Sample records for icfa advanced beam

  1. (Proceedings) 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics (QABP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin

    2002-10-25

    The 18th Advanced ICFA Beam Dynamics Workshop on ''Quantum Aspects of Beam Physics'' was held from October 15 to 20, 2000, in Capri, Italy. This was the second workshop under the same title. The first one was held in Monterey, California, in January, 1998. Following the footstep of the first meeting, the second one in Capri was again a tremendous success, both scientifically and socially. About 70 colleagues from astrophysics, atomic physics, beam physics, condensed matter physics, particle physics, and general relativity gathered to update and further explore the topics covered in the Monterey workshop. Namely, the following topics weremore » actively discussed: (1) Quantum Fluctuations in Beam Dynamics; (2) Photon-Electron Interaction in Beam handling; (3) Physics of Condensed Beams; (4) Beam Phenomena under Strong Fields; (5) Quantum Methodologies in Beam Physics. In addition, there was a newly introduced subject on Astro-Beam Physics and Laboratory Astrophysics.« less

  2. ICFA Beam Dynamics Newsletter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL featuresmore » a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.« less

  3. ICFA Beam Dynamics Newsletter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, A.

    2017-11-21

    Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a bettermore » EBIS.« less

  4. PREFACE: Joint IPPP Durham/Cockcroft Institute/ICFA Workshop on Advanced QED methods for Future Accelerators

    NASA Astrophysics Data System (ADS)

    Bailey, I. R.; Barber, D. P.; Chattopadhyay, S.; Hartin, A.; Heinzl, T.; Hesselbach, S.; Moortgat-Pick, G. A.

    2009-11-01

    The joint IPPP Durham/Cockcroft Institute/ICFA workshop on advanced QED methods for future accelerators took place at the Cockcroft Institute in early March 2009. The motivation for the workshop was the need for a detailed consideration of the physics processes associated with beam-beam effects at the interaction points of future high-energy electron-positron colliders. There is a broad consensus within the particle physics community that the next international facility for experimental high-energy physics research beyond the Large Hadron Collider at CERN should be a high-luminosity electron-positron collider working at the TeV energy scale. One important feature of such a collider will be its ability to deliver polarised beams to the interaction point and to provide accurate measurements of the polarisation state during physics collisions. The physics collisions take place in very dense charge bunches in the presence of extremely strong electromagnetic fields of field strength of order of the Schwinger critical field strength of 4.4×1013 Gauss. These intense fields lead to depolarisation processes which need to be thoroughly understood in order to reduce uncertainty in the polarisation state at collision. To that end, this workshop reviewed the formalisms for describing radiative processes and the methods of calculation in the future strong-field environments. These calculations are based on the Furry picture of organising the interaction term of the Lagrangian. The means of deriving the transition probability of the most important of the beam-beam processes - Beamsstrahlung - was reviewed. The workshop was honoured by the presentations of one of the founders, V N Baier, of the 'Operator method' - one means for performing these calculations. Other theoretical methods of performing calculations in the Furry picture, namely those due to A I Nikishov, V I Ritus et al, were reviewed and intense field quantum processes in fields of different form - namely those

  5. The International Committee for Future Accelerators (ICFA): 1976 to the present

    DOE PAGES

    Rubinstein, Roy

    2016-12-14

    The International Committee for Future Accelerators (ICFA) has been in existence now for four decades. It plays an important role in allowing discussions by the world particle physics community on the status and future of very large particle accelerators and the particle physics and related fields associated with them. Here, this paper gives some indication of what ICFA is and does, and also describes its involvement in some of the more important developments in the particle physics field since its founding.

  6. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  7. Beam-Plasma Interaction Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I. D.; Davidson, R. C.

    2011-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the fundamental physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a 100 keV ion beam source mounted on a six-foot-long vacuum chamber with numerous ports for diagnostic access. A 100 keV Ar+ beam is launched into a volumetric plasma, which is produced by a ferroelectric plasma source (FEPS). Beam diagnostics upstream and downstream of the FEPS allow for detailed studies of the effects that the plasma has on the beam. This setup is designed for studying the dependence of charge and current neutralization and beam emittance growth on the beam and plasma parameters. This work reports initial measurements of beam quality produced by the extraction electrodes that were recently installed on the PATS device. The transverse beam phase space is measured with double-slit emittance scanners, and the experimental results are compared to WARP simulations of the extraction system. This research is supported by the U.S. Department of Energy.

  8. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and

  9. Beam breakup in an advanced linear induction accelerator

    DOE PAGES

    Ekdahl, Carl August; Coleman, Joshua Eugene; McCuistian, Brian Trent

    2016-07-01

    Two linear induction accelerators (LIAs) have been in operation for a number of years at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. A new multipulse LIA is being developed. We have computationally investigated the beam breakup (BBU) instability in this advanced LIA. In particular, we have explored the consequences of the choice of beam injector energy and the grouping of LIA cells. We find that within the limited range of options presently under consideration for the LIA architecture, there is little adverse effect on the BBU growth. The computational tool that we used for this investigation wasmore » the beam dynamics code linear accelerator model for DARHT (LAMDA). In conclusion, to confirm that LAMDA was appropriate for this task, we first validated it through comparisons with the experimental BBU data acquired on the DARHT accelerators.« less

  10. Fundamental limits on beam stability at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, G. A.

    1998-06-18

    Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber andmore » girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.« less

  11. Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, A.; Yang, B.

    2017-06-25

    Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The resultsmore » show very good agreement.« less

  12. Mini-beam collimator applications at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Xu, Shenglan; Keefe, Lisa J.; Mulichak, Anne; Yan, Lifen; Alp, Ercan E.; Zhao, Jiyong; Fischetti, Robert F.

    2011-09-01

    In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-μm pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio [1,2]. Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside [3]. This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-μm pinhole has been added to create a "quad-collimator", resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Mössbauer Microscopic system at sector 3-ID.

  13. White Beam Slits and Pink Beam Slits for the Hard X-ray Nanoprobe Beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, C.; Jaski, Y.; Powers, T.

    2007-01-19

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam.The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits' accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less

  14. White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, C.; Jaski, Y.; Maser, J.

    2007-01-01

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less

  15. Design of advanced beams considering elasto-plastic behaviour of material

    NASA Astrophysics Data System (ADS)

    Tolun, S.

    1992-10-01

    The paper proposes a computational procedure for precise calculation of limit and ultimate or design loads, which must be carried by an advanced aviation beam, without permanent distortion and without rupture. Among several stress-strain curve representations, one that is suitable for a particular material is chosen for applied loads, yield, and failure load calculations, and then nonlinear analysis is performed.

  16. Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects

    NASA Astrophysics Data System (ADS)

    Librescu, Liviu; Song, Ohseop

    1991-11-01

    Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.

  17. Advanced TIL system for laser beam focusing in a turbulent regime

    NASA Astrophysics Data System (ADS)

    Sprangle, Phillip A.; Ting, Antonio C.; Kaganovich, Dmitry; Khizhnyak, Anatoliy I.; Tomov, Ivan V.; Markov, Vladimir B.; Korobkin, Dmitriy V.

    2014-10-01

    This paper discusses an advanced target in the loop (ATIL) system with its performance based on a nonlinear phase conjugation scheme that performs rapid adjustment of the laser beam wavefront to mitigate effects associated with atmospheric turbulence along the propagation path. The ATIL method allows positional control of the laser spot (the beacon) on a remote imaged-resolved target. The size of this beacon is governed by the reciprocity of two counterpropagating beams (one towards the target and another scattered by the target) and the fidelity of the phase conjugation scheme. In this presentation we will present the results of the thorough analysis of ATIL operation, factors that affect its performance, its focusing efficiency and the comparison of laboratory experimental validation and computer simulation results.

  18. Ultrafast Bessel beams: advanced tools for laser materials processing

    NASA Astrophysics Data System (ADS)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  19. Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)

    NASA Astrophysics Data System (ADS)

    Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter

    2016-09-01

    As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.

  20. A closed-loop photon beam control study for the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less

  1. Beam Loss Simulation and Collimator System Configurations for the Advanced Photon Source Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, A.; Borland, M.

    The proposed multi-bend achromat lattice for the Advanced Photon Source upgrade (APS-U) has a design emittance of less than 70 pm. The Touschek loss rate is high: compared with the current APS ring, which has an average beam lifetime ~ 10 h, the simulated beam lifetime for APS-U is only ~2 h when operated in the high flux mode (I=200 mA in 48 bunches). An additional consequence of the short lifetime is that injection must be more frequent, which provides another potential source of particle loss. In order to provide information for the radiation shielding system evaluation and to avoidmore » particle loss in sensitive locations around the ring (for example, insertion device straight sections), simulations of the detailed beam loss distribution have been performed. Several possible collimation configurations have been simulated and compared.« less

  2. The Physics and Applications of High Brightness Beams: Working Group C Summary on Applications to FELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    2003-03-19

    This is the summary of the activities in working group C, ''Application to FELs,'' which was based in the Bithia room at the Joint ICFA Advanced Accelerator and Beam Dynamics Workshop on July 1-6, 2002 in Chia Laguna, Sardinia, Italy. Working group C was small in relation to the other working groups at that workshop. Attendees include Enrica Chiadroni, University of Rome ape with an identical pulse length. ''La Sapienza'', Luca Giannessi, ENEA, Steve Lidia, LBNL, Vladimir Litvinenko, Duke University, Patrick Muggli, UCLA, Alex Murokh, UCLA, Heinz-Dieter Nuhn, SLAC, Sven Reiche, UCLA, Jamie Rosenzweig, UCLA, Claudio Pellegrini, UCLA, Susan Smith,more » Daresbury Laboratory, Matthew Thompson, UCLA, Alexander Varfolomeev, Russian Research Center, plus a small number of occasional visitors. The working group addressed a total of nine topics. Each topic was introduced by a presentation, which initiated a discussion of the topic during and after the presentation. The speaker of the introductory presentation facilitated the discussion. There were six topics that were treated in stand-alone sessions of working group C. In addition, there were two joint sessions, one with working group B, which included one topic, and one with working group C, which included two topics. The presentations that were given in the joint sessions are summarized in the working group summary reports for groups B and D, respectively. This summary will only discuss the topics that were addressed in the stand-alone sessions, including Start-To-End Simulations, SASE Experiment, PERSEO, ''Optics Free'' FEL Oscillators, and VISA II.« less

  3. Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)

    NASA Astrophysics Data System (ADS)

    Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter

    2016-10-01

    As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.

  4. Advancements in ion beam figuring of very thin glass plates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Ghigo, M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Cotroneo, V.; DeRoo, C. T.; Schwartz, E. D.; Reid, P. B.

    2017-09-01

    The high-quality surface characteristics, both in terms of figure error and of micro-roughness, required on the mirrors of a high angular resolution x-ray telescope are challenging, but in principle well suited with a deterministic and non-contact process like the ion beam figuring. This process has been recently proven to be compatible even with very thin (thickness around 0.4mm) sheet of glasses (like D263 and Eagle). In the last decade, these types of glass have been investigated as substrates for hot slumping, with residual figure errors of hundreds of nanometres. In this view, the mirrors segments fabrication could be envisaged as a simple two phases process: a first replica step based on hot slumping (direct/indirect) followed by an ion beam figuring which can be considered as a post-fabrication correction method. The first ion beam figuring trials, realized on flat samples, showed that the micro-roughness is not damaged but a deeper analysis is necessary to characterize and eventually control/compensate the glass shape variations. In this paper, we present the advancements in the process definition, both on flat and slumped glass samples.

  5. WE-AB-207A-08: BEST IN PHYSICS (IMAGING): Advanced Scatter Correction and Iterative Reconstruction for Improved Cone-Beam CT Imaging On the TrueBeam Radiotherapy Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Paysan, P; Brehm, M

    2016-06-15

    Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as theymore » pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative

  6. Electron-beam dynamics for an advanced flash-radiography accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August Jr.

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth frommore » beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.« less

  7. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    DOE PAGES

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less

  8. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showedmore » its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.« less

  9. The path to exploring physics in advanced devices with a heavy ion beam probe

    NASA Astrophysics Data System (ADS)

    Demers, D. R.; Fimognari, P. J.

    2012-10-01

    The scientific progression of alternative or advanced devices must be met with comparable diagnostic technologies. Heavy ion beam probe innovations from ongoing diagnostic development are meeting this challenge. The diagnostic is uniquely capable of measuring the radial electric field, critically important in stellarators, simultaneously with fluctuations of electron density and electric potential. HIBP measurements can also improve the understanding of edge physics in tokamaks and spherical tori. It can target issues associated with the pedestal region, including the mechanisms underlying the L-H transition, the onset and evolution of ELMs, and the evolution of the electron current density. Beam attenuation (and resulting low signal to noise levels), a challenge to operation on devices with large plasma cross-sections and high ne and Te, can be mitigated with greater beam energies and currents. Other application challenges, such as measurements of plasma fluctuations and profile variations with elevated temporal and spatial resolutions, can be achieved with innovative detectors. The scientific studies motivating the implementation of an HIBP on HSX, ASDEX-U, and W7-X will be presented along with preliminary scoping studies.

  10. Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooling, J.; Harkay, K.; Ivanyushenkov, Y.

    2015-01-01

    We report on the calibration and use of fast fiber-optic (FO) beam loss monitors (BLMs) in the Advanced Photon Source storage ring (SR). A superconducting undulator prototype (SCU0) has been operating in SR Sector 6 (“ID6”) since the beginning of CY2013, and another undulator SCU1 (a 1.1-m length undulator that is three times the length of SCU0) is scheduled for installation in Sector 1 (“ID1”) in 2015. The SCU0 main coil often quenches during beam dumps. MARS simulations have shown that relatively small beam loss (<1 nC) can lead to temperature excursions sufficient to cause quenchingwhen the SCU0windings are nearmore » critical current. To characterize local beam losses, high-purity fused-silica FO cables were installed in ID6 on the SCU0 chamber transitions and in ID1 where SCU1 will be installed. These BLMs aid in the search for operating modes that protect the SCU structures from beam-loss-induced quenching. In this paper, we describe the BLM calibration process that included deliberate beam dumps at locations of BLMs. We also compare beam dump events where SCU0 did and did not quench.« less

  11. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    NASA Astrophysics Data System (ADS)

    Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian

    2018-02-01

    An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  12. Ion beam processing and characterization of advanced optical materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jie

    Ion beams have been extensively applied for materials modification and characterization. In this dissertation, I will focus on the applications of ion beams for advanced optical materials. The first part of my work addresses the effects of 1.0 MeV proton irradiation on photoluminescence (PL) properties of self-assembled InAs QDs. Compared to the QDs grown in a GaAs thin film, the QDs embedded in an AlAs/GaAs superlattice structure exhibits much higher photoluminescence degradation resistance to proton irradiation. Proton irradiation combined with thermal annealing results in significant blueshifts in PL spectra of QDs embedded in GaAs, suggesting enhanced atomic intermixing in the QD systems due to point defects introduced by ion irradiation. In the second part of my work, ion channeling combined with Rutherford backscattering is applied to investigate In-Ga atomic intermixing processes in the proton irradiated InAs QD system. Ion channeling along the growth (<100>) direction shows evidence of In atoms with small displacement from the atomic row, which gives direct signature of QD lattice structures, allowing us to monitor atomic intermixing between In and Ga. Based on the channeling data, a model for In-Ga atomic intermixing in InAs/GaAs QD system is proposed, in which In-Ga atomic intermixing can take place along both the growth direction and the lateral direction in the QD layer. The third part of my dissertation is the elemental mapping of silica-based optical cross section using micron-ion-beam imaging techniques. This work is intended to examine the thermal stability of Ge-doped fiber cores in high-temperature environments. Our measurements show that Ge completely diffuses out of the core region following thermal annealing at 1000°C. This indicates that silica-based optical fibers cannot be used for applications at extreme high temperatures. The final part is the study of the effects of various wet treatment on GaN surface, which is a necessary step during

  13. Proceedings of the 2016 Workshop on the Physics and Applications of High Brightness Beams

    NASA Astrophysics Data System (ADS)

    Cianchi, Alessandro; Ferrario, Massimo; Musumeci, Pietro; Rosenzweig, James

    2017-09-01

    We are proud to present the proceedings of the latest in the series of International Committee on Future Accelerators (ICFA)-endorsed workshops on the Physics and Applications of High Brightness Beams, which has been held at the Hotel Nacional in Havana, Cuba between March 28 and April 1, 2016. In total, 135 participants coming from 14 different countries attended this historic conference. In recognition of its pioneering role in the significant blossoming of relations between Cuba and the larger scientific community, this workshop also received the endorsement of UNESCO. The workshop organization was headed by co-chairs Massimo Ferrario (INFN-LNF) and James Rosenzweig (UCLA), with the essential and energetic contributions of local organizing committee chair Fidel Antonio Castro Smirnov (InSTEC, Havana). The workshop scientific agenda was developed under the care of program committee co-chairs Pietro Musumeci (UCLA) and Luca Serafini (INFN-Milano). The publication of the proceedings we present here was led by Alessandro Cianchi (Tor Vergata). Tangible contributions to the workshop infrastructure were received from UCLA, INFN-LNF, InSTEC, EuroNNAC2, and the US National Science Foundation. The workshop web site, which contains detailed information on the scientific agenda of the meeting, is found at https://conferences.pa.ucla.edu/hbb/.

  14. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooling, J.; Harkay, K.; Sajaev, V.

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016more » and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.« less

  15. Advanced control of neutral beam injected power in DIII-D

    DOE PAGES

    Pawley, Carl J.; Crowley, Brendan J.; Pace, David C.; ...

    2017-03-23

    In the DIII-D tokamak, one of the most powerful techniques to control the density, temperature and plasma rotation is by eight independently modulated neutral beam sources with a total power of 20 MW. The rapid modulation requires a high degree of reproducibility and precise control of the ion source plasma and beam acceleration voltage. Recent changes have been made to the controls to provide a new capability to smoothly vary the beam current and beam voltage during a discharge, while maintaining the modulation capability. The ion source plasma inside the arc chamber is controlled through feedback from the Langmuir probesmore » measuring plasma density near the extraction end. To provide the new capability, the plasma control system (PCS) has been enabled to change the Langmuir probe set point and the beam voltage set point in real time. When the PCS varies the Langmuir set point, the plasma density is directly controlled in the arc chamber, thus changing the beam current (perveance) and power going into the tokamak. Alternately, the PCS can sweep the beam voltage set point by 20 kV or more and adjust the Langmuir probe setting to match, keeping the perveance constant and beam divergence at a minimum. This changes the beam power and average neutral particle energy, which changes deposition in the tokamak plasma. The ion separating magnetic field must accurately match the beam voltage to protect the beam line. To do this, the magnet current control accurately tracks the beam voltage set point. In conclusion, these new capabilities allow continuous in-shot variation of neutral beam ion energy to complement« less

  16. Study of nanoscale structural biology using advanced particle beam microscopy

    NASA Astrophysics Data System (ADS)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  17. Progress on the Development of the Next Generation X-ray Beam Position Monitors at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.H.; Yang, B.X.; Decker, G.

    Accurate and stable x-ray beam position monitors (XBPMs) are ke y elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generat ion XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Com missioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulatormore » beams are separated by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scat tering from the diamond blades placed edge-on to the x- ray beam. A prototype of the Compton scattering XBPM system was i nstalled at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contac t resistance of a joint between two solid bodies is also discussed« less

  18. Progress on the development of the next generation x-ray beam position monitors at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. H., E-mail: shlee@aps.anl.gov; Yang, B. X., E-mail: bxyang@aps.anl.gov; Decker, G., E-mail: decker@aps.anl.gov

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generation XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Commissioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulator beams are separatedmore » by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from the diamond blades placed edge-on to the x-ray beam. A prototype of the Compton scattering XBPM system was installed at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contact resistance of a joint between two solid bodies is also discussed.« less

  19. Walking-Beam Solar-Cell Conveyor

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Microprocessor-controlled walking-beam conveyor moves cells between work stations in automated assembly line. Conveyor has arm at each work station. In unison arms pick up all solar cells and advance them one station; then beam retracks to be in position for next step. Microprocessor sets beam stroke, speed, and position.

  20. Experience with Round Beam Operation at The Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, A.; Emery, L.; Sajaev, V.

    2015-01-01

    Very short Touschek lifetime becomes a common issue for next-generation ultra-low emittance storage ring light sources. In order to reach a longer beamlifetime, such amachine often requires operating with a vertical-to-horizontal emittance ratio close to an unity, i.e. a “round beam”. In tests at the APS storage ring, we determined how a round beam can be reached experimentally. Some general issues, such as beam injection, optics measurement and corrections, and orbit correction have been tested also. To demonstrate that a round beam was achieved, the beam size ratio is calibrated using beam lifetime measurement.

  1. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    NASA Astrophysics Data System (ADS)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  2. Electron beam, laser beam and plasma arc welding studies

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1974-01-01

    This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.

  3. Graft Immunocomplex Capture Fluorescence Analysis to Detect Donor-Specific Antibodies and HLA Antigen Complexes in the Allograft.

    PubMed

    Nakamura, Tsukasa; Ushigome, Hidetaka; Watabe, Kiyoko; Imanishi, Yui; Masuda, Koji; Matsuyama, Takehisa; Harada, Shumpei; Koshino, Katsuhiro; Iida, Taku; Nobori, Shuji; Yoshimura, Norio

    2017-04-01

    Immunocomplex capture fluorescence analysis (ICFA) is an attractive method to detect donor-specific anti-HLA antibodies (DSA) and HLA antigen complexes. Currently, antibody-mediated rejection (AMR) due to DSA is usually diagnosed by C4d deposition and serological DSA detection. Conversely, there is a discrepancy between these findings frequently. Thereupon, our graft ICFA technique may contribute to establish the diagnosis of AMR. Graft samples were obtained by a percutaneous needle biopsy. Then, the specimen was dissolved in PBS by the lysis buffer. Subsequently, HLA antigens were captured by anti-HLA beads. Then, DSA-HLA complexes were detected by PE-conjugated anti-human IgG antibodies, where DSA had already reacted with the allograft in vivo, analyzed by a Luminex system. A ratio (sample MFI/blank beads MFI) was calculated: ≥ 1.0 was determined as positive. We found that DSA-HLA complexes in the graft were successfully detected from only slight positive 1.03 to 79.27 in a chronic active AMR patient by graft ICFA. Next, positive graft ICFA had predicted the early phase of AMR (MFI ratio: 1.38) even in patients with no serum DSA. Finally, appropriate therapies for AMR deleted DSA deposition (MFI ratio from 0.3 to 0.7) from allografts. This novel application would detect early phase or incomplete pathological cases of AMR, which could lead to a correct diagnosis and initiation of appropriate therapies. Moreover, graft ICFA might address a variety of long-standing questions in terms of DSA. AMR: Antibody-mediated rejection; DSA: Donor-specific antibodies; ICFA: Immunocomplex capture fluorescence analysis.

  4. PREFACE: Advanced Science Research Symposium 2009 Positron, Muon and other exotic particle beams for materials and atomic/molecular sciences (ASR2009)

    NASA Astrophysics Data System (ADS)

    Higemoto, Wataru; Kawasuso, Atsuo

    2010-05-01

    It is our great pleasure to deliver the proceedings of ASR2009, the Advanced Science Research International Symposium 2009. ASR2009 is part of a series of symposia which is hosted by the Japan Atomic Energy Agency, Advanced Science Research Center (JAEA-ASRC), and held every year with different scientific topics. ASR2009 was held at Tokai in Japan from 10-12 November 2009. In total, 102 participants, including 29 overseas scientists, made 44 oral presentations and 64 poster presentations. In ASR2009 we have focused on material and atomic/molecular science research using positrons, muons and other exotic particle beams. The symposium covered all the fields of materials science which use such exotic particle beams. Positrons, muons and other beams have similar and different features. For example, although positrons and muons are both leptons having charge and spin, they give quite different information about materials. A muon mainly detects the local magnetic state of the solid, while a positron detects crystal imperfections and electron momenta in solids. Other exotic particle beams also provide useful information about materials which is not able to be obtained with muons or positrons. Therefore, the complementary use of particle beams, coupled with an understanding of their relative advantages, leads to greater excellence in materials research. This symposium crossed the fields of muon science, positron science, unstable-nuclei science, and other exotic particle-beam science. We therefore believe that ASR2009 became an especially important meeting for finding new science with exotic particle beams. Finally, we would like to extend our appreciation to all the participants, committee members, and support staff for their great efforts to make ASR2009 a fruitful symposium. ASR2009 Chairs Wataru Higemoto and Atsuo Kawasuso Advanced Science Research Center, Japan Atomic Energy Agency Organizing committee Y Hatano, JAEA (Director of ASRC) M Fujinami, Chiba Univ. R H

  5. Electron Beam Transport in Advanced Plasma Wave Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams weremore » generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.« less

  6. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.AHRENS,L.MI,J.OERTER,B.SANDBERG,J.WARBURTON,D.

    2003-05-12

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved moremore » than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge.« less

  7. Sub-100-nm trackwidth development by e-beam lithography for advanced magnetic recording heads

    NASA Astrophysics Data System (ADS)

    Chang, Jei-Wei; Chen, Chao-Peng

    2006-03-01

    Although semiconductor industry ramps the products with 90 nm much quicker than anticipated [1], magnetic recording head manufacturers still have difficulties in producing sub-100 nm read/write trackwidth. Patterning for high-aspectratio writer requires much higher depth of focus (DOF) than most advanced optical lithography, including immersion technique developed recently [2]. Self-aligning reader with its stabilized bias requires a bi-layer lift-off structure where the underlayer is narrower than the top image layer. As the reader's trackwidth is below 100nm, the underlayer becomes very difficult to control. Among available approaches, e-beam lithography remains the most promising one to overcome the challenge of progressive miniaturization. In this communication, the authors discussed several approaches using ebeam lithography to achieve sub-100 nm read/write trackwidth. Our studies indicated the suspended resist bridge design can not only widen the process window for lift-off process but also makes 65 nm trackwidth feasible to manufacture. Necked dog-bone structure seems to be the best design in this application due to less proximity effects from adjacent structures and minimum blockages for ion beam etching. The trackwidth smaller than 65 nm can be fabricated via the combination of e-beam lithography with auxiliary slimming and/or trimming. However, deposit overspray through undercut becomes dominated in such a small dimension. To minimize the overspray, the effects of underlayer thickness need to be further studied.

  8. ATF neutral beam injection: optimization of beam alignment and aperturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R.N.; Fowler, R.H.; Rome, J.A.

    1985-12-01

    The application of the existing Impurity Study Experiment (ISX-B) neutral beam injectors for the Advanced Toroidal Facility (ATF) is studied. It is determined that with the practical considerations of beam aperturing, ATF vacuum vessel complexity, and realistic beam modeling, the power absorbed by the plasma will be approximately 57% of the extracted neutral beam power, which corresponds to an injected power of about 1.5 MW. By reducing the beam divergence to a 1/sup 0/ Gaussian distribution, the absorbed power could be increased to 93%. The power delivered to the plasma is found to be a strong function of the beammore » divergence but only a weak function of the beam focal length. Shinethrough can be a serious problem if very low density startups are necessary. Preliminary calculations indicate that there will be no excessive fast-ion losses. 12 refs., 17 figs., 1 tab.« less

  9. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber.

    PubMed

    Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude

    2017-03-01

    The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2  ≤ mean dose rate ≤ 10 3 Gy/s, 10 2  ≤ mean dose rate within pulse ≤ 10 7  Gy/s, 10 -4  ≤ dose-per-pulse ≤ 10 1  Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1  Gy, respectively). An empirical

  10. Recent Beam Measurements and New Instrumentation at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, F.; Baptiste, K.; Barry, W.

    2012-04-11

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less

  11. RECENT BEAM MEASUREMENTS AND NEW INSTRUMENTATION AT THE ADVANCED LIGHT SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, Fernando; Baptiste, Kenneth; Barry, Walter

    2008-05-05

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less

  12. TU-AB-204-00: Advances in Cone-Beam CT and Emerging Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac

  13. Advances in Heavy Ion Beam Probe Technology and Operation on MST

    NASA Astrophysics Data System (ADS)

    Demers, D. R.; Connor, K. A.; Schoch, P. M.; Radke, R. J.; Anderson, J. K.; Craig, D.; den Hartog, D. J.

    2003-10-01

    A technique to map the magnetic field of a plasma via spectral imaging is being developed with the Heavy Ion Beam Probe on the Madison Symmetric Torus. The technique will utilize two-dimensional images of the ion beam in the plasma, acquired by two CCD cameras, to generate a three-dimensional reconstruction of the beam trajectory. This trajectory, and the known beam ion mass, energy and charge-state, will be used to determine the magnetic field of the plasma. A suitable emission line has not yet been observed since radiation from the MST plasma is both broadband and intense. An effort to raise the emission intensity from the ion beam by increasing beam focus and current has been undertaken. Simulations of the accelerator ion optics and beam characteristics led to a technique, confirmed by experiment, that achieves a narrower beam and marked increase in ion current near the plasma surface. The improvements arising from these simulations will be discussed. Realization of the magnetic field mapping technique is contingent upon accurate reconstruction of the beam trajectory from the camera images. Simulations of two camera CCD images, including the interior of MST, its various landmarks and beam trajectories have been developed. These simulations accept user input such as camera locations, resolution via pixellization and noise. The quality of the images simulated with these and other variables will help guide the selection of viewing port pairs, image size and camera specifications. The results of these simulations will be presented.

  14. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  15. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    DOE PAGES

    Lee, S. H.; Yang, B. X.; Collins, J. T.; ...

    2017-02-07

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs),more » which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This study presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.« less

  16. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade.

    PubMed

    Lee, S H; Yang, B X; Collins, J T; Ramanathan, M

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  17. Explosive vessel for coupling dynamic experiments to the X-ray beam at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Owens, Charles; Sanchez, Nathaniel; Sorensen, Christian; Jensen, Brian

    2017-06-01

    Recent experiments at the Advanced Photon Source have been successful in coupling gun systems to the synchrotron to take advantage of the advanced X-ray diagnostics available including X-ray diffraction and X-ray phase contrast imaging (PCI) to examine matter at extreme conditions. There are many experiments that require explosive loading capabilities, e.g. detonator and initiator dynamics, small angle X-ray scattering (SAXS), ejecta formation, and explosively driven flyer experiments. The current work highlights a new explosive vessel that was designed specifically for use at a synchrotron facility with requirements to confine up to 15 grams of explosives (TNT equivalent), couple the vessel to the X-ray beam line, and reliably position samples remotely. A description of the system and capability will be provided along with the results from qualification testing to bring the system into service (LA-UR-17-21381).

  18. Evaluation of surface and shallow depth dose reductions using a Superflab bolus during conventional and advanced external beam radiotherapy.

    PubMed

    Yoon, Jihyung; Xie, Yibo; Zhang, Rui

    2018-03-01

    The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. Advanced diagnosis of the temporal characteristics of ultra-short electron beams

    NASA Astrophysics Data System (ADS)

    Otake, Yuji

    2011-05-01

    Monitoring the temporal structure of an ultra-short electron beam is an indispensable function in order to tune a machine to obtain a highly qualified beam for a recent sophisticated accelerator, such as an X-ray free electron laser (XFEL), and to maintain stable X-ray laser operation. For this purpose, various instruments, such as an HEM11-mode RF beam deflector (RFDEF), a screen monitor (SCM), an electro-optic (EO) sampling method that uses a ZnTe crystal, and a beam position monitor (BPM) have been developed. The SCM that is used to observe the deflected beam image has a position resolution of 2.5 μm, which corresponds to a temporal resolution of 0.5 fs and it is installed at a position 5 m downstream from the RFDEF. The EO sampling method showed the ability to observe an electron bunch length for up to 300 fs (FWHM) at the SCSS test accelerator. The phase reference cavity of the BPM has an additional function of providing beam arrival timing information. A test for the BPM showed temporal fluctuation of 46 fs on the beam arrival timing at the test accelerator. These monitors with high temporal resolutions allow us to achieve the fine beam tuning demanded for the XFEL. The above-mentioned activities are described in this paper as a review article.

  20. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marland, S.

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stressmore » calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.« less

  1. Education in a rapidly advancing technology: Accelerators and beams

    NASA Astrophysics Data System (ADS)

    Month, Mel

    2000-06-01

    The field of accelerators and beams (A&B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A&B is described and addressed. The solution proposed, a type of "distance" education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A&B, primarily but not exclusively the national laboratories. The field of A&B is briefly summarized. The need for education outside the university framework, the raison d'être for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities.

  2. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn

    2015-12-15

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting modemore » structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.« less

  3. Non-CAR resists and advanced materials for Massively Parallel E-Beam Direct Write process integration

    NASA Astrophysics Data System (ADS)

    Pourteau, Marie-Line; Servin, Isabelle; Lepinay, Kévin; Essomba, Cyrille; Dal'Zotto, Bernard; Pradelles, Jonathan; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco

    2016-03-01

    The emerging Massively Parallel-Electron Beam Direct Write (MP-EBDW) is an attractive high resolution high throughput lithography technology. As previously shown, Chemically Amplified Resists (CARs) meet process/integration specifications in terms of dose-to-size, resolution, contrast, and energy latitude. However, they are still limited by their line width roughness. To overcome this issue, we tested an alternative advanced non-CAR and showed it brings a substantial gain in sensitivity compared to CAR. We also implemented and assessed in-line post-lithographic treatments for roughness mitigation. For outgassing-reduction purpose, a top-coat layer is added to the total process stack. A new generation top-coat was tested and showed improved printing performances compared to the previous product, especially avoiding dark erosion: SEM cross-section showed a straight pattern profile. A spin-coatable charge dissipation layer based on conductive polyaniline has also been tested for conductivity and lithographic performances, and compatibility experiments revealed that the underlying resist type has to be carefully chosen when using this product. Finally, the Process Of Reference (POR) trilayer stack defined for 5 kV multi-e-beam lithography was successfully etched with well opened and straight patterns, and no lithography-etch bias.

  4. Interleaving lattice for the Argonne Advanced Photon Source linac

    NASA Astrophysics Data System (ADS)

    Shin, S.; Sun, Y.; Dooling, J.; Borland, M.; Zholents, A.

    2018-06-01

    To realize and test advanced accelerator concepts and hardware, a beam line is being reconfigured in the linac extension area (LEA) of the Argonne Advanced Photon Source (APS) linac. A photocathode rf gun installed at the beginning of the APS linac will provide a low emittance electron beam into the LEA beam line. The thermionic rf gun beam for the APS storage ring and the photocathode rf gun beam for the LEA beam line will be accelerated through the linac in an interleaved fashion. In this paper, the design studies for interleaving lattice realization in the APS linac is described with the initial experiment result.

  5. Education in a rapidly advancing technology: Accelerators and beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Month, Mel

    2000-06-01

    The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving themore » education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers.« less

  6. Balancing Beams--For a Few Moments

    ERIC Educational Resources Information Center

    Kibble, Bob

    2008-01-01

    A 2 m long wooden beam provides an ideal demonstration tool for exploring moments. A class set is cheap and can be used at introductory and advanced levels. This article explores how such beams can be used to support learning about moments, equilibrium, vectors, and simultaneous equations. (Contains 7 figures.)

  7. Solar Power Beaming: From Space to Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubenchik, A M; Parker, J M; Beach, R J

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overallmore » concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.« less

  8. Electron Cloud Effects in Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furman, M.A.

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  9. Advanced chemical oxygen iodine lasers for novel beam generation

    NASA Astrophysics Data System (ADS)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  10. Beams 92: Proceedings. Volume 1: Invited papers, pulsed power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, D.; Cooperstein, G.

    1993-12-31

    This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere.

  11. Physics opportunities with meson beams

    DOE PAGES

    Briscoe, William J.; Doring, Michael; Haberzettl, Helmut; ...

    2015-10-20

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledgemore » in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. Furthermore, the present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.« less

  12. Physics opportunities with meson beams

    NASA Astrophysics Data System (ADS)

    Briscoe, William J.; Döring, Michael; Haberzettl, Helmut; Manley, D. Mark; Naruki, Megumi; Strakovsky, Igor I.; Swanson, Eric S.

    2015-10-01

    Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  13. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2015-06-01

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  14. Observation of runaway electron beams by visible color camera in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Yuejiang; Fu, Jia; Li, Jiahong; Yang, Yu; Wang, Fudi; Li, Yingying; Zhang, Wei; Wan, Baonian; Chen, Zhongyong

    2010-03-01

    The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.

