Sample records for icg fluorescence method

  1. Clinical application of indocyanine green (ICG) fluorescent imaging of hepatoblastoma.

    PubMed

    Yamamichi, Taku; Oue, Takaharu; Yonekura, Takeo; Owari, Mitsugu; Nakahata, Kengo; Umeda, Satoshi; Nara, Keigo; Ueno, Takehisa; Uehara, Shuichiro; Usui, Noriaki

    2015-05-01

    Although the usefulness of intraoperative indocyanine green (ICG) fluorescent imaging for the resection of hepatocellular carcinoma has been reported, its usefulness for the resection of hepatoblastoma remains unclear. This study clarifies the feasibility of intraoperative ICG fluorescent imaging for the resection of hepatoblastoma. In three hepatoblastoma patients, a primary tumor, recurrent tumor, and lung metastatic lesions were intraoperatively examined using a near-infrared fluorescence imaging system after the preoperative administration of ICG. ICG fluorescent imaging was useful for the surgical navigation in hepatoblastoma patients. In the first case, the primary hepatoblastoma exhibited intense fluorescence during right hepatectomy, but no fluorescence was detected in the residual liver. In the second case, a recurrent tumor exhibited fluorescence between the residual liver and diaphragm. A complete resection of the residual liver, with a partial resection of the diaphragm, followed by liver transplantation was performed. In the third case with multiple lung metastases, each metastatic lesion showed positive fluorescence, and all were completely resected. These fluorescence-positive lesions were pathologically proven to be viable hepatoblastoma cells. Intraoperative ICG fluorescence imaging for patients with hepatoblastoma was feasible and useful for identifying small viable lesions and confirming that no remnant tumor remained after resection. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging

    PubMed Central

    Yu, Shuai; Cheng, Bingbing; Yao, Tingfeng; Xu, Cancan; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    Recently, we developed a new technology, ultrasound-switchable fluorescence (USF), for high-resolution imaging in centimeter-deep tissues via fluorescence contrast. The success of USF imaging highly relies on excellent contrast agents. ICG-encapsulated poly(N-isopropylacrylamide) nanoparticles (ICG-NPs) are one of the families of the most successful near-infrared (NIR) USF contrast agents. However, the first-generation ICG-NPs have a short shelf life (<1 month). This work significantly increases the shelf life of the new-generation ICG-NPs (>6 months). In addition, we have conjugated hydroxyl or carboxyl function groups on the ICG-NPs for future molecular targeting. Finally, we have demonstrated the effect of temperature-switching threshold (Tth) and the background temperature (TBG) on the quality of USF images. We estimated that the Tth of the ICG-NPs should be controlled at ~38–40 °C (slightly above the body temperature of 37 °C) for future in vivo USF imaging. Addressing these challenges further reduces the application barriers of USF imaging. PMID:27775014

  3. Effects of ICG concentration and particle diameter on photophysical properties of ICG-doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Crovisier, Jason; Bahmani, Baharak; Saleh, Reema; Vullev, Valentine; Anvari, Bahman

    2014-03-01

    The variety of nanoparticles developed by numerous investigators has presented a diverse platform for various optical imaging applications in biomedicine. We have previously reported that the FDA-approved chromophore Indocyanine Green (ICG) can be successfully encapsulated by cross-linked poly-allylamine hydrochloride (PAH)-Disodium Monophosphate (Na2HPO4) to form a nanoparticle for near-infrared imaging applications. The diameter of the constructs is dependent on the charge ratio between the polymer and salt used to encapsulate the chromophore. Modifications of the synthesis methods can alter the photophysical properties of the capsules, either through the adjustment of the charge ratio between PAH and Na2HPO4 or concentration of ICG successfully impregnated into the capsule. Through understanding the effects of tuning the nanoparticle properties, the photophysical characteristics of the constructs can be optimized. Here we present the results of adjusting the diameter of the nanoparticle and amount of ICG on the hydrodynamic diameters, absorption and fluorescence characteristics, and the relative fluorescence quantum yield. Optimizing the photophysical properties of the constructs can lead to increased imaging sensitivity and contrast for potential translational applications, including tumor imaging, which may utilize these nanoconstructs.

  4. The second window ICG technique demonstrates a broad plateau period for near infrared fluorescence tumor contrast in glioblastoma

    PubMed Central

    Sheikh, Saad; Xia, Leilei; Pierce, John; Newton, Andrew; Predina, Jarrod; Cho, Steve; Nasrallah, MacLean; Singhal, Sunil; Dorsey, Jay; Lee, John Y. K.

    2017-01-01

    Introduction Fluorescence-guided surgery has emerged as a powerful tool to detect, localize and resect tumors in the operative setting. Our laboratory has pioneered a novel way to administer an FDA-approved near-infrared (NIR) contrast agent to help surgeons with this task. This technique, coined Second Window ICG, exploits the natural permeability of tumor vasculature and its poor clearance to deliver high doses of indocyanine green (ICG) to tumors. This technique differs substantially from established ICG video angiography techniques that visualize ICG within minutes of injection. We hypothesized that Second Window ICG can provide NIR optical contrast with good signal characteristics in intracranial brain tumors over a longer period of time than previously appreciated with ICG video angiography alone. We tested this hypothesis in an intracranial mouse glioblastoma model, and corroborated this in a human clinical trial. Methods Intracranial tumors were established in 20 mice using the U251-Luc-GFP cell line. Successful grafts were confirmed with bioluminescence. Intravenous tail vein injections of 5.0 mg/kg (high dose) or 2.5 mg/kg (low dose) ICG were performed. The Perkin Elmer IVIS Spectrum (closed field) was used to visualize NIR fluorescence signal at seven delayed time points following ICG injection. NIR signals were quantified using LivingImage software. Based on the success of our results, human subjects were recruited to a clinical trial and intravenously injected with high dose 5.0 mg/kg. Imaging was performed with the VisionSense Iridium (open field) during surgery one day after ICG injection. Results In the murine model, the NIR signal-to-background ratio (SBR) in gliomas peaks at one hour after infusion, then plateaus and remains strong and stable for at least 48 hours. Higher dose 5.0 mg/kg improves NIR signal as compared to lower dose at 2.5 mg/kg (SBR = 3.5 vs. 2.8; P = 0.0624). Although early (≤ 6 hrs) visualization of the Second Window ICG

  5. Fab fragment labeled with ICG-derivative for detecting digestive tract cancer.

    PubMed

    Yano, Hiromi; Muguruma, Naoki; Ito, Susumu; Aoyagi, Eriko; Kimura, Tetsuo; Imoto, Yoshitaka; Cao, Jianxin; Inoue, Shohei; Sano, Shigeki; Nagao, Yoshimitsu; Kido, Hiroshi

    2006-09-01

    In previous studies, we generated infrared ray fluorescence-labeled monoclonal antibodies and developed an infrared ray fluorescence endoscope capable of detecting the monoclonal antibodies to establish a novel diagnostic technique for gastrointestinal cancer. Although the whole IgG molecule has commonly been used for preparation of labeled antibodies, labeled IgG displays insufficient sensitivity and specificity, probably resulting from non-specific binding of the Fc fragment to target cells or interference between fluorochromes on the identical labeled antibody, which might be caused by molecular structure. In this in vitro study, we characterized an Fc-free fluorescence-labeled Fab fragment, which was expected to yield more specific binding to target cells than the whole IgG molecule. An anti-mucin antibody and ICG-ATT, an ICG derivative, were used as the labeled antibody and labeling compound, respectively. Paraffin sections of excised gastric cancer tissues were subjected to staining. The labeled whole IgG molecule (ICG-ATT-labeled IgG) and the labeled Fab fragment (ICG-ATT-labeled Fab) were prepared according to a previous report, and the fluorescence properties, antibody activities, and features of fluorescence microscope images obtained from paraffin sections were compared. Both ICG-ATT-labeled Fab and ICG-ATT-labeled IgG were excited by a near infrared ray of 766nm, and maximum emission occurred at 804nm. Antibody activities of ICG-ATT-labeled Fab were shown to be similar to those of unlabeled anti-MUC1 antibody. The fluorescence intensity obtained from paraffin sections of excised gastric cancer tissues revealed a tendency to be greater with ICG-ATT-labeled Fab than with ICG-ATT-labeled IgG. The infrared ray fluorescence-labeled Fab fragment was likely to be more specific than the conventionally labeled antibodies. Fragmentation of antibodies is considered to contribute to improved sensitivity and specificity of labeled antibodies for detection of micro

  6. ICG-enhanced imaging of arthritis with an integrated Optical Imaging/X-ray System

    PubMed Central

    Meier, Reinhard; Krug, Christian; Golovko, Daniel; Boddington, Sophie; Piontek, Guido; Rudelius, Martina; Sutton, Elizabeth J.; Baur-Melnyk, Andrea; Jones, Ella F.; Daldrup-Link, Heike E.

    2010-01-01

    Background Optical Imaging (OI) is a promising technique that is quick, inexpensive and, in combination with Indocyanine Green (ICG), an FDA-approved fluorescent dye, could provide early detection of rheumatoid arthritis. Objective The purpose of this study was to evaluate a combined X-ray/OI imaging system for ICG-enhanced detection of arthritic joints in a rat model of antigen induced arthritis. Methods Arthritis of the knee and ankle joints was induced in six Harlan rats with peptidoglycan polysaccharide polymers (PGPS). Three rats served as non-treated controls. Optical imaging of the knee and ankle joints was done with an integrated OI/X-ray system before and up to 24h post intravenous injection (p.i.) of 10mg/kg ICG. The fluorescence signal intensities of arthritic and normal joints were compared for significant differences using generalized estimation equation models. Specimen of knee and ankle joints were further processed and evaluated by histology. Results ICG provided a significant increase in fluorescence signal of arthritic joints compared to baseline values immediately after administration (p<0.05). The fluorescence signal of arthritic joints was significantly higher compared to the non-arthritic control joints at 1 - 720 min p.i. (p<0.05). Fusion of ICG-enhanced OI and X-rays allowed for anatomical co-registration of the inflamed tissue with the associated joint. H&E stains confirmed marked synovial inflammation of arthritic joints and absence of inflammation in control joints. Conclusion ICG-enhanced OI is a clinically applicable tool for detection of arthritic tissue. Using relatively high doses of ICG, a long term fluorescence enhancement of arthritic joints can be achieved. This may facilitate simultaneous evaluations of multiple joints in a clinical setting. Fusion of ICG-OI scans with X-ray imaging increases anatomical resolution. PMID:20506388

  7. Activatable thermo-sensitive ICG encapsulated pluronic nanocapsules for temperature sensitive fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Nouizi, Farouk; Sampathkumaran, Uma; Zhu, Yue; Alam, Maksudul M.; Gulsen, Gultekin

    2015-03-01

    Fluorescent tomography has been hindered by poor tissue penetration and weak signal which results in poor spatial resolution and quantification accuracy. Recently, it has been reported that activatable temperature responsive fluorescent probes which respond to focused ultrasound heating can improve the resolution and quantification of fluorescent tomography in deep tissue. This has lead to a new imaging modality, "Temperature-modulated fluorescent tomography." This technique relies on activatable thermo-sensitive fluorescent nanocapsules for whose fluorescence quantum efficiency is temperature dependent. Within a 4-5° C temperature range, the fluorescent signal increase more than 10-fold. In this molecular probe, Indocyanine Green (ICG) is encapsulated inside the core of a thermo-reversible pluronic micelle. Here we show the fluorescence response and temperature range of the nanocapsules which have been optimized for a higher temperature range to be used for in vivo animal imaging. We report on the feasibility of these temperature-sensitive reversible nanocapsules for in vivo applications by studying the pharmacokinetics in a subcutaneous mouse tumor model in vivo.

  8. ICG-loaded polymeric nanocapsules functionalized with anti-HER2 for targeted fluorescence imaging and photodestruction of ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Bahmani, Baharak; Guerrero, Yadir; Vullev, Valentine; Singh, Sheela P.; Kundra, Vikas; Anvari, Bahman

    2013-03-01

    Optical nano-materials present a promising platform for targeted molecular imaging of cancer biomarkers and its photodestruction. Our group is investigating the use of polymeric nanoparticles, loaded with indocyanine green, an FDA-approved chromophore, as a theranostic agent for targeted intraoperative optical imaging and laser-mediated destruction of ovarian cancer. These ICG-loaded nanocapsules (ICG-NCs) can be functionalized by covalent attachment of targeting moieties onto their surface. Here, we investigate ICG-NCs functionalized with anti-HER2 for targeted fluorescence imaging and laser-mediated destruction of ovarian cancer cells in vitro. ICG-NCs are formed through ionic cross-linking between polyallylamine hydrochloride chains and sodium phosphate ions followed by diffusion-mediated loading with ICG. Before functionalization with antibodies, the surface of ICG-NCs is coated with single and double aldehyde terminated polyethylene glycol (PEG). The monoclonal anti-HER2 is covalently coupled to the PEGylated ICG-NCs using reductive amination to target the HER2 receptor, a biomarker whose over-expression is associated with increased risk of cancer progression. We quantify uptake of anti-HER2 conjugated ICG-NCs by ovarian cancer cells using flow cytometery. The in-vitro laser-mediated destruction of SKOV3 cells incubated with anti-HER2 functionalized ICG-NCs is performed using an 808 nm diode laser. Cell viability is characterized using the Calcein and Ethidium homodimer-1 assays following laser irradiation. Our results indicate that anti-HER2 functionalized ICG-NCs can be used as theranostic agents for optical molecular imaging and photodestruction of ovarian cancers in-vitro.

  9. Development of ultrasound-assisted fluorescence imaging of indocyanine green.

    PubMed

    Morikawa, Hiroyasu; Toyota, Shin; Wada, Kenji; Uchida-Kobayashi, Sawako; Kawada, Norifumi; Horinaka, Hiromichi

    2017-01-01

    Indocyanine green (ICG) accumulation in hepatocellular carcinoma means tumors can be located by fluorescence. However, because of light scattering, it is difficult to detect ICG fluorescence from outside the body. We propose a new fluorescence imaging method that detects changes in the intensity of ICG fluorescence by ultrasound-induced temperature changes. ICG fluorescence intensity decreases as the temperature rises. Therefore, it should theoretically be possible to detect tissue distribution of ICG using ultrasound to heat tissue, moving the point of ultrasound transmission, and monitoring changes in fluorescence intensity. A new probe was adapted for clinical application. It consisted of excitation light from a laser, fluorescence sensing through a light pipe, and heating by ultrasound. We applied the probe to bovine liver to image the accumulation of ICG. ICG emits fluorescence (820 nm) upon light irradiation (783 nm). With a rise in temperature, the fluorescence intensity of ICG decreased by 0.85 %/°C. The distribution of fluorescent ICG was detected using an ultrasonic warming method in a new integrated probe. Modulating fluorescence by changing the temperature using ultrasound can determine where ICG accumulates at a depth, highlighting its potential as a means to locate hepatocellular carcinoma.

  10. Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method.

    PubMed

    Weigl, W; Milej, D; Gerega, A; Toczylowska, B; Kacprzak, M; Sawosz, P; Botwicz, M; Maniewski, R; Mayzner-Zawadzka, E; Liebert, A

    2014-01-15

    The aim of this study was to verify the usefulness of the time-resolved optical method utilizing diffusely reflected photons and fluorescence signals combined with intravenous injection of indocyanine green (ICG) in the assessment of brain perfusion in post-traumatic brain injury patients. The distributions of times of flight (DTOFs) of diffusely reflected photons were acquired together with the distributions of times of arrival (DTAs) of fluorescence photons. The data analysis methodology was based on the observation of delays between the signals of statistical moments (number of photons, mean time of flight and variance) of DTOFs and DTAs related to the inflow of ICG to the extra- and intracerebral tissue compartments. Eleven patients with brain hematoma, 15 patients with brain edema and a group of 9 healthy subjects were included in this study. Statistically significant differences between parameters obtained in healthy subjects and patients with brain hematoma and brain edema were observed. The best optical parameter to differentiate patients and control group was variance of the DTOFs or DTAs. Results of the study suggest that time-resolved optical monitoring of inflow of the ICG seems to be a promising tool for detecting cerebral perfusion insufficiencies in critically ill patients. © 2013 Elsevier Inc. All rights reserved.

  11. Superselective intra-arterial hepatic injection of indocyanine green (ICG) for fluorescence image-guided segmental positive staining: experimental proof of the concept.

