Science.gov

Sample records for icf program overview

  1. 1996 ICF program overview

    SciTech Connect

    Correll, D

    1996-09-30

    The continuing objective of the Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship and Management (SSM) Program. The extension of current program research capabilities in the National Ignition Facility (NIF) is necessary for the ICF Program to satisfy its stewardship responsibilities. ICF resources (people and facilities) are increasingly being redirected in support of the performance, schedule, and cost goals of the NIF. One of the more important aspects of ICF research is the national nature of the program. Lawrence Livermore National Laboratory's (LLNL's) ICF Program falls within DOE's national ICF Program, which includes the Nova and Beamlet laser facilities at LLNL and the OMEGA, Nike, and Trident laser facilities at the University of Rochester (Laboratory for Laser Energetics, UR/LLE), the Naval Research Laboratory (NRL), and Los Alamos National Laboratory (LANL), respectively. The Particle Beam Fusion Accelerator (PBFA) and Saturn pulsed-power facilities are at Sandia National Laboratories (SNL). General Atomics, Inc. (GA) develops and provides many of the targets for the above experimental facilities. LLNL's ICF Program supports activities in two major interrelated areas: (1) target physics and technology (experimental, theoretical, and computational research); and (2) laser science and optics technology development. Experiments on LLNL's Nova laser primarily support ignition and weapons physics research. Experiments on LLNL's Beamlet laser support laser science and optics technology development. In addition, ICF sciences and technologies, developed as part of the DP mission goals, continue to support additional DOE objectives. These objectives are (1) to achieve diversity in energy sources

  2. Overview of ICF program at Centre D{close_quote}Etudes de Limeil-Valenton

    SciTech Connect

    Cel-V Laser Team

    1996-05-01

    The major objectives of the CEA-DAM laser program is to determine the various requirements to achieve thermonuclear fusion in laboratory. We report here recent results obtained at Centre d{close_quote}Etudes de Limeil-Valenton on high density X-Ray implosions, radiative transfer processes, hydrodynamic instabilities and laser-plasma interaction involved in cavity physics. Ignition and a moderate gain appears to be achievable with a laser energy of about 1.5{minus}2 MJ delivered at {lambda}=0, 35 {mu}m with a shaped pulse (duration{approximately}16 ns). The construction of such a laser is realizable and a conceptual design is under preparation. {copyright} {ital 1996 American Institute of Physics.}

  3. LANL HED Programs Overview

    SciTech Connect

    Flippo, Kirk Adler

    2015-04-23

    The Powerpoint presentation provides an overview of High-Energy Density (HED) Physis, ICF and Burning Plasma research programs at Los Alamos National Lab. in New Mexico. Work in nuclear diagnostics is also presented, along with a summary of collaborations and upcoming projects.

  4. ICF Program: LDRD-ER Final Report

    SciTech Connect

    Glenzer, S H

    2004-02-05

    In the 01-ERD-107 LDRD-ER project, we have performed novel Thomson scattering experiments at the Trident and Omega laser facilities and provided high quality spectral data. These results have led to the development of the first quantitative understanding of laser-plasma interactions for NIF plasmas. For this purpose an green/ultraviolet probe laser, built for Nova in 1998 [1] and successfully used to measure both temperature and plasma wave amplitudes [2], has been deployed on Omega. The Thomson scattering diagnostics has been used twofold: (1) it provided independent measurements of the plasma electron and ion temperature, the plasma flow velocity, or the electron distribution function; (2) it provided measurements of the primary plasma wave and their secondary non-linear decay wave products. These experiments at Omega provide definitive quantitative results on the nonlinear saturation of stimulated Raman scattering for green (2{omega}) beams. In addition, the experiments on the Trident laser have led to a quantitative understanding of the stimulated Brillouin scattering in low-Z plasmas. A nonlinear frequency detuning model has successfully explained all the experimental observable including the SBS reflectivity. This model has been implemented into the laser-plasma interaction code pF3D as a tool to design and optimize NIF target experiments with SBS and SRS losses included. The development of quantitative models for SBS and SRS for various regimes has now been adopted as part of the WBS1 project within the ICF program.

  5. Human Reliability Program Overview

    SciTech Connect

    Bodin, Michael

    2012-09-25

    This presentation covers the high points of the Human Reliability Program, including certification/decertification, critical positions, due process, organizational structure, program components, personnel security, an overview of the US DOE reliability program, retirees and academia, and security program integration.

  6. Vehicle Technologies Program Overview

    SciTech Connect

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  7. The US ICF Ignition Program and the Inertial Fusion Program

    SciTech Connect

    Lindl, J D; Hammel, B A; Logan, B G; Meyerhofer, D D; Payne, S A; Stehian, J D

    2003-07-02

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets

  8. BMDO photovoltaics program overview

    NASA Technical Reports Server (NTRS)

    Caveny, Leonard H.; Allen, Douglas M.

    1994-01-01

    This is an overview of the Ballistic Missile Defense Organization (BMDO) Photovoltaic Program. Areas discussed are: (1) BMDO advanced Solar Array program; (2) Brilliant Eyes type satellites; (3) Electric propulsion; (4) Contractor Solar arrays; (5) Iofee Concentrator and Cell development; (6) Entech linear mini-dome concentrator; and (7) Flight test update/plans.

  9. Progress in development of low density polymer foams for the ICF Program

    SciTech Connect

    Letts, S.A.; Lucht, L.M.; Morgan, R.J.; Cook, R.C.; Tillotson, T.M.; Mercer, M.B.; Miller, D.E.

    1985-06-10

    This report describes the status of CH foam development with densities of 50 mg/ccs and cell sizes of 1 ..mu..m for the ICF Program. Two approaches that both involve polymer phase separation are being investigated. The first involves a gelation-crystallization of high molecular weight polyethylene from solution, whereas the second approach involves the modification of the phase separation morphology of water-styrene emulsions by molecularly-tailored surfactants followed by polymerization of the continuous styrene phase.

  10. Site support program plan for ICF Kaiser Hanford Company

    SciTech Connect

    Dieterle, S.E.

    1996-09-27

    The Fiscal Year (FY) 1997 Inftastructure Program Site Support Program Plan (SSPP) addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition.

  11. NREL biofuels program overview

    SciTech Connect

    Mielenz, J.R.

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  12. Identification of relevant ICF categories for indication, intervention planning and evaluation of health resort programs: a Delphi exercise

    NASA Astrophysics Data System (ADS)

    Morita, E.; Weigl, M.; Schuh, A.; Stucki, G.

    2006-01-01

    Health resort programs have a long tradition, mainly in European countries and Japan. They rely on local resources and the physical environment, physical medicine interventions and traditional medicine to optimise functioning and health. Arguably because of the long tradition, there is only a limited number of high-quality studies that examine the effectiveness of health resort programs. Specific challenges to the evaluation of health resort programs are to randomise the holistic approach with a varying number of specific interventions but also the reliance on the effect of the physical environment. Reference standards for the planning and reporting of health resort studies would be highly beneficial. With the International Classification of Functioning Disability and Health (ICF), we now have such a standard that allows us to describe body functions and structures, activities and participation and interaction with environmental factors. A major challenge when applying the ICF in practice is its length. Therefore, the objective of this project was to identify the ICF categories most relevant for health resort programs. We conducted a consensus-building, three-round, e-mail survey using the Delphi technique. Based on the consensus of the experts, it was possible to come up with an ICF Core Set that can serve as reference standards for the indication, intervention planning and evaluation of health resort programs. This preliminary ICF Core Set should be tested in different regions and in subsets of health resort visitors with varying conditions.

  13. AMPED Program Overview

    ScienceCinema

    Gur, Ilan

    2016-07-12

    An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.

  14. AMPED Program Overview

    SciTech Connect

    Gur, Ilan

    2014-03-04

    An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.

  15. An Overview of Raster Scanning for ICF-Class Laser Optics

    SciTech Connect

    Runkel, M J; Nostrand, M

    2002-10-30

    Recent work has shown that the damage resistance of both ICF-class (1600 cm') DKDP tripler crystals and SiO{sub 2} components (lenses, gratings and debris shields) benefits from laser raster scanning using pulsed lasers in the 350 nm range. For laser raster scanning to be a viable optical improvement tool for these large optics, damage improvement must be optimized while maintaining scan times of less than 8 hours/optic. In this paper we examine raster scanning with small beams from tabletop laser systems. We show that 120 Watts of average power is required for a tabletop scanning system at one optic/day. Next, we develop equations for total scan time for square and round top hat beams and round and rectangular Gaussian beams. We also consider the effect of packing geometry (square vs. hexagonal), examine the deviations from uniform coverage with each scan geometry and show that hexagonal packing yields lower scan times but is less efficient in coverage than square geometry. We also show that multiple passes at low packing densities are temporally equivalent to a single pass with higher packing density, and discuss the advantages of each method. In addition, we show that the differences between hexagonal and square scan geometries are negated when pointing errors and fluence fluctuations from the laser are considered.

  16. Green Power Partnership Program Overview

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This page provides a brief program overview, including vision and accomplishments.

  17. State School Facility Programs Overview.

    ERIC Educational Resources Information Center

    California State Dept. of General Services, Sacramento. Office of Public School Construction.

    This overview examines California's various State Allocation Board's funding programs for the construction, modernization, and maintenance of local school facilities. Funding information is provided for each program as are explanations of the school facility program construction process and the lease purchase program. The organizational chart for…

  18. ICF Annual Report 1997

    SciTech Connect

    Correll, D

    1998-06-01

    The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications. In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.

  19. Inertial confinement fusion (ICF) review

    SciTech Connect

    Hammer, D.; Dyson, F.; Fortson, N.; Novick, B.; Panofsky, W.; Rosenbluth, M.; Treiman, S.; York, H.

    1996-03-01

    During its 1996 winter study JASON reviewed the DOE Inertial Confinement Fusion (ICF) program. This included the National Ignition Facility (NIF) and proposed studies. The result of the review was to comment on the role of the ICF program in support of the DOE Science Based Stockpile Stewardship program.

  20. Target Diagnostic Technology Research and Development for the LLNL ICF and HED Programs

    SciTech Connect

    Bell, P; Bennett, C; Holder, J; Kimbrough, J; Landen, O; Lerche, D; Lowry, M; McDonald, J; Perry, T; Turner, B; Weber, F

    2003-08-22

    The National Ignition Facility (NIF) is under construction at LLNL for the Department of Energy Stockpile Stewardship Program. It will be used for experiments for Inertial Confinement Fusion (ICF) Ignition, High Energy Density (HED) science, and basic science. Many issues confront experimentalists who wish to design, fabricate, and install diagnostics on the NIF. To foster this process the ICF and HED programs at LLNL have formed a diagnostic research and development group to look at issues outside the charter of facility diagnostics (core diagnostics). We will present data from instrumentation and associated technology that is being developed by this group. A major portion of our instrumentation work is on improvements for readout systems. We have several efforts related to CCD device development. Work has been done in collaboration with the University of Arizona to backthin a large format CCD device (36mm{sup 2}). This work has shown good results. The device has very high quantum efficiency, low noise readout and high charge transfer efficiency. The device is being fielded in direct optical, direct x-ray and 13-15 RV electron readout applications. In addition to readout device development we have completed work on a CCD readout system. With a commercial vendor we have developed a large format, compact, Ethernet addressable CCD camera system. This system fits in shoebox size volume, is thermal electrically cooled, supports a variety of CCD devices and can be run from remote locations via TCP/IP protocol. We are also doing work to improve streak camera systems. We have coupled our large format CCD system to an MK2 Kentech streak tube. Improvements have been made to the resolution and dynamic range of the system. Similar improvements have been made to the LLNL optical streak camera systems. We will present data from the optical and x-ray streak camera work. In addition we will present data from single shot high-speed, high dynamic range data link work. In

  1. Overview of communications programs

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    The objective of the communications program is to advance critical areas of enabling and enhancing communication technologies that support commercial needs, science, and exploration missions for the 1990's and beyond. The technology program consists of research and technology development in the following areas: RF technology; digital technology; optical communications; mobile communications; and systems integration, test, and evaluation.

  2. Psychological screening program overview.

    PubMed

    Wright, Kathleen M; Huffman, Ann H; Adler, Amy B; Castro, Carl A

    2002-10-01

    This article reviews the literature on health surveillance conducted during military deployments, focusing on models for assessing the impact of operational deployments on peacekeepers. A discussion of the stressors and potential mental health consequences of peacekeeping operations follows with relevant examples of findings from U.S. and international military forces. Psychological screening in different peacekeeping operations conducted in U.S. Army-Europe is reviewed. The review begins with the redeployment screening of military personnel deployed to Bosnia mandated under the Joint Medical Surveillance Program, and continues through the present screening of units deployed to Kosovo. The detailed description of the screening program includes a discussion of procedures and measures and demonstrates the evolution of the program. A summary of key findings from the screening program and a discussion of future research directions are provided.

  3. Biomass Program Overview Presentation

    SciTech Connect

    2011-12-01

    This presentation is an interactive walk through of the Program's vision of advancing the biofuels and bioproducts industry and highlights the research and development activities that will help achieve it.

  4. 2007 Biomass Program Overview

    SciTech Connect

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  5. Robotics development programs overview

    SciTech Connect

    Heckendorn, F.M.

    1990-11-01

    This paper discusses the applications of robotics at the Westinghouse Savannah River Site. The Savannah River Laboratory (SRL) continues to provide support to the Savannah River Site (SRS) in many areas of Robotics and Remote Vision. An overview of the current and near term future developments are presented. The driving forces for Robotics and Vision developments at SRS include the classic reasons for industrial robotics installation (i.e. repetitive and undesirable jobs) and those reasons related to radioactive environments. Protection of personnel from both radiation and radioactive contamination benefit greatly from both Robotics and Telerobotics. Additionally, the quality of information available from remote locations benefits greatly from the ability to visually monitor and remotely sense. The systems discussed include a glovebox waste handling and bagout robot, a shielded cells robot for radioactive waste sample transfer, waste handling gantry robots, a two armed master/slave manipulator as an attachment to a gantry robot, navigation robot research/testing, demonstration of the mobile underwater remote cleaning and inspection device, a camera deployment robot to support remote crane operations and for deployment of radiation sensors directly over a hazardous site, and demonstration of a large mobile robot for high radiation environments. Development of specialized and limited life vision/viewing systems for hazardous environments is also discussed.

  6. Mars base technology program overview

    NASA Technical Reports Server (NTRS)

    Chu, Chneg-Chih; Hayati, Samad A.; Udomkesmalee, Suraphol

    2005-01-01

    In this paper, we present an overview of the current technology portfolio for Mars Base Technology Program. Brief descriptions of the awarded technologies and the high-priority areas in both NRAs are provided to show the current focus of MTP. We also present the approach that MTP uses to evaluate technology maturity for each of the technology tasks.

  7. NASA Launch Services Program Overview

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has need to procure a variety of launch vehicles and services for its unmanned spacecraft. The Launch Services Program (LSP) provides the Agency with a single focus for the acquisition and management of Expendable Launch Vehicle (ELV) launch services. This presentation will provide an overview of the LSP and its organization, approach, and activities.

  8. Better Plants Program Overview

    SciTech Connect

    2015-09-30

    The U.S. Department of Energy’s (DOE’s) Better Buildings, Better Plants Program is a voluntary partnership initiative to drive significant energy efficiency improvement across energy intensive companies and organizations. 157 leading manufacturers and public water and wastewater treatment utilities are partnering with DOE through Better Plants to improve energy efficiency, slash carbon emissions, and cut energy costs.

  9. Overview of Relational Programming.

    DTIC Science & Technology

    1981-11-01

    operators are undergoing a continuing refinement. We began with the operators defined by Russell and Whitehead [7] and Carnap [2]. As the requirements of...2) Carnap , R. Introduction to Symbolic Logic and its Applica- tions, Dover, 1958. [3] MacLennan, B. J. Fen - an axiomatic basis for program

  10. Skylab medical program overview

    NASA Technical Reports Server (NTRS)

    Johnson, R. S.

    1977-01-01

    The following major medical subsystems in Skylab are outlined: (1) operational equipment; (2) life science experiments; (3) medical operations; and (4) operational experience. Throughout the Skylab flight program, alterations in equipment and procedures were made for each succeeding mission to capitalize on the flight experience of the previous mission.

  11. MF Program Overview

    DTIC Science & Technology

    2011-11-01

    Functions 2011 JOCOTAS Industry Day • Army Theatre Aviation Maintenance Program • Army Forensics • Joint Expeditionary Field Forensics (JEFF) – Firearms...i fli ht fil t• s wor ng o acqu re var ous g pro es o adequately evaluate appropriate venting requirements • Final results will be reviewed to

  12. Hydrogen program overview

    SciTech Connect

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  13. Motor training programs of arm and hand in patients with MS according to different levels of the ICF: a systematic review

    PubMed Central

    2012-01-01

    Background The upper extremity plays an important role in daily functioning of patients with Multiple Sclerosis (MS) and strongly influences their quality of life. However, an explicit overview of arm-hand training programs is lacking. The present review aims to investigate the training components and the outcome of motor training programs for arm and hand in MS. Methods A computerized systematic literature search in 5 databases (PubMed, CINAHL, EMBASE, PEDro and Cochrane) was performed using the following Mesh terms: Multiple Sclerosis, Rehabilitation, Physical Education and Training, Exercise, Patient-Centered Care, Upper Extremity, Activities of Daily Living, Motor Skills, Motor Activity, Intervention Studies and Clinical Trial. The methodological quality of the selected articles was scored with the Van Tulder Checklist. A descriptive analyses was performed using the PICO principle, including scoring of training components with the calculation of Hedges’g effect sizes. Results Eleven studies were eligible (mean Van Tulder-score = 10.82(SD2.96)). Most studies reported a specific improvement in arm hand performance at the ICF level that was trained at. The mean number of training components was 5.5(SD2.8) and a significant correlation (r = 0.67; p < 0.05) between the number of training components and effect sizes was found. The components ‘client-centered’ and ‘functional movement’ were most frequently used, whereas ‘distribution based practice’, ‘feedback’ and ‘random practice’ were never used. The component ‘exercise progression’ was only used in studies with single ICF body function training, with the exception of 1 study with activity level training. Studies including the component ‘client-centred’ demonstrated moderate to high effect sizes. Conclusion Motor training programs (both at the ICF body function and activity level) have shown to improve arm and hand performance in MS in which the value of the training

  14. Thunderstorm Program General Overview

    DTIC Science & Technology

    2014-12-19

    government laboratories and commercial vendors with an enduring multi-Intelligence technology demonstration venue . New and existing ISR technologies can...Thunderstorm Program Methodology & Venues 2 Conducts a series of events each fiscal year for DoD selected areas of interest Tabletop Experiment (TTX) o...Architectures and Interagency Collaboration • Best match Key Operational/Supporting Partnerships, Venues and Technologies within Thunderstorm based on Strategic

  15. FUDS Program Overview

    DTIC Science & Technology

    2010-06-17

    BUILDING STRONG® FUDS 12 FUDS Program Goals DoD Goal Goal Year IRP RIP/RC FY2020 MMRP PA FY2007 SI FY04 ARC (765) FY05 ARC (962) FY07 ARC ( 1073 ...Complete (RIP/RC) achievement Accelerate phase completion Complete 765 MMRP-SI’s in FY10, 866 in FY11, 962 in FY12, 1073 in FY13  Strive to achieve

  16. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  17. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    SciTech Connect

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units.

  18. ERC Program Overview

    SciTech Connect

    Maru, H.; Farooque, M.; Carlson, G.; Patel, P.; Yuh, C.; Bentley, C.; Glenn, D.; Kush, A.

    1996-08-01

    The carbonate fuel cell promises highly efficient, cost-effective, environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. ERC has been engaged in the development of this unique technology since the late 1970s, primarily focusing on the development of the Direct Fuel Cell (DFC) technology [1-6] pioneered by ERC. The DFC design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach provides upgrading of waste heat to chemical energy; thereby, it contributing to higher overall efficiency for conversion of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, ERC has selected the Indirect Internal Reforming (IIR) - Direct Internal Reforming (DIR) combination as its baseline design. ERC plans to offer commercial DFC power plants in various sizes, initially focusing on the MW-scale units. The plan is to offer standardized, packaged MW-scale DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale by the end of the decade. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed generation, industrial cogeneration, and uninterrupted power for military bases. After gaining experience from the early MW-scale power plants, and with maturing of the technology, ERC expects to introduce larger power plants operating on natural gas and/or coal gas or other fuels in the beginning of the 21st century. ERC has completed a technology program for product design verification, a predecessor of the current program, where the power plant design as well as the technology development were carried out to support a full-size field demonstration. These activities culminated in 130 kW stack tests in ERC

  19. Overview of NASA's UEET Program

    NASA Astrophysics Data System (ADS)

    Shaw, Robert J.

    2002-10-01

    This paper presents a general overview of NASA's Ultra Efficient Engine Technology (UEET) Program. The program's vision is to develop and hand off revolutionary turbine engine propulsion technologies that will enable future generation vehicles over a wide range of flight speeds. The specific goals include: 1) Perform propulsion technologies to enable increases in system efficiency and, therefore, fuel burn reductions of up to 15% (equivalent reductions in CO2); and 2) Provide combustor technologies (configuration and materials) which will enable reductions in Landing/Take-off (LTO) NOx of 70% relative to 1996 ICAO standards.

  20. Overview of NASA's UEET Program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.

    2002-01-01

    This paper presents a general overview of NASA's Ultra Efficient Engine Technology (UEET) Program. The program's vision is to develop and hand off revolutionary turbine engine propulsion technologies that will enable future generation vehicles over a wide range of flight speeds. The specific goals include: 1) Perform propulsion technologies to enable increases in system efficiency and, therefore, fuel burn reductions of up to 15% (equivalent reductions in CO2); and 2) Provide combustor technologies (configuration and materials) which will enable reductions in Landing/Take-off (LTO) NOx of 70% relative to 1996 ICAO standards.

  1. Commercial Crew Development Program Overview

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  2. 40 CFR 49.166 - Program overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Source Review Program for Nonattainment Areas in Indian Country § 49.166 Program overview. (a) What constitutes the Federal major new source review (NSR) program for nonattainment areas in Indian country? As... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Program overview. 49.166 Section...

  3. 40 CFR 71.1 - Program overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Program overview. 71.1 Section 71.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL OPERATING PERMIT PROGRAMS Operating Permits § 71.1 Program overview. (a) This part sets forth...

  4. 40 CFR 71.21 - Program overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Program overview. 71.21 Section 71.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL OPERATING PERMIT PROGRAMS Permits for Early Reductions Sources § 71.21 Program overview. (a) The...

  5. 40 CFR 71.21 - Program overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Program overview. 71.21 Section 71.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL OPERATING PERMIT PROGRAMS Permits for Early Reductions Sources § 71.21 Program overview. (a) The...

  6. 40 CFR 71.1 - Program overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Program overview. 71.1 Section 71.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL OPERATING PERMIT PROGRAMS Operating Permits § 71.1 Program overview. (a) This part sets forth...

  7. Radioisotope Power Systems Program: A Program Overview

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    2016-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.

  8. Overview of the ACT program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1992-01-01

    NASA's Advanced Composites Program (ACT) was initiated in 1988. A National Research Announcement was issued to solicit innovative ideas that could significantly contribute to development and demonstration of an integrated technology data base and confidence level that permits cost-effective use of composite primary structures in transport aircraft. Fifteen contracts were awarded by the Spring of 1989 and the participants include commercial and military airframe manufacturers, materials developers and suppliers, universities, and government laboratories. The program approach is to develop materials, structural mechanics methodology, design concepts, and fabrication procedures that offer the potential to make composite structures cost-effective compared to aluminum structure. Goals for the ACT program included 30-50 percent weight reduction, 20-25 percent acquisition cost reduction, and provided the scientific basis for predicting materials and structures performance. This paper provides an overview of the ACT program status, plans, and selected technical accomplishments. Sixteen additional papers, which provide more detailed information on the research and development accomplishments, are contained in this publication.

  9. ICF diagnostics. Revision 1

    SciTech Connect

    Coleman, L.W.

    1982-12-17

    In the past several years there have been significant advances and accomplishments in the field of Inertial Confinement Fusion (ICF) research which are directly attributable to an active experimental program supported by the development and applications of sophisticated and specialized diagnostics instruments and techniques. The continued development of high temporal-and spatial-resolution diagnostics, although with a somewhat different technical emphasis than previously, is essential for maintaining progress in ICF. With the generation of inertial fusion drivers now becoming available progress toward higher density compression of fusion fuel will be attained at the expense of temperature, and consequently emissions from the targets will be limited. At the same time since the targets are being driven to higher density they are more opaque to the low-to-moderate energy x-rays (up to a few keV) and particles (alpha particles, protons, and knock-on charged particles) that have been utilized for diagnosing target performance.

  10. 40 CFR 49.1 - Program overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Program overview. 49.1 Section 49.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Tribal Authority § 49.1 Program overview. (a) The regulations...

  11. 40 CFR 49.1 - Program overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Program overview. 49.1 Section 49.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Tribal Authority § 49.1 Program overview. (a) The regulations in this part...

  12. The NASA Geodynamics Program: An overview

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This NASA Geodynamics Program overview collectively examines the history, scientific basis, status, and results of the NASA Program and outlines plans for the next five to eight years. It is intended as an informative nontechnical discussion of geodynamics research.

  13. Federal Utility Program Overview (Fact Sheet)

    SciTech Connect

    Not Available

    2009-07-01

    Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

  14. Overview of the CAPTAIN program

    NASA Astrophysics Data System (ADS)

    Liu, Qiuguang; CAPTAIN Collaboration

    2016-03-01

    Liquid argon time projection chamber detectors are taking center stage for the next large projects that the high-energy physics society will pursue. A series of tens of kiloton liquid argon detectors are under development to be used to measure the neutrino oscillation parameters, the CP violation in the neutrino sector, and the neutrino mass hierarchy, while also for the opportunity to the search for proton decay and supernova measurement as part of the DUNE program. However, several smaller liquid argon detectors are needed to study cross-sections and perform studies at various energies. The CAPTAIN Collaboration is building a 10-ton liquid argon detector as well as a prototype detector to perform measurements that include neutron interactions in liquid argon using the beam at LANSCE and neutrino measurements using the beam at Fermilab. The prototype experiment, MiniCAPTAIN, has been commissioned and is successfully running with laser operations, cosmic rays, and recently with neutrons from LANSCE. I will present an overview and status of the CAPTAIN program.

  15. Wind energy: Program overview, FY 1992

    SciTech Connect

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  16. Photovoltaic energy program overview: Fiscal year 1994

    SciTech Connect

    1995-03-01

    This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

  17. Overview of the Project Prometheus Program

    NASA Technical Reports Server (NTRS)

    Burdick, G. M.

    2003-01-01

    This presentation will give an overview of the Project Prometheus Program (PPP, formerly the Nuclear Systems Initiative, NSI) and the Jupiter Icy Moons Orbiter (JIMO) Project (a component of PPP), a mission to the three icy Galilean moons of Jupiter.

  18. Building Technologies Program Multi-Year Program Plan Program Overview 2008

    SciTech Connect

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan Program Overview 2008, including market overview and federal role, program vision, mission, design and structure, and goals and multi-year targets.

  19. Overview of NASA Cryocooler Programs

    NASA Technical Reports Server (NTRS)

    Boyle, R. F.; Ross, R. G., Jr.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises, as well as augmenting existing capabilities in space exploration. An over-view is presented of on-going efforts at the Goddard Space Flight Center and the Jet Propulsion Laboratory in support of current flight projects, near-term flight instruments, and long-term technology development.

  20. Methodological Overview of the Parents Matter! Program

    ERIC Educational Resources Information Center

    Ball, Joanna; Pelton, Jennifer; Forehand, Rex; Long, Nicholas; Wallace, Scyatta A.

    2004-01-01

    We present an overview of the methodology employed in the Parents Matter! Program. Information on the following aspects of the program is presented: participant eligibility and recruitment; consenting procedures and administration of assessments; development and utilization of measures in the assessments; study design; intervention procedures;…

  1. Glenn Research Center Human Research Program: Overview

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Myers, Jerry G.

    2013-01-01

    The NASA-Glenn Research Centers Human Research Program office supports a wide range of technology development efforts aimed at enabling extended human presence in space. This presentation provides a brief overview of the historical successes, current 2013 activities and future projects of NASA-GRCs Human Research Program.

  2. Photovoltaics: Program overview fiscal year 1993

    SciTech Connect

    Not Available

    1994-02-01

    This overview is divided into sections titled: 1993 PV program accomplishments, PV systems for today`s markets generate power and experience, systems development and testing prepares products for market, advances in manufacturing hasten availability of innovations, cooperative research improves PV technology, additional achievements in cooperative R&D, and summary of PV program services. Figs, tabs.

  3. Nuclear thermal propulsion program overview

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

  4. Geothermal Technologies Program Overview - Peer Review Program

    SciTech Connect

    Milliken, JoAnn

    2011-06-06

    This Geothermal Technologies Program presentation was delivered on June 6, 2011 at a Program Peer Review meeting. It contains annual budget, Recovery Act, funding opportunities, upcoming program activities, and more.

  5. Program definition and assessment overview

    NASA Astrophysics Data System (ADS)

    Gordon, L. H.

    1980-03-01

    The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.

  6. Geothermal energy: 1992 program overview

    SciTech Connect

    Not Available

    1993-04-01

    Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

  7. Human Research Program (HRP) Overview

    NASA Video Gallery

    The Human Research Program (HRP) is a major part of the Space Life and Physical Sciences Research and Applications Division within the Human Exploration and Operations Mission Directorate (HEOMD). ...

  8. Phase 1 research program overview

    NASA Astrophysics Data System (ADS)

    Uri, JohnJ.; Lebedev, OlegN.

    2001-03-01

    The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success.

  9. HOST structural analysis program overview

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.

    1986-01-01

    Hot-section components of aircraft gas turbine engines are subjected to severe thermal structural loading conditions, especially during the startup and takeoff portions of the engine cycle. The most severe and damaging stresses and strains are those induced by the steep thermal gradients induced during the startup transient. These transient stresses and strains are also the most difficult to predict, in part because the temperature gradients and distributions are not well known or readily predictable and, in part, because the cyclic elastic-viscoplastic behavior of the materials at these extremes of temperature and strain are not well known or readily predictable. A broad spectrum of structures related technology programs is underway to address these deficiencies at the basic as well as the applied level. The three key program elements in the HOST structural analysis program are computations, constitutive modeling, and experiments for each research activity. Also shown are tables summarizing each of the activities.

  10. A topaz international program overview

    SciTech Connect

    Thome, F.V.; Wyant, F.J.; McCarson, T.D. Jr.; Ponomarev-Stepnoi, N.N.

    1995-01-20

    Little did these visionaries know that the formation of the ``TOPAZ II Program,`` using former military space power technology of the Soviet Union, would become the preeminent example of technology cooperation between two former adversaries. A unique teaming arrangement formed in New Mexico, called the New Mexico Strategic Alliance and consisting of the Air Force Phillips Laboratory, Sandia National Laboratories, the University of New Mexico, and Los Alamos Nationalo Laboratory, was a key ingredient in making this program a success. A brief summary of some of the highlights of this technology partnership is given to explain how international patnerships of this type can enable commercialization and technology transfer.

  11. OVERVIEW OF WET-WEATHER RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents an overview of EPA,s wet-weather flow (WWF) research program, which was expanded in October 1995 with the establishment of the Urban Watershed Management Branch at Edison, New Jersey. Research priorities for 1998-1999 are presented as well as efforts to col...

  12. OVERVIEW OF USEPA'S SMALL SYSTEMS DEMONSTRATION PROGRAM

    EPA Science Inventory

    This presentation provides an overview of the USEPA Arsenic Treatment Technology Demonstration Program. The information includes the status of the projects on both round 1 and round 2 including some photos of the treatment systems. Limited information is given on the results of t...

  13. Overview of DOE space nuclear propulsion programs

    NASA Technical Reports Server (NTRS)

    Newhouse, Alan R.

    1993-01-01

    An overview of Department of Energy space nuclear propulsion programs is presented in outline and graphic form. DOE's role in the development and safety assurance of space nuclear propulsion is addressed. Testing issues and facilities are discussed along with development needs and recent research activities.

  14. JSC ECLSS R/T Program Overview

    NASA Technical Reports Server (NTRS)

    Behrend, A. F.

    1990-01-01

    Viewgraphs on Johnson Space Center Environmental Control and Life Support System (ECLSS) research and technology program overview are presented. Topics covered include: advancements in electrochemical CO2 removal; supercritical water waste oxidation; electrooxidation for post-treatment of reclaimed water; and photocatalytic post-treatment of reclaimed water.

  15. NASA Technology Utilization Program overview

    NASA Technical Reports Server (NTRS)

    Mogavero, L.

    1977-01-01

    The NASA aerospace technology transfer process is examined with attention given to the activities of the Technology Utilization Office. Industrial applications centers at universities, a center for the dissemination of computer programs, technology and biomedical application teams, and publications are considered.

  16. The Chemical Heat Pump Program. An overview

    NASA Astrophysics Data System (ADS)

    Mezzina, A.

    1982-03-01

    A brief overview of the Chemical Heat Pump Program is presented. Program background, rationale, technology description, and research and development needs are addressed. Chemical heat pumps comprise reversible reactions which can be driven by low grade heat. Thermal energy is absorbed in one direction and librated in the reverse direction: thus, serving as a basis for system designs applicable to space conditioning or process heat management and offering the capability for high density energy storage as an integral part of the system.

  17. Overview of NASA Advanced Transportation Technologies Program

    NASA Technical Reports Server (NTRS)

    Ashford, Rose; Jacobsen, R. A. (Technical Monitor)

    1998-01-01

    A General Overview of NASA Advanced Transportation Technologies Program is presented. The contents include: 1) Center-TRACON Automation System (CTAS) which provides automation tools to assist air traffic controllers in planning and controlling air traffic arriving into major airports; 2) Surface Movement Advisor (SMA) for expediting and optimizing aircraft operations on the airport surface; and 3) Terminal Area Productivity Program (TAP), which is aimed at improving airport throughput in instrument meteorological conditions to match that attainable in clear weather.

  18. Air Force Phillips Laboratory Battery Program overview

    NASA Technical Reports Server (NTRS)

    House, Shaun

    1992-01-01

    Battery development and testing efforts at Phillips Laboratory fall into three main categories: nickel hydrogen, sodium sulfur, and solid state batteries. Nickel hydrogen work is broken down into a Low Earth Orbit (LEO) Life Test Program, a LEO Pulse Test Program, and a Hydrogen Embrittlement Investigation. Sodium sulfur work is broken down into a Geosynchronous Earth Orbit (GEO) Battery Flight Test and a Hot Launch Evaluation. Solid state polymer battery work consists of a GEO Battery Development Program, a Pulse Power Battery Small Business Innovation Research (SBIR), and an in-house evaluation of current generation laboratory cells. An overview of the program is presented.

  19. Air Force Phillips Laboratory Battery Program overview

    NASA Astrophysics Data System (ADS)

    House, Shaun

    1992-02-01

    Battery development and testing efforts at Phillips Laboratory fall into three main categories: nickel hydrogen, sodium sulfur, and solid state batteries. Nickel hydrogen work is broken down into a Low Earth Orbit (LEO) Life Test Program, a LEO Pulse Test Program, and a Hydrogen Embrittlement Investigation. Sodium sulfur work is broken down into a Geosynchronous Earth Orbit (GEO) Battery Flight Test and a Hot Launch Evaluation. Solid state polymer battery work consists of a GEO Battery Development Program, a Pulse Power Battery Small Business Innovation Research (SBIR), and an in-house evaluation of current generation laboratory cells. An overview of the program is presented.

  20. NASA remote sensing programs: Overview

    NASA Technical Reports Server (NTRS)

    Raney, W. P.

    1981-01-01

    In the Earth remote sensing area, NASA's three functions are to understand the basic mechanics and behavior of the Earth, evaluate what resources are available (in the way of minerals, and hydrocarbons on a general scale), and to arrange a scheme for managing our national assets. The capabilities offered by LANDSAT D and technology improvements needed are discussed. The French SPOT system, its orbits, possibilities for stereo imagery, and levels of preprocessing and processing with several degrees of radiometric and geometric corrections are examined. Progress in the AgRISTARS project is mentioned as well as future R & D programs in the use of fluorescence, microwave measurements, and synthetic aperture radar. Other areas of endeaver include studying man environment interactions and Earth radiation budgets, and the establishment of data systems programs.

  1. Space Propulsion Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1991-01-01

    The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).

  2. Concentrating Solar Power Program overview

    SciTech Connect

    1998-04-01

    Over the last decade, the US solar thermal industry has established a track record in the power industry by building and operating utility-scale power plants with a combined rated capacity of 354 megawatts (MW). The technology used in these power plants is based on years of research and development (R and D), much of it sponsored by the US Department of Energy (DOE). DOE`s Concentrating Solar Power (CSP) Program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power.

  3. A topaz international program overview

    NASA Astrophysics Data System (ADS)

    Thome, Frank V.; Wyant, Francis J.; Mulder, Daniel; McCarson, T. D.; Ponomarev-Stepnoi, Nikolai Nikolaevich

    1995-01-01

    Five years ago, during the 8th Symposium on Space Nuclear Power Systems, in Albuquerque, NM, Academician Nikolai Nikolaevich Ponomarev-Stepnoi, First Deputy Director of the Russian Research Center, Kurchatov Institute, proposed the sale of the Soviety Union's TOPAZ II technology to the United States. This proposal, made at great personal risk, was initially viewed with much skepticism by most Americans attending that conference since the Cold War was still in full swing. There were, however, a few visionaries, some would say fanatics, that set about to make this sale possible. Even these visionaries did not anticipate the collapse of the Soviet Union or the subsequent efforts by the U.S. and other Western powers to help the Newly Independent States transition to a market economy. Little did these visionaries know that the formation of the ``TOPAZ II Program,'' using former military space power technology of the Soviet Union, would become the preeminent example of technology cooperation between two former adversaries. A unique teaming arrangement formed in New Mexico, called the New Mexico Strategic Alliance and consisting of the Air Force Phillips Laboratory, Sandia National Laboratories, the University of New Mexico, and Los Alamos Nationalo Laboratory, was a key ingredient in making this program a success. A brief summary of some of the highlights of this technology partnership is given to explain how international patnerships of this type can enable commercialization and technology transfer.

  4. The VTRE Program: An overview

    NASA Technical Reports Server (NTRS)

    Bailey, William J.; Gille, John P.

