry were also investigated. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy.

  6. Response of the first wetted wall of an IFE reactor chamber to the energy release from a direct-drive DT capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medin, Stanislav A.; Basko, Mikhail M.; Orlov, Yurii N.

    2012-07-11

    Radiation hydrodynamics 1D simulations were performed with two concurrent codes, DEIRA and RAMPHY. The DEIRA code was used for DT capsule implosion and burn, and the RAMPHY code was used for computation of X-ray and fast ions deposition in the first wall liquid film of the reactor chamber. The simulations were run for 740 MJ direct drive DT capsule and Pb thin liquid wall reactor chamber of 10 m diameter. Temporal profiles for DT capsule leaking power of X-rays, neutrons and fast {sup 4}He ions were obtained and spatial profiles of the liquid film flow parameter were computed and analyzed.

  7. Health measurement using the ICF: Test-retest reliability study of ICF codes and qualifiers in geriatric care

    PubMed Central

    Okochi, Jiro; Utsunomiya, Sakiko; Takahashi, Tai

    2005-01-01

    Background The International Classification of Functioning, Disability and Health (ICF) was published by the World Health Organization (WHO) to standardize descriptions of health and disability. Little is known about the reliability and clinical relevance of measurements using the ICF and its qualifiers. This study examines the test-retest reliability of ICF codes, and the rate of immeasurability in long-term care settings of the elderly to evaluate the clinical applicability of the ICF and its qualifiers, and the ICF checklist. Methods Reliability of 85 body function (BF) items and 152 activity and participation (AP) items of the ICF was studied using a test-retest procedure with a sample of 742 elderly persons from 59 institutional and at home care service centers. Test-retest reliability was estimated using the weighted kappa statistic. The clinical relevance of the ICF was estimated by calculating immeasurability rate. The effect of the measurement settings and evaluators' experience was analyzed by stratification of these variables. The properties of each item were evaluated using both the kappa statistic and immeasurability rate to assess the clinical applicability of WHO's ICF checklist in the elderly care setting. Results The median of the weighted kappa statistics of 85 BF and 152 AP items were 0.46 and 0.55 respectively. The reproducibility statistics improved when the measurements were performed by experienced evaluators. Some chapters such as genitourinary and reproductive functions in the BF domain and major life area in the AP domain contained more items with lower test-retest reliability measures and rated as immeasurable than in the other chapters. Some items in the ICF checklist were rated as unreliable and immeasurable. Conclusion The reliability of the ICF codes when measured with the current ICF qualifiers is relatively low. The result in increase in reliability according to evaluators' experience suggests proper education will have positive

  8. Observation of Interspecies Ion Separation in Inertial-Confinement-Fusion Implosions via Imaging X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Joshi, Tirtha Raj

    2016-10-01

    Interspecies ion separation has been proposed as a yield-degradation mechanism in inertial-confinement-fusion (ICF) experiments. We present direct experimental evidence of interspecies ion separation in direct-drive ICF experiments performed at the OMEGA laser facility. These experiments were designed based on the fact that interspecies ion thermo-diffusion would be strongest for species with large mass and charge difference. The targets were spherical plastic shells filled with D2 and Ar (1% by atom). Ar K-shell spectral features were observed primarily between the time of first-shock convergence and slightly before neutron bang time, using a time- and space-integrated spectrometer, streaked crystal spectrometer, and two gated multi-monochromatic X-ray imagers fielded along quasi-orthogonal lines-of-sight. Detailed spectroscopic analyses of spatially resolved Ar K-shell lines reveal deviation from the initial 1%-Ar gas fill and show both Ar-concentration enhancement and depletion at different times and radial positions of the implosion. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. The experimentally inferred Ar-atom-fraction profiles agree gently with calculated profiles associated with the incoming and rebounding first shock. This work was done in collaboration with P. Hakel, S. C. Hsu, E. L. Vold, M. J. Schmitt, N. M. Hoffman, R. M. Rauenzahn, G. Kagan, X.-Z. Tang, Y. Kim, and H. W. Herrmann of LANL, and R. C. Mancini of UNR. LA-UR-16-24804. Supported by the LANL ICF and ASC Programs under US-DoE contract no. DE-AC52-06NA25396.

  9. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N K) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolvedmore » measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N K ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  10. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE PAGES

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; ...

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N K) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolvedmore » measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N K ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  11. Fire suppression as a thermal implosion

    NASA Astrophysics Data System (ADS)

    Novozhilov, Vasily

    2017-01-01

    The present paper discusses the possibility of the thermal implosion scenario. This process would be a reverse of the well known thermal explosion (autoignition) phenomenon. The mechanism for thermal implosion scenario is proposed which involves quick suppression of the turbulent diffusion flame. Classical concept of the thermal explosion is discussed first. Then a possible scenario for the reverse process (thermal implosion) is discussed and illustrated by a relevant mathematical model. Based on the arguments presented in the paper, thermal implosion may be observed as an unstable equilibrium point on the generalized Semenov diagram for turbulent flame, however this hypothesis requires ultimate experimental confirmation.

  12. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Hansen, E. C.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Davies, J. R.; Glebov, V. Yu; Knauer, J. P.; Peebles, J.; Regan, S. P.; Sefkow, A. B.

    2018-05-01

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1D code LILAC was used to model the central region of the implosion, and results were compared to 2D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysis shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.

  13. Effects of alpha stopping power modelling on the ignition threshold in a directly-driven inertial confinement fusion capsule

    DOE PAGES

    Temporal, Mauro; Canaud, Benoit; Cayzac, Witold; ...

    2017-05-25

    The alpha-particle energy deposition mechanism modifies the ignition conditions of the thermonuclear Deuterium-Tritium fusion reactions, and constitutes a key issue in achieving high gain in Inertial Confinement Fusion implosions. One-dimensional hydrodynamic calculations have been performed with the code Multi-IFE to simulate the implosion of a capsule directly irradiated by a laser beam. The diffusion approximation for the alpha energy deposition has been used to optimize three laser profiles corresponding to different implosion velocities. A Monte-Carlo package has been included in Multi-IFE to calculate the alpha energy transport, and in this case the energy deposition uses both the LP and themore » BPS stopping power models. Homothetic transformations that maintain a constant implosion velocity have been used to map out the transition region between marginally-igniting and high-gain configurations. Furthermore, the results provided by the two models have been compared and it is found that – close to the ignition threshold – in order to produce the same fusion energy, the calculations performed with the BPS model require about 10% more invested energy with respect to the LP model.« less

  14. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E. C.; Barnak, D. H.; Betti, R.

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1-D code LILAC was used to model the central region of the implosion, and results were compared to 2-D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysismore » shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.« less

  15. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    DOE PAGES

    Hansen, E. C.; Barnak, D. H.; Betti, R.; ...

    2018-04-04

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1-D code LILAC was used to model the central region of the implosion, and results were compared to 2-D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysismore » shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.« less

  16. High-Areal-Density Fuel Assembly in Direct-Drive Cryogenic Implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangster, T. C.; Goncharov, V. N.; Radha, P. B.

    The first observation of ignition-relevant areal-density deuterium from implosions of capsules with cryogenic fuel layers at ignition-relevant adiabats is reported. The experiments were performed on the 60-beam, 30-kJ{sub UV} OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Neutron-averaged areal densities of 202{+-}7 mg/cm{sup 2} and 182{+-}7 mg/cm{sup 2} (corresponding to estimated peak fuel densities in excess of 100 g/cm{sup 3}) were inferred using an 18-kJ direct-drive pulse designed to put the converging fuel on an adiabat of 2.5. These areal densities are in good agreement with the predictions of hydrodynamic simulations indicating that the fuelmore » adiabat can be accurately controlled under ignition-relevant conditions.« less

  17. High-Areal-Density Fuel Assembly in Direct-Drive Cryogenic Implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangster, T.C.; Goncharov, V.N.; Radha, P.B.

    The first observation of ignition-relevant areal-density deuterium from implosions of capsules with cryogenic fuel layers at ignition-relevant adiabats is reported. The experiments were performed on the 60-beam, 30-kJUV OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Neutron-averaged areal densities of 202+-7 mg/cm^2 and 182+-7 mg/cm^2 (corresponding to estimated peak fuel densities in excess of 100 g/cm^3) were inferred using an 18-kJ direct-drive pulse designed to put the converging fuel on an adiabat of 2.5. These areal densities are in good agreement with the predictions of hydrodynamic simulations indicating that the fuel adiabat can be accuratelymore » controlled under ignition-relevant conditions.« less

  18. Hotspot ignition using a Z-pinch precursor plasma in a magneto-inertial ICF scheme

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Vincent, P.; Jennings, C. A.; Ciardi, A.

    2006-01-01

    Precursor plasma flow is a common feature of wire array Z-pinches. The precursor flow represents a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the Z-pinch then compresses this precursor to substantially higher density. We show that if the same system can be generated with a Deuterium-Tritium plasma then the precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the pR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  19. Inferences of Shell Asymmetry in ICF Implosions using Fluence Compensated Neutron Images at the NIF

    NASA Astrophysics Data System (ADS)

    Casey, D.; Fittinghoff, D.; Bionta, R.; Smalyuk, V.; Grim, G.; Munro, D.; Spears, B.; Raman, K.; Clark, D.; Kritcher, A.; Hinkel, D.; Hurricane, O.; Callahan, D.; Döppner, T.; Landen, O.; Ma, T.; Le Pape, S.; Ross, S.; Meezan, N.; Pak, A.; Park, H.-S.; Volegov, P.; Merill, F.

    2016-10-01

    In ICF experiments, a dense shell is imploded and used to compress and heat a hotspot of DT fuel. Controlling the symmetry of this process is both important and challenging. It is therefore important to observe the symmetry of the stagnated shell assembly. The Neutron Imaging System at the NIF is used to observe the primary 14 MeV neutrons from the hotspot and the down-scattered neutrons (6-12 MeV), from the assembled shell but with a strong imprint from the primary-neutron fluence. Using a characteristic scattering angle approximation, we have compensated the image for this fluence effect, revealing information about shell asymmetry that is otherwise difficult to extract without models. Preliminary observations with NIF data show asymmetries in imploded shell, which will be compared with other nuclear diagnostics and postshot simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Exploring use of the ICF in health education.

    PubMed

    Bornbaum, Catherine C; Day, Adam M B; Izaryk, Kristen; Morrison, Stephanie J; Ravenek, Michael J; Sleeth, Lindsay E; Skarakis-Doyle, Elizabeth

    2015-01-01

    Currently, little is known regarding use of the International Classification of Functioning, Disability and Health (ICF) in health education applications. Therefore, this review sought to examine the scope of work that has been conducted regarding the application of the ICF in health education. A review of the current literature related to use of the ICF in health education programs was conducted. Twelve electronic databases were searched in accordance with a search protocol developed by a health sciences librarian. In total, 17,878 records were reviewed, and 18 articles met the criteria for inclusion in this review. Current evidence regarding use of the ICF in healthcare education revealed that program and participant properties can be essential facilitators or barriers to successful education programs. In addition, gaps in comprehensive outcome measurement were revealed as areas for future attention. Educational applications of the ICF are very much a work in progress as might be expected given the ICF's existence for only a little over a decade. To advance use of the ICF in education, it is important to incorporate the measurement of both knowledge acquisition and behavior change related to ICF-based programs. Ultimately, widespread implementation of the ICF represents not only a substantial opportunity but also poses a significant challenge.

  1. High-energy krypton fluoride lasers for inertial fusion.

    PubMed

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.

  2. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Ke; Liu, Jie; He, Xian-Tu

    2014-01-15

    We propose a spherical hohlraum with octahedral six laser entrance holes at a specific hohlraum-to-capsule radius ratio of 5.14 for inertial fusion study, which has robust high symmetry during the capsule implosion and low backscatter without supplementary technology. To produce an ignition radiation pulse of 300 eV, it needs 1.5 MJ absorbed laser energy in such a golden octahedral hohlraum, about 30% more than a traditional cylinder. Nevertheless, it is worth for a high symmetry and low backscatter. The proposed octahedral hohlraum is also flexible and can be applicable to diverse inertial fusion drive approaches.

  3. Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF

    NASA Astrophysics Data System (ADS)

    MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.

    2017-10-01

    Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.

  4. Multi-species ion transport in ICF relevant conditions

    NASA Astrophysics Data System (ADS)

    Vold, Erik; Kagan, Grigory; Simakov, Andrei; Molvig, Kim; Yin, Lin; Albright, Brian

    2017-10-01

    Classical transport theory based on Chapman-Enskog methods provides self consistent approximations for kinetic fluxes of mass, heat and momentum for each ion species in a multi-ion plasma characterized with a small Knudsen number. A numerical method for solving the classic forms of multi-ion transport, self-consistently including heat and species mass fluxes relative to the center of mass, is given in [Kagan-Baalrud, arXiv '16] and similar transport coefficients result from recent derivations [Simakov-Molvig, PoP, '16]. We have implemented a combination of these methods in a standalone test code and in xRage, an adaptive-mesh radiation hydrodynamics code, at LANL. Transport mixing is examined between a DT fuel and a CH capsule shell in ICF conditions. The four ion species develop individual self-similar density profiles under the assumption of P-T equilibrium in 1D and show interesting early time transient pressure and center of mass velocity behavior when P-T equilibrium is not enforced. Some 2D results are explored to better understand the transport mix in combination with convective flow driven by macroscopic fluid instabilities at the fuel-capsule interface. Early transient and some 2D behaviors from the fluid transport are compared to kinetic code results. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.

  5. A new symmetry model for hohlraum-driven capsule implosion experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Jones, O.; Rygg, R.; Tomasini, R.; Eder, D.; Kritcher, A.; Milovich, J.; Peterson, L.; Thomas, C.; Barrios, M.; Benedetti, R.; Doeppner, T.; Ma, T.; Nagel, S.; Pak, A.; Field, J.; Izumi, N.; Glenn, S.; Town, R.; Bradley, D.

    2016-03-01

    We have developed a new model for predicting the time-dependent radiation drive asymmetry in laser-heated hohlraums. The model consists of integrated Hydra capsule-hohlraum calculations coupled to a separate model for calculating the crossbeam energy transfer between the inner and outer cones of the National Ignition Facility (NIF) indirect drive configuration. The time- dependent crossbeam transfer model parameters were adjusted in order to best match the P2 component of the shape of the inflight shell inferred from backlit radiographs of the capsule taken when the shell was at a radius of 150-250 μm. The adjusted model correctly predicts the observed inflight P2 and P4 components of the shape of the inflight shell, and also the P2 component of the shape of the hotspot inferred from x-ray self-emission images at the time of peak emission. It also correctly captures the scaling of the inflight P4 as the hohlraum length is varied. We then applied the newly benchmarked model to quantify the improved symmetry of the N130331 layered deuterium- tritium (DT) experiment in a re-optimized longer hohlraum.

  6. Defect Induced Mix Experiments (DIME) for NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark; Bradley, Paul; Cobble, James; Hsu, Scott; Krasheninnikova, Natalia; Magelssen, Glenn; Murphy, Thomas; Obrey, Kimberly; Tregillis, Ian; Wysocki, Frederick

    2011-10-01

    Los Alamos National Laboratory will be performing FY12 NIF experiments using polar direct drive to measure the effects of high mode number defects on ICF implosion hydrodynamics and yield. The effect of equatorial groove features will be assessed using both x-ray backlighting and spectrally resolved imaging of higher-Z dopant layers in 2.2 mm diameter (30 microns thick) CH capsules using a multiple monochromatic imager (MMI). By placing thin, 2 micron thick, layers containing ~1.5% of either Ge or Se at different depths in the capsule, we will be able to characterize the mixing and heating of these layers in both perturbed and unperturbed regions of the capsule. Precursor experiments have been performed on Omega to validate these measurement methods using Ti and V layers. An overview of our current results from Omega and design efforts for NIF will be presented. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy.

  7. The Ignition Physics Campaign on NIF: Status and Progress

    NASA Astrophysics Data System (ADS)

    Edwards, M. J.; Ignition Team

    2016-03-01

    We have made significant progress in ICF implosion performance on NIF since the 2011 IFSA. Employing a 3-shock, high adiabat CH (“High-Foot”) design, total neutron yields have increased 10-fold to 6.3 x1015 (a yield of ∼ 17 kJ, which is greater than the energy invested in the DT fuel ∼ 12kJ). At that level, the yield from alpha self-heating is essentially equivalent to the compression yield, indicating that we are close to the alpha self-heating regime. Low adiabat, 4-shock High Density Carbon (HDC) capsules have been imploded in conventional gas-filled hohlraums, and employing a 6 ns, 2-shock pulse, HDC capsules were imploded in near-vacuum hohlraums with overall coupling ∼ 98%. Both the 4- and 2-shock HDC capsules had very low mix and high yield over simulated performance. Rugby holraums have demonstrated uniform x-ray drive with minimal Cross Beam Energy Transfer (CBET), and we have made good progress in measuring and modelling growth of ablation front hydro instabilities.

  8. P2 Asymmetry of Au's M-band Flux and its smoothing effect due to high-Z ablator dopants

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Zhai, Chuanlei; Ren, Guoli; Gu, Jianfa; Huo, Wenyi; Meng, Xujun; Ye, Wenhua; Lan, Ke; Zhang, Weiyan

    2017-10-01

    X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of ``high-foot'' experiments on the National Ignition Facility. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped and a Si-doped ignition capsule driven by x-ray sources with asymmetric M-band flux. As the results, (1) mid- or high-Z dopants absorb M-band flux and re-emit isotropically, helping to smooth M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2) the smoothing effect of Ge-dopant is more remarkable than Si-dopant due to its higher opacity than the latter in Au's M-band; and (3) placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as Inertial Confinement Fusion (ICF) experiments very near the performance cliffs of asymmetric x-ray drives.

  9. The One-Dimensional Cryogenic Implosion Campaign on OMEGA: Modeling, Experiments, and a Statistical Approach to Predict and Understand Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Betti, R.