    PubMed

    Diana, Michele; Liu, Yu-Yin; Pop, Raoul; Kong, Seong-Ho; Legnèr, Andras; Beaujeux, Remy; Pessaux, Patrick; Soler, Luc; Mutter, Didier; Dallemagne, Bernard; Marescaux, Jacques

    2017-03-01

    Intraoperative liver segmentation can be obtained by means of percutaneous intra-portal injection of a fluorophore and illumination with a near-infrared light source. However, the percutaneous approach is challenging in the minimally invasive setting. We aimed to evaluate the feasibility of fluorescence liver segmentation by superselective intra-hepatic arterial injection of indocyanine green (ICG). Eight pigs (mean weight: 26.01 ± 5.21 kg) were involved. Procedures were performed in a hybrid experimental operative suite equipped with the Artis Zeego ® , multiaxis robotic angiography system. A pneumoperitoneum was established and four laparoscopic ports were introduced. The celiac trunk was catheterized, and a microcatheter was advanced into different segmental hepatic artery branches. A near-infrared laparoscope (D-Light P, Karl Storz) was used to detect the fluorescent signal. To assess the correspondence between arterial-based fluorescence demarcation and liver volume, metallic markers were placed along the fluorescent border, followed by a 3D CT-scanning, after injecting intra-arterial radiological contrast (n = 3). To assess the correspondence between arterial and portal supplies, percutaneous intra-portal angiography and intra-arterial angiography were performed simultaneously (n = 1). Bright fluorescence signal enhancing the demarcation of target segments was obtained from 0.1 mg/mL, in matter of seconds. Correspondence between the volume of hepatic segments and arterial territories was confirmed by CT angiography. Higher background fluorescence noise was found after positive staining by intra-portal ICG injection, due to parenchymal accumulation and porto-systemic shunting. Intra-hepatic arterial ICG injection, rapidly highlights hepatic target segment borders, with a better signal-to-background ratio as compared to portal vein injection, in the experimental setting.

  12. Cellular uptake of polymeric nanocapsules loaded with ICG by human blood monocytes and human spleen macrophages

    NASA Astrophysics Data System (ADS)

    Bahmani, Baharak; Jung, Bongsu; Gupta, Sharad; Anvari, Bahman

    2010-02-01

    Indocyanine green (ICG) is an FDA approved near infrared dye used in assessment of hepatic function and ophthalmological vascular imaging. However, given the rapid clearance of ICG from the blood stream, its imaging and phototherapeutic applications remain very limited. As a potential method to increase circulation time of ICG, and extend its clinical applications, we have encapsulated ICG within polymeric based nanoconstructs whose surface can be coated with various materials including polyethylene glycol (PEG). To gain an understanding of the interaction between ICG-containing nanocapsules (ICG-NCs) and vascular cells, we are characterizing the uptake of the nanocapsules coated with various materials by human peripheral blood monocytes and human spleen macrophages using fluorescence microscopy. Results of these studies will be useful in identifying the appropriate coating material that will result in increased circulation time of ICG-NCs within the vasculature.

  13. Effects of ICG concentration on the optical properties of erythrocyte-derived nano-vectors

    NASA Astrophysics Data System (ADS)

    Tang, Jack; Bahmani, Baharak; Burns, Joshua; Nuñez, Vicente; Mac, Jenny; Bacon, Danielle; Vullev, Valentine; Sun, Victor; Jia, Wangcun; Nelson, J. S.; Anvari, Bahman

    2015-03-01

    Erythrocyte-based nanoparticle platforms can offer long circulation times not offered by traditional drug delivery methods. We have developed a novel erythrocyte-based nanoparticle doped with indocyanine green (ICG), the only FDA-approved near-infrared chromophore. Here, we report on the absorption and fluorescence emission characteristics of these nanoparticles fabricated using ICG concentrations in the range of 161-323 μM. These nanoparticles may serve as biocompatible optical materials for various clinical imaging and phototherapeutic applications.

  14. Indocyanine green fluorescence imaging in hepatobiliary surgery.

    PubMed

    Majlesara, Ali; Golriz, Mohammad; Hafezi, Mohammadreza; Saffari, Arash; Stenau, Esther; Maier-Hein, Lena; Müller-Stich, Beat P; Mehrabi, Arianeb

    2017-03-01

    Indocyanine green (ICG) is a fluorescent dye that has been widely used for fluorescence imaging during hepatobiliary surgery. ICG is injected intravenously, selectively taken up by the liver, and then secreted into the bile. The catabolism and fluorescence properties of ICG permit a wide range of visualization methods in hepatobiliary surgery. We have characterized the applications of ICG during hepatobiliary surgery into: 1) liver mapping, 2) cholangiography, 3) tumor visualization, and 4) partial liver graft evaluation. In this literature review, we summarize the current understanding of ICG use during hepatobiliary surgery. Intra-operative ICG fluorescence imaging is a safe, simple, and feasible method that improves the visualization of hepatobiliary anatomy and liver tumors. Intravenous administration of ICG is not toxic and avoids the drawbacks of conventional imaging. In addition, it reduces post-operative complications without any known side effects. ICG fluorescence imaging provides a safe and reliable contrast for extra-hepatic cholangiography when detecting intra-hepatic bile leakage following liver resection. In addition, liver tumors can be visualized and well-differentiated hepatocellular carcinoma tumors can be accurately identified. Moreover, vascular reconstruction and outflow can be evaluated following partial liver transplantation. However, since tissue penetration is limited to 5-10mm, deeper tissue cannot be visualized using this method. Many instances of false positive or negative results have been reported, therefore further characterization is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Navigation surgery for intraoperative sentinel lymph node detection using Indocyanine green (ICG) fluorescence real-time imaging in breast cancer.

    PubMed

    Toh, U; Iwakuma, N; Mishima, M; Okabe, M; Nakagawa, S; Akagi, Y

    2015-09-01

    A new sensitive fluorescence imaging system was developed for the real-time identification of sentinel lymph nodes (SLNs) in patients with early breast cancer. The purpose of this study was to evaluate the utility of a color charge-coupled device camera system for the intraoperative detection of SLNs and to determine its clinical efficacy and sensitivity in patients with operable breast cancer. We assessed a total of 168 patients diagnosed with or suspected of having early-stage breast cancer without metastasis in SLNs. The intraoperative detection of SLNs was performed using the conventional Indigo Carmine dye (indigotindisulfonate sodium) technique combined with a new Indocyanine green (ICG) imaging system (HyperEye Medical System: HEMS, MIZUHO IKAKOGYO, Japan) to map SLNs, in which the lymphatic vessels and SLNs were visualized transcutaneously with illuminating ICG fluorescence. Between January 2012 and May 2013, SLNs were successfully identified in all 168 patients (detection rate: 100%). By histopathology, the sensitivity was 93.8% for the detection of the metastatic involvement of SLNs (15 of 16 nodal-positive patients). After a median follow-up of 30.5 months, none of the patients presented with axillary recurrence. These results suggest that the HEMS imaging system is a feasible and effective method for the detection of SLNs in breast cancer. Furthermore, the HEMS device permitted the transcutaneous visualization of lymphatic vessels under light conditions, thus facilitating the identification and detection of SLNs without affecting the surgical procedure, together with a high sensitivity and specificity.

  16. ICG-fluorescence imaging for detection of peritoneal metastases and residual tumoral scars in locally advanced ovarian cancer: A pilot study.

    PubMed

    Veys, Isabelle; Pop, Florin-Catalin; Vankerckhove, Sophie; Barbieux, Romain; Chintinne, Marie; Moreau, Michel; Nogaret, Jean-Marie; Larsimont, Denis; Donckier, Vincent; Bourgeois, Pierre; Liberale, Gabriel

    2018-02-01

    No intraoperative imaging techniques exist for detecting tumor nodules or tumor scar tissues in patients treated with upfront or interval cytoreductive surgery (CS) after neoadjuvant chemotherapy (NAC). The aims of this study were to evaluate the role of indocyanine green (ICG) fluorescence imaging (FI) for the detection of peritoneal metastases (PM) and evaluate whether it can be used to detect remnant tumor cells in scar tissue. Patients with PM from ovarian cancer admitted for CS were included. ICG, at 0.25 mg per kg of patient weight, was injected intraoperatively after explorative laparotomy before CS. A total of 108 peritoneal lesions, including 25 scars, were imaged in 20 patients. Seventy-three were malignant (67.6%) and 35 benign (32.4%). The mean Tumor to Background Ratio (ex vivo) was 1.8 (SD 1.3) in malignant and 1.0 (SD 0.79) in benign nodules (P = 0.007). Of 25 post-NAC scars, the mean Tumor to Background Ratio (TBR) (in vivo) was 2.06 (SD 1.15) in malignant and 1.21 (SD 0.50) in benign nodules (P = 0.26). The positive predictive value of ICG-FI to detect tumor cells in scars was 57.1%. ICG-FI is accurate to demonstrate PM in ovarian cancer but unable to discriminate between benign and malignant post-NAC. © 2017 Wiley Periodicals, Inc.

  17. Axillary lymph node recurrence after sentinel lymph node biopsy performed using a combination of indocyanine green fluorescence and the blue dye method in early breast cancer.

    PubMed

    Inoue, Tomoo; Nishi, Toshio; Nakano, Yoshiaki; Nishimae, Ayaka; Sawai, Yuka; Yamasaki, Masaru; Inaji, Hideo

    2016-03-01

    There is limited information on indocyanine green (ICG) fluorescence and blue dye for detecting sentinel lymph node (SLN) in early breast cancer. A retrospective study was conducted to assess the feasibility of an SLN biopsy using the combination of ICG fluorescence and the blue dye method. Seven hundred and fourteen patients with clinically node-negative breast cancer were included in this study. They underwent SLN biopsy using a combination of ICG fluorescence and the blue dye method from March 2007 to February 2014. The ICG (a fluorescence-emitting source) and patent blue (the blue dye) were injected into the patients' subareolar region. The removed lymph nodes that had ICG fluorescence and/or blue dye uptake were defined as SLNs. The results of the SLN biopsies and follow-up results of patients who underwent SLN biopsy alone were investigated. In 711 out of 714 patients, SLNs were identified by a combination of ICG fluorescence and the blue dye method (detection rate, 99.6 %). The average number of SLNs was 2.4 (range 1-7), and the average number of resected swollen para-SLNs was 0.4 (range 0-5). Ninety-nine patients with an SLN and/or para-SLN involvement during the intraoperative pathological diagnosis underwent axillary lymph node resection (ALND). In addition, two of three patients whose SLN was not identified also underwent ALND. In 46 of 101 patients with an ALND, non-SLN involvement was not found. Follow-up results were analyzed in 464 patients with invasive carcinoma excluding those with ductal carcinoma in situ (n = 148) and those who underwent ALND (n = 101). During the follow-up period (range 4.4-87.7 months; median, 38 months), two patients (0.4 %) developed axillary lymph node recurrence. They were successfully salvaged, and to date, no further locoregional recurrence has been observed. A high rate of SLN detection and low rate of axillary lymph node recurrence were confirmed by an SLN biopsy using a combination of ICG fluorescence and the blue dye

  18. Direct Gallbladder Indocyanine Green Injection Fluorescence Cholangiography During Laparoscopic Cholecystectomy.

    PubMed

    Graves, Claire; Ely, Sora; Idowu, Olajire; Newton, Christopher; Kim, Sunghoon

    2017-10-01

    Intravenous injection of indocyanine green (ICG) is used to illuminate extrahepatic biliary anatomy. Fluorescence of biliary structures may lower surgical complications that can arise due to inadvertent injury to the common bile duct. We describe a method of injecting ICG directly into the gallbladder to define the cystic duct and common bile duct anatomy. A standard laparoscopic cholecystectomy was performed using a laparoscope with near-infrared imaging capability. Before dissection, the gallbladder was punctured with a cholangiogram catheter or a pigtail catheter to aspirate the bile within the gallbladder. The aspirated bile is mixed with ICG solution, which is reinjected into the gallbladder to fluoresce the gallbladder, cystic duct, and common bile duct structures. Eleven patients underwent direct gallbladder ICG injection for fluorescence cholangiography during cholecystectomy. Direct gallbladder ICG injection clearly defined the extrahepatic biliary anatomy, including the cystic duct-common bile duct junction, by fluorescence. In addition, the dissection plane between the gallbladder and the liver is highlighted with the gallbladder ICG fluorescence. Direct gallbladder ICG injection provides immediate visualization of extrahepatic biliary structures and clarifies the dissection plane between the gallbladder and the liver bed.

  19. Localization of pulmonary nodules using navigation bronchoscope and a near-infrared fluorescence thoracoscope.

    PubMed

    Anayama, Takashi; Qiu, Jimmy; Chan, Harley; Nakajima, Takahiro; Weersink, Robert; Daly, Michael; McConnell, Judy; Waddell, Thomas; Keshavjee, Shaf; Jaffray, David; Irish, Jonathan C; Hirohashi, Kentaro; Wada, Hironobu; Orihashi, Kazumasa; Yasufuku, Kazuhiro

    2015-01-01

    Video-assisted thoracoscopic wedge resection of multiple small, non-visible, and nonpalpable pulmonary nodules is a clinical challenge. We propose an ultra-minimally invasive technique for localization of pulmonary nodules using the electromagnetic navigation bronchoscope (ENB)-guided transbronchial indocyanine green (ICG) injection and intraoperative fluorescence detection with a near-infrared (NIR) fluorescence thoracoscope. Fluorescence properties of ICG topically injected into the lung parenchyma were determined using a resected porcine lung. The combination of ENB-guided ICG injection and NIR fluorescence detection was tested using a live porcine model. An electromagnetic sensor integrated flexible bronchoscope was geometrically registered to the three-dimensional chest computed tomographic image data by way of a real-time electromagnetic tracking system. The ICG mixed with iopamidol was injected into the pulmonary nodules by ENB guidance; ICG fluorescence was visualized by a near-infrared (NIR) thoracoscope. The ICG existing under 24-mm depth of inflated lung was detectable by the NIR fluorescence thoracoscope. The size of the fluorescence spot made by 0.1 mL of ICG was 10.4 ± 2.2 mm. An ICG or iopamidol spot remained at the injected point of the lung for more than 6 hours in vivo. The ICG fluorescence spot injected into the pulmonary nodule with ENB guidance was identified at the pulmonary nodule with the NIR thoracoscope. The ENB-guided transbronchial ICG injection and intraoperative NIR thoracoscopic detection is a feasible method to localize multiple pulmonary nodules. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Fabrication of Indocyanine Green and 2H, 3H-perfluoropentane loaded microbubbles for fluorescence and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    He, Yutong; Wu, Qiang; Ma, Rong; Chang, Shufang; Shao, Pengfei; Xu, Ronald

    2016-03-01

    As a near-infrared (NIR) fluorescence dye, Indocyanine Green (ICG) has not gained broader clinical applications, owing to its multiple limitations such as concentration-dependent aggregation, low fluorescence quantum yield, poor physicochemical stability and rapid elimination from the body. In the meanwhile, 2H,3H-perfluoropentane (H-PFP) has been widely studied in ultrasound imaging as a vehicle for targeted delivery of contrast agents and drugs. We synthesized a novel dual-modal fluorescence and ultrasound contrast agent by encapsulating ICG and H-PFP in lipid microbubbles using a liquid-driven coaxial flow focusing (LDCFF) process. Uniform microbubbles with the sizes ranging from 1-10um and great ICG loading efficiency was achieved by this method. Our benchtop experiments showed that ICG/H-PFP microbubbles exhibited less aggregation, increased fluorescence intensity and more stable photostability compared to free ICG aqueous solution. Our phantom experiments demonstrated that ICG/H-PFP microbubbles enhanced the imaging contrasts in fluorescence imaging and ultrasonography. Our animal experiments indicated that ICG/H-PFP microbubbles extended the ICG life time and facilitated dual mode fluorescence and ultrasound imaging in vivo.

  1. A convenient method of attaching fluorescent dyes on single-walled carbon nanotubes pre-wrapped with DNA molecules.

    PubMed

    Tomura, Akihiro; Umemura, Kazuo

    2018-04-15

    We demonstrated the attachment of different kinds of dyes, Uranine, Rhodamime 800 (R800), and Indocyanine green (ICG), to single-walled carbon nanotubes pre-wrapped with single-stranded DNAs (ssDNA-SWCNTs). A new but simple method was employed, in which a dye solution was added to ssDNA-SWCNTs that had been prepared beforehand in the conventional way. Resulting conjugates of dyes, DNA, and SWCNTs were precisely evaluated by ultraviolet to near-infrared fluorescence/absorbance spectrometry and atomic force microscopy. In particular, simultaneous measurements of fluorescence and absorbance spectroscopy enabled us to find differences in the behaviors of the dyes on SWCNT surfaces. As a result, the fluorescence/absorbance spectra of dyes showed significant changes upon adsorption on SWCNTs. The fluorescence/absorbance peaks of Uranine, R800, and ICG were quenched by 41.3/2.8%, 72.3/48.9%, and 88.3/45.0%, respectively, in the presence of 11.5 μg/mL SWCNTs. We concluded firstly that by pre-wrapping SWCNTs with ssDNA, stable hybrids with these components were obtained even if the dyes used were relatively hydrophobic and secondly that Uranine retained light absorption on the surface of SWCNT while R800 and ICG did not. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Near-infrared-fluorescence imaging of lymph nodes by using liposomally formulated indocyanine green derivatives.