  15. Medical beam monitor—Pre-clinical evaluation and future applications

    NASA Astrophysics Data System (ADS)

    Frais-Kölbl, Helmut; Griesmayer, Erich; Schreiner, Thomas; Georg, Dietmar; Pernegger, Heinz

    2007-10-01

    Future medical ion beam applications for cancer therapy which are based on scanning technology will require advanced beam diagnostics equipment. For a precise analysis of beam parameters we want to resolve time structures in the range of microseconds to nanoseconds. A prototype of an advanced beam monitor was developed by the University of Applied Sciences Wiener Neustadt and its research subsidiary Fotec in co-operation with CERN RD42, Ohio State University and the Jožef Stefan Institute in Ljubljana. The detector is based on polycrystalline Chemical Vapor Deposition (pCVD) diamond substrates and is equipped with readout electronics up to 2 GHz analog bandwidth. In this paper we present the design of the pCVD-detector system and results of tests performed in various particle accelerator based facilities. Measurements performed in clinical high energy photon beams agreed within 1.2% with results obtained by standard ionization chambers.

  16. Computers and the design of ion beam optical systems

    NASA Astrophysics Data System (ADS)

    White, Nicholas R.

    Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.

  17. Dosimetric comparison between proton beam therapy and photon radiation therapy for locally advanced non-small cell lung cancer.

    PubMed

    Wu, Chen-Ta; Motegi, Atsushi; Motegi, Kana; Hotta, Kenji; Kohno, Ryosuke; Tachibana, Hidenobu; Kumagai, Motoki; Nakamura, Naoki; Hojo, Hidehiro; Niho, Seiji; Goto, Koichi; Akimoto, Tetsuo

    2016-08-10

    To assess the feasibility of proton beam therapy for the patients with locally advanced non-small lung cancer. The dosimetry was analyzed retrospectively to calculate the doses to organs at risk, such as the lung, heart, esophagus and spinal cord. A dosimetric comparison between proton beam therapy and dummy photon radiotherapy (three-dimensional conformal radiotherapy) plans was performed. Dummy intensity-modulated radiotherapy plans were also generated for the patients for whom curative three-dimensional conformal radiotherapy plans could not be generated. Overall, 33 patients with stage III non-small cell lung cancer were treated with proton beam therapy between December 2011 and August 2014. The median age of the eligible patients was 67 years (range: 44-87 years). All the patients were treated with chemotherapy consisting of cisplatin/vinorelbine or carboplatin. The median prescribed dose was 60 GyE (range: 60-66 GyE). The mean normal lung V20 GyE was 23.6% (range: 14.9-32%), and the mean normal lung dose was 11.9 GyE (range: 6.0-19 GyE). The mean esophageal V50 GyE was 25.5% (range: 0.01-63.6%), the mean heart V40 GyE was 13.4% (range: 1.4-29.3%) and the mean maximum spinal cord dose was 40.7 GyE (range: 22.9-48 GyE). Based on dummy three-dimensional conformal radiotherapy planning, 12 patients were regarded as not being suitable for radical thoracic three-dimensional conformal radiotherapy. All the dose parameters of proton beam therapy, except for the esophageal dose, were lower than those for the dummy three-dimensional conformal radiotherapy plans. In comparison to the intensity-modulated radiotherapy plan, proton beam therapy also achieved dose reduction in the normal lung. None of the patients experienced grade 4 or worse non-hematological toxicities. Proton beam therapy for patients with stage III non-small cell lung cancer was feasible and was superior to three-dimensional conformal radiotherapy for several dosimetric parameters. © The Author 2016

  18. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    NASA Astrophysics Data System (ADS)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  19. Beamed energy propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, James M.

    1992-01-01

    Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.

  20. Photoelectron photoion molecular beam spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  1. Phase I Study of Concomitant Pemetrexed and Cisplatin Plus External Beam Radiation Therapy in Patients with Locally Advanced or Metastatic Esophageal or Gastroesophageal Junction Carcinomas.

    PubMed

    Elquza, Emad; Babiker, Hani M; Howell, Krisha J; Kovoor, Andrew I; Brown, Thomas David; Patel, Hitendra; Malangone, Steven A; Borad, Mitesh J; Dragovich, Tomislav

    2016-01-01

    To establish the maximum tolerated dose (MTD) and safety profile of bi-weekly Pemetrexed (PEM) when combined with weekly cisplatin (CDDP) and standard dose external beam radiation (EBRT) in patients with locally advanced or metastatic esophageal and gastroesophageal junction (GEJ) carcinomas. We conducted an open label, single institution, phase I dose escalation study designed to evaluate up to 15-35 patients with advanced or metastatic esophageal and GEJ carcinomas. 10 patients were treated with bi-weekly PEM, weekly CDDP, and EBRT. The MTD of bi-weekly PEM was determined to be 500 mg/m(2).

  2. Combination of peptide receptor radionuclide therapy with fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma

    PubMed Central

    2012-01-01

    Background External beam radiotherapy (EBRT) is the treatment of choice for irresectable meningioma. Due to the strong expression of somatostatin receptors, peptide receptor radionuclide therapy (PRRT) has been used in advanced cases. We assessed the feasibility and tolerability of a combination of both treatment modalities in advanced symptomatic meningioma. Methods 10 patients with irresectable meningioma were treated with PRRT (177Lu-DOTA0,Tyr3 octreotate or - DOTA0,Tyr3 octreotide) followed by external beam radiotherapy (EBRT). EBRT performed after PRRT was continued over 5–6 weeks in IMRT technique (median dose: 53.0 Gy). All patients were assessed morphologically and by positron emission tomography (PET) before therapy and were restaged after 3–6 months. Side effects were evaluated according to CTCAE 4.0. Results Median tumor dose achieved by PRRT was 7.2 Gy. During PRRT and EBRT, no side effects > CTCAE grade 2 were noted. All patients reported stabilization or improvement of tumor-associated symptoms, no morphologic tumor progression was observed in MR-imaging (median follow-up: 13.4 months). The median pre-therapeutic SUVmax in the meningiomas was 14.2 (range: 4.3–68.7). All patients with a second PET after combined PRRT + EBRT showed an increase in SUVmax (median: 37%; range: 15%–46%) to a median value of 23.7 (range: 8.0–119.0; 7 patients) while PET-estimated volume generally decreased to 81 ± 21% of the initial volume. Conclusions The combination of PRRT and EBRT is feasible and well tolerated. This approach represents an attractive strategy for the treatment of recurring or progressive symptomatic meningioma, which should be further evaluated. PMID:22720902

  3. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  4. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beamingmore » to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.« less

  5. Experimental validation of beam quality correction factors for proton beams

    NASA Astrophysics Data System (ADS)

    Gomà, Carles; Hofstetter-Boillat, Bénédicte; Safai, Sairos; Vörös, Sándor

    2015-04-01

    This paper presents a method to experimentally validate the beam quality correction factors (kQ) tabulated in IAEA TRS-398 for proton beams and to determine the kQ of non-tabulated ionization chambers (based on the already tabulated values). The method is based exclusively on ionometry and it consists in comparing the reading of two ionization chambers under the same reference conditions in a proton beam quality Q and a reference beam quality 60Co. This allows one to experimentally determine the ratio between the kQ of the two ionization chambers. In this work, 7 different ionization chamber models were irradiated under the IAEA TRS-398 reference conditions for 60Co beams and proton beams. For the latter, the reference conditions for both modulated beams (spread-out Bragg peak field) and monoenergetic beams (pseudo-monoenergetic field) were studied. For monoenergetic beams, it was found that the experimental kQ values obtained for plane-parallel chambers are consistent with the values tabulated in IAEA TRS-398; whereas the kQ values obtained for cylindrical chambers are not consistent—being higher than the tabulated values. These results support the suggestion (of previous publications) that the IAEA TRS-398 reference conditions for monoenergetic proton beams should be revised so that the effective point of measurement of cylindrical ionization chambers is taken into account when positioning the reference point of the chamber at the reference depth. For modulated proton beams, the tabulated kQ values of all the ionization chambers studied in this work were found to be consistent with each other—except for the IBA FC65-G, whose experimental kQ value was found to be 0.6% lower than the tabulated one. The kQ of the PTW Advanced Markus chamber, which is not tabulated in IAEA TRS-398, was found to be 0.997 ± 0.042 (k = 2), based on the tabulated value of the PTW Markus chamber.

  6. Beamed-Energy Propulsion (BEP) Study

    NASA Technical Reports Server (NTRS)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  7. Advances in 4D Treatment Planning for Scanned Particle Beam Therapy — Report of Dedicated Workshops

    PubMed Central

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-01-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue. PMID:24354749

  8. Beam control in the ETA-II linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu-Jiuan

    1992-08-21

    Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-11 induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system`s cyclotron wavelength and the corkscrew motion caused bymore » a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 27{pi}.« less

  9. Beam control in the ETA-II linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu-Jiuan.

    1992-08-21

    Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-11 induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused bymore » a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 27[pi].« less

  10. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less

  11. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    PubMed

    Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  12. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheftman, D., E-mail: dsheftman@trialphaenergy.com; Gupta, D.; Roche, T.

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  13. The clinical case for proton beam therapy

    PubMed Central

    2012-01-01

    Abstract Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy. PMID:23083010

  14. The ideal neutrino beams

    NASA Astrophysics Data System (ADS)

    Lindroos, Mats

    2009-06-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.

  15. Fourth Generation Light Sources

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    1997-05-01

    Concepts and designs are now being developed at laboratories around the world for light sources with performance levels that exceed present sources, including the very powerful and successful third generation synchrotron radiation sources that have come on line in the past few years. Workshops (M. Cornacchia and H. Winick (eds), Workshop on Fourth Generation Light Sources, Feb. 24-27, 1992, SSRL Report 92/02) (J.-L. Laclare (ed), ICFA Workshop on Fourth Generation Light Sources, Jan. 22-25, 1996, icfa-conclusions.html>ESRF Report) have been held to review directions for future sources. A main thrust is to increase the brightness and coherence of the radiation using storage rings with lower electron-beam emittance or free-electron lasers (FELs). In the infra-red part of the spectrum very high brightness and coherence is already provided by FEL user facilities driven by linacs and storage rings. It now appears possible to extend FEL operation to the VUV, soft X-ray and even hard X-ray spectral range, to wavelengths down to the angstrom range, using high energy linacs equipped with high-brightness rf photoinjectors and bunch-length compressors. R&D to develop such sources is in progress at BNL, DESY, KEK, SLAC and other laboratories. In the absence of mirrors to form optical cavities, short wavelengths are reached in FEL systems in which a high peak current, low-emittance electron beam becomes bunch-density modulated at the optical wavelength in a single pass through a long undulator by self-amplified spontaneous emission (SASE); i.e.; startup from noise. A proposal to use the last kilometer of the three kilometer SLAC linac (the first two kilometers will be used for injection to the PEP II B-Factory) to provide 15 GeV electron beams to reach 1.5 Angstroms by SASE in a 100 m long undulator is in preparation.

  16. Figure of merit studies of beam power concepts for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Gabriel; Kadiramangalam, Murali N.

    1990-01-01

    Surface to surface, millimeter wavelength beam power systems for power transmission on the lunar base were investigated. Qualitative/quantitative analyses and technology assessment of 35, 110 and 140 GHz beam power systems were conducted. System characteristics including mass, stowage volume, cost and efficiency as a function of range and power level were calculated. A simple figure of merit analysis indicates that the 35 GHz system would be the preferred choice for lunar base applications, followed closely by the 110 GHz system. System parameters of a 35 GHz beam power system appropriate for power transmission on a recent lunar base concept studied by NASA-Johnson and the necessary deployment sequence are suggested.

  17. Working group report on beam plasmas, electronic propulsion, and active experiments using beams

    NASA Technical Reports Server (NTRS)

    Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.

    1986-01-01

    The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.

  18. An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF

    NASA Astrophysics Data System (ADS)

    Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.

    2018-05-01

    Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.

  19. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  20. Synergistic advances in diagnostic and therapeutic medical ultrasound

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    2003-04-01

    Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.

  1. Spin-orbit beams for optical chirality measurement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  2. MULTI-OBJECTIVE ONLINE OPTIMIZATION OF BEAM LIFETIME AT APS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng

    In this paper, online optimization of beam lifetime at the APS (Advanced Photon Source) storage ring is presented. A general genetic algorithm (GA) is developed and employed for some online optimizations in the APS storage ring. Sextupole magnets in 40 sectors of the APS storage ring are employed as variables for the online nonlinear beam dynamics optimization. The algorithm employs several optimization objectives and is designed to run with topup mode or beam current decay mode. Up to 50\\% improvement of beam lifetime is demonstrated, without affecting the transverse beam sizes and other relevant parameters. In some cases, the top-upmore » injection efficiency is also improved.« less

  3. Advanced Polymer Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muenchausen, Ross E.

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  4. Rigorous joining of advanced reduced-dimensional beam models to three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Song, Huimin

    In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and

  5. Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials

    DTIC Science & Technology

    2016-04-27

    Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical... vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Hybrid Physical Vapor Deposition Instrument for Advanced

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Va'Vra, J.

    The publication of the ICFA Instrumentation Bulletin is an activity of the Panel on Future Innovation and Development of ICFA (International Committee for Future Accelerators). The Bulletin reports on research and progress in the field of instrumentation with emphasis on application in the field of high-energy physics. It encourages issues of generic instrumentation. This volume contains the following articles: (1) ''Gaseous Micropattern Detectors: High-Energy Physics and Beyond''; (2) ''DIRC Dreams Redux: Research Directions for the Next Generation of Internally Reflected Imaging Counters''; and (3) ''Corrosion of Glass Windows in DIRC PMTs''.

  7. ICFA Instrumentation Bulletin, Volume 21, Fall 2000 Issue (SLAC-J-ICFA-021)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Va'Vra, J.

    2003-10-22

    Cosmic ray experiments outside the Earth's atmosphere are subject to severe restrictions on the mass of the instruments. Therefore, it is important that the experimental information that can be obtained per unit detector mass is maximized. In this paper, tests are described of a thin (1.4 {lambda}{sub int}deep) hadron calorimeter that was designed with this goal in mind. This detector was equipped with two independent active media, which provided complementary information on the showering hadrons. It is shown that by combining the information from these media it was possible to reduce the effects of the dominant leakage fluctuations on themore » calorimeter performance.« less

  8. ICFA Instrumentation Bulletin, Volume 20, Spring 2000 Issue (SLAC-J-ICFA-020)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Va'Vra, J.

    2003-10-20

    Recent years have seen much dedicated work on front end electronics for hadron colliders, with a strong emphasis on radiation hardness and low cost. This has been challenging for a number of reasons, some of which are discussed further. The developments also suggest opportunities and constraints for the development of such electronics in the future.

  9. Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Sakamoto, Moritsugu; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-01-01

    A tunable dichroic polarization beam splitter (tunable DPBS) simultaneously performs the follow functions: 1. Separation of a polarized incident beam into multiple pairs of orthogonally polarized beams; 2. Separation of the propagation direction of two wavelength incident beams after passing through the tunable DPBS; and 3. Control of both advanced polarization and wavelength separation capabilities by varying the temperature of the tunable DPBS. This novel complex optical property is realized by diffraction phenomena using a designed three-dimensional periodic structure of aligned liquid crystals in the tunable DPBS, which was fabricated quickly with precision in a one-step photoalignment using four-beam polarization interferometry. In experiments, we demonstrated that these diffraction properties are obtained by entering polarized beams of wavelengths 532 nm and 633 nm onto the tunable DPBS. These diffraction properties are described using the Jones calculus in a polarization propagation analysis. Of significance is that the aligned liquid crystal structure needed to obtain these diffraction properties was proposed based on a theoretical analysis, and these properties were then demonstrated experimentally. The tunable DPBS can perform several functions of a number of optical elements such as wave plates, polarization beam splitter, dichroic beam splitter, and tunable wavelength filter. Therefore, the tunable DPBS can contribute to greater miniaturization, sophistication, and cost reduction of optical systems used widely in applications, such as optical measurements, communications, and information processing.

  10. Combination of external beam irradiation and multiple-site perineal applicator (MUPIT) for treatment of locally advanced or recurrent prostatic, anorectal, and gynecologic malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, A.; Edmundson, G.K.; Cox, R.S.

    1985-02-01

    The authors have devised a single after-loading applicator, the Martinez Universal Perineal Interstitital Template (MUPIT), which has been used in combination with external beam irradiation to treat 104 patients with either locally advanced or recurrent malignancies of the cervix, vagina, female uretha, prostate, or anorectal region. Twenty-six patients treated for prostate cancer are excluded because of their short follow-up. Local failure developed in 13 of the 78 remaining patients (16.6%) - major complications developed in 4 patients (5.1%). All local recurrences and complications occurred before 18 months. The device consists of two acrylic cyclinders, an acrylic template with an arraymore » of holes that serve as guides for trocars, and a cover plate. In use, the cylinders are placed in the vagina and/or rectum or both and then fastened to the template so that a fixed geometric relationship among the tumor volume, normal structures, and source placement is preserved throughout the course of the implantation. Appropriate computer programs have been developed to calculate the dose from these implants. They conclude that the local control rate (83.4%) with low morbidity (5.1%) achieved with the combination of external beam irradiation and MUPIT applicator in these patients with locally advanced malignancies represents an improvement over previous published results with other applicators.« less

  11. Proton Beam Therapy

    NASA Astrophysics Data System (ADS)

    Paganetti, Harald

    2017-01-01

    Cancer therapy is a multi-modality approach including surgery, systemic or targeted chemotherapy, radiation (external beam or radionuclide), and immunotherapy. Radiation is typically administered using external beam photon therapy. Proton therapy has been around for more than 60 years but was restricted to research laboratories until the 1990s. Since then clinical proton therapy has been growing rapidly with currently more than 50 facilities worldwide. The interest in proton therapy stems from the physical properties of protons allowing for advanced dose sculpting around the target and sparing of healthy tissue. This review first evaluates the basics of proton therapy physics and technology and then outlines some of the current physical, biological, and clinical challenges. Solving these will ultimately determine whether proton therapy will continue on its path to becoming mainstream.

  12. Advanced techniques for characterization of ion beam modified materials

    DOE PAGES

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; ...

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  13. Nuclear fusion of advanced fuels using converging focused ion beams

    NASA Astrophysics Data System (ADS)

    Egle, Brian James

    The Six Ion Gun Fusion Experiment (SIGFE) was designed and built to investigate a possible avenue to increase the reaction rate efficiency of the D-D and D-3He nuclear fusion reactions in Inertial Electrostatic Confinement (IEC) devices to the levels required for several non-electric applications of nuclear fusion. The SIGFE is based on the seminal IEC experiment published by Hirsch in 1967, and is the first experiment to recreate the results and unique features of the Hirsch device. The SIGFE used six identical ion beams to focus and converge deuterium and helium-3 ions into a sphere of less than 2 mm at nearly mono-energetic ion energies up to 150 keV. With improved ion optics and diagnostics, the SIGFE concluded that within the investigated parameter space, the region where the ion beams converged accounted for less than 0.2% of the total D-D fusion reactions. The maximum D-D fusion rates were observed when the ion beams were intentionally defocused to strike the inside surface of the cathode lenses. In this defocused state, the total D-D fusion rate increased when the chamber pressure was decreased. The maximum D-D fusion rate was 4.3 x 107 neutrons per second at a cathode voltage of -130 kV, a total cathode current of 10 mA, and a chamber pressure of 27 mPa. The D and 3He ion beams were produced in six self-contained ion gun modules. The modules were each capable of at least 4 mA of ion current while maintaining a main chamber pressure as low as 13 mPa. The theoretically calculated extractable ion current agreed with the experiment within a factor of 2. A concept was also developed and evaluated for the production of radioisotopes from the 14.7 MeV D-3He fusion protons produced in an IEC device. Monte Carlo simulations of this concept determined that a D-3He fusion rate on the order of 1011 s-1 would be required for an IEC device to produce 1 mCi of the 11C radioisotope.

  14. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  15. Advanced Shutter Control for a Molecular Beam Epitaxy Reactor

    DTIC Science & Technology

    An open-source hardware and software-based shutter controller solution was developed that communicates over Ethernet with our original equipment...manufacturer (OEM) molecular beam epitaxy (MBE) reactor control software. An Arduino Mega microcontroller is the used for the brain of the shutter... controller , while a custom-designed circuit board distributes 24-V power to each of the 16 shutter solenoids available on the MBE. Using Ethernet

  16. Positron beam studies of solids and surfaces: A summary

    NASA Astrophysics Data System (ADS)

    Coleman, P. G.

    2006-02-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations.

  17. Technological advances in radiotherapy for cervical cancer.

    PubMed

    Walsh, Lorraine; Morgia, Marita; Fyles, Anthony; Milosevic, Michael

    2011-09-01

    To discuss the important technological advances that have taken place in the planning and delivery of both external beam radiotherapy and brachytherapy for patients with locally advanced cervical cancer, and the implications for improved clinical outcomes. Technological advances in external beam radiation treatment and brachytherapy for patients with cervical cancer allow more precise targeting of tumour and relative sparing of surrounding normal organs and tissues. Early evidence is emerging to indicate that these advances will translate into improvements in tumour control and reduced side effects. However, there are patient, tumour and treatment-related factors that can detract from these benefits. Foremost among these is complex, unpredictable and sometimes dramatic internal tumour and normal organ motion during treatment. The focus of current research and clinical development is on tracking internal anatomic change in individual patients and adapting treatment plans as required to assure that optimal tumour coverage and normal tissue sparing is maintained at all times. The success of this approach will depend on clear definitions of target volumes, high resolution daily soft tissue imaging, and new software tools for rapid contouring, treatment planning and quality assurance. Radiation treatment of locally advanced cervical cancer is evolving rapidly, driven by advances in technology, towards more individualized patient care that has the potential to substantially improve clinical outcomes.

  18. Graphene Reinforced Glassy Carbon (GRGC) Beam Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renomeron, Lynda L.

    Secondary particle beams require beam windows that isolate the target (usually in air) from the primary particle beam vacuum. Advanced beam window solutions are needed that can withstand anticipated increases in beam power and intensity that will result in higher thermal shock on the window and increased oxidative erosion rates on the air-side caused by increased temperatures. Carbon-based windows, in particular, glassy carbon windows are of interest to minimize interaction with the beam. The attractive properties of glassy carbon are: 1. Low atomic number 2. Low thermal expansion 3. High strength and low Young's modulus 4. Low gas permeability andmore » low outgassing for ultrahigh vacuum use The one liability of glassy carbon is its low thermal conductivity, nominally 5 W/mK, which will exacerbate temperature rise, oxidation, and thermal shock concerns as beam powers increase. TA&T proposes the development of graphene reinforced glassy carbon (GRGC) composites to increase the thermal conductivity and address this Achilles heel of glassy carbon. Graphene as a reinforcing phase has shown the capability to increase the thermal conductivity of the matrix material by up to two orders of magnitude. For beam windows this would substantially increase heat spreading away from the beam zone of the window and improve thermal shock resistance, and reduce maximum temperature and air-side oxidation of the window. Increased thermal conductivity would also improve the effectiveness of edge-cooling schemes to minimize temperature increase. In the Phase I effort, graphene oxide (GO) particles were dispersed into glassy carbon precursor at different content levels and cast into solid shapes. The goal was to determine the effect of graphene concentration on the mechanical properties (flexure strength), and thermal (thermal conductivity). The Phase I results indicated that addition of graphene did have a significant effect on thermal conductivity; however the microstructural

  19. Control of energy sweep and transverse beam motion in induction linacs

    NASA Astrophysics Data System (ADS)

    Turner, W. C.

    1991-05-01

    Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.

  20. Verification of E-Beam direct write integration into 28nm BEOL SRAM technology

    NASA Astrophysics Data System (ADS)

    Hohle, Christoph; Choi, Kang-Hoon; Gutsch, Manuela; Hanisch, Norbert; Seidel, Robert; Steidel, Katja; Thrun, Xaver; Werner, Thomas

    2015-03-01

    Electron beam direct write lithography (EBDW) potentially offers advantages for low-volume semiconductor manufacturing, rapid prototyping or design verification due to its high flexibility without the need of costly masks. However, the integration of this advanced patterning technology into complex CMOS manufacturing processes remains challenging. The low throughput of today's single e-Beam tools limits high volume manufacturing applications and maturity of parallel (multi) beam systems is still insufficient [1,2]. Additional concerns like transistor or material damage of underlying layers during exposure at high electron density or acceleration voltage have to be addressed for advanced technology nodes. In the past we successfully proved that potential degradation effects of high-k materials or ULK shrink can be neglected and were excluded by demonstrating integrated electrical results of 28nm node transistor and BEOL performance following 50kV electron beam dry exposure [3]. Here we will give an update on the integration of EBDW in the 300mm CMOS manufacturing processes of advanced integrated circuits at the 28nm SRAM node of GLOBALFOUNDRIES Dresden. The work is an update to what has been previously published [4]. E-beam patterning results of BEOL full chip metal and via layers with a dual damascene integration scheme using a 50kV VISTEC SB3050DW variable shaped electron beam direct writer at Fraunhofer IPMSCNT are demonstrated. For the patterning of the Metal layer a Mix & Match concept based on the sequence litho - etch -litho -etch (LELE) was developed and evaluated wherein several exposure fields were blanked out during the optical exposure. Etch results are shown and compared to the POR. Results are also shown on overlay performance and optimized e-Beam exposure time using most advanced data prep solutions and resist processes. The patterning results have been verified using fully integrated electrical measurement of metal lines and vias on wafer level. In

  1. Reproducible and controllable induction voltage adder for scaled beam experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko

    2016-08-15

    A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.

  2. Beam dynamics studies at DAΦNE: from ideas to experimental results

    NASA Astrophysics Data System (ADS)

    Zobov, M.; DAΦNE Team

    2017-12-01

    DAΦNE is the electron-positron collider operating at the energy of Φ-resonance, 1 GeV in the center of mass. The presently achieved luminosity is by about two orders of magnitude higher than that obtained at other colliders ever operated at this energy. Careful beam dynamic studies such as the vacuum chamber design with low beam coupling impedance, suppression of different kinds of beam instabilities, investigation of beam-beam interaction, optimization of the beam nonlinear motion have been the key ingredients that have helped to reach this impressive result. Many novel ideas in accelerator physics have been proposed and/or tested experimentally at DAΦNE for the first time. In this paper we discuss the advanced accelerator physics studies performed at DAΦNE.

  3. Neutral Beam Development for the Lockheed Martin Compact Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Ebersohn, Frans; Sullivan, Regina

    2017-10-01

    The Compact Fusion Reactor project at Lockheed Martin Skunk Works is developing a neutral beam injection system for plasma heating. The neutral beam plasma source consists of a high current lanthanum hexaboride (LaB6) hollow cathode which drives an azimuthal cusp discharge similar to gridded ion thrusters. The beam is extracted with a set of focusing grids and is then neutralized in a chamber pumped with Titanium gettering. The design, testing, and analyses of individual components are presented along with the most current full system results. The goal of this project is to advance in-house neutral beam expertise at Lockheed Martin to aid in operation, procurement, and development of neutral beam technology. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  4. A mathematical approach to beam matching

    PubMed Central

    Manikandan, A; Nandy, M; Gossman, M S; Sureka, C S; Ray, A; Sujatha, N

    2013-01-01

    Objective: This report provides the mathematical commissioning instructions for the evaluation of beam matching between two different linear accelerators. Methods: Test packages were first obtained including an open beam profile, a wedge beam profile and a depth–dose curve, each from a 10×10 cm2 beam. From these plots, a spatial error (SE) and a percentage dose error were introduced to form new plots. These three test package curves and the associated error curves were then differentiated in space with respect to dose for a first and second derivative to determine the slope and curvature of each data set. The derivatives, also known as bandwidths, were analysed to determine the level of acceptability for the beam matching test described in this study. Results: The open and wedged beam profiles and depth–dose curve in the build-up region were determined to match within 1% dose error and 1-mm SE at 71.4% and 70.8% for of all points, respectively. For the depth–dose analysis specifically, beam matching was achieved for 96.8% of all points at 1%/1 mm beyond the depth of maximum dose. Conclusion: To quantify the beam matching procedure in any clinic, the user needs to merely generate test packages from their reference linear accelerator. It then follows that if the bandwidths are smooth and continuous across the profile and depth, there is greater likelihood of beam matching. Differentiated spatial and percentage variation analysis is appropriate, ideal and accurate for this commissioning process. Advances in knowledge: We report a mathematically rigorous formulation for the qualitative evaluation of beam matching between linear accelerators. PMID:23995874

  5. Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward

    2006-10-01

    Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been

  6. Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS

    NASA Astrophysics Data System (ADS)

    Decker, Glenn; Rosenbaum, Gerd; Singh, Om

    2006-11-01

    Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.

  7. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE PAGES

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang; ...

    2017-05-25

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  8. Optical circular deflector with attosecond resolution for ultrashort electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang

    A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less

  9. Coulomb-Driven Relativistic Electron Beam Compression

    NASA Astrophysics Data System (ADS)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  10. Coulomb-Driven Relativistic Electron Beam Compression.

    PubMed

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  11. Beam Tests of the Balloon-Borne ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Ganel, O.; Adams, J. H., Jr.; Ahn, E. J.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Chang, J.; Ellison, S.; Fazely, A.; Gould, R.

    2003-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurement from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide crucial hints about some of the most fundamental questions in astroparticle physics today. ATTIC'S design centers on an 18 radiation length (X(sub Omnicron)) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75 lambda(sub int) graphite target. In September 1999 the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator, within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000 - January 2001, ATIC flew on the first of a series of long duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam-tests, including energy resolutions for electrons and protons at several beam energies from 100 GeV to 375 GeV, as well as signal linearity and collection efficiency estimates. We show how these results compare with expectations based on simulations, and their expected impacts on mission performance.

  12. Generation of three-dimensional optical cusp beams with ultrathin metasurfaces.

    PubMed

    Liu, Weiwei; Zhang, Yuchao; Gao, Jie; Yang, Xiaodong

    2018-06-22

    Cusp beams are one type of complex structured beams with unique multiple self-accelerating channels and needle-like field structures owning great potentials to advance applications such as particle micromanipulation and super-resolution imaging. The traditional method to generate optical catastrophe is based on cumbrous reflective diffraction optical elements, which makes optical system complicated and hinders the nanophotonics integration. Here we design geometric phase based ultrathin plasmonic metasurfaces made of nanoslit antennas to produce three-dimensional (3D) optical cusp beams with variable numbers of self-accelerating channels in a broadband wavelength range. The entire beam propagation profiles of the cusp beams generated from the metasurfaces are mapped theoretically and experimentally. The special self-accelerating behavior and caustics concentration property of the cups beams are also demonstrated. Our results provide great potentials for promoting metasurface-enabled compact photonic devices used in wide applications of light-matter interactions.

  13. An Expert System For Tuning Particle-Beam Accelerators

    NASA Astrophysics Data System (ADS)

    Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.

    1989-03-01

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.

  14. Studies on low energy beam transport for high intensity high charged ions at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y., E-mail: yangyao@impcas.ac.cn; Lu, W.; Fang, X.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberrationmore » of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.« less

  15. Beam line BL11 for LIGA process at the NewSUBARU

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Utsumi, Yuichi; Hattori, Tadashi

    2001-07-01

    A beam line BL11 is constructed for exposure Hard X-ray Lithography (HXL) in the LIGA (German acronym for Lithographite Galvanoformung and Abformung) process at the synchrotron radiation (SR) facility NewSUBARU of the Laboratory of Advanced Science and Technology for Industry (LASTI) in Himeji Institute of Technology (HIT). This beam line was designed by the criteria; photon energy range 4-6 keV, a beam spot size on the exposure stage ⩾60×5 mm 2, a density of total irradiated photons ⩾10 11 photons/cm 2. The PMMA sheet etching was successfully demonstrated by using the output beam. We conclude that this beam line performs sufficiently well to study the exposure of HXL in the LIGA process.

  16. [Proton beam therapy].

    PubMed

    Ogino, Takashi

    2006-04-01

    Proton beam therapy (PBT) has made it possible to deliver a higher concentration of radiation to the tumor by its Bragg-peak, and is easy to utilize due to the fact that its biological characteristics are identical with X-rays. PBT has a half-century history, and more than 40,000 patients have been reported as having had treatments with proton beams worldwide. The historic change to this therapy occurred in the 1990s, when the Loma Linda University Medical Center began its clinical activity as the first hospital in the world to utilize a medically dedicated proton therapy facility. Since then, similar hospital-based medically dedicated facilities have been constructed. Results from around the world have shown the therapeutic superiority of PBT over alternative treatment options for ocular melanoma, skull base sarcoma, head & neck cancer, lung cancer,esophageal cancer, hepatocellular carcinoma, and prostate cancer. PBT is expected to achieve further advancement both clinically and technologically.

  17. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  18. Power Beaming Leakage Radiation as A SETI Observable

    NASA Technical Reports Server (NTRS)

    Benford, James N.; Benford, Dominic J.

    2016-01-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beam-ing to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors and ultimately starships. We estimate the principal observable parameters of power beaming leak-age. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system.We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful,if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: Instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be done, which could broaden the parameter space of observable features we have discussed here.

  19. Advanced Modeling of Micromirror Devices

    NASA Technical Reports Server (NTRS)

    Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.

    1995-01-01

    The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.

  20. High-Directivity Emissions with Flexible Beam Numbers and Beam Directions Using Gradient-Refractive-Index Fractal Metamaterial

    PubMed Central

    Xu, He-Xiu; Wang, Guang-Ming; Tao, Zui; Cui, Tie Jun

    2014-01-01

    A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial is proposed, which is constructed by non-uniform fractal geometries. Due to the non-resonant and deep-subwavelength features of the fractal elements, the resulting 3D GRIN metamaterial lenses have extra wide bandwidth (3 to 7.5 GHz), and are capable of manipulating electromagnetic wavefronts accurately, advancing the state of the art of available GRIN lenses. The proposal for the versatile highly-directive emissions has been confirmed by simulations and measurements, showing that not only the number of beams can be arbitrarily tailored but also the beam directions can be steerable. The proposal opens a new way to control broadband highly-directive emissions with pre-designed directions, promising great potentials in modern wireless communication systems. PMID:25034268

  1. MBE growth and processing of III/V-nitride semiconductor thin film structures: Growth of gallium indium arsenic nitride and nano-machining with focused ion beam and electron beam

    NASA Astrophysics Data System (ADS)

    Park, Yeonjoon

    The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.

  2. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  3. Planned Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.

    2010-11-01

    The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.

  4. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, G.E.; Edwards, W.F.

    1987-06-18

    A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

  5. Power Beaming Leakage Radiation as a SETI Observable

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Benford, Dominic J.

    2016-07-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  6. Frontiers of beam diagnostics in plasma accelerators: Measuring the ultra-fast and ultra-cold

    NASA Astrophysics Data System (ADS)

    Cianchi, A.; Anania, M. P.; Bisesto, F.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Giribono, A.; Marocchino, A.; Pompili, R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Mostacci, A.; Bacci, A.; Rossi, A. R.; Serafini, L.; Zigler, A.

    2018-05-01

    Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to large energy spread and divergence of the emerging beams, and on femtosecond bunch length measurements.

  7. Space-Charge Waves and Instabilities in Intense Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  8. High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, B. H., E-mail: bdeng@trialphaenergy.com; Beall, M.; Schroeder, J.

    2016-11-15

    A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 10{sup 16} m{sup −2} at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution datamore » is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.« less

  9. The feasibility and safety of high-intensity focused ultrasound combined with low-dose external beam radiotherapy as supplemental therapy for advanced prostate cancer following hormonal therapy.