    2017-10-01

    The 1-D campaign on OMEGA is aimed at validating a novel approach to design cryogenic implosion experiments and provide valuable data to improve the accuracy of 1-D physics models. This new design methodology is being tested first on low-convergence, high-adiabat (α 6 to 7) implosions and will subsequently be applied to implosions with increasing convergence up to the level required for a hydro-equivalent demonstration of ignition. This design procedure assumes that the hydrodynamic codes used in implosion designs lack the necessary physics and that measurements of implosion properties are imperfect. It also assumes that while the measurements may have significant systematic errors, the shot-to-shot variations are small and that cryogenic implosion data are reproducible as observed on OMEGA. One of the goals of the 1-D campaign is to find a mapping of the data to the code results and use the mapping relations to design future implosions. In the 1-D campaign, this predictive methodology was used to design eight implosions using a simple two-shock pulse design, leading to pre-shot predictions of yields within 5% and ion temperatures within 4% of the experimental values. These implosions have also produced the highest neutron yield of 1014 in OMEGA cryogenic implosion experiments with an areal density of 100 mg/cm2. Furthermore, the results from this campaign have been used to test the validity of the 1-D physics models used in the radiation-hydrodynamics codes. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DENA0001944 and LLNL under Contract DE-AC52-07NA27344. * In collaboration with J.P. Knauer, V. Gopalaswamy, D. Patel, K.M. Woo, K.S. Anderson, A. Bose, A.R. Christopherson, V.Yu. Glebov, F.J. Marshall, S.P. Regan, P.B. Radha, C. Stoeckl, and E.M. Campbell.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Neal G.; Vu, M.; Kong, C.

    Capsule drive in National Ignition Facility (NIF) indirect drive implosions is generated by x-ray illumination from cylindrical hohlraums. The cylindrical hohlraum geometry is axially symmetric but not spherically symmetric causing capsule-fuel drive asymmetries. We hypothesize that fabricating capsules asymmetric in wall thickness (shimmed) may compensate for drive asymmetries and improve implosion symmetry. Simulations suggest that for high compression implosions Legendre mode P 4 hohlraum flux asymmetries are the most detrimental to implosion performance. General Atomics has developed a diamond turning method to form a GDP capsule outer surface to a Legendre mode P 4 profile. The P 4 shape requiresmore » full capsule surface coverage. Thus, in order to avoid tool-lathe interference flipping the capsule part way through the machining process is required. This flipping process risks misalignment of the capsule causing a vertical step feature on the capsule surface. Recent trials have proven this step feature height can be minimized to ~0.25 µm.« less

  11. High-foot Implosion Workshop (March 22-24, 2016) Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurricane, O.

    From March 22-24, 2016 at Workshop was held at Lawrence Livermore National Laboratory bringing together international experts in inertial confinement fusion research for the purpose of discussing the results from the ‘high-foot implosion campaign.’ The Workshop topics covered a retrospective of the first two years of experiments, a discussion of our best present understanding of what the data and our models imply, a discussion about remaining mysteries that are not understood at this time, and a discussion of our strategy moving forward. The material herein contains information from published and unpublished sources and is distributed solely for the purposes ofmore » this Workshop. Key assessments and conclusions resulting from the Workshop are: “The high foot campaign is extremely well documented and the interested reader is urged to go directly to the peer-reviewed journal literature for details.” – D. Haynes (LANL) “Overall progress in understanding of fuel and hot-spot properties near peak burn is excellent.” – V. Goncharov (LLE) “I would say that given the constraints of using the same hohlraum and similar capsule designs to the National Ignition Campaign, the High Foot Campaign achieved as much as could be expected. Indeed the demonstration of significant alpha particle heating remains a landmark achievement.” – J. Chittenden (Imperial College) “One of the principal points of discussion at the meeting was the importance of the roll over in inferred pressure that occurs with reducing coast time for different ablator thicknesses and the idea of repeating shot N140819 to confirm this. I would be very interested to see a return to the High Foot platform as a way to exercise the improved radiographic capabilities such as the curved crystal imaging system and as a way to examine the hypothesis of ‘burn truncation by aneurism.’ ” – J. Chittenden (Imperial College) “It is clear from the quality of the data presented during this

  12. Towards an Integrated Model of the NIC Layered Implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, O S; Callahan, D A; Cerjan, C J

    A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60.more » Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-45% of the calculated yields.« less

  13. Novel Characterization of Capsule X-Ray Drive at the National Ignition Facility [Using ViewFactor Experiments to Measure Hohlraum X-Radiation Drive from the Capsule Point-of-View in Ignition Experiments on the National Ignition Facility

    DOE PAGES

    MacLaren, S. A.; Schneider, M. B.; Widmann, K.; ...

    2014-03-13

    Here, indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%–25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the datamore » from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.« less

  14. Effects of alpha stopping power modelling on the ignition threshold in a directly-driven inertial confinement fusion capsule

    NASA Astrophysics Data System (ADS)

    Temporal, Mauro; Canaud, Benoit; Cayzac, Witold; Ramis, Rafael; Singleton, Robert L.

    2017-05-01

    The alpha-particle energy deposition mechanism modifies the ignition conditions of the thermonuclear Deuterium-Tritium fusion reactions, and constitutes a key issue in achieving high gain in Inertial Confinement Fusion implosions. One-dimensional hydrodynamic calculations have been performed with the code Multi-IFE [R. Ramis, J. Meyer-ter-Vehn, Comput. Phys. Commun. 203, 226 (2016)] to simulate the implosion of a capsule directly irradiated by a laser beam. The diffusion approximation for the alpha energy deposition has been used to optimize three laser profiles corresponding to different implosion velocities. A Monte-Carlo package has been included in Multi-IFE to calculate the alpha energy transport, and in this case the energy deposition uses both the LP [C.K. Li, R.D. Petrasso, Phys. Rev. Lett. 70, 3059 (1993)] and the BPS [L.S. Brown, D.L. Preston, R.L. Singleton Jr., Phys. Rep. 410, 237 (2005)] stopping power models. Homothetic transformations that maintain a constant implosion velocity have been used to map out the transition region between marginally-igniting and high-gain configurations. The results provided by the two models have been compared and it is found that - close to the ignition threshold - in order to produce the same fusion energy, the calculations performed with the BPS model require about 10% more invested energy with respect to the LP model.

  15. Towards system-wide implementation of the International Classification of Functioning, Disability and Health (ICF) in routine practice: Developing simple, intuitive descriptions of ICF categories in the ICF Generic and Rehabilitation Set.

    PubMed

    Prodinger, Birgit; Reinhardt, Jan D; Selb, Melissa; Stucki, Gerold; Yan, Tiebin; Zhang, Xia; Li, Jianan

    2016-06-13

    A national, multi-phase, consensus process to develop simple, intuitive descriptions of International Classification of Functioning, Disability and Health (ICF) categories contained in the ICF Generic and Rehabilitation Sets, with the aim of enhancing the utility of the ICF in routine clinical practice, is presented in this study. A multi-stage, national, consensus process was conducted. The consensus process involved 3 expert groups and consisted of a preparatory phase, a consensus conference with consecutive working groups and 3 voting rounds (votes A, B and C), followed by an implementation phase. In the consensus conference, participants first voted on whether they agreed that an initially developed proposal for simple, intuitive descriptions of an ICF category was in fact simple and intuitive. The consensus conference was held in August 2014 in mainland China. Twenty-one people with a background in physical medicine and rehabilitation participated in the consensus process. Four ICF categories achieved consensus in vote A, 16 in vote B, and 8 in vote C. This process can be seen as part of a larger effort towards the system-wide implementation of the ICF in routine clinical and rehabilitation practice to allow for the regular and comprehensive evaluation of health outcomes most relevant for the monitoring of quality of care.

  16. The Marble Experiment: Overview and Simulations

    NASA Astrophysics Data System (ADS)

    Douglas, M. R.; Murphy, T. J.; Cobble, J. A.; Fincke, J. R.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.

    2015-11-01

    The Marble ICF platform has recently been launched on both OMEGA and NIF with the goal to investigate the influence of heterogeneous mix on fusion burn. The unique separated reactant capsule design consists of an ``engineered'' CH capsule filled with deuterated plastic foam that contains pores or voids that are filled with tritium gas. Initially the deuterium and tritium are separated, but as the implosion proceeds, the D and T mix, producing a DT signature. The results of these experiments will be used to inform a probability density function (PDF) burn modelling approach for un-resolved cell morphology. Initial targets for platform development have consisted of either fine-pore foams or gas mixtures, with the goal to field the engineered foams in 2016. An overview of the Marble experimental campaign will be presented and simulations will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  17. Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility

    DOE PAGES

    Gatu Johnson, M.; Knauer, J. P.; Cerjan, C. J.; ...

    2016-08-15

    Here, an accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T ion are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T ion are observed and the difference is seen to increase with increasing apparent DT T ion. The line-of-sight rms variations of both DD and DT T ion are small,more » ~150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T ion. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT Tion greater than the DD T ion, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.« less

  18. Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatu Johnson, M.; Knauer, J. P.; Cerjan, C. J.

    Here, an accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T ion are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T ion are observed and the difference is seen to increase with increasing apparent DT T ion. The line-of-sight rms variations of both DD and DT T ion are small,more » ~150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T ion. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT Tion greater than the DD T ion, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.« less

  19. Content comparison of haemophilia specific patient-rated outcome measures with the international classification of functioning, disability and health (ICF, ICF-CY)

    PubMed Central

    2010-01-01

    Background Patient-Reported Outcomes (PROs) are considered important outcomes because they reflect the patient's experience in clinical trials. PROs have been included in the field of haemophilia only recently. Purpose Comparing the contents of PROs measures used in haemophilia, based on the ICF/ICF-CY as frame of reference. Methods Haemophilia-specific PROs for adults and children were selected on the grounds of international accessibility. The content of the selected instruments were examined by linking the concepts within the items of these instruments to the ICF/ICF-CY. Results Within the 5 selected instruments 365 concepts were identified, of which 283 concepts were linked to the ICF/ICF CY and mapped into 70 different categories. The most frequently used categories were "b152: Emotional functions" and "e1101: Drugs". Conclusions The present paper provides an overview on current PROs in haemophilia and facilitates the selection of appropriate instruments for specific purposes in clinical and research settings. This work was made possible by the grant of the European Murinet Project (Multidisciplinary Research Network on Health and Disability in Europe). PMID:21108796

  20. [The International Classification of Functioning, Disability and Health (ICF) : The implementation of the ICF Core Sets for Hand Conditions in clinical routine as an example of application].

    PubMed

    Coenen, Michaela; Rudolf, Klaus-Dieter; Kus, Sandra; Dereskewitz, Caroline

    2018-05-24

    The International Classification of Functioning, Disability and Health (ICF) provides a standardized language of almost 1500 ICF categories for coding information about functioning and contextual factors. Short lists (ICF Core Sets) are helpful tools to support the implementation of the ICF in clinical routine. In this paper we report on the implementation of ICF Core Sets in clinical routine using the "ICF Core Sets for Hand Conditions" and the "Lighthouse Project Hand" as an example. Based on the ICF categories of the "Brief ICF Core Set for Hand Conditions", the ICF-based assessment tool (ICF Hand A ) was developed aiming to guide the assessment and treatment of patients with injuries and diseases located at the hand. The ICF Hand A facilitates the standardized assessment of functioning - taking into consideration of a holistic view of the patients - along the continuum of care ranging from acute care to rehabilitation and return to work. Reference points for the assessment of the ICF Hand A are determined in treatment guidelines for selected injuries and diseases of the hand along with recommendations for acute treatment and care, procedures and interventions of subsequent treatment and rehabilitation. The assessment of the ICF Hand A according to the defined reference points can be done using electronic clinical assessment tools and allows for an automatic generation of a timely medical report of a patient's functioning. In the future, the ICF Hand A can be used to inform the coding of functioning in ICD-11.

  1. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects

    PubMed Central

    Weemaes, Corry MR; van Tol, Maarten JD; Wang, Jun; van Ostaijen-ten Dam, Monique M; van Eggermond, Marja CJA; Thijssen, Peter E; Aytekin, Caner; Brunetti-Pierri, Nicola; van der Burg, Mirjam; Graham Davies, E; Ferster, Alina; Furthner, Dieter; Gimelli, Giorgio; Gennery, Andy; Kloeckener-Gruissem, Barbara; Meyn, Stephan; Powell, Cynthia; Reisli, Ismail; Schuetz, Catharina; Schulz, Ansgar; Shugar, Andrea; van den Elsen, Peter J; van der Maarel, Silvère M

    2013-01-01

    Immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome is a primary immunodeficiency, predominantly characterized by agammaglobulinemia or hypoimmunoglobulinemia, centromere instability and facial anomalies. Mutations in two genes have been discovered to cause ICF syndrome: DNMT3B and ZBTB24. To characterize the clinical features of this syndrome, as well as genotype–phenotype correlations, we compared clinical and genetic data of 44 ICF patients. Of them, 23 had mutations in DNMT3B (ICF1), 13 patients had mutations in ZBTB24 (ICF2), whereas for 8 patients, the gene defect has not yet been identified (ICFX). While at first sight these patients share the same immunological, morphological and epigenetic hallmarks of the disease, systematic evaluation of all reported informative cases shows that: (1) the humoral immunodeficiency is generally more pronounced in ICF1 patients, (2) B- and T-cell compartments are both involved in ICF1 and ICF2, (3) ICF2 patients have a significantly higher incidence of intellectual disability and (4) congenital malformations can be observed in some ICF1 and ICF2 cases. It is expected that these observations on prevalence and clinical presentation will facilitate mutation-screening strategies and help in diagnostic counseling. PMID:23486536

  2. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hagmann, C.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Herrmann, H. W.; Knauer, J. P.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.

    2015-07-01

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the 198Au/196Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  3. X-pinch dynamics: Neck formation and implosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkin, V. I.; National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050; Chaikovsky, S. A.

    2014-10-15

    We propose a model that describes the neck formation and implosion in an X-pinch. The process is simulated to go in two stages. The first stage is neck formation. This stage begins with an electrical explosion of the wires forming the X-pinch, and at the end of the stage, a micropinch (neck) is formed in the region where the wires are crossed. The second stage is neck implosion. The implosion is accompanied by outflow of matter from the neck region, resulting in the formation of a “hot spot”. Analytical estimates obtained in the study under consideration indicate that these stagesmore » are approximately equal in duration. Having analyzed the neck implosion dynamics, we have verified a scaling which makes it possible to explain the observed dependences of the time of occurrence of an x-ray pulse on the X-pinch current and mass.« less

  4. Multiple Monochromatic Imaging (MMI) Status and Plans for LANL Campaigns on Omega and NIF

    NASA Astrophysics Data System (ADS)

    Wysocki, F. J.; Hsu, S. C.; Tregillis, I. L.; Schmitt, M. J.; Kyrala, G. A.; Martinson, D. D.; Murphy, T. J.; Mancini, R. C.; Nagayama, T.

    2011-10-01

    LANL's DIME (Defect Implosion Experiment) campaigns on Omega and NIF are aimed at obtaining improved understanding of defect-induced mix via experiments and simulations of directly driven high-Z doped plastic capsules with DD or DT gas fill. To this end, the MMI diagnostic has been identified as a key diagnostic for providing space and time-resolved density, temperature, and mix profiles. The high Z shell dopants used on Omega are Ti and V, and to be used on NIF are Ge and Se. This poster will discuss the following four areas of MMI-related work at LANL, in collaboration with UNR: (1) data and preliminary analysis of MMI data from FY11 Omega campaigns, (2) development of a capability to generate simulated MMI data from radiation- hydrodynamic simulations of ICF implosions, (3) design of an MMI instrument for NIF that will cover the photon energy range 9.5-16.9 keV which includes the Ge/Se, H- like/He-like, α/ β lines, and (4) the development of MMI data post- processing and spectroscopic analysis tools. Supported by DOE NNSA.

  5. Three-dimensional hydrodynamic simulations of OMEGA implosions

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; Campbell, E. M.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Marshall, F. J.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schmitt, A. J.; Obenschain, S.

    2017-05-01

    The effects of large-scale (with Legendre modes ≲ 10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets ( ˜10 to 20 μm), beam-power imbalance ( σrms˜10 %), and variations ( ˜5 %) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ˜1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh-Taylor growth.

  6. Laser Program Annual Report - 1979 Unclassified Excerpts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindl, J D

    The objective of the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) program is to demonstrate the scientific feasibility of ICF for military applications (to develop and utilize the capability to study nuclear weapons physics in support of the weapons program) and for energy-directed uses in the civilian sector. The demonstration of scientific feasibility for both military and civilian objectives will require achieving gains on the order of 10 to 100 in fusion microexplosions. Our major near-term milestones include the attainment of high compression, one-hundred to one-thousand times (100 to 1000X) liquid D-T density in the thermonuclear fuel andmore » ignition of thermonuclear burn. In 1979, our laser fusion experiments and analysis programs focused on two important areas related to achieving this goal: conducting x-ray-driven implosions of a variety of D-T-filled fuel capsule's to unprecedented high densities ({approx}> 50X liquid D-T density) and the determination of the scaling of hot electrons and thermal radiation in hohlraums.« less

  7. Ultra High Mode Mix in NIF NIC Implosions

    NASA Astrophysics Data System (ADS)

    Scott, Robbie; Garbett, Warren

    2017-10-01

    This work re-examines a sub-set of the low adiabat implosions from the National Ignition Campaign in an effort to better understand potential phenomenological sources of `excess' mix observed experimentally. An extensive effort has been made to match both shock-timing and backlit radiography (Con-A) implosion data in an effort to reproduce the experimental conditions as accurately as possible. Notably a 30% reduction in ablation pressure at peak drive is required to match the experimental data. The reduced ablation pressure required to match the experimental data allows the ablator to decompress, in turn causing the DT ice-ablator interface to go Rayleigh-Taylor unstable early in the implosion acceleration phase. Post-processing the runs with various mix models indicates high-mode mix from the DT ice-ablator interface may penetrate deep into the hotspot. This work offers a potential explanation of why these low-adiabat implosions exhibited significantly higher levels of mix than expected from high-fidelity multi-dimensional simulations. Through this new understanding, a possible route forward for low-adiabat implosions on NIF is suggested.

  8. Progress of LMJ-relevant implosions experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M.-C.; Gauthier, P.; Park, H. S.; Robey, H.; Ross, J.; Amendt, P.; Girard, F.; Villette, B.; Reverdin, C.; Loiseau, P.; Caillaud, T.; Landoas, O.; Li, C. K.; Petrasso, R.; Seguin, F.; Rosenberg, M.; Renaudin, P.