    PubMed

    Toyota, Taro; Fujito, Hiromichi; Suganami, Akiko; Ouchi, Tomoki; Ooishi, Aki; Aoki, Akira; Onoue, Kazutaka; Muraki, Yutaka; Madono, Tomoyuki; Fujinami, Masanori; Tamura, Yutaka; Hayashi, Hideki

    2014-01-15

    Liposomally formulated indocyanine green (LP-ICG) has drawn much attention as a highly sensitive near-infrared (NIR)-fluorescence probe for tumors or lymph nodes in vivo. We synthesized ICG derivatives tagged with alkyl chains (ICG-Cn), and we examined NIR-fluorescence imaging for lymph nodes in the lower extremities of mice by using liposomally formulated ICG-Cn (LP-ICG-Cn) as well as conventional liposomally formulated ICG (LP-ICG) and ICG. Analysis with a noninvasive preclinical NIR-fluorescence imaging system revealed that LP-ICG-Cn accumulates in only the popliteal lymph node 1h after injection into the footpad, whereas LP-ICG and ICG accumulate in the popliteal lymph node and other organs like the liver. This result indicates that LP-ICG-Cn is a useful NIR-fluorescence probe for noninvasive in vivo bioimaging, especially for the sentinel lymph node. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma.

    PubMed

    Ishizawa, Takeaki; Masuda, Koichi; Urano, Yasuteru; Kawaguchi, Yoshikuni; Satou, Shouichi; Kaneko, Junichi; Hasegawa, Kiyoshi; Shibahara, Junji; Fukayama, Masashi; Tsuji, Shingo; Midorikawa, Yutaka; Aburatani, Hiroyuki; Kokudo, Norihiro

    2014-02-01

    Although clinical applications of intraoperative fluorescence imaging of liver cancer using indocyanine green (ICG) have begun, the mechanistic background of ICG accumulation in the cancerous tissues remains unclear. In 170 patients with hepatocellular carcinoma cells (HCC), the liver surfaces and resected specimens were intraoperatively examined by using a near-infrared fluorescence imaging system after preoperative administration of ICG (0.5 mg/kg i.v.). Microscopic examinations, gene expression profile analysis, and immunohistochemical staining were performed for HCCs, which showed ICG fluorescence in the cancerous tissues (cancerous-type fluorescence), and HCCs showed fluorescence only in the surrounding non-cancerous liver parenchyma (rim-type fluorescence). ICG fluorescence imaging enabled identification of 273 of 276 (99%) HCCs in the resected specimens. HCCs showed that cancerous-type fluorescence was associated with higher cancer cell differentiation as compared with rim-type HCCs (P < 0.001). Fluorescence microscopy identified the presence of ICG in the canalicular side of the cancer cell cytoplasm, and pseudoglands of the HCCs showed a cancerous-type fluorescence pattern. The ratio of the gene and protein expression levels in the cancerous to non-cancerous tissues for Na(+)/taurocholate cotransporting polypeptide (NTCP) and organic anion-transporting polypeptide 8 (OATP8), which are associated with portal uptake of ICG by hepatocytes that tended to be higher in the HCCs that showed cancerous-type fluorescence than in those that showed rim-type fluorescence. Preserved portal uptake of ICG in differentiated HCC cells by NTCP and OATP8 with concomitant biliary excretion disorders causes accumulation of ICG in the cancerous tissues after preoperative intravenous administration. This enables highly sensitive identification of HCC by intraoperative ICG fluorescence imaging.

  4. Development of anti-HER2 conjugated ICG-loaded polymeric nanoparticles for targeted optical imaging of ovarian cancer

    NASA Astrophysics Data System (ADS)

    Bahmani, Baharak; Vullev, Valentine; Anvari, Bahman

    2012-03-01

    Targeted delivery of therapeutic and imaging agents using surface modified nanovectors has been explored immensely in recent years. The growing demand for site-specific and efficient delivery of nanovectors entails stable surface conjugation of targeting moieties. We have developed a polymeric nanocapsule doped with Indocyanine green (ICG) with potential for targeted and deep tissue optical imaging and phototherapy. Our ICG-loaded nanocapsules (ICG-NCs) have potential for covalent coupling of various targeting moieties and materials due to presence of amine groups on the surface. Here, we covalently bioconjugate polyethylene glycol(PEG)-coated ICG-NCs with monoclonal antibody against HER2 through reductive amination-mediated procedures. The irreversible and stable bonds are formed between anti- EGFR and aldehyde termini of PEG chains on the surface of ICG-NCs. We confirm the uptake of conjugated ICG-NCs by ovarian cancer cells over-expressing HER2 using fluorescent confocal microscopy. The proposed process for covalent attachment of anti-HER2 to PEGylated ICG-NCs can be used as a methodology for bioconjugation of various antibodies to such nano-constrcuts, and provides the capability to use these optically active nano-probes for targeted optical imaging of ovarian and other cancer types.

  5. Near-Infrared Fluorescence Imaging of Liver Metastases in Rats using Indocyanine Green

    PubMed Central

    van der Vorst, Joost R.; Hutteman, Merlijn; Mieog, Sven D.; de Rooij, Karien E.; Kaijzel, Eric L.; Löwik, Clemens W.G.M.; Putter, Hein; Kuppen, Peter J.K.; Frangioni, John V.; van de Velde, Cornelis J.H.; Vahrmeijer, Alexander L.

    2011-01-01

    Background Near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) is a promising technique to obtain real-time assessment of the extent and number of colorectal liver metastases during surgery. The current study aims to optimize dosage and timing of ICG administration. Materials and methods Liver tumors were induced in 18 male WAG/Rij rats by subcapsular inoculation of CC531 rat colorectal cancer cells into three distinct liver lobes. Rats were divided in 2 groups: imaging after 24 and 48 hours or 72 and 96 hours after intravenous ICG administration. In each time group, rats were allocated to three dose groups: 0.04, 0.08, or 0.16 mg ICG. Intraoperative imaging and ex vivo measurements were performed using Mini-FLARE™ and confirmed by fluorescence microscopy. Fluorescence intensity was quantified using the Mini-FLARE software and the difference between tumor signal and liver signal (tumor-to-liver ratio; TLR) was calculated. Results In all 18 rats, all colorectal liver metastases (N = 34), some as small as 1.2 mm, were identified using ICG and the Mini-FLARE™ imaging system. Average tumor-to-liver ratio (TLR) over all groups was 3.0 ± 1.2. TLR was significantly higher in the 72 h time group compared to other time points. ICG dose did not significantly influence TLR, but a trend was found favoring the 0.08 mg dose group. Fluorescence microscopy demonstrated a clear fluorescent rim around the tumor. Conclusions This study demonstrates that colorectal cancer liver metastases can be clearly identified during surgery using ICG and the Mini-FLARE™ imaging system, with optimal timing of 72 h post-injection and an optimal dose of 0.08 mg (0.25 mg/kg) ICG. NIR fluorescence imaging has the potential to improve intraoperative detection of micrometastases and thus the completeness of resection. PMID:21396660

  6. Fluorescence guided surgery and tracer-dose, fact or fiction?

    PubMed

    KleinJan, Gijs H; Bunschoten, Anton; van den Berg, Nynke S; Olmos, Renato A Valdès; Klop, W Martin C; Horenblas, Simon; van der Poel, Henk G; Wester, Hans-Jürgen; van Leeuwen, Fijs W B

    2016-09-01

    Fluorescence guidance is an upcoming methodology to improve surgical accuracy. Challenging herein is the identification of the minimum dose at which the tracer can be detected with a clinical-grade fluorescence camera. Using a hybrid tracer such as indocyanine green (ICG)-(99m)Tc-nanocolloid, it has become possible to determine the accumulation of tracer and correlate this to intraoperative fluorescence-based identification rates. In the current study, we determined the lower detection limit of tracer at which intraoperative fluorescence guidance was still feasible. Size exclusion chromatography (SEC) provided a laboratory set-up to analyze the chemical content and to simulate the migratory behavior of ICG-nanocolloid in tissue. Tracer accumulation and intraoperative fluorescence detection findings were derived from a retrospective analysis of 20 head-and-neck melanoma patients, 40 penile and 20 prostate cancer patients scheduled for sentinel node (SN) biopsy using ICG-(99m)Tc-nanocolloid. In these patients, following tracer injection, single photon emission computed tomography fused with computed tomography (SPECT/CT) was used to identify the SN(s). The percentage injected dose (% ID), the amount of ICG (in nmol), and the concentration of ICG in the SNs (in μM) was assessed for SNs detected on SPECT/CT and correlated with the intraoperative fluorescence imaging findings. SEC determined that in the hybrid tracer formulation, 41 % (standard deviation: 12 %) of ICG was present in nanocolloid-bound form. In the SNs detected using fluorescence guidance a median of 0.88 % ID was present, compared to a median of 0.25 % ID in the non-fluorescent SNs (p-value < 0.001). The % ID values could be correlated to the amount ICG in a SN (range: 0.003-10.8 nmol) and the concentration of ICG in a SN (range: 0.006-64.6 μM). The ability to provide intraoperative fluorescence guidance is dependent on the amount and concentration of the fluorescent dye accumulated in the

  7. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  8. Clinical application of indocyanine green-fluorescence imaging during hepatectomy

    PubMed Central

    Ishizawa, Takeaki; Saiura, Akio

    2016-01-01

    In hepatobiliary surgery, the fluorescence and bile excretion of indocyanine green (ICG) can be used for real-time visualization of biological structure. Fluorescence cholangiography is used to obtain fluorescence images of the bile ducts following intrabiliary injection of 0.025−0.5 mg/mL ICG or intravenous injection of 2.5 mg ICG. Recently, the latter technique has been used in laparoscopic/robotic cholecystectomy. Intraoperative fluorescence imaging can be used to identify subcapsular hepatic tumors. Primary and secondary hepatic malignancy can be identified by intraoperative fluorescence imaging using preoperative intravenous injection of ICG through biliary excretion disorders that exist in cancerous tissues of hepatocellular carcinoma (HCC) and in non-cancerous hepatic parenchyma around adenocarcinoma foci. Intraoperative fluorescence imaging may help detect tumors to be removed, especially during laparoscopic hepatectomy, in which visual inspection and palpation are limited, compared with open surgery. Fluorescence imaging can also be used to identify hepatic segments. Boundaries of hepatic segments can be visualized following injection of 0.25−2.5 mg/mL ICG into the portal veins or by intravenous injection of 2.5 mg ICG following closure of the proximal portal pedicle toward hepatic regions to be removed. These techniques enable identification of hepatic segments before hepatectomy and during parenchymal transection for anatomic resection. Advances in imaging systems will increase the use of fluorescence imaging as an intraoperative navigation tool that can enhance the safety and accuracy of open and laparoscopic/robotic hepatobiliary surgery. PMID:27500144

  9. Application of indocyanine green-fluorescence imaging to full-thickness cholecystectomy.

    PubMed

    Morita, Kiyomi; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Shimizu, Atsushi; Yamamoto, Satoshi; Takemura, Nobuyuki; Kaneko, Junichi; Aoki, Taku; Sakamoto, Yoshihiro; Sugawara, Yasuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2014-05-01

    Fluorescence imaging using indocyanine green (ICG) has recently been applied to laparoscopic surgery to identify cancerous tissues, lymph nodes, and vascular anatomy. Here we report the application of ICG-fluorescence imaging to visualize the boundary between the liver and subserosal tissues of the gallbladder during laparoscopic full-thickness cholecystectomy. A patient with a potentially malignant gallbladder lesion was administered 2.5-mg intravenous ICG just before laparoscopic full-thickness cholecystectomy. Intraoperative fluorescence imaging enabled the real-time delineation of both extrahepatic bile duct anatomy and hepatic parenchyma throughout the procedure, which resulted in complete removal of subserosal tissues between liver and gallbladder. Safe and feasible ICG-fluorescence imaging can be widely applied to laparoscopic hepatobiliary surgery by utilizing a biliary excretion property of ICG. © 2014 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  10. The combination design for open and endoscopic surgery using fluorescence molecular imaging technology

    NASA Astrophysics Data System (ADS)

    Mao, Yamin; Jiang, Shixin; Ye, Jinzuo; An, Yu; Yang, Xin; Chi, Chongwei; Tian, Jie

    2015-03-01

    For clinical surgery, it is still a challenge to objectively determine tumor margins during surgery. With the development of medical imaging technology, fluorescence molecular imaging (FMI) method can provide real-time intraoperative tumor margin information. Furthermore, surgical navigation system based on FMI technology plays an important role for the aid of surgeons' precise tumor margin decision. However, detection depth is the most limitation exists in the FMI technique and the method convenient for either macro superficial detection or micro deep tissue detection is needed. In this study, we combined advantages of both open surgery and endoscopic imaging systems with FMI technology. Indocyanine green (ICG) experiments were performed to confirm the feasibility of fluorescence detection in our system. Then, the ICG signal was photographed in the detection area with our system. When the system connected with endoscope lens, the minimum quantity of ICG detected by our system was 0.195 ug. For aspect of C mount lens, the sensitivity of ICG detection with our system was 0.195ug. Our experiments results proved that it was feasible to detect fluorescence images with this combination method. Our system shows great potential in the clinical applications of precise dissection of various tumors

  11. A novel endoscopic fluorescent band ligation method for tumor localization.

    PubMed

    Hyun, Jong Hee; Kim, Seok-Ki; Kim, Kwang Gi; Kim, Hong Rae; Lee, Hyun Min; Park, Sunup; Kim, Sung Chun; Choi, Yongdoo; Sohn, Dae Kyung

    2016-10-01

    Accurate tumor localization is essential for minimally invasive surgery. This study describes the development of a novel endoscopic fluorescent band ligation method for the rapid and accurate identification of tumor sites during surgery. The method utilized a fluorescent rubber band, made of indocyanine green (ICG) and a liquid rubber solution mixture, as well as a near-infrared fluorescence laparoscopic system with a dual light source using a high-powered light-emitting diode (LED) and a 785-nm laser diode. The fluorescent rubber bands were endoscopically placed on the mucosae of porcine stomachs and colons. During subsequent conventional laparoscopic stomach and colon surgery, the fluorescent bands were assayed using the near-infrared fluorescence laparoscopy system. The locations of the fluorescent clips were clearly identified on the fluorescence images in real time. The system was able to distinguish the two or three bands marked on the mucosal surfaces of the stomach and colon. Resection margins around the fluorescent bands were sufficient in the resected specimens obtained during stomach and colon surgery. These novel endoscopic fluorescent bands could be rapidly and accurately localized during stomach and colon surgery. Use of these bands may make possible the excision of exact target sites during minimally invasive gastrointestinal surgery.

  12. The utility of indocyanine green fluorescence imaging during robotic adrenalectomy.

    PubMed

    Colvin, Jennifer; Zaidi, Nisar; Berber, Eren

    2016-08-01

    Indocyanine green (ICG) has been used for medical imaging since 1950s, but has more recently become available for use in minimally invasive surgery owing to improvements in technology. This study investigates the use of ICG florescence to guide an accurate dissection by delineating the borders of adrenal tumors during robotic adrenalectomy (RA). This prospective study compared conventional robotic view with ICG fluorescence imaging in 40 consecutive patients undergoing RA. Independent, non-blinded observers assessed how accurately ICG fluorescence delineated the borders of adrenal tumors compared to conventional robotic view. A total of 40 patients underwent 43 adrenalectomies. ICG imaging was superior, equivalent, or inferior to conventional robotic view in 46.5% (n = 20), 25.6% (n = 11), and 27.9% (n = 12) of the procedures. On univariate analysis, the only parameter that predicted the superiority of ICG imaging over conventional robotic view was the tumor type, with adrenocortical tumors being delineated more accurately on ICG imaging compared to conventional robotic view. This study demonstrates the utility of ICG to guide the dissection and removal of adrenal tumors during RA. A simple reproducible method is reported, with a detailed description of the utility based on tumor type, approach and side. J. Surg. Oncol. 2016;114:153-156. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Jingqin; Liu, Chengbo; Zeng, Guang; You, Yujia; Wang, Huina; Gong, Xiaojing; Zheng, Rongqin; Kim, Jeesu; Kim, Chulhong; Song, Liang

    2016-02-01

    Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.

  14. Fluorescence spectroscopy using indocyanine green for lymph node mapping

    NASA Astrophysics Data System (ADS)

    Haj-Hosseini, Neda; Behm, Pascal; Shabo, Ivan; Wârdell, Karin

    2014-02-01

    The principles of cancer treatment has for years been radical resection of the primary tumor. In the oncologic surgeries where the affected cancer site is close to the lymphatic system, it is as important to detect the draining lymph nodes for metastasis (lymph node mapping). As a replacement for conventional radioactive labeling, indocyanine green (ICG) has shown successful results in lymph node mapping; however, most of the ICG fluorescence detection techniques developed are based on camera imaging. In this work, fluorescence spectroscopy using a fiber-optical probe was evaluated on a tissue-like ICG phantom with ICG concentrations of 6-64 μM and on breast tissue from five patients. Fiber-optical based spectroscopy was able to detect ICG fluorescence at low intensities; therefore, it is expected to increase the detection threshold of the conventional imaging systems when used intraoperatively. The probe allows spectral characterization of the fluorescence and navigation in the tissue as opposed to camera imaging which is limited to the view on the surface of the tissue.