    1992-01-01

    The Vented Tank Resupply Experiment (VTRE) Program is a NASA In-Space Technology Experiments Program (IN-STEP) that will develop, and fly a small, low cost space experiment to investigate, develop, and acquire needed data to extend and advance the technology of capillary vane fluid management devices to applications requiring direct venting of gas from tanks in low-gravity. GAS venting may be required for control of pressure, or to allow low-g fill of a tank with liquid while holding a constant tank back pressure by gas venting. Future space applications requiring these fluid management capabilities include both cryogenic and Earth storable fluid systems. The experiment is planned as a Shuttle Hitchhiker payload, and will be developed around two transparent tanks equipped with capillary vane devices between which a test liquid can be transferred. Experiments will be conducted for vented transfer, direct venting, stability of liquid positioning to accelerations within and significantly above the design values, and fluid reorientation by capillary wicking of liquid into the vane device following intentional liquid upset.

  5. PACOSS program overview and status

    NASA Technical Reports Server (NTRS)

    Rogers, L. C.; Richards, K. E., Jr.

    1986-01-01

    Many future civilian and military large space structures (LSS) will have as performance objectives stringent pointing accuracies, short settling times, relatively fast response requirements, or combinations thereof. Many of these structures will be large, light weight, and will exhibit high structural modal density at low frequency and within the control bandwidth. Although it is possible in principle to achieve structural vibration control through purely active means, experience with complex structures has shown that the realities of plant model inaccuracies and sensor/actuator dynamics frequently combine to produce substandard performance. A more desirable approach is to apply passive damping technology to reduce the active control burden. Development of the technology to apply this strategy is the objective of the PACOSS (Passive and Active Control OF Space Structures) program. A key element in the PACOSS program is the Representative System Article (RSA). The RSA is a generic paper system that serves as a testbed for damping and controls studies. It also serves as a basis for design of the smaller Dynamic Test Article (DTA), a hardware testbed for the laboratory validation of analysis and design practices developed under PACOSS.

  6. The ESCOMPTE program: an overview

    NASA Astrophysics Data System (ADS)

    Cros, B.; Durand, P.; Cachier, H.; Drobinski, Ph.; Fréjafon, E.; Kottmeier, C.; Perros, P. E.; Peuch, V.-H.; Ponche, J.-L.; Robin, D.; Saı̈d, F.; Toupance, G.; Wortham, H.

    2004-01-01

    In this paper, the "Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions" (ESCOMPTE) program is presented. The ESCOMPTE program is used to produce a relevant set of data for testing and evaluating regional pollution models. It includes high-resolution (in space and time) atmospheric emission inventories and field experiments, and covers an area of 120×120 km, centered over the Marseilles-Berre area in the southeast of France during Summer 2001. This region presents a high occurrence of photochemical pollution events, which result from numerous industrial and urban sources of primary pollutants. From the dynamical characteristics of the area, sea-breeze circulation and channeling effects due to terrain features highly influence the location of the pollutant plumes. ESCOMPTE will provide a highly documented framework for dynamics and chemistry studies. Campaign strategies and experimental set up are described. During the planning phase, existing modeling results helped defining the experimental design. The campaign involved surface measurement networks, remote sensing, ship-borne, balloon-borne, and airplane measurements. Mean standard meteorological parameters and turbulent fluxes, ozone, ozone precursors, photochemically active trace gases, and aerosols were measured. Five intensive observation periods (IOPs) were documented using a wide spectrum of instruments, involving aircraft (7) (one of them equipped with a Doppler lidar, the others for in situ meteorological and chemical measurements), constant volume balloons (33), ozone lidars (5), wind profilers (15 sodars and radars), Doppler scanning lidar (1), radiosonde systems (at 4 locations), instrumented ships (2). In addition to the air quality networks from environmental agencies, 15 supplementary ground stations equipped for chemistry and/or meteorology and/or surface flux measurements, were operational. All instruments were calibrated and compared during a

  7. Infrared imaging spectroradiometer program overview

    NASA Astrophysics Data System (ADS)

    Rapp, Ronald J.; Register, Henry I.

    1995-06-01

    The Department of Defense, through the US Air Force's Wright Laboratory, Armament Directorate is sponsoring the development of two types of IR imaging spectroradiometers (project name: IRIS) to measure the spatial/spectral characteristics of various military targets. Design and analysis of several technical approaches were conducted during an initial phase of the program. The technical approaches investigated included: a dispersive imaging spectrometer design utilizing a fiber-optic reformatter (contractor: ERIM); an imaging acousto-optic tunable filter (AOTF) design (contractor: Westinghouse); a spatial/spectral Fourier transform infrared (FTIR) spectrometer (contractor: Bomem Inc./Canada); a spatially modulated imaging fourier transform spectrometer (contractor: Daedalus Enterprises); an imaging Fabry-Perot design (contractor: Physical Sciences Inc.). Two of these designs were selected for brass board prototype fabrication. An FTIR prototype being built by Bomem Inc., offers an instrument with high sensitivity and high spectral resolution with modest spatial performance. An imaging Fabry-Perot prototype being built by Physical Sciences Inc., offers high spatial resolution with moderate sensitivity and spectral resolution.

  8. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  9. Overview of the Arizona Quiet Pavement Program

    NASA Astrophysics Data System (ADS)

    Donavan, Paul; Scofield, Larry

    2005-09-01

    The Arizona Quiet Pavement Pilot Program (QP3) was initially implemented to reduce highway related traffic noise by overlaying most of the Phoenix metropolitan area Portland cement concrete pavement with a one inch thick asphalt rubber friction coarse. With FHWA support, this program represents the first time that pavement surface type has been allowed as a noise mitigation strategy on federally funded projects. As a condition of using pavement type as a noise mitigation strategy, ADOT developed a ten-year, $3.8 million research program to evaluate the noise reduction performance over time. Historically, pavement surface type was not considered a permanent solution. As a result, the research program was designed to specifically address this issue. Noise performance is being evaluated through three means: (1) conventional roadside testing within the roadway corridor (e.g., far field measurements within the right-of-way) (2) the use of near field measurements, both close proximity (CPX) and sound intensity (SI); and (3) far field measurements obtained beyond the noise barriers within the surrounding neighborhoods. This paper provides an overview of the program development, presents the research conducted to support the decision to overlay the urban freeway, and the status of current research.

  10. 24 CFR 3286.5 - Overview of installation program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Overview of installation program. 3286.5 Section 3286.5 Housing and Urban Development Regulations Relating to Housing and Urban... Requirements § 3286.5 Overview of installation program. (a) HUD-administered installation program. HUD...

  11. 24 CFR 3286.5 - Overview of installation program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Overview of installation program. 3286.5 Section 3286.5 Housing and Urban Development Regulations Relating to Housing and Urban... Requirements § 3286.5 Overview of installation program. (a) HUD-administered installation program. HUD...

  12. Photovoltaic energy: Program overview, fiscal year 1990

    SciTech Connect

    Not Available

    1991-07-01

    This summary is prepared each year to provide an overview of the government-funded activities within the National Photovoltaics Program. The 1990 PV Program Achievements are listed. Launched the PV Manufacturing Technology initiative, designed to systematically lower PV module costs. Inaugurated the PV Concentrator Technologies Initiative by signing eight multiyear, cost-shared technology development subcontracts with concentrator companies. Established the PV Polycrystalline Thin-Film Initiative by signing six multiyear, cost-shared technology development subcontracts with six polycrystalline thin-film companies. Continued the Amorphous Silicon Project by awarding three new research and development contracts. Focused the resources of three program laboratories on finding solutions to industry's manufacturing problems: the Photovoltaic Device Fabrication Laboratory at Sandia National Laboratories and the Module Failure Analysis Laboratory and the Encapsulant Research Laboratory at SERI. Established an ongoing program to assist utilities in using PV for cost-effective, high-value applications. Completed nearly all of the construction planned for the first phase of PVUSA at Davis, California. Worked with the crystalline silicon PV industry on novel, low-cost cell fabrication processes and on resolving encapsulant problems. Took part in the development of qualification procedures tests for thin- and thick-film flat-plate modules and concentrator modules.

  13. The NASA Aviation Safety Program: Overview

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    2000-01-01

    In 1997, the United States set a national goal to reduce the fatal accident rate for aviation by 80% within ten years based on the recommendations by the Presidential Commission on Aviation Safety and Security. Achieving this goal will require the combined efforts of government, industry, and academia in the areas of technology research and development, implementation, and operations. To respond to the national goal, the National Aeronautics and Space Administration (NASA) has developed a program that will focus resources over a five year period on performing research and developing technologies that will enable improvements in many areas of aviation safety. The NASA Aviation Safety Program (AvSP) is organized into six research areas: Aviation System Modeling and Monitoring, System Wide Accident Prevention, Single Aircraft Accident Prevention, Weather Accident Prevention, Accident Mitigation, and Synthetic Vision. Specific project areas include Turbulence Detection and Mitigation, Aviation Weather Information, Weather Information Communications, Propulsion Systems Health Management, Control Upset Management, Human Error Modeling, Maintenance Human Factors, Fire Prevention, and Synthetic Vision Systems for Commercial, Business, and General Aviation aircraft. Research will be performed at all four NASA aeronautics centers and will be closely coordinated with Federal Aviation Administration (FAA) and other government agencies, industry, academia, as well as the aviation user community. This paper provides an overview of the NASA Aviation Safety Program goals, structure, and integration with the rest of the aviation community.

  14. Cosmic Origins (COR) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Werneth, Russell; Pham, B.; Clampin, M.

    2014-01-01

    The Cosmic Origins (COR) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for COR Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the COR Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report includes a 4m-class UV/optical telescope that would conduct imaging and spectroscopy as a post-Hubble observatory with significantly improved sensitivity and capability, a near-term investigation of NASA participation in the Japanese Aerospace Exploration Agency/Institute of Space and Astronautical Science (JAXA/ISAS) Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission, and future Explorers.

  15. Overview of NASA Astrophysics Program Analysis Groups

    NASA Astrophysics Data System (ADS)

    Sanders, Wilton T.; Sambruna, Rita M.; Perez, Mario R.; Hudgins, Douglas M.

    2015-01-01

    NASA Astrophysics Program Analysis Groups (PAGs) are responsible for facilitating and coordinating community input into the development and execution of NASAs three astrophysics science themes: Cosmic Origins (COPAG), Exoplanet Exploration (ExoPAG), and Physics of the Cosmos (PhysPAG). The PAGs provide a community-based, interdisciplinary forum for analyses that support and inform planning and prioritization of activities within the Astrophysics Division programs. Operations and structure of the PAGs are described in their Terms of Reference (TOR), which can be found on the three science theme Program Office web pages. The Astrophysics PAGs report their input and findings to NASA through the Astrophysics Subcommittee of the NASA Advisory Council, of which all the PAG Chairs are members. In this presentation, we will provide an overview of the ongoing activities of NASAs Astrophysics PAGs in the context of the opportunities and challenges currently facing the Astrophysics Division. NASA Headquarters representatives for the COPAG, ExoPAG, and PhysPAG will all be present and available to answer questions about the programmatic role of the Astrophysics PAGs.

  16. Overview of NASA Astrophysics Program Analysis Groups

    NASA Astrophysics Data System (ADS)

    Garcia, Michael R.; Hudgins, D. M.; Sambruna, R. M.

    2014-01-01

    NASA Astrophysics Program Analysis Groups (PAGs) are responsible for facilitating and coordinating community input into the developmentand execution of NASAs three astrophysics science themes: Cosmic Origins (COPAG), Exoplanet Exploration (ExoPAG), and Physics of the Cosmos (PhysPAG). The PAGs provide a community-based, interdisciplinary forum for analyses that support and inform planning and prioritization of activities within the Astrophysics Division programs. Operations and structure of the PAGs are described in the Terms of Reference (TOR) which can be found on the three science theme Program Office web pages. The Astrophysics PAGs report their input and findings to NASA through the Astrophysics Subcommittee of the NASA Advisory Council, of which all the PAG Chairs are members. In this presentation, we will provide an overview of the ongoing activities of NASAs Astrophysics PAGs in the context of the opportunities and challenges currently facing the Astrophysics Division. NASA Headquarters representatives for the COPAG, ExoPAG, and PhysPAG will all be present and available to answer questions about the programmatic role of the Astrophysics PAGs.

  17. The CNES Balloon Program : an overview

    NASA Astrophysics Data System (ADS)

    Debouzy, G.; Cazaux, C.

    The CNES (French Space Agency) Balloon Program continues to support the scientific community providing enhanced measurements capabilities across different kind of balloons: zero pressure balloon (80 % of activities), Infra-Red Montgolfiere (MIR) and superpressure balloon. For ENVISAT satellite validation, CNES has set up with ESA an important international balloon program with six dedicated campaigns, in 2002 - 2004 period, from mid-latitude; northern and tropical balloon launch facilities. In the framework of an European program, CNES participates to HIBISCUS project by organizing balloon campaigns (2003 & 2004) in tropical region with the launches of zero-pressure balloon, MIR and superpressure balloon from the same facility. In cooperation with US, CNES is preparing the VORCORE project which consists to study the atmospheric circulation of Antarctica polar vortex, using superpressure balloons launched from the Mac-Murdo station. This paper will present the CNES balloon activities in the 2002-2004 period, mainly focused on atmospheric chemistry, will give an overview of balloon technology development, and will present also the JAXA / CNES cooperation for the HSFD shuttle drop from stratospheric balloons with a first flight realized in 2003.

  18. NASA Space Cryocooler Programs: A 2003 Overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Boyle, R. F.; Kittel, P.

    2004-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science missions. An overview is presented of ongoing cryocooler activities within NASA in support of current flight projects, near-term flight instruments, and long-term technology development. NASA programs in Earth and space science observe a wide range of phenomena, from crop dynamics to stellar birth. Many of the instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, and enable the use of advanced detectors. Although, the largest utilization of coolers over the last decade has been for instruments operating at medium to high cryogenic temperatures (55 to 150 K), reflecting the relative maturity of the technology at these temperatures, important new developments are now focusing at the lower temperature range from 4 to 20 K in support of studies of the origin of the universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and its new Advanced Cryocooler Technology Development Program (ACTDP) for 6-18 K coolers are examples of the thrust to provide low temperature cooling for this class of missions.

  19. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    , more than 70% of the TDM funds will be competitively awarded as a result of yearly calls for proposed flight demonstrators and selected based on possible payoff to NASA, technology maturity, customer interest, cost, and technical risk reduction. This paper will give an overview of the TDM Program s mission and organization, as well as its current status in delivering advanced space technologies that will enable more flexible and robust future missions. It also will provide several examples of missions that fit within these parameters and expected outcomes.

  20. METC hot gas desulfurization program overview

    SciTech Connect

    Cicero, D.C.

    1994-10-01

    This overview provides a frame of reference for the Morgantown Energy Technology Center`s (METC`S) on-going hot gas desulfurization research. Although there are several methods to separate contaminant gases from fuel gases, that method receiving primary development is absorption through the use of metal oxides. Research into high-temperature and high-pressure control of sulfur species includes primarily those sorbents made of mixed-metal oxides, which offer the advantages of regenerability. These are predominantly composed of zinc and are made into media that can be utilized in reactors of either fixed-bed, moving-bed, fluidized-bed, or transport configurations. Zinc Ferrite (ZnO-Fe{sub 2}O{sub 3}), Zinc Titanate (ZnO-TiO{sub 2}), Z-SORP{reg_sign}, and METC-2/METC-6 are the current mixed-metal sorbents being investigated. The METC desulfurization program is composed of three major components: bench-scale research, pilot-plant operation, and demonstration that is a portion of the Clean Coal Demonstration projects.

  1. The Child and Family Resource Program: An Overview. Revised.

    ERIC Educational Resources Information Center

    Administration for Children, Youth, and Families (DHEW), Washington, DC.

    This overview describes the Child and Family Resource Program (CFRP), a child-centered Head Start demonstration program which is designed to provide family support services for healthy family growth and development. Part I reviews the program's background objectives and key elements (required minimum services, additional services, assessment, use…

  2. SBIR and STTR Program for Assistive Technology Device Development: Evaluation of Impact Using an ICF-Based Classification

    ERIC Educational Resources Information Center

    Bauer, Stephen M.; Arthanat, Sajay

    2010-01-01

    The purpose of this paper was to evaluate the impact of Small Business Innovation Research (SBIR) and Small Business Technology Transfer Research (STTR) grant programs of 5 federal agencies National Institutes of Health (NIH), National Science Foundation (NSF), U.S. Department of Education (USDE), U.S. Department of Agriculture (USDA), and…

  3. Academic Programs in Alternative Education: An Overview

    ERIC Educational Resources Information Center

    Ruzzi, Betsy Brown; Kraemer, Jacqueline

    2006-01-01

    This paper, second in a series of papers on alternative education, examines the academic programming in alternative education programs by reviewing the literature specifically focused on the academic programs in alternative education and summarizing a survey of fifteen alternative education programs. It suggests options for further research on…

  4. Engine driven heat pump program overview

    NASA Astrophysics Data System (ADS)

    Privon, George T.; Braun, A. T.

    This overview presentation is a brief summary of the efforts that have taken place in the small commercial-sized internal combustion engine-driven heat pump project being carried out by the Oak Ridge National Laboratory for the Department of Energy. Aspects of the project discussed are: objectives and effort scope, the engine- compressor-seal concept, early results, recent developments, current status, and future plans.

  5. Human Genome Program Report. Part 1, Overview and Progress

    DOE R&D Accomplishments Database

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  6. Human genome program report. Part 1, overview and progress

    SciTech Connect

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  7. 40 CFR 70.1 - Program overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., shall apply to the permitting of affected sources under the acid rain program, except as provided herein or modified in regulations promulgated under title IV of the Act (acid rain program). (e) Issuance...

  8. 40 CFR 70.1 - Program overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., shall apply to the permitting of affected sources under the acid rain program, except as provided herein or modified in regulations promulgated under title IV of the Act (acid rain program). (e) Issuance...

  9. 40 CFR 70.1 - Program overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., shall apply to the permitting of affected sources under the acid rain program, except as provided herein or modified in regulations promulgated under title IV of the Act (acid rain program). (e) Issuance...

  10. 40 CFR 70.1 - Program overview.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., shall apply to the permitting of affected sources under the acid rain program, except as provided herein or modified in regulations promulgated under title IV of the Act (acid rain program). (e) Issuance...

  11. 40 CFR 70.1 - Program overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., shall apply to the permitting of affected sources under the acid rain program, except as provided herein or modified in regulations promulgated under title IV of the Act (acid rain program). (e) Issuance...

  12. Overview of Federal wind energy program

    NASA Technical Reports Server (NTRS)

    Ancona, D. F.

    1979-01-01

    The objectives and strategies of the Federal wind energy program are described. Changes in the program structure and some of the additions to the program are included. Upcoming organizational changes and some budget items are discussed, with particular emphasis on recent significant events regarding new approvals.

  13. Photovoltaic Energy Program overview, fiscal year 1997

    SciTech Connect

    1998-02-01

    The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

  14. The Child Nutrition Labeling Program: An Overview.

    ERIC Educational Resources Information Center

    Wade, Cheryl; And Others

    This manual establishes policies and procedures for the Child Nutrition (CN) Labeling Program, a voluntary federal program run by the United States Department of Agriculture. The program is responsible for reviewing a product formulation to determine the contribution a single serving of that product makes toward the child nutrition meal pattern…

  15. 1994 Summer Youth Employment Training Program Overview.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Economic Security, St. Paul.

    This report describes summer youth employment and training programs operated throughout Minnesota via the Service Delivery Area/Private Industry Council network. It provides a statistical profile of the young people served, program costs, and program outcomes. The report begins with statewide outcome information, including a statewide summary of…

  16. ICF quarterly report, October-December 1998, volume 8, number 4

    SciTech Connect

    Kaufmann, B

    1998-09-30

    The ICF Quarterly Report is pub-lished four times each fiscal year by the Inertial Confinement Fusion/National Ignition Facility and High-Energy-Density Experimental Science (ICF/NIF/ HEDES) Program at the Lawrence Livermore National Laboratory (LLNL). The journal summarizes selected current research achievements of the LLNLICF/NIF/HEDES Program.

  17. Overview: Western Regional applications Program (WRAP) status

    NASA Technical Reports Server (NTRS)

    Norman, S. M.

    1981-01-01

    Interactions with all 14 of the states in the Western Region over the past three years are reviewed from NASA's perspective. Outreach and training programs using the M mobile analysis and training extension van, the University Program, classes at the Ames Center, demonstration tests with state agencies, and surveying the needs of local governments are highlighted. Planned activities, the continuance of ASVT's, and the impact of the budget cuts on NASA'S technology program are also considered.

  18. Photovoltaics: Program overview, fiscal year 1992

    SciTech Connect

    Not Available

    1993-03-01

    The US DOE`s Photovoltaics program has helped photovoltaic technologies evolve from materials and concepts in the laboratories to competitive products rolling off automated assembly lines. This document is divided into the following sections: 1992 PV program accomplishments, expanding markets for photovoltaic systems, developing today`s systems with utilities and industry, working with industry to advance the technology, cooperative research to improve materials and devices, selected achievements in cooperative R and D, and PV program services. Figs, tabs.

  19. Photovoltaic energy program overview, fiscal year 1991

    NASA Astrophysics Data System (ADS)

    1992-02-01

    The Photovoltaics Program Plan, FY 1991 to FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers' immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

  20. Overview of the NASA YF-12 program

    NASA Technical Reports Server (NTRS)

    Kock, B. M.

    1978-01-01

    The history of NASA's interest in supersonic research and the agency's contribution to the development of the YF 12 aircraft is reviewed as well as the program designed to use that aircraft as a test bed for supersonic cruise research. Topics cover elements of the program, project organization, and major accomplishments.

  1. 40 CFR 63.90 - Program overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Approval means a determination by the Administrator that a State rule, program, or requirement meets the... Commission or licensees of Nuclear Regulatory Commission Agreement States which are subject to part 61... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Approval of State Programs...

  2. The Home Start Demonstration Program: An Overview.

    ERIC Educational Resources Information Center

    Office of Child Development (DHEW), Washington, DC.

    Following a discussion of the Home Start program and its evaluation plan, the 16 Office of Child Development-funded Home Start projects in the United States are described. Home start is a 3-year Head Start demonstration program, aimed at the 3-5 years of age range, which focuses on enhancing the quality of children's lives by building upon…

  3. DOD's advanced thermionics program an overview

    SciTech Connect

    Drake, T.R.

    1998-07-01

    The Defense Special Weapons Agency (DSWA) manages a congressionally mandated program in advanced thermionics research. Guided by congressional language to advance the state-of-the-art in the US and support the Integrated Solar Upper Stage (ISUS) program, DSWA efforts concentrate on four areas: an electrically testable design of a high-performance, in-core thermionic fuel element (TFE), the ISUS program, a microminiature thermionic converter and several modeling efforts. The DSWA domestic program is augmented by several small contracts with Russian institutes, awarded under the former TOPAZ International Program that the Ballistic Missile Defense Organization transferred to DSWA. The design effort at General Atomics will result in an electrically testable, multi-cell TFE for in-core conversion, involving system design and advanced collector and emitter technologies. For the ISUS program, DSWA funded a portion of the engine ground demonstration, including development of the power management system and the planar diodes. Current efforts supporting ISUS include continued diode testing and developing an advanced planar diode. The MTC program seeks to design a mass producable, close-spaced thermionic converter using integrated circuit technologies. Modeling and analysis at DSWA involves development of the Reactor System Mass with Thermionics estimation model (RSMASS-T), developing a new thermionic theory, and reviewing applications for the MTC technology. The Russian deliverables include several reports and associated hardware that describe many of its state-of-the-art thermionic technologies and processes.

  4. Overview of GPM Missions's Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mugnai, Alberto; Nakamura, Kenji

    2004-01-01

    An important element of the internationally structured Global Precipitation Measurement (GPM) mission will be its ground validation research program. Within the last year, the initial architecture of this program has taken shape. This talk will describe that architecture, both in terms of the international program and in terms of the separate regional programs of the principle participating space agencies, i.e., ESA, JAXA, and NASA. There are three overriding goals being addressed in the planning of this program; (1) establishing various new, challenging and important scientific research goals vis-a-vis current ground validation programs supporting satellite retrieval of precipitation; (2) designing the program as an international partnership which operates, out of necessity, heterogeneous sites in terms of their respective observational foci and science thrusts, but anneals itself in terms of achieving a few overarching scientific objectives; and (3) developing a well-designed protocol that allows specific sites or site networks, at their choosing, to operate in a 'supersite' mode - defined as the capability to routinely transmit GV information at low latency to GPM's Precipitation Processing System (PPS). (The PPS is being designed as GPM's data information system, a distributed data system with main centers at the Goddard Space Flight Center (GSFC) within NASA, the Earth Observation Research Center (EORC) within JAXA, and a TBD facility to be identified by the ESA s ESTEC facility in Noordwijk.)

  5. Hydrodynamick instabilities on ICF capsules

    SciTech Connect

    Haan, S.W.

    1991-06-07

    This article summarizes our current understanding of hydrodynamic instabilities as relevant to ICF. First we discuss classical, single mode Rayleigh-Taylor instability, and nonlinear effects in the evolution of a single mode. Then we discuss multimode systems, considering: (1) the onset of nonlinearity; (2) a second order mode coupling theory for weakly nonlinear effects, and (3) the fully nonlinear regime. Two stabilization mechanisms relevant to ICF are described next: gradient scale length and convective stabilization. Then we describe a model which is meant to estimate the weakly nonlinear evolution of multi-mode systems as relevant to ICF, given the short-wavelength stabilization. Finally, we discuss the relevant code simulation capability, and experiments. At this time we are quite optimistic about our ability to estimate instability growth on ICF capsules, but further experiments and simulations are needed to verify the modeling. 52 refs.

  6. Galileo probe battery program - An historical overview

    NASA Technical Reports Server (NTRS)

    Krause, S. J.; Taenaka, R. K.; Van Ess, J. C.

    1986-01-01

    The Galileo Probe mission to Jupiter required the selection of a battery module design that exceeded the known state of the art in 1977. The choice of the lithium-sulfur dioxide system, a technology then under development for nonaerospace applications necessitated an extensive cell and module development program that ultimately resulted in a space-qualified product that satisfies the severe constraints and requirements of the Galileo mission. The development program drew on the data base and experience then available from other government-sponsored lithium-sulfur dioxide programs and is an example of multiapplication synergism that can be derived from industry and government cooperation.

  7. Overview of Honeywell electromechanical actuation programs

    NASA Technical Reports Server (NTRS)

    Wyllie, C.

    1982-01-01

    Materials illustrating a presentation on electromechanical actuation programs (EMA) are presented. The development history is outlined. Space shuttle flight control systems and the advantages of EMAS, and EMA technology status and development requirements are outlined.

  8. Overview of the Telescience Testbed Program

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Mian, Arshad; Leiner, Barry M.

    1991-01-01

    The NASA's Telescience Testbed Program (TTP) conducted by the Ames Research Center is described with particular attention to the objectives, the approach used to achieve these objectives, and the expected benefits of the program. The goal of the TTP is to gain operational experience for the Space Station Freedom and the Earth Observing System programs, using ground testbeds, and to define the information and communication systems requirements for the development and operation of these programs. The results of TTP are expected to include the requirements for the remote coaching, command and control, monitoring and maintenance, payload design, and operations management. In addition, requirements for technologies such as workstations, software, video, automation, data management, and networking will be defined.

  9. 40 CFR 71.1 - Program overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and procedures by which the Administrator will issue operating permits. This permitting program is... Conservation and Recovery Act (42 U.S.C. 6901 et seq.) and under the Clean Water Act (33 U.S.C. 1251 et...

  10. Graduate Programs in Broadcasting: An Overview.

    ERIC Educational Resources Information Center

    Carroll, Raymond L.; Copeland, Gary A.

    1985-01-01

    Reports results of a survey of graduate education in broadcast programs. Notes (1) a trend toward merging communication areas at the graduate level and (2) a clear identification of broadcasting as a discipline. (PD)

  11. An overview of some monoplanar missile programs

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    A historical review is presented of some monoplanar missile systems in which the vehicle flight control was similar to that for a conventional aircraft. The review is essentially chronological, beginning prior to World War I, and includes worldwise programs. Illustrative examples of aerodynamic research with monoplanar missiles are presented including some comparisons with cruciform missiles. Some examples of current programs are presented and some particular mission applications for monoplanar systems are discussed.

  12. Photovoltaic Energy Program Overview Fiscal Year 1996

    SciTech Connect

    1997-05-01

    Significant activities in the National Photovoltaic Program are reported for each of the three main program elements. In Research and Development, advances in thin-film materials and crystalline silicon materials are described. The Technology Development report describes activities in photovoltaic manufacturing technology, industrial expansion, module and array development, and testing photovoltaic system components. Systems Engineering and Applications projects described include projects with government agencies, projects with utilities, documentation of performance for international applications, and product certification.

  13. An overview of some monoplanar missile programs

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    A historical review is presented of some monoplanar missile systems in which the vehicle flight control was similar to that for a conventional aircraft. The review is essentially chronological, beginning prior to World War I, and includes worldwide programs. Illustrative examples of aerodynamic research with monoplanar missiles are presented including some comparisons with cruciform missiles. Some examples of current programs are presented and some particular mission applications for monoplanar systems are discussed.

  14. Overview of NASA battery technology program

    NASA Technical Reports Server (NTRS)

    Riebling, R. W.

    1980-01-01

    Highlights of NASA's technology program in batteries for space applications are presented. Program elements include: (1) advanced ambient temperature alkaline secondaries, which are primarily nickel-cadmium cells in batteries; (2) a toroidal nickel cadmium secondaries with multi-kilowatt-hour storage capacity primarily for lower orbital applications; (3) ambient temperature lithium batteries, both primary and secondaries, primarily silver hydrogen and high-capacity nickel hydrogen.

  15. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  16. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  17. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-12-31

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  18. Overview of Sandia's storage battery program

    NASA Astrophysics Data System (ADS)

    Clark, R. P.; Grothaus, K. R.

    The primary mission of Sandia National Laboratories is the design and development of the non-nuclear components and systems for nuclear weapons. To a lesser degree, Sandia is also involved in a variety of other programs; such as, energy projects with the Department of Energy, conventional military projects with the Department of Defense, and nuclear waste management and reactor safety with the Nuclear Regulatory Commission. Over the years, Sandia has evolved a considerable expertise in the areas of specialty primary, reserve, and more recently, secondary battery systems. This paper focuses on the status of the storage or secondary battery programs. These programs are divided into those battery systems being developed for energy applications and those being developed for military applications.

  19. Overview of NRC PRA research program

    SciTech Connect

    Cunningham, M.A.; Drouin, M.T.; Ramey-Smith, A.M.; VanderMolen, M.T.

    1997-02-01

    The NRC`s research program in probabilistic risk analysis includes a set of closely-related elements, from basic research to regulatory applications. The elements of this program are as follows: (1) Development and demonstration of methods and advanced models and tools for use by the NRC staff and others performing risk assessments; (2) Support to agency staff on risk analysis and statistics issues; (3) Reviews of risk assessments submitted by licensees in support of regulatory applications, including the IPEs and IPEEEs. Each of these elements is discussed in the paper, providing highlights of work within an element, and, where appropriate, describing important support and feedback mechanisms among elements.

  20. Geothermal Program Overview: Fiscal Years 1993-1994

    SciTech Connect

    Not Available

    1995-11-01

    Geothermal energy represents the largest U.S. energy resource base and already provides an important contribution to our nation's energy needs. This overview looks at the basic science behind the various geothermal technologies and provides information on DOE Geothermal Energy Program activities and accomplishments.

  1. THE FLINT COMMUNITY SCHOOL PROGRAM, AN OVERVIEW.

    ERIC Educational Resources Information Center

    BATES, GUY J.; AND OTHERS

    THE PUBLIC ELEMENTARY SCHOOL HAD BECOME THE IDEAL CENTER FOR COMMUNITY EDUCATION IN FLINT. IT WAS THE PRACTICAL PLACE FOR CARRYING THE CONSTANTLY CHANGING ACTIVITIES AND PROGRAMS OF THE COMMUNITY. THE APPROACH USED TO FACILITATE HUMAN UNDERSTANDING AND INTERACTION INCLUDED, FIRST, GETTING THE PEOPLE INTO THE SCHOOLS, WHERE THEY BECAME INTERESTED.…

  2. OVERVIEW OF MINE WASTE TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Mine Waste Technology Program (MWTP) is an interagency agreement with the DOE and has partnerships with Universities, Forest Service, BLM, Industry and states. The mission of the MWTP is to provide engineering solutions to national environmental issues resulting from the past...

  3. An Overview of the NASA Balloon Program

    NASA Technical Reports Server (NTRS)

    Pierce, David L.

    2009-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Balloon Program conducts a total of 16 to 20 missions per year in support of the NASA scientific community. The NASA Balloon Program continues a long tradition for support and advancement of scientific ballooning for attitudes up to 49 h. These missions support investigations sponsored by NASA's Science Mission Directorate. The long duration (weeks currently; with the real possibility of multi-month) and large area/mass payloads able to fly in near-space conditions offer exciting opportunities for both development and actual science for many of NASA's highest priority areas for current and future missions. These can typically be carried out at less than ten percent of the cost of a corresponding satellite mission, and on much shorter timescales. The Balloon Program is arguably the most scientifically compelling of the various NASA sub-orbital programs and provides the most complete and effective springboard for both scientists and engineers to go on to carry out the space-science missions of the future - as demonstrated by numerous successful missions and their Principal Investigators, as well as leaders in NASA space science, over the past three decades. Progress continues toward the development of the super pressure balloon and support systems for support of ultra-long duration, constant altitude missions from any latitude.

  4. CRITICAL OVERVIEW OF EARLY CHILDHOOD EDUCATION PROGRAMS.

    ERIC Educational Resources Information Center

    LAVATELLI, C.B.

    PRESENT PRESCHOOL PROGRAMS FOR DISADVANTAGED CHILDREN ARE OF 3 KINDS--(1) AN INVENTORY TYPE WHICH ATTEMPTS TO IDENTIFY DEFICITS WHICH WILL AFFECT SCHOOL LEARNING AND TO OVERCOME THESE THROUGH EDUCATIONAL ACTIVITIES, (2) A PLAN BASED ON A RECAPITULATION THEORY WHICH ATTEMPTS TO DESCRIBE DEVELOPMENTAL STAGES AND TO COMPENSATE FOR THOSE WHICH A…

  5. OVERVIEW OF USEPA'S ARSENIC TECHNOLOGY DEMONSTRATION PROGRAM

    EPA Science Inventory

    This presentation provides a summary on the Arsenic Treatment Technology Demonstration Program. The information includes the history and the current status of the demonstration projects on both round 1 and round 2 including some photos of the treatment systems. The presentation m...

  6. An Overview of Clarkson's Technical Communications Program.

    ERIC Educational Resources Information Center

    Barkman, Patricia R.

    The technical communications program at Clarkson College (New York) offers students 23 courses in subjects ranging from interpersonal behavior to engineering and scientific report writing to computer documentation and the development of technical manuals. With the help of an advisor, each student works out a course of study appropriate to his or…

  7. The Utility Battery Storage Systems Program Overview

    SciTech Connect

    Not Available

    1994-11-01

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  8. OVERVIEW OF EPA'S LANDSCAPE SCIENCE PROGRAM

    EPA Science Inventory

    Over the past 10 years, the U.S. Environmental Protection Agency's Office of Research and Development's National Exposure Research Laboratory has expanded it's ecological research program to include the development of landscape metrics and indicators to assess ecological risk and...

  9. OVERVIEW OF EPA'S LANDSCAPE SCIENCES PROGRAM

    EPA Science Inventory

    Over the past 10 years, the U.S. Environmental Protection Agency's Office of Research and Development's National Exposure Research Laboratory has expanded it's ecological research program to include the development of landscape metrics and indicators to assess ecological risk and...

  10. Water Watch Program Overview. Background Information.

    ERIC Educational Resources Information Center

    Kentucky State Div. of Water, Frankfort. Kentucky Natural Resources and Environmental Protection Cabinet.

    Lakes, streams, and wetlands serve many purposes for the people of the state of Kentucky and are necessary and valued elements of its natural resources. The Water Watch program promotes individual responsibility for a common resource, educates people about the use and protection of local water resources, provides recreational opportunities through…

  11. Data systems and computer science programs: Overview

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.; Hunter, Paul

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.

  12. Subseabed Disposal Program Plan. Volume I. Overview

    SciTech Connect

    1981-07-01

    The primary objective of the Subseabed Disposal Program (SDP) is to assess the scientific, environmental, and engineering feasibility of disposing of processed and packaged high-level nuclear waste in geologic formations beneath the world's oceans. High-level waste (HLW) is considered the most difficult of radioactive wastes to dispose of in oceanic geologic formations because of its heat and radiation output. From a scientific standpoint, the understanding developed for the disposal of such HLW can be used for other nuclear wastes (e.g., transuranic - TRU - or low-level) and materials from decommissioned facilities, since any set of barriers competent to contain the heat and radiation outputs of high-level waste will also contain such outputs from low-level waste. If subseabed disposal is found to be feasible for HLW, then other factors such as cost will become more important in considering subseabed emplacement for other nuclear wastes. A secondary objective of the SDP is to develop and maintain a capability to assess and cooperate with the seabed nuclear waste disposal programs of other nations. There are, of course, a number of nations with nuclear programs, and not all of these nations have convenient access to land-based repositories for nuclear waste. Many are attempting to develop legislative and scientific programs that will avoid potential hazards to man, threats to other ocean uses, and marine pollution, and they work together to such purpose in meetings of the international NEA/Seabed Working Group. The US SDP, as the first and most highly developed R and D program in the area, strongly influences the development of subseabed-disposal-related policy in such nations.

  13. A hollow clay tile wall seismic performance program overview

    SciTech Connect

    Beavers, J.E.; Jones, W.D.; Stoddart, W.C.T.

    1992-02-25

    An overview of a multiyear hollow clay tile wall (HCTW) program being conducted by Martin Marietta Energy Systems, Inc., at the Oak Ridge Y-12 Plant, for the US Department of Energy is presented. The purpose of the HCTW program is to determine the load capacity of unreinforced infilled HCTW buildings when subjected to earthquakes. Progress to date tends to indicate that extensive retrofit of such structures may not be warranted in low-to-moderate seismic zones.

  14. Overview of NASA's advanced high temperature engine materials technology program

    NASA Technical Reports Server (NTRS)

    Ginty, Carol A.; Gray, Hugh R.