    2013-11-01

    In preparation of the first ignition attempts on the Laser Mégajoule (LMJ), an experimental program is being pursued on OMEGA to investigate LMJ-relevant hohlraums. First, radiation temperature levels close to 300 eV were recently achieved in reduced-scale hohlraums with modest backscatter losses. Regarding the baseline target design for fusion experiments on LMJ, an extensive experimental database has also been collected for scaled implosions experiments in both empty and gas-filled rugby-shaped hohlraums. We acquired a full picture of hohlraum energetics and implosion dynamics. Not only did the rugby hohlraums show significantly higher x-ray drive energy over the cylindrical hohlraums, but symmetry control by power balance was demonstrated, as well as high-performance D2 implosions enabling the use of a complete suite of neutrons diagnostics. Charged particle diagnostics provide complementary insights into the physics of these x-ray driven implosions. An overview of these results demonstrates our ability to control the key parameters driving the implosion, lending more confidence in extrapolations to ignition-scale targets.

  9. Designing symmetric polar direct drive implosions on the Omega laser facility

    NASA Astrophysics Data System (ADS)

    Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.; Tregillis, Ian L.; Bradley, Paul A.; Hakel, Peter; Hsu, Scott C.; Kyrala, George A.; Obrey, Kimberly A.; Schmitt, Mark J.; Baumgaertel, Jessica A.; Batha, Steven H.

    2014-04-01

    Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153-157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emission images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P2) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P2 around bang time and 33% more yield.

  10. Designing symmetric polar direct drive implosions on the Omega laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.

    2014-04-15

    Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153–157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emissionmore » images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P{sub 2}) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P{sub 2} around bang time and 33% more yield.« less

  11. High-Energy-Density-Physics Studies for Inertial Confinement Fusion Applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2017-10-01

    Accurate knowledge of the static, transport, and optical properties of high-energy-density (HED) plasmas is essential for reliably designing and understanding inertial confinement fusion (ICF) implosions. In the warm-dense-matter regime routinely accessed by low-adiabat ICF implosions, many-body strong-coupling and quantum electron degeneracy effects play an important role in determining plasma properties. The past several years have witnessed intense efforts to assess the importance of the microphysics of ICF targets, both theoretically and experimentally. On the theory side, first-principles methods based on quantum mechanics have been applied to investigate the properties of warm, dense plasmas. Specifically, self-consistent investigations have recently been performed on the equation of state, thermal conductivity, and opacity of a variety of ICF ablators such as polystyrene (CH), beryllium, carbon, and silicon over a wide range of densities and temperatures. In this talk, we will focus on the most-recent progress on these ab initio HED physics studies, which generally result in favorable comparisons with experiments. Upon incorporation into hydrocodes for ICF simulations, these first-principles ablator-plasma properties have produced significant differences over traditional models in predicting 1-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. *In collaboration with L. A. Collins, T. R. Boehly, G. W. Collins, J. D. Kress, and V. N. Goncharov.

  12. Three-Dimensional Hydrodynamic Simulations of OMEGA Implosions

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.

    2016-10-01

    The effects of large-scale (with Legendre modes less than 30) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming) and target offset, mount, and layers nonuniformities were investigated using three-dimensional (3-D) hydrodynamic simulations. Simulations indicate that the performance degradation in cryogenic implosions is caused mainly by the target offsets ( 10 to 20 μm), beampower imbalance (σrms 10 %), and initial target asymmetry ( 5% ρRvariation), which distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of the stagnated target. The ion temperature inferred from the width of simulated neutron spectra are influenced by bulk fuel motion in the distorted hot spot and can result in up to 2-keV apparent temperature increase. Similar temperature variations along different lines of sight are observed. Simulated x-ray images of implosion cores in the 4- to 8-keV energy range show good agreement with experiments. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires reducing large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing high-efficient mid-adiabat (α = 4) implosion designs that mitigate cross-beam energy transfer (CBET) and suppress short-wavelength Rayleigh-Taylor growth. These simulations use a new low-noise 3-D Eulerian hydrodynamic code ASTER. Existing 3-D hydrodynamic codes for direct-drive implosions currently miss CBET and noise-free ray-trace laser deposition algorithms. ASTER overcomes these limitations using a simplified 3-D laser-deposition model, which includes CBET and is capable of simulating the effects of beam-power imbalance, beam mispointing, mistiming, and target offset. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U

  14. Explosion-Induced Implosions of Cylindrical Shell Structures

    NASA Astrophysics Data System (ADS)

    Ikeda, C. M.; Duncan, J. H.

    2010-11-01

    An experimental study of the explosion-induced implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and are placed in a large water-filled pressure vessel. The vessel is then pressurized to various levels P∞=αPc, where Pc is the natural implosion pressure of the model and α is a factor that ranges from 0.1 to 0.9. An explosive is then set off at various standoff distances, d, from the model center line, where d varies from R to 10R and R is the maximum radius of the explosion bubble. High-speed photography (27,000 fps) was used to observe the explosion and resulting shell structure implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 6 positions. The cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thickness t = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, t = 0.36 mm, L=152 mm) tubes. The pressure records are interpreted in light of the high-speed movies. It is found that the implosion is induced by two mechanisms: the shockwave generated by the explosion and the jet formed during the explosion-bubble collapse. Whether an implosion is caused by the shockwave or the jet depends on the maximum bubble diameter and the standoff distance.

  15. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.

    PubMed

    Hu, S X; Collins, L A; Boehly, T R; Kress, J D; Goncharov, V N; Skupsky, S

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ∼20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the

  16. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Kress, J. D.; Goncharov, V. N.; Skupsky, S.

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ˜20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the

  17. The ICF and Postsurgery Occupational Therapy after Traumatic Hand Injury

    ERIC Educational Resources Information Center

    Fitinghoff, Helene; Lindqvist, Birgitta; Nygard, Louise; Ekholm, Jan; Schult, Marie-Louise

    2011-01-01

    Recent studies have examined the effectiveness of hand rehabilitation programmes and have linked the outcomes to the concept of ICF but not to specific ICF category codes. The objective of this study was to gain experience using ICF concepts to describe occupational therapy interventions during postsurgery hand rehabilitation, and to describe…

  18. Kinetic studies of ICF implosions

    DOE PAGES

    Kagan, Grigory; Herrmann, H. W.; Kim, Y. -H.; ...

    2016-05-26

    Here, kinetic effects on inertial confinement fusion have been investigated. In particular, inter-ion-species diffusion and suprathermal ion distribution have been analyzed. The former drives separation of the fuel constituents in the hot reacting core and governs mix at the shell/fuel interface. The latter underlie measurements obtained with nuclear diagnostics, including the fusion yield and inferred ion burn temperatures. Basic mechanisms behind and practical consequences from these effects are discussed.

  19. 42 CFR 440.150 - Intermediate care facility (ICF/MR) services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Intermediate care facility (ICF/MR) services. 440....150 Intermediate care facility (ICF/MR) services. (a) “ICF/MR services” means those items and services furnished in an intermediate care facility for the mentally retarded if the following conditions are met: (1...

  20. The Health and Functioning ICF-60: Development and Psychometric Properties

    PubMed Central

    Tutelyan, V A; Chatterji, S; Baturin, A K; Pogozheva, A V; Kishko, O N; Akolzina, S E

    2014-01-01

    Background This paper describes the development and psychometric properties of the Health and Functioning ICF-60 (HF-ICF-60) measure, based on the World Health Organization (WHO) ‘International Classification of Functioning, Disability and Health: ICF’ (2001). The aims of the present study were to test psychometric properties of the HF-ICF-60, developed as a measure that would be responsive to change in functioning through changes in health and nutritional status, as a prospective measure to monitor health and nutritional status of populations and to explore the relationship of the HF-ICF-60 with quality of life measures such as the World Health Organization WHOQOL-BREF quality of life assessment in relation to non-communicable diseases. Methods The HF-ICF-60 measure consists of 60 items selected from the ICF by an expert panel, which included 18 items that cover Body Functions, 21 items that cover Activities and Participation, rated on five-point scales, and 21 items that cover Environmental Factors (seven items cover Individual Environmental Factors and 14 items cover Societal Environmental Factors), rated on nine-point scales. The HF-ICF-60 measure was administered to the Russian nationally representative sample within the Russian National Population Quality of Life, Health and Nutrition Survey, in 2004 (n = 9807) and 2005 (n = 9560), as part of the two waves of the Russian Longitudinal Monitoring Survey (RLMS). The statistical analyses were carried out with the use of both classical and modern psychometric methods, such as factor analysis, and based on Item Response Theory, respectively. Results The HF-ICF-60 questionnaire is a new measure derived directly from the ICF and covers the ICF components as follows: Body Functions, Activities and Participation, and Environmental Factors (Individual Environmental Factors and Societal Environmental Factors). The results from the factor analyses (both Exploratory Factor Analyses and Confirmatory Factor

  1. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    DOE PAGES

    Cao, D.; Boehly, T. R.; Gregor, M. C.; ...

    2018-05-16

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the VISAR diagnostic on OMEGA. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (α ~ 3) implosions, but agreement degrades for lower-adiabat (α ~ 1) designs. Several possibilities for this difference are studied: errors in placing the target at the center of irradiation (target offset),more » variations in energy between the different incident beams (power imbalance), and errors in modeling the laser energy coupled into the capsule. Simulation results indicate that shock timing is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to target offset and beam power imbalance. A new technique under development to infer coronal profiles using x-ray self-emission imaging can be applied to the pulse shapes used in shock-timing experiments. In conclusion, this will help identify improved physics models to implement in codes and consequently enhance shock-timing predictive capability for low-adiabat pulses.« less

  2. Measurements of Hard X-Ray Emission Suggest Absorption Along the Path of the Inner Beams in High Foot Implosion Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Ralph, Joseph; Pak, Arthur; Otto, Landen; Kritcher, Andrea; Ma, Tammy; Charles, Jarrott; Callahan, Debra; Hinkel, Denise; Berzak Hopkins, Laura; Moody, John; Khan, Shahab; Doeppner, Tilo; Rygg, Ryan; Hurricane, Omar

    2016-10-01

    The current high foot hohlraum design fielded on the National Ignition Facility is aimed at providing uniform x-ray drive to provide a spherical implosion by lowering the gas fill from 1.6 to 0.6 mg/cc and increasing the hohlraum width from 5.75 to 6.72 mm while maintaining the same 1.8 mm capsule diameter from previous designs. These changes are intended to improve beam propagation without the need for crossed beam energy transfer. Analysis of the measurements of hard x-ray emission from the gated x-ray detector (GXD) and the static x-ray imager (SXI) looking through the laser entrance hole indicate a significant fraction of the inner beam incident energy is absorbed in the high z blow-off region (either uranium or gold) before reaching the inner wall near the equator. Comparison of inner beam absorption in this region and its effect on the implosion symmetry measurements will be presented. Additionally, the sensitivity of this absorption feature and therefore the implosion symmetry to the pulse shape, hohlraum fill pressure and fraction of energy in beams depositing energy at the hohlraum equator will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.

    PubMed

    Hu, S X; Collins, L A; Goncharov, V N; Boehly, T R; Epstein, R; McCrory, R L; Skupsky, S

    2014-09-01

    Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρ(D)=0.5 to 673.518g/cm(3) and temperatures from T=5000K up to the Fermi temperature T(F) for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ∼10% up to a factor of ∼2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.

  4. Mix Models Applied to the Pushered Single Shell Capsules Fired on NIF1

    NASA Astrophysics Data System (ADS)

    Tipton, Robert; Dewald, Eduard; Pino, Jesse; Ralph, Joe; Sacks, Ryan; Salmonson, Jay

    2017-10-01

    The goal of the Pushered Single Shell (PSS) experimental campaign is to study the mix of partially ionized ablator material into the hotspot. To accomplish this goal, we used a uniformly Si doped plastic capsule based on the successful Two-Shock campaign. The inner few microns of the capsule can be doped with a few percent Ge. To diagnose mix, we used the method of separated reactants; deuterating the inner Ge-doped layer, CD/Ge, while using a gas fill of Tritium and Hydrogen. Mix is inferred by measuring the neutron yields from DD, DT, and TT reactions. The PSS implosion is fast ( 400 km/sec), hot ( 3KeV) and round (P2 0). This paper will present the calculations of RANS type mix models such as KL along with LES models such as multicomponent Navier Stokes on several PSS shots. The calculations will be compared to each other and to the measured data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  5. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    PubMed

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  6. Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Bellei, Claudio; Ross, J. Steven; Salmonson, Jay

    2015-02-01

    Recent efforts to demonstrate significant self-heating of the fuel and eventual ignition at the National Ignition Facility make use of plastic (CH) ablators [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014), 10.1063/1.4874330]. Mainline simulation techniques for modeling CH capsule implosions treat the ablator as an average-atom fluid and neglect potential species separation phenomena. The mass-ablation process for a mixture is shown to lead to the potential for species separation, parasitic energy loss according to thermodynamic arguments, and reduced rocket efficiency. A generalized plasma barometric formula for a multispecies concentration gradient that includes collisionality and steady flows in spherical geometry is presented. A model based on plasma expansion into a vacuum is used to interpret reported experimental evidence for ablator species separation in an inertial-confinement-fusion target [J. S. Ross et al., Rev. Sci. Instrum. 83, 10E323 (2012)]. The possibility of "runaway" hydrogen ions in the thermoelectric field of the ablation front is conjectured.

  7. Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions.

    PubMed

    Amendt, Peter; Bellei, Claudio; Ross, J Steven; Salmonson, Jay

    2015-02-01

    Recent efforts to demonstrate significant self-heating of the fuel and eventual ignition at the National Ignition Facility make use of plastic (CH) ablators [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)]. Mainline simulation techniques for modeling CH capsule implosions treat the ablator as an average-atom fluid and neglect potential species separation phenomena. The mass-ablation process for a mixture is shown to lead to the potential for species separation, parasitic energy loss according to thermodynamic arguments, and reduced rocket efficiency. A generalized plasma barometric formula for a multispecies concentration gradient that includes collisionality and steady flows in spherical geometry is presented. A model based on plasma expansion into a vacuum is used to interpret reported experimental evidence for ablator species separation in an inertial-confinement-fusion target [J. S. Ross et al., Rev. Sci. Instrum. 83, 10E323 (2012)]. The possibility of "runaway" hydrogen ions in the thermoelectric field of the ablation front is conjectured.

  8. A Survey of the Effect of Convergence Ratio with Low-Mode Drive Asymmetry on ICF Implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, J E; Gaffney, J A; Hammer, J

    This series of slides begins by discussing convergence. It is seen that 3D hot spots develop more serious weak spots and are less tolerant of convergence. and that 3D perturbations are more damaging than 2D, and they become more so with increased convergence ratio. Then more results of computer simulations are shown. It is concluded that X-ray images are very different above and below 15 keV; small perturbations are likely puncture the capsule; fluid velocity significantly changes neutron inferred temperatures; and the thermodynamic temperature is changing drastically during the burn. The simulations predict effects large enough to potentially reconcile manymore » apparent mysteries in the neutron and X-ray diagnostics.« less

  9. Three-dimensional hydrodynamic simulations of OMEGA implosions

    DOE PAGES

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; ...

    2017-03-30

    Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σ rms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosionmore » targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.« less

  10. Three-dimensional hydrodynamic simulations of OMEGA implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.

    Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σ rms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosionmore » targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.« less

  11. 42 CFR 440.150 - Intermediate care facility (ICF/IIDICF/IID) services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Intermediate care facility (ICF/IIDICF/IID... Definitions § 440.150 Intermediate care facility (ICF/IIDICF/IID) services. (a) “ICF/IIDICF/IID services” means those items and services furnished in an intermediate care facility for Individuals with...

  12. 42 CFR 440.150 - Intermediate care facility (ICF/IIDICF/IID) services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Intermediate care facility (ICF/IIDICF/IID... Definitions § 440.150 Intermediate care facility (ICF/IIDICF/IID) services. (a) “ICF/IIDICF/IID services” means those items and services furnished in an intermediate care facility for Individuals with...

  13. Classification of functioning and impairment: the development of ICF core sets for autism spectrum disorder.

    PubMed

    Bölte, Sven; de Schipper, Elles; Robison, John E; Wong, Virginia C N; Selb, Melissa; Singhal, Nidhi; de Vries, Petrus J; Zwaigenbaum, Lonnie

    2014-02-01

    Given the variability seen in Autism Spectrum Disorder (ASD), accurate quantification of functioning is vital to studying outcome and quality of life in affected individuals. The International Classification of Functioning, Disability and Health (ICF) provides a comprehensive, universally accepted framework for the description of health-related functioning. ICF Core Sets are shortlists of ICF categories that are selected to capture those aspects of functioning that are most relevant when describing a person with a specific condition. In this paper, the authors preview the process for developing ICF Core Sets for ASD, a collaboration with the World Health Organization and the ICF Research Branch. The ICF Children and Youth version (ICF-CY) was derived from the ICF and designed to capture the specific situation of the developing child. As ASD affects individuals throughout the life span, and the ICF-CY includes all ICF categories, the ICF-CY will be used in this project ("ICF(-CY)" from now on). The ICF(-CY) categories to be included in the ICF Core Sets for ASD will be determined at an ICF Core Set Consensus Conference, where evidence from four preparatory studies (a systematic review, an expert survey, a patient and caregiver qualitative study, and a clinical cross-sectional study) will be integrated. Comprehensive and Brief ICF Core Sets for ASD will be developed with the goal of providing useful standards for research and clinical practice and generating a common language for functioning and impairment in ASD in different areas of life and across the life span. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  14. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; ...

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D 3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+ 3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%,more » which are interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  15. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.

    2015-05-15

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D{sup 3}He gas-filled implosions at the National Ignition Facility produce energetic protons via D+{sup 3}He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3–5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%,more » which are interpreted as ℓ=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  16. The Nova Upgrade Facility for ICF ignition and gain

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.

    1992-01-01

    Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.

  17. [Functioning and disability: the International Classification of Functioning, Disability and Health (ICF)].