  15. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wu, Chenxin; Zhang, Yejun; Li, Zhen; Li, Chunyan; Wang, Qiangbin

    2016-06-01

    Atherosclerosis is a major cause of cardiovascular and cerebrovascular diseases that have high mortality and disability rates. Because of its unclear pathogenic mechanism and heterogeneous distribution feature, it is still a big challenge to achieve precise diagnosis and therapy of atherosclerosis at its early stage in vivo. Herein, we fabricated a new ICG@PEG-Ag2S nanoprobe by a simple self-assembly of DT-Ag2S QDs, amphipathic C18/PEG polymer molecules and ICG. The ICG@PEG-Ag2S nanoprobe showed relatively long blood retention and was selectively accumulated in the region of atherosclerotic plaque due to the lipophilicity of the C18 chain to the atherosclerosis microenvironment, and thus the atherosclerosis was real-time monitored by high contrast-enhanced photoacoustic (PA) imaging of ICG. Combining the high signal-to-noise ratio (SNR) and high spatial resolution fluorescence imaging of Ag2S QDs in the second near-infrared window (NIR-II) and related histological assessment in vitro, the feasibility of this new nanoprobe for atherosclerosis targeting in an Apoe-/- mouse model was verified. Additionally, hemolysis and coagulation assays of the ICG@PEG-Ag2S revealed its decent hemocompatibility and no histological changes were observed in the main organs of the mouse. Such a simple, multifunctional nanoprobe for targeting and PA imaging of atherosclerosis will have a great potential for future clinical applications.Atherosclerosis is a major cause of cardiovascular and cerebrovascular diseases that have high mortality and disability rates. Because of its unclear pathogenic mechanism and heterogeneous distribution feature, it is still a big challenge to achieve precise diagnosis and therapy of atherosclerosis at its early stage in vivo. Herein, we fabricated a new ICG@PEG-Ag2S nanoprobe by a simple self-assembly of DT-Ag2S QDs, amphipathic C18/PEG polymer molecules and ICG. The ICG@PEG-Ag2S nanoprobe showed relatively long blood retention and was selectively

  16. A pilot study to assess near infrared laparoscopy with indocyanine green (ICG) for intraoperative sentinel lymph node mapping in early colon cancer.

    PubMed

    Currie, A C; Brigic, A; Thomas-Gibson, S; Suzuki, N; Moorghen, M; Jenkins, J T; Faiz, O D; Kennedy, R H

    2017-11-01

    Previous attempts at sentinel lymph node (SLN) mapping in colon cancer have been compromised by ineffective tracers and the inclusion of advanced disease. This study evaluated the feasibility of fluorescence detection of SLNs with indocyanine green (ICG) for lymphatic mapping in T1/T2 clinically staged colonic malignancy. Consecutive patients with clinical T1/T2 stage colon cancer underwent endoscopic peritumoral submucosal injection of indocyanine green (ICG) for fluorescence detection of SLN using a near-infrared (NIR) camera. All patients underwent laparoscopic complete mesocolic excision surgery. Detection rate and sensitivity of the NIR-ICG technique were the study endpoints. Thirty patients mean age = 68 years [range = 38-80], mean BMI = 26.2 (IQR = 24.7-28.6) were studied. Mesocolic sentinel nodes (median = 3/patient) were detected by fluorescence within the standard resection field in 27/30 patients. Overall, ten patients had lymph node metastases, with one of these patients having a failed SLN procedure. Of the 27 patients with completed SLN mapping, nine patients had histologically positive lymph nodes containing malignancy. 3/9 had positive SLNs with 6 false negatives. In five of these false negative patients, tumours were larger than 35 mm with four also being T3/T4. ICG mapping with NIR fluorescence allowed mesenteric detection of SLNs in clinical T1/T2 stage colonic cancer. CLINICALTRIALS.GOV: ID: NCT01662752. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  17. Interactions of Indocyanine Green and Lipid in Enhancing Near-Infrared Fluorescence Properties: The Basis for Near-Infrared Imaging in Vivo

    PubMed Central

    2015-01-01

    Indocyanine green (ICG) is a near-infrared (NIR) contrast agent commonly used for in vivo cardiovascular and eye imaging. For medical diagnosis, ICG is limited by its aqueous instability, concentration-dependent aggregation, and rapid degradation. To overcome these limitations, scientists have formulated ICG in various liposomes, which are spherical lipid membrane vesicles with an aqueous core. Some encapsulate ICG, while others mix it with liposomes. There is no clear understanding of lipid–ICG interactions. Therefore, we investigated lipid–ICG interactions by fluorescence and photon correlation spectroscopy. These data were used to design stable and maximally fluorescent liposomal ICG nanoparticles for NIR optical imaging of the lymphatic system. We found that ICG binds to and is incorporated completely and stably into the lipid membrane. At a lipid:ICG molar ratio of 250:1, the maximal fluorescence intensity was detected. ICG incorporated into liposomes enhanced the fluorescence intensity that could be detected across 1.5 cm of muscle tissue, while free ICG only allowed 0.5 cm detection. When administered subcutaneously in mice, lipid-bound ICG in liposomes exhibited a higher intensity, NIR image resolution, and enhanced lymph node and lymphatic vessel visualization. It also reduced the level of fluorescence quenching due to light exposure and degradation in storage. Lipid-bound ICG could provide additional medical diagnostic value with NIR optical imaging for early intervention in cases of lymphatic abnormalities. PMID:24512123

  18. Multiparametric evaluation of hindlimb ischemia using time-series indocyanine green fluorescence imaging.

    PubMed

    Guang, Huizhi; Cai, Chuangjian; Zuo, Simin; Cai, Wenjuan; Zhang, Jiulou; Luo, Jianwen

    2017-03-01

    Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time-series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time-series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post-ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time-varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time-series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo-perfused tissues from well-perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis. The estimated perfusion rate and vascular perfusion density maps (left) and the time-varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Photothermal and photochemical effects of laser light absorption by indocyanine green (ICG)

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Diagaradjane, Parmeswaran; Pikkula, Brian M.; Yu, Jie; Wong, Michael S.; Anvari, Bahman

    2005-04-01

    Indocyanine Green (ICG) is clinically used as a fluorescent dye for imaging purposes. Its rapid circulation kinetics and minimal toxicity has prompted investigation into ICG's utility as a photosentitizer for therapeutic applications. Traditionally, optically mediated tumor therapy has focused on photodynamic therapy, which employs a photochemical mechanism resulting from the absorption of low intensity CW laser light by localized photosensitizers such as Photofrin II, Benzoporphyrin Derivative (BPD), ICG. Treatment of cutaneous vascular malformations such as port-wine stains, on the other hand, is based on a photothermal mechanism resulting from the absorption of high intensity pulsed laser light by hemoglobin. In this study, we compared the effectiveness of combining photochemical and photothermal mechanisms during application of ICG in conjunction with laser irradiation with the intention that the combined approach may lead to a reduction in the threshold dose of pulsed laser light required to treat hypervascular malformations. The blood vessels in rabbit ears were used as an in vivo model for targeted vasculature. Irradiation of the ears with IR light (λ=785 nm, Δτ = 3 min, Io = 120 mW) was used to elicit photochemical damage, while photothermal damage was brought about using pulses from a ruby laser (λ=694 nm, τ = 3 ms) with different fluences. For the combined modality, photochemical damage was induced first and followed by photothermal irradiation. This modality was compared with photothermal irradiation alone. The effectiveness of each irradiation scheme was assessed using histopathological analysis. We present preliminary data that suggests that pretreatment with photodynamic therapy before photothermal coagulation results in more severe vascular damage with lower photothermal fluence levels. The results of this study provide the foundation work for further exploration of the therapeutic potentials of photochemical and photothermal effects during

  20. A novel small molecule mediate 18F-FDG excited fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Zeyu; Guo, Hongbo; Hu, Zhenhua; Tian, Jie

    2018-02-01

    Fluorescence molecular imaging (FMI) has been widely used in many medical fields with small molecule indocyanine green (ICG). However, low signal-background ratio and limited specificity to tumor remain big challenges for FMI. In this study, a novel excitation strategy is proposed on the basis of clinical approved ICG and 18F-FDG. A series of in vitro experiments are designed to reveal the mechanism and results show obvious decreasing of ICG fluorescence intensity with the increasing distance to excitation source. Meanwhile, the ICG fluorescence intensity is proportional to the activity of radiopharmaceutical. Results from different respects illustrate the promising of this proposed excitation strategy.

  1. Intraoperative Detection of Superficial Liver Tumors by Fluorescence Imaging Using Indocyanine Green and 5-aminolevulinic Acid.

    PubMed

    Kaibori, Masaki; Matsui, Kosuke; Ishizaki, Morihiko; Iida, Hiroya; Okumura, Tadayoshi; Sakaguchi, Tatsuma; Inoue, Kentaro; Ikeura, Tsukasa; Asano, Hiroaki; Kon, Masanori

    2016-04-01

    Indocyanine green (ICG) and the porphyrin precursor 5-aminolevulinic acid (5-ALA) have been approved as fluorescence imaging agents in the clinical setting. This study evaluated the usefulness of fluorescence imaging with both ICG and 5-ALA for intraoperative identification of latent small liver tumors. There were 48 patients who had main tumors within 5 mm of the liver surface. 5-ALA hydrochloride was orally administered to patients 3 h before surgery. ICG had been intravenously injected within 14 days prior to surgery. Intraoperatively, after visual inspection, manual palpation and ultrasonography fluorescence images of the liver surface were obtained with ICG and 5-ALA prior to resection. With ICG, the sensitivity, specificity and accuracy for detecting the preoperatively identified main tumors were 96%, 50% and 94%, respectively. Twelve latent small tumors were newly detected on the liver surface using ICG, five of which proved to be carcinomas. With 5-ALA, the sensitivity, specificity and accuracy for detecting the main tumors were 57%, 100% and 58%, respectively. Five latent small tumors were newly detected using 5-ALA; all were carcinomas. Overall, five new tumors were detected by both ICG and 5-ALA fluorescence imaging; two were hepatocellular carcinomas (HCCs) and three were metastases of colorectal cancer. The sensitivity and specificity of ICG fluorescence imaging for main tumor detection were relatively high and low, respectively, but the opposite was true of 5-ALA imaging. Fluorescence imaging using 5-ALA may provide greater specificity in the detection of surface-invisible malignant liver tumors than using ICG fluorescence imaging alone. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source.

    PubMed

    Namikawa, Tsutomu; Fujisawa, Kazune; Munekage, Eri; Iwabu, Jun; Uemura, Sunao; Tsujii, Shigehiro; Maeda, Hiromichi; Kitagawa, Hiroyuki; Fukuhara, Hideo; Inoue, Keiji; Sato, Takayuki; Kobayashi, Michiya; Hanazaki, Kazuhiro

    2018-04-04

    The natural amino acid 5-aminolevulinic acid (ALA) is a protoporphyrin IX (PpIX) precursor and a new-generation photosensitive substance that accumulates specifically in cancer cells. When indocyanine green (ICG) is irradiated with near-infrared (NIR) light, it shifts to a higher energy state and emits infrared light with a longer wavelength than the irradiated NIR light. Photodynamic diagnosis (PDD) using ALA and ICG-based NIR fluorescence imaging has emerged as a new diagnostic technique. Specifically, in laparoscopic examinations for serosa-invading advanced gastric cancer, peritoneal metastases could be detected by ALA-PDD, but not by conventional visible-light imaging. The HyperEye Medical System (HEMS) can visualize ICG fluorescence as color images simultaneously projected with visible light in real time. This ICG fluorescence method is widely applicable, including for intraoperative identification of sentinel lymph nodes, visualization of blood vessels in organ resection, and blood flow evaluation during surgery. Fluorescence navigation by ALA-PDD and NIR using ICG imaging provides good visualization and detection of the target lesions that is not possible with the naked eye. We propose that this technique should be used in fundamental research on the relationship among cellular dynamics, metabolic enzymes, and tumor tissues, and to evaluate clinical efficacy and safety in multicenter cooperative clinical trials.

  3. ICG laser therapy of acne vulgaris

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Altshuler, Gregory B.; Genina, Elina A.; Bashkatov, Alexey N.; Simonenko, Georgy V.; Odoevskaya, Olga D.; Yaroslavsky, Ilya V.

    2004-07-01

    The near-infrared (NIR) laser radiation due to its high penetration depth is widely used in phototherapy. In application to skin appendages a high selectivity of laser treatment is needed to prevent light action on surrounding tissues. Indocyanine Green (ICG) dye may provide a high selectivity of treatment due to effective ICG uploading by a target and its narrow band of considerable absorption just at the wavelength of the NIR diode laser. The goal of this study is to demonstrate the efficacy of the NIR diode laser phototherapy in combination with topical application of ICG suggested for soft and thermal treatment of acne vulgaris. 28 volunteers with facile or back-located acne were enrolled. Skin sites of subjects were stained by ICG and irradiated by NIR laser-diode light (803 or 809 nm). Untreated, only stained and only light irradiated skin areas served as controls. For soft acne treatment, the low-intensity (803 nm, 10 - 50 mW/cm2, 5-10 min) or the medium-intensity (809 nm, 150 - 190 mW/cm2, 15 min) protocols were used. The single and multiple (up to 8-9) treatments were provided. The individual acne lesions were photothermally treated at 18 W/cm2 (803 nm, 0.5 sec) without skin surface cooling or at 200 W/cm2 (809 nm, 0.5 sec) with cooling. The results of the observations during 1-2 months after the completion of the treatment have shown that only in the case of the multiple-wise treatment a combined action of ICG and NIR irradiation reduces inflammation and improves skin state during a month without any side effects. At high power densities (up to 200 W/cm2) ICG stained acne inflammatory elements were destructed for light exposures of 0.5 sec. Based on the concept that hair follicle, especially sebaceous gland, can be intensively and selectively stained by ICG due to dye diffusion through pilosebaceous canal and its fast uptake by living microorganisms, by vital keratinocytes of epithelium of the canal and sebaceous duct, and by rapidly proliferating

  4. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging.

    PubMed

    Zhang, Ya-Min; Shi, Rui; Hou, Jian-Cun; Liu, Zi-Rong; Cui, Zi-Lin; Li, Yang; Wu, Di; Shi, Yuan; Shen, Zhong-Yang

    2017-01-01

    Clear delineation between tumors and normal tissues is ideal for real-time surgical navigation imaging. We investigated applying indocyanine green (ICG) fluorescence imaging navigation using an intraoperative administration method in liver resection. Fifty patients who underwent liver resection were divided into two groups based on clinical situation and operative purpose. In group I, sizes of superficial liver tumors were determined; tiny tumors were identified. In group II, the liver resection margin was determined; real-time navigation was performed. ICG was injected intravenously at the beginning of the operation; the liver surface was observed with a photodynamic eye (PDE). Liver resection margins were determined using PDE. Fluorescence contrast between normal liver and tumor tissues was obvious in 32 of 35 patients. A boundary for half the liver or specific liver segments was determined in nine patients by examining the portal vein anatomy after ICG injection. Eight small tumors not observed preoperatively were detected; the smallest was 2 mm. ICG fluorescence imaging navigation is a promising, simple, and safe tool for routine real-time intraoperative imaging during hepatic resection and clinical exploration in hepatocellular carcinoma, enabling high sensibility for identifying liver resection margins and detecting tiny superficial tumors.

  5. Detection of rheumatoid arthritis in humans by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Ebert, Bernd; Dziekan, Thomas; Weissbach, Carmen; Mahler, Marianne; Schirner, Michael; Berliner, Birgitt; Bauer, Daniel; Voigt, Jan; Berliner, Michael; Bahner, Malte L.; Macdonald, Rainer

    2010-02-01

    The blood pool agent indo-cyanine green (ICG) has been investigated in a prospective clinical study for detection of rheumatoid arthritis using fluorescence imaging. Temporal behavior as well as spatial distribution of fluorescence intensity are suited to differentiate healthy and inflamed finger joints after i.v. injection of an ICG bolus.

  6. Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult's brain

    NASA Astrophysics Data System (ADS)

    Gerega, Anna; Milej, Daniel; Weigl, Wojciech; Botwicz, Marcin; Zolek, Norbert; Kacprzak, Michal; Wierzejski, Wojciech; Toczylowska, Beata; Mayzner-Zawadzka, Ewa; Maniewski, Roman; Liebert, Adam

    2012-08-01

    Optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for clinical assessment of brain perfusion in adults at the bedside. Methodology of multiwavelength and time-resolved detection of fluorescence light excited in the ICG is presented and advantages of measurements at multiple wavelengths are discussed. Measurements were carried out: 1. on a physical homogeneous phantom to study the concentration dependence of the fluorescence signal, 2. on the phantom to simulate the dynamic inflow of ICG at different depths, and 3. in vivo on surface of the human head. Pattern of inflow and washout of ICG in the head of healthy volunteers after intravenous injection of the dye was observed for the first time with time-resolved instrumentation at multiple emission wavelengths. The multiwavelength detection of fluorescence signal confirms that at longer emission wavelengths, probability of reabsorption of the fluorescence light by the dye itself is reduced. Considering different light penetration depths at different wavelengths, and the pronounced reabsorption at longer wavelengths, the time-resolved multiwavelength technique may be useful in signal decomposition, leading to evaluation of extra- and intracerebral components of the measured signals.

  7. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.

    PubMed

    Carr, Jessica A; Franke, Daniel; Caram, Justin R; Perkinson, Collin F; Saif, Mari; Askoxylakis, Vasileios; Datta, Meenal; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G; Bruns, Oliver T

    2018-04-24

    Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.