    1992-01-01

    NASA's 'HITEMP' program has been charged with development of propulsion systems technologies for next-generation civil and military aircraft, stressing high-temperature/low-density composites. These encompass polymer-matrix composites for fans, ducts, and compressor cases, and intermetallic and metallic alloy matrix composites for applications in turbine disks, blades, and vanes, and ceramic matrix composites for combustors and turbines. An overview is presented of program concerns and achievements to date.

  15. Overview of ARB's Greenhouse Gas Research Program

    NASA Astrophysics Data System (ADS)

    Falk, M.; Chen, Y.; Kuwayama, T.; Vijayan, A.; Herner, J.; Croes, B.

    2015-12-01

    Since the passage of the California Global Warming Solutions Act (or AB32) in 2006, California Air Resources Board (ARB) has established and implemented a comprehensive plan to understand, quantify, and mitigate the various greenhouse gas (GHG) emission source sectors in the state. ARB has also developed a robust and multi-tiered in-house research effort to investigate methane (CH4), nitrous oxide (N2O) and fluorinated gas emission sources. This presentation will provide an overview of ARB's monitoring and measurement research efforts to study the regional and local emission sources of these pollutants in California. ARB initiated the first subnational GHG Research Monitoring Network in 2010 to study the regional GHG emissions throughout the state. The network operates several high precision analyzers to study CH4, N2O, CO and CO2 emissions at strategically selected regional sites throughout California, and the resulting data are used to study the statewide emission trends and evaluate regional sources using statistical analyses and inverse modeling efforts. ARB is also collaborating with leading scientists to study important emission sources including agriculture, waste, and oil and gas sectors, and to identify "hot spot" methane sources through aerial surveys of high methane emitters in California. At the source level, ARB deploys Mobile Measurement Platforms (MMP) and flux chambers to measure local and source specific emissions, and uses the information to understand source characteristics and inform emissions inventories. Collectively, all these efforts are offering a comprehensive view of regional and local emission sources, and are expected to help in developing effective mitigation strategies to reduce GHG emissions in California.

  16. Fundamentals of ICF Hohlraums

    SciTech Connect

    Rosen, M D

    2005-09-30

    On the Nova Laser at LLNL, we demonstrated many of the key elements required for assuring that the next laser, the National Ignition Facility (NIF) will drive an Inertial Confinement Fusion (ICF) target to ignition. The indirect drive (sometimes referred to as ''radiation drive'') approach converts laser light to x-rays inside a gold cylinder, which then acts as an x-ray ''oven'' (called a hohlraum) to drive the fusion capsule in its center. On Nova we've demonstrated good understanding of the temperatures reached in hohlraums and of the ways to control the uniformity with which the x-rays drive the spherical fusion capsules. In these lectures we will be reviewing the physics of these laser heated hohlraums, recent attempts at optimizing their performance, and then return to the ICF problem in particular to discuss scaling of ICF gain with scale size, and to compare indirect vs. direct drive gains. In ICF, spherical capsules containing Deuterium and Tritium (DT)--the heavy isotopes of hydrogen--are imploded, creating conditions of high temperature and density similar to those in the cores of stars required for initiating the fusion reaction. When DT fuses an alpha particle (the nucleus of a helium atom) and a neutron are created releasing large amount amounts of energy. If the surrounding fuel is sufficiently dense, the alpha particles are stopped and can heat it, allowing a self-sustaining fusion burn to propagate radially outward and a high gain fusion micro-explosion ensues. To create those conditions the outer surface of the capsule is heated (either directly by a laser or indirectly by laser produced x-rays) to cause rapid ablation and outward expansion of the capsule material. A rocket-like reaction to that outward flowing heated material leads to an inward implosion of the remaining part of the capsule shell. The pressure generated on the outside of the capsule can reach nearly 100 megabar (100 million times atmospheric pressure [1b = 10{sup 6} cgs

  17. Cascade ICF power reactor

    SciTech Connect

    Hogan, W.J.; Pitts, J.H.

    1986-05-20

    The double-cone-shaped Cascade reaction chamber rotates at 50 rpm to keep a blanket of ceramic granules in place against the wall as they slide from the poles to the exit slots at the equator. The 1 m-thick blanket consists of layers of carbon, beryllium oxide, and lithium aluminate granules about 1 mm in diameter. The x rays and debris are stopped in the carbon granules; the neutrons are multiplied and moderated in the BeO and breed tritium in the LiAlO/sub 2/. The chamber wall is made up of SiO tiles held in compression by a network of composite SiC/Al tendons. Cascade operates at a 5 Hz pulse rate with 300 MJ in each pulse. The temperature in the blanket reaches 1600 K on the inner surface and 1350 K at the outer edge. The granules are automatically thrown into three separate vacuum heat exchangers where they give up their energy to high pressure helium. The helium is used in a Brayton cycle to obtain a thermal-to-electric conversion efficiency of 55%. Studies have been done on neutron activation, debris recovery, vaporization and recondensation of blanket material, tritium control and recovery, fire safety, and cost. These studies indicate that Cascade appears to be a promising ICF reactor candidate from all standpoints. At the 1000 MWe size, electricity could be made for about the same cost as in a future fission reactor.

  18. Superconductivity for electric power systems: Program overview

    SciTech Connect

    Not Available

    1995-02-01

    Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

  19. Chemical heat pump program: An overview

    NASA Astrophysics Data System (ADS)

    Mezzina, A.

    Chemical heat pumps comprise reversible reactions which can be driven by low grade heat. Thermal energy is absorbed in one direction and liberated in the reverse direction; thus, serving as a basis for system designs applicable to space conditioning or process heat management and offering the capability for high density energy storage as an integral part of the system. The program background, rationale, technology, and research and development needs are described.

  20. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2005-10-01

    Three programs, i.e. TRMM, ADEOS2 and ASTER, are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, though TRMM operation after June 2005 is still unclear. ADEOS2 was failed, but AMSR-E on Aqua is operating. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. The first satellite which will be launched is ALOS (Advanced Land Observing Satellite). The tentative launch date is 1st, Sep. 2005. ALOS will carry three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. Next generation satellites will be launched in 2007-2009 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor and a cloud/aerosol imager. The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.1 to 0.2 cm-1 resolution. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). Discussions on future Earth Observation programs have been started including discussions on ALOS F/O.

  1. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2006-09-01

    Four programs, i.e. TRMM, ADEOS2, ASTER, and ALOS are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, and TRMM operation will be continued to 2009. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on 24 th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2008-2012 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor and a cloud/aerosol imager. The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm -1 resolution. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). Discussions on future Earth Observation programs have been started including discussions on ALOS F/O.

  2. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2007-10-01

    Four programs, i.e. TRMM, ADEOS2, ASTER, and ALOS are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, and TRMM operation will be continued to 2009. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2008-2013 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor and a cloud/aerosol imager. The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm -1 resolution. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). Discussions on future Earth Observation programs have been started including discussions on ALOS F/O.

  3. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; Fredrikson, H. G.; Olson, J. T.; Backman, B. F.

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  4. HOST instrumentation R and D program overview

    NASA Technical Reports Server (NTRS)

    Englund, D. R.

    1986-01-01

    The HOST Instrumentation R and D program is focused on two categories of instrumentation. One category is that required to characterize the environment imposed on the hot section components of turbine engines. This category includes instruments for measuring gas flow, gas temperature, and heat flux. The second category is that for measuring the effect of the environment on the hot section components. This category includes strain measuring instruments and an optical system for viewing the interior of an operating combustor to detect cracks, buckling, carbon buildup, etc.

  5. Overview of Sandia's electric vehicle battery program

    NASA Astrophysics Data System (ADS)

    Clark, R. P.

    1993-11-01

    Sandia National Laboratories is actively involved in several projects which are part of an overall Electric Vehicle Battery Program. Part of this effort is funded by the United States Department of Energy/Office of Transportation Technologies (DOE/OTT) and the remainder is funded through the United States Advanced Battery Consortium (USABC). DOE/OTT supported activities include research and development of zinc/air and sodium/sulfur battery technologies as well as double layer capacitor (DLC) R&D. Projects in the USABC funded work include lithium/polymer electrolyte (LPE) R&D, sodium/sulfur activities and battery test and evaluation.

  6. Thunderstorm hazards flight research - Program overview

    NASA Technical Reports Server (NTRS)

    Deal, P. L.; Keyser, G. L.; Fisher, B. D.; Crabill, N. L.

    1981-01-01

    The NASA thunderstorm hazards research program, designed to study the effects of lightning strikes on the design and operation of aircraft, is described. An all-weather F-106B is instrumented to document the EM characteristics of direct and nearby strikes, measure the field parameters and analyze the ambient atmospheric content, and film the strikes; X-ray detectors are also on board, along with instrumentation for determining the frequency of visible light waveforms. Data is either recorded on-board or sent by telemetry to base, while ground based telemetry is used to direct the pilot and craft into regions of optimal lightning activity. The sensing apparatus is described, and ongoing programs to correlate different storm parameters are reviewed, along with operational procedures and safety precautions. Continued use of the craft through 152 storms and 16 direct hits, with no fatalities or circuit breaker throw, confirms the ability of metal skinned aircraft to withstand lightning strikes; data gathered from flights during 1980 are provided.

  7. Efficient separations and processing crosscutting program overview

    SciTech Connect

    Gerdes, K.D.; Harness, J.L.; Kuhn, W.L.

    1997-10-01

    The US Department of Energy (DOE) established the Office of Science and Technology (formerly the Office of Technology Development), as part of the Office of Environmental Management (EM) in November 1989. EM manages remediation of all DOE sites and wastes from current operations. The goal of the EM program is to minimize risks to human health, safety, and the environment and to bring all DOE sites into compliance with federal, state, and local regulations by the year 2019. The Office of Science and Technology (EM-50) is charged with developing and implementing new technologies that are safer, faster, more effective, and less expensive than current methods. To focus resources and address opportunities, EM-50 has targeted four major remediation and waste management problem areas within the DOE complex for action based on risk, prevalence, or need for technology development to meet environmental requirements and regulations. Other areas may be added or current areas further partitioned to ensure that research technology development programs remain focused on EM`s most pressing remediation and waste management needs. These major problem areas, called Focus Areas are: high-level waste tank remediation; mixed waste characterization, treatment, and disposal; subsurface contaminants; and facility transitioning, decommissioning, and final disposition.

  8. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2012-09-01

    Five programs, i.e. TRMM, AMSR-E, ASTER, GOSAT and GCOM-W1 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as TRMM and GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array L-band SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Super-conducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2012-2015 timeframe. They are, GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to

  9. Overview of Japanese Earth Observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2009-09-01

    Five programs, i.e. TRMM, AMSR-E, ASTER, ALOS and GOSAT are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared, but other satellites/sensors are operating well, and TRMM operation will be continued at least to 2012. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2011-2014 timeframe. They are, GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and will carry Lband SAR, while second one is called ALOS3 and will carry optical sensors.

  10. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2010-10-01

    Five programs, i.e. TRMM, AMSR-E, ASTER, ALOS and GOSAT are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels, but other satellites/sensors are operating well, and TRMM operation will be continued at least up to 2012. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array L-band SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Super-conducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2011- 2014 timeframe. They are, GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). ALOS F/O satellites are divided into two satellites

  11. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2011-11-01

    Four programs, i.e. TRMM, AMSR-E, ASTER, and GOSAT are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels, but other satellites/sensors are operating well, and TRMM operation will be continued at least up to 2012. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array L-band SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Super-conducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2011-2014 timeframe. They are, GCOMW and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR

  12. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2008-10-01

    Four programs, i.e. TRMM, AMSR-E, ASTER, and ALOS are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, and TRMM operation will be continued at least to 2009. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2008-2013 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. GOSAT will be launched on beginning of 2008. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). ALOS F/O satellites are now called disaster monitoring satellites. They are composed of 2 kinds of satellites, SAR and optical satellites. The first one of these disaster monitoring satellites is a SAR satellite and will carry L-band SAR.

  13. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2013-10-01

    Five programs, i.e. TRMM, AMSR-E, ASTER, GOSAT and GCOM-W1 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as TRMM and GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSOFTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Super-conducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2012-2015 timeframe. They are, GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). GCOM-C1 will be launched on fiscal 2016, GPM core satellite will be launched on 2014 and EarthCare will be launched on 2015. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2

  14. FY 1987 Aquatic Species Program overview

    SciTech Connect

    Johnson, D.A.; Sprague, S.

    1987-11-01

    The goal of the Department of Energy/Solar Energy Research Institute (DOE/SERI) Aquatic Species Program is to develop the technology base to produce liquid fuels from microalgae at prices competitive with conventional alternatives. Microalgae are unusual plants that can accumulate large quantities of oil and can thrive in high-salinity water, which currently has no competing uses. The algal oils, in turn, are readily converted into gasoline and diesel fuels. The best site for successful microalgae production was determined to be the US desert Southwest, with potential applications to other warm areas. A technical and economic analysis, Fuels from Microalgae, demonstrated that liquid fuels can be produced from mass-cultured microalgae at prices that will be competitive with those of conventional fuels by 2010. Aggressive research is needed, but the improvements required are attainable.

  15. Overview of EPA Superfund human health research program.

    PubMed

    Kowalski, Lorelei; Denne, Jane; Dyer, Robert; Garrahan, Kevin; Wentsel, Randall S

    2002-03-01

    This paper presents major research needs for the Superfund program, and provides an overview of the EPA Office of Research and Development's (ORDs) current human health research program designed to fill some of those data gaps. Research is presented in terms of the risk paradigm and covers exposure, effects, and assessment activities directly funded by Superfund, as well as research not funded by Superfund but directly applicable to Superfund research needs. Research on risk management is not covered. Current research activities conducted by the Superfund program office are also included to provide a full picture of Superfund human health research activities being conducted by EPA.

  16. Overview of the Novel Intelligent JAXA Active Rotor Program

    NASA Technical Reports Server (NTRS)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  17. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2014-10-01

    Five programs, i.e. TRMM, AMSR-E, ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as TRMM and GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Super-conducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2016 and GOSAT-2 will be launched on 2017. Another project is EarthCare. It is a joint project with ESA

  18. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  19. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2015-10-01

    Six programs, i.e. AMSR-E, ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Super-conducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2016 and GOSAT-2 will be launched on 2017. Another project is EarthCare. It is a joint project with ESA and JAXA is

  20. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2016-10-01

    Five programs, i.e. ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012 with slow rotation speed. It finally stopped on December 2015. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Superconducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on fiscal 2016 and GOSAT-2 will be launched on fiscal 2017. Another

  1. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect

    Not Available

    2011-11-01

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4

  2. An Overview of the Los Alamos Inertial Confinement Fusion and High-Energy-Density Physics Research Programs

    SciTech Connect

    Batha, Steven H.

    2016-07-15

    The Los Alamos Inertial Confinement Fusion and Science Programs engage in a vigorous array of experiments, theory, and modeling. We use the three major High Energy Density facilities, NIF, Omega, and Z to perform experiments. These include opacity, radiation transport, hydrodynamics, ignition science, and burn experiments to aid the ICF and Science campaigns in reaching their stewardship goals. The ICF program operates two nuclear diagnostics at NIF, the neutron imaging system and the gamma reaction history instruments. Both systems are being expanded with significant capability enhancements.

  3. Overview of the NASA SETI Program

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.

    1986-01-01

    The NASA Search of Extraterrestrial Intelligence (SETI) program plan is to scan the microwave window from 1 to 10 GHz with existing radio telescopes and sophisticated signal processing equipment looking for narrow band features that might represent artificial signals. A microwave spectrometer was built and is being field tested. A pattern recognition computer to search for drifting continuous wave signals and pulse trains in the output spectra is being designed. Equipment to characterize the radio frequency interference environment was also built. The plan is to complete the hardware and software by FY-88. Then, with increased funding, this equipment will be replicated in Very Large Scale Integration form. Observations, both a complete sky survey and a search fo nearby solar type stars, will begin in about 1990. The hypothesis that very powerful signals exist or that signals are being beamed at us will be tested. To detect the kinds of signals radiated at distances of 100 light years will require a collecting area kilometers in diameter.

  4. Underground energy-storage program overview

    SciTech Connect

    Kannberg, L.D.

    1982-07-01

    The objective of this program is to reduce technical and economic risks obstructing commercial development of underground energy storage concepts promising more effective and efficient utilization of energy resources. Primary concepts are Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). STES objectives include characterization and mitigation of STES concept technical deficiencies and uncertainties and evaluation of economic features. CAES objectives include development of stability criteria for CAES reservoirs and analysis and development of promising second-generation CAES systems. Characterization of the performance of TES systems at injection temperatures of less than 85/sup 0/C is nearly complete. Studies of injection and storage at temperatures up to 150/sup 0/C have been initiated and will be continued through FY 1983. Studies of nonaquifer STES systems including cavern and ice storage systems have been conducted and will continue in FY 1983. Stability criteria and guidelines documents have been published for salt and hard rock CAES reservoirs. All design and construction on the Pittsfield Aquifer Field Test will be completed by the end of FY 1982 and bubble development and air cycling will be conducted in the first six months of FY 1983. A preliminary screening of materials for use in thermal storage units of adiabatic and hybrid CAES systems has been completed. Two materials, Denstone (a registered product of the Norton Company) and Dresser basalt, survived screening tests and are recommended for additional long term testing.

  5. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  6. X-38 Program Status/Overview

    NASA Technical Reports Server (NTRS)

    Anderson, Brian L.

    2001-01-01

    The X-38 Project consists of a series of experimental vehicles designed to provide the technical "blueprint" for the International Space Station's (ISS) Crew Return Vehicle (CRV). There are three atmospheric vehicles and one space flight vehicle in the program. Each vehicle is designed as a technical stepping stone for the next vehicle, with each new vehicle being more complex and advanced than it's predecessor. The X-38 project began in 1995 at the Johnson Space Center (JSC) in Houston, Texas at the direction of the NASA administrator. From the beginning, the project has had the CRY design validation as its ultimate goal. The CRY has three basic missions that drive the design that must be proven during the course of the X-38 Project: a) Emergency return of an ill or injured crew member. b) Emergency return of an entire ISS crew due to the inability of ISS to sustain life c) Planned return of an entire ISS crew due to the inability to re-supply the ISS or return the crew. The X-38 project must provide the blueprint for a vehicle that provides the capability for human return from space for all three of these design missions.

  7. Overview of the RFX fusion science program

    NASA Astrophysics Data System (ADS)

    Martin, P.; Adamek, J.; Agostinetti, P.; Agostini, M.; Alfier, A.; Angioni, C.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barana, O.; Barison, S.; Baruzzo, M.; Bettini, P.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Boozer, A. H.; Brombin, M.; Brotankova, J.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Chacon, L.; Chitarin, G.; Cooper, W. A.; Dal Bello, S.; Dalla Palma, M.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Dong, J. Q.; Drevlak, M.; Escande, D. F.; Fantini, F.; Fassina, A.; Fellin, F.; Ferro, A.; Fiameni, S.; Fiorentin, A.; Franz, P.; Gaio, E.; Garbet, X.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guo, S. C.; Hirano, Y.; Hirshman, S. P.; Ide, S.; Igochine, V.; In, Y.; Innocente, P.; Kiyama, S.; Liu, S. F.; Liu, Y. Q.; Lòpez Bruna, D.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Mansfield, D. K.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Matsunaga, G.; Martines, E.; Mazzitelli, G.; McCollam, K.; Menmuir, S.; Milani, F.; Momo, B.; Moresco, M.; Munaretto, S.; Novello, L.; Okabayashi, M.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Pavei, M.; Perverezev, G. V.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Pomphrey, N.; Predebon, I.; Puiatti, M. E.; Rigato, V.; Rizzolo, A.; Rostagni, G.; Rubinacci, G.; Ruzzon, A.; Sakakita, H.; Sanchez, R.; Sarff, J. S.; Sattin, F.; Scaggion, A.; Scarin, P.; Schneider, W.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Spong, D. A.; Spizzo, G.; Takechi, M.; Taliercio, C.; Terranova, D.; Toigo, V.; Valisa, M.; Veranda, M.; Vianello, N.; Villone, F.; Wang, Z.; White, R. B.; Yadikin, D.; Zaccaria, P.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zollino, G.; Zuin, M.

    2011-09-01

    This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature >1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented.

  8. Overview of the Defense Programs Research and Technology Development Program for Fiscal Year 1993

    SciTech Connect

    Not Available

    1993-09-30

    This documents presents a programmatic overview and program element plan summaries for conceptual design and assessment; physics; computation and modeling; system engineering science and technology; electronics, photonics, sensors, and mechanical components; chemistry and materials; special nuclear materials, tritium, and explosives.

  9. Testing program overview: What does a good program look like

    SciTech Connect

    Hegedus, A.S. )

    1992-01-01

    A good testing program is vital to the safe, reliable, and efficient operation of a nuclear facility. A testing program consists of more than scheduling, performing, and reviewing results. It includes seven interrelated critical elements, all of which are necessary to provide complete control over a station's testing program. The personnel at Peach Bottom atomic power station wanted to evaluate their testing program. The result was a report that described the framework for a complete testing program. Once the framework was developed, an implementation team was formed to develop the specific plan and schedule for modifying the existing program to conform to the framework.

  10. Overview of the NASA Suborbital Program

    NASA Astrophysics Data System (ADS)

    Jones, W. Vernon

    2014-08-01

    The NASA Suborbital Program consists of Sounding Rocket and Balloon Projects managed, respectively, by the Heliophysics and Astrophysics Divisions of the Science Mission Directorate, which maintains “Program” Offices at the NASA Wallops Flight Facility. Suborbital missions have for several decades enabled investigations with significant results from relatively modest investments. Some have been competitive with orbital missions, while others have enabled orbital missions. NASA launches suborbital missions from sites established in the U.S. and around the world to meet investigators’ needs. A sea change in scientific ballooning occurred with the inauguration of 8 - 20 day flights around Antarctica in the early 1990’s. The U.S. National Science Foundation supports these circumpolar flights, which have been spectacularly successful with many investigations utilizing multiple flights of payloads that are recovered, refurbished, and reused to minimize life-cycle costs. The attainment of 25 - 32 day and 35 - 55 day flights in two and three circumnavigations, respectively, of the Antarctic continent has greatly increased expectations of scientific users. The 55-day Super-TIGER flight over Antarctica during the 2012-13 season broke the 42-day CREAM record during the 2004-05 season, as well as the 54-day super pressure balloon test flight in 2008-09. Qualification of super pressure flights to support 1000 kg science instruments for up to 100 days at 33 km have proceeded in parallel with plans to increase the altitude for less massive instruments requiring less atmospheric overburden. The nearly constant volume of super-pressure balloons allows stable altitude flights at non-polar latitudes. Long-duration flights in both polar and non-polar regions will confirm the important contributions that ballooning can make in traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines. With two comets approaching the sun in 2013-14, the Planetary Science

  11. Los Alamos safeguards program overview and NDA in safeguards

    SciTech Connect

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented.

  12. 76 FR 4330 - American Overseas Research Centers (AORC) Program; Office of Postsecondary Education; Overview...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... American Overseas Research Centers (AORC) Program; Office of Postsecondary Education; Overview Information; American Overseas Research Centers (AORC) Program; Notice Inviting Applications for New Awards for Fiscal... Program: The American Overseas Research Centers (AORC) Program makes awards to any American...

  13. Content comparison of haemophilia specific patient-rated outcome measures with the international classification of functioning, disability and health (ICF, ICF-CY)

    PubMed Central

    2010-01-01

    Background Patient-Reported Outcomes (PROs) are considered important outcomes because they reflect the patient's experience in clinical trials. PROs have been included in the field of haemophilia only recently. Purpose Comparing the contents of PROs measures used in haemophilia, based on the ICF/ICF-CY as frame of reference. Methods Haemophilia-specific PROs for adults and children were selected on the grounds of international accessibility. The content of the selected instruments were examined by linking the concepts within the items of these instruments to the ICF/ICF-CY. Results Within the 5 selected instruments 365 concepts were identified, of which 283 concepts were linked to the ICF/ICF CY and mapped into 70 different categories. The most frequently used categories were "b152: Emotional functions" and "e1101: Drugs". Conclusions The present paper provides an overview on current PROs in haemophilia and facilitates the selection of appropriate instruments for specific purposes in clinical and research settings. This work was made possible by the grant of the European Murinet Project (Multidisciplinary Research Network on Health and Disability in Europe). PMID:21108796

  14. An Overview of Residential Ventilation Activities in the Building America Program (Phase I)

    SciTech Connect

    Barley, D.

    2001-05-21

    This report provides an overview of issues involved in residential ventilation; provides an overview of the various ventilation strategies being evaluated by the five teams, or consortia, currently involved in the Building America Program; and identifies unresolved technical issues.

  15. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Program

    NASA Astrophysics Data System (ADS)

    McGuire, Thomas

    2015-11-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. An overview of the concept and its diamagnetic, high beta magnetically encapsulated linear ring cusp confinement scheme will be given. The analytical model of the major loss mechanisms and predicted performance will be discussed, along with the major physics challenges. Key features of an operational CFR reactor will be highlighted. The proposed developmental path following the current experimental efforts will be presented. ©2015 Lockheed Martin Corporation. All Rights Reserved.

  16. Overview of integrated programs for aerospace-vehicle design (IPAD)

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    An overview of a joint industry/government project, denoted Integrated Programs for Aerospace-Vehicle Design (IPAD), which focuses on development of technology and associated software for integrated company-wide management of engineering information is presented. Results to date are summarized and include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrated selected design functions.

  17. 42 CFR 442.15 - Duration of agreement for ICFs/MR.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS STANDARDS FOR PAYMENT TO NURSING FACILITIES AND INTERMEDIATE CARE FACILITIES FOR THE MENTALLY RETARDED Provider Agreements § 442.15 Duration of agreement for ICFs/MR....

  18. An Overview of the NASA Sounding Rockets and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Flowers, Bobby J.; Needleman, Harvey C.

    1999-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a combined total of approximately fifty to sixty missions per year in support of the NASA scientific community. These missions are provided in support of investigations sponsored by NASA'S Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program has continued to su,pport the science community by integrating their experiments into the sounding rocket payload and providing the rocket vehicle and launch operations necessary to provide the altitude/time required obtain the science objectives. The sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface, which is physically inaccessible to either balloons or satellites. A new architecture for providing this support has been introduced this year with the establishment of the NASA Sounding Rockets Contract. The Program has continued to introduce improvements into their operations and ground and flight systems. An overview of the NASA Sounding Rockets Program with special emphasis on the new support contract will be presented. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. Long duration balloon (LDB) is a prominent aspect of the program with two campaigns scheduled for this calendar year. Two flights are scheduled in the Northern Hemisphere from Fairbanks, Alaska, in June and two flights are scheduled from McMurdo, Antarctica, in the Southern Hemisphere in December. The comprehensive balloon research and development (R&D) effort has continued with advances being made across the

  19. Overview of Energy Systems' safety analysis report programs

    SciTech Connect

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility's safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information that may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This Overview of Energy Systems Safety Analysis Report Programs'' Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.

  20. An overview of the NASA satellite communications program

    NASA Technical Reports Server (NTRS)

    Dement, D. K.

    1979-01-01

    This overview sets the framework for five descriptive papers from NASA Field Centers where satellite communications research and development is being conducted. A review of events of 1973-78 in the Federal Government, in industry, and in professional organizations are shown to have contributed to the formulation of new policy supporting the establishment of renewed efforts within NASA toward improved use of the spectrum and orbit for communications. The work will focus on the development of 'frequency re-use' technology, including multi-beam antennas and on-board switching for future spacecraft. This paper treats the planning issues and the approaches taken toward forming a coherent program from the sustaining efforts of the recent past. Companion papers highlight the methods, the technology, and the activities that are assisting in the transition to a new program.

  1. Contributions to the Genesis and Progress of ICF

    SciTech Connect

    Nuckolls, J H

    2006-02-15

    Inertial confinement fusion (ICF) has progressed from the detonation of large-scale fusion explosions initiated by atomic bombs in the early 1950s to final preparations for initiating small-scale fusion explosions with giant lasers. The next major step after ignition will be development of high performance targets that can be initiated with much smaller, lower cost lasers. In the 21st century and beyond, ICF's grand challenge is to develop practical power plants that generate low cost, clean, inexhaustible fusion energy. In this chapter, I first describe the origin in 1960-61 of ICF target concepts, early speculations on laser driven 'Thermonuclear Engines' for power production and rocket propulsion, and encouraging large-scale nuclear explosive experiments conducted in 1962. Next, I recall the 40-year, multi-billion dollar ignition campaign - to develop a matched combination of sufficiently high-performance implosion lasers and sufficiently stable targets capable of igniting small fusion explosions. I conclude with brief comments on the NIF ignition campaign and very high-performance targets, and speculations on ICF's potential in a centuries-long Darwinian competition of future energy systems. My perspectives in this chapter are those of a nuclear explosive designer, optimistic proponent of ICF energy, and Livermore Laboratory leader. The perspectives of Livermore's post 1970 laser experts and builders, and laser fusion experimentalists are provided in a chapter written by John Holzrichter, a leading scientist and leader in Livermore's second generation laser fusion program. In a third chapter, Ray Kidder, a theoretical physicist and early laser fusion pioneer, provides his perspectives including the history of the first generation laser fusion program he led from 1962-1972.

  2. Overview of NASA HSR high-lift program

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.

    1992-01-01

    The viewgraphs and discussion of the NASA High-Speed Research (HSR) Program being conducted to develop the technologies essential for the successful U.S. development of a commercial supersonic air transport in the 2005 timeframe are provided. The HSR program is being conducted in two phases, with the first phase stressing technology to ensure environmental acceptability and the second phase stressing technology to make the vehicle economically viable (in contrast to the current Concorde design). During Phase 1 of the program, a key element of the environmental emphases is minimization of community noise through effective engine nozzle noise suppression technology and through improving the performance of high-lift systems. An overview of the current Phase 1 High-Lift Program, directed at technology for community noise reduction, is presented. The total target for takeoff engine noise reduction to meet expected regulations is believed to be about 20 EPNdB. The high-lift research is stressing the exploration of innovative high-lift concepts and advanced flight operations procedures to achieve a substantial (approximately 6 EPNdB) reduction in community noise to supplement the reductions expected from engine nozzle noise suppression concepts; primary concern is focused on the takeoff and climbout operations where very high engine power settings are used. Significant reductions in aerodynamic drag in this regime will allow substantial reductions in the required engine thrust levels and therefore reductions in the noise generated.

  3. U.S. DOE indirect coal liquefaction program: An overview

    SciTech Connect

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R.; Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  4. Looking at the ICF and human communication through the lens of classification theory.

    PubMed

    Walsh, Regina

    2011-08-01

    This paper explores the insights that classification theory can provide about the application of the International Classification of Functioning, Disability and Health (ICF) to communication. It first considers the relationship between conceptual models and classification systems, highlighting that classification systems in speech-language pathology (SLP) have not historically been based on conceptual models of human communication. It then overviews the key concepts and criteria of classification theory. Applying classification theory to the ICF and communication raises a number of issues, some previously highlighted through clinical application. Six focus questions from classification theory are used to explore these issues, and to propose the creation of an ICF-related conceptual model of communicating for the field of communication disability, which would address some of the issues raised. Developing a conceptual model of communication for SLP purposes closely articulated with the ICF would foster productive intra-professional discourse, while at the same time allow the profession to continue to use the ICF for purposes in inter-disciplinary discourse. The paper concludes by suggesting the insights of classification theory can assist professionals to apply the ICF to communication with the necessary rigour, and to work further in developing a conceptual model of human communication.

  5. Overview of the NRL DPF program: Experiment and Modeling

    NASA Astrophysics Data System (ADS)

    Richardson, A. S.; Jackson, S. L.; Angus, J. R.; Giuliani, J. L.; Swanekamp, S. B.; Schumer, J. W.; Mosher, D.

    2016-10-01

    Charged particle acceleration in imploding plasmas is an important phenomenon which occurs in various natural and laboratory plasmas. A new research project at the Naval Research Laboratory (NRL) has been started to investigate this phenomenon both experimentally-in a dense plasma focus (DPF) device-and theoretically using analytical and computational modeling. The DPF will be driven by the high-inductance (607 nH) Hawk pulsed-power generator, with a rise time of 1.2 μs and a peak current of 665 kA. In this poster we present an overview of the research project, and some preliminary results from fluid simulations of the m = 0 instability in an idealized DPF pinch. This work was supported by the Naval Research Laboratory Base Program.

  6. An overview of the NASA Rotary Engine Research Program

    SciTech Connect

    Meng, P.R.; Hady, W.F.

    1984-01-01

    This paper presents a brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center. The review covers the test results obtained from turbocharged rotary engines and preliminary results from a high performance single-rotor engine. Combustion modeling studies of the rotary engine and the use of a laser doppler velocimeter to confirm the studies are discussed. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies is also covered. Details are presented on single-rotor stratified-charge rotary engine research efforts, both in-house and on contract.

  7. The NASA Electronic Parts and Packaging (NEPP) Program: An Overview

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.

    2016-01-01

    This presentation provides an overview of the NEPP Program. The NEPP Mission is to provide guidance to NASA for the selection and application of microelectronics technologies; Improve understanding of the risks related to the use of these technologies in the space environment; Ensure that appropriate research is performed to meet NASA mission assurance needs. NEPP's Goals are to provide customers with appropriate and cost-effective risk knowledge to aid in: Selection and application of microelectronics technologies; Improved understanding of risks related to the use of these technologies in the space environment; Appropriate evaluations to meet NASA mission assurance needs; Guidelines for test and application of parts technologies in space; Assurance infrastructure and support for technologies in use by NASA space systems.

  8. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    SciTech Connect

    McCoy, J.C.; Becker, D.L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

  9. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    SciTech Connect

    McCoy, J.C.

    1995-10-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

  10. Physics of the Cosmos (PCOS) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  11. NASA In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.

  12. NASA's In-Space Propulsion Technology Program: Overview and Status

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.

  13. NASA's In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.

  14. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    NASA Astrophysics Data System (ADS)

    McCoy, John C.; Becker, David L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration's Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined.

  15. Backlighting prospects for ICF targets

    SciTech Connect

    Rupert, V.; Matthews, D.; Ahlstrom, H.; Attwood, D.; Price, R.; Coleman, L.; Manes, K.; Slivinsky, V.

    1981-01-01

    High energy x-ray backlighters are necessary to diagnose the implosion symmetry and stability of intermediate and high density targets. Synchronization requirements between the target irradiating pulse and the radiograph place severe constraints on the type of x-ray sources which can be used and favors laser irradiated backlighters. Data gathered on line emitters as a function of laser pulselength, wavelength and intensity in the 5 to 10 keV region are used to determine which diagnostic instruments will be feasible for ICF target experiments, and the requirements for backlighter irradiation.

  16. An Overview of the NASA Aerospace Flight Battery Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2003-01-01

    The NASA Aerospace Flight Battery Systems Program is an agency-wide effort aimed at ensuring the quality, safety, reliability and performance of flight battery systems for NASA applications. The program provides for the validation of primary and secondary cell and battery level technology advances to ensure their availability and readiness for use in NASA missions. It serves to bridge the gap between the development of technology advances and the realization and incorporation of these advances into mission applications. The program is led by the Glenn Research Center and involves funded task activities at each of the NASA mission centers and JPL. The overall products are safe, reliable, high quality batteries for mission applications. The products are defined along three product lines: 1. Battery Systems Technology - Elements of this task area cover the systems aspects of battery operation and generally apply across chemistries. This includes the development of guidelines documents, the establishment and maintenance of a central battery database that serves a central repository for battery characterization and verification test data from tests performed under the support of this program, the NASA Battery Workshop, and general test facility support. 2. Secondary Battery Technology - l h s task area focuses on the validation of battery technology for nickel-cadmium, nickel-hydrogen, nickel-metal-hydride and lithium-ion secondary battery systems. Standardized test regimes are used to validate the quality of a cell lot or cell design for flight applications. In this area, efforts are now concentrated on the validation and verification of lithium-ion battery technology for aerospace applications. 3. Primary Battery Technology - The safety and reliability aspects for primary lithium battery systems that are used in manned operations on the Shuttle and International Space Station are addressed in the primary battery technology task area. An overview of the task areas

  17. Overview of the U.S. Department of Energy's Isotope Programs

    SciTech Connect

    Carty, J.

    2004-10-05

    This presentation provides an overview of the U.S. Department of Energy's Isotopes Program. The charter of the Isotope Programs covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials, and related isotope services.

  18. 7 CFR 3402.5 - Overview of National Needs Graduate and Postdoctoral Fellowship Grants Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Fellowship Grants Program. 3402.5 Section 3402.5 Agriculture Regulations of the Department of Agriculture... AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.5 Overview of National Needs Graduate and Postdoctoral Fellowship Grants Program. (a) The program will provide funds for a...

  19. 7 CFR 3402.5 - Overview of National Needs Graduate and Postdoctoral Fellowship Grants Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Fellowship Grants Program. 3402.5 Section 3402.5 Agriculture Regulations of the Department of Agriculture... AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.5 Overview of National Needs Graduate and Postdoctoral Fellowship Grants Program. (a) The program will provide funds for a...

  20. 7 CFR 3402.5 - Overview of National Needs Graduate and Postdoctoral Fellowship Grants Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Fellowship Grants Program. 3402.5 Section 3402.5 Agriculture Regulations of the Department of Agriculture... AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.5 Overview of National Needs Graduate and Postdoctoral Fellowship Grants Program. (a) The program will provide funds for a...

  1. 7 CFR 3402.5 - Overview of National Needs Graduate and Postdoctoral Fellowship Grants Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Fellowship Grants Program. 3402.5 Section 3402.5 Agriculture Regulations of the Department of Agriculture... AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.5 Overview of National Needs Graduate and Postdoctoral Fellowship Grants Program. (a) The program will provide funds for a...

  2. 75 FR 37415 - Office of Postsecondary Education; Overview Information; Training Program for Federal TRIO...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... Office of Postsecondary Education; Overview Information; Training Program for Federal TRIO Programs (Training Program) Notice inviting applications for new awards for fiscal year (FY) 2010. Catalog of Federal... Purpose of Program: The Training Program provides grants to train the staff and leadership...

  3. Origins and Overview of the Shaped Sonic Boom Demonstration Program

    NASA Technical Reports Server (NTRS)

    Pawlowski, Joseph W.; Graham, David H.; Boccadoro, Charles H.; Coen, Peter G.; Maglieri, Domenic J.