    PubMed

    Wu, Rui-Yi; Wang, Guo-Min; Xu, Lei; Zhang, Bo-Heng; Xu, Ye-Qing; Zeng, Zhao-Chong; Chen, Bing

    2011-05-01

    The aim of this study was to investigate the feasibility and safety of high-intensity focused ultrasound (HIFU) combined with (+) low-dose external beam radiotherapy (LRT) as supplemental therapy for advanced prostate cancer (PCa) following hormonal therapy (HT). Our definition of HIFU+LRT refers to treating primary tumour lesions with HIFU in place of reduced field boost irradiation to the prostate, while retaining four-field box irradiation to the pelvis in conventional-dose external beam radiotherapy (CRT). We performed a prospective, controlled and non-randomized study on 120 patients with advanced PCa after HT who received HIFU, CRT, HIFU+LRT and HT alone, respectively. CT/MR imaging showed the primary tumours and pelvic lymph node metastases visibly shrank or even disappeared after HIFU+LRT treatment. There were significant differences among four groups with regard to overall survival (OS) and disease-specific survival (DSS) curves (P = 0.018 and 0.015). Further comparison between each pair of groups suggested that the long-term DSS of the HIFU+LRT group was higher than those of the other three groups, but there was no significant difference between the HIFU+LRT group and the CRT group. Multivariable Cox's proportional hazard model showed that both HIFU+LRT and CRT were independently associated with DSS (P = 0.001 and 0.035) and had protective effects with regard to the risk of death. Compared with CRT, HIFU+LRT significantly decreased incidences of radiation-related late gastrointestinal (GI) and genitourinary (GU) toxicity grade ≥ II. In conclusion, long-term survival of patients with advanced PCa benefited from strengthening local control of primary tumour and regional lymph node metastases after HT. As an alternative to CRT, HIFU+LRT showed good efficacy and better safety.

  10. A beam current density monitor for intense electron beams

    NASA Astrophysics Data System (ADS)

    Fiorito, R. B.; Raleigh, M.; Seltzer, S. M.

    1983-12-01

    The authors describe a new type of electric probe for mapping the radial current density profile of high-energy, high current electron beams. The idea of developing an electrically sensitive probe for these conditions was originally suggested to one of the authors during a year's visit to the Lawrence Livermore National Laboratory. The resulting probe is intended for use on the Experimental Test Accelerator (ETA) and the Advanced Test Accelerator at that laboratory. This report discusses in detail: the mechanical design, the electrical response, and temperature effects, as they pertain to the electric probe, and describe the first experimental results obtained using this probe on ETA.

  11. Comparison of proton beam radiotherapy and hyper-fractionated accelerated chemoradiotherapy for locally advanced pancreatic cancer.

    PubMed

    Maemura, Kosei; Mataki, Yuko; Kurahara, Hiroshi; Kawasaki, Yota; Iino, Satoshi; Sakoda, Masahiko; Ueno, Shinichi; Arimura, Takeshi; Higashi, Ryutaro; Yoshiura, Takashi; Shinchi, Hiroyuki; Natsugoe, Shoji

    We compared the clinical outcomes of proton beam radiotherapy (PBRT) and those of conventional chemoradiotherapy via hyper-fractionated acceleration radiotherapy (HART) after induction chemotherapy in patients with locally advanced pancreatic cancer (LAPC). Twenty-five consecutive patients with LAPC received induction chemotherapy comprising gemcitabine and S-1 before radiotherapy. Of these, 15 and 10 were enrolled in the HART and PBRT groups, respectively. Moderate hematological toxicities were observed only in the HART group, whereas two patients in the PBRT group developed duodenal ulcers. All patients underwent scheduled radiotherapy, with overall disease control rates of 93% and 80% in the HART and PBRT groups, respectively. Local progression was observed in 60% and 40% of patients in the HART and PBRT groups, respectively. However, there was no statistical significance between the two groups regarding the median time to progression (15.4 months in both) and the median overall survival (23.4 v.s. 22.3 months). PBRT was feasible and tolerable, and scheduled protocols could be completed with careful attention to gastrointestinal ulcers. Despite the lower incidence of local recurrence, PBRT did not yield obvious progression control and survival benefits relative to conventional chemoradiotherapy. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  12. Particle Beam Radiography

    NASA Astrophysics Data System (ADS)

    Peach, Ken; Ekdahl, Carl

    2014-02-01

    Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, K.

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: <<>>In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel’s findings from the three Regional Town Meetings. The Panel’s initial conclusions are then articulated and the steps that the Panelmore » seeks to take are outlined.« less

  14. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  15. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  16. WE-DE-207A-02: Advances in Cone Beam CT Anatomical and Functional Imaging in Angio-Suite to Enable One-Stop-Shop Stroke Imaging Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G.

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are

  17. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: a feasibility study.

    PubMed

    Nicolini, Giorgia; Ghosh-Laskar, Sarbani; Shrivastava, Shyam Kishore; Banerjee, Sushovan; Chaudhary, Suresh; Agarwal, Jai Prakash; Munshi, Anusheel; Clivio, Alessandro; Fogliata, Antonella; Mancosu, Pietro; Vanetti, Eugenio; Cozzi, Luca

    2012-10-01

    A feasibility study was performed to evaluate RapidArc (RA), and the potential benefit of flattening filter-free beams, on advanced esophageal cancer against intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). The plans for 3D-CRT and IMRT with three to seven and five to seven fixed beams were compared against double-modulated arcs with avoidance sectors to spare the lungs for 10 patients. All plans were optimized for 6-MV photon beams. The RA plans were studied for conventional and flattening filter-free (FFF) beams. The objectives for the planning target volume were the volume receiving ≥ 95% or at most 107% of the prescribed dose of <1% with a dose prescription of 59.4 Gy. For the organs at risk, the lung volume (minus the planning target volume) receiving ≥ 5 Gy was <60%, that receiving 20 Gy was <20%-30%, and the mean lung dose was <15.0 Gy. The heart volume receiving 45 Gy was <20%, volume receiving 30 Gy was <50%. The spinal dose received by 1% was <45 Gy. The technical delivery parameters for RA were assessed to compare the normal and FFF beam characteristics. RA and IMRT provided equivalent coverage and homogeneity, slightly superior to 3D-CRT. The conformity index was 1.2 ± 0.1 for RA and IMRT and 1.5 ± 0.2 for 3D-CRT. The mean lung dose was 12.2 ± 4.5 for IMRT, 11.3 ± 4.6 for RA, and 10.8 ± 4.4 for RA with FFF beams, 18.2 ± 8.5 for 3D-CRT. The percentage of volume receiving ≥ 20 Gy ranged from 23.6% ± 9.1% to 21.1% ± 9.7% for IMRT and RA (FFF beams) and 39.2% ± 17.0% for 3D-CRT. The heart and spine objectives were met by all techniques. The monitor units for IMRT and RA were 457 ± 139, 322 ± 20, and 387 ± 40, respectively. RA with FFF beams showed, compared with RA with normal beams, a ∼20% increase in monitor units per Gray, a 90% increase in the average dose rate, and 20% reduction in beam on time (owing to different gantry speeds). RA demonstrated, compared with conventional IMRT, a

  18. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments Database

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  19. Simulating the influence of scatter and beam hardening in dimensional computed tomography

    NASA Astrophysics Data System (ADS)

    Lifton, J. J.; Carmignato, S.

    2017-10-01

    Cone-beam x-ray computed tomography (XCT) is a radiographic scanning technique that allows the non-destructive dimensional measurement of an object’s internal and external features. XCT measurements are influenced by a number of different factors that are poorly understood. This work investigates how non-linear x-ray attenuation caused by beam hardening and scatter influences XCT-based dimensional measurements through the use of simulated data. For the measurement task considered, both scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, only beam hardening is found to influence dimensional measurements when evaluated using an advanced surface determination method. Based on the results presented, recommendations on the use of beam hardening and scatter correction for dimensional XCT are given.

  20. Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials

    DTIC Science & Technology

    2016-04-27

    Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical...vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...The instrumentation enables clean, uniform, and rapid deposition of a wide variety of metallic, semiconducting, and ceramic thin films with

  1. Advanced carbon-based material C{sub 60} modification using partially ionized cluster and energetic beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Yuancheng; Ren Zhongmin; Ning Zhifeng

    1997-06-20

    Two processes have been undertaken using Partially ionized cluster deposition (PICBD) and energetic ion bombardment beams deposition (IBD) respectively. C{sub 60} films deposited by PICBD at V=0 and 65 V, which result in highly textured close-packed structure in orientation (110) and being more polycrystalline respectively, the resistance of C{sub 60} films to oxygen diffusion contamination will be improved. In the case of PICBD, the ionized C{sub 60} soccer-balls molecules in the evaporation beams will be fragmented in collision with the substrate under the elevated accelerating fields Va. As a new synthetic IBD processing, two low energy (400 and 1000 eV)more » nitrogen ion beams have been used to bombard C{sub 60} films to synthesize the carbon nitride films.« less

  2. Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).

    PubMed

    McAdams, R

    2014-02-01

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  3. Femtosecond Beam Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uesaka, Mitsuru

    2004-12-07

    Short particle beam science has been promoted by electron linac and radiation chemistry up to picoseconds. Recently, table-top TW laser enables several kinds of short particle beams and pump-and-probe analyses. 4th generation SR sources aim to generation and application of about 100 fs X-ray. Thus, femtosecond beam science has become one of the important field in advanced accelerator concepts. By using electron linac with photoinjector, about 200 fs single bunch and 3 fs multi-bunches are available. Tens femtoseconds monoenergetic electron bunch is expected by laser plasma cathode. Concerning the electron bunch diagnosis, we have seen remarkable progress in streak camera,more » coherent radiation spectroscopy, fluctuation method and E/O crystal method. Picosecond time-resolved pump-and-probe analysis by synchronizing electron linac and laser is now possible, but the timing jitter and drift due to several fluctuations in electronic devices and environment are still in picoseconds. On the other hand, the synchronization between laser and secondary beam is done passively by an optical beam-splitter in the system based on one TW laser. Therefore, the timing jitter and drift do not intrinsically exist there. The author believes that the femtosecond time-resolved pump-and-probe analysis must be initiated by the laser plasma beam sources. As to the applications, picosecond time-resolved system by electron photoinjector/linac and femtosecond laser are operating in more than 5 facilities for radiation chemistry in the world. Ti:Sapphire-laser-based repetitive pump-and-probe analysis started by time-resolved X-ray diffraction to visualize the atomic motion. Nd:Glass-laser-based single-shot analysis was performed to visualize the laser ablation via the single-shot ion imaging. The author expects that protein dynamics and ultrafast nuclear physics would be the next interesting targets. Monograph titled 'Femtosecond Beam Science' is published by Imperial College Press

  4. Coherent resonance stop bands in alternating gradient beam transport

    NASA Astrophysics Data System (ADS)

    Ito, K.; Okamoto, H.; Tokashiki, Y.; Fukushima, K.

    2017-06-01

    An extensive experimental study is performed to confirm fundamental resonance bands of an intense hadron beam propagating through an alternating gradient linear transport channel. The present work focuses on the most common lattice geometry called "FODO" or "doublet" that consists of two quadrupoles of opposite polarities. The tabletop ion-trap system "S-POD" (Simulator of Particle Orbit Dynamics) developed at Hiroshima University is employed to clarify the parameter-dependence of coherent beam instability. S-POD can provide a non-neutral plasma physically equivalent to a charged-particle beam in a periodic focusing potential. In contrast with conventional experimental approaches relying on large-scale machines, it is straightforward in S-POD to control the doublet geometry characterized by the quadrupole filling factor and drift-space ratio. We verify that the resonance feature does not essentially change depending on these geometric factors. A few clear stop bands of low-order resonances always appear in the same pattern as previously found with the sinusoidal focusing model. All stop bands become widened and shift to the higher-tune side as the beam density is increased. In the space-charge-dominated regime, the most dangerous stop band is located at the bare betatron phase advance slightly above 90 degrees. Experimental data from S-POD suggest that this severe resonance is driven mainly by the linear self-field potential rather than by nonlinear external imperfections and, therefore, unavoidable at high beam density. The instability of the third-order coherent mode generates relatively weak but noticeable stop bands near the phase advances of 60 and 120 degrees. The latter sextupole stop band is considerably enhanced by lattice imperfections. In a strongly asymmetric focusing channel, extra attention may have to be paid to some coupling resonance lines induced by the Coulomb potential. Our interpretations of experimental data are supported by theoretical

  5. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  6. Developments in neutron beam devices and an advanced cold source for the NIST research reactor

    NASA Astrophysics Data System (ADS)

    Williams, Robert E.; Rowe, J. Michael

    2002-01-01

    The last 5 yr has been a period of steady growth in instrument capabilities and utilization at the National Institute of Standards and Technology Center for Neutron Research. Since the installation of the liquid hydrogen cold source in 1995, all of the instruments originally planned for the Cold Neutron Research Facility have been completed and made available to users, and three new thermal neutron instruments have been installed. Currently, an advanced cold source is being fabricated that will better couple the reactor core and the existing network of neutron guides. Many improvements are also being made in neutron optics to enhance the beam characteristics of certain instruments. For example, optical filters will be installed that will increase the fluxes at the two 30-m SANS instruments by as much as two. Sets of MgF 2 biconcave lenses have been developed for SANS that have demonstrated a significant improvement in resolution over conventional pinhole collimation. The recently commissioned high-flux backscattering spectrometer incorporates a converging guide, a large spherically focusing monochromator and analyzer, and a novel phase space transform chopper, to achieve very high intensity while maintaining excellent energy resolution. Finally, a prototype low background, doubly focusing neutron monochromator is nearing completion that will be the heart of a new cold neutron spectrometer, as well as two new thermal neutron triple axis spectrometers.

  7. First neutral beam injection experiments on KSTAR tokamak.

    PubMed

    Jeong, S H; Chang, D H; Kim, T S; In, S R; Lee, K W; Jin, J T; Chang, D S; Oh, B H; Bae, Y S; Kim, J S; Park, H T; Watanabe, K; Inoue, T; Kashiwagi, M; Dairaku, M; Tobari, H; Hanada, M

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1∕3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D(+):D(2)(+):D(3)(+) = 75:20:5 at beam current density of 85 mA/cm(2). The arc efficiency is more than 1.0 A∕kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the T(i) and T(e) profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  8. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  9. Proton therapy posterior beam approach with pencil beam scanning for esophageal cancer : Clinical outcome, dosimetry, and feasibility.

    PubMed

    Zeng, Yue-Can; Vyas, Shilpa; Dang, Quang; Schultz, Lindsay; Bowen, Stephen R; Shankaran, Veena; Farjah, Farhood; Oelschlager, Brant K; Apisarnthanarax, Smith; Zeng, Jing

    2016-12-01

    The aim of this study is to present the dosimetry, feasibility, and preliminary clinical results of a novel pencil beam scanning (PBS) posterior beam technique of proton treatment for esophageal cancer in the setting of trimodality therapy. From February 2014 to June 2015, 13 patients with locally advanced esophageal cancer (T3-4N0-2M0; 11 adenocarcinoma, 2 squamous cell carcinoma) were treated with trimodality therapy (neoadjuvant chemoradiation followed by esophagectomy). Eight patients were treated with uniform scanning (US) and 5 patients were treated with a single posterior-anterior (PA) beam PBS technique with volumetric rescanning for motion mitigation. Comparison planning with PBS was performed using three plans: AP/PA beam arrangement; PA plus left posterior oblique (LPO) beams, and a single PA beam. Patient outcomes, including pathologic response and toxicity, were evaluated. All 13 patients completed chemoradiation to 50.4 Gy (relative biological effectiveness, RBE) and 12 patients underwent surgery. All 12 surgical patients had an R0 resection and pathologic complete response was seen in 25 %. Compared with AP/PA plans, PA plans have a lower mean heart (14.10 vs. 24.49 Gy, P < 0.01), mean stomach (22.95 vs. 31.33 Gy, P = 0.038), and mean liver dose (3.79 vs. 5.75 Gy, P = 0.004). Compared to the PA/LPO plan, the PA plan reduced the lung dose: mean lung dose (4.96 vs. 7.15 Gy, P = 0.020) and percentage volume of lung receiving 20 Gy (V 20 ; 10 vs. 17 %, P < 0.01). Proton therapy with a single PA beam PBS technique for preoperative treatment of esophageal cancer appears safe and feasible.

  10. Dual wavelength imaging of a scrape-off layer in an advanced beam-driven field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osin, D.; Schindler, T., E-mail: dosin@trialphaenergy.com

    2016-11-15

    A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can bemore » used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.« less

  11. Test and control computer user's guide for a digital beam former test system

    NASA Technical Reports Server (NTRS)

    Alexovich, Robert E.; Mallasch, Paul G.

    1992-01-01

    A Digital Beam Former Test System was developed to determine the effects of noise, interferers and distortions, and digital implementations of beam forming as applied to the Tracking and Data Relay Satellite 2 (TDRS 2) architectures. The investigation of digital beam forming with application to TDRS 2 architectures, as described in TDRS 2 advanced concept design studies, was conducted by the NASA/Lewis Research Center for NASA/Goddard Space Flight Center. A Test and Control Computer (TCC) was used as the main controlling element of the digital Beam Former Test System. The Test and Control Computer User's Guide for a Digital Beam Former Test System provides an organized description of the Digital Beam Former Test System commands. It is written for users who wish to conduct tests of the Digital Beam forming Test processor using the TCC. The document describes the function, use, and syntax of the TCC commands available to the user while summarizing and demonstrating the use of the commands wtihin DOS batch files.

  12. Adjuvant neutron therapy in complex treatment of patients with locally advanced breast cancer

    NASA Astrophysics Data System (ADS)

    Lisin, V. A.; Velikaya, V. V.; Startseva, Zh. A.; Popova, N. O.; Goldberg, V. E.

    2017-09-01

    The study included 128 patients with stage T2-4N0-3M0 locally advanced breast cancer. All patients were divided into two groups. Group I (study group) consisted of 68 patients, who received neutron therapy, and group II (control group) comprised 60 patients, who received electron beam therapy. Neutron therapy was well tolerated by the patients and 1-2 grade radiation skin reactions were the most common. Neutron therapy was shown to be effective in multimodality treatment of the patients with locally advanced breast cancer. The 8-year recurrence-free survival rate in the patients with locally advanced breast cancer was 94.5 ± 4.1% after neutron therapy and 81.4 ± 5.9% after electron beam therapy (p = 0.05).

  13. Metaoptics for Spectral and Spatial Beam Manipulation

    NASA Astrophysics Data System (ADS)

    Raghu Srimathi, Indumathi

    Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool

  14. Heat-exchanger concepts for neutral-beam calorimeters

    NASA Astrophysics Data System (ADS)

    Thompson, C. C.; Polk, D. H.; McFarlin, D. J.; Stone, R.

    1981-10-01

    Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included: (1) smooth tube/straight flow; (2) smooth tube with swirl flow created by tangential injection of the coolant; and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/sq cm was obtained for the molybdenum tube swirl flow configuration.

  15. Automated beam monitoring and diagnosis for CO2 lasers

    NASA Astrophysics Data System (ADS)

    Mann, Stefan; Boeske, Lars; Kaierle, Stefan; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart

    2002-06-01

    The usage of a quality management, in combination with a standard certification, is nearly inevitable for today's industrial manufacturing. In laser materials processing, a periodical beam diagnosis is to be executed as a quality-maintaining measure with any change of the workpiece geometry to guarantee an unambiguous allocation of the beam quality factors. Otherwise changes in the beam quality, caused by pollution, aging or defect of the optical components, remain unidentified for a long time, leading to impairments of the treatment quality or even costly down-times. As a solution a diagnosis system is integrated into a laser system. Data sources like measuring instruments, sensors and laser control transmit the diagnosis data to a diagnosis PC. A user-friendly software, based on Fuzzy algorithms, enables the operator to retrace changes in the beam quality to failures of the laser system. All diagnosis data are getting archived in a databank. The access to the archived data through the World Wide Web allows remote diagnoses. With the help of the beam diagnosis system failures can be discovered in advance, and losses of production can be avoided. The gained transparency of the beam characteristic values facilitates the integration of the laser system in the quality management. A prototype installation has been realized and latest results will be demonstrated.

  16. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance ofmore » the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.« less

  17. Computer simulation of electron flow in linear-beam microwave tubes

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit

    1990-12-01

    The computer simulation of electron flow in linear-beam microwave tubes, such as a travelling-wave tube (TWT) and klystron, is used for designing and optimising the electron gun and collector and for analysing the large-signal beam-wave interaction phenomenon. Major aspects of simulation of electron flow in static and rf fields present in such tubes are discussed. Some advancements made in this respect and results obtained from computer programs developed by the research group at CEERI for a gridded electron gun, depressed collector, and large-signal analysis of TWT and klystron are presented.

  18. Application of gradient elasticity to benchmark problems of beam vibrations

    NASA Astrophysics Data System (ADS)

    Kateb, K. M.; Almitani, K. H.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Papadopoulos, P.; Askes, H.; Aifantis, E. C.

    2016-04-01

    The gradient approach, specifically gradient elasticity theory, is adopted to revisit certain typical configurations on mechanical vibrations. New results on size effects and scale-dependent behavior not captured by classical elasticity are derived, aiming at illustrating the usefulness of this approach to applications in advanced technologies. In particular, elastic prismatic straight beams in bending are discussed using two different governing equations: the gradient elasticity bending moment equation (fourth order) and the gradient elasticity deflection equation (sixth order). Different boundary/support conditions are examined. One problem considers the free vibrations of a cantilever beam loaded by an end force. A second problem is concerned with a simply supported beam disturbed by a concentrated force in the middle of the beam. Both problems are solved analytically. Exact free vibration frequencies and mode shapes are derived and presented. The difference between the gradient elasticity solution and its classical counterpart is revealed. The size ratio c/L (c denotes internal length and L is the length of the beam) induces significant effects on vibration frequencies. For both beam configurations, it turns out that as the ratio c/L increases, the vibration frequencies decrease, a fact which implies lower beam stiffness. Numerical examples show this behavior explicitly and recover the classical vibration behavior for vanishing size ratio c/L.

  19. Electron-Cloud Build-Up: Theory and Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furman, M. A.

    We present a broad-brush survey of the phenomenology, history and importance of the electron-cloud effect (ECE). We briefly discuss the simulation techniques used to quantify the electron-cloud (EC) dynamics. Finally, we present in more detail an effective theory to describe the EC density build-up in terms of a few effective parameters. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire 'ECLOUD' series. In addition, the proceedings of the various flavors of Particle Accelerator Conferences contain a large number of EC-related publications.more » The ICFA Beam Dynamics Newsletter series contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC.« less

  20. Ion traps for precision experiments at rare-isotope-beam facilities

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Anna

    2016-09-01

    Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.

  1. Role of External Beam Radiotherapy in Patients With Advanced or Recurrent Nonanaplastic Thyroid Cancer: Memorial Sloan-Kettering Cancer Center Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terezakis, Stephanie A.; Lee, Kyungmouk S.; Ghossein, Ronald A.

    2009-03-01

    Purpose: External beam radiotherapy (EBRT) plays a controversial role in the management of nonanaplastic thyroid cancer. We reviewed our institution's outcomes in patients treated with EBRT for advanced or recurrent nonanaplastic thyroid cancer. Methods and Materials: Between April 1989 and April 2006, 76 patients with nonanaplastic thyroid cancer were treated with EBRT. The median follow-up for the surviving patients was 35.3 months (range, 4.2-178.4). The lesions were primarily advanced and included Stage T2 in 5 (7%), T3 in 5 (7%), and T4 in 64 (84%) patients. Stage N1 disease was present in 60 patients (79%). Distant metastases before EBRT weremore » identified in 27 patients (36%). The median total EBRT dose delivered was 6,300 cGy. The histologic features examined included medullary in 12 patients (16%) and nonmedullary in 64 (84%). Of the 76 patients, 71 (93%) had undergone surgery before RT, and radioactive iodine treatment was used in 56 patients (74%). Results: The 2- and 4-year overall locoregional control rate for all histologic types was 86% and 72%, respectively, and the 2- and 4-year overall survival rate for all patients was 74% and 55%, respectively. No significant differences were found in locoregional control, overall survival, or distant metastases-free survival for patients with complete resection, microscopic residual disease, or gross residual disease. Grade 3 acute mucositis and dysphagia occurred in 14 (18%) and 24 (32%) patients, respectively. Late adverse toxicity was notable for percutaneous endoscopic gastrostomy tube use in 4 patients (5%). Conclusion: The results of our study have shown that EBRT is effective for locoregional control of selected locally advanced or recurrent nonanaplastic thyroid malignancies, with acceptable acute toxicity.« less

  2. Hot spots and dark current in advanced plasma wakefield accelerators

    DOE PAGES

    Manahan, G. G.; Deng, A.; Karger, O.; ...

    2016-01-29

    Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. Likewise, these electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. The strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  3. New ion source for KSTAR neutral beam injection system.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul

    2012-02-01

    The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.

  4. Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

    NASA Astrophysics Data System (ADS)

    Asuni, Ganiyu Adeniyi

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was

  5. Application of cone-beam CT in the office setting.

    PubMed

    Thomas, Steven L

    2008-10-01

    The decision to incorporate cone-beam CT (CBCT) into a dental practice is one that requires serious consideration and careful planning. In the early days of the technology, fewer sources of information existed and a community of users often shared ideas and prompted the advancement of the products. Office-based CBCT has advanced significantly since that time. It has often been described as the "gold standard" for imaging the oral and maxillofacial area and will become a part of the everyday life of most practices in the coming decades.

  6. Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, Darrell G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong; Singh, Rakesh K.; Xi, Xiaoxing

    2017-12-01

    Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+δ, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy significantly advances the state of the art in constructing oxide materials with atomic layer precision and control over stoichiometry. With atomic layer-by-layer laser molecular-beam epitaxy we have produced conducting LaAlO3/SrTiO3 interfaces at high oxygen pressures that show no evidence of oxygen vacancies, a capability not accessible by existing techniques. The carrier density of the interfacial two-dimensional electron gas thus obtained agrees quantitatively with the electronic reconstruction mechanism.

  7. Three-dimensional propagation and absorption of high frequency Gaussian beams in magnetoactive plasmas

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Orefice, A.

    1994-05-01

    In today's high frequency systems employed for plasma diagnostics, power heating, and current drive the behavior of the wave beams is appreciably affected by the self-diffraction phenomena due to their narrow collimation. In the present article the three-dimensional propagation of Gaussian beams in inhomogeneous and anisotropic media is analyzed, starting from a properly formulated dispersion relation. Particular attention is paid, in the case of electromagnetic electron cyclotron (EC) waves, to the toroidal geometry characterizing tokamak plasmas, to the power density evolution on the advancing wave fronts, and to the absorption features occurring when a beam crosses an EC resonant layer.

  8. Anti-coalescence of bosons on a lossy beam splitter.

    PubMed

    Vest, Benjamin; Dheur, Marie-Christine; Devaux, Éloïse; Baron, Alexandre; Rousseau, Emmanuel; Hugonin, Jean-Paul; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2017-06-30

    Two-boson interference, a fundamentally quantum effect, has been extensively studied with photons through the Hong-Ou-Mandel effect and observed with guided plasmons. Using two freely propagating surface plasmon polaritons (SPPs) interfering on a lossy beam splitter, we show that the presence of loss enables us to modify the reflection and transmission factors of the beam splitter, thus revealing quantum interference paths that do not exist in a lossless configuration. We investigate the two-plasmon interference on beam splitters with different sets of reflection and transmission factors. Through coincidence-detection measurements, we observe either coalescence or anti-coalescence of SPPs. The results show that losses can be viewed as a degree of freedom to control quantum processes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Science at the Speed of Light: Advanced Photon Source

    ScienceCinema

    Murray Gibson

    2017-12-09

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

  10. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H. Y.; Hong, J. H.; Jang, J. H.

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in themore » electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.« less

  11. Pink-beam focusing with a one-dimensional compound refractive lens

    DOE PAGES

    Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.; ...

    2016-07-28

    The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less

  12. Recent advances in imaging technologies in dentistry.

    PubMed

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-10-28

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  13. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  14. ONLINE MINIMIZATION OF VERTICAL BEAM SIZES AT APS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng

    In this paper, online minimization of vertical beam sizes along the APS (Advanced Photon Source) storage ring is presented. A genetic algorithm (GA) was developed and employed for the online optimization in the APS storage ring. A total of 59 families of skew quadrupole magnets were employed as knobs to adjust the coupling and the vertical dispersion in the APS storage ring. Starting from initially zero current skew quadrupoles, small vertical beam sizes along the APS storage ring were achieved in a short optimization time of one hour. The optimization results from this method are briefly compared with the onemore » from LOCO (Linear Optics from Closed Orbits) response matrix correction.« less

  15. Development and installation of an advanced beam guidance system on Viking`s 2.4 megawatt EB furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motchenbacher, C.A.; Grosse, I.A.

    1994-12-31

    Viking Metallurgical is a manufacturer of titanium alloy and superalloy seamless ring forgings for the aerospace industry. For more than 20 years Viking has used electron beam cold hearth melting to recover titanium alloy scrap and to produce commercially pure titanium ingot for direct forging. In the 1970`s Viking pioneered electron beam cold hearth melting and in 1983 added a two-gun, 2.4 MW furnace. As part of Vikings efforts to improve process control we have commissioned and installed a new electron beam guidance system. The system is capable of generating virtually unlimited EB patterns resulting in improved melt control.

  16. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, amore » series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.« less

  17. Role of laser beam radiance in different ceramic processing: A two wavelengths comparison

    NASA Astrophysics Data System (ADS)

    Shukla, Pratik; Lawrence, Jonathan

    2013-12-01

    Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.

  18. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  19. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  20. Beam manipulation with velocity bunching for PWFA applications

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Galletti, M.; Gallo, A.; Giribono, A.; Li, W.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Petrillo, V.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zhu, J.

    2016-09-01

    The activity of the SPARC_LAB test-facility (LNF-INFN, Frascati) is currently focused on the development of new plasma-based accelerators. Particle accelerators are used in many fields of science, with applications ranging from particle physics research to advanced radiation sources (e.g. FEL). The demand to accelerate particles to higher and higher energies is currently limited by the effective efficiency in the acceleration process that requires the development of km-size facilities. By increasing the accelerating gradient, the compactness can be improved and costs reduced. Recently, the new technique which attracts main efforts relies on plasma acceleration. In the following, the current status of plasma-based activities at SPARC_LAB is presented. Both laser- and beam-driven schemes will be adopted with the aim to provide an adequate accelerating gradient (1-10 GV/m) while preserving the brightness of the accelerated beams to the level of conventional photo-injectors. This aspect, in particular, requires the use of ultra-short (< 100 fs) electron beams, consisting in one or more bunches. We show, with the support of simulations and experimental results, that such beams can be produced using RF compression by velocity-bunching.

  1. Terahertz Streaking of Few-Femtosecond Relativistic Electron Beams

    NASA Astrophysics Data System (ADS)

    Zhao, Lingrong; Wang, Zhe; Lu, Chao; Wang, Rui; Hu, Cheng; Wang, Peng; Qi, Jia; Jiang, Tao; Liu, Shengguang; Ma, Zhuoran; Qi, Fengfeng; Zhu, Pengfei; Cheng, Ya; Shi, Zhiwen; Shi, Yanchao; Song, Wei; Zhu, Xiaoxin; Shi, Jiaru; Wang, Yingxin; Yan, Lixin; Zhu, Liguo; Xiang, Dao; Zhang, Jie

    2018-04-01

    Streaking of photoelectrons with optical lasers has been widely used for temporal characterization of attosecond extreme ultraviolet pulses. Recently, this technique has been adapted to characterize femtosecond x-ray pulses in free-electron lasers with the streaking imprinted by far-infrared and terahertz (THz) pulses. Here, we report successful implementation of THz streaking for time stamping of an ultrashort relativistic electron beam, whose energy is several orders of magnitude higher than photoelectrons. Such an ability is especially important for MeV ultrafast electron diffraction (UED) applications, where electron beams with a few femtosecond pulse width may be obtained with longitudinal compression, while the arrival time may fluctuate at a much larger timescale. Using this laser-driven THz streaking technique, the arrival time of an ultrashort electron beam with a 6-fs (rms) pulse width has been determined with 1.5-fs (rms) accuracy. Furthermore, we have proposed and demonstrated a noninvasive method for correction of the timing jitter with femtosecond accuracy through measurement of the compressed beam energy, which may allow one to advance UED towards a sub-10-fs frontier, far beyond the approximate 100-fs (rms) jitter.

  2. In-vacuum sensors for the beamline components of the ITER neutral beam test facility.

    PubMed

    Dalla Palma, M; Pasqualotto, R; Sartori, E; Spagnolo, S; Spolaore, M; Veltri, P

    2016-11-01

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  3. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, Gilbert E.; Edwards, William F.

    1988-01-01

    A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

  4. Study of repeater technology for advanced multifunctional communications satellites

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Investigations are presented concerning design concepts and implementation approaches for the satellite communication repeater subsystems of advanced multifunctional satellites. In such systems the important concepts are the use of multiple antenna beams, repeater switching (routing), and efficient spectrum utilization through frequency reuse. An information base on these techniques was developed and tradeoff analyses were made of repeater design concepts, with the work design taken in a broad sense to include modulation beam coverage patterns. There were five major areas of study: requirements analysis and processing; study of interbeam interference in multibeam systems; characterization of multiple-beam switching repeaters; estimation of repeater weight and power for a number of alternatives; and tradeoff analyses based on these weight and power data.

  5. Beam-beam interaction study of medium energy eRHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao,Y.; Litvinenko, V. N.; Ptitsyn, V.

    Medium Energy eRHIC (MeRHIC), the first stage design of eRHIC, includes a multi-pass ERL that provides 4GeV high quality electron beam to collide with the ion beam of RHIC. It delivers a minimum luminosity of 10{sup 32} cm{sup -2}s{sup -1}. Beam-beam effects present one of major factors limiting the luminosity of colliders. In this paper, both beam-beam effects on the electron beam and the proton beam in MeRHIC are investigated. The beam-beam interaction can induce a head-tail type instability of the proton beam referred to as the kink instability. Thus, beam stability conditions should be established to avoid proton beammore » loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure that the beam quality is good enough for the energy recovery pass. The relation of proton beam stability, electron disruption and consequential luminosity are carried out after thorough discussion.« less

  6. Demonstration of Cascaded Modulator-Chicane Microbunching of a Relativistic Electron Beam

    DOE PAGES

    Sudar, N.; Musumeci, P.; Gadjev, I.; ...

    2018-03-15

    Here, we present results of an experiment showing the first successful demonstration of a cascaded microbunching scheme. Two modulator-chicane prebunchers arranged in series and a high power mid-IR laser seed are used to modulate a 52 MeV electron beam into a train of sharp microbunches phase locked to the external drive laser. This configuration is shown to greatly improve matching of the beam into the small longitudinal phase space acceptance of short-wavelength accelerators. We demonstrate trapping of nearly all (96%) of the electrons in a strongly tapered inverse free-electron laser accelerator, with an order-of-magnitude reduction in injection losses compared tomore » the classical single-buncher scheme. These results represent a critical advance in laser-based longitudinal phase space manipulations and find application in high gradient advanced acceleration as well as in high peak and average power coherent radiation sources.« less

  7. High current proton beams production at Simple Mirror Ion Source 37.

    PubMed

    Skalyga, V; Izotov, I; Razin, S; Sidorov, A; Golubev, S; Kalvas, T; Koivisto, H; Tarvainen, O

    2014-02-01

    This paper presents the latest results of high current proton beam production at Simple Mirror Ion Source (SMIS) 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup, the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. Latest experiments at SMIS 37 were performed using a single-aperture two-electrode extraction system. Proton beams with currents up to 450 mA at high voltages below 45 kV were obtained. The maximum beam current density was measured to be 600 mA/cm(2). A possibility of further improvement through the development of an advanced extraction system is discussed.

  8. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  9. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE PAGES

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...

    2017-03-06

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  10. BEAM DYNAMICS STUDIES FOR A COMPACT CARBON ION LINAC FOR THERAPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plastun, A.; Mustapha, B.; Nassiri, A.

    2016-05-01

    Feasibility of an Advanced Compact Carbon Ion Linac (ACCIL) for hadron therapy is being studied at Argonne National Laboratory in collaboration with RadiaBeam Technologies. The 45-meter long linac is designed to deliver 109 carbon ions per second with variable energy from 45 MeV/u to 450 MeV/u. S-band structure provides the acceleration in this range. The carbon beam energy can be adjusted from pulse to pulse, making 3D tumor scanning straightforward and fast. Front end accelerating structures such as RFQ, DTL and coupled DTL are designed to operate at lower frequencies. The design of the linac was accompanied with extensive end-to-endmore » beam dynamics studies which are presented in this paper.« less

  11. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  12. A viscoelastic higher-order beam finite element

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Tressler, Alexander

    1996-01-01

    A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.