    PubMed

    Fernández-López, Juan Antonio; Fernández-Fidalgo, María; Geoffrey, Reed; Stucki, Gerold; Cieza, Alarcos

    2009-01-01

    The World Health Organization's International Classification of Functioning, Disability and Health (ICF) has provided a new foundation for our understanding of health, functioning, and disability. It covers most of the health and health-related domains that make up the human experience, and the most environmental factors that influence that experience of functioning and disability. With the exhaustive ICF, patients' functioning -including its components body functions and structures and activities and participation-, becomes a central perspective in medicine. To implement the ICF in medicine and other fields, practical tools (= ICF Core Sets) have been developed. They are selected sets of categories out of the whole classification which serve as minimal standards for the assessment and reporting of functioning and health for clinical studies and clinical encounters (Brief ICF Core Set) or as standards for multiprofessional comprehensive assessment (Comprehensive ICF Core Set). Different from generic and condition-specific health-status measures, the ICF Core Sets include important body functions and structures and contextual factors. The use of the ICF Core Sets provides an important step towards improved communications between healthcare providers and professionals, and will enable patients and their families to understand and communicate with health professionals about their functioning and treatment goals. Specific applications include multi- and interdisciplinary assessment in clinical settings and in legal expert evaluations and use in disease or functioning-management programs. The ICF has also a potential as a conceptual framework to clarify an interrelated universe of health-related concepts which can be elucidated based on the ICF and therefore will be an ideal tool for teaching students in all medical fields and may open doors to multi-professional learning.

  18. Visualizing deceleration-phase instabilities in inertial confinement fusion implosions using an "enhanced self-emission" technique at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; Robey, H. F.; Benedetti, L. R.; Berzak Hopkins, L.; Bradley, D. K.; Field, J. E.; Haan, S. W.; Hatarik, R.; Hartouni, E.; Izumi, N.; Johnson, S.; Khan, S.; Lahmann, B.; Landen, O. L.; Le Pape, S.; MacPhee, A. G.; Meezan, N. B.; Milovich, J.; Nagel, S. R.; Nikroo, A.; Pak, A. E.; Petrasso, R.; Remington, B. A.; Rice, N. G.; Springer, P. T.; Stadermann, M.; Widmann, K.; Hsing, W.

    2018-05-01

    High-mode perturbations and low-mode asymmetries were measured in the deceleration phase of indirectly driven, deuterium gas filled inertial confinement fusion capsule implosions at convergence ratios of 10 to 15, using a new "enhanced emission" technique at the National Ignition Facility [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In these experiments, a high spatial resolution Kirkpatrick-Baez microscope was used to image the x-ray emission from the inner surface of a high-density-carbon capsule's shell. The use of a high atomic number dopant in the shell enabled time-resolved observations of shell perturbations penetrating into the hot spot. This allowed the effects of the perturbations and asymmetries on degrading neutron yield to be directly measured. In particular, mix induced radiation losses of ˜400 J from the hot spot resulted in a neutron yield reduction of a factor of ˜2. In a subsequent experiment with a significantly increased level of short-mode initial perturbations, shown through the enhanced imaging technique to be highly organized radially, the neutron yield dropped an additional factor of ˜2.

  19. The ICF has made a difference to functioning and disability measurement and statistics.

    PubMed

    Madden, Rosamond H; Bundy, Anita

    2018-02-12

    Fifteen years after the publication of the International Classification of Functioning, Disability and Health (ICF), we investigated: How ICF applications align with ICF aims, contents and principles, and how the ICF has been used to improve measurement of functioning and related statistics. In a scoping review, we investigated research published 2001-2015 relating to measurement and statistics for evidence of: a change in thinking; alignment of applications with ICF specifications and philosophy; and the emergence of new knowledge. The ICF is used in diverse applications, settings and countries, with processes largely aligned with the ICF and intended to improve measurement and statistics: new national surveys, information systems and ICF-based instruments; and international efforts to improve disability data. Knowledge is growing about the components and interactions of the ICF model, the diverse effects of the environment on functioning, and the meaning and measurement of participation. The ICF provides specificity and a common language in the complex world of functioning and disability and is stimulating new thinking, new applications in measurement and statistics, and the assembling of new knowledge. Nevertheless, the field needs to mature. Identified gaps suggest ways to improve measurement and statistics to underpin policies, services and outcomes. Implications for Rehabilitation The ICF offers a conceptualization of functioning and disability that can underpin assessment and documentation in rehabilitation, with a growing body of experience to draw on for guidance. Experience with the ICF reminds practitioners to consider all the domains of participation, the effect of the environment on participation and the importance of involving clients/patients in assessment and service planning. Understanding the variability of functioning within everyday environments and designing interventions for removing barriers in various environments is a vital part of

  20. Early-Time Symmetry Tuning in the Presence of Cross-Beam Energy Transfer in ICF Experiments on the National Ignition Facility

    DOE PAGES

    Dewald, E. L.; Milovich, J. L.; Michel, P.; ...

    2013-12-01

    At the National Ignition Facility (NIF) we have successfully tuned the early time (~2 ns) lowest order Legendre mode (P 2) of the incoming radiation drive asymmetry of indirectly driven ignition capsule implosions by varying the inner power cone fraction. The measured P 2/P 0 sensitivity vs come fraction is similar to calculations, but a significant -15 to -20% P 2/P 0 offset was observed. This can be explained by a considerable early time laser energy transfer from the outer to the inner beams during the laser burn-through of the Laser Entrance Hole (LEH) windows and hohlraum fill gas whenmore » the LEH plasma is still dense and relatively cold.« less

  1. Using a Z-pinch precursor plasma to produce a cylindrical, hotspot ignition, ICF

    NASA Astrophysics Data System (ADS)

    Chittenden, Jeremy

    2005-10-01

    We show that if the same precursor plasma that exists in metal wire arrays can be generated with a Deuterium-Tritium plasma then this precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The precursor is generated from a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the ρR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  2. The implementation of the ICF among Israeli rehabilitation centers--the case of physical therapy.

    PubMed

    Jacob, Tamar

    2013-10-01

    The extent of the implementation of the International Classification of Functioning, Disability and Health (ICF), developed by the WHO, in rehabilitation units and in physical therapy (PT) departments is unknown. The study aims to describe the extent to which the ICF has been implemented in PT services within rehabilitation units in Israel. To update data on ICF implementation since its inception. An online semi-structured survey was administered to 25 physiotherapists in charge of PT departments in all rehabilitation units throughout Israel. Rehabilitation units were grouped into three categories: general, geriatric and pediatric. The questionnaire included items regarding the ICF implementation, its strengths, and weaknesses. Twenty two physiotherapists (88%) completed the questionnaire. The majority was familiar with the ICF and nearly two thirds reported partial implementation in their units. Implementation focused mostly on adopting the biopsychosocial concepts and using ICF terms. The ICF was not used either for evaluating patients, or for reporting or encoding patient information. Physiotherapists, directors of most Israeli PT departments in rehabilitation units are familiar with the ICF; however, its clinical implementation is very limited. There is need for further research into the processes of knowledge transfer and implementation of the ICF, in order to better understand the factors that facilitate and those that impede ICF implementation.

  3. Backlighting Direct-Drive Cryogenic DT Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.

    2016-10-01

    X-ray backlighting has been frequently used to measure the in-flight characteristics of an imploding shell in both direct- and indirect-drive inertial confinement fusion implosions. These measurements provide unique insight into the early time and stagnation stages of an implosion and guide the modeling efforts to improve the target designs. Backlighting a layered DT implosion on OMEGA is a particular challenge because the opacity of the DT shell is low, the shell velocity is high, the size and wall thickness of the shell is small, and the self-emission from the hot core at the onset of burn is exceedingly bright. A framing-camera-based crystal imaging system with a Si Heα backlighter at 1.865keV driven by 10-ps short pulses from OMEGA EP was developed to meet these radiography challenges. A fast target inserter was developed to accurately place the Si backlighter foil at a distance of 5 mm to the implosion target following the removal of the cryogenic shroud and an ultra-stable triggering system was implemented to reliably trigger the framing camera coincident with the arrival of the OMEGA EP pulse. This talk will report on a series of implosions in which the DT shell is imaged for a range of convergence ratios and in-flight aspect ratios. The images acquired have been analyzed for low-mode shape variations, the DT shell thickness, the level of ablator mixing into the DT fuel (even 0.1% of carbon mix can be reliably inferred), the areal density of the DT shell, and the impact of the support stalk. The measured implosion performance will be compared with hydrodynamic simulations that include imprint (up to mode 200), cross-beam energy transfer, nonlocal thermal transport, and initial low-mode perturbations such as power imbalance and target misalignment. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. ICF-Based Analysis of Communication Disorders in Dementia of Alzheimer's Type

    PubMed Central

    Badarunisa, Mohamad Basheer; Sebastian, Daly; Rangasayee, Raghunath Rao; Kala, Baby

    2015-01-01

    Purpose Dementia of Alzheimer's type (DAT) is a major cognitive communication disorder. The present study attempted to analyse communication disorders in DAT in the International Classification of Functions (ICF) framework. The study investigated the impact of the severity of communication disorders in persons with DAT on activity participation and environment components of the ICF. Method Thirty bilingual individuals with DAT in the age range of 65-88 years were classified into three groups of mild, moderate and severe degree of dementia. Forty-three items of the American Speech-Language-Hearing Association Functional Assessment of Communication Skills for Adults (ASHA FACS) were linked to the ICF framework. A few additional items were also added for a complete profiling of DAT. A total of 50 (ASHA FACS + ICF) items were rated and administered for the purpose of the study. Results The study revealed a disproportionate impact of the severity of DAT on activity participation and environment components of the ICF. Conclusion The present study investigated the utility of the ICF framework for profiling the functionality of persons with DAT. This profiling highlighted the need for ensuring effective communication and quality of life in the DAT population. PMID:26955380

  5. ICF-CY: A Universal Tool for Documentation of Disability

    ERIC Educational Resources Information Center

    Simeonsson, Rune J.

    2009-01-01

    The "International Classification of Functioning, Disability and Health--ICF" (ICF-CY) conceptual framework offers a new paradigm and taxonomy of human functioning disability, which can be used to guide holistic and interdisciplinary approaches to assessment and intervention. In settings serving children, youth, or adults with disabilities, the…

  6. Robust spherical direct-drive design for NI

    NASA Astrophysics Data System (ADS)

    Masse, Laurent; Hurricane, O.; Michel, P.; Nora, R.; Tabak, M.; Lawrence Livermore Natl Lab Team

    2016-10-01

    Achieving ignition in a direct-drive or indirect-drive cryogenic implosion is a tremendous challenge. Both approaches need to deal with physic and technologic issues. During the past years, the indirect drive effort on the National Ignition Facility (NIF) has revealed unpredicted lost of performances that force to think to more robust designs and to dig into detailed physics aspects. Encouraging results have been obtained using a strong first shock during the implosion of CH ablator ignition capsules. These ``high-foot'' implosion results in a significantly lower ablation Rayleigh-Taylor instability growth than that of the NIC point design capsule. The trade-off with this design is a higher fuel adiabat that limits both fuel compression and theoretical capsule yield. The purpose of designing this capsule is to recover a more ideal one-dimensional implosion that is in closer agreement to simulation predictions. In the same spirit of spending energy on margin, at the coast of decreased performance, we are presenting here a study on ``robust'' spherical direct drive design for NIF. This 2-Shock direct drive pulse shape results in a high adiabat (>3) and low convergence (<17) implosion designed to produce a near 1D-like implosion. We take a particular attention to design a robust implosion with respect to long-wavelength non uniformity seeded by power imbalance and target offset. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  7. How a Regression Artifact Makes ICFs/MR Look Ineffective.

    ERIC Educational Resources Information Center

    Crinella, Francis M.; McCleary, Richard; Swanson, James M.

    1998-01-01

    Criticizes the research design in "The Small ICF/MR program: Dimensions of Quality and Cost" (Conroy), that found small Intermediate Care Facilities (ICF) for individuals with mental retardation are inferior to other community programs. Discusses the problem in selecting a control group on the basis of pretest matching. (CR)

  8. State Medicaid ICF-MR Utilization and Expenditures in the 1980-1984 Period.

    ERIC Educational Resources Information Center

    Harrington, Charlene; Swan, James H.

    1990-01-01

    State Medicaid expenditures for Intermediate Care Facilities for the Mentally Retarded (ICF-MR) increased sharply between 1980 and 1984. The ICF-MR bed capacity declined relative to the total state population, while numbers of ICF-MR Medicaid recipients increased. Trends among states are examined, emphasizing changes in demographic factors,…

  9. Development of the re-emit technique for ICF foot symmetry tuning for indirect drive ignition on NIF

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Milovich, Jose; Edwards, John; Thomas, Cliff; Kalantar, Dan; Meeker, Don; Jones, Ogden

    2007-11-01

    Tuning of the the symmetry of the hohlraum radiation drive for the first 2 ns of the ICF pulse on NIF will be assessed by the re-emit technique [1] which measures the instantaneous x-ray drive asymmetry based on soft x-ray imaging of the re-emission of a high-Z sphere surrogate capsule. We will discuss the design of re-emit foot symmetry tuning measurements planned on NIF and their surrogacy for ignition experiments, including assessing the residual radiation asymmetry of the patches required for soft x-ray imaging. We will present the tuning strategy and expected accuracies based on calculations, analytical estimates and first results from scaled experiments performed at the Omega laser facility. [1] N. Delamater, G. Magelssen, A. Hauer, Phys. Rev. E 53, 5241 (1996.)

  10. Application of the ICF in fluency disorders.

    PubMed

    Yaruss, J Scott

    2007-11-01

    Stuttering is a complicated communication disorder that can affect many aspects of a speaker's life. In addition to exhibiting observable disruptions in speech (e.g., part-word repetitions, prolongations, blocks), many people who stutter also experience broader consequences in their lives because of their stuttering. Examples include difficulty with social communication (e.g., speaking with other people, making introductions) and job-related tasks (e.g., talking on the phone, participating in meetings). Because it incorporates these types of daily experiences, the World Health Organization's International Classification of Functioning, Disability and Health (ICF) provides an ideal framework for considering the overall experience of the stuttering disorder. The purpose of this article is to highlight the ways in which the ICF can help clinicians, people who stutter, and the general public understand the multifaceted nature of stuttering. The article will also describe how clinicians can use the ICF as a framework for developing comprehensive evaluations and providing individualized treatment plans for people who stutter.

  11. February 2017 - NIF Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B.

    2017-03-13

    February was a very productive month with only 20 shot days on the calendar. There were 41 target shots performed for the HED, ICF, and the Discovery Science (DS) program. The DS program had a week dedicated to their experiments that was extraordinarily fruitful: 14 target shots were performed for five independent teams, each of whom had a unique experimental platform to field. The teams and the facility worked extraordinarily well to pull off this feat! Additionally, the facility developed high-energy laser operations on a demonstration quad to investigate taking NIF to a new level of performance, and the ICFmore » program demonstrated a 40% increase in the yield from a capsule that had a new, 5-μm-diameter fill tube that apparently mitigates some of the issues that have affected implosions to date. Details follow below.« less

  12. Plasma photonics in ICF & HED conditions

    NASA Astrophysics Data System (ADS)

    Michel, Pierre; Turnbull, David; Divol, Laurent; Pollock, Bradley; Chen, Cecilia Y.; Tubman, Eleanor; Goyon, Clement S.; Moody, John D.

    2015-11-01

    Interactions between multiple high-energy laser beams and plasma can be used to imprint refractive micro-structures in plasmas via the lasers' ponderomotive force. For example, Inertial confinement fusion (ICF) experiments at the National Ignition Facility already rely on the use of plasma gratings to redirect laser light inside an ICF target and tune the symmetry of the imploded core. More recently, we proposed new concepts of plasma polarizer and waveplate, based on two-wave mixing schemes and laser-induced plasma birefringence. In this talk, we will present new experimental results showing the first demonstration of a fully tunable plasma waveplate, which achieved near-perfect circular laser polarization. We will discuss further prospects for novel ``plasma photonics'' concepts based on two- and four-wave mixing, such as optical switches, bandpass filters, anti-reflection blockers etc. These might find applications in ICF and HED experiments by allowing to manipulate the lasers directly in-situ (i.e. inside the targets), as well as for the design of high power laser systems. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Capsule endoscopy

    MedlinePlus

    Capsule enteroscopy; Wireless capsule endoscopy; Video capsule endoscopy (VCE); Small bowel capsule endoscopy (SBCE) ... a computer and software turns them into a video. Your provider watches the video to look for ...

  14. Fuel gain exceeding unity in an inertially confined fusion implosion.

    PubMed

    Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R

    2014-02-20

    Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

  15. Influence of capsule shell composition on the performance indicators of hypromellose capsule in comparison to hard gelatin capsules.

    PubMed

    Al-Tabakha, Moawia M; Arida, Adi Issam; Fahelelbom, Khairi M S; Sadek, Bassem; Saeed, Dima Ahmed; Abu Jarad, Rami A; Jawadi, Jeevani

    2015-01-01

    The purpose of this study was to assess the in vitro performances of "vegetable" capsules in comparison to hard gelatin capsules in terms of shell weight variation, reaction to different humidity conditions, resistance to stress in the absence of moisture, powder leakage, disintegration and dissolution. Two types of capsules made of HPMC produced with (Capsule 2) or without (Capsule 3) a gelling agent and hard gelatin capsules (Capsule 1) were assessed. Shell weight variability was relatively low for all tested capsules shells. Although Capsule 1 had the highest moisture content under different humidity conditions, all capsule types were unable to protect the encapsulated hygroscopic polyvinylpyrrolidone (PVP) powder from surrounding humidity. The initial disintegration for all Capsule 1 occurred within 3 min, but for other types of capsules within 6 min (n = 18). Dissolution of acetaminophen was better when the deionized water (DIW) temperature increased from 32 to 42 °C in case of Capsule 1, but the effect of temperature was not significant for the other types of capsules. Acetaminphen dissolution from Capsule 1 was the fastest (i.e. >90% in 10 min) and independent of the media pH or contents unlike Capsule 2 which was influenced by the pH and dissolution medium contents. It is feasible to use hypromellose capsules shells with or without gelling agent for new lines of pharmaceutical products, however, there is a window for capsule shells manufacturing companies to improve the dissolution of their hypromellose capsules to match the conventional gelatin capsule shells and eventually replace them.