    2005-01-01

    The goal of the DARPA Shaped Sonic Boom Demonstration (SSBD) Program was to demonstrate for the first time in flight that sonic booms can be substantially reduced by incorporating specialized aircraft shaping techniques. Although mitigation of the sonic boom via specialized shaping techniques was theorized decades ago, until now, this theory had never been tested with a flight vehicle subjected to actual flight conditions in a real atmosphere. The demonstrative success, which occurred on 27 August 2003 with repeat flights in the supersonic corridor at Edwards Air Force Base, is a critical milestone in the development of next generation supersonic aircraft that could one day fly unrestricted over land and help usher in a new era of time-critical air transport. Pressure measurements obtained on the ground and in the air confirmed that the specific modifications made to a Northrop Grumman F-5E aircraft not only changed the shape of the shock wave signature emanating from the aircraft, but also produced a flat-top signature whose shape persisted, as predicted, as the pressure waves propagated through the atmosphere to the ground. This accomplishment represents a major advance towards reducing the startling and potentially damaging noise of a sonic boom. This paper describes the evolution of the SSBD program, including the rationale for test article selection, and provides an overview of the history making accomplishments achieved during the SSBD effort, as well as, the follow-on NASA Shaped Sonic Boom Experiment (SSBE) Program, whose goal was to further evaluate the characteristics and robustness of shaped boom signatures.

  4. Modeling Mix in ICF Implosions

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Clark, D. S.; Chang, B.; Eder, D. C.; Haan, S. W.; Jones, O. S.; Marinak, M. M.; Peterson, J. L.; Robey, H. F.

    2014-10-01

    The observation of ablator material mixing into the hot spot of ICF implosions correlates with reduced yield in National Ignition Campaign (NIC) experiments. Higher Z ablator material radiatively cools the central hot spot, inhibiting thermonuclear burn. This talk focuses on modeling a ``high-mix'' implosion from the NIC, where greater than 1000 ng of ablator material was inferred to have mixed into the hot spot. Standard post-shot modeling of this implosion does not predict the large amounts of ablator mix necessary to explain the data. Other issues are explored in this talk and sensitivity to the method of radiation transport is found. Compared with radiation diffusion, Sn transport can increase ablation front growth and alter the blow-off dynamics of capsule dust. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Monte Carlo methods in ICF

    SciTech Connect

    Zimmerman, G.B.

    1997-06-24

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ion and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burns nd burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  6. Yucca Mountain Project - Science & Technology Radionuclide Absorbers Development Program Overview

    SciTech Connect

    Hong-Nian Jow; R.C. Moore; K.B. Helean; S. Mattigod; M. Hochella; A.R. Felmy; J. Liu; K. Rosso; G. Fryxell; J. Krumhansl; Y. Wang

    2005-01-14

    The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or ''getter'' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. ''Getter'' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion ''getters'' is presented. The benefits of the ''getter'' development program to the United States Department of Energy (US DOE) are outlined.

  7. Low-gravity fluid physics: A program overview

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview is presented of the microgravity fluid physics program at Lewis Research Center. One of the main reasons for conducting low gravity research in fluid physics is to study phenomena such as surface tension, interfacial contact angles, and diffusion independent of such gravitationally induced effects as buoyant convection. Fluid physics is at the heart of many space-based technologies including power systems, thermal control systems, and life support systems. Fundamental understanding of fluid physics is a key ingredient to successful space systems design. In addition to describing ground-based and space-based low-gravity facilities, selected experiments are presented which highlight Lewis work in fluid physics. These experiments can be categorized into five theme areas which summarize the work being conducted at Lewis for OSSA: (1) isothermal/iso-solutal capillary phenomena; (2) capillary phenomena with thermal/solutal gradients; (3) thermal-solutal convection; (4) first- and second-order phase transitions in a static fluid; and (5) multiphase flow.

  8. Crew-integration and Automation Testbed (CAT)Program Overview and RUX06 Introduction

    DTIC Science & Technology

    2006-09-20

    unlimited Crew-integration and Automation Testbed ( CAT ) Program Overview and RUX06 Introduction 26-27 July 2006 Patrick Nunez, Terry Tierney, Brian Novak...3. DATES COVERED 4. TITLE AND SUBTITLE Crew-integration and Automation Testbed ( CAT )Program Overview and RUX06 Introduction 5a. CONTRACT...Experiment • Capstone CAT experiment – Evaluate effectiveness of CAT program in improving the performance and/or reducing the workload for a mounted

  9. ICF machine: a web-based system for collection of ICF data.

    PubMed

    Della Mea, Vincenzo; Fioresi, Valerio

    2012-01-01

    The International Classification of Functioning, Disability and Health (ICF) is a WHO classification for health and health-related issues. In order to foster ICF application in information systems, we devised an implementation profile in ClaML (Classification Markup Language) that allows for representation of ICF subsets and we developed a web-based system for collecting ICF data based on from their ClaML representation. The implementation profile and the application have been tested on 17 subsets, which have been translated into ClaML and then submitted to the web application, to produce test documents.

  10. Overview of Mars Science Laboratory (MSL) Environmental Program

    NASA Technical Reports Server (NTRS)

    Forgave, John C.; Man, Kin F.; Hoffman, Alan R.

    2006-01-01

    This viewgraph presentation is an overview of the Mars Science Laboratory (MSL) program. The engineering objectives of the program are to create a Mobile Science Laboratory capable of one Mars Year surface operational lifetime (670 Martian sols = 687 Earth days). It will be able to land and operation over wide range of latitudes, altitudes and seasons It must have controlled propulsive landing and demonstrate improved landing precision via guided entry The general science objectives are to perform science that will focus on Mars habitability, perform next generation analytical laboratory science investigations, perform remote sensing/contact investigations and carry a suite of environmental monitoring instruments. Specific scientific objectives of the MSL are: (1) Characterization of geological features, contributing to deciphering geological history and the processes that have modified rocks and regolith, including the role of water. (2) Determination of the mineralogy and chemical composition (including an inventory of elements such as C, H, N, O, P, S, etc. known to be building blocks for life) of surface and near-surface materials. (3) Determination of energy sources that could be used to sustain biological processes. (4) Characterization of organic compounds and potential biomarkers in representative regolith, rocks, and ices. (5) Determination the stable isotopic and noble gas composition of the present-day bulk atmosphere. (6) Identification potential bio-signatures (chemical, textural, isotopic) in rocks and regolith. (7) Characterization of the broad spectrum of surface radiation, including galactic cosmic radiation, solar proton events, and secondary neutrons. (8) Characterization of the local environment, including basic meteorology, the state and cycling of water and C02, and the near-surface distribution of hydrogen. Several views of the planned MSL and the rover are shown. The MSL environmental program is to: (1) Ensure the flight hardware design is

  11. OVERVIEW.

    ERIC Educational Resources Information Center

    ROSENBERG, SHELDON

    THIS OVERVIEW CHAPTER INTRODUCES THE FORTHCOMING "DEVELOPMENTS IN APPLIED PSYCHOLINGUISTICS RESEARCH," S. ROSENBERG AND J.H. KOPLIN, EDITORS, WHICH WILL BE PUBLISHED IN 1968 BY MACMILLAN COMPANY. IT WAS DESIGNED TO SERVE AN INTEGRATIVE FUNCTION--TO IDENTIFY SOME OF THE MAJOR IDEAS AND CONCERNS OF THE CONTRIBUTORS, TO IDENTIFY SOME OF THEIR…

  12. The role of experimental science in ICF -- examples from X-ray diagnostics and targets

    NASA Astrophysics Data System (ADS)

    Kilkenny, J. D.

    2016-10-01

    The USA Inertial Confinement Fusion (ICF) Program evolved from the Nuclear Test Program which had restricted shot opportunities for experimentalists to develop sophisticated experimental techniques. In contrast the ICF program in the US was able to increase the shot availability on its large facilities, and develop sophisticated targets and diagnostics to measure and understand the properties of the high energy density plasmas (HEDP) formed. Illustrative aspects of this evolution at Lawrence Livermore National Laboratory (LLNL), with examples of the development of diagnostics and target fabrication are described.

  13. Overviews of the Apollo Program and Its Management

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes items individually selected by scientific and technical information professionals that provide an overview of the history, events, and results of the Apollo missions. Planning, scheduling, and management are also included.

  14. An Overview of Fifth-Year Teacher Education Programs.

    ERIC Educational Resources Information Center

    Helmich, Edith

    A series of model five-year teacher education programs are described. Two main types of programs are included--state-initiated programs and university-based fifth-year programs. An analysis and description of of the following programs is presented: (1) Florida Performance Program Management System--Beginning Teacher Program; (2) Kentucky…

  15. Science to Protect Public Health and the Environment--EPA Research Program Overview 2016-2019

    EPA Pesticide Factsheets

    This document provides an overview of EPA’s research programs within the Office of Research and Development. This critically important work is providing the science needed to address the biggest problems facing environmental science.

  16. Whole-House Approach Benefits Builders, Buyers, and the Environment Building America Program Overview

    SciTech Connect

    2001-05-01

    This document provides an overview of the U.S. Department of Energy's Building America program. Building America works with the residential building industry to develop and implement innovative building processes and technologies.

  17. Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995

    SciTech Connect

    1996-06-01

    Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. The Magnetically Driven Direct Drive Approach to Ignition: Responses to Questions by Panel 1 of the FY15 ICF Program Review.

    SciTech Connect

    Sinars, Daniel

    2015-07-01

    The long-term goal of the pulsed-­power based, magnetically driven target approach is to achieve high single­shot yields (0.5-­1 GJ per shot). This goal may take decades to achieve, but if successful we believe it would be a key capability for the Stockpile Stewardship program, as noted as far back as 1988 in the Laboratory Microfusion Capability Phase 1 (U) study. If this approach is successful, it may be possible to achieve these yields from targets absorbing up to 10 MJ in a laboratory pulsed power facility with a stored energy of roughly 130 MJ. Such a facility would be substantially cheaper, and not as complex, than the corresponding pulsed power facility required for producing comparable yields from x-ray driven capsule targets.

  19. HiMAT flight program: Test results and program assessment overview

    NASA Technical Reports Server (NTRS)

    Deets, Dwain A.; Deangelis, V. Michael; Lux, David P.

    1986-01-01

    The Highly Manueverable Aircraft Technology (HiMAT) program consisted of design, fabrication of two subscale remotely piloted research vehicles (RPRVs), and flight test. This technical memorandum describes the vehicles and test approach. An overview of the flight test results and comparisons with the design predictions are presented. These comparisons are made on a single-discipline basis, so that aerodynamics, structures, flight controls, and propulsion controls are examined one by one. The interactions between the disciplines are then examined, with the conclusions that the integration of the various technologies contributed to total vehicle performance gains. An assessment is made of the subscale RPRV approach from the standpoint of research data quality and quantity, unmanned effects as compared with manned vehicles, complexity, and cost. It is concluded that the RPRV technique, as adopted in this program, resulted in a more complex and costly vehicle than expected but is reasonable when compared with alternate ways of obtaining comparable results.

  20. Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program

    SciTech Connect

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information that may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.

  1. Core science and technology development plan for indirect-drive ICF ignition. Revision 1

    SciTech Connect

    Powell, H.T.; Kilkenny, J.D.

    1995-12-01

    To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program.

  2. A Brief Overview of the Mountain-Plains Program.

    ERIC Educational Resources Information Center

    Conrad, Rowan W.

    This report discusses the five-year history of the Mountain-Plains Education and Economic Development Program. In broad terms, the program is viewed as a human development program and not simply as a technical training program. The adult population it serves is defined as rural disadvantaged, and the primary selection criterion is…

  3. Laser Program annual report 1984

    SciTech Connect

    Rufer, M.L.; Murphy, P.W.

    1985-06-01

    The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs.

  4. Overview of an Advanced Hypersonic Structural Concept Test Program

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony

    2007-01-01

    This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.

  5. Human Research Program Science Management: Overview of Research and Development Activities

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  6. Resource Recovery Overview [Teacher's Guide]; Resource Recovery and You [Student Book]. Resource Recovery Education Program.

    ERIC Educational Resources Information Center

    National Center for Resource Recovery, Inc., Washington, DC.

    The Resource Recovery Education Program contains a variety of ideas, approaches, and learning aids for teaching about solid waste disposal at the secondary level. The program kit consists of a teacher's guide which provides an overview; separate teacher's guides for social studies, science, and industrial arts; a student booklet of readings; and a…

  7. Encendiendo una Llama. Bilingual Gifted and Talented Program: Overview, Identification of Students, and Instructional Approaches.

    ERIC Educational Resources Information Center

    Hartford Public Schools, CT.

    Three pamphlets describe facets of "Encendiendo Una Llama," a Hartford (Connecticut) demonstration program for bilingual gifted and talented students. An overview pamphlet summarizes key aspects of the model program: identification procedures, instructional services, teacher training, parent involvement, evidence of effectiveness, implementation…

  8. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and Update FY15 and Beyond

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The NASA Electronic Parts and Packaging (NEPP) program, and its subset the NASA Electronic Parts Assurance Group (NEPAG), are NASA's point-of-contacts for reliability and radiation tolerance of electrical, electronic, and electromechanical (EEE) parts and their packages. This presentation includes a Fiscal Year 2015 program overview.

  9. Geothermal reservoir well stimulation program overview and status report

    SciTech Connect

    Campbell, D.A.; Crichlow, H.B.

    1980-02-07

    The reservoir selection process tasks, technology transfer tasks, and some of the reports that will be available from the program are discussed in some detail, along with future experiments and the program schedule. (MHR)

  10. The ICF and Postsurgery Occupational Therapy after Traumatic Hand Injury

    ERIC Educational Resources Information Center

    Fitinghoff, Helene; Lindqvist, Birgitta; Nygard, Louise; Ekholm, Jan; Schult, Marie-Louise

    2011-01-01

    Recent studies have examined the effectiveness of hand rehabilitation programmes and have linked the outcomes to the concept of ICF but not to specific ICF category codes. The objective of this study was to gain experience using ICF concepts to describe occupational therapy interventions during postsurgery hand rehabilitation, and to describe…

  11. Overview of the NASA high power laser program

    NASA Technical Reports Server (NTRS)

    Lundholm, J. G.

    1976-01-01

    The overall objectives of the NASA High Power Laser Program are reviewed along with their structure and center responsibilities. Present and future funding, laser power transmission in space, selected program highlights, the research and technology schedule, and the expected pace of the program are briefly considered.

  12. The Child and Family Resource Program: An Overview.

    ERIC Educational Resources Information Center

    Office of Child Development (DHEW), Washington, DC.

    This publication describes the Child and Family Resource Program (CFRP), and offers detailed information on specific characteristics of each of the 11 demonstration programs throughout the United States. In the first section background information presents the concept behind CFRP, objectives are outlined and program operation and evaluation are…

  13. Overview of NASA's Pulsed Plasma Thruster Development Program

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Kamhawi, Hani; Arrington, Lynn A.

    2004-01-01

    NASA's Pulsed Plasma Thruster Program consists of flight demonstration experiments, base research, and development efforts being conducted through a combination of in-house work, contracts, and collaborative programs. The program receives sponsorship from Energetics Project, the New Millennium Program, and the Small Business Innovative Research Program. The Energetics Project sponsors basic and fundamental research to increase thruster life, improve thruster performance, and reduce system mass. The New Millennium Program sponsors the in-orbit operation of the Pulsed Plasma Thruster experiment on the Earth Observing 1 spacecraft. The Small Business Innovative Research Program sponsors the development of innovative diamond-film capacitors, piezoelectric ignitors, and advanced fuels. Programmatic background, recent technical accomplishments, and future activities for each programmatic element are provided.

  14. Type C investigation of electrical fabrication projects in ICF Kaiser shops

    SciTech Connect

    Huckfeldt, R.A.

    1995-06-01

    A Type C Investigation Board was convened to investigate an electrical miswiring problem found during the operation of the electrical distribution trailer for the TWRS Rotary Mode Core Sampling Truck {number_sign}2. The trailer was designed by WHC and fabricated ICF KH on site for use in the Characterization Program. This problem resulted in a serious safety hazard since the support truck frame/chassis became electrically energized. This final report provides results of the ``Type C Investigation, Electrical Fabrication Projects in ICF KH Shops, June, 1995.`` It contains the investigation scope, executive summary, relevant facts, analysis, conclusions and corrective actions. DOE Order 5484.1, ``Environmental Protection, Safety and Health Protection Information Reporting Requirements,`` was followed in preparation of this report. Because the incident was electrical in nature and involved both Westinghouse Hanford Company and ICF Kaiser Hanford organizations, the board included members from both contractors and members with considerable electrical expertise.

  15. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) Program: A government overview

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1992-01-01

    LaRC, under the Design Analysis Methods for Vibrations (DAMVIBS) Program, set out in 1984 to establish the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. Considerable work was performed by the industry participants in the program since that time. Because the DAMVIBS Program is being phased out, a government/industry assessment of the program was made to identify those accomplishments and contributions which may be ascribed to the program. The purpose is to provide an overview of the program and its accomplishments and contributions from the perspective of the government sponsoring organization.

  16. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: A government overview

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1993-01-01

    NASA-Langley, under the Design Analysis Methods for Vibrations (DAMVIBS) Program, set out in 1984 to establish the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. Considerable work has been done by the industry participants in the program since that time. Because the DAMVIBS Program is being phased out, a government/industry assessment of the program has been made to identify those accomplishments and contributions which may be ascribed to the program. The purpose of this paper is to provide an overview of the program and its accomplishments and contributions from the perspective of the government sponsoring organization.

  17. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    SciTech Connect

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.; Marinak, M. M.; Verdon, C. P.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  18. Overview

    PubMed Central

    Pine, Penelope L.

    1998-01-01

    This issue of the Health Care Financing Review features four articles on payment and service delivery for care of individuals with human immunodeficiency virus (HIV) or acquired immunodeficiency syndrome (AIDS). These articles focus on the following topics: the cost and financing of care for persons with HIV disease, Medicare utilization of beneficiaries with AIDS, HIV/AIDS drug assistance programs funded under Title II of the Ryan White Care Act, and health-based payment systems for HIV/AIDS. PMID:25372978

  19. Accommodation Outcomes and the ICF Framework

    ERIC Educational Resources Information Center

    Schreuer, Naomi

    2009-01-01

    Accommodation of the environment and technology is one of the key mediators of adjustment to disability and participation in community. In this article, accommodations are tested empirically as facilitators of return to work and participation, as defined by the "International Classification of Disability, Function, and Health" (ICF) and…

  20. 42 CFR 442.15 - Duration of agreement for ICF/IIDs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Duration of agreement for ICF/IIDs. 442.15 Section 442.15 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS STANDARDS FOR PAYMENT TO NURSING FACILITIES AND INTERMEDIATE...

  1. ICF quarterly report January - March 1997 volume 7, number 3

    SciTech Connect

    Murray, J

    1998-04-09

    The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide critical information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.

  2. Overview and Summary: School Health Policies and Programs Study 2006

    ERIC Educational Resources Information Center

    Kann, Laura; Brener, Nancy D.; Wechsler, Howell

    2007-01-01

    Background: The School Health Policies and Programs Study (SHPPS) 2006 is the largest, most comprehensive assessment of school health programs in the United States ever conducted. Methods: The Centers for Disease Control and Prevention conducts SHPPS every 6 years. In 2006, computer-assisted telephone interviews or self-administered mail…

  3. Lawrence Berkeley Laboratory/University of California lighting program overview

    SciTech Connect

    Berman, S.

    1981-12-01

    The objective of the Lighting Program is to assist and work in concert with the lighting community (composed of manufacturers, designers, and users) to achieve a more efficient lighting economy. To implement its objectives, the Lighting Program has been divided into three major categories: technical engineering, buildings applications, and human impacts (impacts on health and vision). The technical program aims to undertake research and development projects that are both long-range and high-risk and which the lighting industry has little interest in pursuing on its own, but from which significant benefits could accrue to both the public and the industry. The building applications program studies the effects that introducing daylighting in commercial buildings has on lighting and cooling electrical energy requirements as well as on peak demand. This program also examines optimization strategies for integrating energy-efficient design, lighting hardware, daylighting, and overall building energy requirements. The impacts program examines relationships between the user and the physical lighting environment, in particular how new energy-efficient technologies relate to human productivity and health. These efforts are interdisciplinary, involving engineering, optometry, and medicine. The program facilities are described and the personnel in the program is identified.

  4. Technology transfer and the NASA Technology Utilization Program - An overview

    NASA Technical Reports Server (NTRS)

    Clarks, Henry J.; Rose, James T.; Mangum, Stephen D.

    1989-01-01

    The goal of the NASA Technology Utilization (TU) Program is to broaden and accelerate the transfer of aerospace technology and to develop new commercial products and processes that represent additional return on the national investment in the U.S. space programs. The mechanisms established by the TU Program includes TU offices, publications, the information retrieval, software dissemination, and the NASA Applications Engineering Program. These mechanisms are implemented through a nationwide NASA TU Network, working closely with industry and public sector organizations to encourage and facilitate their access and utilization of the results of the U.S space programs. Examples of TU are described, including a method for the reduction of metal fatigue in textile equipment and a method for the management of wandering behavior in Alzheimer's patients.

  5. An Overview of an Experimental Demonstration Aerotow Program

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Bowers, Albion H.; Lokos, William A.; Peters, Todd L.; Gera, Joseph

    1998-01-01

    An overview of an experimental demonstration of aerotowing a delta-wing airplane with low-aspect ratio and relatively high wing loading is presented. Aerotowing of future space launch configurations is a new concept, and the objective of the work described herein is to demonstrate the aerotow operation using an airplane configuration similar to conceptual space launch vehicles. Background information on the use of aerotow for a space launch vehicle is presented, and the aerotow system used in this demonstration is described. The ground tests, analytical studies, and flight planning used to predict system behavior and to enhance flight safety are detailed. The instrumentation suite and flight test maneuvers flown are discussed, preliminary performance is assessed, and flight test results are compared with the preflight predictions.

  6. Overview of the PHENIX Longitudinal and Transverse Spin Physics Program

    SciTech Connect

    Sarsour, Murad

    2011-07-15

    The PHENIX experiment uses polarized p+p collisions at RHIC to explore the spin structure of the proton. The p+p collisions, while complementary to deep inelastic lepton scattering experiments, offer distinct advantages for the determination of the helicity preferences of gluons, the flavor-dependence of sea antiquark polarizations, and parton transverse motion or spin orientation preferences inside polarized protons. The PHENIX experiment has been measuring the double longitudinal spin asymmetry of several inclusive probes to understand the gluon polarization in the allowed kinematic range. In addition, PHENIX experiment also has been studying the single spin asymmetries with a variety of final state particles in different kinematic regimes to shed light on the transverse spin structure. A brief overview is given of results to date and planned future directions.

  7. Overview of mine subsidence insurance programs in the United States

    SciTech Connect

    Ingram, D.K. )

    1993-01-01

    Research performed by the U.S. insurance industry has determined that mine subsidence is uninsurable. Consequently, the insurance industry has decided not to voluntarily offer mine subsidence insurance. The U.S. Department of the Interior has long been investigating the effects of mine subsidence. These investigations have resulted in Federal regulations and controls of mine subsidence. This U.S. Bureau of Mines report generally describes mine subsidence, the development of mine subsidence insurance programs, and the eight current mine subsidence insurance programs in the United States. The States that have these subsidence programs include Colorado, Illinois, Indiana, Kentucky, Ohio, Pennsylvania, West Virginia, and Wyoming. Major aspects of the programs include history, administrative and operational procedures, insurable structures, recognition of mine subsidence, major exclusions, claims, insurance premiums, and the economic health of each program. Addresses of agencies involved with mine subsidence insurance are also given. Information within this report can be useful for residential and commercial property owners and mine operators. States that are considered starting or have an existing mine subsidence insurance program can also use this report as a model for initiating or modifying their programs.

  8. Overview of Ultra-Efficient Engine Technology (UEET) Program

    NASA Technical Reports Server (NTRS)

    Shaw, Joe

    2001-01-01

    This viewgraph presentation provides information on the work done at NASA's Glenn Research Center on the ultra-efficient engine technology (UEET) program. The intent at the program's outset in 1998 was to establish a foundation for the next generation of aircraft engines for both commercial and military applications. A primary focus of this program was to be the development and utilization of technologies which would improve both subsonic and high-speed flight capabilities. Included in the presentation are details on the development of propulsion systems for varied types of aircraft, and results from attempts at reduction of emissions.

  9. Overview of the DOE/SERI Biochemical Conversion Program

    SciTech Connect

    Wright, J D

    1986-09-01

    The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additional improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.

  10. Compressed-air energy-storage technology: Program overview

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.

    1981-07-01

    A new technology designed to reduce the consumption of oil in the generation of electric power was developed. The program has two major elements: reservoir stability studies and second generation concepts studies. The reservoir stability studies are aimed at developing stability criteria for long term operation of large underground reservoirs used for compressed air storage. The second generation concepts studies are aimed at developing new concepts that will require little or no petroleum fuels for operation. The program efforts are outlined and major accomplishments towards the objectives of the program are identified.

  11. Automotive Stirling engine development program - Overview and status report

    NASA Technical Reports Server (NTRS)

    Nightingale, N. P.

    1983-01-01

    The current status of the automotive-Stirling-engine development program being undertaken by DOE and NASA Lewis is reviewed. The program goals and the reference-engine design are explained, and the modifications introduced to improve performance and lower manufacturing costs are discussed and illustrated, including part-power optimization; increased operating temperature (from 720 to 820 C); 45.4-kg weight reduction; elimination of Co and reduction of Cr used; and improved seals, ceramic components, and high-temperature alloys. The test program, some difficulties encountered, and results after 2042 h are summarized.

  12. SPS microwave health and ecological effects: Program area overview

    NASA Technical Reports Server (NTRS)

    Cahill, D. F.

    1980-01-01

    The potential microwave health and ecological effects due to the operations of the Satellite Power System are discussed. An outline of the research needed to insure public acceptance of the program is presented.

  13. Overview of Ultra-Efficient Engine Technology (UEET) Program

    NASA Technical Reports Server (NTRS)

    Shaw, Joe

    2000-01-01

    The purpose of this presentation is to plan an engine technology program that will enable next generation engines for both commercial and military applications, and to emphasize revolutionary technologies that will enable future subsonic and high-speed applications.

  14. The Northwest Regional Program in Veterinary Medical Education: An Overview

    ERIC Educational Resources Information Center

    Bustad, L. K.; And Others

    1977-01-01

    Results of a four-year cooperative effort to develop the Washington-Oregon-Idaho Regional Program in Veterinary Medicine (WOI) are summarized. Special admissions policies, curriculum, administrative procedures, and funding approaches are reviewed. (LBH)

  15. An overview of DOE's wind turbine development programs

    SciTech Connect

    Laxson, A.S.; Hock, S.M.; Musial, W.D. ); Goldman, P.R. )

    1992-12-01

    The development of technologically advanced, higher efficiency wind turbines continues to be a high priority of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation at $0.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s, and with fossil-fuel-based generators $0.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine (VET) Program will promote the rapid development of US capability to manufacture wind turbines to take advantage of near-term market opportunities. These value-engineered turbines will stem from units with known and well-documented records of performance. The Advanced Wind Turbine Program will assist US industry to develop and integrate advanced technologies into utility-grade wind turbines for the near term (1993--1995), and to develop a new generation of innovative turbines for the year 2000. The Utility Wind Turbine Performance Verification Program, a collaborative agreement between the Electric Power Research Institute (EPRI) and DOE, will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments to provide a bridge from development programs currently under way to commercial purchases of utility-grade wind turbines.

  16. Marshall Island radioassay quality assurance program an overview

    SciTech Connect

    Conrado, C.L.; Hamilton, T.F.; Kehl, S.R.; Robison, W.L.; Stoker, A.C.

    1998-09-01

    The Lawrence Livermore National Laboratory has developed an extensive quality assurance program to provide high quality data and assessments in support of the Marshall Islands Dose Assessment and Radioecology Program. Our quality assurance objectives begin with the premise of providing integrated and cost-effective program support (to meet wide-ranging programmatic needs, scientific peer review, litigation defense, and build public confidence) and continue through from design and implementation of large-scale field programs, sampling and sample preparation, radiometric and chemical analyses, documentation of quality assurance/quality control practices, exposure assessments, and dose/risk assessments until publication. The basic structure of our radioassay quality assurance/quality control program can be divided into four essential elements; (1) sample and data integrity control; (2) instrument validation and calibration; (3) method performance testing, validation, development and documentation; and (4) periodic peer review and on-site assessments. While our quality assurance objectives are tailored towards a single research program and the evaluation of major exposure pathways/critical radionuclides pertinent to the Marshall Islands, we have attempted to develop quality assurance practices that are consistent with proposed criteria designed for laboratory accre

  17. An Overview of the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip J.; Smith, Ira S.

    2003-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.

  18. An Overview: NASA LeRC Structures Programs

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1998-01-01

    A workshop on National Structures Programs was held, jointly sponsored by the AIAA Structures Technical Committee, the University of Virginia's Center for Advanced Computational Technology and NASA. The Objectives of the Workshop were to: provide a forum for discussion of current Government-sponsored programs in the structures area; identify high potential research areas for future aerospace systems; and initiate suitable interaction mechanisms with the managers of structures programs. The presentations covered structures programs at NASA, DOD (AFOSR, ONR, ARO and DARPA), and DOE. This publication is the presentation of the Structures and Acoustics Division of the NASA Lewis Research Center. The Structures and Acoustics Division has its genesis dating back to 1943. It is responsible for NASA research related to rotating structures and structural hot sections of both airbreathing and rocket engines. The work of the division encompasses but is not limited to aeroelasticity, structural life prediction and reliability, fatigue and fracture, mechanical components such as bearings, gears, and seals, and aeroacoustics. These programs are discussed and the names of responsible individuals are provided for future reference.

  19. Ocean Energy Program overview, fiscal years 1990-1991

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71 percent of the earth's surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans' waves, currents, and thermal and salinity gradients.

  20. NASA RPS Program Overview: A Focus on RPS Users

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Sutliff, Thomas J.; Sandifer, Carl E., II; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  1. Overview hazard analysis for the H2Fuel Bus Program

    SciTech Connect

    Hovis, G.L.

    1996-06-18

    The H2Fuel Bus project is a joint development effort to produce a safe, near-zero emission, 32 passenger bus that is propelled by electric power with continuous on-board hydrogen powered battery recharging. A key initiative in the hydrogen bus development effort is a rigorous evaluation of operational safety. Westinghouse Savannah River Co., the prime contractor at the Department of Energy`s Savannah River Site, has developed a hazard analysis methodology designed to provide a systematic, comprehensive identification and evaluation of hazards. Although originally developed to support nuclear/chemical facility safety basis documentation, the SRS Methodology has widespread applicability to operations and/or systems that utilize hazardous materials and energy. This methodology was used to perform an overview hazard analysis for the H2Fuel Bus project to focus attention on those hypothetical circumstances that pose the greatest threat to the populace and property. The hazard analysis yields a listing of all known H2Fuel Bus hazards, postulated accident scenarios describing possible hazardous releases or conditions, an assessment of the scenarios in terms of frequency of occurrence and consequence, and binning in frequency-consequence space to assess the relative severity of postulated scenarios.

  2. Overview of the EUROfusion Medium Size Tokamak scientific program

    NASA Astrophysics Data System (ADS)

    Martin, Piero; Coda, Stefano; Eich, Thomas; Hakola, Antti; Meyer, Hendrik; EUROfusion MST1 Team; AUG Team; MAST-U Team; TCV Team

    2016-10-01

    The EUROfusion MST (Medium Size Tokamaks) task force is in charge of the European science programme in the ASDEX Upgrade, TCV and MAST-U tokamaks. This paper will present an overview of the main results obtained in the 2015/16 campaign in AUG and TCV and the future plans. We will discuss, among others, successful disruption and runaway electron control experiments with MGI and 3D fields, the achievement of full ELM suppression with RMP accompanied by the understanding of plasma response and the heat load pattern study, the exploration of regimes with impurity seeding at high P/R with 85% radiation fraction and good confinement, the study of tungsten fuzz, where W samples with pre-formed nanostructures were exposed to H-mode Helium plasmas and the investigation on advanced divertor concepts. A survey of MHD limits and of MHD control in standard and high-beta regimes will be presented. The results from the AUG campaign dedicated to He plasmas in support of ITER initial operation will also be presented, as well as analysis of old MAST data that reveal interesting features in the filamentary transport. See http://www.euro-fusionscipub.org/mst1.

  3. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  4. NASA's Advanced Space Transportation Program: A Materials Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    1999-01-01

    The realization of low-cost assess to space is one of NASA's three principal goals or "pillars" under the Office of Aero-Space Technology. In accordance with the goals of this pillar, NASA's primary space transportation technology role is to develop and demonstrate next-generation technologies to enable the commercial launch industry to develop full-scale, low cost, highly reliable space launchers. The approach involves both ground-based technology demonstrations and flight demonstrators, including the X-33, X-34, Bantam, Reusable Launch Vehicle (RLV), and future experimental vehicles. Next generation space transportation vehicles and propulsion systems will require the development and implementation of advanced materials and processes. This presentation will provide an overview of advanced materials efforts which are focused on the needs of next generation space transportation systems. Applications described will include ceramic matrix composite (CMC) integrally bladed turbine disk (blisk); actively cooled CMC nozzle ramp for the aerospike engine; ablative thrust chamber/nozzle; and metal matrix composite turbomachinery housings.

  5. Overview of the solar dynamic ground test demonstration program

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1993-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LeRC) vacuum facility. An aerospace industry/ government team is working together to design, fabricate, build, and test a complete SD system. This paper reviews the goals and status of the SD GTD program. A description of the SD system includes key design features of the system, subsystems, and components as reported at the Critical Design Review (CDR).

  6. Overview of the EPA quality system for environmental programs

    SciTech Connect

    Johnson, G.L.

    1993-12-31

    Formalized quality assurance program requirements for the U.S. Environmental Protection Agency (EPA) have been established for more than a decade. During this period, the environmental issues and concerns addressed by the EPA have changed. Many issues, such as ozone depletion and global climate warming, have become international concerns among the world environmental community. Other issues, such as hazardous waste cleanup and clean air, remain a focus of national environmental concerns. As the environmental issues of the 1980`s evolved, the traditional quality assurance (QA) program was transformed through the use of quality management principles into a Quality System to help managers meet the needs of the 1990`s and beyond.

  7. SEWER-SEDIMENT CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents a historical overview of the sewer sediment control projects conducted by the Wet-Weather Flow Research Program of the USEPA. Research presented includes studies of the causes of sewer solids deposition and development/evaluation of control methods that can pr...

  8. COLLECTION SYSTEM SOLIDS CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents an historical overview of the sewer-solids control projects conducted by the Wet-Weather Flow Research Program of the US EPA. Research includes studies of the causes of sewer-solids deposition and development/evaluation of control methods that can prevent sewe...

  9. A Fifty-State Survey of School Finance Policies and Programs: An Overview

    ERIC Educational Resources Information Center

    Verstegen, Deborah A.; Jordan, Teresa S.

    2009-01-01

    This overview provides a synthesis of a comprehensive survey of school finance programs in the 50 states conducted in 2006-07. Information was provided by chief state school finance officers or persons with expertise in a state's public school funding-allocation system. Brief descriptions of the major Pre-K-12 funding formulae, district-based…

  10. 75 FR 39923 - Office of Postsecondary Education; Overview Information; Pilot Program for Course Material Rental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    .... Reporting: At the end of your project period, you must submit a final performance report, including... require more frequent performance reports under 34 CFR 75.720(c). For specific requirements on reporting... Office of Postsecondary Education; Overview Information; Pilot Program for Course Material Rental;...

  11. SEWER SEDIMENT CONTROL: AN OVERVIEW OF THE EPA WET WEATHER FLOW (WWF) RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents an overview of EPA WWF Research Program projects related to causes of sewer solids deposition and control methods that can prevent accumulation of sewer sediments. In particular, discussion will focus on the relationship of wastewater characteristics to flow ...

  12. Aviation Safety Program: Weather Accident Prevention (WxAP) Project Overview and Status

    NASA Technical Reports Server (NTRS)

    Nadell, Shari-Beth

    2003-01-01

    This paper presents a project overview and status for the Weather Accident Prevention (WxAP) aviation safety program. The topics include: 1) Weather Accident Prevention Project Background/History; 2) Project Modifications; 3) Project Accomplishments; and 4) Project's Next Steps.

  13. Improved ICF implosion performance through precision engineering features

    NASA Astrophysics Data System (ADS)

    Weber, Christopher

    2016-10-01

    The thin membrane that holds the capsule in-place in the hohlraum is recognized as one of the most significant contributors to reduced performance in indirect drive inertial confinement fusion (ICF) experiments on the National Ignition Facility (NIF). This membrane, known as the ``tent'', seeds a perturbation that is amplified by Rayleigh-Taylor and can rupture the capsule. The ICF program is undertaking a major effort to develop a less damaging capsule support mechanism. Possible alternatives include micron-scale rods spanning the hohlraum width and supporting either the capsule or stiffening the fill-tube, a larger fill-tube to both fill and support the capsule, or a low-density foam layer that protects the capsule from the tent impact. In addition to the challenges presented by nano and microscale engineering, it is difficult to model and experimentally verify improvement from these changes. The 3D nature of the proposed replacements and the radiation shadows they cast on the capsule prohibit direct simulation. Therefore a combination of reduced models and experimental verification are used to set requirements and down-select the options. Ultimately the improved capsule support will be used to repeat a DT-layered implosion and demonstrate improved performance. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  14. Seismic Safety Margins Research Program. Phase I, final report - overview

    SciTech Connect

    Smith, P. D.; Dong, R. G.; Bernreuter, D. L.; Bohn, M. P.; Chuang, T. Y.; Cummings, G. E.; Johnson, J. J.; Mensing, R. W.; Wells, J. E.

    1981-03-06

    The Seismic Safety Margins Research Program (SSMRP) is a multiyear, multiphase program whose overall objective is to develop improved methods for seismic safety assessments of nuclear power plants, using a probabilistic computational procedure. The program is being carried out at the Lawrence Livermore National Laboratory and is sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Phase I of the SSMRP was successfully completed in January 1981: A probabilistic computational procedure for the seismic risk assessment of nuclear power plants has been developed and demonstrated. The methodology is implemented by three computer programs: HAZARD, which assesses the seismic hazard at a given site, SMACS, which computes in-structure and subsystem seismic responses, and SEISIM, which calculates system failure probabilities and radioactive release probabilities, given (1) the response results of SMACS, (2) a set of event trees, (3) a family of fault trees, (4) a set of structural and component fragility descriptions, and (5) a curve describing the local seismic hazard. The practicality of this methodology was demonstrated by computing preliminary release probabilities for Unit 1 of the Zion Nuclear Power Plant north of Chicago, Illinois. Studies have begun aimed at quantifying the sources of uncertainty in these computations. Numerous side studies were undertaken to examine modeling alternatives, sources of error, and available analysis techniques. Extensive sets of data were amassed and evaluated as part of projects to establish seismic input parameters and to produce the fragility curves. 66 refs., 29 figs., 10 tabs.