  13. Transport properties of initially neutral gas disturbed by intense electron beam

    NASA Astrophysics Data System (ADS)

    Angus, Justin; Swanekamp, Steve; Schumer, Joseph; Mosher, Dave; Ottinger, Paul

    2013-10-01

    The behavior of intense electron beams (those with current densities on the order of hundreds of kA/cm2 and beam rise times on the order of 100 ns) traveling through gaseous mediums depends strongly on the transport properties of the medium. For example, the conductivity of the medium, which is very sensitive to the ionization state and temperature of the gas, has a strong influence on the beam behavior through the plasma return current. Since the beam is responsible for ionizing and heating the gas, self-consistently solving for the gas transport properties and the beam propagation is essential for an accurate description of the system. An advanced gas chemistry model to describe the transport properties of a strongly disturbed gaseous system is presented in this work. A focal point of this work is an accurate description of the medium's conductivity as the gas progresses from its weakly ionized state, where swarm models are valid, to a strongly ionized state where the Spitzer-Harm model applies. NRL Karle Fellowship

  14. Beam/seam alignment control for electron beam welding

    DOEpatents

    Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  15. Definition of Beam Diameter for Electron Beam Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgardt, Paul; Pierce, Stanley W.; Dvornak, Matthew John

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machinemore » (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.« less

  16. Analysis of in-service failures and advances in microstructural characterization. Microstructural science Volume 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramovici, E.; Northwood, D.O.; Shehata, M.T.

    1999-01-01

    The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).

  17. Successful Beam-Beam Tuneshift Compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishofberger, Kip Aaron

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (T EL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operationsmore » with inclusion of the T EL are presented and analyzed. It is shown that the T EL provides a way to shatter the previously inescapable beam-beam limit.« less

  18. Plasma focus ion beam-scaling laws

    NASA Astrophysics Data System (ADS)

    Saw, S. H.

    2014-08-01

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.

  19. Commissioning of BL 7.2, the new diagnostic beam line at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, Fernando; Baum, Dennis; Biocca, Alan

    2004-06-29

    BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.

  20. [Heavy charged particle radiotherapy--proton beam].

    PubMed

    Ogino, Takashi

    2003-12-01

    Proton beam therapy (PBT) makes it possible to deliver a higher concentration of radiation to the tumor by its Bragg-peak, and is easy to utilize due to its identical biological characteristics with X-rays. PBT has a half-century history, and more than 35,000 patients have been reported as having had treatments with proton beams worldwide. The historic change to this therapy occurred in the 1990s, when the Loma Linda University Medical Center began clinical activity as the first hospital in the world to utilize a medically dedicated proton therapy facility. Since then, similar hospital-based medically dedicated facilities have been constructed. Results from around the world have shown the therapeutic superiority of PBT over alternative treatment options for ocular melanoma, skull base sarcoma, head and neck cancer, lung cancer, esophageal cancer, hepatocellular carcinoma, and prostate cancer. PBT is expected to achieve further advancement both clinically and technologically.

  1. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less

  2. Use of particle beams for lunar prospecting

    NASA Technical Reports Server (NTRS)

    Toepfer, A. J.; Eppler, D.; Friedlander, A.; Weitz, R.

    1993-01-01

    A key issue in choosing the appropriate site for a manned lunar base is the availability of resources, particularly oxygen and hydrogen for the production of water, and ores for the production of fuels and building materials. NASA has proposed two Lunar Scout missions that would orbit the Moon and use, among other instruments, a hard X-ray spectrometer, a neutron spectrometer, and a Ge gamma ray spectrometer to map the lunar surface. This passive instrumentation will have low resolution (tens of kilometers) due to the low signal levels produced by natural radioactivity and the interaction of cosmic rays and the solar wind with the lunar surface. This paper presents the results of a concept definition effort for a neutral particle beam lunar mapper probe. The idea of using particle beam probes to survey asteroids was first proposed by Sagdeev et al., and an ion beam device was fielded on the 1988 Soviet probe to the Mars moon Phobos. During the past five years, significant advances in the technology of neutral particle beams (NPB) have led to a suborbital flight of a neutral hydrogen beam device in the SDIO-sponsored BEAR experiment. An orbital experiment, the Neutral Particle Beam Far Field Optics Experiment (NPB-FOX) is presently in the preliminary design phase. The development of NPB accelerators that are space-operable leads one to consider the utility of these devices for probing the surface of the Moon using gamma ray, X-ray, and optical/UV spectroscopy to locate various elements and compounds. We consider the utility of the NPB-FOX satellite containing a 5-MeV particle beam accelerator as a probe in lunar orbit. Irradiation of the lunar surface by the particle beam will induce secondary and back scattered radiation from the lunar surface to be detected by a sensor that may be co-orbital with or on the particle beam satellite platform, or may be in a separate orbit. The secondary radiation is characteristic of the make-up of the lunar surface. The size of the

  3. The physics of small megavoltage photon beam dosimetry.

    PubMed

    Andreo, Pedro

    2018-02-01

    The increased interest during recent years in the use of small megavoltage photon beams in advanced radiotherapy techniques has led to the development of dosimetry recommendations by different national and international organizations. Their requirement of data suitable for the different clinical options available, regarding treatment units and dosimetry equipment, has generated a considerable amount of research by the scientific community during the last decade. The multiple publications in the field have led not only to the availability of new invaluable data, but have also contributed substantially to an improved understanding of the physics of their dosimetry. This work provides an overview of the most important aspects that govern the physics of small megavoltage photon beam dosimetry. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.

    2016-11-15

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strainmore » gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.« less

  5. Beam shaping as an enabler for new applications

    NASA Astrophysics Data System (ADS)

    Guertler, Yvonne; Kahmann, Max; Havrilla, David

    2017-02-01

    For many years, laser beam shaping has enabled users to achieve optimized process results as well as manage challenging applications. The latest advancements in industrial lasers and processing optics have taken this a step further as users are able to adapt the beam shape to meet specific application requirements in a very flexible way. TRUMPF has developed a wide range of experience in creating beam profiles at the work piece for optimized material processing. This technology is based on the physical model of wave optics and can be used with ultra short pulse lasers as well as multi-kW cw lasers. Basically, the beam shape can be adapted in all three dimensions in space, which allows maximum flexibility. Besides adaption of intensity profile, even multi-spot geometries can be produced. This approach is very cost efficient, because a standard laser source and (in the case of cw lasers) a standard fiber can be used without any special modifications. Based on this innovative beam shaping technology, TRUMPF has developed new and optimized processes. Two of the most recent application developments using these techniques are cutting glass and synthetic sapphire with ultra-short pulse lasers and enhanced brazing of hot dip zinc coated steel for automotive applications. Both developments lead to more efficient and flexible production processes, enabled by laser technology and open the door to new opportunities. They also indicate the potential of beam shaping techniques since they can be applied to both single-mode laser sources (TOP Cleave) and multi-mode laser sources (brazing).

  6. Single-shot coherent diffraction imaging of microbunched relativistic electron beams for free-electron laser applications.

    PubMed

    Marinelli, A; Dunning, M; Weathersby, S; Hemsing, E; Xiang, D; Andonian, G; O'Shea, F; Miao, Jianwei; Hast, C; Rosenzweig, J B

    2013-03-01

    With the advent of coherent x rays provided by the x-ray free-electron laser (FEL), strong interest has been kindled in sophisticated diffraction imaging techniques. In this Letter, we exploit such techniques for the diagnosis of the density distribution of the intense electron beams typically utilized in an x-ray FEL itself. We have implemented this method by analyzing the far-field coherent transition radiation emitted by an inverse-FEL microbunched electron beam. This analysis utilizes an oversampling phase retrieval method on the transition radiation angular spectrum to reconstruct the transverse spatial distribution of the electron beam. This application of diffraction imaging represents a significant advance in electron beam physics, having critical applications to the diagnosis of high-brightness beams, as well as the collective microbunching instabilities afflicting these systems.

  7. Electron lenses for head-on beam-beam compensation in RHIC

    DOE PAGES

    Gu, X.; Fischer, W.; Altinbas, Z.; ...

    2017-02-17

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  8. Electron lenses for head-on beam-beam compensation in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Fischer, W.; Altinbas, Z.

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  9. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    NASA Astrophysics Data System (ADS)

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; Hong, Hawoong; Marks, Laurence D.; Fong, Dillon D.

    2018-03-01

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. The high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO3 oxide perovskites containing elements from both the metalorganic source and a traditional effusion cell.

  10. Beam characteristics of energy-matched flattening filter free beams.

    PubMed

    Paynter, D; Weston, S J; Cosgrove, V P; Evans, J A; Thwaites, D I

    2014-05-01

    Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare "matched" FFF beams to both "unmatched" FFF beams and flattened beams to determine the benefits of matching beams. For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field. The PDDs of the FFF beams showed

  11. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    NASA Astrophysics Data System (ADS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  12. Beam wander of dark hollow, flat-topped and annular beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, H. T.; Çil, C. Z.

    2008-11-01

    Benefiting from the earlier derivations for the Gaussian beam, we formulate beam wander for dark hollow (DH) and flat-topped (FT) beams, also covering the annular Gaussian (AG) beam as a special case. Via graphical illustrations, beam wander variations of these beams are analyzed and compared among themselves and to the fundamental Gaussian beam against changes in propagation length, amplitude factor, source size, wavelength of operation, inner and outer scales of turbulence. These comparisons show that in relation to the fundamental Gaussian beam, DH and FT beams will exhibit less beam wander, particularly at small primary beam source sizes, lower amplitude factors of the secondary beam and higher beam orders. Furthermore, DH and FT beams will continue to preserve this advantageous position all throughout the considered range of wavelengths, inner and outer scales of turbulence. FT beams, in particular, are observed to have the smallest beam wander values among all, up to certain source sizes.

  13. R-process experiments with the Advanced Implantation Detector Array

    NASA Astrophysics Data System (ADS)

    Estrade, Alfredo; Griffin, Chris; Davinson, Tom; Bruno, Carlo; Hall, Oscar; Liu, Zhong; Woods, Phil; Coleman-Smith, Patrick; Labiche, Marc; Lazarus, Ian; Pucknell, Victor; Simpson, John; Harkness-Brennan, Laura; Page, Robert; Kiss, Gabor; Liu, Jiajiang; Matsui, Keishi; Nishimura, Shunji; Phong, Vi; Lorusso, Giuseppe; Montes, Fernando; Nepal, Neerajan; Briken Collaboration; Ribf106 Experiment Team

    2017-09-01

    Decay properties of neutron rich isotopes, such as half-lives and β-delayed neutron emission probabilities, are an important input for astrophysical models of the r-process. A new generation of fragmentation beam facilities has made it possible to access large regions of the nuclear chart that are close to the path of the r-process for some astrophysical models. The Advanced Implantation Detector Array (AIDA) is a segmented active-stopper detector designed for decay experiments with fast ion beams, which was recently commissioned at the Radioactive Ion Beam Factory in RIKEN, Japan. In this presentation we describe the main characteristics of AIDA, and present preliminary results of the first experiments in the region of neutron-rich selenium isotopes and along the N=82 shell closure.

  14. Beam-width spreading of vortex beams in free space

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Li, Jinhong; Duan, Meiling

    2018-01-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.

  15. Electron beam control for barely separated beams

    DOEpatents

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  16. The Status of Normal Conducting RF (NCRF) Guns, a Summary of the ERL2005 Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, D.H.; /SLAC; Lewellen, J.W.

    The 32nd Advanced ICFA Beam Dynamics Workshop on Energy Recovering Linacs (ERL2005) was held at Jefferson Laboratory, March 20 to 23, 2005. A wide range of ERL-related topics were presented and discussed in several working groups with Working Group 1 concentrated upon the physics and technology issues for DC, superconducting RF (SRF) and normal conducting RF (NCRF) guns. This paper summarizes the NCRF gun talks and reviews the status of NCRF gun technology. It begins with the presentations made on the subject of low-frequency, high-duty factor guns most appropriate for ERLs. One such gun at 433MHz was demonstrated at 25%DFmore » in 1992, while the CW and much improved version is currently being constructed at 700MHz for LANL. In addition, the idea of combining the NCRF gun with a SRF linac booster was presented and is described in this paper. There was also a talk on high-field guns typically used for SASE free electron lasers. In particular, the DESY coaxial RF feed design provides rotationally symmetric RF fields and greater flexibility in the placement of the focusing magnetic field. While in the LCLS approach, the symmetric fields are obtained with a dual RF feed and racetrack cell shape. Although these guns cannot be operated at high-duty factor, they do produce the best quality beams. With these limitations in mind, a section with material not presented at the workshop has been included in the paper. This work describes a re-entrant approach which may allow NCRF guns to operate with simultaneously increased RF fields and duty factors. And finally, a novel proposal describing a high-duty factor, two-frequency RF gun using a field emission source instead of a laser driven photocathode was also presented.« less

  17. The status of normal conducting RF (NCRF) guns; a summary of the ERL2005 Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.H. Dowell; J.W. Lewellen; D. Nguyen

    The 32nd Advanced ICFA Beam Dynamics Workshop on Energy Recovering Linacs (ERL2005) was held at Jefferson Laboratory, March 20 to 23, 2005. A wide range of ERL-related topics were presented and discussed in several working groups with Working Group 1 concentrated upon the physics and technology issues for DC, superconducting RF (SRF) and normal conducting RF (NCRF) guns. This paper summarizes the NCRF gun talks and reviews the status of NCRF gun technology. It begins with the presentations made on the subject of low-frequency, high-duty factor guns most appropriate for ERLs. One such gun at 433MHz was demonstrated at 25%DFmore » in 1992, while the CW and much improved version is currently being constructed at 700MHz for LANL. In addition, the idea of combining the NCRF gun with a SRF linac booster was presented and is described in this paper. There was also a talk on high-field guns typically used for SASE free electron lasers. In particular, the DESY coaxial RF feed design provides rotationally symmetric RF fields and greater flexibility in the placement of the focusing magnetic field. While in the LCLS approach, the symmetric fields are obtained with a dual RF feed and racetrack cell shape. Although these guns cannot be operated at high-duty factor, they do produce the best quality beams. With these limitations in mind, a section with material not presented at the workshop has been included in the paper. This work describes a re-entrant approach which may allow NCRF guns to operate with simultaneously increased RF fields and duty factors. And finally, a novel proposal describing a high-duty factor, two-frequency RF gun using a field emission source instead of a laser driven photocathode was also presented.« less

  18. The status of normal conducting RF (NCRF) guns, a summary of the ERL2005 workshop

    NASA Astrophysics Data System (ADS)

    Dowell, David H.; Lewellen, John W.; Nguyen, Dinh; Rimmer, Robert

    2006-02-01

    The 32nd Advanced ICFA Beam Dynamics Workshop on Energy Recovering Linacs (ERL2005) was held at Jefferson Laboratory, March 20-23, 2005. A wide range of ERL-related topics were presented and discussed in several working groups with Working Group 1 concentrating upon the physics and technology issues for DC, superconducting RF (SRF) and normal conducting RF (NCRF) guns. This paper summarizes the NCRF gun talks and reviews the status of NCRF gun technology. It begins with the presentations made on the subject of low-frequency, high-duty factor guns most appropriate for ERLs. One such gun at 433 MHz was demonstrated at 25%DF in 1992, while the CW and much improved version is currently being constructed at 700 MHz for LANL. In addition, the idea of combining the NCRF gun with a SRF linac booster was presented and is described in this paper. There was also a talk on high-field guns typically used for SASE-free electron lasers. In particular, the DESY coaxial RF feed design provides rotationally symmetric RF fields and greater flexibility in the placement of the focusing magnetic field. While in the LCLS approach, the symmetric fields are obtained with a dual RF feed and racetrack cell shape. Although these guns cannot be operated at high-duty factor, they do produce the best quality beams. With these limitations in mind, a section with material not presented at the workshop has been included in the paper. This work describes a re-entrant approach which may allow NCRF guns to operate with simultaneously increased RF fields and duty factors. And finally, a novel proposal describing a high-duty factor, two-frequency RF gun using a field emission source instead of a laser driven photocathode was also presented.

  19. Integration of e-beam direct write in BEOL processes of 28nm SRAM technology node using mix and match

    NASA Astrophysics Data System (ADS)

    Gutsch, Manuela; Choi, Kang-Hoon; Hanisch, Norbert; Hohle, Christoph; Seidel, Robert; Steidel, Katja; Thrun, Xaver; Werner, Thomas

    2014-10-01

    Many efforts were spent in the development of EUV technologies, but from a customer point of view EUV is still behind expectations. In parallel since years maskless lithography is included in the ITRS roadmap wherein multi electron beam direct patterning is considered as an alternative or complementary approach for patterning of advanced technology nodes. The process of multi beam exposures can be emulated by single beam technologies available in the field. While variable shape-beam direct writers are already used for niche applications, the integration capability of e-beam direct write at advanced nodes has not been proven, yet. In this study the e-beam lithography was implemented in the BEoL processes of the 28nm SRAM technology. Integrated 300mm wafers with a 28nm back-end of line (BEoL) stack from GLOBALFOUNDRIES, Dresden, were used for the experiments. For the patterning of the Metal layer a Mix and Match concept based on the sequence litho - etch - litho - etch (LELE) was developed and evaluated wherein several exposure fields were blanked out during the optical exposure. E-beam patterning results of BEoL Metal and Via layers are presented using a 50kV VISTEC SB3050DW variable shaped electron beam direct writer at Fraunhofer IPMS-CNT. Etch results are shown and compared to the POR. In summary we demonstrate the integration capability of EBDW into a productive CMOS process flow at the example of the 28nm SRAM technology node.

  20. Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.

    1997-01-01

    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.

  1. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  2. Characterizing the Performance of the Princeton Advanced Test Stand Ion Source

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.

    2012-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a multicusp RF ion source mounted on a 2 m-long vacuum chamber with numerous ports for diagnostic access. Ar+ beams are extracted from the source plasma with three-electrode (accel-decel) extraction optics. The RF power and extraction voltage (30 - 100 kV) are pulsed to produce 100 μsec duration beams at 0.5 Hz with excellent shot-to-shot repeatability. Diagnostics include Faraday cups, a double-slit emittance scanner, and scintillator imaging. This work reports measurements of beam parameters for a range of beam energies (30 - 50 keV) and currents to characterize the behavior of the ion source and extraction optics. Emittance scanner data is used to calculate the beam trace-space distribution and corresponding transverse emittance. If the plasma density is changing during a beam pulse, time-resolved emittance scanner data has been taken to study the corresponding evolution of the beam trace-space distribution.

  3. Applying CLIPS to control of molecular beam epitaxy processing

    NASA Technical Reports Server (NTRS)

    Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.

    1990-01-01

    A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.

  4. Ion Beam Neutralization Using FEAs and Mirror Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo

    2011-01-01

    Advanced implantation systems used for semiconductor processing require transportation of ion beams which are quasi-parallel and have low energy, such as (11B+,31P+,75As+) with energy in the range Eion = 200-1000 eV. Compensation of ion beam divergence may be obtained through electron injection and confinement in regions of non-uniform magnetic fields. Field emitter arrays with special properties are used as electron sources. The present study shows that electron confinement takes place in regions of gradient magnetic field, such as nearby analyzing, collimator and final energy magnets of the ion beam line. Modeling results have been obtained using Opera3D/Tosca/Scala. In regions of gradient magnetic field, electrons have helical trajectories which are confined like a cloud inside curved "magnetic bottles". An optimal range of positions with respect to the magnet for placing electron sources in gradient magnetic field has been shown to exist.

  5. Beam distribution reconstruction simulation for electron beam probe

    NASA Astrophysics Data System (ADS)

    Feng, Yong-Chun; Mao, Rui-Shi; Li, Peng; Kang, Xin-Cai; Yin, Yan; Liu, Tong; You, Yao-Yao; Chen, Yu-Cong; Zhao, Tie-Cheng; Xu, Zhi-Guo; Wang, Yan-Yu; Yuan, You-Jin

    2017-07-01

    An electron beam probe (EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System (CADS) and High Intensity Heavy Ion Accelerator Facility (HIAF) are given. Finally, a potential system design for an EBP is described.

  6. Cantilever Beam Natural Frequencies in Centrifugal Inertia Field

    NASA Astrophysics Data System (ADS)

    Jivkov, V. S.; Zahariev, E. V.

    2018-03-01

    In the advanced mechanical science the well known fact is that the gravity influences on the natural frequencies and modes even for the vertical structures and pillars. But, the condition that should be fulfilled in order for the gravity to be taken into account is connected with the ration between the gravity value and the geometrical cross section inertia. The gravity is related to the earth acceleration but for moving structures there exist many other acceleration exaggerated forces and such are forces caused by the centrifugal accelerations. Large rotating structures, as wind power generators, chopper wings, large antennas and radars, unfolding space structures and many others are such examples. It is expected, that acceleration based forces influence on the structure modal and frequency properties, which is a subject of the present investigations. In the paper, rotating beams are subject to investigations and modal and frequency analysis is carried out. Analytical dependences for the natural resonances are derived and their dependences on the angular velocity and centrifugal accelerations are derived. Several examples of large rotating beams with different orientations of the rotating shaft are presented. Numerical experiments are conducted. Time histories of the beam tip deflections, that depict the beam oscillations are presented.

  7. Development of Electron Beam Pumped KrF Lasers for Fusion Energy

    DTIC Science & Technology

    2008-01-01

    Direct drive with krypton fluoride (KrF) lasers is an attractive approach to inertial fusion energy (IFE): KrF lasers have outstanding beam spatial...attractive power plant [3]. In view of these advances, several world-wide programs are underway to develop KrF lasers for fusion energy . These include

  8. Fracture Toughness of Advanced Ceramics at Room Temperature

    PubMed Central

    Quinn, George D.; Salem, Jonathan; Bar-on, Isa; Cho, Kyu; Foley, Michael; Fang, Ho

    1992-01-01

    This report presents the results obtained by the five U.S. participating laboratories in the Versailles Advanced Materials and Standards (VAMAS) round-robin for fracture toughness of advanced ceramics. Three test methods were used: indentation fracture, indentation strength, and single-edge pre-cracked beam. Two materials were tested: a gas-pressure sintered silicon nitride and a zirconia toughened alumina. Consistent results were obtained with the latter two test methods. Interpretation of fracture toughness in the zirconia alumina composite was complicated by R-curve and environmentally-assisted crack growth phenomena. PMID:28053447

  9. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, Sergei M.

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electronmore » beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.« less

  10. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldschmidt, G. J.

    1998-10-27

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1].

  11. Beam-energy-spread minimization using cell-timing optimization

    NASA Astrophysics Data System (ADS)

    Rose, C. R.; Ekdahl, C.; Schulze, M.

    2012-04-01

    Beam energy spread, and related beam motion, increase the difficulty in tuning for multipulse radiographic experiments at the dual-axis radiographic hydrodynamic test facility’s axis-II linear induction accelerator (LIA). In this article, we describe an optimization method to reduce the energy spread by adjusting the timing of the cell voltages (both unloaded and loaded), either advancing or retarding, such that the injector voltage and summed cell voltages in the LIA result in a flatter energy profile. We developed a nonlinear optimization routine which accepts as inputs the 74 cell-voltage, injector voltage, and beam current waveforms. It optimizes cell timing per user-selected groups of cells and outputs timing adjustments, one for each of the selected groups. To verify the theory, we acquired and present data for both unloaded and loaded cell-timing optimizations. For the unloaded cells, the preoptimization baseline energy spread was reduced by 34% and 31% for two shots as compared to baseline. For the loaded-cell case, the measured energy spread was reduced by 49% compared to baseline.

  12. Theoretical and Computational Investigation of High-Brightness Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chiping

    Theoretical and computational investigations of adiabatic thermal beams have been carried out in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research and for various applications such as light sources. Most accelerator applications require high-brightness beams. This is true for high-energy accelerators such as linear colliders. It is also true for energy recovery linacs (ERLs) and free electron lasers (FELs) such as x-ray free electron lasers (XFELs). The breakthroughs and highlights in our research in the period from February 1, 2013 to November 30, 2013 were: a) Completion of a preliminary theoretical and computationalmore » study of adiabatic thermal Child-Langmuir flow (Mok, 2013); and b) Presentation of an invited paper entitled ?Adiabatic Thermal Beams in a Periodic Focusing Field? at Space Charge 2013 Workshop, CERN, April 16-19, 2013 (Chen, 2013). In this report, an introductory background for the research project is provided. Basic theory of adiabatic thermal Child-Langmuir flow is reviewed. Results of simulation studies of adiabatic thermal Child-Langmuir flows are discussed.« less

  13. Analysis of activation and shutdown contact dose rate for EAST neutral beam port

    NASA Astrophysics Data System (ADS)

    Chen, Yuqing; Wang, Ji; Zhong, Guoqiang; Li, Jun; Wang, Jinfang; Xie, Yahong; Wu, Bin; Hu, Chundong

    2017-12-01

    For the safe operation and maintenance of neutral beam injector (NBI), specific activity and shutdown contact dose rate of the sample material SS316 are estimated around the experimental advanced superconducting tokamak (EAST) neutral beam port. Firstly, the neutron emission intensity is calculated by TRANSP code while the neutral beam is co-injected to EAST. Secondly, the neutron activation and shutdown contact dose rates for the neutral beam sample materials SS316 are derived by the Monte Carlo code MCNP and the inventory code FISPACT-2007. The simulations indicate that the primary radioactive nuclides of SS316 are 58Co and 54Mn. The peak contact dose rate is 8.52 × 10-6 Sv/h after EAST shutdown one second. That is under the International Thermonuclear Experimental Reactor (ITER) design values 1 × 10-5 Sv/h.

  14. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  15. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    DOE PAGES

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; ...

    2018-03-08

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less

  16. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less

  17. Advanced Computed-Tomography Inspection System

    NASA Technical Reports Server (NTRS)

    Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa

    1993-01-01

    Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.

  18. Oxygen beams for therapy: advanced biological treatment planning and experimental verification

    NASA Astrophysics Data System (ADS)

    Sokol, O.; Scifoni, E.; Tinganelli, W.; Kraft-Weyrather, W.; Wiedemann, J.; Maier, A.; Boscolo, D.; Friedrich, T.; Brons, S.; Durante, M.; Krämer, M.

    2017-10-01

    Nowadays there is a rising interest towards exploiting new therapeutical beams beyond carbon ions and protons. In particular, 16 O ions are being widely discussed due to their increased LET distribution. In this contribution, we report on the first experimental verification of biologically optimized treatment plans, accounting for different biological effects, generated with the TRiP98 planning system with 16 O beams, performed at HIT and GSI. This implies the measurements of 3D profiles of absorbed dose as well as several biological measurements. The latter includes the measurements of relative biological effectiveness along the range of linear energy transfer values from  ≈20 up to  ≈750 keV μ m-1 , oxygen enhancement ratio values and the verification of the kill-painting approach, to overcome hypoxia, with a phantom imitating an unevenly oxygenated target. With the present implementation, our treatment planning system is able to perform a comparative analysis of different ions, according to any given condition of the target. For the particular cases of low target oxygenation, 16 O ions demonstrate a higher peak-to-entrance dose ratio for the same cell killing in the target region compared to 12 C ions. Based on this phenomenon, we performed a short computational analysis to reveal the potential range of treatment plans, where 16 O can benefit over lighter modalities. It emerges that for more hypoxic target regions (partial oxygen pressure of  ≈0.15% or lower) and relatively low doses (≈4 Gy or lower) the choice of 16 O over 12 C or 4 He may be justified.

  19. Production of highly charged ion beams with SECRALa)

    NASA Astrophysics Data System (ADS)

    Sun, L. T.; Zhao, H. W.; Lu, W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Cao, Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Shang, Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe37+, 1 e μA of Xe43+, and 0.16 e μA of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi31+, 22 e μA of Bi41+, and 1.5 e μA of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  20. Intra-beam scattering and its application to ERL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, A.

    Treatment of Coulomb collisions within the beam requires consideration of both large and small angle scattering. Such collisions lead to the Touschek effect and Intrabeam Scattering (IBS). The Touschek effect refers to particle loss as a result of a single collision, where only transfer from the transverse direction into longitudinal plays a role. It is important to consider this effect for ERL design to have an appropriate choice of collimation system. The IBS is a diffusion process which leads to changes of beam distribution but does not necessarily result in a beam loss. Evaluation of IBS in ERLs, where beammore » distribution is non-Gaussian, requires special treatment. Here we describe the IBS and Touschek effects with application to ERLs. In circular accelerators both the Touschek effect and IBS were found important. The generalized formulas for Touschek calculations are available and are already being used in advanced tracking simulations of several ERL-based projects. The IBS (which is diffusion due to multiple Coulomb scattering) is not expected to cause any significant effect on beam distribution in ERLs, unless one considers very long transport of high-brightness beams at low energies. Both large and small-angle Coulomb scattering can contribute to halo formation in future ERLs with high-brightness beams, as follows from simple order-of-magnitude estimates. In this report, a test comparison between 'local' and 'sliced' IBS models within the BET ACOOL code was presented for an illustrative ERL distribution. We also presented accumulated current loss distribution due to Touschek scattering for design parameters of ERL proposed for the eRHIC project, as well as scaling for multi-pass ERLs.« less

  1. Multidimensional electron beam-plasma instabilities in the relativistic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Gremillet, L.; Dieckmann, M. E.

    2010-12-15

    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, themore » basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell-Juettner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.« less

  2. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC.

    PubMed

    Magee, R M; Clary, R; Korepanov, S; Jauregui, F; Allfrey, I; Garate, E; Valentine, T; Smirnov, A

    2016-11-01

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10 7 n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  3. Analysis of bending wave transmission using beam tracing with advanced statistical energy analysis for periodic box-like structures affected by spatial filtering

    NASA Astrophysics Data System (ADS)

    Wilson, D.; Hopkins, C.

    2015-04-01

    For bending wave transmission across periodic box-like arrangements of plates, the effects of spatial filtering can be significant and this needs to be considered in the choice of prediction model. This paper investigates the errors that can occur with Statistical Energy Analysis (SEA) and the potential of using Advanced SEA (ASEA) to improve predictions. The focus is on the low- and mid-frequency range where plates only support local modes with low mode counts and the in situ modal overlap is relatively high. To increase the computational efficiency when using ASEA on large systems, a beam tracing method is introduced which groups together all rays with the same heading into a single beam. Based on a diffuse field on the source plate, numerical experiments are used to determine the angular distribution of incident power on receiver plate edges on linear and cuboid box-like structures. These show that on receiver plates which do not share a boundary with the source plate, the angular distribution on the receiver plate boundaries differs significantly from a diffuse field. SEA and ASEA predictions are assessed through comparison with finite element models. With rain-on-the-roof excitation on the source plate, the results show that compared to SEA, ASEA provides significantly better estimates of the receiver plate energy, but only where there are at least one or two bending modes in each one-third octave band. Whilst ASEA provides better accuracy than SEA, discrepancies still exist which become more apparent when the direct propagation path crosses more than three nominally identical structural junctions.

  4. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.

    PubMed

    Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun

    2011-07-04

    We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.

  5. Challenges and requirements of mask data processing for multi-beam mask writer

    NASA Astrophysics Data System (ADS)

    Choi, Jin; Lee, Dong Hyun; Park, Sinjeung; Lee, SookHyun; Tamamushi, Shuichi; Shin, In Kyun; Jeon, Chan Uk

    2015-07-01

    To overcome the resolution and throughput of current mask writer for advanced lithography technologies, the platform of e-beam writer have been evolved by the developments of hardware and software in writer. Especially, aggressive optical proximity correction (OPC) for unprecedented extension of optical lithography and the needs of low sensitivity resist for high resolution result in the limit of variable shaped beam writer which is widely used for mass production. The multi-beam mask writer is attractive candidate for photomask writing of sub-10nm device because of its high speed and the large degree of freedom which enable high dose and dose modulation for each pixel. However, the higher dose and almost unlimited appetite for dose modulation challenge the mask data processing (MDP) in aspects of extreme data volume and correction method. Here, we discuss the requirements of mask data processing for multi-beam mask writer and presents new challenges of the data format, data flow, and correction method for user and supplier MDP tool.

  6. Networked Airborne Communications Using Adaptive Multi Beam Directional Links

    DTIC Science & Technology

    2016-03-05

    Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach

  7. Spatially varying geometric phase in classically entangled vector beams of light

    NASA Astrophysics Data System (ADS)

    King-Smith, Andrew; Leary, Cody

    We present theoretical results describing a spatially varying geometric (Pancharatnam) phase present in vector modes of light, in which the polarization and transverse spatial mode degrees of freedom exhibit classical entanglement. We propose an experimental setup capable of characterizing this effect, in which a vector mode propagates through a Mach-Zehnder interferometer with a birefringent phase retarder present in one arm. Since the polarization state of a classically entangled light beam exhibits spatial variation across the transverse mode profile, the phase retarder gives rise to a spatially varying geometric phase in the beam propagating through it. When recombined with the reference beam from the other interferometer arm, the presence of the geometric phase is exhibited in the resulting interference pattern. We acknowledge funding from the Research Corporation for Science Advancement by means of a Cottrell College Science Award.

  8. MAESTRO: Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology

    NASA Astrophysics Data System (ADS)

    Barthe, Jean; Hugon, Régis; Nicolai, Jean Philippe

    2007-12-01

    The integrated project MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) under contract with the European Commission in life sciences FP6 (LSHC-CT-2004-503564), concerns innovative research to develop and validate in clinical conditions, advanced methods and equipment needed in cancer treatment for new modalities in high-conformal external radiotherapy using electrons, photons and protons beams of high energy.

  9. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA

  10. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  11. Ion beam neutralization using three-dimensional electron confinement by surface modification of magnetic poles

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo

    2011-07-01

    Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy (11B+, 31P+,75As+, Eion=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.

  12. SPIDER beam dump as diagnostic of the particle beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E.; Consorzio RFX, Corso Stati Uniti 4, Padova 35127

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography andmore » beam emission spectroscopy.« less

  13. SPIDER beam dump as diagnostic of the particle beam

    NASA Astrophysics Data System (ADS)

    Zaupa, M.; Dalla Palma, M.; Sartori, E.; Brombin, M.; Pasqualotto, R.

    2016-11-01

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  14. Studies on Beam Formation in an Atomic Beam Source

    NASA Astrophysics Data System (ADS)

    Nass, A.; Stancari, M.; Steffens, E.

    2009-08-01

    Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC) [2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.

  15. SU-F-T-68: Characterizes of Microdetectors in Electron Beam Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, I; Andersen, A; Akino, Y

    Purpose: Electron beam dosimetry requires high resolution data due to finite range that can be accomplished with small volume detectors. The small-field used in advance technologies in photon beam has created a market for microdetectors, however characteristics are significantly variable in photon beams and relatively unknown in electron beam that is investigated in this study. Methods: Among nearly 2 dozen microdetectors that have been investigated in small fields of photon beam, two popular detectors (microDiamond 60019 (PTW)) and W1 plastic scintillator detector (Standard Imaging)) that are tissue equivalent and have very small sensitive volume are selected. Electron beams from Varianmore » linear accelerators were used to investigate dose linearity dose rate dependence, energy dependence, depth dose and profiles in a reference condition in a water phantom. For W1 that has its own Supermax electrometer point by point measurements were performed. For microDiamond, a PTW-scanning tank was used for both scanning and point dose measurements. Results: W1 detector showed excellent dose linearity (r{sup 2} =1.0) from 5–500 MU either with variation of dose rate or beam energy. Similar findings were also observed for microdiamond with r{sup 2}=1.0. Percent variations in dose/MU for W1 and microDiamond were 0.2–1.1% and 0.4–1.2%, respectively among dose rate and beam energy. This variation was random for microDiamond, whereas it decreased with beam energy and dose rate for W1. The depth dose and profiles were within ±1 mm for both detectors. Both detectors did not show any energy dependence in electron beams. Conclusion: Both microDiamond and W1 detectors provided superior characteristics of beam parameters in electron beam including dose, dose rate linearity and energy independence. Both can be used in electron beam except W1 require point by point measurements and microdiamond requires 1500 MU for initial quenching.« less

  16. Towards an In-Beam Measurement of the Neutron Lifetime to 1 Second

    NASA Astrophysics Data System (ADS)

    Mulholland, Jonathan

    2014-03-01

    A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is an essential parameter in the theory of Big Bang Nucleosynthesis. A new measurement of the neutron lifetime using the in-beam method is planned at the National Institute of Standards and Technology Center for Neutron Research. The systematic effects associated with the in-beam method are markedly different than those found in storage experiments utilizing ultracold neutrons. Experimental improvements, specifically recent advances in the determination of absolute neutron fluence, should permit an overall uncertainty of 1 second on the neutron lifetime. The dependence of the primordial mass fraction on the neutron lifetime, technical improvements of the in-beam technique, and the path toward improving the precision of the new measurement will be discussed.

  17. Applications technology satellites advanced mission study

    NASA Technical Reports Server (NTRS)

    Gould, L. M.