  16. 2D and 3D Simulations of Exploding Pusher Capsules

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; Smith, Andrew; Miles, Aaron

    2011-10-01

    A research campaign is underway at the National Ignition Facility (NIF) at LLNL to study rapidly evolving, non-LTE, inertial fusion plasmas. The goal is to field thin-shelled, gas filled ``Exploding Pusher'' capsules in a Polar Direct Drive (PDD) configuration. Ion temperatures of > 15 keV and electron temperatures of > 5 keV are reached. A small convergence ratio and rapidly ablated shell reduce susceptibility to hydrodynamic instabilities. Using 1D simulations, most favorable configurations were found to be thin SiO2 or Be shells containing 10 atm of D2-He3 in a 2:1 ratio. This poster describes the 2D and 3D ARES Radiation Hydrodynamics simulations of these capsules. 2D simulations are essential because the PDD configuration requires that each of the beams be ``repointed'' away from their nominal angles. Each beam can also have a separate power profile and focal length. Large ensembles of simulations were run to probe the parameter space and find the optimal pointing resulting in the most spherical implosions. Response surfaces were constructed to ascertain the susceptibility to shot-time fluctuations. We also discuss resolution convergence and present preliminary results of 3D modeling. This work performed under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. [¹²³I]ICF01012 melanoma imaging and [¹³¹I]ICF01012 dosimetry allow adapted internal targeted radiotherapy in preclinical melanoma models.

    PubMed

    Viallard, Claire; Perrot, Yann; Boudhraa, Zied; Jouberton, Elodie; Miot-Noirault, Elisabeth; Bonnet, Mathilde; Besse, Sophie; Mishellany, Florence; Cayre, Anne; Maigne, Lydia; Rbah-Vidal, Latifa; D'Incan, Michel; Cachin, Florent; Chezal, Jean-Michel; Degoul, Françoise

    2015-01-01

    Melanin-targeting radiotracers are interesting tools for imaging and treatment of pigmented melanoma metastases. However, variation of the pigment concentration may alter the efficiency of such targeting. A clear assessment of both tumor melanin status and dosimetry are therefore prerequisites for internal radiotherapy of disseminated melanoma. The melanin tracer ICF01012 was labelled with iodine-123 for melanoma imaging in pigmented murine B16F0 and human SK-Mel 3 melanomas. In vivo imaging showed that the uptake of [(123)I]ICF01012 to melanomas correlated significantly with melanin content. Schedule treatment of 3 × 25 MBq [(131)I]ICF01012 significantly reduced SK-Mel 3 tumor growth and significantly increased the median survival in treated mice. For this protocol, the calculated delivered dose was 53.2 Gy. Radio-iodinated ICF01012 is a good candidate for both imaging and therapeutic purposes for patients with metastatic pigmented melanomas.

  18. Dynamics of conical wire array Z-pinch implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampleford, D. J.; Lebedev, S. V.; Bland, S. N.

    2007-10-15

    A modification of the wire array Z pinch, the conical wire array, has applications to the understanding of wire array implosions and potentially to pulse shaping relevant to inertial confinement fusion. Results are presented from imploding conical wire array experiments performed on university scale 1 MA generators--the MAGPIE generator (1 MA, 240 ns) at Imperial College London [I. H. Mitchell et al., Rev. Sci Instrum. 67, 1533 (1996)] and the Nevada Terawatt Facility's Zebra generator (1 MA, 100 ns) at the University of Nevada, Reno [B. Bauer et al., in Dense Z-Pinches, edited by N. Pereira, J. Davis, and P.more » Pulsifer (AIP, New York, 1997), Vol. 409, p. 153]. This paper will discuss the implosion dynamics of conical wire arrays. Data indicate that mass ablation from the wires in this complex system can be reproduced with a rocket model with fixed ablation velocity. Modulations in the ablated plasma are present, the wavelength of which is invariant to a threefold variation in magnetic field strength. The axial variation in the array leads to a zippered precursor column formation. An initial implosion of a magnetic bubble near the cathode is followed by the implosion zippering upwards. Spectroscopic data demonstrating a variation of plasma parameters (e.g., electron temperature) along the Z-pinch axis is discussed, and experimental data are compared to magnetohydrodynamic simulations.« less

  19. Polar-Drive--Implosion Physics on OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Radha, P. B.

    2012-10-01

    Polar drive (PD) permits the execution of direct-drive--ignition experiments on facilities that are configured for x-ray drive such as the National Ignition Facility (NIF) and Laser M'egajoule. Experiments on the OMEGA laser are used to develop and validate models of PD implosions. Results from OMEGA PD shock-timing and warm implosions are presented. Experiments are simulated with the 2-D hydrodynamic code DRACO including full 3-D ray trace to model oblique beams. Excellent agreement is obtained in shock velocity and catch-up in PD geometry in warm, plastic shells. Predicted areal densities are measured in PD implosion experiments. Good agreement between simulation and experiments is obtained in the overall shape of the compressing shell when observed through x-ray backlighting. Simulated images of the hot core, including the effect of magnetic fields, are compared with experiments. Comparisons of simulated and observed scattered light and bang time in PD geometry are presented. Several techniques to increase implosion velocity are presented including beam profile variations and different ablator materials. Results from shimmed-target PD experiments will also be presented. Designs for future PD OMEGA experiments at ignition-relevant intensities will be presented. The implication of these results for NIF-scale plasmas is discussed. Experiments for the NIF in its current configuration, with indirect-drive phase plates, are proposed to study implosion energetics and shell asymmetries. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  20. Depth and Extent of Gas-Ablator Mix in Symcap Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; Ma, T.; MacLaren, S. A.; Salmonson, J. D.; Ho, D.; Khan, S. F.; Masse, L.; Ralph, J. E.; Czajka, C.; Casey, D.; Sacks, R.; Smalyuk, V. A.; Tipton, R. E.; Kyrala, G. A.

    2017-10-01

    A longstanding question in ICF physics has been the extent to which capsule ablator material mixes into the burning fusion fuel and degrades performance. Several recent campaigns at the National Ignition Facility have examined this question through the use of separated reactants. A layer of CD plastic is placed on the inner surface of the CH shell and the shell is filled with a gas mixture of H and T. This allows for simultaneous neutron signals that inform different aspects of the physics; we get core TT neutron yield, atomic mix from the DT neutrons, and information about shell heating from the DD neutron signal. By systematically recessing the CD layer away from the gas boundary we gain an inference of the depth of the mixing layer. This presentation will cover three campaigns to look at mixing depth: An ignition-like design (``Low-foot'') at two convergence ratios, as well as a robust, nearly one-dimensional, low convergence, symmetric platform designed to minimize ablation front feed-through (HED 2-shock). We show that the 2-shock capsule has less ablator-gas mix, and compare the experimental results to mix-model simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344, LLNS, LLC.

  1. Engaging with clinicians to implement and evaluate the ICF in neurorehabilitation practice.

    PubMed

    Tempest, Stephanie; Jefferson, Richard

    2015-01-01

    Although deemed a globally accepted framework, there remains scare evidence on the process and outcome of implementing the International Classification of Functioning, Disability and Health (ICF) within neurorehabilitation. This review briefly explores the existing, broader literature and then reports on two action research projects, undertaken in England, specifically within stroke and neurorehabilitation. Working with participants, including clinicians from in-patient and community settings, there are now 35 different ways identified for the use of the ICF. The outcome of the first project highlights that using the ICF enhances communication within and beyond the acute stroke service, fosters holistic thinking and clarifies team roles. To adopt it into clinical practice, the ICF must be adapted to meet local service needs. The use of action research has facilitated the knowledge translation process which has enabled the ICF to become a clinical reality in neurorehabilitation, with clinicians identifying a range of potential uses.

  2. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, D.; Boehly, T. R.; Gregor, M. C.

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the VISAR diagnostic [T. R. Boehly et al., Phys. Plasmas 18, 092706 (2011)] on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (alpha ~ 3) implosions, but agreement degrades for lower-adiabat (alpha ~ 1)more » designs. Several possibilities for this difference are studied: (1) errors in placing the target at the center of irradiation (target offset), (2) variations in energy between the different incident beams (power imbalance), and (3) errors in modeling the laser energy coupled into the capsule. Simulation results indicate that shock timing is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to target offset and beam power imbalance. A new technique under development to infer coronal profiles using x-ray self-emission imaging [A. K. Davis et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.NO8.7 (2016)] can be applied to the pulse shapes used in shock-timing experiments. This will help identify improved physics models to implement in codes and consequently enhance shock-timing predictive capability for low-adiabat pulses.« less

  3. Computer modeling and simulation in inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, R.L.; Verdon, C.P.

    1989-03-01

    The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper wemore » describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab.« less

  4. Recent results of the Defect-Induced Mix Experiments (DIME) on NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Bradley, P. A.; Cobble, J. A.; Hakel, P.; Hsu, S. C.; Krasheninnikova, N. S.; Kyrala, G. A.; Murphy, T. J.; Obrey, K. A.; Shah, R. C.; Tregillis, I. L.; Craxton, S. C.; McKenty, P. W.; Mancini, R. C.; Johns, H. M.; Joshi, Tirtha; Mayes, Daniel

    2012-10-01

    Investigations of directly driven implosions have been performed including experiments on Omega, and more recently NIF, to deduce the extent and uniformity of 4π and defect-induced mix near the shell/gas interface of plastic (CH) capsules filled with 5 atm D2 gas. Imaging diagnostics are used to measure the spatial variation of mix caused by the growth of non-uniformities in both capsule and laser drive characteristics. Thin (2μm) layers containing 1-2% (atomic) mid-Z dopants are imaged spectrally at late time in the implosion using multiple monochromatic imaging of H-like and He-like atomic line emission. Areal image backlighting of the capsules provides both r(t) and the symmetry of the implosion. Recent results will be shown including inferred 4π mix width, laser imprint induced mix, and mix from capsule variations.

  5. The Defect Induced Mix Experiment (DIME) for NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Mark J; Bradley, Paul A; Cobble, James A

    2012-06-18

    LANL will perform two Defect Induced Mix Experiment (DIME) implosion campaigns on NIF in July and September, 2012. This presentation describes the goals for these shots and the experimental configuration and diagnostic set up to collect the appropriate data. The first two-shot campaign will focus on executing polar direct drive (PDD) implosions of plastic CH capsules filled with deuterium gas. Gas filling will be performed through a fill tube at target chamber center. A vanadium backligher foil will provide x-rays to radiograph the last half of the implosion to compare the implosion trajectory with modeling predictions. An equatorial groove inmore » one of the capsules will be present to determine its effect on implosion dynamics. The second DIME campaign will commission and use a spectral imager (MMI) to examine the evolution of thin capsule layers doped with either Ge or Ga at 1.85%. Spectral line emission from these layers will quantify the mix width at the inner shell radius and near an equatorial groove feature.« less

  6. Standardized reporting of functioning information on ICF-based common metrics.

    PubMed

    Prodinger, Birgit; Tennant, Alan; Stucki, Gerold

    2018-02-01

    In clinical practice and research a variety of clinical data collection tools are used to collect information on people's functioning for clinical practice and research and national health information systems. Reporting on ICF-based common metrics enables standardized documentation of functioning information in national health information systems. The objective of this methodological note on applying the ICF in rehabilitation is to demonstrate how to report functioning information collected with a data collection tool on ICF-based common metrics. We first specify the requirements for the standardized reporting of functioning information. Secondly, we introduce the methods needed for transforming functioning data to ICF-based common metrics. Finally, we provide an example. The requirements for standardized reporting are as follows: 1) having a common conceptual framework to enable content comparability between any health information; and 2) a measurement framework so that scores between two or more clinical data collection tools can be directly compared. The methods needed to achieve these requirements are the ICF Linking Rules and the Rasch measurement model. Using data collected incorporating the 36-item Short Form Health Survey (SF-36), the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0), and the Stroke Impact Scale 3.0 (SIS 3.0), the application of the standardized reporting based on common metrics is demonstrated. A subset of items from the three tools linked to common chapters of the ICF (d4 Mobility, d5 Self-care and d6 Domestic life), were entered as "super items" into the Rasch model. Good fit was achieved with no residual local dependency and a unidimensional metric. A transformation table allows for comparison between scales, and between a scale and the reporting common metric. Being able to report functioning information collected with commonly used clinical data collection tools with ICF-based common metrics enables clinicians

  7. Simultaneous measurement of the HT and DT fusion burn histories in inertial fusion implosions

    DOE PAGES

    Zylstra, Alex B.; Herrmann, Hans W.; Kim, Yong Ho; ...

    2017-05-23

    Measuring the thermonuclear burn history is an important way to diagnose inertial fusion implosions. Here, using the gas Cherenkov detectors at the OMEGA laser facility, we measure the HT fusion burn in a H 2+T 2 gas-fueled implosion for the first time. Then, using multiple detectors with varied Cherenkov thresholds, we demonstrate a technique for simultaneously measuring both the HT and DT burn histories from an implosion where the total reaction yields are comparable. This new technique will be used to study material mixing and kinetic phenomena in implosions.

  8. Simultaneous measurement of the HT and DT fusion burn histories in inertial fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, Alex B.; Herrmann, Hans W.; Kim, Yong Ho

    Measuring the thermonuclear burn history is an important way to diagnose inertial fusion implosions. Here, using the gas Cherenkov detectors at the OMEGA laser facility, we measure the HT fusion burn in a H 2+T 2 gas-fueled implosion for the first time. Then, using multiple detectors with varied Cherenkov thresholds, we demonstrate a technique for simultaneously measuring both the HT and DT burn histories from an implosion where the total reaction yields are comparable. This new technique will be used to study material mixing and kinetic phenomena in implosions.

  9. A Computational Study of Re-emission Balls Proposed for the NIF Ignition Symmetry Campaign

    NASA Astrophysics Data System (ADS)

    Meeker, D. J.; Amendt, P.; Dewald, E.; Edwards, M. J.; Milovich, J.; Suter, L.

    2006-10-01

    Re-emission balls are high-Z spheres used as surrogates for ICF ignition capsules to detect and correct early-time asymmetries of radiation flux at the target. Emission from these balls mimics the incoming flux due to their high albedo, providing a useful symmetry diagnostic. Experiments on Nova by LANL [1] and LLNL used bismuth (Bi) as the surrogate, selected for its high albedo and insensitivity to the fluorescence of the gold hohlraum wall. We are studying the applicability of these capsules to the NIF symmetry campaign as a potential tuning mechanism to achieve the accuracies required for symmetric implosions. We will describe 2-D simulations that predict the emission of the Bi ball as a function of time, frequency, and spatial distribution, as well as quantifying surrogacy of re- emission balls. Using several tuning examples, we will show the resolution expected from this diagnostic. Suggestions for extending this technique to longer times will be discussed as well as describing 3-D effects from diagnostic viewing ports and an opposing hole to eliminate competing wall emission. [1] Delamater, Phys. Rev. E 53, 5240 (1996), Magelssen, Phys. Rev. E 57, 4663 (1998)

  10. Progress toward development of a platform for studying burn in the presence of mix on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Kyrala, G. A.; Bradley, P. A.; Krasheninnikova, N. S.; Cobble, J. A.; Tregillis, I. L.; Obrey, K. A. D.; Hsu, S. C.; Shah, R. C.; Hakel, P.; Kline, J. L.; Grim, G. P.; Baumgaertel, J. A.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.

    2013-10-01

    Mix of shell material into ICF capsule fuel can degrade implosion performance through a number of mechanisms. One way is by dilution of the fusion fuel, which affects performance by an amount that is dependent on the degree of mix at the atomic level. Experiments are underway to quantify the mix of shell material into fuel using directly driven capsules on the National Ignition Facility. Deuterated plastic shells will be utilized with tritium fill so that the production of DT neutrons is indicative of mix at the atomic level. Neutron imaging will locate the burn region and spectroscopic imaging of the doped layers will reveal the location, temperature, and density of the shell material. Correlation of the two will be used to determine the degree of atomic mixing of the shell into the fuel and will be compared to models. This talk will review progress toward the development of an experimental platform to measure burn in the presence of measured mix. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  11. 42 CFR 440.150 - Intermediate care facility (ICF/IID) services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Intermediate care facility (ICF/IID) services. 440.150 Section 440.150 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Definitions § 440.150 Intermediate care facility (ICF/IID)...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurricane, O. A.; Clark, D. S.

    The work is summarized from several perspectives: 1D simulation perspective: Post-shot models agree with yield data to within a factor of ~2 at low implosion velocities, but the models diverge from the data as the velocity and convergence ratio increase. 2D simulation perspective: Integrated hohlraum-capsule post-shot models agree with primary data for most implosions, but overpredict yield and DSR for a few of the highest velocity implosions. High-resolution 3D post-shot capsule-only modeling captures much of the delivered performance of the one shot currently simulated.

  13. 42 CFR 440.150 - Intermediate care facility (ICF/MR) services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Intermediate care facility (ICF/MR) services. 440.150 Section 440.150 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Definitions § 440.150 Intermediate care facility (ICF/MR) service...

  14. Clinical application of ICF key codes to evaluate patients with dysphagia following stroke

    PubMed Central

    Dong, Yi; Zhang, Chang-Jie; Shi, Jie; Deng, Jinggui; Lan, Chun-Na

    2016-01-01

    Abstract This study was aimed to identify and evaluate the International Classification of Functioning (ICF) key codes for dysphagia in stroke patients. Thirty patients with dysphagia after stroke were enrolled in our study. To evaluate the ICF dysphagia scale, 6 scales were used as comparisons, namely the Barthel Index (BI), Repetitive Saliva Swallowing Test (RSST), Kubota Water Swallowing Test (KWST), Frenchay Dysarthria Assessment, Mini-Mental State Examination (MMSE), and the Montreal Cognitive Assessment (MoCA). Multiple regression analysis was performed to quantitate the relationship between the ICF scale and the other 7 scales. In addition, 60 ICF scales were analyzed by the least absolute shrinkage and selection operator (LASSO) method. A total of 21 ICF codes were identified, which were closely related with the other scales. These included 13 codes from Body Function, 1 from Body Structure, 3 from Activities and Participation, and 4 from Environmental Factors. A topographic network map with 30 ICF key codes was also generated to visualize their relationships. The number of ICF codes identified is in line with other well-established evaluation methods. The network topographic map generated here could be used as an instruction tool in future evaluations. We also found that attention functions and biting were critical codes of these scales, and could be used as treatment targets. PMID:27661012

  15. Description of the NIF Laser

    DOE PAGES

    Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.; ...

    2017-03-23

    The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge becamemore » whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This study describes the architecture, systems, and subsystems of NIF. Finally, it describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.

    The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge becamemore » whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This study describes the architecture, systems, and subsystems of NIF. Finally, it describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.« less

  17. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-03-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2.