  15. In-Space Propulsion Program Overview and Status

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul F.; Johnson, Les; Baggett, Randy M.

    2003-01-01

    NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Solar Electric Propulsion, Aerocapture, Solar Sails, Momentum Exchange Tethers, Plasma Sails and other technologies such as Advanced Chemical Propulsion. The ISP Program intends to develop cost-effective propulsion technologies that will provide a broad spectrum of mission possibilities, enabling NASA to send vehicles on longer, more useful voyages and in many cases to destinations that were previously unreachable using conventional means. The ISP approach to identifying and prioritizing these most promising technologies is to use mission and system analysis and subsequent peer review. The ISP program seeks to develop technologies under consideration to Technology Readiness Level (TRL) -6 for incorporation into mission planning within 3-5 years of initiation. The NASA TRL 6 represents a level where a technology is ready for system level demonstration in a relevant environment, usually a space environment. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRA's) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA Headquarters Office of Space Science and implemented by the Marshall Space Flight Center in Huntsville, Alabama.

  16. AN OVERVIEW OF THE MINE WASTE TECHNOLOGY PROGRAM PROJECTS

    EPA Science Inventory

    The Mine Waste Technology Program (MWTP) is an interagency agreement with the DOE and has partnerships with Universities, Forest Service, BLM, Industry and states. The mission of the MWTP is to provide engineering solutions to national environmental issues resulting from the past...

  17. Biomass Power: Program overview fiscal years 1993--1994

    NASA Astrophysics Data System (ADS)

    1995-03-01

    The Biomass Power Program and industry are developing technologies to expand the use of biomass that include methods of feedstock production and the equipment to convert feedstocks into electric power or process heat. With the help of advanced biomass power technologies and new feedstock supply systems, as much as 50,000 megawatts (MW) of biomass power capacity will be in place by the year 2010. The Biomass Power Program supports the development of three technologies -- gasification, pyrolysis, and direct combustion -- from the laboratory bench scale to the prototype commercial scale. Gasification equipment produces biogas that is burned in high-efficiency turbine-generators developed for the electric power industry. Pyrolysis processes produce oils from renewable biomass that burn like petroleum to generate electricity. In direct combustion technology, power plants today burn bulk biomass directly to generate electricity. Improving the direct combustion technology of these plants increases efficiency and reduces emissions. In addition to developing these three technologies, the Biomass Power Program supports joint ventures to plan and construct facilities that demonstrate the benefits of biomass power. The program is supporting joint ventures to conduct 10 case studies of dedicated feedstock supply systems.

  18. Computing, Information, and Communications Technology (CICT) Program Overview

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.

    2003-01-01

    The Computing, Information and Communications Technology (CICT) Program's goal is to enable NASA's Scientific Research, Space Exploration, and Aerospace Technology Missions with greater mission assurance, for less cost, with increased science return through the development and use of advanced computing, information and communication technologies

  19. OVERVIEW AND STATUS OF THE PM SUPERSITES PROGRAM

    EPA Science Inventory

    The PM Supersites program was first conceived as a set of special studies extending beyond the national regulatory networks for particulate matter (PM) to elucidate source-receptor relationships and atmospheric processes in support of State implementation plans (SIP's). The pr...

  20. An Overview of the Federal Offenders Rehabilitation Program.

    ERIC Educational Resources Information Center

    1966

    The Federal Offenders Rehabilitation Program is designed to test experimentally the centrality of employment in offender rehabilitation. Specifically, does appropriate employment, obtained through the services of vocational rehabilitation counseling, change an offender's pattern of behavior? Does this change occur in the direction of integration…

  1. USSOCOM TCCC CASEVAC Set Program A Retrospective and Overview.

    PubMed

    Gilpin, John

    2012-01-01

    The United States Special Operations Command (USSOCOM) Tactical Combat Casualty Care (TCCC) Casualty Evacuation (CASEVAC) Set Program was initiated in 2006 as a three-step effort. The initial effort was to develop an improved Individual First Aid Kit (IFAK); this was followed by the development of a Medic bag and culminated with the CASEVAC Set. The intent of the Program is both standardizing the medical load out across SOF components and expanding the skill set of Special Operations Forces (SOF) medical practitioners by providing equipment and training outside the normal parameters of many units. Even though the Set is currently being fielded to a variety of units, there are still personnel unaware of the Set and its capabilities. The goal of this article is to increase awareness of the existence of the program and to promote thought/discussion regarding the expansion of the capabilities of the Advanced Tactical Practitioner (ATP) beyond traditional medical skills. This program is best understood by first looking back to where it originated, and then examining where it is at present.

  2. OVERVIEW OF THE INTRAMURAL RISK MANAGEMENT RESEARCH PROGRAM

    EPA Science Inventory

    This presentation will provide a summary of the risk management portion of ORD's endocrine disrupting chemicals (EDCs) research program, including its motivation, goals, planning efforts and resulting research areas.

    In an emerging research area like EDCs, risk management ...

  3. Machine Tool Advanced Skills Technology Program (MAST). Overview and Methodology.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology Program (MAST) is a geographical partnership of six of the nation's best two-year colleges located in the six states that have about one-third of the density of metals-related industries in the United States. The purpose of the MAST grant is to develop and implement a national training model to overcome…

  4. Solar thermal program summary. Volume 1: Overview, fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1989-02-01

    The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology, energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.

  5. Weatherization Innovation Pilot Program: Program Overview and Philadelphia Project Highlight (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    Case Study with WIPP program overview, information regarding eligibility, and successes from Pennsylvania's Commission on Economic Opportunity (CEO) that demonstrate innovative approaches that maximize the benefit of the program. The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) recently launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of homes of low-income families. Since 2010, WIPP has helped weatherization service providers as well as new and nontraditional partners leverage non-federal financial resources to supplement federal grants, saving taxpayer money. WIPP complements the Weatherization Assistance program (WAP), which operates nation-wide, in U.S. territories and in three Native American tribes. 16 grantees are implementing weatherization innovation projects using experimental approaches to find new and better ways to weatherize homes. They are using approaches such as: (1) Financial tools - by understanding a diverse range of financing mechanisms, grantees can maximize the impact of the federal grant dollars while providing high-quality work and benefits to eligible low-income clients; (2) Green and healthy homes - in addition to helping families reduce their energy costs, grantees can protect their health and safety. Two WIPP projects (Connecticut and Maryland) will augment standard weatherization services with a comprehensive green and healthy homes approach; (3) New technologies and techniques - following the model of continuous improvement in weatherization, WIPP grantees will continue to use new and better technologies and techniques to improve the quality of work; (4) Residential energy behavior change - Two grantees are rigorously testing home energy monitors (HEMs) that display energy used in kilowatt-hours, allowing residents to monitor and reduce their energy

  6. Overview of the Illinois small operator assistance program

    SciTech Connect

    Maxwell, A.H.

    1984-12-01

    The Small Operator Assistance Program (SOAP) is a federally funded program mandated by the Federal Surface Mine Control and Reclamation Act of 1977. Its function is to provide technical assistance to coal mine operators who mine less than 100,000 tons of coal a year in preparing the Statement of the Test Borings and Prediction of the Probable Hydrologic Consequences of Mining, which are required as a part of an application to mine coal or recover carbon. In Illinois the SOAP program is administered by the Illinois Department of Mines and Minerals (IDMM). The data collection, analysis, and hydrologic impact assessments have been conducted by the Coal Extraction and Utilization Research Center (CEURC) of Southern Illinois University at Carbondale, Illinois. Despite several stumblingblocks confronted by the SOAP program in its early stages of operation, the CEURC and IDMM have developed a method of operation which has adapted to the changes in the law and is geared toward the small coal mine industry in Illinois. Since the beginning of the program, 17 small operators have been assisted in preparing their permit applications. These were operators of surface mines, carbon recovery mines, and coal waste disposal sites. The data collected at each site generally consisted of six months of surface and groundwater monitoring and a chemical analysis of the overburden or other material to the disturbed during the operation. With the vast amount of data collected, the CEURC and IDMM are in a position to compile an extensive data base which could be used in determinations of the probable hydrologic consequences of future mining operations.

  7. Space Shuttle Reusable Solid Rocket Motor Program Overview and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Graves, Stan R.; McCool, Alex (Technical Monitor)

    2001-01-01

    An overview of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program is provided with a summary of lessons learned since the first test firing in 1977. Fifteen different lessons learned are discussed that fundamentally changed the motor's design, processing, and RSRM program risk management systems. The evolution of the rocket motor design is presented including the baseline or High Performance Solid Rocket Motor (HPM), the Filament Wound Case (FWC), the RSRM, and the proposed Five-Segment Booster (FSB).

  8. Overview of the X-band R& D Program

    SciTech Connect

    Raubenheimer, Tor O

    2002-08-21

    An electron/positron linear collider with a center-of-mass energy between 0.5 and 1 TeV is recognized as an important complement to the physics program of the LHC. The Next Linear Collider (NLC) is being designed by a US collaboration (FNAL, LBNL, LLNL, and SLAC) which is working closely with the Japanese collaboration that is designing the Japanese Linear Collider (JLC). The NLC/JLC main linacs are based on normal conducting 11 GHz rf. This paper will discuss the status of the NLC design. Results from the ongoing R&D programs, including the recently uncovered high gradient damage problem, will be discussed along with changes to the optical design and collider layout which were made to enhance the collider capabilities.

  9. Geothermal program overview: Fiscal years 1993--1994

    SciTech Connect

    1995-11-01

    The DOE Geothermal Energy Program is involved in three main areas of research: finding and tapping the resource; power generation; and direct use of geothermal energy. This publication summarizes research accomplishments for FY 1993 and 1994 for the following: geophysical and geochemical technologies; slimhole drilling for exploration; resource assessment; lost circulation control; rock penetration mechanics; instrumentation; Geothermal Drilling Organization; reservoir analysis; brine injection; hot dry rock; The Geysers; Geothermal Technology Organization; heat cycle research; advanced heat rejection; materials development; and advanced brine chemistry.

  10. National Student Aid Profile: Overview of 2012 Federal Programs

    ERIC Educational Resources Information Center

    National Association of Student Financial Aid Administrators (NJ1), 2012

    2012-01-01

    From 2000-2001 to 2010-2011, the total amount of federal financial aid awarded to students under Title IV of the Higher Education Act (HEA) jumped from $64.0 billion to an estimated $169.1 billion, a 10-year increase of 164%. For 2010-2011, the Title IV programs accounted for 72% of the $235 billion in total financial aid received by college…

  11. DoD Systems Engineering Major Program Support Overview

    DTIC Science & Technology

    2012-01-01

    PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...development schedule including WBS and IMP/IMS • Describes risk management process and organization; identifies system-level technical risks and...management • Summarizes technical review planning details and responsibilities • Lists technical baseline artifacts and describes their management

  12. An overview of the DIII-D program

    SciTech Connect

    Luxon, J.L.

    1996-10-01

    The DIII-D program focuses on developing fusion physics in an integrated program of tokamak concept improvement. The intent is both to support the present ITER physics R and D and to develop more efficient concepts for the later phases of ITER and eventual power plants. Progress in this effort can be best summarized by recent results for a diverted deuterium discharge with negative central shear which reached a performance level of Q{sub DT} = 0.32. The ongoing development of the tools needed to carry out this program of understanding and optimization continues to be crucial to its success. Control of the plasma cross-sectional shape and the internal distributions of plasma current, density, and rotation has been essential to optimizing plasma performance. Advanced divertor concepts provide edge power and particle control for future devices such as ITER and provide techniques to help manage the edge power and particle flows for advanced tokamak concepts. New divertor diagnostics and improved modeling are developing excellent divertor understanding. Many of the plasma physics issues being posed by ITER are being addressed. Scrapeoff layer power flow is being characterized to provide an accurate basis for the design of reactor devices. Ongoing studies of the density limit focus on identifying ways in which ITER can achieve the required densities in excess of the Greenwald limit. Better understanding of disruptions is crucial to the design of future reactors.

  13. Integrated gasification combined cycle overview of FETC--S program

    SciTech Connect

    Stiegel, G.J.; Maxwell, R.C.

    1999-07-01

    Changing market conditions, brought about by utility deregulation and increased environmental regulations, have encouraged the Department of Energy/Federal Energy Technology Center (DOE/FETC) to restructure its Integrated Gasification Combined Cycle (IGCC) program. The program emphasis, which had focused on baseload electricity production from coal, is now expanded to more broadly address the production of a suite of energy and chemical products. The near-term market barrier for baseload power applications for conventional IGCC systems combines with increasing opportunities to process a range of low- and negative-value opportunity feedstocks. The new program is developing a broader range of technology options that will increase the versatility and the technology base for commercialization of gasification-based technologies. This new strategy supports gasification in niche markets where, due to its ability to coproduce a wide variety of commodity and premium products to meet market requirements, it is an attractive alternative. By obtaining operating experience in industrial coproduction applications today, gasification system modules can be refined and improved leading to commercial guarantees and acceptance of gasification technology as a cost-effective technology for baseload power generation and coproduction as these markets begin to open.

  14. Overview of the NASA tropospheric environmental quality remote sensing program

    NASA Technical Reports Server (NTRS)

    Allario, F.; Ayers, W. G.; Hoell, J. M.

    1979-01-01

    This paper will summarize the current NASA Tropospheric Environmental Quality Remote Sensing Program for studying the global and regional troposphere from space, airborne and ground-based platforms. As part of the program to develop remote sensors for utilization from space, NASA has developed a series of passive and active remote sensors which have undergone field test measurements from airborne and ground platforms. Recent measurements with active lidar and passive gas filter correlation and infrared heterodyne techniques will be summarized for measurements of atmospheric aerosols, CO, SO2, O3, and NH3. These measurements provide the data base required to assess the sensitivity of remote sensors for applications to urban and regional field measurement programs. Studies of Earth Observation Satellite Systems are currently being performed by the scientific community to assess the capability of satellite imagery to detect regions of elevated pollution in the troposphere. The status of NASA sponsored research efforts in interpreting satellite imagery for determining aerosol loadings over land and inland bodies of water will be presented, and comments on the potential of these measurements to supplement in situ and airborne remote sensors in detecting regional haze will be made.

  15. In-Space Propulsion Program Overview and Status

    NASA Technical Reports Server (NTRS)

    Carroll, Carol; Johnson, Les; Baggett, Randy

    2002-01-01

    NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Electric Propulsion (Solar and Nuclear Electric) [note: The Nuclear Electric Propulsion work will be transferred to the NSI program in FY03]; Propellantless Propulsion (aerocapture, solar sails, plasma sails, and momentum exchange tethers); Advanced Chemical Propulsion. The ISP approach to identifying and prioritizing these most promising technologies is to use mission analysis and subsequent peer review. These technologies under consideration are mid-Technology Readiness Level (TRL) up to TRL-6 for incorporation into mission planning within three - five years of initiation. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRAs) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA HQ (Headquarters) and implemented by the Marshall Space Flight Center in Huntsville, Alabama.

  16. Overview of the Ares I Scale Model Acoustic Test Program

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    Launch environments, such as lift-off acoustic (LOA) and ignition overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. LOA environments are used directly in the development of vehicle vibro-acoustic environments and IOP is used in the loads assessment. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe for component survivability, reduction of the environment itself is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the Ares I LOA and IOP environments for the vehicle and ground systems including the Mobile Launcher (ML) and tower. An additional objective was to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. ASMAT was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116 (TS 116). The ASMAT program is described in this presentation.

  17. Laser program annual report 1983

    SciTech Connect

    Hendricks, C.D.; Rufer, M.L.; Murphy, P.W.

    1984-06-01

    In the 1983 Laser Program Annual Report we present the accomplishments and unclassified activities of the Laser Program at Lawrence Livermore National laboratory (LLNL) for the year 1983. It should be noted that the report, of necessity, is a summary, and more detailed expositions of the research can be found in the many publications and reports authored by staff members in the Laser Program. The purpose of this report is to present our work in a brief form, but with sufficient depth to provide an overview of the analytical and experimental aspects of the LLNL Inertial-Confinement Fusion (ICF) Program. The format of this report is basically the same as that of previous years. Section 1 is an overview and highlights the important accomplishments and directions of the Program. Sections 2 through 7 provide the detailed information on the various major parts of the Program: Laser Systems and Operations, Target Design, Target Fabrication, Fusion Experiments, Laser Research and Development, and Energy Applications.

  18. Overview of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Leahy, P.P.; Thompson, T.H.

    1994-01-01

    The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.

  19. An overview of DARPA's advanced space technology program

    NASA Astrophysics Data System (ADS)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  20. Wetted Foam Liquid Fuel ICF Target Experiments

    NASA Astrophysics Data System (ADS)

    Olson, R.; Leeper, R.; Yi, A.; Zylstra, A.; Kline, J.; Peterson, R.; Braun, T.; Biener, J.; Biener, M.; Kozioziemski, B.; Sater, J.; Hamza, A.; Nikroo, A.; Berzak Hopkins, L.; Lepape, S.; MacKinnon, A.; Meezan, N.

    2015-11-01

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We plan to use the liquid fuel layer capsules in a NIF experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the robustness of hot spot formation. DT or D2 Liquid Layer ICF capsules allow for flexibility in hot spot convergence ratio via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR =15), but will become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In these initial experiments, we are testing our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, with the longer-term objective of developing a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.

  1. Plasma photonics in ICF & HED conditions

    NASA Astrophysics Data System (ADS)

    Michel, Pierre; Turnbull, David; Divol, Laurent; Pollock, Bradley; Chen, Cecilia Y.; Tubman, Eleanor; Goyon, Clement S.; Moody, John D.

    2015-11-01

    Interactions between multiple high-energy laser beams and plasma can be used to imprint refractive micro-structures in plasmas via the lasers' ponderomotive force. For example, Inertial confinement fusion (ICF) experiments at the National Ignition Facility already rely on the use of plasma gratings to redirect laser light inside an ICF target and tune the symmetry of the imploded core. More recently, we proposed new concepts of plasma polarizer and waveplate, based on two-wave mixing schemes and laser-induced plasma birefringence. In this talk, we will present new experimental results showing the first demonstration of a fully tunable plasma waveplate, which achieved near-perfect circular laser polarization. We will discuss further prospects for novel ``plasma photonics'' concepts based on two- and four-wave mixing, such as optical switches, bandpass filters, anti-reflection blockers etc. These might find applications in ICF and HED experiments by allowing to manipulate the lasers directly in-situ (i.e. inside the targets), as well as for the design of high power laser systems. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Rover nuclear rocket engine program: Overview of rover engine tests

    NASA Technical Reports Server (NTRS)

    Finseth, J. L.

    1991-01-01

    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  3. An overview of the NASA Advanced Propulsion Concepts program

    NASA Astrophysics Data System (ADS)

    Curran, Francis M.; Bennett, Gary L.; Frisbee, Robert H.; Sercel, Joel C.; Lapointe, Michael R.

    1992-07-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems.

  4. Overview of NASA PTA propfan flight test program

    NASA Technical Reports Server (NTRS)

    Graber, Edwin J.

    1990-01-01

    The progress is covered of the NASA sponsored Propfan Test Assessment (PTA) flight test program. In PTA, a 9 ft. diameter propfan was installed on the left wing of a Gulfstream GII executive jet and is undergoing extensive flight testing to evaluate propfan structural integrity, near and far field noise, and cabin interior noise characteristics. This research testing includes variations in propeller tip speed and power loading, nacelle tilt angle, and aircraft Mach number and altitude. As a result, extensive parametric data will be obtained to verify and improve computer codes for predicting propfan aeroelastic, aerodynamic, and aeroacoustic characteristics. Over 600 measurements are being recorded for each of approx. 600 flight test conditions.

  5. Overview of overseas humanitarian, disaster, and civic aid programs.

    PubMed

    Drifmeyer, Jeff; Llewellyn, Craig

    2003-12-01

    The U.S. Department of Defense (DoD) conducts humanitarian assistance missions under the Overseas Humanitarian Disaster and Civic Aid program for the statutory purposes of training military personnel, serving the political interests of the host nation and United States, and providing humanitarian relief to foreign civilians. These purposes are undertaken via the humanitarian assistance (HA), humanitarian and civic assistance, and excess property donation programs. DoD conducts over 200 such projects annually at a direct cost of approximately 27 million dollars in fiscal year 2001. Although varying by year and command, as many as one-half of these projects involve aspects of health care. These range from short-term patient care to donation of medical supplies and equipment excess to the needs of the DoD. Despite the considerable resources invested and importance of international actions, there is presently no formal evaluation system for these HA projects. Current administrative staffing of these programs by military personnel is often by individuals with many other duties and responsibilities. As a result, humanitarian projects are often inadequately coordinated with nongovernmental organizations, private volunteer organizations, or host-nation officials. Nonmedical military personnel sometimes plan health-related projects with little or no coordination with medical experts, military or civilian. After action reports (AARs) on these humanitarian projects are often subjective, lack quantitative details, and are devoid of measures of effectiveness. AARs are sometimes inconsistently completed, and there is no central repository of information for analysis of lessons learned. (The approximate 100 AARs used in the conduct of these studies are available for official use in the Learning Resources Center, Uniformed Services University of Health Sciences.) Feedback from past humanitarian projects is rare and with few exceptions; DoD-centric projects of a similar design are

  6. An overview of the NASA Advanced Propulsion Concepts program

    SciTech Connect

    Curran, F.M.; Bennett, G.L.; Frisbee, R.H.; Sercel, J.C.; Lapointe, M.R. JPL, Pasadena, CA Sverdrup Technology, Inc., Brook Park, OH NASA, Lewis Research Center, Cleveland, OH )

    1992-07-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems. 45 refs.

  7. Overview of Sandia`s Electric Vehicle Battery Program

    SciTech Connect

    Clark, R.P.

    1993-12-31

    Sandia National Laboratories is actively involved several projects which are part of an overall Electric Vehicle Battery Program. Part of this effort is funded by the United States Department of Energy/Office of Transportation Technologies (DOE/OTT) and the remainder is funded through the United States Advanced Battery Consortium (USABC). DOE/OTT supported activities include research and development of zinc/air and sodium/sulfur battery technologies as well as double layer capacitor (DLC) R&D. Projects in the USABC funded work include lithium/polymer electrolyte (LPE) R&D, sodium/sulfur activities and battery test and evaluation.

  8. An overview of the NASA textile composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1993-01-01

    The NASA Langley Research Center is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structures. In addition to in-house research, the program includes major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house research is focused on science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of innovative design concepts, cost-effective fabrication, and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3-D weaving, 2-D and 3-D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile

  9. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Tringe, Susannah [DOE JGI

    2016-07-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  10. Gasoline toxicology: overview of regulatory and product stewardship programs.

    PubMed

    Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb

    2014-11-01

    Significant efforts have been made to characterize the toxicological properties of gasoline. There have been both mandatory and voluntary toxicology testing programs to generate hazard characterization data for gasoline, the refinery process streams used to blend gasoline, and individual chemical constituents found in gasoline. The Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) is the primary tool for the U.S. Environmental Protection Agency (EPA) to regulate gasoline and this supplement presents the results of the Section 211(b) Alternative Tier 2 studies required for CAA Fuel and Fuel Additive registration. Gasoline blending streams have also been evaluated by EPA under the voluntary High Production Volume (HPV) Challenge Program through which the petroleum industry provide data on over 80 refinery streams used in gasoline. Product stewardship efforts by companies and associations such as the American Petroleum Institute (API), Conservation of Clean Air and Water Europe (CONCAWE), and the Petroleum Product Stewardship Council (PPSC) have contributed a significant amount of hazard characterization data on gasoline and related substances. The hazard of gasoline and anticipated exposure to gasoline vapor has been well characterized for risk assessment purposes.

  11. Performance seeking control: Program overview and future directions

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1993-01-01

    A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.

  12. Defense and Veterans Head Injury Program: background and overview.

    PubMed

    Salazar, A M; Zitnay, G A; Warden, D L; Schwab, K A

    2000-10-01

    Traumatic brain injury (TBI) is the principal cause of death and disability for young Americans, with an estimated societal cost of over $39 billion per year. The Defense and Veterans Head Injury Program (DVHIP) represents a close collaboration among the Departments of Defense (DoD) and Veterans Affairs (DVA), the Brain Injury Association (BIA), and the International Brain Injury Association (IBIA). Its principal mission is to ensure that military and veteran patients with head injury receive TBI-specific evaluation, treatment, rehabilitation, and follow-up, while at the same time addressing the readiness mission of the military and helping to define optimal care for victims of TBI nationwide. Defense and Veterans Head Injury Program activities can be grouped into three broad classes: (1) TBI education, community service, and primary prevention projects; (2) combined TBI clinical treatment, rehabilitation, and clinical research projects; and (3) clinically linked TBI laboratory research projects. It is thus based on a prudent integration of clinical care and follow-up with programmatic clinical and clinically related laboratory research, TBI prevention, and education. This previously nonexistent clinical infrastructure now offers a valuable base for ongoing TBI clinical research.

  13. An Overview of SIMBIOS Program Activities and Accomplishments. Chapter 1

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; McClain, Charles R.

    2003-01-01

    The SIMBIOS Program was conceived in 1994 as a result of a NASA management review of the agency's strategy for monitoring the bio-optical properties of the global ocean through space-based ocean color remote sensing. At that time, the NASA ocean color flight manifest included two data buy missions, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Earth Observing System (EOS) Color, and three sensors, two Moderate Resolution Imaging Spectroradiometers (MODIS) and the Multi-angle Imaging Spectro-Radiometer (MISR), scheduled for flight on the EOS-Terra and EOS-Aqua satellites. The review led to a decision that the international assemblage of ocean color satellite systems provided ample redundancy to assure continuous global coverage, with no need for the EOS Color mission. At the same time, it was noted that non-trivial technical difficulties attended the challenge (and opportunity) of combining ocean color data from this array of independent satellite systems to form consistent and accurate global bio-optical time series products. Thus, it was announced at the October 1994 EOS Interdisciplinary Working Group meeting that some of the resources budgeted for EOS Color should be redirected into an intercalibration and validation program (McClain et al., 2002).

  14. Spitzer ultra faint survey program (surfs up). I. An overview

    SciTech Connect

    Bradač, Maruša; Huang, Kuang-Han; Cain, Benjamin; Hall, Nicholas; Lubin, Lori; Ryan, Russell; Casertano, Stefano; Lemaux, Brian C.; Schrabback, Tim; Hildebrandt, Hendrik; Gonzalez, Anthony H.; Allen, Steve; Von der Linden, Anja; Gladders, Mike; Hinz, Joannah; Zaritsky, Dennis; Treu, Tommaso

    2014-04-20

    Spitzer UltRa Faint SUrvey Program is a joint Spitzer and Hubble Space Telescope Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z ≳ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest-frame optical light, which only Spitzer can probe for sources at z ≳ 7, for a large enough sample of typical galaxies. Our program consists of 550 hr of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ∼30 hr exposure time in both 3.6 μm and 4.5 μm in the central 4' × 4' field and ∼15 hr in the flanking fields. This results in 3σ sensitivity limits of ∼26.6 and ∼26.2 AB magnitudes for the central field in the IRAC 3.6 and 4.5 μm bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z ≳ 7 sources (using a z = 9.5 galaxy behind MACS J1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical point-spread function models. In the future we plan to release these data products for the entire survey.

  15. Urban Dispersion Program Overview and MID05 Field Study Summary

    SciTech Connect

    Allwine, K Jerry; Flaherty, Julia E.

    2007-07-31

    The Urban Dispersion Program (UDP) was a 4-year project (2004–2007) funded by the U.S. Department of Homeland Security with additional support from the Defense Threat Reduction Agency. The U.S. Environmental Protection Agency (EPA) also contributed to UDP through funding a human-exposure component of the New York City (NYC) field studies in addition to supporting an EPA scientist in conducting modeling studies of NYC. The primary goal of UDP was to improve the scientific understanding of the flow and diffusion of airborne contaminants through and around the deep street canyons of NYC. The overall UDP project manager and lead scientist was Dr. Jerry Allwine of Pacific Northwest National Laboratory. UDP had several accomplishments that included conducting two tracer and meteorological field studies in Midtown Manhattan.

  16. Overview of Reclamation's geothermal program in Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Fulcher, M. K.

    1974-01-01

    The Bureau of Reclamation is presently involved in a unique Geothermal Resource Development Program in Imperial Valley, California. The main purpose of the investigations is to determine the feasibility of providing a source of fresh water through desalting geothermal fluids stored in the aquifers underlying the valley. Significant progress in this research and development stage to date includes extensive geophysical investigations and the drilling of five geothermal wells on the Mesa anomaly. Four of the wells are for production and monitoring the anomaly, and one will be used for reinjection of waste brines from the desalting units. Two desalting units, a multistage flash unit and a vertical tube evaporator unit, have been erected at the East Mesa test site. The units have been operated on shakedown and continuous runs and have produced substantial quantities of high-quality water.

  17. An overview of the Kennedy Space Center robotics program

    NASA Astrophysics Data System (ADS)

    Rhodes, Eric L.

    1993-02-01

    The KSC program has the ability to prove the soundness of a particular robotic concept on the ground before it is used in space. In this context, three (3) robotic systems are discussed: the tile robot (Tessellator); HFIR (High Efficiency Particulate Air (HEPA) Filter Inspection Robot); and ARID (Automatic Radiator Inspection Project). The Tessellator is a semi-autonomous robotic system used to rewaterproof and inspect thermal protection system tiles on the underside of the orbiter. The HFIR is used for autonomous inspection of HEPA filters located at the top of the LC 39 payload changeout rooms. The ARID is designed for autonomous inspection of orbiter radiators for damage while in the orbiter processing facility.

  18. Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988

    NASA Astrophysics Data System (ADS)

    1989-02-01

    Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.

  19. Implementation of the International Classification of Functioning, Disability and Health (ICF) and the ICF Children and Youth Version (ICF-CY) within the context of augmentative and alternative communication.

    PubMed

    Pless, Mia; Granlund, Mats

    2012-03-01

    The purpose of this article is to discuss the implementation of the International Classification of Functioning, Disability and Health (ICF), and the ICF version for Children and Youth (ICF-CY), within the context of augmentative and alternative communication (AAC). First, the use of the ICF and the ICF-CY in AAC research is analyzed. Second, examples of training and implementation of ICF from other contexts besides AAC are provided. Finally, we synthesize data to provide directions for future implementation of the ICF and ICF-CY in the field of AAC. We conclude that, within AAC, organizational routines and intervention documents need to be adapted to the universal language and classification framework of the ICF and ICF-CY. Furthermore, examples are needed to demonstrate how factors affect implementation at organizational and individual levels.

  20. An overview of the quiet short-haul research aircraft program

    NASA Technical Reports Server (NTRS)

    Shovlin, M. D.; Cochrane, J. A.

    1978-01-01

    An overview of the Quiet Short Haul Research Aircraft (QSRA) Program is presented, with special emphasis on its propulsion and acoustic aspects. A description of the NASA technical participation in the program including wind tunnel testing, engine ground tests, and advanced aircraft simulation is given. The aircraft and its systems are described and, measured performance, where available, is compared to program goals. Preliminary data indicate that additional research and development are needed in some areas of which acoustics is an example. Some of these additional research areas and potential experiments using the QSRA to develop the technology are discussed. The concept of the QSRA as a national flight research facility is explained.

  1. NASA's Radioisotope Power Systems Program Overview - A Focus on RPS Users

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; McCallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. To meet this goal, the RPS Program manages investments in RPS technologies and RPS system development, working closely with the Department of Energy. This paper provides an overview of the RPS Program content and status, its collaborations with potential RPS users, and the approach employed to maintain the readiness of RPS to support future NASA mission concepts.

  2. Overview of Westinghouse`s Advanced Turbine Systems Program

    SciTech Connect

    Bannister, R.L.; Bevc, F.P.; Diakunchak, I.S.; Huber, D.J.

    1995-10-01

    Westinghouse`s experience with land based gas turbines started in 1945 with the development of a 2000 hp gas turbine-generator set that consisted of a single reduction gear, compressor, 12 combustors and turbine. A thermal efficiency of 18% was obtained. By 1954, Westinghouse had developed a 15 MW unit (with a regenerator and intercooler) that was designed for a full-load simple cycle efficiency of 29%. As the initial step in the Advanced Turbine Systems (ATS) program, Westinghouse has already developed a 230 MW gas turbine that has a simple cycle efficiency of 38.5% without the use of regeneration and intercooler concepts. In 1967, Westinghouse developed its first gas turbine combined cycle, a synergistic combination of the Brayton and the Rankine cycles. In a combined cycle the heat rejected by the higher temperature topping cycle is recovered in the lower temperature bottoming cycle to produce additional power from the energy initially released by the fuel. In this first Westinghouse combined cycle, a 1450{degrees}F burner outlet temperature gas turbine, rated at 25 MW, supplied exhaust heat which was used in a boiler to furnish steam to drive an 85 MW steam turbine. This plant achieved an annual average efficiency of 39.6%.

  3. An Overview of the Space Shuttle Orbiter's Aging Aircraft Program

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2007-01-01

    The Space Shuttle Orbiter has well exceeded its original design life of 10 years or 100 missions. The Orbiter Project Office (OPO) has sponsored several activities to address aging vehicle concerns, including a Corrosion Control Review Board (CCRB), a mid-life certification program, and most recently the formation of the Aging Orbiter Working Group (AOWG). The AOWG was chartered in 2004 as a proactive group which provides the OPO oversight for aging issues such as corrosion, non-destructive inspection, non-metallics, wiring and subsystems. The core team consists of mainly representatives from the Materials and Processes Problem Resolution Team (M&P PRT) and Safety and Mission Assurance (S&MA). Subsystem engineers and subject matter experts are called in as required. The AOWG has functioned by forming issues based sub-teams. Examples of completed sub-teams include adhesives, wiring and wing leading edge metallic materials. Current sub-teams include Composite Over-Wrapped Pressure Vessels (COPV), elastomeric materials and mechanisms.

  4. The DOE/NASA SRG110 Program Overview

    NASA Astrophysics Data System (ADS)

    Shaltens, R. K.; Richardson, R. L.

    2005-12-01

    The Department of Energy is developing the Stirling Radioisotope Generator (SRG110) for NASAs Science Mission Directorate for potential surface and deep space missions. The SRG110 is one of two new radioisotope power systems (RPSs) currently being developed for NASA space missions, and is capable of operating in a range of planetary atmospheres and in deep space environments. It has a mass of approximately 27 kg and produces more than 125We(dc) at beginning of mission (BOM), with a design lifetime of fourteen years. Electrical power is produced by two (2) free-piston Stirlings convertor heated by two General Purpose Heat Source (GPHS) modules. The complete SRG110 system is approximately 38 cm x 36 cm and 76 cm long. The SRG110 generator is being designed in 3 stages: Engineering Model, Qualification Generator, and Flight Generator. Current plans call for the Engineering Model to be fabricated and tested by October 2006. Completion of testing of the Qualification Generator is scheduled for mid-2009. This development is being performed by Lockheed Martin, Valley Forge, PA and Infinia Corporation, Kennewick, WA under contract to the Department of Energy, Germantown, Md. Glenn Research Center, Cleveland, Ohio is providing independent testing and support for the technology transition for the SRG110 Program.

  5. 2003 Biology and Biotechnology Research Program Overview and Highlights

    SciTech Connect

    Prange, C

    2003-03-01

    LLNL conducts multidisciplinary bioscience to fill national needs. Our primary roles are to: develop knowledge and tools which enhance national security, including biological, chemical and nuclear capabilities, and energy and environmental security; develop understanding of genetic and biochemical processes to enhance disease prevention, detection and treatment; develop unique biochemical measurement and computational modeling capabilities which enable understanding of biological processes; and develop technology and tools which enhance healthcare. We execute our roles through integrated multidisciplinary programs that apply our competencies in: microbial and mammalian genomics--the characterization of DNA, the genes it encodes, their regulation and function and their role in living systems; protein function and biochemistry - the structure, function, and interaction of proteins and other molecules involved in the integrated biochemical function of the processes of life; computational modeling and understanding of biochemical systems--the application of high-speed computing technology to simulate and visualize complex, integrated biological processes; bioinformatics--databasing, networking, and analysis of biological data; and bioinstrumentation--the application of physical and engineering technologies to novel biological and biochemical measurements, laboratory automation, medical device development, and healthcare technologies. We leverage the Laboratory's exceptional capabilities in the physical, computational, chemical, environmental and engineering sciences. We partner with industry and universities to utilize their state-of-the art technology and science and to make our capabilities and discoveries available to the broader research community.

  6. NASA F-16XL supersonic laminar flow control program overview

    NASA Technical Reports Server (NTRS)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  7. Laboratory support of drug abuse control programs: an overview.

    PubMed

    Decker, W J

    1977-01-01

    Labeling an individual a drug abuser has serious sociologic and legal implications that only laboratory testing can effectively allay. A proper specimen (both qualitatively and quantitatively) must be obtained for analysis. Positive identification of specimen with subject is of paramount importance. The problems of specimen substitution--other people's urine, tap water, apple juice--directly impinge here, as does the possibility of drug degradation by heat, light, and microbial attack and of drug adsorption by the container and urinary sediment. Confirmation of postives indicated by screening tests (thin layer chromatography and immunoassays) by gas chromatography and/or ultraviolet spectrophotometry is, in most situations, mandatory. An effective quality control program is an absolute requirement. Even under ideal circumstances, laboratory results can sometimes wrongly indicate the abuse of drugs; and conversely, drug abuse can take place without detection by the laboratory. As in any clinical situation, laboratory tests are only a part (albeit an important one) of the entire evaluation of the individual involved.

  8. Contamination control program for the Cosmic Background Explorer: An overview

    NASA Technical Reports Server (NTRS)

    Barney, Richard D.

    1990-01-01

    Each of the three state of the art instruments flown aboard NASA's Cosmic Background Explorer (COBE) were designed, fabricated, and integrated using unique contamination control procedures to ensure accurate characterization of the diffuse radiation in the universe. The most stringent surface level cleanliness specifications ever attempted by NASA were required by the Diffuse Infrared Background Experiment (DRIBE) which is located inside a liquid helium cooled dewar along with the Far Infrared Absolute Spectrophotometer (FIRAS). The DRIBE instrument required complex stray radiation suppression that defined a cold primary optical baffle system surface cleanliness level of 100A. The cleanliness levels of the cryogenic FIRAS instrument and the Differential Microwave Radiometer (DMR) which were positioned symmetrically around the dewar were less stringent ranging from 300 to 500A. To achieve these instrument cleanliness levels, the entire flight spacecraft was maintained at level 500A throughout each phase of development. The COBE contamination control program is described along with the difficulties experienced in maintaining the cleanliness quality of personnel and flight hardware throughout instrument assembly.