    1972-01-01

    Three spacecraft configurations were designed for operation as a high powered synchronous communications satellite. Each spacecraft includes a 1 kw TWT and a 2 kw Klystron power amplifier feeding an antenna with multiple shaped beams. One of the spacecraft is designed to be boosted by a Thor-Delta launch vehicle and raised to synchronous orbit with electric propulsion. The other two are inserted into a elliptical transfer orbit with an Atlas Centaur and injected into final orbit with an apogee kick motor. Advanced technologies employed in the several configurations include tubes with multiple stage collectors radiating directly to space, multiple-contoured beam antennas, high voltage rollout solar cell arrays with integral power conditioning, electric propulsion for orbit raising and on-station attitude control and station-keeping, and liquid metal slip rings.

  18. HIGH-ENERGY X-RAY PINHOLE CAMERA FOR HIGH-RESOLUTION ELECTRON BEAM SIZE MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B.; Morgan, J.; Lee, S.H.

    The Advanced Photon Source (APS) is developing a multi-bend achromat (MBA) lattice based storage ring as the next major upgrade, featuring a 20-fold reduction in emittance. Combining the reduction of beta functions, the electron beam sizes at bend magnet sources may be reduced to reach 5 – 10 µm for 10% vertical coupling. The x-ray pinhole camera currently used for beam size monitoring will not be adequate for the new task. By increasing the operating photon energy to 120 – 200 keV, the pinhole camera’s resolution is expected to reach below 4 µm. The peak height of the pinhole imagemore » will be used to monitor relative changes of the beam sizes and enable the feedback control of the emittance. We present the simulation and the design of a beam size monitor for the APS storage ring.« less

  19. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each methodmore » are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.« less

  20. Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist

    NASA Astrophysics Data System (ADS)

    Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey

    1999-06-01

    In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.

  1. MIA analysis of FPGA BPMs and beam optics at APS

    NASA Astrophysics Data System (ADS)

    Ji, Da-Heng; Wang, Chun-Xi; Qin, Qing

    2012-11-01

    Model independent analysis, which was developed for high precision and fast beam dynamics analysis, is a promising diagnostic tool for modern accelerators. We implemented a series of methods to analyze the turn-by-turn BPM data. Green's functions corresponding to the local transfer matrix elements R12 or R34 are extracted from BPM data and fitted with the model lattice using least-square fitting. Here, we report experimental results obtained from analyzing the transverse motion of a beam in the storage ring at the Advanced Photon Source. BPM gains and uncoupled optics parameters are successfully determined. Quadrupole strengths are adjusted for fitting but can not be uniquely determined in general due to an insufficient number of BPMs.

  2. Plasma Wakefield Acceleration of an Intense Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wakemore » that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the

  3. Beam transport results on the multi-beam MABE accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, P.D.; Alexander, J.A.; Hasti, D.E.

    1985-10-01

    MABE is a multistage, electron beam linear accelerator. The accelerator has been operated in single beam (60 kA, 7 Mev) and multiple beam configurations. This paper deals with the multiple beam configuration in which typically nine approx. = 25 kA injected beams are transported through three accelerating gaps. Experimental results from the machine are discussed, including problems encountered and proposed solutions to those problems.

  4. Resonant scattering experiments with radioactive nuclear beams - Recent results and future plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teranishi, T.; Sakaguchi, S.; Uesaka, T.

    2013-04-19

    Resonant scattering with low-energy radioactive nuclear beams of E < 5 MeV/u have been studied at CRIB of CNS and at RIPS of RIKEN. As an extension to the present experimental technique, we will install an advanced polarized proton target for resonant scattering experiments. A Monte-Carlo simulation was performed to study the feasibility of future experiments with the polarized target. In the Monte-Carlo simulation, excitation functions and analyzing powers were calculated using a newly developed R-matrix calculation code. A project of a small-scale radioactive beam facility at Kyushu University is also briefly described.

  5. A dose optimization method for electron radiotherapy using randomized aperture beams

    NASA Astrophysics Data System (ADS)

    Engel, Konrad; Gauer, Tobias

    2009-09-01

    The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.

  6. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei

    2016-03-28

    A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less

  7. The ITER Neutral Beam Test Facility towards SPIDER operation

    NASA Astrophysics Data System (ADS)

    Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.

    2017-08-01

    SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.

  8. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders.

  9. Measuring The Neutron Lifetime to One Second Using in Beam Techniques

    NASA Astrophysics Data System (ADS)

    Mulholland, Jonathan; NIST In Beam Lifetime Collaboration

    2013-10-01

    The decay of the free neutron is the simplest nuclear beta decay and is the prototype for charged current semi-leptonic weak interactions. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is an essential parameter in the theory of Big Bang Nucleosynthesis. A new measurement of the neutron lifetime using the in-beam method is planned at the National Institute of Standards and Technology Center for Neutron Research. The systematic effects associated with the in-beam method are markedly different than those found in storage experiments utilizing ultracold neutrons. Experimental improvements, specifically recent advances in the determination of absolute neutron fluence, should permit an overall uncertainty of 1 second on the neutron lifetime. The technical improvements in the in-beam technique, and the path toward improving the precision of the new measurement will be discussed.

  10. Beam masking to reduce cyclic error in beam launcher of interferometer

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Bell, Raymond Mark (Inventor); Dutta, Kalyan (Inventor)

    2005-01-01

    Embodiments of the present invention are directed to reducing cyclic error in the beam launcher of an interferometer. In one embodiment, an interferometry apparatus comprises a reference beam directed along a reference path, and a measurement beam spatially separated from the reference beam and being directed along a measurement path contacting a measurement object. The reference beam and the measurement beam have a single frequency. At least a portion of the reference beam and at least a portion of the measurement beam overlapping along a common path. One or more masks are disposed in the common path or in the reference path and the measurement path to spatially isolate the reference beam and the measurement beam from one another.

  11. Earth to Orbit Beamed Energy Experiment

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.

    2017-01-01

    As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are large area, low mass spacecraft and efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, if approved, then it would be the next step toward that goal.

  12. Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer.

    PubMed

    Maes, Dominic; Saini, Jatinder; Zeng, Jing; Rengan, Ramesh; Wong, Tony; Bowen, Stephen R

    2018-04-01

    Proton pencil beam (PB) dose calculation algorithms have limited accuracy within heterogeneous tissues of lung cancer patients, which may be addressed by modern commercial Monte Carlo (MC) algorithms. We investigated clinical pencil beam scanning (PBS) dose differences between PB and MC-based treatment planning for lung cancer patients. With IRB approval, a comparative dosimetric analysis between RayStation MC and PB dose engines was performed on ten patient plans. PBS gantry plans were generated using single-field optimization technique to maintain target coverage under range and setup uncertainties. Dose differences between PB-optimized (PBopt), MC-recalculated (MCrecalc), and MC-optimized (MCopt) plans were recorded for the following region-of-interest metrics: clinical target volume (CTV) V95, CTV homogeneity index (HI), total lung V20, total lung V RX (relative lung volume receiving prescribed dose or higher), and global maximum dose. The impact of PB-based and MC-based planning on robustness to systematic perturbation of range (±3% density) and setup (±3 mm isotropic) was assessed. Pairwise differences in dose parameters were evaluated through non-parametric Friedman and Wilcoxon sign-rank testing. In this ten-patient sample, CTV V95 decreased significantly from 99-100% for PBopt to 77-94% for MCrecalc and recovered to 99-100% for MCopt (P<10 -5 ). The median CTV HI (D95/D5) decreased from 0.98 for PBopt to 0.91 for MCrecalc and increased to 0.95 for MCopt (P<10 -3 ). CTV D95 robustness to range and setup errors improved under MCopt (ΔD95 =-1%) compared to MCrecalc (ΔD95 =-6%, P=0.006). No changes in lung dosimetry were observed for large volumes receiving low to intermediate doses (e.g., V20), while differences between PB-based and MC-based planning were noted for small volumes receiving high doses (e.g., V RX ). Global maximum patient dose increased from 106% for PBopt to 109% for MCrecalc and 112% for MCopt (P<10 -3 ). MC dosimetry revealed a reduction

  13. Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer

    PubMed Central

    Maes, Dominic; Saini, Jatinder; Zeng, Jing; Rengan, Ramesh; Wong, Tony

    2018-01-01

    Background Proton pencil beam (PB) dose calculation algorithms have limited accuracy within heterogeneous tissues of lung cancer patients, which may be addressed by modern commercial Monte Carlo (MC) algorithms. We investigated clinical pencil beam scanning (PBS) dose differences between PB and MC-based treatment planning for lung cancer patients. Methods With IRB approval, a comparative dosimetric analysis between RayStation MC and PB dose engines was performed on ten patient plans. PBS gantry plans were generated using single-field optimization technique to maintain target coverage under range and setup uncertainties. Dose differences between PB-optimized (PBopt), MC-recalculated (MCrecalc), and MC-optimized (MCopt) plans were recorded for the following region-of-interest metrics: clinical target volume (CTV) V95, CTV homogeneity index (HI), total lung V20, total lung VRX (relative lung volume receiving prescribed dose or higher), and global maximum dose. The impact of PB-based and MC-based planning on robustness to systematic perturbation of range (±3% density) and setup (±3 mm isotropic) was assessed. Pairwise differences in dose parameters were evaluated through non-parametric Friedman and Wilcoxon sign-rank testing. Results In this ten-patient sample, CTV V95 decreased significantly from 99–100% for PBopt to 77–94% for MCrecalc and recovered to 99–100% for MCopt (P<10−5). The median CTV HI (D95/D5) decreased from 0.98 for PBopt to 0.91 for MCrecalc and increased to 0.95 for MCopt (P<10−3). CTV D95 robustness to range and setup errors improved under MCopt (ΔD95 =−1%) compared to MCrecalc (ΔD95 =−6%, P=0.006). No changes in lung dosimetry were observed for large volumes receiving low to intermediate doses (e.g., V20), while differences between PB-based and MC-based planning were noted for small volumes receiving high doses (e.g., VRX). Global maximum patient dose increased from 106% for PBopt to 109% for MCrecalc and 112% for MCopt (P<10−3

  14. Gamma-ray-burst beaming and gravitational-wave observations.

    PubMed

    Chen, Hsin-Yu; Holz, Daniel E

    2013-11-01

    Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.

  15. Recent advances in β-decay spectroscopy at CARIBU

    NASA Astrophysics Data System (ADS)

    Mitchell, A. J.; Copp, P.; Savard, G.; Lister, C. J.; Lane, G. J.; Carpenter, M. P.; Clark, J. A.; Zhu, S.; Ayangeakaa, A. D.; Bottoni, S.; Brown, T. B.; Chowdhury, P.; Chillery, T. W.; David, H. M.; Hartley, D. J.; Heckmaier, E.; Janssens, R. V. F.; Kolos, K.; Kondev, F. G.; Lauritsen, T.; McCutchan, E. A.; Norman, E. B.; Padgett, S.; Scielzo, N. D.; Seweryniak, D.; Smith, M. L.; Wilson, G. L.

    2016-09-01

    β-decay spectroscopy of nuclei far from stability can provide powerful insight into a broad variety of topics in nuclear science, ranging from exotic nuclear structure phenomena, stellar nucleosynthesis processes, and applied topics such as quantifying "decay heat" discrepancies for advanced nuclear fuel cycles. Neutronrich nuclei approaching the drip-line are difficult to access experimentally, leaving many key examples largely under studied. The CARIBU radioactive beam facility at Argonne National Laboratory exploits spontaneous fission of 252Cf in production of such beams. The X-Array and SATURN decay station have been commissioned to perform detailed decay spectroscopy of low-energy CARIBU beams. An extended science campaign was started during 2015; with projects investigating nuclear shape changes, collective octupole vibrations, β-delayed neutron emission, and decay-scheme properties which could explain the reactor antineutrino puzzle. In this article we review the current status of the setup, update on the first results and recent hardware upgrades, and look forward to future possibilities.

  16. Beam-Beam Interaction Simulations with Guinea Pig (LCC-0125)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sramek, C

    2003-11-20

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effectsmore » as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. A study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam cross-sections ({sigma}{sub x}, {sigma}{sub y}, {sigma}{sub z}) and number of particles per bunch (N). Finally, this same study revealed luminosity maxima at large N and small {sigma}{sub y} which may merit further investigation.« less

  17. Dosimetric comparison between proton beam therapy and photon radiation therapy for locally advanced esophageal squamous cell carcinoma.

    PubMed

    Hirano, Yasuhiro; Onozawa, Masakatsu; Hojo, Hidehiro; Motegi, Atsushi; Zenda, Sadatomo; Hotta, Kenji; Moriya, Shunsuke; Tachibana, Hidenobu; Nakamura, Naoki; Kojima, Takashi; Akimoto, Tetsuo

    2018-02-09

    The purpose of this study was to perform a dosimetric comparison between proton beam therapy (PBT) and photon radiation therapy in patients with locally advanced esophageal squamous cell carcinoma (ESCC) who were treated with PBT in our institution. In addition, we evaluated the correlation between toxicities and dosimetric parameters, especially the doses to normal lung or heart tissue, to clarify the clinical advantage of PBT over photon radiation therapy. A total of 37 consecutive patients with Stage III thoracic ESCC who had received PBT with or without concurrent chemotherapy between October 2012 and December 2015 were evaluated in this study. The dose distributions of PBT were compared with those of dummy 3-dimensional conformal radiation therapy (3DCRT) and Intensity Modulated Radiation Therapy (IMRT), focusing especially on the doses to organs at risk, such as normal lung and heart tissue. Of the 37 patients, the data from 27 patients were analyzed. Among these 27 patients, four patients (15%) developed grade 2 pericardial effusion as a late toxicity. None of the patients developed grade 3 or worse acute or late pulmonary and cardiac toxicities. When the dosimetric parameters between PBT and planned 3DCRT were compared, all the PBT domestic variables for the lung dose except for lung V10 GyE and V15 GyE were significantly lower than those for the dummy 3DCRT plans, and the PBT domestic variables for the heart dose were also significantly lower than those for the dummy 3DCRT plans. When the PBT and IMRT plans were compared, all the PBT domestic variables for the doses to the lung and heart were significantly lower than those for the dummy IMRT plans. Regarding the correlation between the grades of toxicities and the dosimetric parameters, no significant correlation was seen between the occurrence of grade 2 pericardial effusion and the dose to the heart. When the dosimetric parameters of the dose distributions for the treatment of patients with locally

  18. Analytical N beam position monitor method

    NASA Astrophysics Data System (ADS)

    Wegscheider, A.; Langner, A.; Tomás, R.; Franchi, A.

    2017-11-01

    Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β*-leveling on luminosity will require many operational optics. A fast measurement of the β -function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs). A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.

  19. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    NASA Astrophysics Data System (ADS)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  20. A large capacity time division multiplexed (TDM) laser beam combining technique enabled by nanosecond speed KTN deflector

    NASA Astrophysics Data System (ADS)

    Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.

    2017-08-01

    In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.

  1. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical

  2. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    NASA Astrophysics Data System (ADS)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  3. Study of Ion Beam Forming Process in Electric Thruster Using 3D FEM Simulation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Jin, Xiaolin; Hu, Quan; Li, Bin; Yang, Zhonghai

    2015-11-01

    There are two algorithms to simulate the process of ion beam forming in electric thruster. The one is electrostatic steady state algorithm. Firstly, an assumptive surface, which is enough far from the accelerator grids, launches the ion beam. Then the current density is calculated by theory formula. Secondly these particles are advanced one by one according to the equations of the motions of ions until they are out of the computational region. Thirdly, the electrostatic potential is recalculated and updated by solving Poisson Equation. At the end, the convergence is tested to determine whether the calculation should continue. The entire process will be repeated until the convergence is reached. Another one is time-depended PIC algorithm. In a global time step, we assumed that some new particles would be produced in the simulation domain and its distribution of position and velocity were certain. All of the particles that are still in the system will be advanced every local time steps. Typically, we set the local time step low enough so that the particle needs to be advanced about five times to move the distance of the edge of the element in which the particle is located.

  4. Advances in Radiotherapy Management of Esophageal Cancer.

    PubMed

    Verma, Vivek; Moreno, Amy C; Lin, Steven H

    2016-10-21

    Radiation therapy (RT) as part of multidisciplinary oncologic care has been marked by profound advancements over the past decades. As part of multimodality therapy for esophageal cancer (EC), a prime goal of RT is to minimize not only treatment toxicities, but also postoperative complications and hospitalizations. Herein, discussion commences with the historical approaches to treating EC, including seminal trials supporting multimodality therapy. Subsequently, the impact of RT techniques, including three-dimensional conformal RT, intensity-modulated RT, and proton beam therapy, is examined through available data. We further discuss existing data and the potential for further development in the future, with an appraisal of the future outlook of technological advancements of RT for EC.

  5. Advances in Radiotherapy Management of Esophageal Cancer

    PubMed Central

    Verma, Vivek; Moreno, Amy C.; Lin, Steven H.

    2016-01-01

    Radiation therapy (RT) as part of multidisciplinary oncologic care has been marked by profound advancements over the past decades. As part of multimodality therapy for esophageal cancer (EC), a prime goal of RT is to minimize not only treatment toxicities, but also postoperative complications and hospitalizations. Herein, discussion commences with the historical approaches to treating EC, including seminal trials supporting multimodality therapy. Subsequently, the impact of RT techniques, including three-dimensional conformal RT, intensity-modulated RT, and proton beam therapy, is examined through available data. We further discuss existing data and the potential for further development in the future, with an appraisal of the future outlook of technological advancements of RT for EC. PMID:27775643

  6. Space communication link propagation data for selected cities within the multiple beam and steerable antenna coverage areas of the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1988-01-01

    Rain attenuation propagation data for 68 cities within the coverage area of the multiple beam and steerable antennas of the Advanced Communications Technology Satellite (ACTS) are presented. These data provide the necessary data base for purposes of communication link power budgeting and rain attenuation mitigation controller design. These propagation parameters are derived by applying the ACTS Rain Attenuation Prediction Model to these 68 locations. The propagation parameters enumerated in tabular form for each location are as follows: (1) physical description of the link and location (e.g., latitude, longitude, antenna elevation angle, etc.), link availability versus attenuation margin (also in graphical form), fading time across fade depths of 3, 5, 8, and 15 dB versus fade duration, and required fade control response time for controller availabilities of 99.999, 99.99, 99.9, and 99 percent versus sub-threshold attenuation levels. The data for these specific locations can be taken to be representative of regions near these locations.

  7. Golden beam data for proton pencil-beam scanning.

    PubMed

    Clasie, Benjamin; Depauw, Nicolas; Fransen, Maurice; Gomà, Carles; Panahandeh, Hamid Reza; Seco, Joao; Flanz, Jacob B; Kooy, Hanne M

    2012-03-07

    Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a priori by their fundamental interactions in a medium. This a priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a 'Golden' beam data set. The Golden beam data set quantifies the pristine Bragg peak depth-dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE) mm² Gp⁻¹, where Gp equals 10⁹ (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used these Golden beam data on our PBS delivery systems and demonstrated that they yield absolute dosimetry well within clinical tolerance.

  8. Ion beam development for the needs of the JYFL nuclear physics programme.

    PubMed

    Koivisto, H; Suominen, P; Ropponen, T; Ropponen, J; Koponen, T; Savonen, M; Toivanen, V; Wu, X; Machicoane, G; Stetson, J; Zavodszky, P; Doleans, M; Spädtke, P; Vondrasek, R; Tarvainen, O

    2008-02-01

    The increased requirements towards the use of higher ion beam intensities motivated us to initiate the project to improve the overall transmission of the K130 cyclotron facility. With the facility the transport efficiency decreases rapidly as a function of total beam intensity extracted from the JYFL ECR ion sources. According to statistics, the total transmission efficiency is of the order of 10% for low beam intensities (I(total)< or =0.7 mA) and only about 2% for high beam intensities (I(total)>1.5 mA). Requirements towards the use of new metal ion beams for the nuclear physics experiments have also increased. The miniature oven used for the production of metal ion beams at the JYFL is not able to reach the temperature needed for the requested metal ion beams. In order to fulfill these requirements intensive development work has been performed. An inductively and a resistively heated oven has successfully been developed and both are capable of reaching temperatures of about 2000 degrees C. In addition, sputtering technique has been tested. GEANT4 simulations have been started in order to better understand the processes involved with the bremsstrahlung, which gives an extra heat load to cryostat in the case of superconducting ECR ion source. Parallel with this work, a new advanced ECR heating simulation program has been developed. In this article we present the latest results of the above-mentioned projects.

  9. Ultrafast two-dimensional lithium beam emission spectroscopy diagnostic on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zoletnik, S.; Hu, G. H.; Tál, B.; Dunai, D.; Anda, G.; Asztalos, O.; Pokol, G. I.; Kálvin, S.; Németh, J.; Krizsanóczi, T.

    2018-06-01

    A diagnostic instrument is described for the Experimental Advanced Superconducting Tokamak (EAST) for the measurement of the edge plasma electron density profile and plasma turbulence properties. An accelerated neutral lithium beam is injected into the tokamak and the Doppler shifted 670.8 nm light emission of the Li2p-2s transition is detected. A novel compact setup is used, where the beam injection and observation take place from the same equatorial diagnostic port and radial-poloidal resolution is achieved with microsecond time resolution. The observation direction is optimized in order to achieve a sufficient Doppler shift of the beam light to be able to separate from the strong edge lithium line emission on this lithium coated device. A 250 kHz beam chopping technique is also demonstrated for the removal of background light. First results show the capability of measuring turbulence and its poloidal flow velocity in the scrape-off layer and edge region and the resolution of details of transient phenomena like edge localized modes with few microsecond time resolution.

  10. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K.; Okuda, S.; Hatayama, A.

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  11. Making Advanced Scientific Algorithms and Big Scientific Data Management More Accessible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatakrishnan, S. V.; Mohan, K. Aditya; Beattie, Keith

    2016-02-14

    Synchrotrons such as the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory are known as user facilities. They are sources of extremely bright X-ray beams, and scientists come from all over the world to perform experiments that require these beams. As the complexity of experiments has increased, and the size and rates of data sets has exploded, managing, analyzing and presenting the data collected at synchrotrons has been an increasing challenge. The ALS has partnered with high performance computing, fast networking, and applied mathematics groups to create a"super-facility", giving users simultaneous access to the experimental, computational, and algorithmic resourcesmore » to overcome this challenge. This combination forms an efficient closed loop, where data despite its high rate and volume is transferred and processed, in many cases immediately and automatically, on appropriate compute resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beam-time. In this paper, We will present work done on advanced tomographic reconstruction algorithms to support users of the 3D micron-scale imaging instrument (Beamline 8.3.2, hard X-ray micro-tomography).« less

  12. Helium Ion Beam Microscopy for Copper Grain Identification in BEOL Structures

    NASA Astrophysics Data System (ADS)

    van den Boom, Ruud J. J.; Parvaneh, Hamed; Voci, Dave; Huynh, Chuong; Stern, Lewis; Dunn, Kathleen A.; Lifshin, Eric

    2009-09-01

    Grain size determination in advanced metallization structures requires a technique with resolution ˜2 nm, with a high signal-to-noise ratio and high orientation-dependant contrast for unambiguous identification of grain boundaries. Ideally, such a technique would also be capable of high-throughput and rapid time-to-knowledge. The Helium Ion Microscope (HIM) offers one possibility for achieving these aims in a single platform. This article compares the performance of the HIM with Focused Ion Beam, Scanning Electron and Transmission Electron Microscopes, in terms of achievable image resolution and contrast, using plan-view and cross-sectional imaging of electroplated samples. Although the HIM is capable of sub-nanometer beam diameter, the low signal-to-noise ratio in the images necessitates signal averaging, which degrades the measured image resolution to 6-8 nm. Strategies for improving S/N are discussed in light of the trade-off between beam current and probe size, accelerating voltage, and dwell time.

  13. Sci-Thur AM: YIS – 04: Stopping power-to-Cherenkov power ratios and beam quality specification for clinical Cherenkov emission dosimetry of electrons: beam-specific effects and experimental validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlateva, Yana; Seuntjens, Jan; El Naqa, Issam

    Purpose: To advance towards clinical Cherenkov emission (CE)-based dosimetry by investigating beam-specific effects on Monte Carlo-calculated electron-beam stopping power-to-CE power ratios (SCRs), addressing electron beam quality specification in terms of CE, and validating simulations with measurements. Methods: The EGSnrc user code SPRRZnrc, used to calculate Spencer-Attix stopping-power ratios, was modified to instead calculate SCRs. SCRs were calculated for 6- to 22-MeV clinical electron beams from Varian TrueBeam, Clinac 21EX, and Clinac 2100C/D accelerators. Experiments were performed with a 20-MeV electron beam from a Varian TrueBeam accelerator, using a diffraction grating spectrometer with optical fiber input and a cooled back-illuminated CCD.more » A fluorophore was dissolved in the water to remove CE signal anisotropy. Results: It was found that angular spread of the incident beam has little effect on the SCR (≤ 0.3% at d{sub max}), while both the electron spectrum and photon contamination increase the SCR at shallow depths and decrease it at large depths. A universal data fit of R{sub 50} in terms of C{sub 50} (50% CE depth) revealed a strong linear dependence (R{sup 2} > 0.9999). The SCR was fit with a Burns-type equation (R{sup 2} = 0.9974, NRMSD = 0.5%). Below-threshold incident radiation was found to have minimal effect on beam quality specification (< 0.1%). Experiments and simulations were in good agreement. Conclusions: Our findings confirm the feasibility of the proposed CE dosimetry method, contingent on computation of SCRs from additional accelerators and on further experimental validation. This work constitutes an important step towards clinical high-resolution out-of-beam CE dosimetry.« less

  14. Beacon Beams for Deep Turbulence High Energy Laser Beam Directors

    DTIC Science & Technology

    2012-11-02

    variance and nC is the atmospheric refractive index structure constant. The effect of turbulence on the focused beacon beam on target, TR...complete phase conjugation of the beacon beam is accomplished by employing Brillouin enhanced optical four wave mixing. A beacon beam formed by...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6790--12-9445 Beacon Beams for Deep Turbulence High Energy Laser Beam Directors P

  15. Beam splitter and method for generating equal optical path length beams

    DOEpatents

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  16. Characterisation of flattening filter free (FFF) beam properties for initial beam set-up and routine QA, independent of flattened beams

    NASA Astrophysics Data System (ADS)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P.; Thwaites, D. I.

    2018-01-01

    Flattening filter free (FFF) beams have reached widespread use for clinical treatment deliveries. The usual methods for FFF beam characterisation for their quality assurance (QA) require the use of associated conventional flattened beams (cFF). Methods for QA of FFF without the need to use associated cFF beams are presented and evaluated against current methods for both FFF and cFF beams. Inflection point normalisation is evaluated against conventional methods for the determination of field size and penumbra for field sizes from 3 cm  ×  3 cm to 40 cm  ×  40cm at depths from dmax to 20 cm in water for matched and unmatched FFF beams and for cFF beams. A method for measuring symmetry in the cross plane direction is suggested and evaluated as FFF beams are insensitive to symmetry changes in this direction. Methods for characterising beam energy are evaluated and the impact of beam energy on profile shape compared to that of cFF beams. In-plane symmetry can be measured, as can cFF beams, using observed changes in profile, whereas cross-plane symmetry can be measured by acquiring profiles at collimator angles 0 and 180. Beam energy and ‘unflatness’ can be measured as with cFF beams from observed shifts in profile with changing beam energy. Normalising the inflection points of FFF beams to 55% results in an equivalent penumbra and field size measurement within 0.5 mm of conventional methods with the exception of 40 cm  ×  40 cm fields at a depth of 20 cm. New proposed methods are presented that make it possible to independently carry out set up and QA measurements on beam energy, flatness, symmetry and field size of an FFF beam without the need to reference to an equivalent flattened beam of the same energy. The methods proposed can also be used to carry out this QA for flattened beams, resulting in universal definitions and methods for MV beams. This is presented for beams produced by an Elekta linear accelerator, but is

  17. Beam position monitor for energy recovered linac beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Thomas; Evtushenko, Pavel

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  18. Non-mechanical beam control for entry, descent and landing laser radar (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stockley, Jay E.; Kluttz, Kelly; Hosting, Lance; Serati, Steve; Bradley, Cullen P.; McManamon, Paul F.; Amzajerdian, Farzin

    2017-05-01

    Laser radar for entry, descent, and landing (EDL) applications as well as the space docking problem could benefit from a low size, weight, and power (SWaP) beam control system. Moreover, an inertia free approach employing non-mechanical beam control is also attractive for laser radar that is intended to be employed aboard space platforms. We are investigating a non-mechanical beam steering (NMBS) sub-system based on liquid crystal polarization grating (LCPG) technology with emphasis placed on improved throughput and significant weight reduction by combining components and drastically reducing substrate thicknesses. In addition to the advantages of non-mechanical, gimbal free beam control, and greatly improved SWaP, our approach also enables wide area scanning using a scalable architecture. An extraterrestrial application entails additional environmental constraints, consequently an environmental test plan tailored to an EDL mission will also be discussed. In addition, we will present advances in continuous fine steering technology which would complement the coarse steering LCPG technology. A low-SWaP, non-mechanical beam control system could be used in many laser radar remote sensing applications including meteorological studies and agricultural or environmental surveys in addition to the entry, descent, and landing application.

  19. Beam imaging sensor

    DOEpatents

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  20. Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication.

    PubMed

    Yan, Xu; Guo, Lixin; Cheng, Mingjian; Li, Jiangting

    2018-05-14

    Orbital angular momentum (OAM) mode crosstalk induced by atmospheric turbulence is a challenging phenomenon commonly occurring in OAM-based free-space optical (FSO) communication. Recent advances have facilitated new practicable methods using abruptly autofocusing light beams for weakening the turbulence effect on the FSO link. In this work, we show that a circular phase-locked Airy vortex beam array (AVBA) with sufficient elements has the inherent ability to form an abruptly autofocusing light beam carrying OAM, and its focusing properties can be controlled on demand by adjusting the topological charge values and locations of these vortices embedded in the array elements. The performance of a tailored Airy vortex beam array (TAVBA) through atmospheric turbulence is numerically studied. In a comparison with the ring Airy vortex beam (RAVB), the results indicate that TAVBA can be a superior light source for effectively reducing the intermodal crosstalk and vortex splitting, thus leading to improvement in the FSO system performance.

  1. CυBE: Coherent υ Beam Educator

    NASA Astrophysics Data System (ADS)

    Sureshkumar, Vivian Amos; Richardson, M.

    2017-03-01

    Holography has advanced rapidly over the years due to technical melioration in the field of optics. Three-dimensional imaging has gained importance to upgrade the existing imaging and display system. Holography has become one of the branches of optics gaining significant importance with a vast number of technical and industrial applications. When we address holography the first thing that comes to mind is projecting a three dimensional object on thin air. The word holography has always been confused between peppers ghost effect. The famous English phrase "A picture is worth a thousand words", means a complex idea can be conveyed by a single picture. The basic principle of holography sounds complex with all its technical terms. This paper aims to explain the concept of the CυBE: Coherent υ Beam Educator that contains a transmission hologram illuminated with a laser diode. This paper summarizes the construction details of the CυBE and the optical setup to record the transmission hologram. It also briefs the circuit connections for the laser diode that's works with an aid of a push button. When viewer presses the push button the original scene is reconstructed. It provides details regarding the angle of reference beam at recording and how the reference beam is compensated at reconstruction. Also this paper highlights how the magnification of the recorded image is affected with respect to the path length of the laser diode inside the box during reconstruction of the recorded hologram.

  2. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    PubMed

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  3. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    PubMed Central

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-01-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500

  4. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    NASA Astrophysics Data System (ADS)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  5. Advanced electron microscopy characterization of nanomaterials for catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dong

    Transmission electron microscopy (TEM) has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high spatial resolution of 0.05 nm, a high energy-resolution of 7 meV. In addition, in situ TEM can help researcher to image the process happened within 1 ms. This paper reviews the recent technical approaches of applying advanced TEM characterization on nanomaterials for catalysis. The text is organized according to the demanded information of nanocrystals from the perspective of application: for example, size, composition, phase, strain, and morphology. Themore » electron beam induced effect and in situ TEM are also introduced. As a result, I hope this review can help the scientists in related fields to take advantage of advanced TEM to their own researches.« less

  6. Advanced electron microscopy characterization of nanomaterials for catalysis

    DOE PAGES

    Su, Dong

    2017-04-01

    Transmission electron microscopy (TEM) has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high spatial resolution of 0.05 nm, a high energy-resolution of 7 meV. In addition, in situ TEM can help researcher to image the process happened within 1 ms. This paper reviews the recent technical approaches of applying advanced TEM characterization on nanomaterials for catalysis. The text is organized according to the demanded information of nanocrystals from the perspective of application: for example, size, composition, phase, strain, and morphology. Themore » electron beam induced effect and in situ TEM are also introduced. As a result, I hope this review can help the scientists in related fields to take advantage of advanced TEM to their own researches.« less

  7. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    NASA Astrophysics Data System (ADS)

    Petrenko, A. V.; Valishev, A. A.; Lebedev, V. A.

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  8. A study on the suitability of the PTW microDiamond detector for kilovoltage x-ray beam dosimetry.

    PubMed

    Damodar, Joshita; Odgers, David; Pope, Dane; Hill, Robin

    2018-05-01

    Kilovoltage x-ray beams are widely used in treating skin cancers and in biological irradiators. In this work, we have evaluated four dosimeters (ionization chambers and solid state detectors) in their suitability for relative dosimetry of kilovoltage x-ray beams in the energy range of 50 - 280kVp. The solid state detectors, which have not been investigated with low energy x-rays, were the PTW 60019 microDiamond synthetic diamond detector and the PTW 60012 diode. The two ionization chambers used were the PTW Advanced Markus parallel plate chamber and the PTW PinPoint small volume chamber. For each of the dosimeters, percentage depth doses were measured in water over the full range of x-ray beams and for field sizes ranging from 2cm diameter to 12 × 12cm. In addition, depth doses were measured for a narrow aperture (7mm diameter) using the PTW microDiamond detector. For comparison, the measured data was compared with Monte Carlo calculated doses using the EGSnrc Monte Carlo package. The depth dose results indicate that the Advanced Markus parallel plate and PinPoint ionization chambers were suitable for depth dose measurements in the beam quality range with an uncertainty of less than 3%, including in the regions closer to the surface of the water as compared with Monte Carlo depth dose data for all six energy beams. The response of the PTW Diode E detector was accurate to within 4% for all field sizes in the energy range of 50-125kVp but showed larger variations for higher energies of up to 12% with the 12 × 12cm field size. In comparison, the microDiamond detector had good agreement over all energies for both smaller and larger field sizes generally within 1% as compared to the Advanced Markus chamber field and Monte Carlo calculations. The only exceptions were in measuring the dose at the surface of the water phantom where larger differences were found. For the 7mm diameter field, the agreement between the microDiamond detector and Monte Carlo calculations was

  9. Effect of turbulence on the beam quality of apertured partially coherent beams.

    PubMed

    Ji, Xiaoling; Ji, Guangming

    2008-06-01

    The effects of turbulence on the beam quality of apertured partially coherent beams have been studied both analytically and numerically. Taking the Gaussian Schell-model (GSM) beam as a typical example of partially coherent beams, closed-form expressions for the average intensity, mean-squared beam width, power in the bucket, beta parameter, and Strehl ratio of apertured partially coherent beams propagating through atmospheric turbulence are derived. It is shown that the smaller the beam truncation parameter is, the less affected by turbulence the apertured partially coherent beams are. Furthermore, the apertured partially coherent beams are less sensitive to the effects of turbulence than unapertured ones. The main results are interpreted physically.

  10. Comprehensive approach to fast ion measurements in the beam-driven FRC

    NASA Astrophysics Data System (ADS)

    Magee, Richard; Smirnov, Artem; Onofri, Marco; Dettrick, Sean; Korepanov, Sergey; Knapp, Kurt; the TAE Team

    2015-11-01

    The C-2U experiment combines tangential neutral beam injection, edge biasing, and advanced recycling control to explore the sustainment of field-reversed configuration (FRC) plasmas. To study fast ion confinement in such advanced, beam-driven FRCs, a synergetic technique was developed that relies on the measurements of the DD fusion reaction products and the hybrid code Q2D, which treats the plasma as a fluid and the fast ions kinetically. Data from calibrated neutron and proton detectors are used in a complementary fashion to constrain the simulations: neutron detectors measure the volume integrated fusion rate to constrain the total number of fast ions, while proton detectors with multiple lines of sight through the plasma constrain the axial profile of fast ions. One application of this technique is the diagnosis of fast ion energy transfer and pitch angle scattering. A parametric numerical study was conducted, in which additional ad hoc loss and scattering terms of varying strengths were introduced in the code and constrained with measurement. Initial results indicate that the energy transfer is predominantly classical, while, in some cases, non-classical pitch angle scattering can be observed.