  8. Sulfobutyl ether β-cyclodextrin (Captisol(®) ) and methyl β-cyclodextrin enhance and stabilize fluorescence of aqueous indocyanine green.

    PubMed

    DeDora, Daniel J; Suhrland, Cassandra; Goenka, Shilpi; Mullick Chowdhury, Sayan; Lalwani, Gaurav; Mujica-Parodi, Lilianne R; Sitharaman, Balaji

    2016-10-01

    As the only FDA-approved near-infrared fluorophore, indocyanine green (ICG) is commonly used to image vasculature in vivo. ICG degrades rapidly in solution, which limits its usefulness in certain applications, including time-sensitive surgical procedures. We propose formulations that address this shortcoming via complexation with β-cyclodextrin derivatives (β-CyD), which are known to create stabilizing inclusion complexes with hydrophobic molecules. Here, we complexed ICG with highly soluble methyl β-CyD and FDA-approved sulfobutyl ether β-CyD (Captisol(®) ) in aqueous solution. We measured the fluorescence of the complexes over 24 h. We found that both CyD+ICG complexes exhibit sustained fluorescence increases of >2.0× versus ICG in water and >20.0× in PBS. Using transmission electron microscopy, we found evidence of reduced aggregation in complexes versus ICG alone. We thus conclude that this reduction in aggregation helps mitigate fluorescence autoquenching of CyD+ICG complexes compared in ICG alone. We also found that while ICG complexed with methyl β-CyD severely reduced the viability of MRC-5 fibroblasts, ICG complexed with sulfobutyl ether β-CyD had no effect on viability. These results represent an important first step toward enhancing the utility of aqueous ICG by reducing aggregation-dependent fluorescence degradation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1457-1464, 2016. © 2015 Wiley Periodicals, Inc.

  9. The utility of indocyanine green near infrared fluorescent imaging in the identification of parathyroid glands during surgery for primary hyperparathyroidism.

    PubMed

    Zaidi, Nisar; Bucak, Emre; Okoh, Alexis; Yazici, Pinar; Yigitbas, Hakan; Berber, Eren

    2016-06-01

    Intraoperative adjuncts for the localization of parathyroid glands in parathyroid surgery are limited. The aim of this study is to assess the usefulness of indocyanine green (ICG) near-infrared (NIR) fluorescent imaging in patients undergoing surgery for primary hyperparathyroidism (PHPT). ICG imaging was performed in 33 patients undergoing parathyroidectomy (PTX). Thyroid and parathyroid ICG uptake were assessed and independently verified on a grading scale. Clinical variables were recorded and analyzed for factors associated with ICG uptake. Of 112 glands identified by naked eye, 104 (92.9%) demonstrated ICG uptake. Concomitant ICG fluorescence was identified in the thyroid in all patients. There was a trend toward increased ICG fluorescence in patients <60 years of age (P = 0.05). A higher degree of fluorescence was seen in patients presenting with pre-operative calcium values >11 mg/dl (P = 0.04) and in those parathyroids larger than 10 mm (P < 0.01). All patients had biochemically proven cure. No patients who underwent subtotal PTX (n = 6) developed postoperative hypoparathyroidism. ICG can reliably localize parathyroid glands during PTX and additionally allow for assessment of parathyroid perfusion in patients undergoing subtotal resection. Concomitant fluorescence of the thyroid gland limits ICG's usefulness in directing the course of PTX. J. Surg. Oncol. 2016;113:771-774. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence

    PubMed Central

    Koyanagi, Kazuo; Ozawa, Soji; Oguma, Junya; Kazuno, Akihito; Yamazaki, Yasushi; Ninomiya, Yamato; Ochiai, Hiroki; Tachimori, Yuji

    2016-01-01

    Abstract Anastomotic leakage is considered as an independent risk factor for postoperative mortality after esophagectomy, and an insufficient blood flow in the reconstructed conduit may be a risk factor of anastomotic leakage. We investigated the clinical significance of blood flow visualization by indocyanine green (ICG) fluorescence in the gastric conduit as a means of predicting the leakage of esophagogastric anastomosis after esophagectomy. Forty patients who underwent an esophagectomy with gastric conduit reconstruction were prospectively investigated. ICG fluorescence imaging of the gastric conduit was detected by a near-infrared camera system during esophagectomy and correlated with clinical parameters or surgical outcomes. In 25 patients, the flow speed of ICG fluorescence in the gastric conduit wall was simultaneous with that of the greater curvature vessels (simultaneous group), whereas in 15 patients this was slower than that of the greater curvature vessels (delayed group). The reduced speed of ICG fluorescence stream in the gastric conduit wall was associated with intraoperative blood loss (P = 0.008). Although anastomotic leakage was not found in the simultaneous group, it occurred in 7 patients of the delayed group (P < 0.001). A flow speed of ICG fluorescence in the gastric conduit wall of 1.76 cm/s or less was determined by a receiver operating characteristic (ROC) curve, identified as a significant independent predictor of anastomotic leakage after esophagectomy (P = 0.004). This preliminary study demonstrates that intraoperative evaluation of blood flow speed by ICG fluorescence in the gastric conduit wall is a useful means to predict the risk of anastomotic leakage after esophagectomy. PMID:27472732

  11. Doxorubicin and Indocyanine Green Loaded Hybrid Bicelles for Fluorescence Imaging Guided Synergetic Chemo/Photothermal Therapy.

    PubMed

    Lin, Li; Liang, Xiaolong; Xu, Yunxue; Yang, Yongbo; Li, Xiaoda; Dai, Zhifei

    2017-09-20

    Hybrid bicelles have been demonstrated to have great potential for hydrophobic drug delivery. Herein, we report a near-infrared light-driven, temperature-sensitive hybrid bicelles co-encapsulating hydrophobic doxorubicin (DOX) and indocyanine green (ICG) (DOX/ICG@HBs). Encapsulation of ICG into the lipid bilayer membrane of DOX/ICG@HBs results in higher photostability than free ICG. DOX/ICG@HBs exhibited temperature-regulated drug release behavior and significant photothermal cytotoxicity. After tail vein injection, such discotic nanoparticles of DOX/ICG@HBs were found to accumulate selectively at the tumor site and act as an efficient probe to enhance fluorescence imaging greatly. The in vivo experiments showed that the DOX/ICG@HBs-mediated chemo- and photothermal combination therapy was more cytotoxic to tumor cells than the photothermal treatment or the chemotherapy alone due to the synergistic effect, reducing the occurrence of tumor metastasis. Therefore, DOX/ICG@HBs can act as a powerful nanotheranostic agent for chemo/photothermal therapy of cancer under the guidance of near-infrared fluorescence imaging.

  12. Indocyanine green fluorescence in second near-infrared (NIR-II) window

    PubMed Central

    Bhavane, Rohan; Ghaghada, Ketan B.; Vasudevan, Sanjeev A.; Kaay, Alexander; Annapragada, Ananth

    2017-01-01

    Indocyanine green (ICG), a FDA approved near infrared (NIR) fluorescent agent, is used in the clinic for a variety of applications including lymphangiography, intra-operative lymph node identification, tumor imaging, superficial vascular imaging, and marking ischemic tissues. These applications operate in the so-called “NIR-I” window (700–900 nm). Recently, imaging in the “NIR-II” window (1000–1700 nm) has attracted attention since, at longer wavelengths, photon absorption, and scattering effects by tissue components are reduced, making it possible to image deeper into the underlying tissue. Agents for NIR-II imaging are, however, still in pre-clinical development. In this study, we investigated ICG as a NIR-II dye. The absorbance and NIR-II fluorescence emission of ICG were measured in different media (PBS, plasma and ethanol) for a range of ICG concentrations. In vitro and in vivo testing were performed using a custom-built spectral NIR assembly to facilitate simultaneous imaging in NIR-I and NIR-II window. In vitro studies using ICG were performed using capillary tubes (as a simulation of blood vessels) embedded in Intralipid solution and tissue phantoms to evaluate depth of tissue penetration in NIR-I and NIR-II window. In vivo imaging using ICG was performed in nude mice to evaluate vascular visualization in the hind limb in the NIR-I and II windows. Contrast-to-noise ratios (CNR) were calculated for comparison of image quality in NIR-I and NIR-II window. ICG exhibited significant fluorescence emission in the NIR-II window and this emission (similar to the absorption profile) is substantially affected by the environment of the ICG molecules. In vivo imaging further confirmed the utility of ICG as a fluorescent dye in the NIR-II domain, with the CNR values being ~2 times those in the NIR-I window. The availability of an FDA approved imaging agent could accelerate the clinical translation of NIR-II imaging technology. PMID:29121078

  13. Intestinal blood flow assessment by indocyanine green fluorescence imaging in a patient with the incarcerated umbilical hernia: Report of a case.

    PubMed

    Ryu, Shunjin; Yoshida, Masashi; Ohdaira, Hironori; Tsutsui, Nobuhiro; Suzuki, Norihiko; Ito, Eisaku; Nakajima, Keigo; Yanagisawa, Satoru; Kitajima, Masaki; Suzuki, Yutaka

    2016-06-01

    After reduction of the incarceration during surgery for incarcerated hernia, intestinal blood flow (IBF) and the need for bowel resection must be evaluated. We report the case of a patient with incarcerated umbilical hernia in whom the bowel was preserved after evaluating IBF using indocyanine green (ICG) fluorescence. A woman in her 40s with a chief complaint of abdominal pain visited our hospital, was diagnosed with incarcerated umbilical hernia and underwent surgery. Laparotomy was performed to reduce bowel incarceration. After reducing the incarceration, IBF was observed using ICG fluorescence detected using a brightfield full-color fluorescence camera. The small bowel that had been incarcerated showed deep-red discoloration on gross evaluation, but intravenous injection of ICG revealed uniform fluorescence of the mesentery and bowel wall. This indicated an absence of irreversible ischemic changes of the bowel, so no resection was performed. The patient showed a good postoperative course, including resumption of eating on day 4 and discharge on day 11. In surgery for incarcerated hernia, ICG fluorescence may offer a useful method to evaluate IBF after reducing the incarceration. This case implied that PINPOINT could be used in open conventional surgery.

  14. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager

    NASA Astrophysics Data System (ADS)

    Pallotta, Olivia J.; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  15. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature.

    PubMed

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V; Backer, Marina V; Backer, Joseph M; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.

  16. Conditions for NIR fluorescence-guided tumor resectioning in preclinical lung cancer model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    Pulmonary nodule could be identified by intraoperative fluorescence imaging system from systemic injection of indocyanine green (ICG) which achieves enhanced permeability and retention (EPR) effects. This study was performed to evaluate optimal injection time of ICG for detecting cancer during surgery in rabbit lung cancer model. VX2 carcinoma cell was injected in rabbit lung under fluoroscopic computed tomography-guidance. Solitary lung cancer was confirmed on positron emitting tomography with CT (PET/CT) 2 weeks after inoculation. ICG was administered intravenously and fluorescent intensity of lung tumor was measured using the custom-built intraoperative color and fluorescence merged imaging system (ICFIS) for 15 hours. Solitary lung cancer was resected through thoracoscopic version of ICFIS. ICG was observed in all animals. Because Lung has fast blood pulmonary circulation, Fluorescent signal showed maximum intensity earlier than previous studies in other organs. Fluorescent intensity showed maximum intensity within 6-9 hours in rabbit lung cancer. Overall, Fluorescent intensity decreased with increasing time, however, all tumors were detectable using fluorescent images until 12 hours. In conclusion, while there had been studies in other organs showed that optimal injection time was at least 24 hours before operation, this study showed shorter optimal injection time at lung cancer. Since fluorescent signal showed the maximum intensity within 6-9 hours, cancer resection could be performed during this time. This data informed us that optimal injection time of ICG should be evaluated in each different solid organ tumor for fluorescent image guided surgery.

  17. Principal component analysis of indocyanine green fluorescence dynamics for diagnosis of vascular diseases

    NASA Astrophysics Data System (ADS)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee

    2015-03-01

    Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.

  18. Sentinel lymph node mapping in minimally invasive surgery: Role of imaging with color-segmented fluorescence (CSF).

    PubMed

    Lopez Labrousse, Maite I; Frumovitz, Michael; Guadalupe Patrono, M; Ramirez, Pedro T

    2017-09-01

    Sentinel lymph node mapping, alone or in combination with pelvic lymphadenectomy, is considered a standard approach in staging of patients with cervical or endometrial cancer [1-3]. The goal of this video is to demonstrate the use of indocyanine green (ICG) and color-segmented fluorescence when performing lymphatic mapping in patients with gynecologic malignancies. Injection of ICG is performed in two cervical sites using 1mL (0.5mL superficial and deep, respectively) at the 3 and 9 o'clock position. Sentinel lymph nodes are identified intraoperatively using the Pinpoint near-infrared imaging system (Novadaq, Ontario, CA). Color-segmented fluorescence is used to image different levels of ICG uptake demonstrating higher levels of perfusion. A color key on the side of the monitor shows the colors that coordinate with different levels of ICG uptake. Color-segmented fluorescence may help surgeons identify true sentinel nodes from fatty tissue that, although absorbing fluorescent dye, does not contain true nodal tissue. It is not intended to differentiate the primary sentinel node from secondary sentinel nodes. The key ranges from low levels of ICG uptake (gray) to the highest rate of ICG uptake (red). Bilateral sentinel lymph nodes are identified along the external iliac vessels using both standard and color-segmented fluorescence. No evidence of disease was noted after ultra-staging was performed in each of the sentinel nodes. Use of ICG in sentinel lymph node mapping allows for high bilateral detection rates. Color-segmented fluorescence may increase accuracy of sentinel lymph node identification over standard fluorescent imaging. The following are the supplementary data related to this article. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: A systematic review.

    PubMed

    Liberale, G; Bourgeois, P; Larsimont, D; Moreau, M; Donckier, V; Ishizawa, T

    2017-09-01

    Indocyanine green fluorescence-guided surgery (ICG-FGS) has emerged as a potential new imaging modality for improving the detection of hepatic, lymph node (LN), and peritoneal metastases in colorectal cancer (CRC) patients. The aim of this paper is to review the available literature in the clinical setting of ICG-FGS for tumoral detection in various fields of metastatic colorectal disease. PubMed and Medline literature databases were searched for original articles on the use of ICG in the setting of clinical studies on colorectal cancer. The search terms used were "near-infrared fluorescence", "intraoperative imaging", "indocyanine green", "human" and "colorectal cancer". ICG fluorescence imaging (ICG-FI) is clearly supported as an intraoperative technique that allows the detection of additional superficial hepatic metastases of CRC. Data on the role of ICG-FI in the intraoperative detection of peritoneal metastases and LN metastases are scarce but encouraging and ICG-FI could potentially improve the staging and treatment of these patients. ICG-FI is a promising imaging technique in the detection of small infraclinic LN, hepatic, and peritoneal metastatic deposits that may allow better staging and more complete surgical resection with a potential prognostic benefit for patients. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  20. Fluorescence contrast-enhanced proliferative lesion imaging by enema administration of indocyanine green in a rat model of colon carcinogenesis

    PubMed Central

    Onda, Nobuhiko; Mizutani-Morita, Reiko; Yamashita, Susumu; Nagahara, Rei; Matsumoto, Shinya; Yoshida, Toshinori; Shibutani, Makoto

    2017-01-01

    The fluorescent contrast agent indocyanine green (ICG) is approved by the Food and Drug Administration for clinical applications. We previously reported that cultured human colon tumor cells preferentially take up ICG by endocytic activity in association with disruption of their tight junctions. The present study explored ICG availability in fluorescence imaging of the colon to identify proliferative lesions during colonoscopy. The cellular uptake of ICG in cultured rat colon tumor cells was examined using live-cell imaging. Colon lesions in rats administered an ICG-containing enema were further assessed in rats with azoxymethane-induced colon carcinogenesis, using in vivo endoscopy, ex vivo microscopy, and immunofluorescence microscopy. The uptake of ICG by the cultured cells was temperature-dependent. The intracellular retention of the dye in the membrane trafficking system suggested endocytosis as the uptake mechanism. ICG administered via enema accumulated in colon proliferative lesions ranging from tiny aberrant crypt foci to adenomas and localized in proliferating cells. Fluorescence endoscopy detected these ICG-positive colonic proliferative lesions in vivo. The immunoreactivity of the tight-junction molecule occludin was altered in the proliferative lesions, suggesting the disruption of the integrity of tight junctions. These results suggest that fluorescence contrast-enhanced imaging following the administration of an ICG-containing enema can enhance the detection of mucosal proliferative lesions of the colon during colonoscopy. The tissue preference of ICG in the rat model evaluated in this study can be attributed to the disruption of tight junctions, which in turn promotes endocytosis by proliferative cells and the cellular uptake of ICG. PMID:29163827

  1. Multispectral Fluorescence Imaging During Robot-assisted Laparoscopic Sentinel Node Biopsy: A First Step Towards a Fluorescence-based Anatomic Roadmap.