  9. Controlling impaired driving through vehicle programs: an overview.

    PubMed

    Voas, Robert B; Fell, James C; McKnight, A Scott; Sweedler, Barry M

    2004-09-01

    The growing recognition of the problem presented by illicit vehicle operation by those whose license has been suspended for driving while intoxicated (DWI) has led to the increasing use of vehicle sanctions. These sanctions include vehicle impoundment and forfeiture, vehicle registration cancellation, and vehicle interlocks as penalties for DWI and driving while suspended (DWS). This article reviews the current information available on the use and effectiveness of vehicle sanctions for reducing offender recidivism. In the United States, 14 states have impoundment laws that are widely used as sanctions for both DWI and DWS, with the length of the impoundment increasing with the number of previous offenses. These laws have been shown to reduce recidivism while the vehicle is in custody and, to a lesser extent, even after the vehicle has been released. Vehicle impoundment is also widely used in Canada and New Zealand. Although a larger number of U.S. states have laws providing for vehicle forfeiture for DWI or DWS, this sanction tends to be limited to multiple offenders and therefore impacts fewer drivers. Cancellation of the vehicle registration and the confiscation of the vehicle plates are increasing in popularity because the vehicle tags are the property of the state, rather than the vehicle owner. Vehicle alcohol interlocks have proven to be an effective method for reducing DWI offender recidivism while they are on the car, but appear to produce only limited post-treatment behavior change. Interlocks are widely used in the United States and Canada and are beginning to be implemented in Europe and Australia. The issues that arise in implementing vehicle sanction programs are discussed and the actions taken by states to deal with them are described.

  10. The Edward Teller Medal Lecture: the Evolution Toward Indirect Drive and Two Decades of Progress Toward Icf Ignition and Burn

    NASA Astrophysics Data System (ADS)

    Lindl, John D.

    In 1972, I joined the Livermore ICF Theory and Target Design group led by John Nuckolls, shortly after publication of John's seminal Nature article on ICF. My primary role, working with others in the target design program including Mordy Rosen, Steve Haan, and Larry Suter, has been as a target designer and theorist who utilized the LASNEX code to perform numerical experiments, which along with analysis of laboratory and underground thermonuclear experiments allowed me to develop a series of models and physical insights which have been used to set the direction and priorities of the Livermore program.

  11. Canada and the International Space Station program: overview and status.

    PubMed

    Gibbs, Graham; Sachdev, Savi

    2002-01-01

    The twelve months since IAF 2000 have been perhaps the most exciting, challenging and rewarding months for Canada since the beginning of our participation in the International Space Station program in 1984. The highlight was the successful launch, on-orbit check out, and the first operational use of Canadarm2, the Space Station Remote Manipulator System, between April and July 2001. The anomalies encountered and the solutions found to achieve this success are described in the paper. The paper describes, also, the substantial progress that has been made, during the twelve months since IAF 2000, by Canada as it continues to complete work on all flight-elements of its contribution to the International Space Station and as we transition into real-time Space Station operations support and Canadian utilization. Canada's contribution to the International Space Station is the Mobile Servicing System (MSS), the external robotic system that is key to the successful assembly of the Space Station, the maintenance of its external systems, astronaut EVA support, and the servicing of external science payloads. The MSS ground segment that supports MSS operations, training, sustaining engineering, and logistics activities is reaching maturity. The MSS Engineering Support Center and the MSS Sustaining Engineering Facility are providing real-time support for on-orbit operations, and a Canadian Payloads Telescience Operations Center is now in place. Mission Controllers, astronauts and cosmonauts from all Space Station Partners continue to receive training at the Canadian Space Agency. The Remote Multi Purpose Room, one element of the MSS Operations Complex, will be ready to assume backroom support in 2002. Canada has completed work on identifying its Space Station utilization activities for the period 2000 through 2004. Also during the past twelve months the CSA drafted and is proceeding with the approval of a Canadian Space Station Commercialization Policy. Canadian astronauts have

  12. An Overview of the NASA Aeronautics Test Program Strategic Plan

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced

  13. Overview 2010 of ARL Program on Network Science for Human Decision Making

    DTIC Science & Technology

    2011-01-01

    IN FRACTAL PHYSIOLOGY       OVERVIEW 2010 OF ARL PROGRAM ON NETWORK SCIENCE FOR HUMAN DECISION MAKING   Bruce J West Journal Name: Frontiers in...2:76. doi:10.3389/fphys.2011.00076 Article URL: http://www.frontiersin.org/Journal/Abstract.aspx?s=454& name= fractal %20physiology&ART_DOI=10.3389...functions: transportation, electrical power, food distribution, finance , and health care to name a few. The 1 2 interoperability of these networks

  14. The NASA Electronic Parts and Packaging (NEPP) Program: NEPP Overview - Automotive Electronics

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using U.S. Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Council's AECQ standardization program, the second part provides a summary of the results of NASA's procurement and testing experiences and other lessons learned along with preliminary test results.

  15. Administrative Policy Analysis, Budgeting, Implementation, and Evaluation: An Overview to Policy/Program Analysis and Evaluation Techniques, Package VI.

    ERIC Educational Resources Information Center

    Daneke, Gregory A.; Steiss, Alan Walter

    This overview serves as an introduction to a series of ten curriculum modules that comprise a portion of the National Training and Development Service Urban Management Curriculum Development Project. The overview was designed to provide a generalized discussion of the field of government policy/program analysis and evaluation. The training program…

  16. Wetted foam liquid fuel ICF target experiments

    SciTech Connect

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; Kline, J. L.; Zylstra, A. B.; Peterson, R. R.; Shah, R.; Braun, T.; Biener, J.; Kozioziemski, B. J.; Sater, J. D.; Biener, M. M.; Hamza, A. V.; Nikroo, A.; Hopkins, L. Berzak; Ho, D.; LePape, S.; Meezan, N. B.

    2016-05-26

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR~15), but will become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.

  17. Wetted foam liquid fuel ICF target experiments

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; Kline, J. L.; Zylstra, A. B.; Peterson, R. R.; Shah, R.; Braun, T.; Biener, J.; Kozioziemski, B. J.; Sater, J. D.; Biener, M. M.; Hamza, A. V.; Nikroo, A.; Berzak Hopkins, L.; Ho, D.; LePape, S.; Meezan, N. B.

    2016-05-01

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR∼15), but will become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.

  18. Wetted foam liquid fuel ICF target experiments

    DOE PAGES

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; ...

    2016-05-26

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR~15), but will becomemore » less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.« less

  19. Overview and status of the witchweed (striga asiatica) eradication program in the Carolinas

    USGS Publications Warehouse

    Iverson, Richard D.; Westbrooks, Randy G.; Eplee, Robert E.; Tasker, Alan V.

    2011-01-01

    Witchweed [(Striga asiatica (L.) O. Kuntze)] is a parasitic weed from Asia and Africa that attaches to the roots of grasses and grass crops such as corn and sorghum. Witchweed was first detected in the western hemisphere in a corn field in Columbus County, North Carolina, in July, 1956. Since that time, a federal/state cooperative program has eliminated over 99% of the 432,000+ acres that have been found infested with witchweed in the eastern Carolinas. This chapter provides an overview of the USDA-Carolinas Witchweed Eradication Program, as well as the methods and procedures that have been employed to achieve this remarkable level of success.

  20. Overview of ORNL/NRC programs addressing durability of concrete structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1994-06-01

    The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal.

  1. Overview of the Icing and Flow Quality Improvements Program for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Kevdzija, Susan L.; Sheldon, David W.; Spera, David A.

    2001-01-01

    Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper describes the rationale behind this latest program of IRT upgrades and the program's requirements and goals. An overview is given of the scope of work undertaken by the design and construction contractors, the scale-model IRT (SMIRT) design verification program, the comprehensive reactivation test program initiated upon completion of construction, and the overall management approach followed.

  2. Advances in compact proton spectrometers for diagnosing ICF experiments

    NASA Astrophysics Data System (ADS)

    Seguin, F. H.; Sinenian, N.; Manuel, M.; Rinderknecht, H. G.; Rosenberg, M.; Zylstra, A.; Frenje, J.; Li, C. K.; Petrasso, R.; Roberts, S.; Sangster, T. C.

    2011-10-01

    The compact proton spectrometer (or WRF, for Wedge-Range-Filter proton spectrometer) measures the spectra of protons in the energy range ~ 3 to 20 MeV for diagnosing ICF experiments. It utilizes CR-39 for detecting individual protons and their energies, after they pass through a ranging filter with a continuously varying thickness, and appropriate algorithms for reconstructing the incident spectrum. It has now been in use for a decade at OMEGA, and is currently being used at the NIF, for measuring spectra of primary D3He protons in D3He implosions, secondary D3He protons in DD implosions, and ablator protons in DT implosions. These spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. During the decade of use there have been significant changes in fabrication and in analysis algorithms. An overview will be given here of the historical development, current analysis methods, and measurement accuracy. This work was supported in part by DOE and LLE.

  3. ICF syndrome with variable expression in sibs.

    PubMed Central

    Gimelli, G; Varone, P; Pezzolo, A; Lerone, M; Pistoia, V

    1993-01-01

    We describe a new familial case of ICF syndrome (immunodeficiency, centromeric instability, facial anomalies) in a woman of 29 years and in her brother of 30 years. The proband showed mental retardation, facial anomalies, recurrent respiratory infections, combined deficit of IgM and IgE immunoglobulin classes, and paracentromeric heterochromatin instability of chromosomes 1, 9, and 16. The brother had minor signs of the syndrome and had an apparently normal phenotype. Their parents were healthy and non-consanguineous. Chromosome anomalies consisted of homologous and non-homologous associations, chromatid and isochromatid breaks, deletions of whole arms, interchanges in the paracentromeric region, and multibranched configurations of chromosomes 1, 9, and 16. CD bands and fluorescence in situ hybridisation with alphoid DNA sequence probes specific for the centromeres of chromosomes 1 and 16 showed that the centromere was not directly implicated in the formation of multibranched configurations. These cases indicate the autosomal recessive mode of inheritance and the variable expressivity of the ICF syndrome. Images PMID:8320711

  4. Adaptive Mesh Refinement for ICF Calculations

    NASA Astrophysics Data System (ADS)

    Fyfe, David

    2005-10-01

    This paper describes our use of the package PARAMESH to create an Adaptive Mesh Refinement (AMR) version of NRL's FASTRAD3D code. PARAMESH was designed to create an MPI-based AMR code from a block structured serial code such as FASTRAD3D. FASTRAD3D is a compressible hydrodynamics code containing the physical effects relevant for the simulation of high-temperature plasmas including inertial confinement fusion (ICF) Rayleigh-Taylor unstable direct drive laser targets. These effects include inverse bremmstrahlung laser energy absorption, classical flux-limited Spitzer thermal conduction, real (table look-up) equation-of-state with either separate or identical electron and ion temperatures, multi-group variable Eddington radiation transport, and multi-group alpha particle transport and thermonuclear burn. Numerically, this physics requires an elliptic solver and a ray tracing approach on the AMR grid, which is the main subject of this paper. A sample ICF calculation will be presented. MacNeice et al., ``PARAMESH: A parallel adaptive mesh refinement community tool,'' Computer Physics Communications, 126 (2000), pp. 330-354.

  5. The physics of radiation driven ICF hohlraums

    SciTech Connect

    Rosen, M.D.

    1995-08-07

    On the Nova Laser at LLNL, we have recently demonstrated many of the key elements required for assuring that the next proposed laser, the National Ignition Facility (NIF) will drive an Inertial Confinement Fusion (ICF) target to ignition. The target uses the recently declassified indirect drive (sometimes referred to as {open_quotes}radiation drive{close_quotes}) approach which converts laser light to x-rays inside a gold cylinder, which then acts as an x-ray {open_quotes}oven{close_quotes} (called a hohlraum) to drive the fusion capsule in its center. On Nova we`ve demonstrated good understanding of the temperatures reached in hohlraums and of the ways to control the uniformity with which the x-rays drive the spherical fusion capsules. In this lecture we briefly review the fundamentals of ICF, and describe the capsule implosion symmetry advantages of the hohlraum approach. We then concentrate on a quantitative understanding of the scaling of radiation drive with hohlraum size and wall material, and with laser pulse length and power. We demonstrate that coupling efficiency of x-ray drive to the capsule increases as we proceed from Nova to the NIF and eventually to a reactor, thus increasing the gain of the system.

  6. Environmental effects monitoring at the Terra Nova offshore oil development (Newfoundland, Canada): Program design and overview

    NASA Astrophysics Data System (ADS)

    DeBlois, Elisabeth M.; Tracy, Ellen; Janes, G. Gregory; Crowley, Roger D.; Wells, Trudy A.; Williams, Urban P.; Paine, Michael D.; Mathieu, Anne; Kilgour, Bruce W.

    2014-12-01

    An environmental effects monitoring (EEM) program was developed by Suncor (formerly Petro-Canada) in 1997/98 to assess effects of the Terra Nova offshore oil and gas development on the receiving environment. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada), at approximately 100 m water depth. The EEM program was developed with guidance from experts in government, academia and elsewhere, and with input from the public. The EEM program proposed by Suncor was accepted by Canadian regulatory agencies and the program was implemented in 2000, 2001, 2002, 2004, 2006, 2008 and 2010, with pre-development sampling in 1997. The program continues to be implemented every two years. EEM includes an assessment of alterations in sediment quality through examination of changes in sediment chemistry, particle size, toxicity and benthic invertebrate community structure. A second component of the program examines potential effects on two species of commercial fishing interest: Iceland scallop (Chlamys islandica) and American plaice (Hippoglossoides platessoides). Chemical body burden for these two species is examined and taste tests are performed to assess the presence of taint in edible tissues. Effects on American plaice bioindicators are also examined. A final component of the program assesses potential effects of the Terra Nova development on water quality and examines water column chemistry, chlorophyll concentration and physical properties. The papers presented in this collection focus on effects of drill cuttings and drilling muds on the seafloor environment and, as such, report results on sediment quality and bioaccumulation of drilling mud components in Iceland scallop and American plaice. This paper provides information on drilling discharges, an overview of the physical oceanography at the Terra Nova Field, and an overview of the field program designed to assess environmental effects of drilling at Terra Nova.

  7. Practice, science and governance in interaction: European effort for the system-wide implementation of the International Classification of Functioning, Disability and Health (ICF) in Physical and Rehabilitation Medicine.

    PubMed

    Stucki, Gerold; Zampolini, Mauro; Juocevicius, Alvydas; Negrini, Stefano; Christodoulou, Nicolas

    2016-11-24

    Since its launch in 2001, relevant international, regional and national PRM bodies have aimed to implement the International Classification of Functioning, Disability and Health (ICF) in Physical and Rehabilitation Medicine (PRM), whereby contributing to the development of suitable practical tools. These tools are available for implementing the ICF in day-to-day clinical practice, standardized reporting of functioning outcomes in quality management and research, and guiding evidence-informed policy. Educational efforts have reinforced PRM physicians' and other rehabilitation professionals' ICF knowledge, and numerous implementation projects have explored how the ICF is applied in clinical practice, research and policy. Largely lacking though is the system-wide implementation of ICF in day-to-day practice across all rehabilitation services of national health systems. In Europe, system-wide implementation of ICF requires the interaction between practice, science and governance. Considering its mandate, the UEMS PRM Section and Board have decided to lead a European effort towards system-wide ICF implementation in PRM, rehabilitation and health care at large, in interaction with governments, non-governmental actors and the private sector, and aligned with ISPRM's collaboration plan with WHO. In this paper we present the current PRM internal and external policy agenda towards system-wide ICF implementation and the corresponding implementation action plan, while highlighting priority action steps - promotion of ICF-based standardized reporting in national quality management and assurance programs, development of unambiguous rehabilitation service descriptions using the International Classification System for Service Organization in Health-related Rehabilitation, development of Clinical Assessment Schedules, qualitative linkage and quantitative mapping of data to the ICF, and the cultural adaptation of the ICF Clinical Data Collection Tool in European languages.

  8. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix materials

    SciTech Connect

    Not Available

    1993-09-30

    The pages that follow contain summaries of the nine R&TD Program Element Plans for Fiscal Year 1993 that were completed in the Spring of 1993. The nine program elements are aggregated into three program clusters as follows: Design Sciences and Advanced Computation; Advanced Manufacturing Technologies and Capabilities; and Advanced Materials Sciences and Technology.

  9. Agent oriented programming: An overview of the framework and summary of recent research

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1993-01-01

    This is a short overview of the agent-oriented programming (AOP) framework. AOP can be viewed as an specialization of object-oriented programming. The state of an agent consists of components called beliefs, choices, capabilities, commitments, and possibly others; for this reason the state of an agent is called its mental state. The mental state of agents is captured formally in an extension of standard epistemic logics: beside temporalizing the knowledge and belief operators, AOP introduces operators for commitment, choice and capability. Agents are controlled by agent programs, which include primitives for communicating with other agents. In the spirit of speech-act theory, each communication primitive is of a certain type: informing, requesting, offering, etc. This document describes these features in more detail and summarizes recent results and ongoing AOP-related work.

  10. ACL injury in football: a literature overview of the prevention programs

    PubMed Central

    Bisciotti, Gian Nicola; Chamari, Karim; Cena, Emanuele; Carimati, Giulia; Volpi, Piero

    2016-01-01

    Summary Background The ACL prevention programs are addressed to the control and/or modification of the so-called “modifiable risk factors”. All these programs focus on different intervention strategies aimed to decrease the ACL injury risk, particularly in female athletes population. Purpose To furnish an overview of the most used ACL injury prevention program through a narrative review. Conclusion In literature there are many reports on prevention programs whose common denominator is the proper alignment of the lower limb joints and proper motor control during movements that are considered at risk for ACL integrity, as the landing phase after a jump. Nevertheless, some programs would appear more effective than others. In any cases a major problem remains the lack of sufficient compliance in respect of prevention programs. Finally, it is important to remember that the ethiology of ACL injuries is multifactorial. For this reason a prevention program able to prevent all the risk situations is utopian. Study design Narrative review. PMID:28217569

  11. A brief overview of NASA Langley's research program in formal methods

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.

  12. Experiments in ICF, materials science, and astrophysics

    NASA Astrophysics Data System (ADS)

    Remington, Bruce A.

    2016-10-01

    We have been developing RED experiments on high power TCF lasers over the past two decades that span (1) the radiative hydrodynamics of TCF capsule physics; (2) the high pressure, high strain rate, solid-state dynamics relevant to novel concepts for ICF and hypervelocity impacts in space and on Earth; and (3) the shock driven turbulence of exploding stars (supernovae). These different regimes are separated by many orders of magnitude in length, time, and temperature, yet there are common threads that run through all of these phenomena, such as the occurrence of hydrodynamic instabilities. Examples from each of these three seemingly very disparate regimes are given, and the common theme of hydrodynamic instability evolution is explored.

  13. Photovoltaic energy program overview, fiscal year 1991. Programs in utility technologies

    SciTech Connect

    Not Available

    1992-02-01

    The Photovoltaics Program Plan, FY 1991--FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers` immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

  14. The Edward Teller medal lecture: The evolution toward Indirect Drive and two decades of progress toward ICF ignition and burn

    SciTech Connect

    Lindl, J.D.

    1993-12-01

    In 1972, I joined the Livermore ICF Theory and Target Design group led by John Nuckolls, shortly after publication of John`s seminal Nature article on ICF. My primary role, working with others in the target design program including Mordy Rosen, Steve Haan, and Larry Suter, has been as a target designer and theorist who utilized the LASNEX code to perform numerical experiments, which along with analysis of laboratory and underground thermonuclear experiments allowed me to develop a series of models and physical insights which have been used to set the direction and priorities of the Livermore program. I have had the good fortune of working with an outstanding team of scientists who have established LLNL as the premier ICF laboratory in the world. John Emmett and the LLNL Laser Science team were responsible for developing a series of lasers from Janus to Nova which have given LLNL unequaled facilities. George Zimmerman and the LASNEX group developed the numerical models essential for projecting future performance and requirements as well as for designing and analyzing the experiments. Bill Kruer, Bruce Langdon and others in the plasma theory group developed the fundamental understanding of laser plasma interactions which have played such an important role in ICF. And a series of experiment program leaders including Mike Campbell and Joe Kilkenny and their laser experimental teams developed the experimental techniques and diagnostic capabilities which have allowed us to c increasingly complex and sophisticated experiments.

  15. What`s new in federal energy management: FEMP program overview. SAVEnergy program

    SciTech Connect

    1996-08-01

    The SAVEnergy Program provides direct assistance to Federal agencies in identifying and implementing energy efficiency and water conservation measures. The Energy Policy Act of 1992 (EPAct) and Executive Order 12902 require that Federal agencies reduce the energy consumed in Federal buildings. The Executive Order increases the goal to a 30% reduction, compared with 1985, by 2005. In addition, agencies are required, to the maximum extent possible, to install all energy and water conservation measures with paybacks of less than 10 years. To help meet these goals, the US Department of Energy`s (DOE`s) Federal Energy management Program (FEMP) recently initiated the SAVEnergy Program. The SAVEnergy approach has three key elements: The Action Plan with recommended conservation actions and complete proposals on how the agency can implement them; The Action Team to implement the SAVEnergy Action Plan; The FEMPTracks database to evaluate the SAVEnergy Program (and all other FEMP programs) and record progress toward conservation goals.

  16. STORM AND COMBINED SEWER OVERFLOW: AN OVERVIEW OF EPA'S RESEARCH PROGRAM (EPA/600/8-89/054)

    EPA Science Inventory

    This report represents an overview of the EPA's Storm & Combined Sewer Pollution Control Research Program performed over a 20-year period beginning with the mid-1960s. It covers program involvements in the development of a diverse technology including pollution-problem assessment...

  17. Reducing Youth Gun Violence. Part One--An Overview [and] Part Two--Prevention and Intervention Programs.

    ERIC Educational Resources Information Center

    McEvoy, Alan, Ed.

    1996-01-01

    This document contains two issues of a journal on reducing youth gun violence, reprinted from a report by the U.S. Department of Justice. The first issue, part one, provides an overview of programs and initiatives. The second issue, part two, describes prevention and intervention programs. To reduce violence and build healthy communities requires…

  18. Health measurement using the ICF: Test-retest reliability study of ICF codes and qualifiers in geriatric care

    PubMed Central

    Okochi, Jiro; Utsunomiya, Sakiko; Takahashi, Tai

    2005-01-01

    Background The International Classification of Functioning, Disability and Health (ICF) was published by the World Health Organization (WHO) to standardize descriptions of health and disability. Little is known about the reliability and clinical relevance of measurements using the ICF and its qualifiers. This study examines the test-retest reliability of ICF codes, and the rate of immeasurability in long-term care settings of the elderly to evaluate the clinical applicability of the ICF and its qualifiers, and the ICF checklist. Methods Reliability of 85 body function (BF) items and 152 activity and participation (AP) items of the ICF was studied using a test-retest procedure with a sample of 742 elderly persons from 59 institutional and at home care service centers. Test-retest reliability was estimated using the weighted kappa statistic. The clinical relevance of the ICF was estimated by calculating immeasurability rate. The effect of the measurement settings and evaluators' experience was analyzed by stratification of these variables. The properties of each item were evaluated using both the kappa statistic and immeasurability rate to assess the clinical applicability of WHO's ICF checklist in the elderly care setting. Results The median of the weighted kappa statistics of 85 BF and 152 AP items were 0.46 and 0.55 respectively. The reproducibility statistics improved when the measurements were performed by experienced evaluators. Some chapters such as genitourinary and reproductive functions in the BF domain and major life area in the AP domain contained more items with lower test-retest reliability measures and rated as immeasurable than in the other chapters. Some items in the ICF checklist were rated as unreliable and immeasurable. Conclusion The reliability of the ICF codes when measured with the current ICF qualifiers is relatively low. The result in increase in reliability according to evaluators' experience suggests proper education will have positive

  19. The Health and Functioning ICF-60: Development and Psychometric Properties

    PubMed Central

    Tutelyan, V A; Chatterji, S; Baturin, A K; Pogozheva, A V; Kishko, O N; Akolzina, S E

    2014-01-01

    Background This paper describes the development and psychometric properties of the Health and Functioning ICF-60 (HF-ICF-60) measure, based on the World Health Organization (WHO) ‘International Classification of Functioning, Disability and Health: ICF’ (2001). The aims of the present study were to test psychometric properties of the HF-ICF-60, developed as a measure that would be responsive to change in functioning through changes in health and nutritional status, as a prospective measure to monitor health and nutritional status of populations and to explore the relationship of the HF-ICF-60 with quality of life measures such as the World Health Organization WHOQOL-BREF quality of life assessment in relation to non-communicable diseases. Methods The HF-ICF-60 measure consists of 60 items selected from the ICF by an expert panel, which included 18 items that cover Body Functions, 21 items that cover Activities and Participation, rated on five-point scales, and 21 items that cover Environmental Factors (seven items cover Individual Environmental Factors and 14 items cover Societal Environmental Factors), rated on nine-point scales. The HF-ICF-60 measure was administered to the Russian nationally representative sample within the Russian National Population Quality of Life, Health and Nutrition Survey, in 2004 (n = 9807) and 2005 (n = 9560), as part of the two waves of the Russian Longitudinal Monitoring Survey (RLMS). The statistical analyses were carried out with the use of both classical and modern psychometric methods, such as factor analysis, and based on Item Response Theory, respectively. Results The HF-ICF-60 questionnaire is a new measure derived directly from the ICF and covers the ICF components as follows: Body Functions, Activities and Participation, and Environmental Factors (Individual Environmental Factors and Societal Environmental Factors). The results from the factor analyses (both Exploratory Factor Analyses and Confirmatory Factor

  20. The U.S. Carbon Cycle Science Program: Overview, Developments and Priorities

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Kuperberg, J.; Cavallaro, N.; Carbon Cycle Interagency Working Group

    2013-05-01

    Eleven U.S. government (federal) agencies and departments coordinate and support the activities of the U.S. Carbon Cycle Science Program through the Carbon Cycle Interagency Working Group (CCIWG). For almost two decades, this interagency partnership has been providing a coordinated and focused scientific strategy for U.S. carbon cycle research. The CCIWG exists within the U.S. Global Change Research Program (USGCRP). The Carbon Cycle Science Program responds to USGCRP goals and objectives and to feedback from the scientific community (U.S. Carbon Cycle Science Plans 1999 and 2011). The mission of the Program is to better understand past changes and current trends in atmospheric carbon dioxide and methane, deliver credible predictions of future atmospheric carbon dioxide and methane levels, and strengthen the scientific foundation for management decisions in numerous areas of public interest related to carbon and climate change. The CCIWG will provide an overview of the Program, its history and achievements as an interagency partnership and its plans and priorities for the next decade. Recent findings from research funded through the interagency process will also be highlighted.

  1. Overview of LANL short-pulse ion acceleration activities

    SciTech Connect

    Flippo, Kirk A.; Schmitt, Mark J.; Offermann, Dustin; Cobble, James A.; Gautier, Donald; Kline, John; Workman, Jonathan; Archuleta, Fred; Gonzales, Raymond; Hurry, Thomas; Johnson, Randall; Letzring, Samuel; Montgomery, David; Reid, Sha-Marie; Shimada, Tsutomu; Gaillard, Sandrine A.; Sentoku, Yasuhiko; Bussman, Michael; Kluge, Thomas; Cowan, Thomas E.; Rassuchine, Jenny M.; Lowenstern, Mario E.; Mucino, J. Eduardo; Gall, Brady; Korgan, Grant; Malekos, Steven; Adams, Jesse; Bartal, Teresa; Chawla, Surgreev; Higginson, Drew; Beg, Farhat; Nilson, Phil; Mac Phee, Andrew; Le Pape, Sebastien; Hey, Daniel; Mac Kinnon, Andy; Geissel, Mattias; Schollmeier, Marius; Stephens, Rich

    2009-12-02

    An overview of Los Alamos National Laboratory's activities related to short-pulse ion acceleration is presented. LANL is involved is several projects related to Inertial Confinement Fusion (Fast Ignition) and Laser-Ion Acceleration. LANL has an active high energy X-ray backlighter program for radiographing ICF implosions and other High Energy Density Laboratory Physics experiments. Using the Trident 200TW laser we are currently developing high energy photon (>10 keV) phase contrast imaging techniques to be applied on Omega and the NIF. In addition we are engaged in multiple programs in laser ion acceleration to boost the ion energies and efficiencies for various potential applications including Fast Ignition, active material interrogation, and medical applications. Two basic avenues to increase ion performance are currently under study: one involves ultra-thin targets and the other involves changing the target geometry. We have recently had success in boosting proton energies above 65 MeV into the medical application range. Highlights covered in the presentation include: The Trident Laser System; X-ray Phase Contrast Imaging for ICF and HEDLP; Improving TNSA Ion Acceleration; Scaling Laws; Flat Targets; Thin Targets; Cone Targets; Ion Focusing;Trident; Omega EP; Scaling Comparisons; and, Conclusions.

  2. Ocean Energy Program Overview, Fiscal years 1990--1991. Programs in utility technologies

    SciTech Connect

    Not Available

    1992-05-01

    The oceans are the world`s largest solar energy collector and storage system. Covering 71% of the earth`s surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy`s (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans` waves, currents, and thermal and salinity gradients.

  3. ICF gamma-ray reaction history diagnostics

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Young, C. S.; Mack, J. M.; Kim, Y. H.; McEvoy, A.; Evans, S.; Sedillo, T.; Batha, S.; Schmitt, M.; Wilson, D. C.; Langenbrunner, J. R.; Malone, R.; Kaufman, M. I.; Cox, B. C.; Frogget, B.; Miller, E. K.; Ali, Z. A.; Tunnell, T. W.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013-1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016-1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the

  4. The North American Regional Climate Change Assessment Program: Overview of Climate Change Results

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2011-12-01

    The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models (RCMs) and multiple global model responses by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with a medium-high emissions scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within the NCEP reanalysis R2. The basic spatial resolution of the RCM simulations is 50 km. This program includes six different RCMs that have been used in various intercomparison programs in Europe and the United States. Four different AOGCMs provide boundary conditions to drive the RCMS for 30 years in the current climate and 30 years for the mid 21st century. The resulting climate model simulations form the basis for multiple high resolution climate scenarios that can be used in climate change impacts and adaptation assessments over North America. Eleven of the planned 12 sets of current and future simulations have been completed. Measures of uncertainty across the multiple simulations are being developed by geophysical statisticians. In this overview talk, results from the climate change experiments for various subregions, along with measures of uncertainty, will be presented.

  5. The North American Regional Climate Change Assessment Program: Overview of Climate Change Results

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2012-12-01

    The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models (RCMs) and multiple global model responses by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with a medium-high emissions scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within the NCEP reanalysis R2. The basic spatial resolution of the RCM simulations is 50 km. This program includes six different RCMs that have been used in various intercomparison programs in Europe and the United States. Four different AOGCMs provide boundary conditions to drive the RCMS for 30 years in the current climate and 30 years for the mid 21st century. The resulting climate model simulations form the basis for multiple high resolution climate scenarios that can be used in climate change impacts and adaptation assessments over North America. All 12 sets of current and future simulations have been completed. Measures of uncertainty across the multiple simulations are being developed by geophysical statisticians. In this overview talk, results from the various climate change experiments for various subregions, along with measures of uncertainty, will be presented

  6. The DOE Office of Environmental Management International Collaboration Program Overview: Interactions, Agreements, and Future Direction

    SciTech Connect

    Marra, James C.; Fox, Kevin M.; Jannik, Gerald T.; Farfan, Eduardo B.; Kim, Dong-Sang; Vienna, John D.; Roach, Jay; Aloy, A. S.; Stefanovsky, S. V.; Lopukh, D. B.; Bondarkov, M. D.; Gerdes, Kurt D.; Han, Ana M.

    2010-02-10

    As the lead U.S. agency for the environmental cleanup, the Department of Energy (DOE) Office of Environmental Management (EM) carries out international activities in support of U.S. policies and objectives regarding accelerated risk reduction and remediation of the environmental legacy of the nation's nuclear weapons program and government-sponsored nuclear energy research. To achieve this, EM pursues collaborations with foreign government organizations, educational institutions, and private industry to assist in identifying technologies and promote international collaborations that leverage resources and link international experience and expertise. An initiative of the International Program is to link international experience and expertise to the technical needs of the overall EM mission and to foster further collaboration with international partners to promote those needs. This paper will provide an overview of the current international program and how it plans to leverage existing, and when necessary, new international partnerships to support the overall EM cleanup mission. In addition it will examine the future vision of the international program to promote the EM mission through a focus on transformational solutions, science, and technology development.

  7. Overview of GNSS-R Research Program for Ocean Observations at Japan

    NASA Astrophysics Data System (ADS)

    Ichikawa, Kaoru; Ebinuma, Takuji; Akiyama, Hiroaki; Kitazawa, Yukihito

    2015-04-01

    GNSS-R is a new remote-sensing method which uses reflected GNSS signals. Since no transmitters are required, it is suitable for small satellites. Constellations of GNSS-R small satellites have abilities on revolutionary progress on 'all-time observable' remote-sensing methods . We have started a research program for GNSS-R applications on oceanographic observations under a contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) as a'Space science research base formation program'. The duration of research program is 3 years (2015-2017). The one of important focuses of this program is creation of a new community to merge space engineering and marine science through establishment on application plans of GNSS-R. Actual GNSS-R data acquisition experiments using multi-copters, ships, and/or towers are planned, together with in-situ sea truth data such as wave spectrum, wind speed profiles and sea surface height. These data are compared to determine the accuracy and resolution of the estimates based on GNSS-R observations. Meanwhile, preparation of a ground station for receiving GNSS-R satellite data will be also established. Whole those data obtained in this project will be distributed for public. This paper introduces the overview of research plan..

  8. Reducing Youth Gun Violence: An Overview of Programs and Initiatives. Program Report.

    ERIC Educational Resources Information Center

    Department of Justice, Washington, DC. Office of Juvenile Justice and Delinquency Prevention.

    This report discusses a wide array of violence prevention strategies used across the United States, ranging from school-based prevention to gun market interception. Relevant research, evaluation, and legislation are included to ground these programs and provide a context for their successful implementation. The first section of the report is an…

  9. An Overview of Program Development for NASA's Space Environments and Effects (SEE) Program

    NASA Technical Reports Server (NTRS)

    Minor, Jody L.; Newton, Robby

    2004-01-01

    This paper describes many of the changes affecting NASA's Space Environments and Effects (SEE) Program since the initiation of the Vision for Space Exploration. Programmatic and procedural changes are discussed, six new technical tasks applicable to any return to the Moon or onward towards Mars are highlighted, and personnel changes and new contact information is given.

  10. Telecommunications, navigation and information management concept overview for the Space Exploration Initiative program

    NASA Technical Reports Server (NTRS)

    Bell, Jerome A.; Stephens, Elaine; Barton, Gregg

    1991-01-01

    An overview is provided of the Space Exploration Initiative (SEI) concepts for telecommunications, information systems, and navigation (TISN), and engineering and architecture issues are discussed. The SEI program data system is reviewed to identify mission TISN interfaces, and reference TISN concepts are described for nominal, degraded, and mission-critical data services. The infrastructures reviewed include telecommunications for robotics support, autonomous navigation without earth-based support, and information networks for tracking and data acquisition. Four options for TISN support architectures are examined which relate to unique SEI exploration strategies. Detailed support estimates are given for: (1) a manned stay on Mars; (2) permanent lunar and Martian settlements; short-duration missions; and (4) systematic exploration of the moon and Mars.

  11. Overview of the Integrated Programs for Aerospace Vehicle Design (IPAD) project

    NASA Technical Reports Server (NTRS)

    Venneri, S. L.

    1983-01-01

    To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of data base management technology and associated software for integrated company wide management of engineering and manufacturing information. Results to date on the IPAD project include an in depth documentation of a representative design process for a large engineering project, the definition and design of computer aided design software needed to support that process, and the release of prototype software to manage engineering information. This paper provides an overview of the IPAD project and summarizes progress to date and future plans.

  12. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    SciTech Connect

    Voss, S.S.; Reynolds, E.L.

    1994-06-01

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz 11 system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal Year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended.

  13. The Planetary Observer Program. [planning by NASA and scientific community including cost optimization overview

    NASA Technical Reports Server (NTRS)

    Blume, W. H.

    1984-01-01

    An overview is presented of NASA's plans for the Planetary Observer Program, whose key element is to control the cost of each mission while establishing a long-term, stable base for the planetary sciences. The SSEC (Solar System Exploration Committee) has endorsed the view that many high science priority inner solar system missions are possible through the use of spacecraft derived from existing earth-orbital spacecraft. It has also recommended the application of space hardware such as that used on the Voyager and Galileo missions, development of both a new modular spacecraft for outer planet, comet, and main-belt asteroid missions (Mariner Mark II Program), and a multi-mission operations system to support future missions after the Venus Radar Mapper (VRM), and Galileo. A set of missions for the SSEC's Core Program has been recommended; they include: the VRM, the Mars Geoscience/Climatology Observer, the Comet Rendezvous/Asteroid Flyby, the Lunar Geoscience Orbiter, the Near-Earth Asteroid Rendezvous, the Venus Atmosphere Probe, the Mars Aeronomy Orbiter, the Mars Surface Probe, and the Comet Intercept Sample Return.

  14. Overview of the Education and Public Outreach (EPO) program of the Caltech Tectonics Observatory

    NASA Astrophysics Data System (ADS)

    Kovalenko, L.; Jain, K.; Maloney, J.

    2009-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past year, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) stimulate the interest of students and the general public in Earth Sciences, particularly in the study of tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries and advancements, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools. We have hosted local high school students and teachers to provide them with research experience (as part of Caltech’s “Summer Research Connection”); participated in teacher training workshops (organized by the local school district); hosted tours for local elementary school students; and brought hands-on activities into local elementary and middle school classrooms, science clubs, and science nights. We have also led local school students and teachers on geology field trips through nearby parks. In addition, we have developed education modules for undergraduate classes (as part of MARGINS program), and have written educational web articles on TO research (http://www.tectonics.caltech.edu/outreach). The presentation will give an overview of these activities and their impact on our educational program.