  11. Elegant Hermite-Airy beams

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Zhang, Lijun; Ru, Guoyun

    2015-09-01

    As Ai(x)Ai(-x) can be approximated by \\text{exp}≤ft(-{{x}2}/2\\right) , a kind of elegant Hermite-Airy (EHA) beam that is similar to the elegant Hermite-Gaussian (EHG) beam is introduced in this paper. Analytical expression of the EHA beams passing through an ABCD paraxial optical system is derived. By using the method of numerical fitting, the approximate expressions of 02> , 04> , <\\Thetaj2> , <\\Thetaj4> , and 02\\Thetaj2> for an EHA beam are presented, respectively. When the transverse mode number is larger than 2, 02> , 04> , <\\Thetaj2> , <\\Thetaj4> , and 02\\Thetaj2> of an EHA beam are all larger than those of the EHG beam. Based on the higher-order intensity moments, one can calculate the beam propagation factor, the beam half width, and the kurtosis parameter of the EHA beam passing through an ABCD paraxial optical system. As a numerical example, the propagation characteristics of the EHA beam are demonstrated in free space. Moreover, the propagation properties of the EHA beam are compared with those of the corresponding EHG beam. The evolutionary process of the EHA beam is far slower than that of the corresponding EHG beam. The research denotes that the EHA beams can be used to describe specially distributed optical beams that can not be characterized by the existing EHG beam model. The EHA beam model enriches and replenishes the existing beam model.

  12. Recent advance to 3 × 10(-5) rad near diffraction-limited beam divergence of dye laser with transverse-discharge flash-lamp pumping.

    PubMed

    Trusov, K K

    1994-02-20

    A new experimental setup of a Rhodamine 6G dye laser with a transverse-discharge flash-lamp-pumping system is presented. It differs from a previous setup [Sov. J. Quantum Electron. 16, 468-471 (1989)] in that it has a larger laser beam aperture (32 mm) and higher pumping energy (1 kJ), which made it possible to test the scalability and reach near diffraction-limited laser beam divergence of 3 × 10(-5) rad FWHM at beam energy 1.4 J. The effect of spectral dispersion in the active medium and of other optical elements on the beam divergence is also discussed.

  13. A concept for canceling the leakage field inside the stored beam chamber of a septum magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abliz, M.; Jaski, M.; Xiao, A.

    Here, the Advanced Photon Source is in the process of upgrading its storage ring from a double-bend to a multi-bend lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U to keep a constant beam current and to enable a small dynamic aperture. A novel concept that cancels out the effect of leakage field inside the stored beam chamber was introduced in the design of the septum magnet. As a result, the horizontal deflecting angle of the stored beam was reduced to below 1 µrad with a 2 mm septum thickness andmore » 1.06 T normal injection field. The concept helped to minimize the integrated skew quadrupole field and normal sextupole fields inside stored beam chamber as well.« less

  14. Online compensation for target motion with scanned particle beams: simulation environment.

    PubMed

    Li, Qiang; Groezinger, Sven Oliver; Haberer, Thomas; Rietzel, Eike; Kraft, Gerhard

    2004-07-21

    Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.

  15. A concept for canceling the leakage field inside the stored beam chamber of a septum magnet

    DOE PAGES

    Abliz, M.; Jaski, M.; Xiao, A.; ...

    2017-12-20

    Here, the Advanced Photon Source is in the process of upgrading its storage ring from a double-bend to a multi-bend lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U to keep a constant beam current and to enable a small dynamic aperture. A novel concept that cancels out the effect of leakage field inside the stored beam chamber was introduced in the design of the septum magnet. As a result, the horizontal deflecting angle of the stored beam was reduced to below 1 µrad with a 2 mm septum thickness andmore » 1.06 T normal injection field. The concept helped to minimize the integrated skew quadrupole field and normal sextupole fields inside stored beam chamber as well.« less

  16. A Green's function method for heavy ion beam transport

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.

    1995-01-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.

  17. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOEpatents

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  18. Intra-Beam and Touschek Scattering Computations for Beam with Non-Gaussian Longitudinal Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, A.; Borland, M.

    Both intra-beamscattering (IBS) and the Touschek effect become prominent formulti-bend-achromat- (MBA-) based ultra-low-emittance storage rings. To mitigate the transverse emittance degradation and obtain a reasonably long beam lifetime, a higher harmonic rf cavity (HHC) is often proposed to lengthen the bunch. The use of such a cavity results in a non-gaussian longitudinal distribution. However, common methods for computing IBS and Touschek scattering assume Gaussian distributions. Modifications have been made to several simulation codes that are part of the elegant [1] toolkit to allow these computations for arbitrary longitudinal distributions. After describing thesemodifications, we review the results of detailed simulations formore » the proposed hybrid seven-bend-achromat (H7BA) upgrade lattice [2] for the Advanced Photon Source.« less

  19. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the

  20. Improved design of proton source and low energy beam transport line for European Spallation Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). Themore » design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.« less

  1. High Harmonic Fast Wave Damping on an Ion Beam: NSTX and DIII-D Regimes Compared

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Choi, C. C.; Petty, C. C.; Porkolab, M.; Wilson, J. R.; Murakami, M.; Harvey, R. W.

    2004-11-01

    Both NSTX and DIII-D use the combination of fast Alfven waves (FW) and neutral beam injection (NBI) for central electron heating and current drive. Damping of the fast wave on the beam ions at moderate to high harmonics (4th--20th) of the beam ion cyclotron frequency represents a loss process. In DIII-D current drive experiments at low density in which 4th and 8th harmonics were compared, damping at the 8th harmonic damping was much weaker than at the 4th [1]. However, recent simulations have predicted that in higher density and higher beam power regimes (of interest to the Advanced Tokamak program) the beam ion absorption will transition to the unmagnetized ion regime, where the damping is significant and essentially independent of harmonic number. In the present work, the transition from magnetized to unmagnetized ion regimes for the NSTX and DIII-D HHFW experiments is studied theoretically, with a combination of simple semi-analytic models and numerical models. \\vspace0.25 em [1] C.C. Petty, et al., Plasma Phys. and Contr. Fusion 43, 1747 (2001).

  2. Summary report of working group 5: Beam sources, monitoring and control

    NASA Astrophysics Data System (ADS)

    Conde, Manoel; Zgadzaj, Rafal

    2017-03-01

    This paper summarizes the topics presented in Working Group 5 at the 17th Advanced Accelerator Concepts Workshop, which was held from 31 July to 5 August 2016 at the Gaylord Hotel and Conference Center, National Harbor, MD, USA. The presentations included a variety of topics covering cathode and RF gun design, new user facilities, beam phase space manipulation, and a range of novel diagnostic techniques.

  3. Interplanetary particle beams

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1990-01-01

    This paper reviews observations of interplanetary particle beams of the kind that frequently accompany a solar flare. It is shown that the most frequently observed beams are beams of electrons which are associated with radio bursts of type III, but occasionally with flares and X-ray bursts. Although the main features of these beams and their associated plasma waves and radio bursts are known, uncertainties remain in terms of the correlation between electron beams and filamentary structures, the relative importance of the quasi-linear and the nonlinear wave emissions as the dominant process, and the mechanism of conversion of some of the Langmuir wave energy into radio emissions. Other particle beams discussed are those composed of protons, neutrons, He ions, or heavy ions. While most of these beams originate from sun flares, the source of some of particle beams may be the earth, Jupiter, or other planets as well as comets.

  4. Locating and targeting moving tumors with radiation beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieterich, Sonja; Cleary, Kevin; D'Souza, Warren

    2008-12-15

    The current climate of rapid technological evolution is reflected in newer and better methods to modulate and direct radiation beams for cancer therapy. This Vision 20/20 paper focuses on part of this evolution, locating and targeting moving tumors. The two processes are somewhat independent and in principle different implementations of the locating and targeting processes can be interchanged. Advanced localization and targeting methods have an impact on treatment planning and also present new challenges for quality assurance (QA), that of verifying real-time delivery. Some methods to locate and target moving tumors with radiation beams are currently FDA approved for clinicalmore » use--and this availability and implementation will increase with time. Extensions of current capabilities will be the integration of higher order dimensionality, such as rotation and deformation in addition to translation, into the estimate of the patient pose and real-time reoptimization and adaption of delivery to the dynamically changing anatomy of cancer patients.« less

  5. A concept for canceling the leakage field inside the stored beam chamber of a septum magnet

    NASA Astrophysics Data System (ADS)

    Abliz, M.; Jaski, M.; Xiao, A.; Jain, A.; Wienands, U.; Cease, H.; Borland, M.; Decker, G.; Kerby, J.

    2018-04-01

    The Advanced Photon Source (APS) is planning to upgrade its storage ring from a double-bend achromat to a multi-bend achromat lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U in order to keep the beam current constant and to reduce the dynamic aperture requirements. The injection scheme, combined with the constraints in the booster to storage ring transfer region of the APS-U, results in requiring a septum magnet which deflects the injected 6 GeV electron beam by 89 mrad, while not appreciably disturbing the stored beam. The proposed magnet is straight; however, it is rotated in yaw, roll, and pitch from the stored beam chamber to meet the on-axis swap-out injection requirements for the APS-U lattice. The concept utilizes cancellation of the leakage field inside the 8 mm x 6 mm super-ellipsoidal stored beam chamber. As a result, the horizontal deflection angle of the 6 GeV stored beam is reduced to less than 1 μrad with only a 2-mm-thick septum separating the stored beam and the 1.06 T field seen by the injected beam. This design also helps to minimize the integrated skew quadrupole and normal sextupole fields inside the stored beam chamber.

  6. Methods for slow axis beam quality improvement of high power broad area diode lasers

    NASA Astrophysics Data System (ADS)

    An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg

    2014-03-01

    For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.

  7. Beam position monitor

    DOEpatents

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  8. Beam Profile Disturbances from Implantable Pacemakers or Implantable Cardioverter-Defibrillator Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gossman, Michael S., E-mail: mgossman@tsrcc.com; Comprehensive Heart and Vascular Associates, Heart and Vascular Center, Ashland, KY; Medtronic, Inc., External Research Program, Mounds View, MN

    2011-01-01

    The medical community is advocating for progressive improvement in the design of implantable cardioverter-defibrillators and implantable pacemakers to accommodate elevations in dose limitation criteria. With advancement already made for magnetic resonance imaging compatibility in some, a greater need is present to inform the radiation oncologist and medical physicist regarding treatment planning beam profile changes when such devices are in the field of a therapeutic radiation beam. Treatment plan modeling was conducted to simulate effects induced by Medtronic, Inc.-manufactured devices on therapeutic radiation beams. As a continuation of grant-supported research, we show that radial and transverse open beam profiles of amore » medical accelerator were altered when compared with profiles resulting when implantable pacemakers and cardioverter-defibrillators are placed directly in the beam. Results are markedly different between the 2 devices in the axial plane and the sagittal planes. Vast differences are also presented for the therapeutic beams at 6-MV and 18-MV x-ray energies. Maximum changes in percentage depth dose are observed for the implantable cardioverter-defibrillator as 9.3% at 6 MV and 10.1% at 18 MV, with worst distance to agreement of isodose lines at 2.3 cm and 1.3 cm, respectively. For the implantable pacemaker, the maximum changes in percentage depth dose were observed as 10.7% at 6 MV and 6.9% at 18 MV, with worst distance to agreement of isodose lines at 2.5 cm and 1.9 cm, respectively. No differences were discernible for the defibrillation leads and the pacing lead.« less

  9. Fracture toughness of advanced ceramics at room temperature

    NASA Technical Reports Server (NTRS)

    Quinn, George D.; Salem, Jonathan; Bar-On, Isa; Cho, Kyu; Foley, Michael; Fang, HO

    1992-01-01

    Results of round-robin fracture toughness tests on advanced ceramics are reported. A gas-pressure silicon nitride and a zirconia-toughened alumina were tested using three test methods: indentation fracture, indentation strength, and single-edge precracked beam. The latter two methods have produced consistent results. The interpretation of fracture toughness test results for the zirconia alumina composite is shown to be complicated by R-curve and environmentally assisted crack growth phenomena.

  10. Specialty flat-top beam delivery fibers with controlled beam parameter product

    NASA Astrophysics Data System (ADS)

    Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.

    2016-03-01

    Beam delivery fibers have been used widely for transporting the optical beams from the laser to the subject of irradiation in a variety of markets including industrial, medical and defense applications. Standard beam delivery fibers range from 50 to 1500 μm core diameter and are used to guide CW or pulsed laser light, generated by solid state, fiber or diode lasers. Here, we introduce a novel fiber technology capable of simultaneously controlling the beam profile and the angular divergence of single-mode (SM) and multi-mode (MM) beams using a single-optical fiber. Results of beam transformation from a SM to a MM beam with flat-top intensity profile are presented in the case of a controlled BPP at 3.8 mm*mrad. The scaling capabilities of this flat-top fiber design to achieve a range of BPP values while ensuring a flat-top beam profile are discussed. In addition, we demonstrate, for the first time to the best of our knowledge, the homogenizer capabilities of this novel technology, able to transform random MM beams into uniform flat-top beam profiles with very limited impact on the beam brightness. This study is concluded with a discussion on the scalability of this fiber technology to fit from 50 up to 1500 μm core fibers and its potential for a broader range of applications.

  11. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui

    2017-12-01

    More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.

  12. Dynamics of the echolocation beam during prey pursuit in aerial hawking bats.

    PubMed

    Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie

    2015-06-30

    In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats broaden their echolocation beam in the final stage of pursuit, presumably as a countermeasure to keep evading moths within their "acoustic field of view." In this study, we investigated if dynamic beam broadening is a general property of echolocation when catching moving prey. We recorded three species of emballonurid bats, Saccopteryx bilineata, Saccopteryx leptura, and Rhynchonycteris naso, catching airborne insects in the field. The study shows that S. bilineata and S. leptura maintain a constant beam shape during the entire prey pursuit, whereas R. naso broadens the beam by lowering the peak call frequency from 100 kHz during search and approach to 67 kHz in the buzz. Surprisingly, both Saccopteryx bats emit calls with very high energy throughout the pursuit, up to 60 times more than R. naso and Myotis daubentonii (a similar sized vespertilionid), providing them with as much, or more, peripheral "vision" than the vespertilionids, but ensonifying objects far ahead suggesting more clutter. Thus, beam broadening is not a fundamental property of the echolocation system. However, based on the results, we hypothesize that increased peripheral detection is crucial to all aerial hawking bats in the final stages of prey pursuit and speculate that beam broadening is a feature characterizing more advanced echolocation.

  13. Predicted Versus Attained Surgical Correction of Maxillary Advancement Surgery Using Cone Beam Computed Tomography

    DTIC Science & Technology

    2016-07-01

    significant differences, one of the most important was the evident edema in the post-surgical CBCTs that were taken within four months of surgery . v... surgery limited to LeFort I maxillary advancement, in conjunction with pre- and post-surgical orthodontics, at Joint Base San Antonio – Lackland Air...Advancement Surgery Using CBCT 7. Intended publication/meeting: Requirement for Masters in Oral Biology 8. "Required by" date: 01-July-2016 9. Date of

  14. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  15. Grating Beam Combiner.

    DTIC Science & Technology

    1982-12-01

    with an nff-axis section of a 16-in. paraboloid. The expanded beam is split using a •• dielectrically coated 12.5-in. glass beam splitter at...equivalently the groove straightness). This was done prior to a recoating of the 12.5-in. beam splitter used in the interferometer after which it displayed...alternative to the full-aperture holographic sampler. It diffracts samples of an outgoing high-energy infrared (IR) beam and an incoming designator beam

  16. Pyramid beam splitter

    DOEpatents

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  17. Overview of Advanced Space Propulsion Activities in the Space Environmental Effects Team at MSFC

    NASA Technical Reports Server (NTRS)

    Edwards, David; Carruth, Ralph; Vaughn, Jason; Schneider, Todd; Kamenetzky, Rachel; Gray, Perry

    2000-01-01

    Exploration of our solar system, and beyond, requires spacecraft velocities beyond our current technological level. Technologies addressing this limitation are numerous. The Space Environmental Effects (SEE) Team at the Marshall Space Flight Center (MSFC) is focused on three discipline areas of advanced propulsion; Tethers, Beamed Energy, and Plasma. This presentation will give an overview of advanced propulsion related activities in the Space Environmental Effects Team at MSFC. Advancements in the application of tethers for spacecraft propulsion were made while developing the Propulsive Small Expendable Deployer System (ProSEDS). New tether materials were developed to meet the specifications of the ProSEDS mission and new techniques had to be developed to test and characterize these tethers. Plasma contactors were developed, tested and modified to meet new requirements. Follow-on activities in tether propulsion include the Air-SEDS activity. Beamed energy activities initiated with an experimental investigation to quantify the momentum transfer subsequent to high power, 5J, ablative laser interaction with materials. The next step with this experimental investigation is to quantify non-ablative photon momentum transfer. This step was started last year and will be used to characterize the efficiency of solar sail materials before and after exposure to Space Environmental Effects (SEE). Our focus with plasma, for propulsion, concentrates on optimizing energy deposition into a magnetically confined plasma and integration of measurement techniques for determining plasma parameters. Plasma confinement is accomplished with the Marshall Magnetic Mirror (M3) device. Initial energy coupling experiments will consist of injecting a 50 amp electron beam into a target plasma. Measurements of plasma temperature and density will be used to determine the effect of changes in magnetic field structure, beam current, and gas species. Experimental observations will be compared to

  18. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    NASA Astrophysics Data System (ADS)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  19. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    NASA Astrophysics Data System (ADS)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  20. SU-E-T-211: Comparison of Seven New TrueBeam Linacs with Enhanced Beam Data Conformance Using a Beam Comparison Software Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzetic, S; Hessler, J; Gupta, N

    2015-06-15

    Purpose: To develop an independent software tool to assist in commissioning linacs with enhanced beam conformance, as well as perform ongoing QA for dosimetrically equivalent linacs. Methods: Linac manufacturers offer enhanced beam conformance as an option to allow for clinics to complete commissioning efficiently, as well as implement dosimetrically equivalent linacs. The specification for enhanced conformance includes PDD as well as profiles within 80% FWHM. Recently, we commissioned seven Varian TrueBeam linacs with enhanced beam conformance. We developed a software tool in Visual Basic to allow us to load the reference beam data and compare our beam data during commissioningmore » to evaluate enhanced beam conformance. This tool also allowed us to upload our beam data used for commissioning our dosimetrically equivalent beam models to compare and tweak each of our linac beams to match our modelled data in Varian’s Eclipse TPS. This tool will also be used during annual QA of the linacs to compare our beam data to our baseline data, as required by TG-142. Results: Our software tool was used to check beam conformance for seven TrueBeam linacs that we commissioned in the past six months. Using our tool we found that the factory conformed linacs showed up to 3.82% difference in their beam profile data upon installation. Using our beam comparison tool, we were able to adjust the energy and profiles of our beams to accomplish a better than 1.00% point by point data conformance. Conclusion: The availability of quantitative comparison tools is essential to accept and commission linacs with enhanced beam conformance, as well as to beam match multiple linacs. We further intend to use the same tool to ensure our beam data conforms to the commissioning beam data during our annual QA in keeping with the requirements of TG-142.« less

  1. Non-Equilibrium Phenomena in High Power Beam Materials Processing

    NASA Astrophysics Data System (ADS)

    Tosto, Sebastiano

    2004-03-01

    The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.

  2. Advanced Accelerator Development Strategy Report: DOE Advanced Accelerator Concepts Research Roadmap Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponentsmore » of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)« less

  3. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  4. Characterization of the Li beam probe with a beam profile monitor on JETa)

    NASA Astrophysics Data System (ADS)

    Nedzelskiy, I. S.; Korotkov, A.; Brix, M.; Morgan, P.; Vince, J.; Jet Efda Contributors

    2010-10-01

    The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45° segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.

  5. Coherent Beam-Beam Instability in Collisions with a Large Crossing Angle

    NASA Astrophysics Data System (ADS)

    Ohmi, K.; Kuroo, N.; Oide, K.; Zhou, D.; Zimmermann, F.

    2017-09-01

    In recent years the "crab-waist collision" scheme [P. Raimondi, Proceedings of 2nd SuperB Workshop, Frascati, 2006.; M. Zobov et al., Phys. Rev. Lett. 104, 174801 (2010), 10.1103/PhysRevLett.104.174801] has become popular for circular e+ e- colliders. The designs of several future colliders are based on this scheme. So far the beam-beam effects for collisions under a large crossing angle with or without crab waist were mostly studied using weak-strong simulations. We present here strong-strong simulations showing a novel strong coherent head-tail instability, which can limit the performance of proposed future colliders. We explain the underlying instability mechanism starting from the "cross-wake force" induced by the beam-beam interaction. Using this beam-beam wake, the beam-beam head tail modes are studied by an eigenmode analysis. The instability may affect all collider designs based on the crab-waist scheme. We suggest an experimental verification at SuperKEKB during its commissioning phase II.

  6. Determination of the depth dose distribution of proton beam using PRESAGE TM dosimeter

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Das, I. J.; Zhao, Q.; Thomas, A.; Adamovics, J.; Oldman, M.

    2010-11-01

    PRESAGETM dosimeter dosimeter has been proved useful for 3D dosimetry in conventional photon therapy and IMRT [1-5]. Our objective is to examine the use of PRESAGETM dosimeter for verification of depth dose distribution in proton beam therapy. Three PRESAGETM samples were irradiated with a 79 MeV un-modulated proton beam. Percent depth dose profile measured from the PRESAGETM dosimeter is compared with data obtained in a water phantom using a parallel plate Advanced Markus chamber. The Bragg-peak position determined from the PRESAGETM is within 2 mm compared to measurements in water. PRESAGETM shows a highly linear response to proton dose. However, PRESAGETM also reveals an underdosage around the Bragg peak position due to LET effects. Depth scaling factor and quenching correction factor need further investigation. Our initial result shows that PRESAGETM has promising dosimetric characteristics that could be suitable for proton beam dosimetry.

  7. Annular beam shaping system for advanced 3D laser brazing

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  8. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams.

    PubMed

    Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G; Ciocca, M; Mirandola, A; Mairani, A; Raffaele, L; Magro, G

    2015-04-01

    To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30-250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm(2) were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm(2) area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using fluka Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam direction. A strong distortion in Bragg

  9. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    NASA Astrophysics Data System (ADS)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  10. Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Wen, Wei; Jin, Ying; Hu, Mingjun; Liu, Xianlong; Cai, Yangjian; Zou, Chenjuan; Luo, Mi; Zhou, Liwang; Chu, Xiuxiang

    2018-05-01

    The beam wander properties of coherent and partially coherent Airy beam arrays in a turbulent atmosphere are investigated. Based on the analytical results, we find that the beam wander of partially coherent Airy beam arrays is significantly reduced compared with the wander of a partially coherent Airy beam by numerical simulation. Moreover, the beam wander of a 2 × 2 partially coherent Airy beam arrays is significantly reduced compared with the wander of a 2 × 2 partially coherent Gaussian beam arrays. By using the definition of beam wander arrays factor which is used to characterize the capability of beam arrays for reducing the beam wander effect compared with a single beam, we find that the arrays factor of partially coherent Airy beam arrays is significantly less than that of partially coherent Gaussian beam arrays with the same arrays order. We also find that an artificial reduction of the initial coherence of laser arrays can be used to decrease the beam wander effect. These results indicate that the partially coherent Airy beam arrays have potential applications in long-distance free-space optical communications.

  11. First demonstration of simultaneous measurement of beam current, beam position, and beam tilt on induction linac using combined B-dot monitor

    NASA Astrophysics Data System (ADS)

    He, Xiaozhong; Pang, Jian; Chen, Nan; Li, Qin; Dai, Wenhua; Ma, Chaofan; Zhao, Liangchao; Gao, Feng; Dai, Zhiyong

    2017-06-01

    The authors previously reported that the axial B-dots can be used to directly measure the beam tilt and demonstrated that the axial B-dots are applicable to a coaxial calibration stand. In this study, a combined B-dot monitor composed of four axial B-dot loops and four azimuthal ones is tested for the simultaneous measurement of the time-varying beam current, beam offset, and beam tilt at the output of the injector of the DRAGON-I induction linac. In the experiments, the beam offset and beam tilt at the position of the monitor are proportionally adjusted using a pair of steering coils. Eight waveforms acquired from the B-dot monitor are analyzed to reconstruct the time-varying beam current, beam offset, and beam tilt. The original signals of both the azimuthal B-dot and the axial B-dot ports change significantly with respect to the current applied to the steering coils. The measured beam tilt is linearly dependent on the current applied to the steering coils and agrees well with the measured beam offset.

  12. Effect of Travel Speed and Beam Focus on Porosity in Alloy 690 Laser Welds

    NASA Astrophysics Data System (ADS)

    Tucker, Julie D.; Nolan, Terrance K.; Martin, Anthony J.; Young, George A.

    2012-12-01

    Advances in laser welding technology, including fiber optic delivery and high power density, are increasing the applicability of this joining technique. The inherent benefits of laser welding include small heat-affected zones, minimal distortion, and limited susceptibility to cracking. These advantages are of special interest to next-generation nuclear power systems where welding solute-rich alloys is expected to increase. Alloy 690 (A690) is an advanced corrosion-resistant structural material used in many replacement components and in construction of new commercial power plants. However, the application of A690 is hindered by its difficult weldability using conventional arc welding, and laser welding is a promising alternate. This work studies the effects of travel speed and beam focus on porosity formation in partial penetration, autogenous A690 laser welds. Porosity has been characterized by light optical microscopy and x-ray computed tomography to quantify its percent volume in the welds. This work describes the tradeoff between weld penetration and defect density as a function of beam defocus and travel speed. Additionally, the role of shield gas in porosity formation is discussed to provide a mitigation strategy for A690 laser welding. A process map is provided that shows the optimal combinations of travel speed and beam defocus to minimize porosity and maximize weld penetration at a laser power of 4 kW.

  13. Performance Test of the Next Generation X-Ray Beam Position Monitor System for The APS Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B.; Lee, S.; Westferro, F.

    The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for the upgrade and will require keeping short-time beam angle change below 0.25 µrad and long-term angle drift below 0.6 µrad. A reliable white x-ray beam diagnostic system in the front end will be a key part of the planned beam stabilization system. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beammore » intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window or a retractable diamond film in windowless front ends. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. They demonstrate that the XBPM system meets APS-U beam stability requirements.« less

  14. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W [Danville, CA; Palmer, Todd A [Livermore, CA; Teruya, Alan T [Livermore, CA

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  15. Preliminary studies for a beam-generated plasma neutralizer test in NIO1

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Veltri, P.; Balbinot, L.; Cavenago, M.; Veranda, M.; Antoni, V.; Serianni, G.

    2017-08-01

    The deployment of neutral beam injectors in future fusion plants is beset by the particularly poor efficiency of the neutralization process. Beam-generated plasma neutralizers were proposed as a passive and intrinsically safe scheme of efficient plasma neutralizers. The concept is based on the natural ionization of the gas target by the beam, and on a suitable confinement of the secondary plasma. The technological challenge of such a concept is the magnetic confinement of the secondary plasma: a proof-of-principle for the concept is needed. The possibility to test of such a system in the small negative ion beam system NIO1 is discussed in this paper. The constraints given by the facility are first discussed. A model of beam-gas interaction is developed to provide the charge-state of beam particles along the neutralizer, and to provide the source terms of plasma generation. By using a cylindrical model of plasma diffusion in magnetic fields, the ionization degree of the target is estimated. In the absence of magnetic fields the diffusion model is validated against experimental measurements of the space-charge compensation plasma in the drift region of NIO1. Finally, the feasibility study for a beam-generated plasma neutralizer in NIO is presented. The neutralizer length, required gas target thickness, and a very simple magnetic setup were considered, taking into account the integration in NIO1. For the basic design a low ionization degree (1%) is obtained, however a promising plasma density up to hundred times the beam density was calculated. The proposed test in NIO1 can be the starting point for studying advanced schemes of magnetic confinement aiming at ionization degrees in the order of 10%.

  16. Neutral beam monitoring

    DOEpatents

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  17. Feasibility of a Heavy Ion Beam Probe for W7-X

    NASA Astrophysics Data System (ADS)

    Crowley, T. P.; Demers, D. R.; Fimognari, P. J.; Grulke, O.; Laube, R.

    2017-10-01

    A feasibility study of a Heavy Ion Beam Probe (HIBP) diagnostic for the Wendelstein 7-X (W7-X) superconducting stellarator, incorporating the accelerator and energy analyzer (currently in Greifswald) from the 2 MeV TEXT-U HIBP, is being carried out. The study's results are positive: beam trajectory simulations in the W7-X standard magnetic configuration, with central densities up to 1020 m-3, predict that it will be possible to measure the equilibrium plasma potential and Er at all radii, and simultaneously measure temporally and spatially resolved fluctuations of ne and potential for r / a >0.5. This will provide a unique capability to advance understanding of neoclassical and turbulent particle and energy transport in W7-X. Within this feasibility study, the beam is injected and detected through the K11 and N11 ports respectively, and the toroidal magnetic field is in the ` + φ ' direction. Additional beam simulations reveal that most radii can be accessed in 7 other paradigm magnetic configurations. It's anticipated that electrostatic beam steering suitable for studying all these configurations is plausible; it will have plate dimensions comparable to TEXT-U's with smaller electric fields and higher voltages. Initial estimates of anticipated heat load from the W7-X plasma on the steering systems indicate it will be significant, but tractable. Our conclusion from these studies is that an HIBP diagnostic for W7-X is feasible. This work is supported by US DoE Award DE-SC0013918.

  18. Fishbone Mode Excited by Deeply Trapped Energetic Beam Ions in EAST

    NASA Astrophysics Data System (ADS)

    Zheng, Ting; Wu, Bin; Xu, Liqing; Hu, Chundong; Zang, Qing; Ding, Siye; Li, Yingying; Wu, Xingquan; Wang, Jinfang; Shen, Biao; Zhong, Guoqiang; Li, Hao; Shi, Tonghui; EAST Team

    2016-06-01

    This paper describes the fishbone mode phenomena during the injection of high-power neutral beams in EAST (Experimental Advanced Superconducting Tokamak). The features of the fishbone mode are presented. The change in frequency of the mode during a fishbone burst is from 1 kHz to 6 kHz. The nonlinear behavior of the fishbone mode is analyzed by using a prey-predator model, which is consistent with the experimental results. This model indicates that the periodic oscillations of the fishbone mode always occur near the critical value of fast ion beta. Furthermore, the neutral beam analysis for the discharge is done by using the NUBEAM module of the TRANSP code. According to the numerical simulation results and theoretical calculation, it can be concluded that the fishbone mode is driven by the deeply trapped energetic beam ions in EAST. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001, 2014DFG61950 and 2013GB112003) and National Natural Science Foundation of China (Nos. 11175211 and 11275233)

  19. Recent Advances in X-ray Cone-beam Computed Laminography.

    PubMed

    O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas

    2016-10-06

    X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.

  20. Probing of high density plasmas using the multi-beam, high power TiSa laser system ARCTURUS

    NASA Astrophysics Data System (ADS)

    Willi, Oswald; Aktan, Esin; Brauckmann, Stephannie; Aurand, Bastian; Cerchez, Mirela; Prasad, Rajendra; Schroer, Anna Marie

    2017-10-01

    The understanding of relativistic laser plasma interaction at ultra-high intensities has advanced considerably during the last decade with the availability of multi-beam, high power TiSa laser systems. These laser systems allow pump-probe experiments to be carried out. The ARCTURUS laser at the University of Duesseldorf is ideally suited for various kinds of pump-probe experiments as it consists of two identical, high power beams with energies of 5J in 30 fs and a third beam for optical probing with energy of 30mJ in a 30fs pulse. All three beams are synchronised and have flexible time delays with respect to each other. Several different processes were studied where one of the beams was used as an interaction beam and the second one was incident on a thin solid gold foil to generate a proton beam. For example, thin foil targets were irradiated either with a linear or circular polarized pulse and probed with protons at different times. The expansion of foils for the two cases was clearly different consistent with numerical simulations. In addition, the interaction of gas targets was probed with protons and separately with an optical probe. With both diagnostics the formation of a channel was observed. In the presentation various two beam measurements will be discussed.

  1. BEAM CONTROL PROBE

    DOEpatents

    Chesterman, A.W.

    1959-03-17

    A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

  2. NASA's Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1983-01-01

    NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.

  3. H- beam transport experiments in a solenoid low energy beam transport.

    PubMed

    Gabor, C; Back, J J; Faircloth, D C; Izaola, Z; Lawrie, S R; Letchford, A P

    2012-02-01

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H(-) ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H(-) high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  4. Craft Stick Beams

    NASA Technical Reports Server (NTRS)

    Karplus, Alan K.

    1996-01-01

    The objective of this exercise is to provide a phenomenological 'hands-on' experience that shows how geometry can affect the load carrying capacity of a material used in construction, how different materials have different failure characteristics, and how construction affects the performance of a composite material. This will be accomplished by building beams of a single material and composite beams of a mixture of materials (popsicle sticks, fiberboard sheets, and tongue depressors); testing these layered beams to determine how and where they fail; and based on the failure analysis, designing a layered beam that will fail in a predicted manner. The students will learn the effects of lamination, adhesion, and geometry in layered beam construction on beam strength and failure location.

  5. Analytical beam-width characteristics of distorted cat-eye reflected beam

    NASA Astrophysics Data System (ADS)

    Zhao, Yanzhong; Shan, Congmiao; Zheng, Yonghui; Zhang, Laixian; Sun, Huayan

    2015-02-01

    The analytical expression of beam-width of distorted cat-eye reflected beam under far-field condition is deduced using the approximate three-dimensional analytical formula for oblique detection laser beam passing through cat-eye optical lens with center shelter, and using the definition of second order moment, Gamma function and integral functions. The laws the variation of divergence angle and astigmatism degree of the reflected light with incident angle, focal shift, aperture size, and center shelter ratio are established by numerical calculation, and physical analysis. The study revealed that the cat-eye reflected beam is like a beam transmitted and collimated by the target optical lens, and has the same characteristics as that of Gaussian beam. A proper choice of positive focal shift would result in a divergence angle smaller than that of no focal shift. The astigmatism is mainly caused by incidence angle.

  6. Adapting High Brightness Relativistic Electron Beams for Ultrafast Science

    NASA Astrophysics Data System (ADS)

    Scoby, Cheyne Matthew

    This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the

  7. Fabrication of carbon quantum dots with nano-defined position and pattern in one step via sugar-electron-beam writing.

    PubMed

    Weng, Yuyan; Li, Zhiyun; Peng, Lun; Zhang, Weidong; Chen, Gaojian

    2017-12-14

    Quantum dots (QDs) are promising materials in nanophotonics, biological imaging, and even quantum computing. Precise positioning and patterning of QDs is a prerequisite for realizing their actual applications. Contrary to the traditional two discrete steps of fabricating and positioning QDs, herein, a novel sugar-electron-beam writing (SEW) method is reported for producing QDs via electron-beam lithography (EBL) that uses a carefully chosen synthetic resist, poly(2-(methacrylamido)glucopyranose) (PMAG). Carbon QDs (CQDs) could be fabricated in situ through electron beam exposure, and the nanoscale position and luminescence intensity of the produced CQDs could be precisely controlled without the assistance of any other fluorescent matter. We have demonstrated that upon combining an electron beam with a glycopolymer, in situ production of CQDs occurs at the electron beam spot center with nanoscale precision at any place and with any patterns, an advancement that we believe will stimulate innovations in future applications.

  8. Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; /Beijing, Inst. High Energy Phys.; Cai, Y.

    2006-02-10

    It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.