    PubMed

    van den Berg, Nynke S; Buckle, Tessa; KleinJan, Gijs H; van der Poel, Henk G; van Leeuwen, Fijs W B

    2017-07-01

    During (robot-assisted) sentinel node (SN) biopsy procedures, intraoperative fluorescence imaging can be used to enhance radioguided SN excision. For this combined pre- and intraoperative SN identification was realized using the hybrid SN tracer, indocyanine green- 99m Tc-nanocolloid. Combining this dedicated SN tracer with a lymphangiographic tracer such as fluorescein may further enhance the accuracy of SN biopsy. Clinical evaluation of a multispectral fluorescence guided surgery approach using the dedicated SN tracer ICG- 99m Tc-nanocolloid, the lymphangiographic tracer fluorescein, and a commercially available fluorescence laparoscope. Pilot study in ten patients with prostate cancer. Following ICG- 99m Tc-nanocolloid administration and preoperative lymphoscintigraphy and single-photon emission computed tomograpy imaging, the number and location of SNs were determined. Fluorescein was injected intraprostatically immediately after the patient was anesthetized. A multispectral fluorescence laparoscope was used intraoperatively to identify both fluorescent signatures. Multispectral fluorescence imaging during robot-assisted radical prostatectomy with extended pelvic lymph node dissection and SN biopsy. (1) Number and location of preoperatively identified SNs. (2) Number and location of SNs intraoperatively identified via ICG- 99m Tc-nanocolloid imaging. (3) Rate of intraoperative lymphatic duct identification via fluorescein imaging. (4) Tumor status of excised (sentinel) lymph node(s). (5) Postoperative complications and follow-up. Near-infrared fluorescence imaging of ICG- 99m Tc-nanocolloid visualized 85.3% of the SNs. In 8/10 patients, fluorescein imaging allowed bright and accurate identification of lymphatic ducts, although higher background staining and tracer washout were observed. The main limitation is the small patient population. Our findings indicate that a lymphangiographic tracer can provide additional information during SN biopsy based on ICG- 99m

  2. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates

    PubMed Central

    Chen, Jin; Venugopal, Vivek; Intes, Xavier

    2011-01-01

    Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610

  3. Intraoperative tumor localization and tissue distinction during robotic adrenalectomy using indocyanine green fluorescence imaging: a feasibility study.

    PubMed

    Sound, Sara; Okoh, Alexis K; Bucak, Emre; Yigitbas, Hakan; Dural, Cem; Berber, Eren

    2016-02-01

    To investigate the feasibility of a method for intraoperative tumor localization and tissue distinction during robotic adrenalectomy (RA) via indocyanine green (ICG) imaging under near-infrared light. Ten patients underwent RA. After exposure of the retroperitoneal space, but before adrenal dissection was started, ICG was given intravenously (IV). Fluorescence Firefly™ imaging was performed at 1-, 5-, 10-, and 20-min time points. The precision with which the borders of the adrenal tissue were distinguished with ICG imaging was compared to that with the conventional robotic view. The number and the total volume of injections for each patient were recorded. There were six male and four female patients. Diagnosis was primary hyperaldosteronism in four patients and myelolipoma, adrenocortical neoplasm, adrenocortical hyperplasia, Cushing's syndrome, pheochromocytoma, and metastasis in one patient each. Procedures were done through a robotic lateral transabdominal approach in nine and through a robotic posterior retroperitoneal approach in one patient. Dose per injection ranged between 2.5 and 6.3 mg and total dose per patient 7.5-18.8 mg. The adrenal gland took up the dye in 1 min, with contrast between adrenal mass and surrounding retroperitoneal fat becoming most distinguished at 5 min. Fluorescence of adrenal tissue lasted up to 20 min after injection. Overall, ICG imaging was felt to help with the conduct of operation in 8 out of 10 procedures. There were no conversions to open or morbidity. There were no immediate or delayed adverse effects attributable to IV ICG administration. In this pilot study, we demonstrated the feasibility and safety of ICG imaging in a small group of patients undergoing RA. We described a method that enabled an effective fluorescence imaging to localize the adrenal glands and guide dissection. Future research is necessary to study how this imaging affects perioperative outcomes.

  4. A comparison of indocyanine green fluorescence imaging plus blue dye and blue dye alone for sentinel node navigation surgery in breast cancer patients.

    PubMed

    Hirano, Akira; Kamimura, Mari; Ogura, Kaoru; Kim, Naomi; Hattori, Akinori; Setoguchi, Yumika; Okubo, Fumie; Inoue, Hiroaki; Miyamoto, Reiko; Kinoshita, Jun; Fujibayashi, Mariko; Shimizu, Tadao

    2012-12-01

    To evaluate two methods of sentinel node navigation surgery (SNNS) using blue dye with and without indocyanine green (ICG) fluorescence imaging (FI) to determine the usefulness of combined ICG and blue dye. Between 2005 and 2010, a total of 501 patients underwent SNNS in our hospital. Detection of sentinel lymph node (SLN) was performed with sulfan blue (SB) alone until 2008 and with a combination of SB and ICG-FI since 2009. ICG 5 mg and SB 15 mg were injected in the subareolar region, and FI was obtained by a fluorescence imaging device. We attempted to identify SLNs in 393 patients by SB alone and in 108 patients by a combination of SB and FI. The mean number of SLNs detected was 1.6 (0-5) for SB alone and 2.2 (1-6) for the combination method. The SLN identification rate was 95.7 % for SB alone and 100 % for the combination method so that the combination was significantly superior to SB in terms of the identification rate (p = 0.0037). In patients who received the combination method, detection of SLN was made through only SB in 1 patient, only ICG in 8 patients, and both in 99 patients. Lymph node metastasis was found in 56 patients with SB alone and in 16 patients with the combination method. Recurrence of an axillary node was observed in 3 patients (0.8 %) with SB alone and in no patients with the combination method. ICG-FI is a useful method and is especially recommended in cases where no radiotracers are available.

  5. The feasibility of indocyanine green fluorescence imaging for identifying and assessing the perfusion of parathyroid glands during total thyroidectomy.

    PubMed

    Zaidi, Nisar; Bucak, Emre; Yazici, Pinar; Soundararajan, Sarah; Okoh, Alexis; Yigitbas, Hakan; Dural, Cem; Berber, Eren

    2016-06-01

    There are limited adjuncts available for identifying and assessing the viability of parathyroid glands (PGs) during total thyroidectomy (TT). The aim of this study is to determine the feasibility of indocyanine green (ICG) imaging in identifying and assessing perfusion of PGs during TT. ICG was administered in patients undergoing TT and fluorescence of PGs was assessed. A grading scale was developed for assessing degree of ICG uptake. Patients were evaluated for hypocalcemia and hypoparathyroidism on post-operative day (POD) #1. Twenty-seven patients underwent TT with ICG imaging for multinodular goiter (n = 13), thyroid cancer (n = 10), and Graves' disease (n = 4). Eight-five PGs were identified visually, 71 (84%) of which showed ICG fluorescence. False negative rate was 6%. Post-operatively, three patients (11%) had a serum calcium value <8 mg/dl. ICG uptake after TT correlated with post-operative PTH levels: mean POD#1 PTH of those patients with at least two PGs exhibiting <30% fluorescence was 9 pg/ml; whereas those with fewer than two demonstrating <30% fluorescence had a POD#1 PTH of 19.5 pg/ml (P = 0.05). ICG imaging of PGs during TT is feasible. ICG might be a useful adjunct in identifying those patients at risk for post-thyroidectomy hypoparathyroidism. J. Surg. Oncol. 2016;113:775-778. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Indocyanine Green Enables Near-Infrared Fluorescence Imaging of Lipid-Rich, Inflamed Atherosclerotic Plaques

    PubMed Central

    Vinegoni, Claudio; Botnaru, Ion; Aikawa, Elena; Calfon, Marcella A.; Iwamoto, Yoshiko; Folco, Eduardo J.; Ntziachristos, Vasilis; Weissleder, Ralph; Libby, Peter; Jaffer, Farouc A.

    2011-01-01

    New high-resolution molecular and structural imaging strategies are needed to visualize high-risk plaques that are likely to cause acute myocardial infarction, because current diagnostic methods do not reliably identify at-risk subjects. While molecular imaging agents are available for lower-resolution detection of atherosclerosis in large arteries, a lack of imaging agents coupled to high-resolution modalities has limited molecular imaging of atherosclerosis in the smaller coronary arteries [AU: ok? YES]. Here, we have demonstrated that indocyanine green (ICG), an FDA-approved near-infrared fluorescence (NIRF) emitting compound, targets atheromas within 20 minutes of injection and provides sufficient signal enhancement for in vivo detection of lipid-rich, inflamed, coronary-sized plaques in atherosclerotic rabbits. In vivo NIRF sensing was achieved with an intravascular wire in the aortae, a vessel of comparable caliber to human coronary arteries. Ex vivo fluorescence reflectance imaging studies showed high plaque target-to-background ratios in atheroma-bearing rabbits injected with ICG, compared to atheroma-bearing rabbits injected with saline. In vitro studies using human macrophages established that ICG preferentially targets lipid-loaded macrophages. In an early clinical study of human atheroma specimens from four patients, we found that ICG colocalized with plaque macrophages and lipids. The atheroma-targeting capability of ICG has the potential to accelerate the clinical development of NIRF molecular imaging of high-risk plaques in humans. PMID:21613624

  7. Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors

    NASA Astrophysics Data System (ADS)

    Kumar, Anand T. N.; Carp, Stefan A.; Yang, Jing; Ross, Alana; Medarova, Zdravka; Ran, Chongzhao

    2017-04-01

    Although the development of tumor-targeted fluorescent probes is a major area of investigation, it will be several years before these probes are realized for clinical use. Here, we report an approach that employs indocyanine-green (ICG), a clinically approved, nontargeted dye, in conjunction with fluorescence lifetime (FLT) detection to provide high accuracy for tumor-tissue identification in mouse models of subcutaneous human breast and brain tmors. The improved performance relies on the distinct FLTs of ICG within tumors versus tissue autofluorescence and is further aided by the well-known enhanced permeability and retention of ICG in tumors and the clearance of ICG from normal tissue several hours after intravenous injection. We demonstrate that FLT detection can provide more than 98% sensitivity and specificity, and a 10-fold reduction in error rates compared to intensity-based detection. Our studies suggest the significant potential of FLT-contrast for accurate tumor-tissue identification using ICG and other targeted probes under development, both for intraoperative imaging and for ex-vivo margin assessment of surgical specimens.

  8. From Conventional Radiotracer Tc-99(m) with Blue Dye to Indocyanine Green Fluorescence: A Comparison of Methods Towards Optimization of Sentinel Lymph Node Mapping in Early Stage Cervical Cancer for a Laparoscopic Approach.

    PubMed

    Buda, Alessandro; Papadia, Andrea; Zapardiel, Ignacio; Vizza, Enrico; Ghezzi, Fabio; De Ponti, Elena; Lissoni, Andrea Alberto; Imboden, Sara; Diestro, Maria Dolores; Verri, Debora; Gasparri, Maria Luisa; Bussi, Beatrice; Di Martino, Giampaolo; de la Noval, Begoña Diaz; Mueller, Michael; Crivellaro, Cinzia

    2016-09-01

    The credibility of sentinel lymph node (SLN) mapping is becoming increasingly more established in cervical cancer. We aimed to assess the sensitivity of SLN biopsy in terms of detection rate and bilateral mapping in women with cervical cancer by comparing technetium-99 radiocolloid (Tc-99(m)) and blue dye (BD) versus fluorescence mapping with indocyanine green (ICG). Data of patients with cervical cancer stage 1A2 to 1B1 from 5 European institutions were retrospectively reviewed. All centers used a laparoscopic approach with the same intracervical dye injection. Detection rate and bilateral mapping of ICG were compared, respectively, with results obtained by standard Tc-99(m) with BD. Overall, 76 (53 %) of 144 of women underwent preoperative SLN mapping with radiotracer and intraoperative BD, whereas 68 of (47 %) 144 patients underwent mapping using intraoperative ICG. The detection rate of SLN mapping was 96 % and 100 % for Tc-99(m) with BD and ICG, respectively. Bilateral mapping was achieved in 98.5 % for ICG and 76.3 % for Tc-99(m) with BD; this difference was statistically significant (p < 0.0001). The fluorescence SLN mapping with ICG achieved a significantly higher detection rate and bilateral mapping compared to standard radiocolloid and BD technique in women with early stage cervical cancer. Nodal staging with an intracervical injection of ICG is accurate, safe, and reproducible in patients with cervical cancer. Before replacing lymphadenectomy completely, the additional value of fluorescence SLN mapping on both perioperative morbidity and survival should be explored and confirmed by ongoing controlled trials.

  9. Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart

    PubMed Central

    Martišienė, Irma; Mačianskienė, Regina; Treinys, Rimantas; Navalinskas, Antanas; Almanaitytė, Mantė; Karčiauskas, Dainius; Kučinskas, Audrius; Grigalevičiūtė, Ramunė; Zigmantaitė, Vilma; Benetis, Rimantas; Jurevičius, Jonas

    2016-01-01

    So far, the optical mapping of cardiac electrical signals using voltage-sensitive fluorescent dyes has only been performed in experimental studies because these dyes are not yet approved for clinical use. It was recently reported that the well-known and widely used fluorescent dye indocyanine green (ICG), which has FDA approval, exhibits voltage sensitivity in various tissues, thus raising hopes that electrical activity could be optically mapped in the clinic. The aim of this study was to explore the possibility of using ICG to monitor cardiac electrical activity. Optical mapping experiments were performed on Langendorff rabbit hearts stained with ICG and perfused with electromechanical uncouplers. The residual contraction force and electrical action potentials were recorded simultaneously. Our research confirms that ICG is a voltage-sensitive dye with a dual-component (fast and slow) response to membrane potential changes. The fast component of the optical signal (OS) can have opposite polarities in different parts of the fluorescence spectrum. In contrast, the polarity of the slow component remains the same throughout the entire spectrum. Separating the OS into these components revealed two different voltage-sensitivity mechanisms for ICG. The fast component of the OS appears to be electrochromic in nature, whereas the slow component may arise from the redistribution of the dye molecules within or around the membrane. Both components quite accurately track the time of electrical signal propagation, but only the fast component is suitable for estimating the shape and duration of action potentials. Because ICG has voltage-sensitive properties in the entire heart, we suggest that it can be used to monitor cardiac electrical behavior in the clinic. PMID:26840736

  10. The effect of ICG on mitomycin C cytotoxicity in human tenon fibroblasts.

    PubMed

    Reeves, Graham; Wallis, Richard; Crowston, Jonathan G; Small, Keith M; Wells, Anthony P

    2007-08-01

    To examine the effects of indocyanine green (ICG) with and without mitomycin C (MMC) on proliferation of cultured human Tenon fibroblasts. Fibroblast monolayers were exposed to either MMC [0.4 mg/mL in phosphate buffered saline (PBS)] or PBS containing ICG (0.0625%, 0.125%, 0.25%, and 0.5% in 200 microL PBS) or a combination of MMC (0.4 mg/mL in PBS) and ICG (0.25% and 0.5%) for 5 minutes. Controls were exposed for 5 minutes to MMC, PBS, or culture medium containing no ICG. After treatment, the monolayers were washed and incubated in culture medium for 24, 48, 72 hours, and 1 week periods after which the number of viable cells was quantified. The presence of ICG alone, at concentrations ranging from 0.0625% to 0.5%, had no effect on the rate of fibroblast proliferation measured at any of the incubation periods. As expected, MMC treatment resulted in a significant reduction in viable fibroblast number (8.4+/-0.13x10(3)). ICG in combination with MMC did not significantly alter fibroblast numbers (8.5+/-0.05x10(3)) up to 1 week compared with MMC alone (8.4+/-0.12x10(3)). ICG at concentrations of 0.5% and below do not reduce proliferation of Tenon capsule fibroblasts. ICG did not potentiate or diminish the effect of MMC on Tenon capsule fibroblast proliferation.

  11. Augmented microscopy with near-infrared fluorescence detection

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-03-01

    Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.

  12. Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Rajian, Justin R.; Fabiilli, Mario L.; Fowlkes, J. Brian; Carson, Paul L.

    2012-02-01

    We successfully encapsulated ICG in an ultrasound-triggerable perfluorocarbon double emulsion that prevents ICG from binding with plasma proteins. Photoacoustic spectral measurements on point target as well as 2-D photoacoustic images of blood vessels revealed that the photoacoustic spectrum changes significantly in blood when the ICG-loaded emulsion undergoes acoustic droplet vaporization (ADV), which is the conversion of liquid droplets into gas bubbles using ultrasound. Other than providing a new photoacoustic contrast agent, the ICG encapsulated double emulsion, when imaged with photoacoustic tomography, could facilitate spatial and quantitative monitoring of ultrasound initiated drug delivery.

  13. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green-Labeled Podoplanin Antibody.

    PubMed

    Ito, Akihiro; Ohta, Mitsuhiko; Kato, Yukinari; Inada, Shunko; Kato, Toshio; Nakata, Susumu; Yatabe, Yasushi; Goto, Mitsuo; Kaneda, Norio; Kurita, Kenichi; Nakanishi, Hayao; Yoshida, Kenji

    2018-01-01

    Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)-labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma-xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression-dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings.