  15. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    SciTech Connect

    K. A. McCarthy; D. L. Williams; R. Reister

    2012-05-01

    The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

  16. The ICF Status and Plans in the United States

    SciTech Connect

    Moses, E; Miller, G; Kauffman, R

    2005-10-12

    The United States continues to maintain its leadership in ICF as it moves toward the goal of ignition. The flagship of the program is the National Ignition Facility (NIF) presently under construction at LLNL. Experiments had begun on the first four beams of the National Ignition Facility just at the time of the last IFSA Conference. Several new successful campaigns have been conducted since then in planar hydrodynamics and hohlraums as well as activating the VISAR diagnostic for equation of state experiments. Highlights of these results will be reviewed. Presently, the four beam experimental capability has been suspended while the first eight beams are being installed as the first step in building out the project. Meanwhile, much progress has been made in developing ignition designs for using NIF. An array of designs having several ablator materials have been shown computationally to ignite with energies ranging from the design energy to as low as 1 MJ of laser energy. Alternative direct drive designs in the NIF indirect drive configuration have been developed by LLE. This wide array of design choices has increased the chance of achieving ignition sooner on the facility. Plans are now being developed to begin an ignition experimental campaign on NIF in 2010, a little over a year after completion of the facility. Other US facilities are also implementing improved capabilities. Petawatt lasers are now under construction at the University of Rochester and Sandia National Laboratory. The Z pulsed power machine at Sandia National Laboratory is being refurbished to improve its performance. The ongoing research program at the OMEGA laser at the University of Rochester and the Z machine at Sandia National Laboratory as well as at the Nike, Trident and Janus lasers remain strong, performing experiments supporting the NIF ignition plan and direct drive ignition. There also is an active program in the broader field of high energy density science on these facilities. These

  17. The Edward Teller Medal Lecture: the Evolution Toward Indirect Drive and Two Decades of Progress Toward Icf Ignition and Burn (lirpp Vol. 11)

    NASA Astrophysics Data System (ADS)

    Lindl, John D.

    2016-10-01

    In 1972, I joined the Livermore ICF Theory and Target Design group led by John Nuckolls, shortly after publication of John's seminal Nature article on ICF. My primary role, working with others in the target design program including Mordy Rosen, Steve Haan, and Larry Suter, has been as a target designer and theorist who utilized the LASNEX code to perform numerical experiments, which along with analysis of laboratory and underground thermonuclear experiments allowed me to develop a series of models and physical insights which have been used to set the direction and priorities of the Livermore program...

  18. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.

    2010-01-01

    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the

  19. Diagnosing ICF gamma-ray physics

    SciTech Connect

    Herrmann, Hans W; Kim, Y H; Mc Evoy, A; Young, C S; Mack, J M; Hoffman, N; Wilson, D C; Langenbrunner, J R; Evans, S; Sedillo, T; Batha, S H; Dauffy, L; Stoeffl, W; Malone, R; Kaufman, M I; Cox, B C; Tunnel, T W; Miller, E K; Rubery, M

    2010-01-01

    Gamma rays produced in an ICF environment open up a host of physics opportunities we are just beginning to explore. A branch of the DT fusion reaction, with a branching ratio on the order of 2e-5 {gamma}/n, produces 16.7 MeV {gamma}-rays. These {gamma}-rays provide a direct measure of fusion reaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Reaction-rate history measurements, such as nuclear bang time and burn width, are fundamental quantities that will be used to optimize ignition on the National Ignition Facility (NIF). Gas Cherenkov Detectors (GCD) that convert fusion {gamma}-rays to UV/visible Cherenkov photons for collection by fast optical recording systems established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. Demonstrated absolute timing calibrations allow bang time measurements with accuracy better than 30 ps. System impulse response better than 95 ps fwhm have been made possible by the combination of low temporal dispersion GCDs, ultra-fast microchannel-plate photomultiplier tubes (PMT), and high-bandwidth Mach Zehnder fiber optic data links and digitizers, resulting in burn width measurement accuracy better than 10ps. Inherent variable energy-thresholding capability allows use of GCDs as {gamma}-ray spectrometers to explore other interesting nuclear processes. Recent measurements of the 4.44 MeV {sup 12}C(n,n{prime}) {gamma}-rays produced as 14.1 MeV DT fusion neutrons pass through plastic capsules is paving the way for a new CH ablator areal density measurement. Insertion of various neutron target materials near target chamber center (TCC) producing secondary, neutron-induced {gamma}y-rays are being used to study other nuclear interactions and as in-situ sources to calibrate detector response and DT branching ratio. NIF Gamma Reaction History (GRH) diagnostics, based on the GCD concept, are now being developed based on optimization of sensitivity, bandwidth

  20. Overview of U.S. EPA Aging Water Infrastructure Research Program - Interfacing with the Water Industry on Technology Assessment

    EPA Science Inventory

    This slide presentation summarizes key elements of the EPA Office of Research and Development’s (ORD) Aging Water Infrastructure (AWI) Research program. An overview of the national problems posed by aging water infrastructure is followed by a brief description of EPA’s overall r...

  1. The National Shipbuilding Research Program, Proceedings of the REAPS Technical Symposium Paper No. 1: Ship Production Committee Panel Overviews

    DTIC Science & Technology

    1980-10-01

    consensus specification, we experienced sematical problems. Avondale Shipyards, Inc. requested Mr. Richard Muther , President of Richard Muther and...1978, Mr. Richard Muther addressed the panel. His primary objective was definition which would do away with the sematical problems. Mr. Richard Muther’s...COMMITTEE PANEL OVERVIEWS SP-1 - SHIPYARD FACILITIES AND ENVIRONMENTAL EFFECTS Richard A. Price Program Manager Maritime Administration Research and

  2. Overview of the National Aeronautics and Space Administration's Nondestructive Evaluation (NDE) Program

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2002-01-01

    NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.

  3. An overview of the Nuclear Electric Xenon Ion System (NEXIS) program

    NASA Technical Reports Server (NTRS)

    Polk, Jay E.; Goebel, Don; Brophy, John R.; Beatty, John; Monheiser, J.; Giles, D.; Hobson, D.; Wilson, F.; Christensen, J.; De Pano, M.; Hart, S.; Ohlinger, W.; Hill, D. N.; Williams, J.; Wilbur, P.; Laufer, D. M.; Farnell, C.

    2003-01-01

    NASA is investigating high power, high specific impulse propulsion technologies that could enable ambitious flights such as multi-body rendezvous missions, outer planet orbiters and interstellar precursor missions. The requirements for these missions are much more demanding than those for state-of-the-art solar-powered ion propulsion applications. The purpose of the NEXIS program is to develop advanced ion thruster technologies that satisfy the requirements for high power, high specific impulse operation, high efficiency and long thruster life. The nominal design point for the NEXIS thruster is 20 kWe at a specific impulse of 7500 s with an efficiency over 78% and a xenon throughput capability of greater than 2000 kg. These performance and throughput goals will be achieved by applying a combination of advanced technologies including a large discharge chamber, erosion resistant carbon-carbon grids, an advanced reservoir hollow cathode and techniques for increasing propellant efficiency such as grid masking and accelerator grid aperture diameter tailoring. This paper provides an overview of the challenges associated with these requirements and how they are being addressed in the NEXIS program.

  4. International Space Station Overview

    NASA Technical Reports Server (NTRS)

    Bates, William V., Jr.

    1999-01-01

    The overview of the International Space Station (ISS) is comprised of the program vision and mission; Space Station uses; definition of program phases; as well as descriptions and status of several scheduled International Space Station Overview assembly flights.

  5. Classification of functioning and impairment: the development of ICF core sets for autism spectrum disorder.

    PubMed

    Bölte, Sven; de Schipper, Elles; Robison, John E; Wong, Virginia C N; Selb, Melissa; Singhal, Nidhi; de Vries, Petrus J; Zwaigenbaum, Lonnie

    2014-02-01

    Given the variability seen in Autism Spectrum Disorder (ASD), accurate quantification of functioning is vital to studying outcome and quality of life in affected individuals. The International Classification of Functioning, Disability and Health (ICF) provides a comprehensive, universally accepted framework for the description of health-related functioning. ICF Core Sets are shortlists of ICF categories that are selected to capture those aspects of functioning that are most relevant when describing a person with a specific condition. In this paper, the authors preview the process for developing ICF Core Sets for ASD, a collaboration with the World Health Organization and the ICF Research Branch. The ICF Children and Youth version (ICF-CY) was derived from the ICF and designed to capture the specific situation of the developing child. As ASD affects individuals throughout the life span, and the ICF-CY includes all ICF categories, the ICF-CY will be used in this project ("ICF(-CY)" from now on). The ICF(-CY) categories to be included in the ICF Core Sets for ASD will be determined at an ICF Core Set Consensus Conference, where evidence from four preparatory studies (a systematic review, an expert survey, a patient and caregiver qualitative study, and a clinical cross-sectional study) will be integrated. Comprehensive and Brief ICF Core Sets for ASD will be developed with the goal of providing useful standards for research and clinical practice and generating a common language for functioning and impairment in ASD in different areas of life and across the life span.

  6. Magnetron co-sputtering system for coating ICF targets

    SciTech Connect

    Hsieh, E.J.; Meyer, S.F.; Halsey, W.G.; Jameson, G.T.; Wittmayer, F.J.

    1981-12-09

    Fabrication of Inertial Confinement Fusion (ICF) targets requires deposition of various types of coatings on microspheres. The mechanical strength, and surface finish of the coatings are of concern in ICF experiments. The tensile strength of coatings can be controlled through grain refinement, selective doping and alloy formation. We have constructed a magnetron co-sputtering system to produce variable density profile coatings with high tensile strength on microspheres. The preliminary data on the properties of a Au-Cu binary alloy system by SEM and STEM analysis is presented.

  7. 42 CFR 442.118 - Denial of payments for new admissions to an ICF/MR.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Denial of payments for new admissions to an ICF/MR... of payments for new admissions to an ICF/MR. (a) Basis for denial of payments. The Medicaid agency may deny payment for new admissions to an ICF/MR that no longer meets the applicable conditions...

  8. 42 CFR 440.150 - Intermediate care facility (ICF/MR) services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Intermediate care facility (ICF/MR) services. 440....150 Intermediate care facility (ICF/MR) services. (a) “ICF/MR services” means those items and services furnished in an intermediate care facility for the mentally retarded if the following conditions are met:...

  9. COBRA accelerator for Sandia ICF diode research at Cornell University

    SciTech Connect

    Smith, D.L.; Ingwersen, P.; Bennett, L.F.; Boyes, J.D.; Anderson, D.E.; Greenly, J.B.; Sudan, R.N.

    1995-05-01

    The new COBRA accelerator is being built in stages at the Laboratory of Plasma Studies in Cornell University where its applications will include extraction diode and ion beam research in support of the light ion inertial confinement fusion (ICF) program at Sandia National Laboratories. The 4- to 5-MV, 125- to 250-kA accelerator is based on a four-cavity inductive voltage adder (IVA) design. It is a combination of new ferromagnetically-isolated cavities and self magnetically insulated transmission line (MITL) hardware and components from existing Sandia and Cornell facilities: Marx generator capacitors, hardware, and power supply from the DEMON facility; water pulse forming lines (PFL) and gas switch from the Subsystem Test Facility (STF); a HERMES-III intermediate store capacitor (ISC); and a modified ion diode from Cornell`s LION. The present accelerator consists of a single modified cavity similar to those of the Sandia SABRE accelerator and will be used to establish an operating system for the first stage initial lower voltage testing. Four new cavities will be fabricated and delivered in the first half of FY96 to complete the COBRA accelerator. COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 180{degrees} about their vertical axis. The site preparations, tank construction, and diode design and development are taking place at Cornell with growing enthusiasm as this machine becomes a reality. Preliminary results with the single cavity and short positive inner cylinder MITL configuration will soon be available.

  10. COBRA accelerator for Sandia ICF diode research at Cornell University

    NASA Astrophysics Data System (ADS)

    Smith, David L.; Ingwersen, Pete; Bennett, Lawrence F.; Boyes, John D.; Anderson, David E.; Greenly, John B.; Sudan, Ravi N.

    The new COBRA accelerator is being built in stages at the Laboratory of Plasma Studies in Cornell University where its applications will include extraction diode and ion beam research in support of the light ion inertial confinement fusion (ICF) program at Sandia National Laboratories. The 4- to 5-MV, 125- to 250-kA accelerator is based on a four-cavity inductive voltage adder (IVA) design. It is a combination of new ferromagnetically-isolated cavities and self magnetically insulated transmission line (MITL) hardware and components from existing Sandia and Cornell facilities: Marx generator capacitors, hardware, and power supply from the DEMON facility; water pulse forming lines (PFL) and gas switch from the Subsystem Test Facility (STF); a HERMES-3 intermediate store capacitor (ISC); and a modified ion diode from Cornell's LION. The present accelerator consists of a single modified cavity similar to those of the Sandia SABRE accelerator and will be used to establish an operating system for the first stage initial lower voltage testing. Four new cavities will be fabricated and delivered in the first half of FY96 to complete the COBRA accelerator. COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 180(degrees) about their vertical axis. The site preparations, tank construction, and diode design and development are taking place at Cornell with growing enthusiasm as this machine becomes a reality. Preliminary results with the single cavity and short positive inner cylinder MITL configuration will soon be available.

  11. Fundamental Aeronautics Program: Overview of Propulsion Work in the Supersonic Cruise Efficiency Technical Challenge

    NASA Technical Reports Server (NTRS)

    Castner, Ray

    2012-01-01

    The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  12. Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency

    NASA Technical Reports Server (NTRS)

    Castner, Raymond

    2011-01-01

    The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  13. An Overview of the NASA Aviation Safety Program Propulsion Health Monitoring Element

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2000-01-01

    The NASA Aviation Safety Program (AvSP) has been initiated with aggressive goals to reduce the civil aviation accident rate, To meet these goals, several technology investment areas have been identified including a sub-element in propulsion health monitoring (PHM). Specific AvSP PHM objectives are to develop and validate propulsion system health monitoring technologies designed to prevent engine malfunctions from occurring in flight, and to mitigate detrimental effects in the event an in-flight malfunction does occur. A review of available propulsion system safety information was conducted to help prioritize PHM areas to focus on under the AvSP. It is noted that when a propulsion malfunction is involved in an aviation accident or incident, it is often a contributing factor rather than the sole cause for the event. Challenging aspects of the development and implementation of PHM technology such as cost, weight, robustness, and reliability are discussed. Specific technology plans are overviewed including vibration diagnostics, model-based controls and diagnostics, advanced instrumentation, and general aviation propulsion system health monitoring technology. Propulsion system health monitoring, in addition to engine design, inspection, maintenance, and pilot training and awareness, is intrinsic to enhancing aviation propulsion system safety.

  14. Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.; Woods, William C.; Engelund, Walter C.

    2000-01-01

    This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize, and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cow-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale, risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.

  15. Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.; Kellas, Sotiris

    2008-01-01

    This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.

  16. Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Fuchs, Yvonne T.

    2009-01-01

    This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.

  17. The CAM Education Program of the National Center for Complementary and Alternative Medicine: an overview.

    PubMed

    Pearson, Nancy J; Chesney, Margaret A

    2007-10-01

    The authors provide a historical context and overview of the experience of education projects at 14 health professions schools in the United States and the American Medical Students Association that were funded by the National Center for Complementary and Alternative Medicine at the National Institutes of Health in cohorts of five per year in 2000, 2001, and 2002-2003. These 15 projects were designed to incorporate CAM information into the curricula of conventional health professions schools. A longer-term goal was to accelerate the integration of CAM and conventional medicine. The overall program started in 2000 at a time when discussions about the definition, goals, and value of integrative medicine were already well underway. The efforts specific to each project, as well as the shared challenges, accomplishments, and collaborative efforts of all 15 projects, can provide guidance for the education of conventional health care providers about CAM in an integrative medicine environment. Challenging issues that must be faced include (1) the need to develop successful strategies to incorporate information about CAM into already dense health professions school curricula, (2) the need for conventional health professionals to have authoritative resources to provide their patients information about risks and benefits of CAM practices, and (3) the need to identify appropriate roles for CAM practitioners in educating conventional health professionals about CAM therapies. The authors discuss these issues and others and present some recommendations.

  18. Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)

    SciTech Connect

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    2013-08-09

    The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a building’s energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.

  19. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  20. Kinetic Effects at Material Interfaces in ICF Implosions

    NASA Astrophysics Data System (ADS)

    Wilks, S. C.; Cabot, W.; Whitley, H.; Greenough, J.; Cohen, B. I.; Belof, J.; Zimmerman, G.; Amendt, P. A.; Lepape, S.; Divol, L.; Dimits, A.; Graziani, F.; Molvig, K.; Dodd, E.; Li, C. K.; Petrasso, R.; Laffite, S.; Larroche, O.; Casanova, M.; Masse, L.

    2014-10-01

    The mixing of materials at an interface during an ICF implosion, for example the DT- Carbon interface in an ICF capsule, is a complex process. In general, rad-hydro codes do an excellent job of modeling the important processes during an ICF implosion. However, there are certain times during the implosion when kinetic effects of the ions may play a role in how two materials mix across the interface between them, even in the absence of shocks moving through them. The Knudsen layer effect is one such example. We will describe results of multi-ion species hybrid LSP simulations where the ions are treated kinetically and the electrons are treated as a fluid. We observe that the DT and carbon ions diffuse across the interface in a self-similar manner, at a rate proportional to the square root of time, in agreement with diffusion theory. The resulting ion distributions for each species (on both sides of the interface) will be presented, and the result of this mixing on the yield will be discussed for ICF capsules. Preliminary results of a related mixing that occurs at the gas-hohlraum wall interface will also be presented. Performed under auspices of U.S. DOE by LLNL, Contract DE-AC52-07NA27344. LLNS, LLC.

  1. The Steubenville comprehensive air monitoring program (SCAMP): overview and statistical considerations.

    PubMed

    Connell, Daniel P; Withum, Jeffrey A; Winter, Stephen E; Statnick, Robert M; Bilonick, Richard A

    2005-04-01

    Average concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) in Steubenville, OH, have decreased by more than 10 microg/m3 since the landmark Harvard Six Cities Study associated the city's elevated PM2.5 concentrations with adverse health effects in the 1980s. Given the promulgation of a new National Ambient Air Quality Standard (NAAQS) for PM2.5 in 1997, a current assessment of PM2.5 in the Steubenville region is warranted. The Steubenville Comprehensive Air Monitoring Program (SCAMP) was conducted from 2000 through 2002 to provide such an assessment. The program included both an outdoor ambient air monitoring component and an indoor and personal air sampling component. This paper, which is the first in a series of four that will present results from the outdoor portion of SCAMP, provides an overview of the outdoor ambient air monitoring program and addresses statistical issues, most notably autocorrelation, that have been overlooked by many PM2.5 data analyses. The average PM2.5 concentration measured in Steubenville during SCAMP (18.4 microg/m3) was 3.4 microg/m3 above the annual PM2.5 NAAQS. On average, sulfate and organic material accounted for approximately 31% and 25%, respectively, of the total PM2.5 mass. Local sources contributed an estimated 4.6 microg/m3 to Steubenville's mean PM2.5 concentration. PM2.5 and each of its major ionic components were significantly correlated in space across all pairs of monitoring sites in the region, suggesting the influence of meteorology and long-range transport on regional PM2.5 concentrations. Statistically significant autocorrelation was observed among time series of PM2.5 and component data collected at daily and 1-in-4-day frequencies during SCAMP. Results of spatial analyses that accounted for autocorrelation were generally consistent with findings from previous studies that did not consider autocorrelation; however, these analyses also indicated that failure to

  2. A freshman orientation program to provide an overview of the medical learning roadmap.

    PubMed

    Fujikura, Terumichi; Nemoto, Takehiro; Takayanagi, Kazue; Kashimura, Masami; Hayasaka, Yoshiaki; Shimizu, Kazuo

    2014-01-01

    International accreditation of medical education was introduced in Japan in 2013 and is planning to be applied in late 2014 or 2015. Students will need to cope with the resulting changes and to recognize by what route they will learn medicine. Therefore, a freshman orientation course, which was based on problem-based learning (PBL) and had been held for first-year students, was modified as an awareness reform program in which students would learn "how to learn medicine." We investigated whether this program has led to useful changes in students' recognition of the way of learning in medical school and their directions as learners. The program was held for 114 first-year medical school students in 2013 and consisted of PBL tutorials, large-classroom lectures, simulation learning using role-play with simulated patients, and team-based learning (TBL), presented in this order. Learning modules that is made with an integration of the clinical sciences with the basic biomedical and the behavioral and social sciences were provided. A nonanonymous questionnaire survey asking" what learning methods are effective for you?" was conducted before and after completion of the course. Furthermore, group answers obtained in TBL were investigated. The score for the question" To what extent can you imagine your route of learning during your 6 years?" significantly increased from 3.1±0.99 (mean±SD) before the course to 3.5±0.88 (p<0.01) after the course. The score for the question" To what extent is the small-group learning, such as PBL, useful for you?" significantly increased from 3.9±0.73 to 4.2±0.71 (p<0.05). Group responses in TBL sessions indicated that students desired classes that presented tasks and regarded" emphasis on reflection" and" observation of senior physicians as role models" as the most important methods for learning interview skills. We believe students should acquire active learning attitudes as adults early in their 6 years of medical school. The level of

  3. ICF Core Set for Head and Neck Cancer: Do the Categories Discriminate Among Clinically Relevant Subgroups of Patients?

    ERIC Educational Resources Information Center

    Tschiesner, Uta; Oberhauser, Cornelia; Cieza, Alarcos

    2011-01-01

    The multidisciplinary assessment of functioning in patients with head and neck cancer (HNC) according to the "ICF Core Set for Head and Neck Cancer" (ICF-HNC) was developed in an international and multi-disciplinary approach. The ICF-HNC is an application of the ICF that was adopted by the World Health Organization. The objective of this study was…

  4. Validation of the comprehensive ICF core set for low back pain: the perspective of physical therapists.

    PubMed

    Kirschneck, Michaela; Kirchberger, Inge; Amann, Edda; Cieza, Alarcos

    2011-08-01

    The "Comprehensive ICF Core Set for Low Back Pain (LBP)" is an application of the International Classification of Functioning, Disability and Health (ICF) and represents the typical spectrum of problems in functioning for patients with LBP. The aim of this study was to validate the Comprehensive ICF Core Set for low back pain from the perspective of physical therapists. Physical therapists experienced in LBP treatment were asked about the patients' problems, patients' resources and aspects of environment treated by physical therapists in a three-round survey using the Delphi technique. Responses were linked to the ICF. Eighty-four physical therapists in 32 countries named 1955 concepts that covered all ICF components. Fourteen ICF categories were not represented in the Comprehensive ICF Core Set for LBP although at least 75% of the participants have rated them as important. Most of them belonged to the ICF component "Body Functions". Twenty-eight concepts were linked to the not-yet-developed ICF component personal factors. Further, 21 issues were not covered by the ICF. The validity of the ICF components "Body Structures", "Activities and Participation" and "Environmental Factors" was largely supported by the physical therapists. However, several body functions were identified which are not covered and need further investigation.

  5. An overview of Sandia National Laboratories' plasma switched, gigawatt, ultra-wideband impulse transmitter program

    NASA Astrophysics Data System (ADS)

    Clark, R. S.; Rinehart, L. F.; Buttram, M. T.; Aurand, J. F.

    Sandia National Laboratories has developed several repetitive, ultra-wideband (UWB), impulse transmitters to address impulse source technology and to support experimental applications. The sources fall into two different classes, pulse peaking and pulse shorting depending on how the UWB frequency components are generated. The frequency spectrum of the radiated pulse from these sources include the spectrum of 100-MHz to 3-GHz. Depending upon the source, repetitive operation from single shot to 5-kHz (1-kHz nominal) has been obtained with excellent reliability and repeatability. SNIPER (Sub-Nanosecond Impulse Radiator) is a source which uses an oil peaking switch to obtain a fast risetime (250-pS) pulse of 2-nS duration. The output voltage ranges between few tens of kilovolts to 250-kV. EMBL (EnantioMorphic Blumlein) is a similar device (presently under development) which uses a gas switch to sharpen the trailing edge of a 2-nS pulse to approximately 100-pS. To date, an output voltage of approximately 600-kV has been obtained (700-kV is the design goal). Since the frequency spectra are identical between sources with sharpened leading or trailing edges, alternatively, one can use parallel switches to short the pulse at its peak voltage. The pulse is generated externally and then injected into the antenna. Due to the high powers involved and the need to radiate a broad spectrum of frequencies, Sandia has concentrated on TEM horn antennas with special high voltage feed adapters. Several TEM horns have been built and used during this program. In those cases where higher gains are desired for the higher frequencies, TEM horn-fed, dish antennas have been employed. An overview of the UWB transmitters, including design and operation of the modulators, the PFN'S, the pulse sharpening switches and the antennas will be presented.

  6. Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview

    NASA Technical Reports Server (NTRS)

    Miller, Dean; Bond, Thomas; Sheldon, David; Wright, William; Langhals, Tammy; Al-Khalil, Kamel; Broughton, Howard

    1996-01-01

    The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center. LEWICE/Thermal (electrothermal deicing & anti-icing), and ANTICE (hot-gas & electrothermal anti-icing). The Thermal Code Validation effort was designated as a priority during a 1994 'peer review' of the NASA Lewis Icing program, and was implemented as a cooperative effort with industry. During April 1996, the first of a series of experimental validation tests was conducted in the NASA Lewis Icing Research Tunnel(IRT). The purpose of the April 96 test was to validate the electrothermal predictive capabilities of both LEWICE/Thermal, and ANTICE. A heavily instrumented test article was designed and fabricated for this test, with the capability of simulating electrothermal de-icing and anti-icing modes of operation. Thermal measurements were then obtained over a range of test conditions, for comparison with analytical predictions. This paper will present an overview of the test, including a detailed description of: (1) the validation process; (2) test article design; (3) test matrix development; and (4) test procedures. Selected experimental results will be presented for de-icing and anti-icing modes of operation. Finally, the status of the validation effort at this point will be summarized. Detailed comparisons between analytical predictions and experimental results are contained in the following two papers: 'Validation of NASA Thermal Ice Protection Computer Codes: Part 2- The Validation of LEWICE/Thermal' and 'Validation of NASA Thermal Ice Protection Computer Codes: Part 3-The Validation of ANTICE'

  7. An overview of Sandia National Laboratories` plasma switched, gigawatt, ultra-wideband impulse transmitter program

    SciTech Connect

    Clark, R.S.; Rinehart, L.F.; Buttram, M.T.; Aurand, J.F.

    1992-11-01

    Sandia National Laboratories has developed several repetitive, ultra-wideband (UWB), impulse transmitters to address impulse source technology and to support experimental applications. The sources fall into two different classes, pulse peaking and pulse shorting depending on how the UWB frequency components are generated. ne frequency spectrum of the radiated pulse from these sources include the spectrum of 100-MHz to 3-GHz. Depending upon the source, repetitive operation from single shot to 5-kHz (1-kHz nominal) has been obtained with excellent reliability and repeatability. SNIPER (Sub-Nanosecond impulse Radiator) is a source which uses an oil peaking switch to obtain a fast risetime (250-pS) pulse of 2-nS duration. The output voltage ranges between few tens of kilovolts to 250-kV. EMBL (EnantioMorphic Blumlein) is a similar device (presently under development) which uses a gas switch to sharpen the trailing edge of a 2-nS pulse to approximately 100-pS. To date, an output voltage of approximately 600-kV has been obtained (700- kV is the design goal). Since the frequency spectra are identical between sources with sharpened leading or trailing edges, alternatively, one can use parallel switches to short the pulse at its peak voltage. The pulse is generated externally and then injected into the antenna. Due to the high powers involved and the need to radiate a broad spectrum of frequencies, Sandia has concentrated on TEM horn. antennas with special high voltage feed adapters. Several TEM horns have been built and used during this program. In those cases where higher gains are desired for the higher frequencies, TEM horn-fed, dish antennas have been employed. An overview of the UWB transmitters, including design and operation of the modulators, the PFN`S, the pulse sharpening switches and the antennas will be presented.

  8. An overview of Sandia National Laboratories' plasma switched, gigawatt, ultra-wideband impulse transmitter program

    SciTech Connect

    Clark, R.S.; Rinehart, L.F.; Buttram, M.T.; Aurand, J.F.

    1992-01-01

    Sandia National Laboratories has developed several repetitive, ultra-wideband (UWB), impulse transmitters to address impulse source technology and to support experimental applications. The sources fall into two different classes, pulse peaking and pulse shorting depending on how the UWB frequency components are generated. ne frequency spectrum of the radiated pulse from these sources include the spectrum of 100-MHz to 3-GHz. Depending upon the source, repetitive operation from single shot to 5-kHz (1-kHz nominal) has been obtained with excellent reliability and repeatability. SNIPER (Sub-Nanosecond impulse Radiator) is a source which uses an oil peaking switch to obtain a fast risetime (250-pS) pulse of 2-nS duration. The output voltage ranges between few tens of kilovolts to 250-kV. EMBL (EnantioMorphic Blumlein) is a similar device (presently under development) which uses a gas switch to sharpen the trailing edge of a 2-nS pulse to approximately 100-pS. To date, an output voltage of approximately 600-kV has been obtained (700- kV is the design goal). Since the frequency spectra are identical between sources with sharpened leading or trailing edges, alternatively, one can use parallel switches to short the pulse at its peak voltage. The pulse is generated externally and then injected into the antenna. Due to the high powers involved and the need to radiate a broad spectrum of frequencies, Sandia has concentrated on TEM horn. antennas with special high voltage feed adapters. Several TEM horns have been built and used during this program. In those cases where higher gains are desired for the higher frequencies, TEM horn-fed, dish antennas have been employed. An overview of the UWB transmitters, including design and operation of the modulators, the PFN'S, the pulse sharpening switches and the antennas will be presented.

  9. An Overview of the VHITAL Program: A Two-Stage Bismuth Fed Very High Specific Impulse Thruster with Anode Layer

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Marrese-Reading, Colleen; Capelli, Mark; Scharfe, David; Tverdokhlebov, Sergey; Semenkin, Sasha; Tverdokhlebov, Oleg; Boyd, Ian; Keidar, Michael; Yalin, Azer; Markusic, Tom; Polzin, Kurt

    2005-01-01

    The Very High Isp Thruster with Anode Layer (VHITAL) is a two stage Hall thruster program that is a part of NASA's Prometheus Program in NASA's New Exploration Systems Mission Directorate (ESMD). It is a potentially viable low-cost alternative to ion engines for near-term NEP applications with the growth potential to support mid-term and far-term NEP missions... This paper will present an overview of the thruster fabrication, pre-existing TAL 160 demonstration, feed system development, lifetime assessment, contamination assessment, and mission study activities performed to date.

  10. Overview and current status of DOE/UPVG`s TEAM-UP Program

    SciTech Connect

    Hester, S.

    1995-11-01

    An overview is given of the Utility Photovoltaic Group. The mission is to accelerate the use of small-scale and large scale applications of photovoltaics for the benefit of the electric utilities and their customers.

  11. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,KH

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, the authors have made significant progress in developing the building blocks needed for AT operation: (1) the authors have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {le} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. They have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiation power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  12. The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a program overview

    NASA Astrophysics Data System (ADS)

    Macculi, C.; Argan, A.; D'Andrea, M.; Lotti, S.; Laurenza, M.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.; Fiorini, M.; Molendi, S.; Uslenghi, M.; Mineo, T.; Bulgarelli, A.; Fioretti, V.; Cavazzuti, E.

    2016-07-01

    The ATHENA observatory is the second large-class ESA mission, in the context of the Cosmic Vision 2015 - 2025, scheduled to be launched on 2028 at L2 orbit. One of the two on-board instruments is the X-IFU (X-ray Integral Field Unit): it is a TES-based kilo-pixels order array able to perform simultaneous high-grade energy spectroscopy (2.5 eV at 6 keV) and imaging over the 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background which is induced by primary protons of both solar and Cosmic Rays origin, and secondary electrons. The studies performed by Geant4 simulations depict a scenario where it is mandatory the use of reduction techniques that combine an active anticoincidence detector and a passive electron shielding to reduce the background expected in L2 orbit down to the goal level of 0.005 cts/cm2/s/keV, so enabling the characterization of faint or diffuse sources (e.g. WHIM or Galaxy cluster outskirts). From the detector point of view this is possible by adopting a Cryogenic AntiCoincidence (CryoAC) placed within a proper optimized environment surrounding the X-IFU TES array. It is a 4-pixels detector made of wide area Silicon absorbers sensed by Ir TESes, and put at a distance < 1 mm below the TES-array. On October 2015 the X-IFU Phase A program has been kicked-off, and about the CryoAC is at present foreseen on early 2017 the delivery of the DM1 (Demonstration Model 1) to the FPA development team for integration, which is made of 1 pixel "bridgessuspended" that will address the final design of the CryoAC. Both the background studies and the detector development work is on-going to provide confident results about the expected residual background at the TES-array level, and the single pixel design to produce a detector for testing activity on 2016/2017. Here we will provide an overview of the CryoAC program, discussing some details about the background assessment having impact on the CryoAC design, the last single pixel characterization

  13. Overview of the U.S. DOE Accident Tolerant Fuel Development Program

    SciTech Connect

    Jon Carmack; Frank Goldner; Shannon M. Bragg-Sitton; Lance L. Snead

    2013-09-01

    The United States Fuel Cycle Research and Development Advanced Fuels Campaign has been given the responsibility to conduct research and development on enhanced accident tolerant fuels with the goal of performing a lead test assembly or lead test rod irradiation in a commercial reactor by 2022. The Advanced Fuels Campaign has defined fuels with enhanced accident tolerance as those that, in comparison with the standard UO2-Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations and operational transients, as well as design-basis and beyond design-basis events. This paper provides an overview of the FCRD Accident Tolerant Fuel program. The ATF attributes will be presented and discussed. Attributes identified as potentially important to enhance accident tolerance include reduced hydrogen generation (resulting from cladding oxidation), enhanced fission product retention under severe accident conditions, reduced cladding reaction with high-temperature steam, and improved fuel-cladding interaction for enhanced performance under extreme conditions. To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements to that design, and the design of an advanced fuel/cladding system. The aforementioned attributes provide qualitative guidance for parameters that will be considered for fuels with enhanced accident tolerance. It may be unnecessary to improve in all attributes and it is likely that some attributes or combination of attributes provide meaningful gains in accident tolerance, while others may provide only marginal benefits. Thus, an initial step in program implementation will be the development of quantitative

  14. Resource Guide to the Evaluation of the Faculty Development Program in Alcohol and Other Drug Abuse. Part I: Overview of the Evaluation Model.

    ERIC Educational Resources Information Center

    Pacific Inst. for Research and Evaluation, Walnut Creek, CA.

    This is an overview of an evaluation model developed to be used with the Faculty Development Program in Alcohol and Other Drug Abuse clinical training program for professional school faculty in medicine, nursing and social work. The evaluation model is in two major parts, a national evaluation which examines program process and outcome across all…

  15. A systematic review of measures of shoulder pain and functioning using the International classification of functioning, disability and health (ICF)

    PubMed Central

    2013-01-01

    Background Shoulder pain is a common condition with prevalence estimates of 7–26% and the associated disability is multi-faceted. For functional assessments in clinic and research, a number of condition-specific and generic measures are available. With the approval of the ICF, a system is now available for the analysis of health status measures. The aims of this systematic literature review were to identify the most frequently addressed aspects of functioning in assessments of shoulder pain and provide an overview of the content of frequently used measures. Methods Meaningful concepts of the identified measures were extracted and linked to the most precise ICF categories. Second-level categories with a relative frequency above 1% and the content of measures with at least 5 citations were reported. Results A set of 40 second-level ICF categories were identified in 370 single-item measures and 105 multi-item measures, of these, 28 belonged to activities and participation, 11 to body functions and structures and 1 to environmental factors. The most frequently addressed concepts were: pain; movement-related body functions and structures; sleep, hand and arm use, self-care, household tasks, work and employment, and leisure. Concepts of psycho-social functions and environmental factors were less frequently included. The content overview of commonly used condition-specific and generic measures displayed large variations in the number of included concepts. The most wide-ranging measures, the DASH and ASES were linked to 23 and 16 second-level ICF categories, respectively, whereas the Constant were linked to 7 categories and the SST and the SPADI to 6 categories each. Conclusions This systematic review displayed that measures used for shoulder pain included more than twice as many concepts of activities and participation than concepts of body functions and structures. Environmental factors were scarcely addressed. The huge differences in the content of the condition

  16. Stability design considerations for mirror support systems in ICF lasers

    SciTech Connect

    Tietbohl, G.L.; Sommer, S.C.

    1996-10-01

    Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems.

  17. Analysis Of Wetted-Foam ICF Capsule Perormance

    NASA Astrophysics Data System (ADS)

    Peterson, R.; Olson, R.; Zylstra, A.; Haines, B.; Yi, A.; Bradley, P.; Yin, L.; Leeper, R.; Kline, J.

    2016-10-01

    The performance of wetted-foam ICF capsules is investigated with the RAGE Eulerian radiation-hydrodynamics computer code. We are developing an experimental platform on NIF that employs a wetted foam liquid DT fuel layer ICF capsules. By varying the capsule temperature, the vapor density in the capsule can be prescribed, and the hot spot convergence ratio (CR) of the capsule implosion can be controlled. This allows us to investigate the fidelity of RAGE in modeling of capsule implosions as the value of CR is varied. In the NIF experiments, CR can be varied from 12 to 25. This presentation will cover simulations with RAGE of three NIF shots performed in 2016; a DD and a DT liquid fuel shot with CR =14 and a DT shot with CR =16. It will also discuss analysis of future experiments. This work was performed under auspices of the U. S. DOE by LANL.

  18. Effect of inactive impurities on the burning of ICF targets

    SciTech Connect

    Gus'kov, S. Yu.; Il'in, D. V.; Sherman, V. E.

    2011-12-15

    The efficiency of thermonuclear burning of the spherical deuterium-tritium (DT) plasma of inertial confinement fusion (ICF) targets in the presence of low-Z impurities (such as lithium, carbon, or beryllium) with arbitrary concentrations is investigated. The effect of impurities produced due to the mixing of the thermonuclear fuel with the material of the structural elements of the target during its compression on the process of target burning is studied, and the possibility of using solid noncryogenic thermonuclear fuels in ICF targets is analyzed. Analytical dependences of the ignition energy and target thermonuclear gain on the impurity concentration are obtained. The models are constructed for homogeneous and inhomogeneous plasmas for the case in which the burning is initiated in the central heated region of the target and then propagates into the surrounding relatively cold fuel. Two possible configurations of an inhomogeneous plasma, namely, an isobaric configuration formed in the case of spark ignition of the target and an isochoric configuration formed in the case of fast ignition, are considered. The results of numerical simulations of the burning of the DT plasma of ICF targets in a wide range of impurity concentrations are presented. The simulations were performed using the TEPA one-dimensional code, in which the thermonuclear burning kinetics is calculated by the Monte Carlo method. It is shown that the strongest negative effect related to the presence of impurities is an increase in the energy of target ignition. It is substantiated that the most promising solid noncryogenic fuel is DT hydride of beryllium (BeDT). The requirements to the plasma parameters at which BeDT can be used as a fuel in noncryogenic ICF targets are determined. Variants of using noncryogenic targets with a solid thermonuclear fuel are proposed.