  9. Microfabrication of biocompatible hydrogels by proton beam writing

    NASA Astrophysics Data System (ADS)

    Nagasawa, Naotsugu; Kimura, Atsushi; Idesaki, Akira; Yamada, Naoto; Koka, Masashi; Satoh, Takahiro; Ishii, Yasuyuki; Taguchi, Mitsumasa

    2017-10-01

    Functionalization of biocompatible materials is expected to be widely applied in biomedical engineering and regenerative medicine fields. Hydrogel has been expected as a biocompatible scaffold which support to keep an organ shape during cell multiplying in regenerative medicine. Therefore, it is important to understanding a surface microstructure (minute shape, depth of flute) and a chemical characteristic of the hydrogel affecting the cell culture. Here, we investigate the microfabrication of biocompatible polymeric materials, such as the water-soluble polysaccharide derivatives hydroxypropyl cellulose and carboxymethyl cellulose, by use of proton beam writing (PBW). These polymeric materials were dissolved thoroughly in pure water using a planetary centrifugal mixer, and a sample sheet (1 mm thick) was formed on polyethylene terephthalate (PET) film. Crosslinking to form hydrogels was induced using a 3.0 MeV focused proton beam from the single-ended accelerator at Takasaki Ion Accelerators for Advanced Radiation Application. The aqueous samples were horizontally irradiated with the proton beam through the PET cover film, and then rinsed with deionized water. Microstructured hydrogels were obtained on the PET film using the PBW technique without toxic crosslinking reagents. Cell adhesion and proliferation on the microfabricated biocompatible hydrogels were investigated. Microfabrication of HPC and CMC by the use of PBW is expected to produce new biocompatible materials that can be applied in biological and medical applications.

  10. SU-E-T-635: Quantitative Study On Beam Flatness Variation with Beam Energy Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J S; Eldib, A; Ma, C

    2014-06-15

    Purpose: Beam flatness check has been proposed for beam energy check for photon beams with flattering filters. In this work, beam flatness change with beam energy was investigated quantitatively using the Monte Carlo method and its significance was compared with depth dose curve change. Methods: Monte Carlo simulations for a linear accelerator with flattering filter were performed with different initial electron energies for photon beams of 6MV and 10MV. Dose calculations in a water phantom were then perform with the phase space files obtained from the simulations. The beam flatness was calculated based on the dose profile at 10 cmmore » depth for all the beams with different initial electron energies. The percentage depth dose (PDD) curves were also analyzed. The dose at 10cm depth (D10) and the ratio of the dose at 10cm and 20cm depth (D10/D20) and their change with the beam energy were calculated and compared with the beam flatness variation. Results: It was found that the beam flatness variation with beam energy change was more significant than the change of D10 and the ratio between D10 and D20 for both 6MV and 10MV beams. Half MeV difference on the initial electron beam energy brought in at least 20% variation on the beam flatness but only half percent change on the ratio of D10 and D20. The change of D10 or D20 alone is even less significant. Conclusion: The beam energy impact on PDD is less significant than that on the beam flatness. If the PDD is used for checking the beam energy, uncertainties of the measurement could possibly disguise its change. Beam flatness changes more significantly with beam energy and therefore it can be used for monitoring the energy change for photon beams with flattering filters. However, other factors which may affect the beam flatness should be watched as well.« less

  11. Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry

    NASA Astrophysics Data System (ADS)

    Zink, K.; Wulff, J.

    2012-04-01

    Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.

  12. Dynamics of the echolocation beam during prey pursuit in aerial hawking bats

    PubMed Central

    Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie

    2015-01-01

    In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats broaden their echolocation beam in the final stage of pursuit, presumably as a countermeasure to keep evading moths within their “acoustic field of view.” In this study, we investigated if dynamic beam broadening is a general property of echolocation when catching moving prey. We recorded three species of emballonurid bats, Saccopteryx bilineata, Saccopteryx leptura, and Rhynchonycteris naso, catching airborne insects in the field. The study shows that S. bilineata and S. leptura maintain a constant beam shape during the entire prey pursuit, whereas R. naso broadens the beam by lowering the peak call frequency from 100 kHz during search and approach to 67 kHz in the buzz. Surprisingly, both Saccopteryx bats emit calls with very high energy throughout the pursuit, up to 60 times more than R. naso and Myotis daubentonii (a similar sized vespertilionid), providing them with as much, or more, peripheral “vision” than the vespertilionids, but ensonifying objects far ahead suggesting more clutter. Thus, beam broadening is not a fundamental property of the echolocation system. However, based on the results, we hypothesize that increased peripheral detection is crucial to all aerial hawking bats in the final stages of prey pursuit and speculate that beam broadening is a feature characterizing more advanced echolocation. PMID:26080398

  13. Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Naik, Dinesh N.; Viswanathan, Nirmal K.

    2016-09-01

    We propose a simple free-space optics recipe for the controlled generation of optical vortex beams with a vortex dipole or a single charge vortex, using an inherently stable Sagnac interferometer. We investigate the role played by the amplitude and phase differences in generating higher-order Gaussian beams from the fundamental Gaussian mode. Our simulation results reveal how important the control of both the amplitude and the phase difference between superposing beams is to achieving optical vortex beams. The creation of a vortex dipole from null interference is unveiled through the introduction of a lateral shear and a radial phase difference between two out-of-phase Gaussian beams. A stable and high quality optical vortex beam, equivalent to the first-order Laguerre-Gaussian beam, is synthesized by coupling lateral shear with linear phase difference, introduced orthogonal to the shear between two out-of-phase Gaussian beams.

  14. Impact of beam-beam effects on precision luminosity measurements at the ILC

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Bambade, P.; Mönig, K.; Schulte, D.

    2007-09-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  15. Double wedge prism based beam deflector for precise laser beam steering

    NASA Astrophysics Data System (ADS)

    Tyszka, Krzysztof; Dobosz, Marek; Bilaszewski, Tomasz

    2018-02-01

    Aiming to increase laser beam pointing stability required in interferometric measurements, we designed a laser beam deflector intended for active laser beam stabilization systems. The design is based on two wedge-prisms: the deflecting wedge driven by a tilting piezo-platform and the fixed wedge to compensate initial beam deflection. Our design allows linear beam steering, independently in the horizontal or vertical direction, with resolution of less than 1 μrad in a range of more than 100 μrad, and no initial deflection of the beam. Moreover, the ratio of the output beam deflection angle and the wedge tilt angle is less than 0.1; therefore, the noise influence is significantly reduced in comparison to standard mirror-based deflectors. The theoretical analyses support the designing process and can serve as a guide to wedge-prism selection. The experimental results are in agreement with theory and confirm the advantages of the presented double wedge system.

  16. Sensitivity studies of beam directionality, beam size, and neutron spectrum for a fission converter-based epithermal neutron beam for boron neutron capture therapy.

    PubMed

    Sakamoto, S; Kiger, W S; Harling, O K

    1999-09-01

    Sensitivity studies of epithermal neutron beam performance in boron neutron capture therapy are presented for realistic neutron beams with varying filter/moderator and collimator/delimiter designs to examine the relative importance of neutron beam spectrum, directionality, and size. Figures of merit for in-air and in-phantom beam performance are calculated via the Monte Carlo technique for different well-optimized designs of a fission converter-based epithermal neutron beam with head phantoms as the irradiation target. It is shown that increasing J/phi, a measure of beam directionality, does not always lead to corresponding monotonic improvements in beam performance. Due to the relatively low significance, for most configurations, of its effect on in-phantom performance and the large intensity losses required to produce beams with very high J/phi, beam directionality should not be considered an important figure of merit in epithermal neutron beam design except in terms of its consequences on patient positioning and collateral dose. Hardening the epithermal beam spectrum, while maintaining the specific fast neutron dose well below the inherent hydrogen capture dose, improves beam penetration and advantage depth and, as a desirable by-product, significantly increases beam intensity. Beam figures of merit are shown to be strongly dependent on beam size relative to target size. Beam designs with J/phi approximately 0.65-0.7, specific fast neutron doses of 2-2.6x10(-13) Gy cm2/n and beam sizes equal to or larger than the size of the head target produced the deepest useful penetration, highest therapeutic ratios, and highest intensities.

  17. Development of Advanced Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  18. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, K. K.; Tsai, H. -E.; Barber, S. K.

    Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less

  19. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector

    DOE PAGES

    Swanson, K. K.; Tsai, H. -E.; Barber, S. K.; ...

    2017-05-30

    Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less

  20. Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives

    NASA Astrophysics Data System (ADS)

    Li, Shuhui; Chen, Shi; Gao, Chunqing; Willner, Alan E.; Wang, Jian

    2018-02-01

    Orbital angular momentum (OAM)-carrying beams have recently generated considerable interest due to their potential use in communication systems to increase transmission capacity and spectral efficiency. For OAM-based free-space optical (FSO) links, a critical challenge is the atmospheric turbulence that will distort the helical wavefronts of OAM beams leading to the decrease of received power, introducing crosstalk between multiple channels, and impairing link performance. In this paper, we review recent advances in turbulence effects compensation techniques for OAM-based FSO communication links. First, basic concepts of atmospheric turbulence and theoretical model are introduced. Second, atmospheric turbulence effects on OAM beams are theoretically and experimentally investigated and discussed. Then, several typical turbulence compensation approaches, including both adaptive optics-based (optical domain) and signal processing-based (electrical domain) techniques, are presented. Finally, key challenges and perspectives of compensation of turbulence-distorted OAM links are discussed.

  1. A new generation of IC based beam steering devices for free-space optical communication

    NASA Astrophysics Data System (ADS)

    Bedi, Vijit

    Free Space Optical (FSO) communication has tremendously advanced within the last decade to meet the ever increasing demand for higher communication bandwidth. Advancement in laser technology since its invention in the 1960's [1] attracted them to be the dominant source in FSO communication modules. The future of FSO systems lay in implementing semiconductor lasers due to their small size, power efficiency and mass fabrication abilities. In the near future, these systems are very likely to be used in space and ground based applications and revolutionary beam steering technologies will be required for distant communications in free-space. The highly directional characteristic inherent to a laser beam challenges and calls for new beam pointing and steering technologies for such type of communication. In this dissertation, research is done on a novel FSO communication device based on semiconductor lasers for high bandwidth communication. The "Fly eye transceiver" is an extremely wide steering bandwidth, completely non-mechanical FSO laser communication device primarily designed to replace traditional mechanical beam steering optical systems. This non-mechanical FSO device possesses a full spherical steering range and a very high tracking bandwidth. Inspired by the evolutionary model of a fly's eye, the full spherical steering range is assured by electronically controlled switching of its sub-eyes. Non mechanical technologies used in the past for beam steering such as acousto-optic Bragg cells, liquid crystal arrays or piezoelectric elements offer the wide steering bandwidth and fast response time, but are limited in their angular steering range. Mechanical gimbals offer a much greater steering range but face a much slower response time or steering bandwidth problem and often require intelligent adaptive controls with bulky driver amplifiers to feed their actuators. As a solution to feed both the fast and full spherical steering, the Fly-eye transceiver is studied as

  2. Beam shaping with vectorial vortex beams under low numerical aperture illumination condition

    NASA Astrophysics Data System (ADS)

    Dai, Jianning; Zhan, Qiwen

    2008-08-01

    In this paper we propose and demonstrate a novel beam shaping method using vectorial vortex beam. A vectorial vortex beam is laser beam with polarization singularity in the beam cross section. This type of beams can be decomposed into two orthogonally polarized components. Each of the polarized components could have different vortex characteristics, and consequently, different intensity distribution when focused by lens. Beam shaping in the far field can be achieved by adjusting the relative weighing of these two components. As one example, we study the vectorial vortex that consists of a linearly polarized Gaussian component and a vortex component polarized orthogonally. When such a vectorial vortex beam is focus by low NA lens, the Gaussian component gives rise to a focal intensity distribution with a solid centre while the vortex component gives rise to a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Under appropriate conditions, flat top focusing can be obtained. We experimentally demonstrate the creation of such beams with a liquid crystal spatial light modulator. Flattop focus obtained by vectorial vortex beams with topological charge of +1 has been obtained.

  3. Quantitative approach for optimizing e-beam condition of photoresist inspection and measurement

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Jen; Teng, Chia-Hao; Cheng, Po-Chung; Sato, Yoshishige; Huang, Shang-Chieh; Chen, Chu-En; Maruyama, Kotaro; Yamazaki, Yuichiro

    2018-03-01

    Severe process margin in advanced technology node of semiconductor device is controlled by e-beam metrology system and e-beam inspection system with scanning electron microscopy (SEM) image. By using SEM, larger area image with higher image quality is required to collect massive amount of data for metrology and to detect defect in a large area for inspection. Although photoresist is the one of the critical process in semiconductor device manufacturing, observing photoresist pattern by SEM image is crucial and troublesome especially in the case of large image. The charging effect by e-beam irradiation on photoresist pattern causes deterioration of image quality, and it affect CD variation on metrology system and causes difficulties to continue defect inspection in a long time for a large area. In this study, we established a quantitative approach for optimizing e-beam condition with "Die to Database" algorithm of NGR3500 on photoresist pattern to minimize charging effect. And we enhanced the performance of measurement and inspection on photoresist pattern by using optimized e-beam condition. NGR3500 is the geometry verification system based on "Die to Database" algorithm which compares SEM image with design data [1]. By comparing SEM image and design data, key performance indicator (KPI) of SEM image such as "Sharpness", "S/N", "Gray level variation in FOV", "Image shift" can be retrieved. These KPIs were analyzed with different e-beam conditions which consist of "Landing Energy", "Probe Current", "Scanning Speed" and "Scanning Method", and the best e-beam condition could be achieved with maximum image quality, maximum scanning speed and minimum image shift. On this quantitative approach of optimizing e-beam condition, we could observe dependency of SEM condition on photoresist charging. By using optimized e-beam condition, measurement could be continued on photoresist pattern over 24 hours stably. KPIs of SEM image proved image quality during measurement and

  4. Advanced Gouy phase high harmonics interferometer

    NASA Astrophysics Data System (ADS)

    Mustary, M. H.; Laban, D. E.; Wood, J. B. O.; Palmer, A. J.; Holdsworth, J.; Litvinyuk, I. V.; Sang, R. T.

    2018-05-01

    We describe an extreme ultraviolet (XUV) interferometric technique that can resolve ∼100 zeptoseconds (10‑21 s) delay between high harmonic emissions from two successive sources separated spatially along the laser propagation in a single Gaussian beam focus. Several improvements on our earlier work have been implemented in the advanced interferometer. In this paper, we report on the design, characterization and optimization of the advanced Gouy phase interferometer. Temporal coherence for both atomic argon and molecular hydrogen gases has been observed for several harmonic orders. It has been shown that phase shift of XUV pulses mainly originates from the emission time delay due to the Gouy phase in the laser focus and the observed interference is independent of the generating medium. This interferometer can be a useful tool for measuring the relative phase shift between any two gas species and for studying ultrafast dynamics of their electronic and nuclear motion.

  5. A Refined Zigzag Beam Theory for Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Sciuva, Marco Di; Gherlone, Marco

    2009-01-01

    A new refined theory for laminated composite and sandwich beams that contains the kinematics of the Timoshenko Beam Theory as a proper baseline subset is presented. This variationally consistent theory is derived from the virtual work principle and employs a novel piecewise linear zigzag function that provides a more realistic representation of the deformation states of transverse-shear flexible beams than other similar theories. This new zigzag function is unique in that it vanishes at the top and bottom bounding surfaces of a beam. The formulation does not enforce continuity of the transverse shear stress across the beam s cross-section, yet is robust. Two major shortcomings that are inherent in the previous zigzag theories, shear-force inconsistency and difficulties in simulating clamped boundary conditions, and that have greatly limited the utility of these previous theories are discussed in detail. An approach that has successfully resolved these shortcomings is presented herein. Exact solutions for simply supported and cantilevered beams subjected to static loads are derived and the improved modelling capability of the new zigzag beam theory is demonstrated. In particular, extensive results for thick beams with highly heterogeneous material lay-ups are discussed and compared with corresponding results obtained from elasticity solutions, two other zigzag theories, and high-fidelity finite element analyses. Comparisons with the baseline Timoshenko Beam Theory are also presented. The comparisons clearly show the improved accuracy of the new, refined zigzag theory presented herein over similar existing theories. This new theory can be readily extended to plate and shell structures, and should be useful for obtaining relatively low-cost, accurate estimates of structural response needed to design an important class of high-performance aerospace structures.

  6. Hollow vortex Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing

    2013-05-01

    A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.

  7. Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Wei; Chu, Xiuxiang, E-mail: xiuxiangchu@yahoo.com

    The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airymore » beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared.« less

  8. Evaluation of the TrueBeam machine performance check (MPC) beam constancy checks for flattened and flattening filter-free (FFF) photon beams.

    PubMed

    Barnes, Michael P; Greer, Peter B

    2017-01-01

    Machine Performance Check (MPC) is an automated and integrated image-based tool for verification of beam and geometric performance of the TrueBeam linac. The aims of the study were to evaluate the MPC beam performance tests against current daily quality assurance (QA) methods, to compare MPC performance against more accurate monthly QA tests and to test the sensitivity of MPC to changes in beam performance. The MPC beam constancy checks test the beam output, uniformity, and beam center against the user defined baseline. MPC was run daily over a period of 5 months (n = 115) in parallel with the Daily QA3 device. Additionally, IC Profiler, in-house EPID tests, and ion chamber measurements were performed biweekly and results presented in a form directly comparable to MPC. The sensitivity of MPC was investigated using controlled adjustments of output, beam angle, and beam position steering. Over the period, MPC output agreed with ion chamber to within 0.6%. For an output adjustment of 1.2%, MPC was found to agree with ion chamber to within 0.17%. MPC beam center was found to agree with the in-house EPID method within 0.1 mm. A focal spot position adjustment of 0.4 mm (at isocenter) was measured with MPC beam center to within 0.01 mm. An average systematic offset of 0.5% was measured in the MPC uniformity and agreement of MPC uniformity with symmetry measurements was found to be within 0.9% for all beams. MPC uniformity detected a change in beam symmetry of 1.5% to within 0.3% and 0.9% of IC Profiler for flattened and FFF beams, respectively. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams.

    PubMed

    Li, Jinhong; Wang, Weiwei; Duan, Meiling; Wei, Jinlin

    2016-09-05

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function (WDF), the analytical expressions for the propagation factors (M2-factors) and Strehl ratio SR of the Gaussian Schell-model (GSM) vortex beams and GSM non-vortex beams propagation through non-Kolmogorov atmospheric turbulence are derived, and used to study the influence of non-Kolmogorov atmospheric turbulence on beam quality of the GSM vortex beams. It is shown that the smaller the generalized structure constant and the outer scale of turbulence are, and the bigger the inner scale of turbulence is, the smaller the normalized propagation factor is, the bigger the Strehl ratio is, and the better the beam quality of GSM vortex beams in atmospheric turbulence is. The variation of beam quality with the generalized exponent α is nonmonotonic, when α = 3.11, the beam quality of the GSM vortex beams is the poorest through non-Kolmogorov atmospheric turbulence. GSM vortex beams is less affected by turbulence than GSM non-vortex beams under certain condition, and will be useful in long-distance free-space optical communications.

  10. Recent advances in radiation oncology

    PubMed Central

    Garibaldi, Cristina; Jereczek-Fossa, Barbara Alicja; Marvaso, Giulia; Dicuonzo, Samantha; Rojas, Damaris Patricia; Cattani, Federica; Starzyńska, Anna; Ciardo, Delia; Surgo, Alessia; Leonardi, Maria Cristina; Ricotti, Rosalinda

    2017-01-01

    Radiotherapy (RT) is very much a technology-driven treatment modality in the management of cancer. RT techniques have changed significantly over the past few decades, thanks to improvements in engineering and computing. We aim to highlight the recent developments in radiation oncology, focusing on the technological and biological advances. We will present state-of-the-art treatment techniques, employing photon beams, such as intensity-modulated RT, volumetric-modulated arc therapy, stereotactic body RT and adaptive RT, which make possible a highly tailored dose distribution with maximum normal tissue sparing. We will analyse all the steps involved in the treatment: imaging, delineation of the tumour and organs at risk, treatment planning and finally image-guidance for accurate tumour localisation before and during treatment delivery. Particular attention will be given to the crucial role that imaging plays throughout the entire process. In the case of adaptive RT, the precise identification of target volumes as well as the monitoring of tumour response/modification during the course of treatment is mainly based on multimodality imaging that integrates morphological, functional and metabolic information. Moreover, real-time imaging of the tumour is essential in breathing adaptive techniques to compensate for tumour motion due to respiration. Brief reference will be made to the recent spread of particle beam therapy, in particular to the use of protons, but also to the yet limited experience of using heavy particles such as carbon ions. Finally, we will analyse the latest biological advances in tumour targeting. Indeed, the effectiveness of RT has been improved not only by technological developments but also through the integration of radiobiological knowledge to produce more efficient and personalised treatment strategies. PMID:29225692

  11. Recent advances in radiation oncology.

    PubMed

    Garibaldi, Cristina; Jereczek-Fossa, Barbara Alicja; Marvaso, Giulia; Dicuonzo, Samantha; Rojas, Damaris Patricia; Cattani, Federica; Starzyńska, Anna; Ciardo, Delia; Surgo, Alessia; Leonardi, Maria Cristina; Ricotti, Rosalinda

    2017-01-01

    Radiotherapy (RT) is very much a technology-driven treatment modality in the management of cancer. RT techniques have changed significantly over the past few decades, thanks to improvements in engineering and computing. We aim to highlight the recent developments in radiation oncology, focusing on the technological and biological advances. We will present state-of-the-art treatment techniques, employing photon beams, such as intensity-modulated RT, volumetric-modulated arc therapy, stereotactic body RT and adaptive RT, which make possible a highly tailored dose distribution with maximum normal tissue sparing. We will analyse all the steps involved in the treatment: imaging, delineation of the tumour and organs at risk, treatment planning and finally image-guidance for accurate tumour localisation before and during treatment delivery. Particular attention will be given to the crucial role that imaging plays throughout the entire process. In the case of adaptive RT, the precise identification of target volumes as well as the monitoring of tumour response/modification during the course of treatment is mainly based on multimodality imaging that integrates morphological, functional and metabolic information. Moreover, real-time imaging of the tumour is essential in breathing adaptive techniques to compensate for tumour motion due to respiration. Brief reference will be made to the recent spread of particle beam therapy, in particular to the use of protons, but also to the yet limited experience of using heavy particles such as carbon ions. Finally, we will analyse the latest biological advances in tumour targeting. Indeed, the effectiveness of RT has been improved not only by technological developments but also through the integration of radiobiological knowledge to produce more efficient and personalised treatment strategies.

  12. Prototype electron lens set-up for the Tevatron beam-beam compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Saewert, G.; Santucci, J.

    1999-05-17

    A prototype "electron lens" for the Tevatron beam-beam compensation project is commissioned at Fermilab. We de-scribe the set-up, report results of the first tests of the elec-tron beam, and discuss future plans.

  13. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, L; Wong, J; Li, R

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gatedmore » VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.« less

  14. Investigation of Beam Emittance and Beam Transport Line Optics on Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Andrew; Syphers, Michael

    2017-10-06

    Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.

  15. Electron beam transport analysis of W-band sheet beam klystron

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Xun; Barnett, Larry R.; Luhmann, Neville C.; Shin, Young-Min; Humphries, Stanley

    2010-04-01

    The formation and transport of high-current density electron beams are of critical importance for the success of a number of millimeter wave and terahertz vacuum devices. To elucidate design issues and constraints, the electron gun and periodically cusped magnet stack of the original Stanford Linear Accelerator Center designed W-band sheet beam klystron circuit, which exhibited poor beam transmission (≤55%), have been carefully investigated through theoretical and numerical analyses taking advantage of three-dimensional particle tracking solvers. The re-designed transport system is predicted to exhibit 99.76% (cold) and 97.38% (thermal) beam transmission, respectively, under space-charge-limited emission simulations. The optimized design produces the required high aspect ratio (10:1) sheet beam with 3.2 A emission current with highly stable propagation. In the completely redesigned model containing all the circuit elements, more than 99% beam transmission is experimentally observed at the collector located about 160 mm distant from the cathode surface. Results are in agreement of the predictions of two ray-tracing simulators, CST PARTICLE STUDIO and OMNITRAK which also predict the observed poor transmission in the original design. The quantitative analysis presents practical factors in the modeling process to design a magnetic lens structure to stably transport the elliptical beam along the long drift tube.

  16. Recent advances of nanotechnology in medicine and engineering

    NASA Astrophysics Data System (ADS)

    Nobile, Lucio; Nobile, Stefano

    2016-05-01

    The aim of this paper is to give an overview of some advances of nanotechnology in medicine and engineering, exploring typical applications of these emerging technologies. The mechanical properties of such small structures determine their utility and are therefore of considerable interest. Based on nanometer scale tests, a theoretical model to predict the bending strength of a nanobeam is proposed. A fracture approach which takes into account imperfections on the beam surface and crack growth is employed.

  17. Recent advances of nanotechnology in medicine and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobile, Lucio; Nobile, Stefano

    The aim of this paper is to give an overview of some advances of nanotechnology in medicine and engineering, exploring typical applications of these emerging technologies. The mechanical properties of such small structures determine their utility and are therefore of considerable interest. Based on nanometer scale tests, a theoretical model to predict the bending strength of a nanobeam is proposed. A fracture approach which takes into account imperfections on the beam surface and crack growth is employed.

  18. Gaussian-Beam/Physical-Optics Design Of Beam Waveguide

    NASA Technical Reports Server (NTRS)

    Veruttipong, Watt; Chen, Jacqueline C.; Bathker, Dan A.

    1993-01-01

    In iterative method of designing wideband beam-waveguide feed for paraboloidal-reflector antenna, Gaussian-beam approximation alternated with more nearly exact physical-optics analysis of diffraction. Includes curved and straight reflectors guiding radiation from feed horn to subreflector. For iterative design calculations, curved mirrors mathematically modeled as thin lenses. Each distance Li is combined length of two straight-line segments intersecting at one of flat mirrors. Method useful for designing beam-waveguide reflectors or mirrors required to have diameters approximately less than 30 wavelengths at one or more intended operating frequencies.

  19. ATCA for Machines-- Advanced Telecommunications Computing Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, R.S.; /SLAC

    2008-04-22

    The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R&D including application of HA principles to power electronics systems.

  20. BEAM DIAGNOSTICS USING BPM SIGNALS FROM INJECTED AND STORED BEAMS IN A STORAGE RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.M.; Shaftan; T.

    2011-03-28

    Many modern light sources are operating in top-off injection mode or are being upgraded to top-off injection mode. The storage ring always has the stored beam and injected beam for top-off injection mode. So the BPM data is the mixture of both beam positions and the injected beam position cannot be measured directly. We propose to use dedicated wide band BPM electronics in the NSLS II storage ring to retrieve the injected beam trajectory with the singular value decomposition (SVD) method. The beam position monitor (BPM) has the capability to measure bunch-by-bunch beam position. Similar electronics can be used tomore » measure the bunch-by-bunch beam current which is necessary to get the injection beam position. The measurement precision of current needs to be evaluated since button BPM sum signal has position dependence. The injected beam trajectory can be measured and monitored all the time without dumping the stored beam. We can adjust and optimize the injected beam trajectory to maximize the injection efficiency. We can also measure the storage ring acceptance by mapping the injected beam trajectory.« less

  1. Multi-shaped beam: development status and update on lithography results

    NASA Astrophysics Data System (ADS)

    Slodowski, Matthias; Doering, Hans-Joachim; Dorl, Wolfgang; Stolberg, Ines A.

    2011-04-01

    According to the ITRS [1] photo mask is a significant challenge for the 22nm technology node requirements and beyond. Mask making capability and cost escalation continue to be critical for future lithography progress. On the technological side mask specifications and complexity have increased more quickly than the half-pitch requirements on the wafer designated by the roadmap due to advanced optical proximity correction and double patterning demands. From the economical perspective mask costs have significantly increased each generation, in which mask writing represents a major portion. The availability of a multi-electron-beam lithography system for mask write application is considered a potential solution to overcome these challenges [2, 3]. In this paper an update of the development status of a full-package high-throughput multi electron-beam writer, called Multi Shaped Beam (MSB), will be presented. Lithography performance results, which are most relevant for mask writing applications, will be disclosed. The MSB technology is an evolutionary development of the matured single Variable Shaped Beam (VSB) technology. An arrangement of Multi Deflection Arrays (MDA) allows operation with multiple shaped beams of variable size, which can be deflected and controlled individually [4]. This evolutionary MSB approach is associated with a lower level of risk and a relatively short time to implementation compared to the known revolutionary concepts [3, 5, 6]. Lithography performance is demonstrated through exposed pattern. Further details of the substrate positioning platform performance will be disclosed. It will become apparent that the MSB operational mode enables lithography on the same and higher performance level compared to single VSB and that there are no specific additional lithography challenges existing beside those which have already been addressed [1].

  2. Laboratory Astrophysics Using High Intensity Particle and Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin

    History has shown that the symbiosis between direct observations and laboratory studies is instrumental in the progress of astrophysics. Recent years have seen growing interests in the laboratory investigation of astrophysical phenomena that can be addressed by high densities and advancement of technologies in lasers as well as high-energy particle beams. We will give examples on how frontier phenomena such as black holes, supernovae, gamma ray bursts, ultra high-energy cosmic rays, etc., can be investigated in the laboratory setting. Finally, we describe a possible laboratory astrophysics facility to be developed at SLAC.

  3. A gamma beam profile imager for ELI-NP Gamma Beam System

    NASA Astrophysics Data System (ADS)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  4. Beam width evolution of astigmatic hollow Gaussian beams in highly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Yang, Zhen-Feng; Jiang, Xue-Song; Yang, Zhen-Jun; Li, Jian-Xing; Zhang, Shu-Min

    We investigate the beam width evolution of astigmatic hollow Gaussian beams propagating in highly nonlocal nonlinear media. The input-power-induced different evolutions of the beam width are illustrated: (i) the beam widths in two transverse directions are compressed or broadened at the same time; (ii) the beam width in one transverse direction keeps invariant, and the other is compressed or broadened; (iii) furthermore, the beam width in one transverse direction is compressed, whereas it in the other transverse direction is broadened.

  5. Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation

    NASA Astrophysics Data System (ADS)

    Liu, Shengshuai; Wang, Hailong; Jing, Jietai

    2018-04-01

    We propose a two-beam pumped cascaded four-wave-mixing (CFWM) scheme with a double-Λ energy-level configuration in 85Rb vapor cell and experimentally observe the emission of up to 10 quantum correlated beams from such CFWM scheme. During this process, the seed beam is amplified; four new signal beams and five idler beams are generated. The 10 beams show strong quantum correlation which is characterized by the intensity-difference squeezing of about -6.7 ±0.3 dB. Then, by altering the angle between the two pump beams, we observe the notable transition of the number of the output beams from 10 to eight, and even to six. We find that both the number of the output quantum correlated beams and their degree of quantum correlation from such two-beam pumped CFWM scheme increase with the decrease of the angle between the two pump beams. Such system may find potential applications in quantum information and quantum metrology.

  6. Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam

    DOE PAGES

    Lin, Feng; Markus, Isaac M.; Doeff, Marca M.; ...

    2014-07-16

    Our investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. But, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi 0.4Mn 0.4Co 0.18Ti 0.02O 2 particles, repeated electron beam irradiation induced a phase transition from an Rmore » $$\\bar{3}$$m layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from R$$\\bar{3}$$m 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, in using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.« less

  7. Indirect self-modulation instability measurement concept for the AWAKE proton beam

    NASA Astrophysics Data System (ADS)

    Turner, M.; Petrenko, A.; Biskup, B.; Burger, S.; Gschwendtner, E.; Lotov, K. V.; Mazzoni, S.; Vincke, H.

    2016-09-01

    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV / c proton beam from the CERN SPS (longitudinal beam size σz = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of ≈ 7 ×1014 atoms /cm3 (plasma wavelength λp = 1.2 mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence an SMI saturation point resolution of 1.2 m can be achieved.

  8. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  9. Moving Beam-Blocker-Based Low-Dose Cone-Beam CT

    NASA Astrophysics Data System (ADS)

    Lee, Taewon; Lee, Changwoo; Baek, Jongduk; Cho, Seungryong

    2016-10-01

    This paper experimentally demonstrates a feasibility of moving beam-blocker-based low-dose cone-beam CT (CBCT) and exploits the beam-blocking configurations to reach an optimal one that leads to the highest contrast-to-noise ratio (CNR). Sparse-view CT takes projections at sparse view angles and provides a viable option to reducing dose. We have earlier proposed a many-view under-sampling (MVUS) technique as an alternative to sparse-view CT. Instead of switching the x-ray tube power, one can place a reciprocating multi-slit beam-blocker between the x-ray tube and the patient to partially block the x-ray beam. We used a bench-top circular cone-beam CT system with a lab-made moving beam-blocker. For image reconstruction, we used a modified total-variation minimization (TV) algorithm that masks the blocked data in the back-projection step leaving only the measured data through the slits to be used in the computation. The number of slits and the reciprocation frequency have been varied and the effects of them on the image quality were investigated. For image quality assessment, we used CNR and the detectability. We also analyzed the sampling efficiency in the context of compressive sensing: the sampling density and data incoherence in each case. We tested three sets of slits with their number of 6, 12 and 18, each at reciprocation frequencies of 10, 30, 50 and 70 Hz/rot. The optimum condition out of the tested sets was found to be using 12 slits at 30 Hz/rot.

  10. Theory of electronically phased coherent beam combination without a reference beam

    NASA Astrophysics Data System (ADS)

    Shay, Thomas M.

    2006-12-01

    The first theory for two novel coherent beam combination architectures that are the first electronic beam combination architectures that completely eliminate the need for a separate reference beam are presented. Detailed theoretical models are developed and presented for the first time.

  11. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  12. The NASA Advanced Communications Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Beck, G. A.

    1984-10-01

    Forecasts indicate that a saturation of the capacity of the satellite communications service will occur in the U.S. domestic market by the early 1990s. In order to prevent this from happening, advanced technologies must be developed. NASA has been concerned with such a development. One key is the exploitation of the Ka-band (30/20 GHz), which is much wider than C- and Ku-bands together. Another is the use of multiple narrow antenna beams in the satellite to achieve large frequency reuse factors with very high antenna gains. NASA has developed proof-of-concept hardware components which form the basis for a flight demonstration. The Advanced Communications Technology Satellite (ACTS) system will provide this demonstration. Attention is given to the ACTS Program definition, the ACTS Flight System, the Multibeam Communications Package, and the spacecraft bus.

  13. Fast Neutron Radiotherapy for Locally Advanced Prostate Cancer: Update of a Past Trial and Future Research Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krieger, John N.; Krall, John M.; Laramore, George E.

    1987-01-01

    Between June, 1977 and April, 1983 the Radiation Therapy Oncology Group (RTOG) sponsored a Phase III study comparing fast neutron radiotherapy as part of a mixed beam (neutron/photon) regimen with conventional photon (x-ray) radiotherapy for patients with locally advanced (stages C and o1 ) adenocarcinoma of the prostate. A total of 91 analyzable patients were entered into the study with -the two treatment groups being balanced in regard to all major prognostic variables. The current analysis is for a median follow-up of 6.7 years (range 3.4-9.0). Actuarial curves are presented for local/regional control, overall survival and "determinantal" survival. The resultsmore » are statistically significant in favor of the mixed beam group for all of the above parameters. At 5 years the local control rate is 81% on the mixed beam arm compared to 60% on the photon arm. Histologic evidence of residual prostatic carcinoma was documented in six patients with no clinical evidence of disease on both treatment arms. The actuarial overall survival rate at S years is 70% on the mixed beam compared to 56% on the photon arm. The determinantal survival at 5 years was 82%. on the mixed beam arm compared to 61% on the photon arm. The type of therapy appeared to be the most important predictor of both local tumor control and patient survival in a step-wise Cox analysis. There was no difference in the treatment related morbidity for the two patient groups. Mixed beam therapy may be superior to standard photon radiotherapy for treatment of locally advanced prostate cancer.« less

  14. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, Katsuya; Abrams, Robert; Dinkel, Holly

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at themore » MuCool Test Area at Fermilab.« less

  15. PAL-XFEL cavity beam position monitor pick-up design and beam test

    NASA Astrophysics Data System (ADS)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  16. Beam shaping in high-power laser systems with using refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications

  17. Laser Beam Shaping

    NASA Astrophysics Data System (ADS)

    Aït-Ameur, Kamel; Passilly, Nicolas; de Saint Denis, R.; Fromager, Michaël

    2008-09-01

    We consider the promising properties of very simple Diffractive Optical Elements (DOE) for reshaping the intensity profile of a laser beam. The first type of DOE that we have considered is a phase aperture which consists in a transparent plate with a circular relief introducing a π phase shift in the central region of the incident beam. The phase aperture is able to convert a Gaussian beam into a super-Gaussian, a ring-shaped or a doughnut profile. The second DOE that has been considered is an adjustable axicon able to transform a Gaussian laser beam into a dark hollow beam or a Bessel-Gauss beam. The desired conical geometry is obtained from a deformable mirror formed by a 2 inches, 0.25mm thick silicon wafer supported by a standard 2 inches optical mount. To achieve the adequate deformation a small metallic ball pushes the back of the mirror wafer. The realized shape is monitored with a Shack-Hartmann wave-front sensor and it is shown that conical shape cannot be achieved. Nevertheless, recorded wave fronts exhibit important third order spherical aberration able to achieve beam profile transformation as conical lenses.