  18. Capsule Endoscope Aspiration after Repeated Attempts for Ingesting a Patency Capsule

    PubMed Central

    Mannami, Tomohiko; Ikeda, Genyo; Seno, Satoru; Sonobe, Hiroshi; Fujiwara, Nobukiyo; Komoda, Minori; Edahiro, Satoru; Ohtawa, Yasuyuki; Fujimoto, Yoshimi; Sato, Naohiro; Kambara, Takeshi; Waku, Toshihiko

    2015-01-01

    Capsule endoscope aspiration into the respiratory tract is a rare complication of capsule endoscopy. Despite the potential seriousness of this complication, no accepted methods exist to accurately predict and therefore prevent it. We describe the case of an 85-year-old male who presented for evaluation of iron deficiency anemia. He complained of dysphagia while ingesting a patency capsule, with several attempts over a period of 5 min before he was successful. Five days later, he underwent capsule endoscopy, where he experienced similar symptoms in swallowing the capsule. The rest of the examination proceeded uneventfully. On reviewing the captured images, the capsule endoscope was revealed to be aspirated, remaining in the respiratory tract for approximately 220 s before images of the esophagus and stomach appeared. To our knowledge, this is the first documented case of a patient who experienced capsule endoscope aspiration after ingestion of a patency capsule. This case suggests that repeated attempts required for ingesting the patency capsule can predict capsule endoscope aspiration. We presume that paying sufficient attention to the symptoms of a patient who ingests a patency capsule could help us prevent serious complications such as aspiration of the capsule endoscope. In addition, this experience implies the potential risk for ingesting the patency capsule. We must be aware that the patency capsule could also be aspirated and there may be more unrecognized aspiration cases. PMID:26600772

  19. Capsule Endoscope Aspiration after Repeated Attempts for Ingesting a Patency Capsule.

    PubMed

    Mannami, Tomohiko; Ikeda, Genyo; Seno, Satoru; Sonobe, Hiroshi; Fujiwara, Nobukiyo; Komoda, Minori; Edahiro, Satoru; Ohtawa, Yasuyuki; Fujimoto, Yoshimi; Sato, Naohiro; Kambara, Takeshi; Waku, Toshihiko

    2015-01-01

    Capsule endoscope aspiration into the respiratory tract is a rare complication of capsule endoscopy. Despite the potential seriousness of this complication, no accepted methods exist to accurately predict and therefore prevent it. We describe the case of an 85-year-old male who presented for evaluation of iron deficiency anemia. He complained of dysphagia while ingesting a patency capsule, with several attempts over a period of 5 min before he was successful. Five days later, he underwent capsule endoscopy, where he experienced similar symptoms in swallowing the capsule. The rest of the examination proceeded uneventfully. On reviewing the captured images, the capsule endoscope was revealed to be aspirated, remaining in the respiratory tract for approximately 220 s before images of the esophagus and stomach appeared. To our knowledge, this is the first documented case of a patient who experienced capsule endoscope aspiration after ingestion of a patency capsule. This case suggests that repeated attempts required for ingesting the patency capsule can predict capsule endoscope aspiration. We presume that paying sufficient attention to the symptoms of a patient who ingests a patency capsule could help us prevent serious complications such as aspiration of the capsule endoscope. In addition, this experience implies the potential risk for ingesting the patency capsule. We must be aware that the patency capsule could also be aspirated and there may be more unrecognized aspiration cases.

  20. On the transport coefficients of hydrogen in the inertial confinement fusion regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Flavien; Recoules, Vanina; Decoster, Alain

    2011-05-15

    Ab initio molecular dynamics is used to compute the thermal and electrical conductivities of hydrogen from 10 to 160 g cm{sup -3} and temperatures up to 800 eV, i.e., thermodynamical conditions relevant to inertial confinement fusion (ICF). The ionic structure is obtained using molecular dynamics simulations based on an orbital-free treatment for the electrons. The transport properties were computed using ab initio simulations in the DFT/LDA approximation. The thermal and electrical conductivities are evaluated using Kubo-Greenwood formulation. Particular attention is paid to the convergence of electronic transport properties with respect to the number of bands and atoms. These calculations aremore » then used to check various analytical models (Hubbard's, Lee-More's and Ichimaru's) widely used in hydrodynamics simulations of ICF capsule implosions. The Lorenz number, which is the ratio between thermal and electrical conductivities, is also computed and compared to the well-known Wiedemann-Franz law in different regimes ranging from the highly degenerate to the kinetic one. This allows us to deduce electrical conductivity from thermal conductivity for analytical model. We find that the coupling of Hubbard and Spitzer models gives a correct description of the behavior of electrical and thermal conductivities in the whole thermodynamic regime.« less

  1. Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.

    PubMed

    Li, Yongqiang; Liu, Xue; Li, Xinyi; Liu, Yiyang; Zheng, Yi; Wang, Min; Shen, Hao

    2013-08-01

    Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh-Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes.

  2. Specific features of implosion of metallized fiber arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.

    2017-02-15

    Implosion of metallized fiber arrays was studied experimentally at the Angara-5-1 facility. The use of such arrays makes it possible to investigate the production and implosion dynamics of plasmas of various metals (such as tin, indium, and bismuth) that were previously unavailable for such studies. The plasma production rates m-dot (in μg/(cm{sup 2} ns)) for different metals were determined and quantitatively compared. Varying the thickness of the metal layer deposited on kapron fibers (the total linear mass of the metal coating being maintained at the level of 220 μg/cm), the current and velocity of the plasma precursor were studied asmore » functions of the thickness of the metal coating. The strong difference in the rates of plasma production from the metal coating and kapron fibers results in the redistribution of the discharge current between the Z-pinch and the trailing fiber plasma. The outer boundary of the plasma produced from the metal coating is found to be stable against instabilities typical of the final stage of implosion of conventional wire arrays.« less

  3. Unambiguous Evidence of Coronal Implosions during Solar Eruptions and Flares

    NASA Astrophysics Data System (ADS)

    Wang, Juntao; Simões, P. J. A.; Fletcher, L.

    2018-05-01

    In the implosion conjecture, coronal loops contract as the result of magnetic energy release in solar eruptions and flares. However, after almost two decades, observations of this phenomenon are still rare and most previous reports are plagued by projection effects so that loop contraction could be either true implosion or just a change in loop inclination. In this paper, to demonstrate the reality of loop contractions in the global coronal dynamics, we present four events with the continuously contracting loops in an almost edge-on geometry from the perspective of SDO/AIA, which are free from the ambiguity caused by the projection effects, also supplemented by contemporary observations from STEREO for examination. In the wider context of observations, simulations and theories, we argue that the implosion conjecture is valid in interpreting these events. Furthermore, distinct properties of the events allow us to identify two physical categories of implosion. One type demonstrates a rapid contraction at the beginning of the flare impulsive phase, as magnetic free energy is removed rapidly by a filament eruption. The other type, which has no visible eruption, shows a continuous loop shrinkage during the entire flare impulsive phase, which we suggest shows the ongoing conversion of magnetic free energy in a coronal volume. Corresponding scenarios are described that can provide reasonable explanations for the observations. We also point out that implosions may be suppressed in cases when a heavily mass-loaded filament is involved, possibly serving as an alternative account for their observational rarity.

  4. The International Classification of Functioning, Disability and Health (ICF) in Electronic Health Records. A Systematic Literature Review.

    PubMed

    Maritz, Roxanne; Aronsky, Dominik; Prodinger, Birgit

    2017-09-20

    The International Classification of Functioning, Disability and Health (ICF) is the World Health Organization's standard for describing health and health-related states. Examples of how the ICF has been used in Electronic Health Records (EHRs) have not been systematically summarized and described yet. To provide a systematic review of peer-reviewed literature about the ICF's use in EHRs, including related challenges and benefits. Peer-reviewed literature, published between January 2001 and July 2015 was retrieved from Medline ® , CINAHL ® , Scopus ® , and ProQuest ® Social Sciences using search terms related to ICF and EHR concepts. Publications were categorized according to three groups: Requirement specification, development and implementation. Information extraction was conducted according to a qualitative content analysis method, deductively informed by the evaluation framework for Health Information Systems: Human, Organization and Technology-fit (HOT-fit). Of 325 retrieved articles, 17 publications were included; 4 were categorized as requirement specification, 7 as development, and 6 as implementation publications. Information regarding the HOT-fit evaluation framework was summarized. Main benefits of using the ICF in EHRs were its unique comprehensive perspective on health and its interdisciplinary focus. Main challenges included the fact that the ICF is not structured as a formal terminology as well as the need for a reduced number of ICF codes for more feasible and practical use. Different approaches and technical solutions exist for integrating the ICF in EHRs, such as combining the ICF with other existing standards for EHR or selecting ICF codes with natural language processing. Though the use of the ICF in EHRs is beneficial as this review revealed, the ICF could profit from further improvements such as formalizing the knowledge representation in the ICF to support and enhance interoperability.

  5. Symmetry tuning of a near one-dimensional 2-shock platform for code validation at the National Ignition Facility

    DOE PAGES

    Khan, S. F.; MacLaren, S. A.; Salmonson, J. D.; ...

    2016-04-27

    Here, we introduce a new quasi 1-D implosion experimental platform at the National Ignition Facility designed to validate physics models as well as to study various Inertial Confinement Fusion aspects such as implosion symmetry, convergence, hydrodynamic instabilities, and shock timing. The platform has been developed to maintain shell sphericity throughout the compression phase and produce a round hot core at stagnation. This platform utilizes a 2-shock 1 MJ pulse with 340 TW peak power in a near-vacuum AuHohlraum and a CH ablator capsule uniformly doped with 1% Si. We also performed several inflight radiography, symmetry capsule, and shock timing experimentsmore » in order to tune the symmetry of the capsule to near round throughout several epochs of the implosion. Finally, adjusting the relative powers of the inner and outer cones of beams has allowed us to control the drive at the poles and equator of the capsule, thus providing the mechanism to achieve a spherical capsule convergence. Details and results of the tuning experiments are described.« less

  6. Looking at the ICF and human communication through the lens of classification theory.

    PubMed

    Walsh, Regina

    2011-08-01

    This paper explores the insights that classification theory can provide about the application of the International Classification of Functioning, Disability and Health (ICF) to communication. It first considers the relationship between conceptual models and classification systems, highlighting that classification systems in speech-language pathology (SLP) have not historically been based on conceptual models of human communication. It then overviews the key concepts and criteria of classification theory. Applying classification theory to the ICF and communication raises a number of issues, some previously highlighted through clinical application. Six focus questions from classification theory are used to explore these issues, and to propose the creation of an ICF-related conceptual model of communicating for the field of communication disability, which would address some of the issues raised. Developing a conceptual model of communication for SLP purposes closely articulated with the ICF would foster productive intra-professional discourse, while at the same time allow the profession to continue to use the ICF for purposes in inter-disciplinary discourse. The paper concludes by suggesting the insights of classification theory can assist professionals to apply the ICF to communication with the necessary rigour, and to work further in developing a conceptual model of human communication.

  7. Effects of local defect growth in direct-drive cryogenic implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.; Harding, D. R.; Sangster, T. C.; Meyerhofer, D. D.

    2013-08-01

    Spherically symmetric, low-adiabat (adiabat α ≲ 3) cryogenic direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] yield less than 10% of the neutrons predicted in one-dimensional hydrodynamic simulations. Two-dimensional hydrodynamic simulations suggest that this performance degradation can be explained assuming perturbations from isolated defects of submicron to tens-of-micron scale on the outer surface or inside the shell of implosion targets. These defects develop during the cryogenic filling process and typically number from several tens up to hundreds for each target covering from about 0.2% to 1% of its surface. The simulations predict that such defects can significantly perturb the implosion and result in the injection of about 1 to 2 μg of the hot ablator (carbon-deuterium) and fuel (deuterium-tritium) materials from the ablation surface into the targets. Both the hot mass injection and perturbations of the shell reduce the final shell convergence ratio and implosion performance. The injected carbon ions radiatively cool the hot spot, reducing the fuel temperature, and further reducing the neutron yield. The negative effect of local defects can be minimized by decreasing the number and size of these defects and/or using more hydrodynamically stable implosion designs with higher shell adiabat.

  8. Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.

    2015-10-01

    Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.

  9. Improved AFM Mapping of ICF Target Surfaces

    NASA Astrophysics Data System (ADS)

    Olson, D. K.; Drake, T.; Frey, D.; Huang, H.; Stephens, R. B.

    2003-10-01

    Targets for Inertial Confinement Fusion (ICF) research are made from spherical shells with very strict requirements on surface smoothness. Hydrodynamic instabilities are amplified by the presence of surface defects, greatly reducing the gain of ICF targets. Sub-micron variations in the surface can be examined using an Atomic Force Microscope. The current sphere mapping assembly at General Atomics is designed to trace near the equator of a rotating sphere under the AFM head. Spheres are traced on three mutually orthogonal planes. The ˜10 mm piezo-electric actuator range limits how far off the equator we can scan spheres of millimeter diameter. Because only a small fraction of the target's surface can be covered, localized high-mode defects are difficult to detect. In order to meet the needs of ICF research, we need to scan more surface area of the sphere with the AFM. By integrating an additional stepping motor to the sphere mapping assembly, we will be able to recenter the piezo driver of the AFM while mapping. This additional ability allows us to increase the amount of the sphere's surface we are able to scan with the AFM by extending the range of the AFM from the sphere's equator.

  10. Using Secondary Nuclear Reaction Products to Infer the Fuel Areal Density, Convergence, and Electron Temperatures of Imploding D2 and D3 He Filled Capsules on the NIF

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Yeamans, C. B.; Rinderknecht, H. G.; Sayre, D. B.; Grim, G.; Baker, K.; Casey, D. T.; Dewald, E.; Goyon, C.; Jarrott, L. C.; Khan, S.; Lepape, S.; Ma, T.; Pickworth, L.; Shah, R.; Kline, J. L.; Perry, T.; Zylstra, A.; Yi, S. A.

    2017-10-01

    In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T (generated by the primary DD reaction branches) can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons, respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence ratio (CR), and an electron temperature (Te) . This technique has been used on a myriad of deuterium filled capsule implosion experiments on the NIF using the neutron time of flight (nTOF) diagnostics to measure the yield of secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the yield of secondary D3He protons. This work is supported in part by the U.S. DoE and LLNL.

  11. Rhetoric and Realities in Today's ICF/MR: Control out of Control.

    ERIC Educational Resources Information Center

    Holburn, C. Steve

    1992-01-01

    This paper contrasts the rhetoric of quality assurance with the realities of poor quality in today's Intermediate Care Facilities for the Mentally Retarded (ICF/MR). The ICF/MR operational model is described as paper oriented, failure based, and insensitive to the effects of its own practices. Recommendations include the establishment of local…

  12. Neutron imaging with bubble chambers for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Ghilea, Marian C.

    One of the main methods to obtain energy from controlled thermonuclear fusion is inertial confinement fusion (ICF), a process where nuclear fusion reactions are initiated by heating and compressing a fuel target, typically in the form of a pellet that contains deuterium and tritium, relying on the inertia of the fuel mass to provide confinement. In inertial confinement fusion experiments, it is important to distinguish failure mechanisms of the imploding capsule and unambiguously diagnose compression and hot spot formation in the fuel. Neutron imaging provides such a technique and bubble chambers are capable of generating higher resolution images than other types of neutron detectors. This thesis explores the use of a liquid bubble chamber to record high yield 14.1 MeV neutrons resulting from deuterium-tritium fusion reactions on ICF experiments. A design tool to deconvolve and reconstruct penumbral and pinhole neutron images was created, using an original ray tracing concept to simulate the neutron images. The design tool proved that misalignment and aperture fabrication errors can significantly decrease the resolution of the reconstructed neutron image. A theoretical model to describe the mechanism of bubble formation was developed. A bubble chamber for neutron imaging with Freon 115 as active medium was designed and implemented for the OMEGA laser system. High neutron yields resulting from deuterium-tritium capsule implosions were recorded. The bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The research done in here shows that bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility (NIF).

  13. Capsule injection system for a hydraulic capsule pipelining system

    DOEpatents

    Liu, Henry

    1982-01-01

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  14. Species separation and modification of neutron diagnostics in inertial-confinement fusion

    NASA Astrophysics Data System (ADS)

    Inglebert, A.; Canaud, B.; Larroche, O.

    2014-09-01

    The different behaviours of deuterium (D) and tritium (T) in the hot spot of marginally igniting cryogenic DT inertial-confinement fusion (ICF) targets are investigated with an ion Fokker-Planck model. With respect to an equivalent single-species model, a higher density and a higher temperature are found for T in the stagnation phase of the target implosion. In addition, the stagnating hot spot is found to be less dense but hotter than in the single-species case. As a result, the fusion reaction yield in the hot spot is significantly increased. Fusion neutron diagnostics of the implosion find a larger ion temperature as deduced from DT reactions than from DD reactions, in good agreement with NIF experimental results. ICF target designs should thus definitely take ion-kinetic effects into account.

  15. Pressure signature and evaluation of hammer pulses during underwater implosion in confining environments.

    PubMed

    Gupta, Sachin; Matos, Helio; Shukla, Arun; LeBlanc, James M

    2016-08-01

    The fluid structure interaction phenomenon occurring in confined implosions is investigated using high-speed three-dimensional digital image correlation (DIC) experiments. Aluminum tubular specimens are placed inside a confining cylindrical structure that is partially open to a pressurized environment. These specimens are hydrostatically loaded until they naturally implode. The implosion event is viewed, and recorded, through an acrylic window on the confining structure. The velocities captured through DIC are synchronized with the pressure histories to understand the effects of confining environment on the implosion process. Experiments show that collapse of the implodable volume inside the confining tube leads to strong oscillating water hammer waves. The study also reveals that the increasing collapse pressure leads to faster implosions. Both peak and average structural velocities increase linearly with increasing collapse pressure. The effects of the confining environment are better seen in relatively lower collapse pressure implosion experiments in which a long deceleration phase is observed following the peak velocity until wall contact initiates. Additionally, the behavior of the confining environment can be viewed and understood through classical water hammer theory. A one-degree-of-freedom theoretical model was created to predict the impulse pressure history for the particular problem studied.