  19. FISH analysis on spontaneously arising micronuclei in the ICF syndrome.

    PubMed Central

    Stacey, M; Bennett, M S; Hulten, M

    1995-01-01

    The ICF syndrome is a rare disorder where patients show undercondensation of the heterochromatic blocks of chromosomes 1, 9, and 16 along with variable immunodeficiency. The undercondensation of the heterochromatic block appears to be restricted to a portion of PHA stimulated T cells. Patients with this syndrome also show an increase in micronuclei formation. We have used dual colour FISH to investigate the chromosomal content of these micronuclei in PHA stimulated peripheral blood cultures, an EBV transformed B cell line, and also micronuclei observed in vivo from peripheral blood smears. Chromosome 1 appears to be present in a higher proportion of micronuclei compared to chromosomes 9 and 16 in both a PHA stimulated culture and an EBV transformed cell line. An 18 centromeric probe, not associated with the ICF syndrome, showed no signal in any of the micronuclei observed. The implications from these observations are that the heterochromatic instability in the ICF syndrome is manifested not only in T but also in B cells and that it is present in vivo. Images PMID:7562960

  20. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-01-01

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  1. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-08-02

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  2. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, J.W.K.

    1987-10-14

    Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

  3. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,HK

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {ge} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  4. An Overview of the Growth and Development of the U.S. Migrant Health Program.

    ERIC Educational Resources Information Center

    Johnston, Helen J.

    1984-01-01

    Presents a broad, historical overview of federal legislation and agencies created to improve the health situation of migrant farm workers. Focuses particularly on the Migrant Health Act (of 1962) and its subsequent revisions. Asserts that a need still exists for special arrangements for health care for migrants and other seasonal farm workers. (KH)

  5. Overview of Needs, Programs, and Implementations of Vocational Counseling and Guidance.

    ERIC Educational Resources Information Center

    Kunze, Karl R.

    The author begins by overviewing some recent criticisms of the vocational guidance field: (1) too little collaboration with industrial personnel; (2) an emphasis on processing masses of people rather than on the individual; and (3) the need for a systems approach to counseling. His impressions, from the vantage point of industry (i.e. the…

  6. EDITORIAL: Special issue: overview reports from the Fusion Energy Conference (FEC) (Daejeon, South Korea, 2010) Special issue: overview reports from the Fusion Energy Conference (FEC) (Daejeon, South Korea, 2010)

    NASA Astrophysics Data System (ADS)

    Thomas, Paul

    2011-09-01

    -U tokamak in China. Other MCF Overview of results from the Large Helical Device; Overview of TJ-II experiments; Overview of the RFX fusion science program. ICF Progress toward ignition on the National Ignition Facility; Studying ignition schemes on European laser facilities; Cross device or cross programme topical overviews Effects of 3D magnetic perturbations on toroidal plasmas; Toroidal momentum transport. We trust that, as usual, this issue will be a useful resource for the community and we thank all of the authors and referees for their hard work in preparing the papers for publication. Whilst the number of overview reports is the same as for the Geneva FEC special issue (2009 Nucl. Fusion 49 100201), we are pleased to note that we have a complete set of summaries in this issue.

  7. [The term "Funktionale Gesundheit" (functional health) in the German edition of the ICF].

    PubMed

    Cibis, W

    2009-07-01

    In the preface of the German edition of the INTERNATIONAL CLASSIFICATION OF FUNCTIONING, DISABILITY AND HEALTH (ICF) the term "functional health" (Funktionale Gesundheit) is introduced and defined. There is no direct equivalent expression in the original English Version of the ICF. The definition of "Funktionale Gesundheit" was thus strongly disputed among the translators and ICF experts involved in the German translation. In the following, the author suggests reconsidering the definition critically and proposes an alternative solution.

  8. Overview Presentation

    NASA Technical Reports Server (NTRS)

    Lytle, John

    2001-01-01

    This report provides an overview presentation of the 2000 NPSS (Numerical Propulsion System Simulation) Review and Planning Meeting. Topics include: 1) a background of the program; 2) 1999 Industry Feedback; 3) FY00 Status, including resource distribution and major accomplishments; 4) FY01 Major Milestones; and 5) Future direction for the program. Specifically, simulation environment/production software and NPSS CORBA Security Development are discussed.

  9. Mediating effects of the ICF domain of function and the gross motor function measure on the ICF domains of activity, and participation in children with cerebral palsy.

    PubMed

    Lee, Byoung-Hee; Kim, Yu-Mi; Jeong, Goo-Churl

    2015-10-01

    [Purpose] This study aimed to evaluate the mediating effect of gross motor function, measured using the Gross Motor Function Measure (GMFM) and of general function, measured using the International Classification of Functioning, Disability and Health-Child and Youth Check List (ICF-CY), on the ICF domains of activity and participation in children with cerebral palsy (CP). [Subjects] Ninety-five children with CP, from Seoul, Korea, participated in the study. [Methods] The GMFM was administered in its entirety to patients without orthoses or mobility aids. The ICF-CY was used to evaluate the degree of disability and health of subjects. [Results] GMFM score and ICF-CY function were negatively correlated to ICF-CY activity and participation. ICF-CY partially mediated the effects of the GMFM on activity and participation. [Conclusion] When establishing a treatment plan for a child with CP, limitations in activity and participation, as described by the ICF-CY, should be considered in addition to the child's physical abilities and development. In addition, the treatment plan should focus on increasing the child's activity and participation level, as well as his/her physical level.

  10. Laser Program annual report, 1985

    SciTech Connect

    Rufer, M.L.; Murphy, P.W.

    1986-11-01

    This volume presents the unclassified activities and accomplishments of the Inertial Confinement Fusion and Advanced Laser Development elements of the Laser Program at the Lawrence Livermore National Laboratory for the calendar year 1985. This report has been organized into major sections that correspond to our principal technical activities. Section 1 provides an overview. Section 2 comprises work in target theory, design, and code development. Target development and fabrication and the related topics in materials science are contained in Section 3. Section 4 presents work in experiments and diagnostics and includes developments in data acquisition and management capabilities. In Section 5 laser system (Nova) operation and maintenance are discussed. Activities related to supporting laser and optical technologies are described in Section 6. Basic laser research and development is reported in Section 7. Section 8 contains the results of studies in ICF applications where the work reported deals principally with the production of electric power with ICF. Finally, Section 9 is a comprehensive discussion of work to date on solid state lasers for average power applications. Individual sections, two through nine, have been cataloged separately.

  11. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    SciTech Connect

    Not Available

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  12. 75 FR 18171 - Overview Information; Race to the Top Fund Assessment Program; Notice Inviting Applications for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... (Comprehensive Assessment Systems grants) and 84.395C (High School Course Assessment Programs grants). Dates...) High School Course Assessment Programs grants. In this notice, we are establishing priorities... determine school and educator effectiveness, identify teacher and principal professional development...

  13. 7 CFR 3402.5 - Overview of National Needs Graduate and Postdoctoral Fellowship Grants Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description... thesis/dissertation research travel allowances for a limited number of USDA Graduate Fellows....

  14. 75 FR 10225 - Office of Postsecondary Education; Overview Information; Language Resource Centers Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ...; Language Resource Centers Program; Notice Inviting Applications for New Awards for Fiscal Year (FY) 2010... Opportunity Description Purpose of Program: The Language Resource Centers (LRC) program provides grants to... improving the Nation's capacity for teaching and learning foreign languages. Priorities: This...

  15. A Program Overview with Emphasis upon Cooperative Arrangements with the Canadian National Institute for the Blind.

    ERIC Educational Resources Information Center

    Cylke, Frank Kurt

    This report describes activities of the talking-book program of the National Library Service for the Blind and Physically Handicapped (NLS) of the Library of Congress, with emphasis on activities conducted in cooperation with the Canadian National Institute for the Blind (CNIB) library program. First, the overall NLS program in the U.S. which…

  16. A Healthy Lifestyle Program for Latino Daughters and Mothers: The BOUNCE Overview and Process Evaluation

    ERIC Educational Resources Information Center

    Olvera, Norma N.; Knox, Brook; Scherer, Rhonda; Maldonado, Gabriela; Sharma, Shreela V.; Alastuey, Lisa; Bush, Jill A.

    2008-01-01

    Background: Few family-based healthy lifestyle programs for Latinos have been conducted, especially family programs targeting mother-daughter dyads. Purpose: To assess the acceptability and feasibility of the Behavior Opportunities Uniting Nutrition Counseling and Exercise (BOUNCE) program designed for Latino mother-daughter pairs. Methods: 92…

  17. The Math and Science Partnership Program Evaluation: Overview of the First Two Years

    ERIC Educational Resources Information Center

    Yin, Robert K.

    2008-01-01

    This study describes the Math and Science Partnership Program Evaluation (MSP-PE) during the project's first two years and provides the evaluation framework being used to assess the National Science Foundation's MSP Program. The study conveys the MSP-PE's ongoing design and implementation. To show how they reflect the nature of the MSP Program,…

  18. Overview of the New York State program for prescription drug benefits.

    PubMed

    Lennard, E L; Feinberg, P E

    1994-12-01

    New York State's prescription drug benefits program is described. The Empire Plan, a part of the New York State Health Insurance Program, includes a prescription drug benefits program. The prescription drug program began in 1986 and covers more than 700,000 people. In 1988 the state started a therapeutic drug-use-evaluation (DUE) program in correct with the supplier, Health Information Designs, a subsidiary of ValueRx Pharmacy Program. In 1991 the partnership with ValueRx was expanded to include patient profilling and physician education. In 1993 the state implemented a prior-authorization program for certain high-technology drugs, also administered by ValueRx. New York's public work force is heavily unionized, and the unions have been deeply involved in program design and vendor selection. Program participants have access to a large network of community pharmacies. The program also provides mail-order service. Quality is at the center of the state's and the unions' prescription drug program philosophy. Saving money is also a major objective; savings totaling $19.5 million were realized from 1988 through 1993 under the partnership between the state and ValueRx. The Empire Plan's prescription drug benefits program is building quality and saving money by integrating DUE, prior authorization, education, community pharmacy, and mail-order service.

  19. X-ray ablation measurements and modeling for ICF applications

    SciTech Connect

    Anderson, Andrew Thomas

    1996-09-01

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths (~ micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation.

  20. Overview of Ground Station 1 of the NASA space communications and navigation program

    NASA Astrophysics Data System (ADS)

    Roberts, W. T.; Antsos, D.; Croonquist, A.; Piazzolla, S.; Roberts, L. C.; Garkanian, V.; Trinh, T.; Wright, M. W.; Rogalin, R.; Wu, J.; Clare, L.

    2016-03-01

    Optical Ground Station 1 (OGS1) is the first of a new breed of dedicated ground terminals to support NASA's developing space-based optical communications infrastructure. It is based at NASA's Optical Communications Telescope Laboratory (OCTL) at the Table Mountain Observatory near Wrightwood, CA. The system will serve as the primary ground station for NASA's Laser Communications Relay Demonstration (LCRD) experiment. This paper presents an overview of the OCTL telescope facility, the OGS1 ground-based optical communications systems, and the networking and control infrastructure currently under development. The OGS1 laser safety systems and atmospheric monitoring systems are also briefly described.

  1. SAFSIM overview

    NASA Technical Reports Server (NTRS)

    Dobranich, Dean

    1993-01-01

    An overview of the systems analysis flow simulator (SAFSIM) computer program is provided. SAFSIM is being developed at Sandia National Laboratories and is currently funded by the Air Force Space Nuclear Thermal Propulsion (SNTP) Program. SAFSIM is a general purpose, Fortran computer program to simulate the integrated performance of complex systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system. SAFSIM is based on a 1-D finite element model and provides the analyst with approximate solutions to complex problems.

  2. An overview of the effectiveness and efficiency of HIV prevention programs.

    PubMed Central

    Holtgrave, D R; Qualls, N L; Curran, J W; Valdiserri, R O; Guinan, M E; Parra, W C

    1995-01-01

    Because of the enormity of the HIV-AIDS epidemic and the urgency for preventing transmission, HIV prevention programs are a high priority for careful and timely evaluations. Information on program effectiveness and efficiency is needed for decision-making about future HIV prevention priorities. General characteristics of successful HIV prevention programs, programs empirically evaluated and found to change (or not change) high-risk behaviors or in need of further empirical study, and economic evaluations of certain programs are described and summarized with attention limited to programs that have a behavioral basis. HIV prevention programs have an impact on averting or reducing risk behaviors, particularly when they are delivered with sufficient resources, intensity, and cultural competency and are based on a firm foundation of behavioral and social science theory and past research. Economic evaluations have found that some of these behaviorally based programs yield net economic benefits to society, and others are likely cost-effective (even if not cost-saving) relative to other health programs. Still, specific improvements should be made in certain HIV prevention programs. PMID:7630989

  3. 42 CFR 431.154 - Informal reconsideration for ICFs/MR.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Process for NFs and ICFs/MR § 431.154 Informal reconsideration for ICFs/MR. The informal reconsideration must, at a minimum, include— (a) Written notice to the facility of the denial, termination or... those findings in writing, and (c) A written affirmation or reversal of the denial, termination,...

  4. Synthesis and NMR structure of p41icf, a potent inhibitor of human cathepsin L.

    PubMed

    Chiva, Cristina; Barthe, Philippe; Codina, Anna; Gairí, Margarida; Molina, Franck; Granier, Claude; Pugnière, Martine; Inui, Tatsuya; Nishio, Hideki; Nishiuchi, Yuji; Kimura, Terutoshi; Sakakibara, Shumpei; Albericio, Fernando; Giralt, Ernest

    2003-02-12

    The total synthesis and structural characterization of the MHCII-associated p41 invariant chain fragment (P41icf) is described. P41icf plays a crucial role in the maturation of MHC class II molecules and antigen processing, acting as a highly selective cathepsin L inhibitor. P41icf synthesis was achieved using a combined solid-phase/solution approach. The entire molecule (65 residues, 7246 Da unprotected) was assembled in solution from fully protected peptides in the size range of 10 residues. After deprotection, oxidative folding in carefully adjusted experimental conditions led to the completely folded and functional P41icf with a disulfide pairing identical to that of native P41icf. CD, NMR, and surface plasmon resonance (SPR) were used for the structural and functional characterization of synthetic P41icf. CD thermal denaturation showed clear cooperative behavior. Tight cathepsin L binding was demonstrated by SPR. (1)H NMR spectroscopy at 800 MHz of unlabeled P41icf was used to solve the three-dimensional structure of the molecule. P41icf behaves as a well-folded protein domain with a topology very close to the crystallographic cathepsin L-bound form.

  5. Disability and Functional Profiles of Patients with Migraine Measured with ICF Classification

    ERIC Educational Resources Information Center

    Raggi, Alberto

    2010-01-01

    To describe the functional profiles of patients with migraine, and the relationships between symptoms, activities and environmental factors, using WHO's International Classification of Functioning (ICF). Patients were consecutively enrolled at the Besta Institute of Milan. The ICF checklist was administered and two count-based indexes developed:…

  6. The ICF: A Framework for Setting Goals for Children with Speech Impairment

    ERIC Educational Resources Information Center

    McLeod, Sharynne; Bleile, Ken

    2004-01-01

    The International Classification of Functioning, Disability and Health (ICF) (World Health Organization, 2001) is proposed as a framework for integrative goal setting for children with speech impairment. The ICF incorporates both impairment and social factors to consider when selecting appropriate goals to bring about change in the lives of…

  7. Cook It Up! A community-based cooking program for at-risk youth: overview of a food literacy intervention

    PubMed Central

    2011-01-01

    Background In Canada, there are limited occasions for youth, and especially at-risk youth, to participate in cooking programs. The paucity of these programs creates an opportunity for youth-focused cooking programs to be developed, implemented, and evaluated with the goal of providing invaluable life skills and food literacy to this potentially vulnerable group. Thus, an 18-month community-based cooking program for at-risk youth was planned and implemented to improve the development and progression of cooking skills and food literacy. Findings This paper provides an overview of the rationale for and implementation of a cooking skills intervention for at-risk youth. The manuscript provides information about the process of planning and implementing the intervention as well as the evaluation plan. Results of the intervention will be presented elsewhere. Objectives of the intervention included the provision of applied food literacy and cooking skills education taught by local chefs and a Registered Dietitian, and augmented with fieldtrips to community farms to foster an appreciation and understanding of food, from 'gate to plate'. Eight at-risk youth (five girls and three boys, mean age = 14.6) completed the intervention as of November 2010. Pre-test cooking skills assessments were completed for all participants and post-test cooking skills assessments were completed for five of eight participants. Post intervention, five of eight participants completed in-depth interviews about their experience. Discussion The Cook It Up! program can provide an effective template for other agencies and researchers to utilize for enhancing existing programs or to create new applied cooking programs for relevant vulnerable populations. There is also a continued need for applied research in this area to reverse the erosion of cooking skills in Canadian society. PMID:22085523

  8. PRP Comments for ICF Q1/Q2 FY17 Experiments 3/10/16

    SciTech Connect

    Kauffman, R.

    2016-04-14

    The PRP generally endorsed the Program plan during the short time for discussions. We agree that the strategy to develop a hohlraum that is symmetric and has low laser-plasma instabilities and to develop an alternative method for supporting the capsule is the best path forward for making progress in understanding ignition performance. The Program is oriented toward a milestone in 2020 for “determining the efficacy of NIF for ignition and credible physics-scaling to multi-megajoule yields for all ICF approaches.” We are concerned that the time and resources are not sufficient to vet all of the various approaches that are being pursued to make an informed decision by this date. For NIF to meet this goal, a process will be needed to to select the most promising paths forward. We recommend that the Program develop this process for selecting the path forward to optimize resources. We were glad to see that the direct drive program took our comments under consideration. We think that the proposed experiments have the program headed in a better direction. The PRP had only a short time to discuss the detailed experimental proposals. The following are comments on the detailed proposals. We did not have time to discuss them as a group. They represent individual opinions and provided to you as feedback to your proposals.

  9. Aircraft structural health monitoring system development: overview of the Air Force/Navy smart metallic structures program

    NASA Astrophysics Data System (ADS)

    Van Way, Craig B.; Kudva, Jayanth N.; Schoess, Jeffrey N.; Zeigler, Michael L.; Alper, James M.

    1995-05-01

    Significant progress in fulfilling the current joint Air Force/Navy `Smart Metallic Structures (SMS)' program primary objective, to demonstrate a viable structural health monitoring system (SHMS) for a large structural aircraft component, is presented. Structural health monitoring and its relation to current Force Management (FM) and Aircraft Structural Integrity Program (ASIP) procedures are first reviewed together with a brief status overview of the relevant sensor technologies (e.g. AE, fiber-optic, corrosion, etc.). Key features of the SHMS architecture are described for the selected F/A-18 bulkhead and T-38 wing spar structural demonstration articles, highlighting sensors, processors, data busses, hardware, and software. Results from acoustic monitoring of the program sub-element structural tests are presented in some detail along with a status review of the SHMS multiplex bus component hardware and software. Finally, structural requirements for an SHMS meeting minimum ASIP guidelines for damage detection are discussed along with foals for future testing and development of the SHMS under the SMS program.

  10. Program definition and assessment overview. [for thermal energy storage project management

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.

  11. An overview of the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)

    NASA Technical Reports Server (NTRS)

    Dodd, Alan J.

    1989-01-01

    From a program manager's viewpoint, the history, scope and architecture of a major structural design program at Douglas Aircraft Company called Aeroelastic Design Optimization Program (ADOP) are described. ADOP was originally intended for the rapid, accurate, cost-effective evaluation of relatively small structural models at the advanced design level, resulting in improved proposal competitiveness and avoiding many costly changes later in the design cycle. Before release of the initial version in November 1987, however, the program was expanded to handle very large production-type analyses.

  12. The Life Sciences program at the NASA Ames Research Center - An overview

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, Joan; Sharp, Joseph C.

    1989-01-01

    The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.

  13. The NAVIGATE Program for First Episode Psychosis: Rationale, Overview, and Description of Psychosocial Components

    PubMed Central

    Mueser, Kim T; Penn, David; Addington, Jean; Brunette, Mary F.; Gingerich, Susan; Glynn, Shirley M.; Lynde, David W.; Gottlieb, Jennifer D; Meyer-Kalos, Piper; McGurk, Susan R.; Cather, Corinne; Saade, Sylvia; Robinson, Delbert G.; Schooler, Nina R.; Rosenheck, Robert A.; Kane, John M

    2015-01-01

    Comprehensive coordinated specialty care programs for first episode psychosis have been widely implemented in other countries, but not in the U.S. The National Institute of Mental Health’s (NIMH) Recovery After Initial Schizophrenia Episode (RAISE) initiative focused on the development and evaluation of first episode treatment programs designed for the U.S. healthcare system. This paper describes the background, rationale, and nature of the intervention developed by the Early Treatment Program project, the NAVIGATE program, with a particular focus on its psychosocial components. NAVIGATE is a team-based, multi-component treatment program designed to be implemented in routine mental health treatment settings and aimed at guiding people with a first episode of psychosis (and their families) towards psychological and functional health. The core services provided in the NAVIGATE program include the Family Education Program, Individual Resiliency Training, Supported Employment and Education, and Individualized Medication Treatment. NAVIGATE embraces a shared decision-making approach with a focus on strengths and resiliency, and collaboration with clients and family members in treatment planning and reviews. The NAVIGATE program has the potential to fill an important gap in the U.S. healthcare system by providing a comprehensive intervention specially designed to meet the unique treatment needs of persons recovering from a first episode of psychosis. The program is currently being evaluated in cluster randomized controlled trial comparing NAVIGATE to usual community care. PMID:25772766

  14. 42 CFR 442.117 - Termination of certification for ICFs/IID whose deficiencies pose immediate jeopardy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Termination of certification for ICFs/IID whose deficiencies pose immediate jeopardy. 442.117 Section 442.117 Public Health CENTERS FOR MEDICARE & MEDICAID... DISABILITIES Certification of ICFs/IID § 442.117 Termination of certification for ICFs/IID whose...

  15. 42 CFR 442.117 - Termination of certification for ICFs/MR whose deficiencies pose immediate jeopardy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Termination of certification for ICFs/MR whose deficiencies pose immediate jeopardy. 442.117 Section 442.117 Public Health CENTERS FOR MEDICARE & MEDICAID... ICFs/MR § 442.117 Termination of certification for ICFs/MR whose deficiencies pose immediate...

  16. Kinetic studies of ICF target dynamics with ePLAS

    NASA Astrophysics Data System (ADS)

    Mason, R. J.

    2016-10-01

    The ePLAS code was recently used1 to show that a modeling change from artificial to real viscosity can result in a decrease of the predicted performance of ICF targets. This code typically follows either fluid or PIC electrons with fluid ions in self-consistent E - and B - fields computed by the Implicit Moment Method2. For the present study the ions have instead been run as PIC particles undergoing Krook-like self-collisions. The ePLAS collision model continually redistributes the ion particle properties toward a local Maxwellian, while conserving the mean density, momentum and energy. Whereas the use of real viscosity captures large Knudsen Number effects as the active target dimensions shrink below the ion mean-free-path, the new kinetic modeling can manifest additional effects such as collisional shock precursors3 from the escape and streaming of the fastest particle ions. In 2D cylindrical geometry we will explore how such kinetic shock extensions might affect shell and core compression dynamics in ICF target implosions.

  17. Kr X-ray spectroscopy to diagnose NIF ICF implosions

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Ouart, N.; Giuliani, J. L.; Clark, R. W.; Schneider, M. B.; Scott, H. A.; Chen, H.; Ma, T.; Apruzese, J. P.

    2016-10-01

    X ray spectroscopy is used on the NIF to diagnose the plasma conditions in the ignition target in indirect drive ICF implosions. High-energy emission spectra from mid to high atomic number elements can provide estimates of electron temperature near stagnation of an ICF implosion. A platform is being developed at NIF where small traces of krypton are used as a dopant to the fuel gas for spectroscopic diagnostics using krypton line emissions. The fraction of krypton dopant was varied in the experiments and was selected so as not to perturb the implosion. Simulations of the krypton spectra using a 1 in 104 atomic fraction of krypton in direct-drive exploding pusher with a range of electron temperatures and densities show discrepancies when different atomic models are used. We use our non-LTE atomic model with a detailed fine-structure level atomic structure and collisional-radiative rates to investigate the krypton spectra at the same conditions. Synthetic spectra are generated with a detailed multi-frequency radiation transport scheme from the emission regions of interest to analyze the experimental data and compare and contrast with the existing simulations at LLNL. Work supported by DOE/NNSA and under the auspices of DOE by LLNL under Contract # DE-AC52-07NA27344.

  18. Field precision machining technology of target chamber in ICF lasers

    NASA Astrophysics Data System (ADS)

    Xu, Yuanli; Wu, Wenkai; Shi, Sucun; Duan, Lin; Chen, Gang; Wang, Baoxu; Song, Yugang; Liu, Huilin; Zhu, Mingzhi

    2016-10-01

    In ICF lasers, many independent laser beams are required to be positioned on target with a very high degree of accuracy during a shot. The target chamber provides a precision platform and datum reference for final optics assembly and target collimation and location system. The target chamber consists of shell with welded flanges, reinforced concrete pedestal, and lateral support structure. The field precision machining technology of target chamber in ICF lasers have been developed based on ShenGuangIII (SGIII). The same center of the target chamber is adopted in the process of design, fabrication, and alignment. The technologies of beam collimation and datum reference transformation are developed for the fabrication, positioning and adjustment of target chamber. A supporting and rotating mechanism and a special drilling machine are developed to bore the holes of ports. An adjustment mechanism is designed to accurately position the target chamber. In order to ensure the collimation requirements of the beam leading and focusing and the target positioning, custom-machined spacers are used to accurately correct the alignment error of the ports. Finally, this paper describes the chamber center, orientation, and centering alignment error measurements of SGIII. The measurements show the field precision machining of SGIII target chamber meet its design requirement. These information can be used on similar systems.

  19. Stability design of support systems in ICF lasers

    NASA Astrophysics Data System (ADS)

    Zhu, M. Z.; Wu, W. K.; Chen, G.; Zhan, H.; Xu, Y. L.; Chen, X. J.

    2016-10-01

    Within Inertial Confinement Fusion (ICF) laser systems, many independent laser beams are required to be positioned on target with a very high degree of accuracy until shots are complete. Optical elements that are capable of moving a laser beam on the target must meet the pointing error budget. Optical elements are typically supported by systems which consist of mounts, mount frames, support structures, and foundation. The stability design for support systems in ICF laser have been developed based on the designing and evaluating experience of ShenGuangIII (SGIII). This paper will provide the methodology of position error budget. The stability allocation is developed for evaluating the performance of support systems when they are subjected to multiple sources of excitations that can cause the motion of optical elements during alignment procedures and before shots. The vibrational stability design considerations of support systems are discussed on the fundamental frequency, ambient random vibration, and modal damping. The support structures of optical elements are the relatively large and massive hybrid structure of reinforced concrete and steel frame or vessels. While the reinforced concrete portions provide optical elements stability, the steel portions afford design flexibility. Finite element analyses of ambient random vibration are typically performed to evaluate the vibrational stability performances of support systems. Finally, this paper describes the ambient random vibration and beam pointing error measurements of SGIII. The measurements show the support systems of SGIII meet design requirement. These information can be used on similar systems.

  20. Wetted Foam Liquid DT Layer ICF Experiments at the NIF

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.

    2016-10-01

    A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12ICF ignition. This work was performed under the auspices of the U. S. DOE by LANL under contract DE-AC52-06NA25396.

  1. Opacity spectra of silicon and carbon in ICF plasmas

    NASA Astrophysics Data System (ADS)

    Benredjem, D.; Calisti, A.; Ferri, S.; Gilleron, F.; Mondet, G.; Pain, J.-C.

    2017-03-01

    The knowledge of opacity is very important when one investigates the radiative properties of ICF and astrophysical plasmas. Germanium and silicon are good candidates as dopants in the ablator of some ICF schemes (LMJ in France, NIF at Livermore). In this work we calculate the opacity spectra of silicon and carbon mixtures. Two competitive methods were used. The first one is based on a detailed line calculation in which the atomic database is provided by the MCDF code. A lineshape code based on a fast algorithm was then adapted to the calculation of opacity profiles. All major line broadening mechanisms, including Zeeman splitting and Stark effect, are taken into account. This approach provides accurate opacity spectra but becomes rapidly prohibitive when the number of lines is large. To account for systems involving many ionic stages and thousands of lines, a second approach combines detailed line calculations and statistical calculations. This approach necessitates much smaller calculation times than the first one and is then more appropriate for extensive calculations. The monochromatic opacity and the Rosseland and Planck mean opacities are calculated for relevant densities and temperatures.

  2. Laser Programs Highlights 1998

    SciTech Connect

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  3. The U.S. Global Change Research Program: An Overview and Perspectives on the FY 1992 Program.

    NASA Astrophysics Data System (ADS)

    Corell, Robert W.

    1991-05-01

    The U.S. Global Change Research Program (US/GCRP) represents an integrated, government-wide scientific effort designed to document, understand, and predict changes in the global environment as the foundation for national and international policymaking. The President's budget message to the U.S. Congress for FY 1992 proposes spending $1.186 billion on the U.S. Global Change Research Program, an increase of $232 million or almost 25 percent over FY 1991. The budget details a coordinated program of research that involves nine agencies, including the addition in FY 1992 of the several units within the Department of Defense and the Smithsonian Institution.

  4. OVERVIEW OF THE MINE WASTE TECHNOLOGY PROGRAM; INTERAGENCY COORDINATION MEETING ON MINING

    EPA Science Inventory

    The Mine Waste Technology Program is a Congressionally-mandated research program jointly administered by the EPA Office of Research and Development (for technical direction) and by the DoE Western Environmental Technology Office (administrative direction). The goal of the resear...

  5. An Overview of a Peer Health Education Program at a Student Health Service.

    ERIC Educational Resources Information Center

    White, Sabina A.

    1994-01-01

    The article describes the Peer Health Education (PHE) programs of the University of California at Santa Barbara Student Health Service. The PHE programs involve training and placement components and focus on relationships, nutrition, eating disorders, stress and laughter, alcohol/drug responsibility, cold care, sexuality, leadership, blood…

  6. Application of Communications Satellite to Educational Development; An Overview of the Washington University Program.

    ERIC Educational Resources Information Center

    Morgan, Robert P.; And Others

    Selected aspects and results of an interdisciplinary research and education program to examine the potential and problems associated with the use of communication satellites to help meet educational needs in the United States are summarized. The progress of the program to date in four major areas is described: needs analysis, communications…

  7. Intensive English Programs in the United States: An Overview of Structure and Mentoring

    ERIC Educational Resources Information Center

    Thompson, Amy S.

    2013-01-01

    Although English as a second language (ESL) programs are common in the United States, there is surprisingly little research documenting the existing structures and mentoring strategies they use. This lack of research could be partly due to ESL programs' widely varying internal structures (Larson, 1990) and the fact that they are often marginalized…

  8. An overview of the development of remote sensing techniques for the screwworm eradication program

    NASA Technical Reports Server (NTRS)

    Barnes, C. M.; Forsberg, F. C.

    1975-01-01

    The current status of remote sensing techniques developed for the screwworm eradication program of the Mexican-American Screwworm Eradication Commission was reported. A review of the type of data and equipment used in the program is presented. Future applications of remote sensing techniques are considered.

  9. Organization and management of community-based dental education programs: an overview from the dental Pipeline program.

    PubMed

    Bailit, Howard L

    2010-10-01

    Disparities in access to dental care are a major problem in the United States. Effectively run community-based dental education programs can make a significant contribution to reducing access disparities and at the same time enrich the educational experiences of dental students and residents. For complex historical reasons, dental schools did not base their clinical training programs in community hospitals and clinics like the other health professions. Now, because of trends in school finances, changes in societal values, and limitations in current educational experiences, schools are increasing the time students spend in community clinics. This is likely to continue. The chapters in the first section of the report on the Pipeline, Profession, and Practice: Community-Based Dental Education program--for which this chapter serves as an introduction-provide detailed information on the operation of community-based education programs.

  10. Overview of Evaluation Methods for R&D Programs. A Directory of Evaluation Methods Relevant to Technology Development Programs

    SciTech Connect

    Ruegg, Rosalie; Jordan, Gretchen B.

    2007-03-01

    This document provides guidance for evaluators who conduct impact assessments to determine the “realized” economic benefits and costs, energy, environmental benefits, and other impacts of the Office of Energy Efficiency and Renewable Energy’s (EERE) R&D programs. The focus of this Guide is on realized outcomes or impacts of R&D programs actually experienced by American citizens, industry, and others.

  11. Land Remote Sensing Overview

    NASA Technical Reports Server (NTRS)

    Byrnes, Ray

    2007-01-01

    A general overview of the USGS land remote sensing program is presented. The contents include: 1) Brief overview of USGS land remote sensing program; 2) Highlights of JACIE work at USGS; 3) Update on NASA/USGS Landsat Data Continuity Mission; and 4) Notes on alternative data sources.

  12. An Overview of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Ultra High Bypass Partnership Research Goals

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2009-01-01

    An overview of the NASA Fundamental Aeronautics Program (FAP) mission and goals is presented. One of the subprograms under the FAP, the Subsonic Fixed Wing Project (SFW), is the focus of the presentation. The SFW system environmental metrics are discussed, along with highlights of planned, systematic approach to research to reduce the environmental impact of commercial aircraft in the areas of acoustics, fuel burn and emissions. The presentation then focuses on collaborative research being conducted with U.S. Industry on the Ultra High Bypass (UHB) engine cycle, the propulsion cycle selected by the SFW to meet the system goals. The partnerships with General Electric Aviation to investigate Open Rotor propulsion concepts and with Pratt & Whitney to investigate the Geared Turbofan UHB engine are highlighted, including current and planned future collaborative research activities with NASA and each organization.

  13. An Overview of the NASA Aviation Safety Program (AVSP) Systemwide Accident Prevention (SWAP) Human Performance Modeling (HPM) Element

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Goodman, Allen; Hooley, Becky L.

    2003-01-01

    An overview is provided of the Human Performance Modeling (HPM) element within the NASA Aviation Safety Program (AvSP). Two separate model development tracks for performance modeling of real-world aviation environments are described: the first focuses on the advancement of cognitive modeling tools for system design, while the second centers on a prescriptive engineering model of activity tracking for error detection and analysis. A progressive implementation strategy for both tracks is discussed in which increasingly more complex, safety-relevant applications are undertaken to extend the state-of-the-art, as well as to reveal potential human-system vulnerabilities in the aviation domain. Of particular interest is the ability to predict the precursors to error and to assess potential mitigation strategies associated with the operational use of future flight deck technologies.

  14. The UH-1H helicopter icing flight test program: An overview

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.; Richter, G. P.

    1985-01-01

    An ongoing joint NASA/Army program to study the effects of ice accretion on unprotected helicopter rotor aerodynamic performance is discussed. This program integrates flight testing, wind tunnel testing, and analytical modeling. Results are discussed for helicopter flight testing in the Canadian NRC hover spray rig facility to measure rotor aero performance degradation and document rotor ice accretion characteristics. The results of dry wind tunnel testing of airfoil sections with artificial ice accretions and predictions of rotor performance degradation using available rotor performance codes and the wind tunnel data are presented. An alternative approach to conducting future helicopter icing flight programs is discussed.

  15. Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1995-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.

  16. Venturestar{trademark} single stage to orbit reusable launch vehicle program overview

    SciTech Connect

    Baumgartner, R.I.

    1997-01-01

    Lockheed Martin is developing the VentureStar{trademark} Single Stage To Orbit Reusable Launch Vehicle system. The VentureStar{trademark} launch system will drastically reduce the cost to place payloads in orbit. This paper describes the VentureStar{trademark} Single Stage To Orbit Reusable Launch Vehicle Program, system and technology. The technology to achieve VentureStar{trademark} will be demonstrated in the National Aeronautics and Space Administration X-33 Phase II Advanced Technology Demonstration Program. The X-33 program, vehicle, and technology are described herein. {copyright} {ital 1997 American Institute of Physics.}

  17. General Overview of the ODC Elimination Effort of the RSRM Program

    NASA Technical Reports Server (NTRS)

    Evans, Kurt; Golde, Rick; McCool, Alex (Technical Monitor)

    2001-01-01

    The purpose of the ODC Elimination Program of the Space Shuttle RSRM Program is to eliminate the usage of 1, 1, 1 trichloroethane (TCA) in all RSRM (Reusable Solid Rocket Motor) manufacturing processes. This program consists of the following phases and objectives: Phase 0 - Convert to greaseless shipping of metal components. Phase 1 - Eliminate TCA vapor degreasing and usage in propellant cleaning operations. Phase 2 - Eliminate TCA usage for hand cleaning operations. Each phase reduces peak TCA consumption (about 1.4 million pounds in 1989) by about 29, 61, and 10 percent, respectively. Phase 0 was completed in 1992, Phase 1 in 1997, and Phase 2 is in progress (about 75% complete). TCA replacement objectives are accomplished by are a series of subscale, full-scale, and static testing outlined by the NASA-funded, ODC Elimination Program.

  18. Supporting the Pathway to the Professoriate: A Descriptive Overview of a Faculty Development Program

    ERIC Educational Resources Information Center

    Jackson, Jerlando F. L.; Flowers, Lamont A.

    2014-01-01

    This article describes the Asa G. Hilliard III and Barbara A. Sizemore Research Institute on African Americans and Education, a future faculty program designed to encourage doctoral students to enter the professoriate and study the African American experience in education.

  19. CSTI Earth-to-orbit propulsion research and technology program overview

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.

    1993-01-01

    NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.

  20. An Overview of the Society of Actuaries and Its Education Programs

    ERIC Educational Resources Information Center

    Klugman, Stuart; Long, Gena

    2014-01-01

    The Society of Actuaries (SOA) is the world's largest actuarial organization. This article describes the SOA with particular attention paid to its education and qualification processes and resources available for university and college programs.