  18. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    PubMed

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    field sizes from 3 × 3 to 25 × 25 cm(2) were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.

  19. Clinical implementation of photon beam flatness measurements to verify beam quality.

    PubMed

    Goodall, Simon; Harding, Nicholas; Simpson, Jake; Alexander, Louise; Morgan, Steve

    2015-11-08

    This work describes the replacement of Tissue Phantom Ratio (TPR) measurements with beam profile flatness measurements to determine photon beam quality during routine quality assurance (QA) measurements. To achieve this, a relationship was derived between the existing TPR15/5 energy metric and beam flatness, to provide baseline values and clinically relevant tolerances. The beam quality was varied around two nominal beam energy values for four matched Elekta linear accelerators (linacs) by varying the bending magnet currents and reoptimizing the beam. For each adjusted beam quality the TPR15/5 was measured using an ionization chamber and Solid Water phantom. Two metrics of beam flatness were evaluated using two identical commercial ionization chamber arrays. A linear relationship was found between TPR15/5 and both metrics of flatness, for both nominal energies and on all linacs. Baseline diagonal flatness (FDN) values were measured to be 103.0% (ranging from 102.5% to 103.8%) for 6 MV and 102.7% (ranging from 102.6% to 102.8%) for 10 MV across all four linacs. Clinically acceptable tolerances of ± 2% for 6 MV, and ± 3% for 10 MV, were derived to equate to the current TPR15/5 clinical tolerance of ± 0.5%. Small variations in the baseline diagonal flatness values were observed between ionization chamber arrays; however, the rate of change of TPR15/5 with diagonal flatness was found to remain within experimental uncertainty. Measurements of beam flatness were shown to display an increased sensitivity to variations in the beam quality when compared to TPR measurements. This effect is amplified for higher nominal energy photons. The derivation of clinical baselines and associated tolerances has allowed this method to be incorporated into routine QA, streamlining the process whilst also increasing versatility. In addition, the effect of beam adjustment can be observed in real time, allowing increased practicality during corrective and preventive maintenance

  20. Update on POCIT portable optical communicators: VideoBeam and EtherBeam

    NASA Astrophysics Data System (ADS)

    Mecherle, G. Stephen; Holcomb, Terry L.

    2000-05-01

    LDSC is developing the POCITTM (Portable Optical Communication Integrated Transceiver) family of products which includes VideoBeamTM and the latest addition, EtherBeamTM. Each is a full duplex portable laser communicator: VideoBeamTM providing near-broadcast- quality analog video and stereo audio, and EtherBeamTM providing standard Ethernet connectivity. Each POCITTM transceiver consists of a 3.5-pound unit with a binocular- type form factor, which can be manually pointed, tripod- mounted or gyro-stabilized. Both units have an operational range of over two miles (clear air) with excellent jam- resistance and low probability of interception characteristics. The transmission wavelength of 1550 nm enables Class 1 eyesafe operation (ANSI, IEC). The POCITTM units are ideally suited for numerous military scenarios, surveillance/espionage, industrial precious mineral exploration, and campus video teleconferencing applications. VideoBeam will be available second quarter 2000, followed by EtherBeam in third quarter 2000.

  1. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  2. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    PubMed

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  3. A system for online beam emittance measurements and proton beam characterization

    NASA Astrophysics Data System (ADS)

    Nesteruk, K. P.; Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Scampoli, P.

    2018-01-01

    A system for online measurement of the transverse beam emittance was developed. It is named 4PrOBεaM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multiple beam profiler method. The core of the system is constituted by four consecutive UniBEaM profilers, which are based on silica fibers passing across the beam. The 4PrOBεaM system was deployed for characterization studies of the 18 MeV proton beam produced by the IBA Cyclone 18 MeV cyclotron at Bern University Hospital (Inselspital). The machine serves daily radioisotope production and multi-disciplinary research, which is carried out with a specifically conceived Beam Transport Line (BTL). The transverse RMS beam emittance of the cyclotron was measured as a function of several machine parameters, such as the magnetic field, RF peak voltage, and azimuthal angle of the stripper. The beam emittance was also measured using the method based on the quadrupole strength variation. The results obtained with both techniques were compared and a good agreement was found. In order to characterize the longitudinal dynamics, the proton energy distribution was measured. For this purpose, a method was developed based on aluminum absorbers of different thicknesses, a UniBEaM detector, and a Faraday cup. The results were an input for a simulation of the BTL developed in the MAD-X software. This tool allows machine parameters to be tuned online and the beam characteristics to be optimized for specific applications.

  4. Method for measuring and controlling beam current in ion beam processing

    DOEpatents

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  5. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitterer, M.; Stancari, G.; Valishev, A.

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  6. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  7. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.

    1995-08-08

    A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.

  8. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.

    1995-01-01

    A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.

  9. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    NASA Astrophysics Data System (ADS)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is set up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. The beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.

  10. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE PAGES

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  11. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  12. Alternative Shapes and Shaping Techniques for Enhanced Transformer Ratios in Beam Driven Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    The transformer ration of collinear beam-driven techniques can be significantly improved by shaping the current profile of the drive bunch. To date, several current shapes have been proposed to increase the transformer ratio and produce quasi-uniform energy loss within the drive bunch. Some of these tailoring techniques are possible as a results of recent beam-dynamics advances, e.g., transverse-to-longitudinal emittance exchanger. In ths paper, we propose an alternative class of longitudinal shapes that enable high transformer ratio and uniform energy loss across the drive bunch. We also suggest a simple method based on photocathode-laser shaping and passive shaping in wakefield structuremore » to realize shape close to the theoretically optimized current profiles.« less

  13. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  14. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  15. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    NASA Astrophysics Data System (ADS)

    Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.

    2018-05-01

    An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.

  16. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  17. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE PAGES

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.; ...

    2018-04-20

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  18. The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Fiorentin, A.; Gambetta, G.; Gnesotto, F.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Moresco, M.; Ocello, E.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Sartori, E.; Siragusa, M.; Sonato, P.; Sottocornola, A.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Kashiwagi, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Maejima, T.; Kojima, A.; Umeda, N.; Yamanaka, H.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Heinemann, B.; Kraus, W.; Hanke, S.; Hauer, V.; Ochoa, S.; Blatchford, P.; Chuilon, B.; Xue, Y.; De Esch, H. P. L.; Hemsworth, R.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Cavenago, M.; D'Arienzo, M.; Sandri, S.; Tonti, A.

    2017-08-01

    The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now—when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.

  19. Ion beam figuring of highly steep mirrors with a 5-axis hybrid machine tool

    NASA Astrophysics Data System (ADS)

    Yin, Xiaolin; Tang, Wa; Hu, Haixiang; Zeng, Xuefeng; Wang, Dekang; Xue, Donglin; Zhang, Feng; Deng, Weijie; Zhang, Xuejun

    2018-02-01

    Ion beam figuring (IBF) is an advanced and deterministic method for optical mirror surface processing. The removal function of IBF varies with the different incident angles of ion beam. Therefore, for the curved surface especially the highly steep one, the Ion Beam Source (IBS) should be equipped with 5-axis machining capability to remove the material along the normal direction of the mirror surface, so as to ensure the stability of the removal function. Based on the 3-RPS parallel mechanism and two dimensional displacement platform, a new type of 5-axis hybrid machine tool for IBF is presented. With the hybrid machine tool, the figuring process of a highly steep fused silica spherical mirror is introduced. The R/# of the mirror is 0.96 and the aperture is 104mm. The figuring result shows that, PV value of the mirror surface error is converged from 121.1nm to32.3nm, and RMS value 23.6nm to 3.4nm.

  20. Electron beam collimation with a photon MLC for standard electron treatments

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.

    2018-01-01

    Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.

  1. Continuous 7-Days-A-Week External Beam Irradiation in Locally Advanced Cervical Cancer: Final Results of the Phase I/II Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serkies, Krystyna, E-mail: kserkies@wp.pl; Dziadziuszko, Rafal; Jassem, Jacek

    2012-03-01

    Purpose: To evaluate the feasibility and efficacy of definitive continuous 7-days-a-week pelvic irradiation without breaks between external beam radiotherapy and brachytherapy in locally advanced cervical cancer. Methods and Materials: Between November 1998 and December 1999, 30 patients with International Federation of Obstetrics and Gynecology Stage IIB or IIIB cervical cancer were included in a prospective Phase I/II study of continuous 7-days-a-week pelvic irradiation, to the total Manchester point B dose of 40.0-57.6 Gy. The first 13 patients (Group A) were given a daily tumor dose of 1.6 Gy, and the remaining 17 patients (Group B) were given 1.8 Gy. Onemore » or two immediate brachytherapy applications (point A dose 10-20 Gy, each) were performed in 28 cases. Results: Two patients did not complete the irradiation because of apparent early progression of disease during the irradiation. Eleven of the 28 evaluable patients (39%; 45% and 35% in Groups A and B, respectively) completed their treatment within the prescribed overall treatment time. Acute toxicity (including severe European Organisation for Research and Treatment of Cancer/Radiation Therapy Oncology Group Grade 3 and 4 effects in 40%) was experienced by 83% of patients and resulted in unplanned treatment interruptions in 40% of all patients (31% and 47% of patients in Groups A and B, respectively). Severe intestinal side effects occurred in 31% and 41% of Patients in Groups A and B, respectively (p = 0.71). The 5-year overall survival probability was 33%. Cancer recurrence occurred in 63% of patients: 20% inside and 57% outside the pelvis. Cumulative incidence of late severe bowel and urinary bladder toxicity at 24 months was 15%. Conclusion: Continuous irradiation in locally advanced cervical cancer is associated with a high incidence of severe acute toxicity, resulting in unplanned treatment interruptions. Late severe effects and survival after continuous radiotherapy do not substantially differ

  2. Mode coupling in vortex beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2018-05-01

    We examine the mode coupling in vortex beams. Mode coupling also known as the crosstalk takes place due to turbulent characteristics of the atmospheric communication medium. This way, the transmitted intrinsic mode of the vortex beam leaks power to other extrinsic modes, thus preventing the correct detection of the transmitted symbol which is usually encoded into the mode index or the orbital angular momentum state of the vortex beam. Here we investigate the normalized power mode coupling ratios of several types of vortex beams, namely, Gaussian vortex beam, Bessel Gaussian beam, hypergeometric Gaussian beam and Laguerre Gaussian beam. It is found that smaller mode numbers lead to less mode coupling. The same is partially observed for increasing source sizes. Comparing the vortex beams amongst themselves, it is seen that hypergeometric Gaussian beam is the one retaining the most power in intrinsic mode during propagation, but only at lowest mode index of unity. At higher mode indices this advantage passes over to the Gaussian vortex beam.

  3. Advances in LEDs for automotive applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  4. Bolt beam propagation analysis

    NASA Astrophysics Data System (ADS)

    Shokair, I. R.

    BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.

  5. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As themore » department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.« less

  6. 4D dose calculation and delivery with interplay effects between respiratory motion and uniform scanning proton beam

    NASA Astrophysics Data System (ADS)

    Zhao, Qingya

    2011-12-01

    Proton radiotherapy has advantages to deliver accurate high conformal radiation dose to the tumor while sparing the surrounding healthy tissue and critical structures. However, the treatment effectiveness is degraded greatly due to patient free breathing during treatment delivery. Motion compensation for proton radiotherapy is especially challenging as proton beam is more sensitive to the density change along the beam path. Tumor respiratory motion during treatment delivery will affect the proton dose distribution and the selection of optimized parameters for treatment planning, which has not been fully addressed yet in the existing approaches for proton dose calculation. The purpose of this dissertation is to develop an approach for more accurate dose delivery to a moving tumor in proton radiotherapy, i.e., 4D proton dose calculation and delivery, for the uniform scanning proton beam. A three-step approach has been carried out to achieve this goal. First, a solution for the proton output factor calculation which will convert the prescribed dose to machine deliverable monitor unit for proton dose delivery has been proposed and implemented. The novel sector integration method is accurate and time saving, which considers the various beam scanning patterns and treatment field parameters, such as aperture shape, aperture size, measuring position, beam range, and beam modulation. Second, tumor respiratory motion behavior has been statistically characterized and the results have been applied to advanced image guided radiation treatment. Different statistical analysis and correlation discovery approaches have been investigated. The internal / external motion correlation patterns have been simulated, analyzed, and applied in a new hybrid gated treatment to improve the target coverage. Third, a dose calculation method has been developed for 4D proton treatment planning which integrates the interplay effects of tumor respiratory motion patterns and proton beam delivery

  7. Earth-to-Orbit Beamed Energy eXperiment (EBEX)

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.

    2017-01-01

    As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are 1) large area, low mass spacecraft and 2) efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. A more detailed investigation of accessing LightSail-2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, it is a first step toward that

  8. Beam shaping with vortex beam generated by liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Gao, Yue; Liu, Ke; Sun, Zeng-yu; Guo, Lei; Gan, Yu

    2015-02-01

    An optical vortex is a beam of light with phase varying in a corkscrew-like manner along its direction of propagation and so has a helical wavefront. When such a vectorial vortex beam and the Gaussian beam with orthogonal polarization are focused by low NA lens, the Gaussian component causes a focal intensity distribution with a solid center and the vortex component causes a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Flat top focusing can be obtained under appropriate conditions. It is demonstrated through experiments with a liquid crystal spatial light modulator in such a beam, that flattop focus can be obtained by vectorial vortex beams with topological charge of +1 to achieve beam shaping vortex.

  9. Light beam frequency comb generator

    DOEpatents

    Priatko, G.J.; Kaskey, J.A.

    1992-11-24

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.

  10. Light beam frequency comb generator

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1992-01-01

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

  11. Hankel-Bessel laser beams.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A; Soifer, Victor A

    2012-05-01

    An analytical solution of the scalar Helmholtz equation to describe the propagation of a laser light beam in the positive direction of the optical axis is derived. The complex amplitude of such a beam is found to be in direct proportion to the product of two linearly independent solutions of Kummer's differential equation. Relationships for a particular case of such beams-namely, the Hankel-Bessel (HB) beams-are deduced. The focusing of the HB beams is studied. © 2012 Optical Society of America

  12. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-03-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  13. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-06-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  14. Review of medical radiography and tomography with proton beams

    NASA Astrophysics Data System (ADS)

    Johnson, Robert P.

    2018-01-01

    The use of hadron beams, especially proton beams, in cancer radiotherapy has expanded rapidly in the past two decades. To fully realize the advantages of hadron therapy over traditional x-ray and gamma-ray therapy requires accurate positioning of the Bragg peak throughout the tumor being treated. A half century ago, suggestions had already been made to use protons themselves to develop images of tumors and surrounding tissue, to be used for treatment planning. The recent global expansion of hadron therapy, coupled with modern advances in computation and particle detection, has led several collaborations around the world to develop prototype detector systems and associated reconstruction codes for proton computed tomography (pCT), as well as more simple proton radiography, with the ultimate intent to use such systems in clinical treatment planning and verification. Recent imaging results of phantoms in hospital proton beams are encouraging, but many technical and programmatic challenges remain to be overcome before pCT scanners will be introduced into clinics. This review introduces hadron therapy and the perceived advantages of pCT and proton radiography for treatment planning, reviews its historical development, and discusses the physics related to proton imaging, the associated experimental and computation issues, the technologies used to attack the problem, contemporary efforts in detector and computational development, and the current status and outlook.

  15. Analysis of orthotropic beams

    Treesearch

    Jen Y. Liu; S. Cheng

    1979-01-01

    A plane-stress analysis of orthotropic or isotropic beams is presented. The loading conditions considered are: (1) a concentrated normal load arbitrarily located on the beam, and (2) a distributed normal load covering an arbitrary length of the beam. exhibit close agreement with existing experimental data from Sitka spruce beams. Other loading conditions can similarly...

  16. The Physics and Applications of High Brightness Electron Beams

    NASA Astrophysics Data System (ADS)

    Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca

    2007-09-01

    Plenary sessions. RF deflector based sub-Ps beam diagnostics: application to FEL and advanced accelerators / D. Alesini. Production of fermtosecond pulses and micron beam spots for high brightness electron beam applications / S.G. Anderson ... [et al.]. Wakefields of sub-picosecond electron bunches / K.L.F. Bane. Diamond secondary emitter / I. Ben-Zvi ... [et al.]. Parametric optimization for an X-ray free electron laser with a laser wiggler / R. Bonifacio, N. Piovella and M.M. Cola. Needle cathodes for high-brightness beams / C.H. Boulware ... [et al.]. Non linear evolution of short pulses in FEL cascaded undulators and the FEL harmonic cascade / L. Giannessi and P. Musumeci. High brightness laser induced multi-meV electron/proton sources / D. Giulietti ... [et al.]. Emittance limitation of a conditioned beam in a strong focusing FEL undulator / Z. Huang, G. Stupakov and S. Reiche. Scaled models: space-charge dominated electron storage rings / R.A. Kishek ... [et al.]. High brightness beam applications: energy recovered linacs / G.A. Krafft. Maximizing brightness in photoinjectors / C. Limborg-Deprey and H. Tomizawa. Ultracold electron sources / O.J. Luiten ... [et al.]. Scaling laws of structure-based optical accelerators / A. Mizrahi, V. Karagodsky and L. Schächter. High brightness beams-applications to free-electron lasers / S. Reiche. Conception of photo-injectors for the CTF3 experiment / R. Roux. Superconducting RF photoinjectors: an overview / J. Sekutowicz. Status and perspectives of photo injector developments for high brightness beams / F. Stephan. Results from the UCLA/FNLP underdense plasma lens experiment / M.C. Thompson ... [et al.]. Medical application of multi-beam compton scattering monochromatic tunable hard X-ray source / M. Uesaka ... [et al.]. Design of a 2 kA, 30 fs RF-photoinjector for waterbag compression / S.B. Van Der Geer, O.J. Luiten and M.J. De Loos. Proposal for a high-brightness pulsed electron source / M. Zolotorev ... [et al

  17. eRHIC Beam Scrubbing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S. Y.

    We propose using beam scrubbing to mitigate the electron cloud effect in the eRHIC. The bunch number is adjusted below the heat load limit, then it increases with the reduced secondary electron yield resulted from the beam scrubbing, up to the design bunch number. Since the electron density threshold of beam instability is lower at the injection, a preliminary injection scrubbing should go first, where large chromaticity can be used to keep the beam in the ring for scrubbing. After that, the beam can be ramped to full energy, allowing physics scrubbing. Simulations demonstrated that with beam scrubbing in amore » reasonable period of time, the eRHIC baseline design is feasible.« less

  18. Beam Development_V6MP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilpatrick, John D.

    2014-03-24

    This presentation includes slides on Conditions; Sternglass states; H+ beam interacts with a W sense wire – Sternglass theory for SE current; Observed H+ beam at 03WS001 location; Jan 23 data; H- beam at 03WS001 location, Jan 23 data, Sternglass theory for SE current; H- beam at 03WS001 location; Jan 23 data; H+ beam at 04WS001 location, Jan 23 data, Sternglass theory for SE current; H+ beam at 04WS001 location; Jan 23 data; H- beam at 10WS001 location, Nov 17, 2013 data, Sternglass theory for SE current; H- beam at 10WS001 location; Nov 17, 2013 data; H- beam at 11WS001more » location, Nov 17, 2013 data, Sternglass theory for SE current; and lastly H- beam at 11WS001 location; Nov 17, 2013 data.« less

  19. POCIT portable optical communicators: VideoBeam and EtherBeam

    NASA Astrophysics Data System (ADS)

    Mecherle, G. Stephen; Holcomb, Terry L.

    1999-12-01

    LDSC is developing the POCITTM (Portable Optical Communication Integrated Transceiver) family of products which now includes VideoBeamTM and the latest addition, EtherBeamTM. Each is a full duplex portable laser communicator: VideoBeamTM providing near-broadcast- quality analog video and stereo audio, and EtherBeamTM providing standard Ethernet connectivity. Each POCITTM transceiver consists of a 3.5-pound unit with a binocular- type form factor, which can be manually pointed, tripod- mounted or gyro-stabilized. Both units have an operational range of over two miles (clear air) with excellent jam- resistance and low probability of interception characteristics. The transmission wavelength of 1550 nm enables Class I eyesafe operation (ANSI, IEC). The POCITTM units are ideally suited for numerous miliary scenarios, surveillance/espionage, industrial precious mineral exploration, and campus video teleconferencing applications.

  20. Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers

    NASA Astrophysics Data System (ADS)

    Dowdell, S.; Tyler, M.; McNamara, J.; Sloan, K.; Ceylan, A.; Rinks, A.

    2016-12-01

    Plane-parallel ionisation chambers are regularly used to conduct relative dosimetry measurements for therapeutic kilovoltage beams during commissioning and routine quality assurance. This paper presents the first quantification of the polarity effect in kilovoltage photon beams for two types of commercially available plane-parallel ionisation chambers used for such measurements. Measurements were performed at various depths along the central axis in a solid water phantom and for different field sizes at 2 cm depth to determine the polarity effect for PTW Advanced Markus and Roos ionisation chambers (PTW-Freiburg, Germany). Data was acquired for kilovoltage beams between 100 kVp (half-value layer (HVL)  =  2.88 mm Al) and 250 kVp (HVL  =  2.12 mm Cu) and field sizes of 3-15 cm diameter for 30 cm focus-source distance (FSD) and 4  ×  4 cm2-20  ×  20 cm2 for 50 cm FSD. Substantial polarity effects, up to 9.6%, were observed for the Advanced Markus chamber compared to a maximum 0.5% for the Roos chamber. The magnitude of the polarity effect was observed to increase with field size and beam energy but was consistent with depth. The polarity effect is directly influenced by chamber design, with potentially large polarity effects for some plane-parallel ionisation chambers. Depending on the specific chamber used, polarity corrections may be required for output factor measurements of kilovoltage photon beams. Failure to account for polarity effects could lead to an incorrect dose being delivered to the patient.

  1. Cross-sectional mapping for refined beam elements with applications to shell-like structures

    NASA Astrophysics Data System (ADS)

    Pagani, A.; de Miguel, A. G.; Carrera, E.

    2017-06-01

    This paper discusses the use of higher-order mapping functions for enhancing the physical representation of refined beam theories. Based on the Carrera unified formulation (CUF), advanced one-dimensional models are formulated by expressing the displacement field as a generic expansion of the generalized unknowns. According to CUF, a novel physically/geometrically consistent model is devised by employing Legendre-like polynomial sets to approximate the generalized unknowns at the cross-sectional level, whereas a local mapping technique based on the blending functions method is used to describe the exact physical boundaries of the cross-section domain. Classical and innovative finite element methods, including hierarchical p-elements and locking-free integration schemes, are utilized to solve the governing equations of the unified beam theory. Several numerical applications accounting for small displacements/rotations and strains are discussed, including beam structures with cross-sectional curved edges, cylindrical shells, and thin-walled aeronautical wing structures with reinforcements. The results from the proposed methodology are widely assessed by comparisons with solutions from the literature and commercial finite element software tools. The attention is focussed on the high computational efficiency and the marked capabilities of the present beam model, which can deal with a broad spectrum of structural problems with unveiled accuracy in terms of geometrical representation of the domain boundaries.

  2. Practical use of a plastic scintillator for quality assurance of electron beam therapy.

    PubMed

    Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige

    2017-06-07

    Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within  ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).

  3. Two kinds of Airy-related beams

    NASA Astrophysics Data System (ADS)

    Xu, Yiqing; Zhou, Guoquan; Zhang, Lijun; Ru, Guoyun

    2015-08-01

    Two kinds of Airy-related beams are introduced in this manuscript. The normalized intensity distribution in the x-direction of the two kinds of Airy-related beams is close to that of the Gaussian beam. The normalized intensity distribution in the y-direction of the two kinds of Airy-related beams is close to that of the second-order and the third-order elegant Hermite-Gaussian beams, respectively. Analytical expressions of the two kinds of Airy-related beams passing through an ABCD paraxial optical system are derived. The beam propagation factors for the two kinds of Airy-related beams are 1.933 and 2.125, respectively. Analytical expressions of the beam half widths and the kurtosis parameters of the two kinds of Airy-related beams passing through an ABCD paraxial optical system are also presented. As a numerical example, the propagation properties of the two kinds of Airy-related beams are demonstrated in free space. Moreover, the comparison between the two kinds of Airy-related beams and their corresponding elegant Hermite-Gaussian beams along the two transverse directions are performed in detail. Upon propagation, the former kind of Airy-related beam will evolve from the central bright beam into the dark hollow beam. Contrarily, the latter kind of Airy-related beam will evolve from the dark hollow beam into the central bright beam. These two kinds of Airy-related beams can be used to describe specially distributed beams.

  4. SU-F-T-225: Is It Time to Have Pre-Configured Therapeutic Beams Available in Commercial Treatment Planning Systems?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, G

    Purpose: Commissioning radiation beams requires considerable effort to obtain the beam data for beam configuration in a commercial treatment planning system. With the advances in technology, the manufacturer of accelerators now has the ability to adjust radiation beam parameters to meet pre-determined specifications with high precision. This study aims to illustrate the feasibility of making pre-configured radiation beams available in commercial treatment planning systems. Methods: In recent years, Varian has made a set of measured beam data from the TrueBeam accelerator available to users. Although the beam data are provided as “suggestive data” without warranty, the commissioned data measured bymore » users have been shown to be in excellent agreement with the data set provided when the beams from the installed Linacs were adjusted to meet the beam specifications. An unofficial survey among Varian Linac TrueBeam users shows that the suggestive data set has been used with validation by users in some clinics. This indicates that radiation beams from a specified Linac can be standardized and pre-configured in a treatment planning system. Results: Two newly installed Varian TrueBeam accelerators at two different centers were examined in which one set of commissioned beam data was obtained from measurements performed by an independent physics consulting company and the other was measured by local physicists in the department. All beams from both accelerators were tuned to meet the manufacturer’s specifications. Discrepancies of less than 1% were found between the commissioned beam data from both accelerators and the suggestive data set provided by Varian. Conclusion: It may be feasible that radiation beams can be pre-configured in commercial treatment planning systems. The radiation beam users will perform the beam validation and end-to-end tests instead of configuring beams. This framework can increase both the efficiency and the accuracy in commercial

  5. Shaping the beam profile of a partially coherent beam by a phase aperture

    NASA Astrophysics Data System (ADS)

    Wu, Gaofeng; Cai, Yangjian; Chen, Jun

    2011-08-01

    By use of a tensor method, an analytical formula for a partially coherent Gaussian Schell-model (GSM) beam truncated by a circular phase aperture propagating through a paraxial ABCD optical system is derived. The propagation properties of a GSM beam truncated by a circular phase aperture in free space are studied numerically. It is found that the circular phase aperture can be used to shape the beam profile of a GSM beam and generate partially coherent dark hollow or flat-topped beam, which is useful in many applications, e.g., optical trapping, free-space optical communication, and material thermal processing. The propagation factor of a GSM beam truncated by a circular phase aperture is also analyzed.

  6. Method and apparatus for timing of laser beams in a multiple laser beam fusion system

    DOEpatents

    Eastman, Jay M.; Miller, Theodore L.

    1981-01-01

    The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.

  7. Curved Surface Beam Splitter

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1983-01-01

    Beam splitter with curved entrance and exit surfaces introduces less chromatic aberration and Seidel aberrations in some optical systems than traditional plate or block beam splitters. Spherical-surface beam splitter is used in Schmidt-type mirror objective to split converging image-forming beam so two images are formed. Small aberrations introduced are corrected by compensator plate located at or near aperture stop.

  8. Advanced Rainbow Solar Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism

  9. Design and application of multimegawatt X -band deflectors for femtosecond electron beam diagnostics

    DOE PAGES

    Dolgashev, Valery A.; Bowden, Gordon; Ding, Yuantao; ...

    2014-10-02

    Performance of the x-ray free electron laser Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET) is determined by the properties of their extremely short electron bunches. Multi-GeV electron bunches in both LCLS and FACET are less than 100 fs long. Optimization of beam properties and understanding of free-electron laser operation require electron beam diagnostics with time resolution of about 10 fs. We designed, built and commissioned a set of high frequency X-band deflectors which can measure the beam longitudinal space charge distribution and slice energy spread to better than 10 fs resolution at fullmore » LCLS energy (14 GeV), and with 70 fs resolution at full FACET energy (20 GeV). Use of high frequency and high gradient in these devices allows them to reach unprecedented performance. We report on the physics motivation, design considerations, operational configuration, cold tests, and typical results of the X-band deflector systems currently in use at SLAC.« less

  10. Frontiers of X-ray research at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehmer, J.J.

    1995-12-31

    With providential timing, the Advanced Photon Source (APS) at Argonne National Laboratory has begun to produce x-rays during the centennial year of Wilhelm Rongtgen`s discovery of a {open_quotes}new kind of rays.{close_quotes} When complete, this third-generation, 7-GeV positron storage ring will produce nearly one hundred intense x-ray beams, with a major emphasis on the laser-like (highly collimated, locally coherent) beams from undulator sources. This talk will provide an overview of (1) the important properties of the synchrotron radiation to be produced by the APS, (2) the major classes of experimental approaches that use x-rays, and (3) some speculation on the impactsmore » of the APS on the materials, chemical, biological, and environmental sciences.« less

  11. Pencil beam characteristics of the next-generation proton scanning gantry of PSI: design issues and initial commissioning results

    NASA Astrophysics Data System (ADS)

    Pedroni, E.; Meer, D.; Bula, C.; Safai, S.; Zenklusen, S.

    2011-07-01

    In this paper we report on the main design features, on the realization process and on selected first results of the initial commissioning of the new Gantry 2 of PSI for the delivery of proton therapy with new advanced pencil beam scanning techniques. We present briefly the characteristics of the new gantry system with main emphasis on the beam optics, on the characterization of the pencil beam used for scanning and on the performance of the scanning system. The idea is to give an overview of the major components of the whole system. The main long-term technical goal of the new equipment of Gantry 2 is to expand the use of pencil beam scanning to the whole spectrum of clinical indications including moving targets. We report here on the initial experience and problems encountered in the development of the system with selected preliminary results of the ongoing commissioning of Gantry 2.

  12. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  13. Generalized Ince Gaussian beams

    NASA Astrophysics Data System (ADS)

    Bandres, Miguel A.; Gutiérrez-Vega, Julio C.

    2006-08-01

    In this work we present a detailed analysis of the tree families of generalized Gaussian beams, which are the generalized Hermite, Laguerre, and Ince Gaussian beams. The generalized Gaussian beams are not the solution of a Hermitian operator at an arbitrary z plane. We derived the adjoint operator and the adjoint eigenfunctions. Each family of generalized Gaussian beams forms a complete biorthonormal set with their adjoint eigenfunctions, therefore, any paraxial field can be described as a superposition of a generalized family with the appropriate weighting and phase factors. Each family of generalized Gaussian beams includes the standard and elegant corresponding families as particular cases when the parameters of the generalized families are chosen properly. The generalized Hermite Gaussian and Laguerre Gaussian beams correspond to limiting cases of the generalized Ince Gaussian beams when the ellipticity parameter of the latter tends to infinity or to zero, respectively. The expansion formulas among the three generalized families and their Fourier transforms are also presented.

  14. Preliminary Experimental Investigation of Quasi Achromat scheme at Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng; Shang, Hairong

    Next generation storage rings require weaker dipolemagnets and stronger quadrupole focusing to achieve very low emittance. To suppress the geometric and chromatic optics aberrations introduced by the strong sextupoles, achromat and quasi achromat schemes are applied in the lattice design to improve the beam dynamics performance. In this paper, some preliminary experimental investigation of the quasi achromat scheme at the Advanced Photon Source (APS) are presented. Three different operation lattices are compared on their beam dynamics performance. Although none of these operation lattices achieve ideal quasi achromat condition, they have certain relevant features. It is observed that fewer resonances aremore » present in the nominal operation lattice which is most close to quasi achromat required conditions.« less

  15. Conceptual design of front ends for the advanced photon source multi-bend achromats upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Y., E-mail: jaskiy@aps.anl.gov; Westferro, F., E-mail: westferr@aps.anl.gov; Lee, S. H., E-mail: shlee@aps.anl.gov

    2016-07-27

    The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less

  16. Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Y.; Westferro, F.; Lee, S. H.

    2016-07-27

    The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less

  17. X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Xiao, Xianghui; Fusseis, Florian; De Carlo, Francesco

    2012-10-01

    State-of-art synchrotron radiation based micro-computed tomography provides high spatial and temporal resolution. This matches the needs of many research problems in geosciences. In this letter we report the current capabilities in microtomography at sector 2BM at the Advanced Photon Source (APS) of Argonne National Laboratory. The beamline is well suited to routinely acquire three-dimensional data of excellent quality with sub-micron resolution. Fast cameras in combination with a polychromatic beam allow time-lapse experiments with temporal resolutions of down to 200 ms. Data processing utilizes quantitative phase retrieval to optimize contrast in phase contrast tomographic data. The combination of these capabilities with purpose-designed experimental cells allows for a wide range of dynamic studies on geoscientific topics, two of which are summarized here. In the near future, new experimental cells capable of simulating conditions in most geological reservoirs will be available for general use. Ultimately, these advances will be matched by a new wide-field imaging beam line, which will be constructed as part of the APS upgrade. It is expected that even faster tomography with larger field of view can be conducted at this beam line, creating new opportunities for geoscientific studies.

  18. Improving the particle beam characteristics resulting from laser ion acceleration at ultra high intensity through target manipulation - Numerical modeling

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; d'Humieres, Emmanuel; Vizman, Daniel

    2017-12-01

    The necessity to produce superior quality ion and electron beams has been a hot research field due to the advances in laser science in the past decade. This work focuses on the parametric study of different target density profiles in order to determine their effect on the spatial distribution of the accelerated particle beam, the particle maximum energy, and the electromagnetic field characteristics. For the scope of this study, the laser pulse parameters were kept constant, while varying the target parameters. The study continues the work published in [1] and focuses on further studying the effects of target curvature coupled with a cone laser focusing structure. The results show increased particle beam focusing and a significant enhancement in particle maximum energy.

  19. Numerical simulation of electron beam welding with beam oscillations

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  20. SU-E-T-470: Beam Performance of the Radiance 330 Proton Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaryan, H; Nazaryan, V; Wang, F

    2014-06-01

    Purpose: The ProTom Radiance 330 proton radiotherapy system is a fully functional, compact proton radiotherapy system that provides advanced proton delivery capabilities. It supports three-dimensional beam scanning with energy and intensity modulation. A series of measurements have been conducted to characterize the beam performance of the first installation of the system at the McLaren Proton Therapy Center in Flint, Michigan. These measurements were part of the technical commissioning of the system. Select measurements and results are presented. Methods: The Radiance 330 proton beam energy range is 70–250 MeV for treatment, and up to 330 MeV for proton tomography and radiography.more » Its 3-D scanning capability, together with a small beam emittance and momentum spread, provides a highly efficient beam delivery. During the technical commissioning, treatment plans were created to deliver uniform maps at various energies to perform Gamma Index analysis. EBT3 Gafchromic films were irradiated using the Planned irradiation maps. Bragg Peak chamber was used to test the dynamic range during a scan in one layer for high (250 MeV) and Low (70 MeV) energies. The maximum and minimum range, range adjustment and modulation, distal dose falloff (80%–20%), pencil beam spot size, spot placement accuracy were also measured. The accuracy testing included acquiring images, image registration, receiving correction vectors and applying the corrections to the robotic patient positioner. Results: Gamma Index analysis of the Treatment Planning System (TPS) data vs. Measured data showed more than 90% of points within (3%, 3mm) for the maps created by the TPS. At Isocenter Beam Size (One sigma) < 3mm at highest energy (250 MeV) in air. Beam delivery was within 0.6 mm of the intended target at the entrance and the exit of the beam, through the phantom. Conclusion: The Radiance 330 Beam Performance Measurements have confirmed that the system operates as designed with excellent