  16. Italian ICF training programs: describing and promoting human functioning and research.

    PubMed

    Francescutti, Carlo; Fusaro, Guido; Leonardi, Matilde; Martinuzzi, Andrea; Sala, Marina; Russo, Emanuela; Frare, Mara; Pradal, Monica; Zampogna, Daniela; Cosentino, Alessandro; Raggi, Alberto

    2009-01-01

    Purpose of the article is to report on 5 years of ICF training experiences in Italy aimed at promoting a consistent approach to ICF's field application. More than 7000 persons participated in around 150 training events: almost half were organised by political bodies, at national, regional or local level, directly linked to implementation experiences. Few training events were organised by the school sector, while training commissioned by NGOs represent a relevant area and, in our opinion, constitute the first step towards a full inclusion of persons with disabilities. Central pillars of our training modules are: the inclusion of all ICF components in the description of functional profiles, the need of providing brief theoretical background information before moving to practical aspects and the importance of providing personalised face to face training modules, in contrast to self-administered learning modules, or web-based protocols. On the basis of our experience, we can conclude that training's objectives are generally reached: trainees improved their knowledge of the ICF and its related tools, and are able to begin practical applications in their contexts.

  17. Kinetic Plasma and Turbulent Mix Studies using DT Plastic-shell Implosions with Shell-thickness and Pressure Variations

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; Hoffman, N. M.; Schmitt, M. J.; Bradley, P. A.; Kagan, G.; Gales, S.; Horsfield, C. J.; Rubery, M.; Leatherland, A.; Gatu Johnson, M.; Glebov, V.; Seka, W.; Marshall, F.; Stoeckl, C.; Church, J.

    2014-10-01

    Kinetic plasma and turbulent mix effects on inertial confinement fusion have been studied using a series of DT-filled plastic-shell implosions at the OMEGA laser facility. Plastic capsules of 4 different shell thicknesses (7.4, 15, 20, 29 micron) were shot at 2 different fill pressures in order to vary the ion mean free path compared to the size of fuel region (i.e., Knudsen number). We varied the empirical Knudsen number by a factor of 25. Measurements were obtained from the burn-averaged ion temperature and fuel areal density. Preliminary results indicate that as the empirical Knudsen number increases, fusion performances (e.g., neutron yield) increasingly deviate from hydrodynamic simulations unless turbulent mix and ion kinetic terms (e.g., enhanced ion diffusion, viscosity, thermal conduction, as well as Knudsen-layer fusion reactivity reduction) are considered. We are developing two separate simulations: one is a reduced-ion-kinetics model and the other is turbulent mix model. Two simulation results will be compared with the experimental observables.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrani, J

    Bayesian networks (BN) are an excellent tool for modeling uncertainties in systems with several interdependent variables. A BN is a directed acyclic graph, and consists of a structure, or the set of directional links between variables that depend on other variables, and conditional probabilities (CP) for each variable. In this project, we apply BN's to understand uncertainties in NIF ignition experiments. One can represent various physical properties of National Ignition Facility (NIF) capsule implosions as variables in a BN. A dataset containing simulations of NIF capsule implosions was provided. The dataset was generated from a radiation hydrodynamics code, and itmore » contained 120 simulations of 16 variables. Relevant knowledge about the physics of NIF capsule implosions and greedy search algorithms were used to search for hypothetical structures for a BN. Our preliminary results found 6 links between variables in the dataset. However, we thought there should have been more links between the dataset variables based on the physics of NIF capsule implosions. Important reasons for the paucity of links are the relatively small size of the dataset, and the sampling of the values for dataset variables. Another factor that might have caused the paucity of links is the fact that in the dataset, 20% of the simulations represented successful fusion, and 80% didn't, (simulations of unsuccessful fusion are useful for measuring certain diagnostics) which skewed the distributions of several variables, and possibly reduced the number of links. Nevertheless, by illustrating the interdependencies and conditional probabilities of several parameters and diagnostics, an accurate and complete BN built from an appropriate simulation set would provide uncertainty quantification for NIF capsule implosions.« less

  19. Mapping of a standard documentation template to the ICF core sets for arthritis and low back pain.

    PubMed

    Escorpizo, Reuben; Davis, Kandace; Stumbo, Teri

    2010-12-01

    To identify the contents of a documentation template in The Guide to Physical Therapist Practice using the International Classification of Functioning, Disability, and Health (ICF) Core Sets for rheumatoid arthritis, osteoarthritis, and low back pain (LBP) as reference. Concepts were identified from items of an outpatient documentation template and mapped to the ICF using established linking rules. The ICF categories that were linked were compared with existing arthritis and LBP Core Sets. Based on the ICF, the template had the highest number (29%) of linked categories under Activities and participation while Body structures had the least (17%). ICF categories in the arthritis and LBP Core Sets had a 37-55% match with the ICF categories found in the template. We found 164 concepts that were not classified or not defined and 37 as personal factors. The arthritis and LBP Core Sets were reflected in the contents of the template. ICF categories in the Core Sets were reflected in the template (demonstrating up to 55% match). Potential integration of ICF in documentation templates could be explored and examined in the future to enhance clinical encounters and multidisciplinary communication. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Development of ICF Core Sets to standardize assessment of functioning and impairment in ADHD: the path ahead.

    PubMed

    Bölte, Sven; de Schipper, Elles; Holtmann, Martin; Karande, Sunil; de Vries, Petrus J; Selb, Melissa; Tannock, Rosemary

    2014-12-01

    In the study of health and quality of life in attention deficit/hyperactivity disorder (ADHD), it is of paramount importance to include assessment of functioning. The International Classification of Functioning, Disability and Health (ICF) provides a comprehensive, universally accepted framework for the description of functioning in relation to health conditions. In this paper, the authors outline the process to develop ICF Core Sets for ADHD. ICF Core Sets are subgroups of ICF categories selected to capture the aspects of functioning that are most likely to be affected in specific disorders. The ICF categories that will be included in the ICF Core Sets for ADHD will be determined at an ICF Core Set Consensus Conference, wherein evidence from four preliminary studies (a systematic review, an expert survey, a patient and caregiver qualitative study, and a clinical cross-sectional study) will be integrated. Comprehensive and Brief ICF Core Sets for ADHD will be developed with the goal of providing useful standards for research and clinical practice, and to generate a common language for the description of functioning in ADHD in different areas of life and across the lifespan.

  1. Disability and Functional Profiles of Patients with Migraine Measured with ICF Classification

    ERIC Educational Resources Information Center

    Raggi, Alberto

    2010-01-01

    To describe the functional profiles of patients with migraine, and the relationships between symptoms, activities and environmental factors, using WHO's International Classification of Functioning (ICF). Patients were consecutively enrolled at the Besta Institute of Milan. The ICF checklist was administered and two count-based indexes developed:…

  2. Investigation of trailing mass in Z-pinch implosions and comparison to experiment

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2007-11-01

    Wire-array Z pinches represent efficient, high-power x-ray sources with application to inertial confinement fusion, high energy density plasmas, and laboratory astrophysics. The first stage of a wire-array Z pinch is described by a mass ablation phase, during which stationary wires cook off material, which is then accelerated radially inwards by the JxB force. The mass injection rate varies axially and azimuthally, so that once the ablation phase concludes, the subsequent implosion is highly 3D in nature. In particular, a network of trailing mass and current is left behind the imploding plasma sheath, which can significantly affect pinch performance. In this work we focus on the implosion phase, electing to model the mass ablation via a mass injection scheme. Such a scheme has a number of injection parameters, but this freedom also allows us to gain understanding into the nature of the trailing mass network. For instance, a new result illustrates the role of azimuthal correlation. For an implosion which is 100% azimuthally correlated (corresponding to an azimuthally symmetric 2D r-z problem), current is forced to flow on the imploding plasma sheath, resulting in strong Rayleigh-Taylor (RT) growth. If, however, the implosion is not azimuthally symmetric, the additional azimuthal degree of freedom opens up new conducting paths of lower magnetic energy through the trailing mass network, effectively reducing RT growth. Consequently the 3D implosion experiences lower RT growth than the 2D r-z equivalent, and actually results in a more shell-like implosion. A second major goal of this work is to constrain the injection parameters by comparison to a well-diagnosed experimental data set, in which array mass was varied. In collaboration with R. Lemke, M. Desjarlais, M. Cuneo, C. Jennings, D. Sinars, E. Waisman

  3. Beam wavefront and farfield control for ICF laser driver

    NASA Astrophysics Data System (ADS)

    Dai, Wanjun; Deng, Wu; Zhang, Xin; Jiang, Xuejun; Zhang, Kun; Zhou, Wei; Zhao, Junpu; Hu, Dongxia

    2010-10-01

    Five main problems of beam wavefront and farfield control in ICF laser driver are synthetically discussed, including control requirements, beam propagation principle, distortions source control, system design and adjustment optimization, active wavefront correction technology. We demonstrate that beam can be propagated well and the divergence angle of the TIL pulses can be improved to less than 60μrad with solving these problems, which meets the requirements of TIL. The results can provide theoretical and experimental support for wavefront and farfield control designing requirements of the next large scale ICF driver.

  4. Retained Capsule Endoscope.

    PubMed

    Aihole, Jayalaxmi S; Vishnumurthy, G S; Babu, M Narendra

    2016-11-15

    Capsule endoscopy was invented to visualize the entire small intestine in a non- invasive manner in adults. 1 y, 9 mo-old boy presented with generalized edema for last 3 months. His routine investigations, including the upper gastrointestinal endoscopy, colonoscopy, and contrast enhanced computed tomography scan (CECT) were normal. In view of clinical suspicion of protein losing enteropathy, we planned capsule endoscopy. The capsule was not passed even after 3 weeks. Laparoscopy revealed impacted capsule in a dilated intestinal loop proximal to an ileal stricuture. Capsule endoscopy should be used judiciously in children.

  5. [ICF-Checklist to Evaluate Inclusion of Elderlies with Intellectual Disability - Psychometric Properties].

    PubMed

    Queri, Silvia; Eggart, Michael; Wendel, Maren; Peter, Ulrike

    2017-11-28

    Background An instrument should have been developed to measure participation as one possible criterion to evaluate inclusion of elderly people with intellectual disability. The ICF was utilized, because participation is one part of health related functioning, respectively disability. Furthermore ICF includes environmental factors (contextual factors) and attaches them an essentially influence on health related functioning, in particular on participation. Thus ICF Checklist additionally identifies environmental barriers for elimination. Methodology A linking process with VINELAND-II yielded 138 ICF items for the Checklist. The sample consists of 50 persons with a light or moderate intellectual disability. Two-thirds are female and the average age is 68. They were directly asked about their perceived quality of life. Additionally, proxy interviews were carried out with responsible staff members concerning necessary support and behavioral deviances. The ICF Checklist was administered twice, once (t2) the current staff member should rate health related functioning at the given time and in addition, a staff member who knows the person at least 10 years before (t1) should rate the former functioning. Content validity was investigated with factor analysis and criterion validity with correlational analysis related to supports need, behavioral deviances and perceived quality of life. Quantitative analysis was validated by qualitative content analysis of patient documentation. Results Factor analysis shows logical variable clusters across the extracted factors but neither interpretable factors. The Checklist is reliable, valid related to the chosen criterions and shows the expected age-related shifts. Qualitative analysis corresponds with quantitative data. Consequences/Conclusion ICF Checklist is appropriate to manage and evaluate patient-centered care. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Three-Dimensional Hydrodynamic Simulations of the Effects of Laser Imprint in OMEGA Implosions

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Campbell, E. M.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Schmitt, A. J.

    2017-10-01

    Illumination of direct-drive implosion targets by the OMEGA laser introduces large-amplitude broadband modulations in the absorbed energy from the largest (target size 900- μm) to smallest (speckle size 2- μm) spatial scales. These modulations ``imprint'' perturbations into a target that are amplified because of the secular and Rayleigh-Taylor growths during acceleration and deceleration of the target. The degradation of performance of room-temperature and cryogenic OMEGA implosions caused by these perturbations were simulated in three dimensions using the code ASTER. The highest-resolution simulations resolve perturbation modes as high as l 200 . The high modes l 50to 100 dominate in the perturbation spectrum during the linear growth, while the late-time nonlinear evolution results in domination of modes with l 30to 50 . Smoothing by spectral dispersion reduces the linear-phase mode amplitudes by a factor of 4 and results in substantial improvements in implosion performance that is in good agreement with measurements. The effects of imprint on implosion performance are compared with the effects of other implosion asymmetries, such as those induced because of laser beam imbalance, mistiming and mispointing, and target offset. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Simplified bipartite concepts of functioning and disability recommended for interdisciplinary use of the ICF.

    PubMed

    Thyberg, Mikael; Arvidsson, Patrik; Thyberg, Ingrid; Nordenfelt, Lennart

    2015-01-01

    To argue for and propose bipartite concepts of functioning and disability, to tally with the structure of the ICF classification list, concepts of social models and clinical needs. The ICF concepts are discussed in relation to the history of ideas regarding disability concepts and the needs for such concepts in interdisciplinary rehabilitation. Bipartite concepts are presented; they refer to actual functioning, simply body functions/structures and participation, including functioning in standardized environments. Participation refers to actually performed "activities", with "activities" simply denoting things that people may do. Bipartite concepts are congruent with the ICF classification and the structure of social models of disability, suitable for clinical and interdisciplinary use and easy to understand. The issue of standardized environments represents a methodological issue rather than the conceptual issue of defining functioning and disability. An individual perspective on activity and activity limitations, i.e. the middle part of the tripartite ICF concept, is somewhat similar to concepts of traditional language that were regarded as too generalizing already in 1912, when the interactional concept of "disability in a social sense" was introduced in rehabilitation practices. Bipartite concepts of functioning and disability are recommended for interdisciplinary use of the ICF. The ICF classification is useful, but the ICF concept of activities in an individual perspective is confusing. We suggest a use of the term "activities" simply to denote things that people may do and "participation" to denote actually performed activities. Estimations of ability should be explicit about how they are related to environmental factors.

  8. Results from and Plans for the Development of the MARBLE Platform for Studying Thermonuclear Burn in the Presence of Heterogeneous Mix on OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; Cobble, J. A.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.

    2015-11-01

    Work is underway to develop the MARBLE ICF platform for use on OMEGA and NIF in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. Experiments have been performed on OMEGA and are planned for NIF to develop techniques and verify that with uniform fine-pore foam, these implosions behave like atomically mixed plastic and gas. Results will be reviewed and future experiments discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  9. Modular "plug-and-play" capsules for multi-capsule environment in the gastrointestinal tract.

    PubMed

    Phee, S J; Ting, E K; Lin, L; Huynh, V A; Kencana, A P; Wong, K J; Tan, S L

    2009-01-01

    The invention of wireless capsule endoscopy has opened new ways of diagnosing and treating diseases in the gastrointestinal tract. Current wireless capsules can perform simple operations such as imaging and data collection (like temperature, pressure, and pH) in the gastrointestinal tract. Researchers are now focusing on adding more sophisticated functions such as drug delivery, surgical clips/tags deployment, and tissue samples collection. The finite on-board power on these capsules is one of the factors that limits the functionalities of these wireless capsules. Thus multiple application-specific capsules would be needed to complete an endoscopic operation. This would give rise to a multi-capsule environment. Having a modular "plug-and-play" capsule design would facilitate doctors in configuring multiple application-specific capsules, e.g. tagging capsule, for use in the gastrointestinal tract. This multi-capsule environment also has the advantage of reducing power consumption through asymmetric multi-hop communication.

  10. ICF Core Set for Head and Neck Cancer: Do the Categories Discriminate Among Clinically Relevant Subgroups of Patients?

    ERIC Educational Resources Information Center

    Tschiesner, Uta; Oberhauser, Cornelia; Cieza, Alarcos

    2011-01-01

    The multidisciplinary assessment of functioning in patients with head and neck cancer (HNC) according to the "ICF Core Set for Head and Neck Cancer" (ICF-HNC) was developed in an international and multi-disciplinary approach. The ICF-HNC is an application of the ICF that was adopted by the World Health Organization. The objective of this study was…

  11. Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes.

    NASA Technical Reports Server (NTRS)

    Glass, I. I.

    1972-01-01

    A critical appraisal is made of the design, research, development, and operation of the novel UTIAS implosion-driven hypervelocity launchers and shock tubes. Explosively driven (PbN6-lead azide, PETN-pentaerythritetetranitrate) implosions in detonating stoichiometric hydrogen-oxygen mixtures have been successfully developed as drivers for hypervelocity launchers and shock tubes in a safe and reusable facility. Intense loadings at very high calculated pressures, densities, and temperatures, at the implosion center, cause severe problems with projectile integrity. Misalignment of the focal point can occur and add to the difficulty in using small caliber projectiles. In addition, the extreme driving conditions cause barrel expansion, erosion, and possible gas leakage from the base to the head of the projectile which cut the predicted muzzle velocities to half or a third of the lossless calculated values. However, in the case of a shock-tube operation these difficulties are minimized or eliminated and the possibilities of approaching Jovian reentry velocities are encouraging.

  12. Diagnostics for Z-pinch implosion experiments on PTS

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  13. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    NASA Astrophysics Data System (ADS)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  14. Direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics: charting the path to thermonuclear ignition

    NASA Astrophysics Data System (ADS)

    McCrory, R. L.; Regan, S. P.; Loucks, S. J.; Meyerhofer, D. D.; Skupsky, S.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Collins, T. J. B.; Delettrez, J. A.; Edgell, D.; Epstein, R.; Fletcher, K. A.; Freeman, C.; Frenje, J. A.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Igumenshchev, I. V.; Keck, R. L.; Kilkenny, J. D.; Knauer, J. P.; Li, C. K.; Marciante, J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McKenty, P. W.; Myatt, J.; Padalino, S.; Petrasso, R. D.; Radha, P. B.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.

    2005-10-01

    Significant theoretical and experimental progress continues to be made at the University of Rochester's Laboratory for Laser Energetics (LLE), charting the path to direct-drive inertial confinement fusion (ICF) ignition. Direct drive offers the potential for higher-gain implosions than x-ray drive and is a leading candidate for an inertial fusion energy power plant. LLE's direct-drive ICF ignition target designs for the National Ignition Facility (NIF) are based on hot-spot ignition. A cryogenic target with a spherical DT-ice layer, within or without a foam matrix, enclosed by a thin plastic shell, will be directly irradiated with ~1.5 MJ of laser energy. Cryogenic and plastic/foam (surrogate-cryogenic) targets that are hydrodynamically scaled from these ignition target designs are imploded on the 60-beam, 30 kJ, UV OMEGA laser system to validate the key target physics issues, including energy coupling, hydrodynamic instabilities and implosion symmetry. Prospects for direct-drive ignition on the NIF are extremely favourable, even while it is in its x-ray-drive irradiation configuration, with the development of the polar-direct-drive concept. A high-energy petawatt capability is being constructed at LLE next to the existing 60-beam OMEGA compression facility. This OMEGA EP (extended performance) laser will add two short-pulse, 2.6 kJ beams to the OMEGA laser system to backlight direct-drive ICF implosions and study fast-ignition physics with focused intensities up to 6 × 1020 W cm-2.