  14. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green–Labeled Podoplanin Antibody

    PubMed Central

    Ito, Akihiro; Ohta, Mitsuhiko; Kato, Yukinari; Inada, Shunko; Kato, Toshio; Nakata, Susumu; Yatabe, Yasushi; Goto, Mitsuo; Kaneda, Norio; Kurita, Kenichi; Nakanishi, Hayao; Yoshida, Kenji

    2018-01-01

    Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)–labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma–xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression–dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings. PMID:29649929

  15. Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion

    NASA Astrophysics Data System (ADS)

    Rajian, Justin Rajesh; Fabiilli, Mario L.; Fowlkes, J. Brian; Carson, Paul L.; Wang, Xueding

    2011-07-01

    The absorption spectrum of indocyanine green (ICG), a nontoxic dye used for medical diagnostics, depends upon its concentration as well as the nature of its environment, i.e., the solvent medium into which it is dissolved. In blood, ICG binds with plasma proteins, thus causing changes in its photoacoustic spectrum. We successfully encapsulated ICG in an ultrasound-triggerable perfluorocarbon double emulsion that prevents ICG from binding with plasma proteins. Photoacoustic spectral measurements on point target as well as 2-D photoacoustic images of blood vessels revealed that the photoacoustic spectrum changes significantly in blood when the ICG-loaded emulsion undergoes acoustic droplet vaporization (ADV), which is the conversion of liquid droplets into gas bubbles using ultrasound. We propose that these changes in the photoacoustic spectrum of the ICG emulsion in blood, coupled with photoacoustic tomography, could be used to spatially and quantitatively monitor ultrasound initiated drug delivery. In addition, we suggest that the photoacoustic spectral change induced by ultrasound exposure could also be used as contrast in photoacoustic imaging to obtain a background free image.

  16. Combined use of fluorescence with a magnetic tracer and dilution effect upon sentinel node localization in a murine model.

    PubMed

    Kuwahata, Akihiro; Ahmed, Muneer; Saeki, Kohei; Chikaki, Shinichi; Kaneko, Miki; Qiu, Wenqi; Xin, Zonghao; Yamaguchi, Shinji; Kaneko, Akiko; Douek, Michael; Kusakabe, Moriaki; Sekino, Masaki

    2018-01-01

    Sentinel node biopsy using radioisotope and blue dye remains a gold standard for axillary staging in breast cancer patients with low axillary burden. However, limitations in the use of radioisotopes have resulted in emergence of novel techniques. This is the first in vivo study to assess the feasibility of combining the two most common novel techniques of using a magnetic tracer and indocyanine green (ICG) fluorescence. A total of 48 mice were divided into eight groups. Groups 1 and 2, the co-localization groups, received an injection of magnetic tracers (Resovist ® and Sienna+ ® , respectively) and ICG fluorescence; distilled water was used as the solvent of ICG. Groups 3 and 4, the diluted injection groups, received an injection of magnetic tracers (Resovist and Sienna+, respectively) and saline for dilution. Groups 5, 6, and 7, the control groups, received magnetic tracer (Resovist, Sienna+) and ICG alone, respectively. Fluorescent intensity assessment and iron quantification of excised popliteal lymph nodes were performed. Group 1', a co-localization group, received an injection of magnetic tracers (Resovist) and ICG' fluorescence: saline was used as the solvent for ICG. Lymphatic uptake of all tracers was confined to the popliteal nodes only, with co-localization confirmed in all cases and no significant difference in fluorescent intensity or iron content of ex vivo nodes between the groups (except for Group 1'). There was no impact of dilution on the iron content in the diluted Sienna+ group, but it significantly enhanced Resovist uptake ( P =0.005). In addition, there was a significant difference in iron content ( P =0.003) in Group 1'. The combination of a magnetic tracer (Resovist or Sienna+) and ICG fluorescence is feasible for sentinel node biopsy and will potentially allow for precise transcutaneous node identification, in addition to accurate intraoperative assessment. This radioisotope-free "combined technique" warrants further assessment within a

  17. Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection.

    PubMed

    Navarro, Fabrice P; Berger, Michel; Guillermet, Stéphanie; Josserand, Véronique; Guyon, Laurent; Neumann, Emmanuelle; Vinet, Françoise; Texier, Isabelle

    2012-10-01

    Fluorescence imaging is opening a new era in image-guided surgery and other medical applications. The only FDA approved contrast agent in the near infrared is IndoCyanine Green (ICG), which despites its low toxicity, displays poor chemical and optical properties for long-term and sensitive imaging applications in human. Lipid nanoparticles are investigated for improving ICG optical properties and in vivo fluorescence imaging sensitivity. 30 nm diameter lipid nanoparticles (LNP) are loaded with ICG. Their characterization and use for tumor and lymph node imaging are described. Nano-formulation benefits dye optical properties (6 times improved brightness) and chemical stability (>6 months at 4 degrees C in aqueous buffer). More importantly, LNP vectorization allows never reported sensitive and prolonged (>1 day) labeling of tumors and lymph nodes. Composed of human-use approved ingredients, this novel ICG nanometric formulation is foreseen to expand rapidly the field of clinical fluorescence imaging applications.

  18. Portal vein territory identification using indocyanine green fluorescence imaging: Technical details and short-term outcomes.

    PubMed

    Kobayashi, Yuta; Kawaguchi, Yoshikuni; Kobayashi, Kosuke; Mori, Kazuhiro; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2017-12-01

    Portal vein (PV) territory identification during liver resection may be performed using indocyanine green (ICG) fluorescence imaging technique. However, the technical details of the fluorescence staining technique have not been fully elucidated. This study was performed to demonstrate the technical details of PV territory identification using fluorescence imaging and evaluates the short-term outcomes. From 2011 to 2015, 105 underwent liver resection at the University of Tokyo Hospital with one of the following fluorescence staining techniques by transhepatic PV injection or intravenous injection of ICG: single staining (n = 36), multiple staining (n = 31), counterstaining (n = 22), negative staining (n = 13), or paradoxical negative staining (n = 3). The PV territory was identified as a region with fluorescence or a defect of fluorescence using one of the five staining techniques. ICG was administered by transhepatic PV injection in all but the negative staining technique, which employed intravenous injection. No adverse events associated with the ICG administration occurred. The mortality, postoperative total morbidity, and the major complication (Clavien-Dindo grade ≥III) rates were 0.0%, 14.3%, and 7.6%. We have demonstrated the technical details of five types of fluorescence staining techniques. These techniques are safe to perform and facilitate clear visualization of the PV territory in real time, enhancing the efficacy of anatomical removal of such territories. © 2017 Wiley Periodicals, Inc.

  19. Benchtop and animal validation of a portable fluorescence microscopic imaging system for potential use in cholecystectomy

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J.; Liu, Chenhai; Xu, Ronald X.

    2018-02-01

    We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings.

  20. Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.

    PubMed

    Verjans, Johan W; Osborn, Eric A; Ughi, Giovanni J; Calfon Press, Marcella A; Hamidi, Ehsan; Antoniadis, Antonios P; Papafaklis, Michail I; Conrad, Mark F; Libby, Peter; Stone, Peter H; Cambria, Richard P; Tearney, Guillermo J; Jaffer, Farouc A

    2016-09-01

    This study sought to determine whether indocyanine green (ICG)-enhanced near-infrared fluorescence (NIRF) imaging can illuminate high-risk histologic plaque features of human carotid atherosclerosis, and in coronary atheroma of living swine, using intravascular NIRF-optical coherence tomography (OCT) imaging. New translatable imaging approaches are needed to identify high-risk biological signatures of atheroma. ICG is a U.S. Food and Drug Administration-approved NIRF imaging agent that experimentally targets plaque macrophages and lipid in areas of enhanced endothelial permeability. However, it is unknown whether ICG can target atheroma in patients. Eight patients were enrolled in the BRIGHT-CEA (Indocyanine Green Fluorescence Uptake in Human Carotid Artery Plaque) trial. Five patients were injected intravenously with ICG 99 ± 25 min before clinically indicated carotid endarterectomy. Three saline-injected endarterectomy patients served as control subjects. Excised plaques underwent analysis by intravascular NIRF-OCT, reflectance imaging, microscopy, and histopathology. Next, following ICG intravenous injection, in vivo intracoronary NIRF-OCT and intravascular ultrasound imaged 3 atheroma-bearing coronary arteries of a diabetic, cholesterol-fed swine. ICG was well tolerated; no adverse clinical events occurred up to 30 days post-injection. Multimodal NIRF imaging including intravascular NIRF-OCT revealed that ICG accumulated in all endarterectomy specimens. Plaques from saline-injected control patients exhibited minimal NIRF signal. In the swine experiment, intracoronary NIRF-OCT identified ICG uptake in all intravascular ultrasound-identified plaques in vivo. On detailed microscopic evaluation, ICG localized to plaque areas exhibiting impaired endothelial integrity, including disrupted fibrous caps, and within areas of neovascularization. Within human plaque areas of endothelial abnormality, ICG was spatially related to localized zones of plaque macrophages and

  1. Near-infrared fluorescence cholangiography with indocyanine green for biliary atresia. Real-time imaging during the Kasai procedure: a pilot study.

    PubMed

    Hirayama, Yutaka; Iinuma, Yasushi; Yokoyama, Naoyuki; Otani, Tetsuya; Masui, Daisuke; Komatsuzaki, Naoko; Higashidate, Naruki; Tsuruhisa, Shiori; Iida, Hisataka; Nakaya, Kengo; Naito, Shinichi; Nitta, Koju; Yagi, Minoru

    2015-12-01

    Hepatoportoenterostomy (HPE) with the Kasai procedure is the treatment of choice for biliary atresia (BA) as the initial surgery. However, the appropriate level of dissection level of the fibrous cone (FC) of the porta hepatis (PH) is frequently unclear, and the procedure sometimes results in unsuccessful outcomes. Recently, indocyanine green near-infrared fluorescence imaging (ICG-FCG) has been developed as a form of real-time cholangiography. We applied this technique in five patients with BA to visualize the biliary flow at the PH intraoperatively. ICG was injected intravenously the day before surgery as the liver function test, and the liver was observed with a near-infrared camera system during the operation while the patient's feces was also observed. In all patients, the whole liver fluoresced diffusely with ICG-containing stagnant bile, whereas no extrahepatic structures fluoresced. The findings of the ICG fluorescence pattern of the PH after dissection of the FC were classified into three types: spotty fluorescence, one patient; diffuse weak fluorescence, three patients; and diffuse strong fluorescence, one patient. In all five patients, the feces evacuated after HPE showed distinct fluorescent spots, although that obtained before surgery showed no fluorescence. One patient with diffuse strong fluorescence who did not achieve JF underwent living related liver transplantation six months after the initial HPE procedure. Four patients, including three cases involving diffuse weak fluorescence and one case involving spotty fluorescence showed weak fluorescence compared to that of the surrounding liver surface. We were able to detect the presence of bile excretion at the time of HPE intraoperatively and successfully evaluated the extent of bile excretion using this new technique. Furthermore, the ICG-FCG findings may provide information leading to a new classification and potentially function as an indicator predicting the clinical outcomes after HPE.

  2. Intraoperative Identification of a Normal Pituitary Gland and an Adenoma Using Near-Infrared Fluorescence Imaging and Low-Dose Indocyanine Green.

    PubMed

    Verstegen, Marco J T; Tummers, Quirijn R J G; Schutte, Pieter J; Pereira, Alberto M; van Furth, Wouter R; van de Velde, Cornelis J H; Malessy, Martijn J A; Vahrmeijer, Alexander L

    2016-09-01

    The intraoperative distinction between normal and abnormal pituitary tissue is crucial during pituitary adenoma surgery to obtain a complete tumor resection while preserving endocrine function. Near-infrared (NIR) fluorescence imaging is a technique to intraoperatively visualize tumors by using indocyanine green (ICG), a contrast agent allowing visualization of differences in tissue vascularization. Although NIR fluorescence imaging has been described in pituitary surgery, it has, in contrast to other surgical areas, never become widely used. To evaluate NIR fluorescence imaging in pituitary surgery, both qualitatively and quantitatively, and to assess the additional value of resecting adenoma tissue under NIR fluorescence guidance. We included 10 patients planned to undergo transnasal transsphenoidal selective adenomectomy. Patients received multiple intravenous administrations of 5 mg ICG, up to a maximum of 15 mg per patient. Endoscopic NIR fluorescence imaging was performed at multiple points in time. The NIR fluorescent signal in both the adenoma and pituitary gland was obtained, and the fluorescence contrast ratio was assessed. Four patients had Cushing disease, 1 had acromegaly, and 1 had a prolactinoma. Four patients had a nonfunctioning macroadenoma. In 9 of 10 patients with a histologically proven pituitary adenoma, the normal pituitary gland showed a stronger fluorescent signal than the adenoma. A fluorescence contrast ratio of normal pituitary gland to adenoma of 1.5 ± 0.2 was obtained. In 2 patients; adenoma resection was actually performed under NIR fluorescence guidance instead of under white light. NIR fluorescence imaging can easily and safely be implemented in pituitary surgery. The timing of ICG administration is important for optimal results and warrants further study. It appears that injection of ICG can best be postponed until some part of the normal pituitary gland is identified. Subsequent repeated low-dose ICG administrations improved the

  3. Indocyanine green fluorescence angiography for free flap monitoring: A pilot study.

    PubMed

    Hitier, Marine; Cracowski, Jean-Luc; Hamou, Cynthia; Righini, Christian; Bettega, Georges

    2016-11-01

    We evaluated the feasibility and the tolerance of repeated fluorescent indocyanine green angiography in free flap monitoring, and determined the intraoperative predictive values of flap vitality. The free flap failure rate has been significantly reduced, but free flap loss still occurs and remains a costly disaster. Repeated clinical examinations are commonly used for flap monitoring, but they can be unreliable because of their subjectivity. Laser-induced fluorescence of indocyanine green is a new method for assessing tissue perfusion. 20 patients undergoing microsurgical reconstruction were monitored by indocyanine green fluorescence angiography, intraoperatively, and during 4 days after surgery, with 18 injections. Monitoring was made by clinical examination, and then compared to angiographic findings. The vascular complication rate was 15% (3/20) with 2 cases of venous thrombosis and one case of partial necrosis of the flap skin paddle. Both cases of venous thrombosis were salvaged by secondary surgery. There was no total flap loss. ICG angiography allowed detecting each intra and postoperative complication, earlier than clinical examination. The mean per-operative intensity of fluorescence was significantly lower in flaps with vascular complications (23.8 GL/ms; p = 0.008). The postoperative slope (p = 0.02) and amplitude (p = 0.03) of the fluorescent signal were both significantly lower than for uncomplicated flaps, before surgical revision. These 2 parameters came back to normal values after secondary surgery. There was no adverse effect of ICG despite the repeated injections. ICG angiography is a feasible and safe technique for the detection of free flap vascular complications. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Near-infrared fluorescence imaging and photodynamic therapy with indocyanine green lactosome has antineoplastic effects for hepatocellular carcinoma.

    PubMed

    Tsuda, Takumi; Kaibori, Masaki; Hishikawa, Hidehiko; Nakatake, Richi; Okumura, Tadayoshi; Ozeki, Eiichi; Hara, Isao; Morimoto, Yuji; Yoshii, Kengo; Kon, Masanori

    2017-01-01

    Anticancer agents and operating procedures have been developed for hepatocellular carcinoma (HCC) patients, but their prognosis remains poor. It is necessary to develop novel diagnostic and therapeutic strategies for HCC to improve its prognosis. Lactosome is a core-shell-type polymeric micelle, and enclosing labeling or anticancer agents into this micelle enables drug delivery. In this study, we investigated the diagnostic and therapeutic efficacies of indocyanine green (ICG)-loaded lactosome for near-infrared fluorescence (NIF) imaging and photodynamic therapy (PDT) for HCC. The human HCC cell line HuH-7 was treated with ICG or ICG-lactosome, followed by PDT, and the cell viabilities were measured (in vitro PDT efficiency). For NIF imaging, HuH-7 cells were subcutaneously transplanted into BALB/c nude mice, followed by intravenous administration of ICG or ICG-lactosome. The transplanted animals were treated with PDT, and the antineoplastic effects were analyzed (in vivo PDT efficiency). PDT had toxic effects on HuH-7 cells treated with ICG-lactosome, but not ICG alone. NIF imaging revealed that the fluorescence of tumor areas in ICG-lactosome-treated animals was higher than that of contralateral regions at 24 h after injection and thereafter. PDT exerted immediate and continuous phototoxic effects in the transplanted mice treated with ICG-lactosome. Our results demonstrate that ICG-lactosome accumulated in xenograft tumors, and that PDT had antineoplastic effects on these malignant implants. NIF imaging and PDT with ICG-lactosome could be useful diagnostic and/or therapeutic strategies for HCC.