  15. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    DOE PAGES

    Doppner, T.; Bachmann, B.; Albert, F.; ...

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less

  16. Using the ICF to clarify team roles and demonstrate clinical reasoning in stroke rehabilitation.

    PubMed

    Tempest, Stephanie; McIntyre, Anne

    2006-05-30

    The International Classification of Functioning, Disability and Health (ICF) is advocated as a tool to structure rehabilitation and a universal language to aid communication, within the multi-disciplinary team (MDT). The ICF may also facilitate clarification of team roles and clinical reasoning for intervention. This article aims to explore both factors in stroke rehabilitation. Following a review of the literature, a summary was presented and discussed with clinicians working within stroke rehabilitation, to gather expert opinions. The discussions were informal, being part of service development and on-going education. The clinicians summarised key themes for the potential use of the ICF within clinical practice. Two key themes emerged from the literature and expert opinion for the potential use of the ICF in stroke rehabilitation: (i) to aid communication and structure service provision, (ii) to clarify team roles and aid clinical reasoning. Expert opinion was that clarification of team roles needs to occur at a local level due to the skill mix, particular interests, setting and staffing levels within individual teams. The ICF has the potential to demonstrate/facilitate clinical reasoning, especially when different MDT members are working on the same intervention. There is potential for the ICF to be used to clarify team roles and demonstrate clinical reasoning within stroke rehabilitation. Further experiential research is required to substantiate this view.

  17. Identification of ICF categories relevant for nursing in the situation of acute and early post-acute rehabilitation

    PubMed Central

    Mueller, Martin; Boldt, Christine; Grill, Eva; Strobl, Ralf; Stucki, Gerold

    2008-01-01

    Background The recovery of patients after an acute episode of illness or injury depends both on adequate medical treatment and on the early identification of needs for rehabilitation care. The process of early beginning rehabilitation requires efficient communication both between health professionals and the patient in order to effectively address all rehabilitation goals. The currently used nursing taxonomies, however, are not intended for interdisciplinary use and thus may not contribute to efficient rehabilitation management and an optimal patient outcome. The ICF might be the missing link in this communication process. The objective of this study was to identify the categories of the International Classification of Functioning, Disability and Health (ICF) categories relevant for nursing care in the situation of acute and early post-acute rehabilitation. Methods First, in a consensus process, "Leistungserfassung in der Pflege" (LEP) nursing interventions relevant for the situation of acute and early post-acute rehabilitation were selected. Second, in an integrated two-step linking process, two nursing experts derived goals of LEP nursing interventions from their practical knowledge and selected corresponding ICF categories most relevant for patients in acute and post-acute rehabilitation (ICF Core Sets). Results Eighty-seven percent of ICF Core Set categories could be linked to goals of at least one nursing intervention variable of LEP. The ICF categories most frequently linked with LEP nursing interventions were respiration functions, experience of self and time functions and focusing attention. Thirteen percent of ICF Core Set categories could not be linked with LEP nursing interventions. The LEP nursing interventions which were linked with the highest number of different ICF-categories of all were "therapeutic intervention", "patient-nurse communication/information giving" and "mobilising". Conclusion The ICF Core Sets for the acute hospital and early post

  18. Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions

    DOE PAGES

    Shah, Rahul C.; Haines, Brian Michael; Wysocki, Frederick Joseph; ...

    2017-03-30

    Here, we present narrow-band self-emission x-ray images from a titanium tracer layer placed at the fuel-shell interface in 60-laser-beam implosion experiments at the OMEGA facility. The images are acquired during deceleration with inferred convergences of ~9-14. Novel here is that a systematically observed asymmetry of the emission is linked, using full sphere 3D implosion modeling, to performance-limiting low mode asymmetry of the drive.

  19. Accommodation Outcomes and the ICF Framework

    ERIC Educational Resources Information Center

    Schreuer, Naomi

    2009-01-01

    Accommodation of the environment and technology is one of the key mediators of adjustment to disability and participation in community. In this article, accommodations are tested empirically as facilitators of return to work and participation, as defined by the "International Classification of Disability, Function, and Health" (ICF) and…

  20. Choice-making among Medicaid HCBS and ICF/MR recipients in six states.

    PubMed

    Lakin, K Charlie; Doljanac, Robert; Byun, Soo-Yong; Stancliffe, Roger; Taub, Sarah; Chiri, Giuseppina

    2008-09-01

    Choice in everyday decisions and in support-related decisions was addressed among 2,398 adults with intellectual and developmental disabilities receiving Medicaid Home and Community Based Services (HCBS) and Intermediate Care Facility (ICF/MR) services and living in non family settings in six states. Everyday choice in daily life and in support-related choice was considerably higher on average for HCBS than for ICF/MR recipients, but after controlling for level of intellectual disability, medical care needs, mobility, behavioral and psychiatric conditions, and self-reporting, we found that choice was more strongly associated with living in a congregate setting than whether that setting was HCBS- or ICF/MR-financed. Marked differences in choice were also evident between states.

  1. Energy balance during underwater implosion of ductile metallic cylinders.

    PubMed

    Chamberlin, Ryan E; Guzas, Emily L; Ambrico, Joseph M

    2014-11-01

    Energy-based metrics are developed and applied to a numerical test case of implosion of an underwater pressure vessel. The energy metrics provide estimates of the initial energy in the system (potential energy), the energy released into the fluid as a pressure pulse, the energy absorbed by the imploding structure, and the energy absorbed by air trapped within the imploding structure. The primary test case considered is the implosion of an aluminum cylinder [diameter: 2.54 cm (1 in.), length: 27.46 cm (10.81 in.)] that collapses flat in a mode-2 shape with minimal fracture. The test case indicates that the structure absorbs the majority (92%) of the initial energy in the system. Consequently, the energy emitted as a pressure pulse into the fluid is a small fraction, approximately 5%, of the initial energy. The energy absorbed by the structure and the energy emitted into the fluid are calculated for additional simulations of underwater pressure vessel implosions. For all cases investigated, there is minimal fracture in the collapse, the structure absorbs more than 80% of the initial energy of the system, and the released pressure pulse carries away less than 6% of the initial energy.

  2. Validation of the Comprehensive ICF Core Set for obstructive pulmonary diseases from the patient's perspective.

    PubMed

    Marques, Alda; Jácome, Cristina; Gonçalves, Ana; Silva, Sara; Lucas, Carla; Cruz, Joana; Gabriel, Raquel

    2014-06-01

    This study aimed to validate the Comprehensive International Classification of Functioning, Disability and Health (ICF) Core Set for obstructive pulmonary diseases (OPDs) from the perspective of patients with chronic obstructive pulmonary disease. A cross-sectional qualitative study was carried out with outpatients with chronic obstructive pulmonary disease using focus groups with an ICF-based approach. Qualitative data were analysed using the meaning condensation procedure by two researchers with expertise in the ICF. Thirty-two participants (37.5% women; 63.8 ± 11.3 years old) were included in six focus groups. A total of 61 (86%) ICF categories of the Comprehensive ICF Core Set for OPD were confirmed. Thirty-nine additional second-level categories not included in the Core Set were identified: 15 from the body functions component, four from the body structures, nine from the activities and participation and 11 from the environmental factors. The majority of the categories included in the Comprehensive ICF Core Set for OPD were confirmed from the patients' perspective. However, additional categories, not included in the Core Set, were also reported. The categories included in the Core Set were not confirmed and the additional categories need to be investigated further to develop an instrument tailored to patients' needs. This will promote patient-centred assessments and rehabilitation interventions.

  3. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamy, H.; Hamann, F.; Lassalle, F.

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1{mu}s rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim ofmore » giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-{theta} simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.« less

  4. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J. P.; Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  5. Implosive Therapy as a Treatment for Insomnia.

    ERIC Educational Resources Information Center

    Carrera, Richard N.; Elenewski, Jeffrey J.

    1980-01-01

    The death implosion produced a decrease in insomnia beyond the strong expectancy effects that resulted from all experimental treatments. The failure to observe changes in reported fear of death was attributed to subjects' anxiety-based reluctance to acknowledge openly such fear. (Author)

  6. An International Clinical Study of Ability and Disability in Autism Spectrum Disorder Using the WHO-ICF Framework.

    PubMed

    Mahdi, Soheil; Albertowski, Katja; Almodayfer, Omar; Arsenopoulou, Vaia; Carucci, Sara; Dias, José Carlos; Khalil, Mohammad; Knüppel, Ane; Langmann, Anika; Lauritsen, Marlene Briciet; da Cunha, Graccielle Rodrigues; Uchiyama, Tokio; Wolff, Nicole; Selb, Melissa; Granlund, Mats; de Vries, Petrus J; Zwaigenbaum, Lonnie; Bölte, Sven

    2018-06-01

    This is the fourth international preparatory study designed to develop International Classification of Functioning, Disability and Health (ICF, and Children and Youth version, ICF-CY) Core Sets for Autism Spectrum Disorder (ASD). Examine functioning of individuals diagnosed with ASD as documented by the ICF-CY in a variety of clinical settings. A cross-sectional study was conducted, involving 11 units from 10 countries. Clinical investigators assessed functioning of 122 individuals with ASD using the ICF-CY checklist. In total, 139 ICF-CY categories were identified: 64 activities and participation, 40 body functions and 35 environmental factors. The study results reinforce the heterogeneity of ASD, as evidenced by the many functional and contextual domains impacting on ASD from a clinical perspective.

  7. The near vacuum hohlraum campaign at the NIF: A new approach

    NASA Astrophysics Data System (ADS)

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N.; Turnbull, D.; Mackinnon, A. J.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E.; Benedetti, L. R.; Nagel, S.; Biener, J.; Callahan, D. A.; Yeamans, C.; Michel, P.; Schneider, M.; Kozioziemski, B.; Ma, T.; Macphee, A. G.; Haan, S.; Izumi, N.; Hatarik, R.; Sterne, P.; Celliers, P.; Ralph, J.; Rygg, R.; Strozzi, D.; Kilkenny, J.; Rosenberg, M.; Rinderknecht, H.; Sio, H.; Gatu-Johnson, M.; Frenje, J.; Petrasso, R.; Zylstra, A.; Town, R.; Hurricane, O.; Nikroo, A.; Edwards, M. J.

    2016-05-01

    The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30×). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30× implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.

  8. The near vacuum hohlraum campaign at the NIF: A new approach

    DOE PAGES

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; ...

    2016-05-25

    The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30x). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examinemore » the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30x implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.« less

  9. An antiproton driver for ICF propulsion

    NASA Technical Reports Server (NTRS)

    Chiang, Pi-Ren; Lewis, R. A.; Smith, G. A.; Gazze, C.; Higman, K.; Newton, R.; Chiaverini, M.; Dailey, J.; Surratt, M.; Werthman, W. Lance

    1993-01-01

    Inertial confinement fusion (ICF) utilizing an anitprotoncatalyzed target is discussed as a possible source of propulsion for rapid interplanetary manned space missions. The relevant compression, ignition, and thrust mechanisms are presented. Progress on an experiment presently in progress at the Phillips Laboratory, Kirtland AFB, NM to demonstrate proof-of-principle is reviewed.

  10. Content validity of the Comprehensive ICF Core Set for multiple sclerosis from the perspective of speech and language therapists.

    PubMed

    Renom, Marta; Conrad, Andrea; Bascuñana, Helena; Cieza, Alarcos; Galán, Ingrid; Kesselring, Jürg; Coenen, Michaela

    2014-11-01

    The Comprehensive International Classification of Functioning, Disability and Health (ICF) Core Set for Multiple Sclerosis (MS) is a comprehensive framework to structure the information obtained in multidisciplinary clinical settings according to the biopsychosocial perspective of the International Classification of Functioning, Disability and Health (ICF) and to guide the treatment and rehabilitation process accordingly. It is now undergoing validation from the user perspective for which it has been developed in the first place. To validate the content of the Comprehensive ICF Core Set for MS from the perspective of speech and language therapists (SLTs) involved in the treatment of persons with MS (PwMS). Within a three-round e-mail-based Delphi Study 34 SLTs were asked about PwMS' problems, resources and aspects of the environment treated by SLTs. Responses were linked to ICF categories. Identified ICF categories were compared with those included in the Comprehensive ICF Core Set for MS to examine its content validity. Thirty-four SLTs named 524 problems and resources, as well as aspects of environment. Statements were linked to 129 ICF categories (60 Body-functions categories, two Body-structures categories, 42 Activities-&-participation categories, and 25 Environmental-factors categories). SLTs confirmed 46 categories in the Comprehensive ICF Core Set. Twenty-one ICF categories were identified as not-yet-included categories. This study contributes to the content validity of the Comprehensive ICF Core Set for MS from the perspective of SLTs. Study participants agreed on a few not-yet-included categories that should be further discussed for inclusion in a revised version of the Comprehensive ICF Core Set to strengthen SLTs' perspective in PwMS' neurorehabilitation. © 2014 Royal College of Speech and Language Therapists.

  11. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, R.; Chang, P. Y.; Anderson, K. S.

    2010-05-15

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehlymore » et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.« less

  12. Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, R.; Chang, P.Y.; Spears, B.K.

    2010-04-23

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.« less

  13. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  14. Progress in Direct-Drive Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, R.L.; Meyerhofer, D.D.; Betti, R.

    Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ UV OMEGA Laser System [T. R. Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of ~200 mg/cm^2 in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm^3 and are in good agreement with hydrodynamic simulations. The implosions were performed using anmore » 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts—fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)]—have the potential to significantly reduce ignition driver energies and/or provide higher target gain.« less

  15. Progress in direct-drive inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, R. L.; Meyerhofer, D. D.; Betti, R.

    Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ{sub UV} OMEGA Laser System [Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of {approx}200 mg/cm{sup 2} in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm{sup 3} and are in good agreement with hydrodynamic simulations. The implosions were performed using anmore » 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts - fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] - have the potential to significantly reduce ignition driver energies and/or provide higher target gain.« less

  16. A Comparison of Implosive Therapy and Systematic Desensitization in the Treatment of Test Anxiety

    ERIC Educational Resources Information Center

    Smith, Ronald E.; Nye, S. Lee

    1973-01-01

    Both Desensitization and implosive therapy resulted in significant decreases in scores on Sarason's Test Anxiety Scale. However, the desensitization group also demonstrated a significant reduction in state anxiety assessed during simulated testing sessions and a significant increase in grade point average, while the implosive therapy group showed…

  17. Posterior capsule opacification.

    PubMed

    Wormstone, I Michael; Wang, Lixin; Liu, Christopher S C

    2009-02-01

    Posterior Capsule Opacification (PCO) is the most common complication of cataract surgery. At present the only means of treating cataract is by surgical intervention, and this initially restores high visual quality. Unfortunately, PCO develops in a significant proportion of patients to such an extent that a secondary loss of vision occurs. A modern cataract operation generates a capsular bag, which comprises a proportion of the anterior and the entire posterior capsule. The bag remains in situ, partitions the aqueous and vitreous humours, and in the majority of cases, houses an intraocular lens. The production of a capsular bag following surgery permits a free passage of light along the visual axis through the transparent intraocular lens and thin acellular posterior capsule. However, on the remaining anterior capsule, lens epithelial cells stubbornly reside despite enduring the rigours of surgical trauma. This resilient group of cells then begin to re-colonise the denuded regions of the anterior capsule, encroach onto the intraocular lens surface, occupy regions of the outer anterior capsule and most importantly of all begin to colonise the previously cell-free posterior capsule. Cells continue to divide, begin to cover the posterior capsule and can ultimately encroach on the visual axis resulting in changes to the matrix and cell organization that can give rise to light scatter. This review will describe the biological mechanisms driving PCO progression and discuss the influence of IOL design, surgical techniques and putative drug therapies in regulating the rate and severity of PCO.

  18. Retention of the capsule endoscope: a single-center experience of 1000 capsule endoscopy procedures.

    PubMed

    Li, Feng; Gurudu, Suryakanth R; De Petris, Giovanni; Sharma, Virender K; Shiff, Arthur D; Heigh, Russell I; Fleischer, David E; Post, Janice; Erickson, Paula; Leighton, Jonathan A

    2008-07-01

    Retention of the video capsule is the most significant complication associated with capsule endoscopy (CE). There are limited data on incidence, risk factors, and outcomes of capsule retention. We aimed to determine the incidence of capsule retention and to investigate the causes and clinical outcomes of capsule retention. Single tertiary referral medical center. All patients who underwent CE for suspected small bowel disease from June 2002 to March 2006. Retrospective case series. Capsule retention occurred in 1.4% of our patients (14/1000). Eleven patients failed to pass the capsule because of nonsteroidal anti-inflammatory drug (NSAID) enteropathy (diaphragm disease). One patient had capsule retention from an obstructing carcinoid tumor. Metastatic ovarian cancer with invasion of the ileum was the cause of retention in another patient. One patient who did not have surgical removal of the capsule because of loss of follow-up had retention caused by a small-bowel tumor suspicious for carcinoid tumor on CT enterography. All patients remained "asymptomatic" from the retained capsules. Thirteen patients underwent elective partial small-bowel resection and capsule removal. No deaths were associated with these surgeries. Eleven patients recovered promptly, whereas 2 patients had mild postoperative ileus. Retrospective study. Retention of the capsule endoscope appears to be infrequent. The most common cause is diaphragm disease resulting from NSAIDs in this study population. In most cases, capsule retention is asymptomatic, and it usually leads to surgical removal, which appears safe and also identifies and treats the underlying small-bowel condition.

  19. Time history prediction of direct-drive implosions on the Omega facility

    DOE PAGES

    Laffite, S.; Bourgade, J. L.; Caillaud, T.; ...

    2016-01-14

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  20. Time history prediction of direct-drive implosions on the Omega facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less