  5. Wnt/β-catenin signaling inhibitor ICG-001 enhances pigmentation of cultured melanoma cells.

    PubMed

    Kim, Kyung-Il; Jeong, Do-Sun; Jung, Eui Chang; Lee, Jeung-Hoon; Kim, Chang Deok; Yoon, Tae-Jin

    2016-11-01

    Wnt/β-catenin signaling is important in development and differentiation of melanocytes. The object of this study was to evaluate the effects of several Wnt/β-catenin signaling inhibitors on pigmentation using melanoma cells. Melanoma cells were treated with Wnt/β-catenin signaling inhibitors, and then melanin content and tyrosinase activity were checked. Although some inhibitors showed slight inhibition of pigmentation, we failed to observe potential inhibitory effect of those chemicals on pigmentation of HM3KO melanoma cells. Rather, one of powerful Wnt/β-catenin signaling inhibitors, ICG-001, increased the pigmentation of HM3KO melanoma cells. Pigmentation-enhancing effect of ICG-001 was reproducible in other melanoma cell line MNT-1. Consistent with these results. ICG-001 increased the expression of pigmentation-related genes, such as MITF, tyrosinase and TRP1. When ICG-001 was treated, the phosphorylation of CREB was significantly increased. In addition, ICG-001 treatment led to quick increase of intracellular cAMP level, suggesting that ICG-001 activated PKA signaling. The blockage of PKA signaling with pharmaceutical inhibitor H89 inhibited the ICG-001-induced pigmentation significantly. These results suggest that PKA signaling is pivotal in pigmentation process itself, while the importance of Wnt/β-catenin signaling should be emphasized in the context of development and differentiation. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. A Review of Indocyanine Green Fluorescent Imaging in Surgery

    PubMed Central

    Alander, Jarmo T.; Kaartinen, Ilkka; Laakso, Aki; Pätilä, Tommi; Spillmann, Thomas; Tuchin, Valery V.; Venermo, Maarit; Välisuo, Petri

    2012-01-01

    The purpose of this paper is to give an overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used. Well over 200 papers describing this technique in clinical setting are reviewed. In addition to the surgical applications, other recent medical applications of ICG are briefly examined. PMID:22577366

  7. Highly specific spectroscopic photoacoustic molecular imaging of dynamic optical absorption shifts of an antibody-ICG contrast agent (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wilson, Katheryne E.; Bachawal, Sunitha; Abou-Elkacem, Lotfi; Jensen, Kristen C.; Machtaler, Steven; Tian, Lu; Willmann, Juergen K.

    2017-03-01

    Improved techniques for breast cancer screening are critically needed as current methods lack diagnostic accuracy. Using spectroscopic photoacoustic (sPA) molecular imaging with a priori knowledge of optical absorption spectra allows suppression of endogenous background signal, increasing the overall sensitivity and specificity of the modality to exogenous contrast agents. Here, sPA imaging was used to monitor antibody-indocyanine green (ICG) conjugates as they undergo optical absorption spectrum shifts after cellular endocytosis and degradation to allow differentiation between normal murine mammary glands from breast cancer by enhancing molecular imaging signal from target (B7-H3)-bound antibody-ICG. First, B7-H3 was shown to have highly specific (AUC of 0.93) expression on both vascular endothelium and tumor stroma in malignant lesions through quantitative immunohistochemical staining of B7-H3 on 279 human samples (normal (n=53), benign lesions (11 subtypes, n=182), breast cancers (4 subtypes, n=97)), making B7-H3 a promising target for sPA imaging. Second, absorption spectra of intracellular and degraded B7-H3-ICG and Isotype control (Iso-ICG) were characterized through in vitro and in vivo experiments. Finally, a transgenic murine breast cancer model (FVB/N-Tg(MMTVPyMT)634Mul) was imaged, and sPA imaging in found a 3.01 (IQR 2.63, 3.38, P<0.001) fold increase in molecular B7-H3-ICG signal in tumors (n=80) compared to control conditions (B7-H3-ICG in tumor negative animals (n=60), Iso-ICG (n=30), blocking B7-H3+B7-H3-ICG (n=20), and free ICG (n=20)) despite significant tumor accumulation of Iso-ICG, confirmed through ex vivo histology. Overall, leveraging anti-B7-H3 antibody-ICG contrast agents, which have dynamic optical absorption spectra representative of molecular interactions, allows for highly specific sPA imaging of murine breast cancer.

  8. Intraoperative real-time localization of parathyroid gland with near infrared fluorescence imaging

    PubMed Central

    Kim, Sung Won; Lee, Hyoung Shin

    2017-01-01

    Surgeons have cited difficulties in identifying the parathyroid glands (PG) during thyroidectomy. To overcome the limitation of naked eye, many studies on near-infrared fluorescence imaging of PGs have been introduced and suggested that fluorescence imaging is useful for both localizing PGs and evaluating their function. This imaging technique has been reported in two ways: (I) imaging using a fluorescent material called indocyanine green (ICG); and (II) autofluorescence using intrinsic fluorophores. These innovative and novel techniques are expected to have a significant impact on performing thyroid or parathyroid surgery. In this article, current papers that describe ICG fluorescence and autofluorescence imaging of PG during thyroid and parathyroid surgery are reviewed. PMID:29142843

  9. Benchtop and animal validation of a portable fluorescence microscopic imaging system for potential use in cholecystectomy.

    PubMed

    Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J; Liu, Chenhai; Xu, Ronald X

    2018-02-01

    We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. A portable fluorescence microscopic imaging system for cholecystectomy

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Yang, Chaoyu; Gan, Qi; Ma, Rong; Zhang, Zeshu; Chang, Shufang; Shao, Pengfei; Zhang, Shiwu; Liu, Chenhai; Xu, Ronald

    2016-03-01

    In this paper we proposed a portable fluorescence microscopic imaging system to prevent iatrogenic biliary injuries from occurring during cholecystectomy due to misidentification of the cystic structures. The system consisted of a light source module, a CMOS camera, a Raspberry Pi computer and a 5 inch HDMI LCD. Specifically, the light source module was composed of 690 nm and 850 nm LEDs, allowing the CMOS camera to simultaneously acquire both fluorescence and background images. The system was controlled by Raspberry Pi using Python programming with the OpenCV library under Linux. We chose Indocyanine green(ICG) as a fluorescent contrast agent and then tested fluorescence intensities of the ICG aqueous solution at different concentration levels by our fluorescence microscopic system compared with the commercial Xenogen IVIS system. The spatial resolution of the proposed fluorescence microscopic imaging system was measured by a 1951 USAF resolution target and the dynamic response was evaluated quantitatively with an automatic displacement platform. Finally, we verified the technical feasibility of the proposed system in mouse models of bile duct, performing both correct and incorrect gallbladder resection. Our experiments showed that the proposed system can provide clear visualization of the confluence between the cystic duct and common bile duct or common hepatic duct, suggesting that this is a potential method for guiding cholecystectomy. The proposed portable system only cost a total of $300, potentially promoting its use in resource-limited settings.

  11. Portable widefield imaging device for ICG-detection of the sentinel lymph node

    NASA Astrophysics Data System (ADS)

    Govone, Angelo Biasi; Gómez-García, Pablo Aurelio; Carvalho, André Lopes; Capuzzo, Renato de Castro; Magalhães, Daniel Varela; Kurachi, Cristina

    2015-06-01

    Metastasis is one of the major cancer complications, since the malignant cells detach from the primary tumor and reaches other organs or tissues. The sentinel lymph node (SLN) is the first lymphatic structure to be affected by the malignant cells, but its location is still a great challenge for the medical team. This occurs due to the fact that the lymph nodes are located between the muscle fibers, making it visualization difficult. Seeking to aid the surgeon in the detection of the SLN, the present study aims to develop a widefield fluorescence imaging device using the indocyanine green as fluorescence marker. The system is basically composed of a 780nm illumination unit, optical components for 810nm fluorescence detection, two CCD cameras, a laptop, and dedicated software. The illumination unit has 16 diode lasers. A dichroic mirror and bandpass filters select and deliver the excitation light to the interrogated tissue, and select and deliver the fluorescence light to the camera. One camera is responsible for the acquisition of visible light and the other one for the acquisition of the ICG fluorescence. The software developed at the LabVIEW® platform generates a real time merged image where it is possible to observe the fluorescence spots, related to the lymph nodes, superimposed at the image under white light. The system was tested in a mice model, and a first patient with tongue cancer was imaged. Both results showed the potential use of the presented fluorescence imaging system assembled for sentinel lymph node detection.

  12. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery

    PubMed Central

    Schaafsma, Boudewijn E.; Mieog, J.Sven D.; Hutteman, Merlijn; van der Vorst, Joost R.; Kuppen, Peter J.K.; Löwik, Clemens W.G.M.; Frangioni, John V.; van de Velde, Cornelis J.H.; Vahrmeijer, Alexander L.

    2011-01-01

    Optical imaging using near-infrared (NIR) fluorescence provides new prospects for general and oncologic surgery. ICG is currently utilised in NIR fluorescence cancer-related surgery for three indications: sentinel lymph node (SLN) mapping, intraoperative identification of solid tumours, and angiography during reconstructive surgery. Therefore, understanding its advantages and limitations is of significant importance. Although non-targeted and non-conjugatable, ICG appears to be laying the foundation for more widespread use of NIR fluorescence-guided surgery. PMID:21495033

  13. ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization.

    PubMed

    Sang, Jian; Wang, Zhennan; Li, Man; Cao, Jiabao; Niu, Guangyi; Xia, Lin; Zou, Dong; Wang, Fan; Xu, Xingjian; Han, Xiaojiao; Fan, Jinqi; Yang, Ye; Zuo, Wanzhu; Zhang, Yang; Zhao, Wenming; Bao, Yiming; Xiao, Jingfa; Hu, Songnian; Hao, Lili; Zhang, Zhang

    2018-01-04

    Real-time quantitative PCR (RT-qPCR) has become a widely used method for accurate expression profiling of targeted mRNA and ncRNA. Selection of appropriate internal control genes for RT-qPCR normalization is an elementary prerequisite for reliable expression measurement. Here, we present ICG (http://icg.big.ac.cn), a wiki-driven knowledgebase for community curation of experimentally validated internal control genes as well as their associated experimental conditions. Unlike extant related databases that focus on qPCR primers in model organisms (mainly human and mouse), ICG features harnessing collective intelligence in community integration of internal control genes for a variety of species. Specifically, it integrates a comprehensive collection of more than 750 internal control genes for 73 animals, 115 plants, 12 fungi and 9 bacteria, and incorporates detailed information on recommended application scenarios corresponding to specific experimental conditions, which, collectively, are of great help for researchers to adopt appropriate internal control genes for their own experiments. Taken together, ICG serves as a publicly editable and open-content encyclopaedia of internal control genes and accordingly bears broad utility for reliable RT-qPCR normalization and gene expression characterization in both model and non-model organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Molecular targeted PDT with selective delivery of ICG Photo-Immunoconjugates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Hüttmann, Gereon; Hasan, Tayyaba; Rahmanzadeh, Ramtin

    2016-03-01

    Light-induced inhibition of intracellular molecules holds great promise for a selective treatment of cancer and other diseases. Challenges for the targeting of intracellular proteins are the synthesis of effective photoimmuno-conjugates and their functional delivery inside living cells. In earlier studies we have shown, that photodynamic inactivation of the nuclear Ki-67 protein leads to an effective elimination of proliferating tumor cells. Here we show a selective treatment for EGFR and Ki-67 positive cancer cells after light-controlled delivery of indocyanine green (ICG) photo-immunoconjugates. The Ki-67 antibody TuBB-9, which recognizes an active state of the protein, was labeled with different ratios of ICG and encapsulated into immuno-liposomes that selectively deliver the conjugates to EGFR overexpressing cells. To overcome endosomal entrapment of the delivered agents, ovarian carcinoma cells were treated with the photosensitizer benzoporphyrin monoacid derivative (BPD) and irradiated first for endosomal escape of the TuBB-9-ICG constructs. 24 h after irradiation TuBB-9-ICG antibodies showed a relocalization from spots in the cytoplasm to the cell nucleus. A second irradiation of the delivered TuBB-9-ICG led to a significant elimination of cells after Ki-67 inactivation.

  15. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.

    PubMed

    Lee, Sunki; Lee, Min Woo; Cho, Han Saem; Song, Joon Woo; Nam, Hyeong Soo; Oh, Dong Joo; Park, Kyeongsoon; Oh, Wang-Yuhl; Yoo, Hongki; Kim, Jin Won

    2014-08-01

    Lipid-rich inflamed coronary plaques are prone to rupture. The purpose of this study was to assess lipid-rich inflamed plaques in vivo using fully integrated high-speed optical coherence tomography (OCT)/near-infrared fluorescence (NIRF) molecular imaging with a Food and Drug Administration-approved indocyanine green (ICG). An integrated high-speed intravascular OCT/NIRF imaging catheter and a dual-modal OCT/NIRF system were constructed based on a clinical OCT platform. For imaging lipid-rich inflamed plaques, the Food and Drug Administration-approved NIRF-emitting ICG (2.25 mg/kg) or saline was injected intravenously into rabbit models with experimental atheromata induced by balloon injury and 12- to 14-week high-cholesterol diets. Twenty minutes after injection, in vivo OCT/NIRF imaging of the infrarenal aorta and iliac arteries was acquired only under contrast flushing through catheter (pullback speed up to ≤20 mm/s). NIRF signals were strongly detected in the OCT-visualized atheromata of the ICG-injected rabbits. The in vivo NIRF target-to-background ratio was significantly larger in the ICG-injected rabbits than in the saline-injected controls (P<0.01). Ex vivo peak plaque target-to-background ratios were significantly higher in ICG-injected rabbits than in controls (P<0.01) on fluorescence reflectance imaging, which correlated well with the in vivo target-to-background ratios (P<0.01; r=0.85) without significant bias (0.41). Cellular ICG uptake, correlative fluorescence microscopy, and histopathology also corroborated the in vivo imaging findings. Integrated OCT/NIRF structural/molecular imaging with a Food and Drug Administration -approved ICG accurately identified lipid-rich inflamed atheromata in coronary-sized vessels. This highly translatable dual-modal imaging approach could enhance our capabilities to detect high-risk coronary plaques. © 2014 American Heart Association, Inc.

  16. Microscope-integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: first experience in 30 patients.

    PubMed

    Kamp, Marcel A; Slotty, Philipp; Turowski, Bernd; Etminan, Nima; Steiger, Hans-Jakob; Hänggi, Daniel; Stummer, Walter

    2012-03-01

    Intraoperative measurements of cerebral blood flow are of interest during vascular neurosurgery. Near-infrared indocyanine green (ICG) fluorescence angiography was introduced for visualizing vessel patency intraoperatively. However, quantitative information has not been available. To report our experience with a microscope with an integrated dynamic ICG fluorescence analysis system supplying semiquantitative information on blood flow. We recorded ICG fluorescence curves of cortex and cerebral vessels using software integrated into the surgical microscope (Flow 800 software; Zeiss Pentero) in 30 patients undergoing surgery for different pathologies. The following hemodynamic parameters were assessed: maximum intensity, rise time, time to peak, time to half-maximal fluorescence, cerebral blood flow index, and transit times from arteries to cortex. For patients without obvious perfusion deficit, maximum fluorescence intensity was 177.7 arbitrary intensity units (AIs; 5-mg ICG bolus), mean rise time was 5.2 seconds (range, 2.9-8.2 seconds; SD, 1.3 seconds), mean time to peak was 9.4 seconds (range, 4.9-15.2 seconds; SD, 2.5 seconds), mean cerebral blood flow index was 38.6 AI/s (range, 13.5-180.6 AI/s; SD, 36.9 seconds), and mean transit time was 1.5 seconds (range, 360 milliseconds-3 seconds; SD, 0.73 seconds). For 3 patients with impaired cerebral perfusion, time to peak, rise time, and transit time between arteries and cortex were markedly prolonged (>20, >9 , and >5 seconds). In single patients, the degree of perfusion impairment could be quantified by the cerebral blood flow index ratios between normal and ischemic tissue. Transit times also reflected blood flow perturbations in arteriovenous fistulas. Quantification of ICG-based fluorescence angiography appears to be useful for intraoperative monitoring of arterial patency and regional cerebral blood flow.

  17. Visualization of subcapsular hepatic malignancy by indocyanine-green fluorescence imaging during laparoscopic hepatectomy.

    PubMed

    Kudo, Hiroki; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Ichida, Akihiko; Shimizu, Atsushi; Kaneko, Junichi; Aoki, Taku; Sakamoto, Yoshihiro; Sugawara, Yasuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2014-08-01

    Although laparoscopic hepatectomy has increasingly been used to treat cancers in the liver, the accuracy of intraoperative diagnosis may be inferior to that of open surgery because the ability to visualize and palpate the liver surface during laparoscopy is relatively limited. Fluorescence imaging has the potential to provide a simple compensatory diagnostic tool for identification of cancers in the liver during laparoscopic hepatectomy. In 17 patients who were to undergo laparoscopic hepatectomy, 0.5 mg/kg body weight of indocyanine green (ICG) was administered intravenously within the 2 weeks prior to surgery. Intraoperatively, a laparoscopic fluorescence imaging system obtained fluorescence images of its surfaces during mobilization of the liver. In all, 16 hepatocellular carcinomas (HCCs) and 16 liver metastases (LMs) were resected. Of these, laparoscopic ICG fluorescence imaging identified 12 HCCs (75%) and 11 LMs (69%) on the liver surfaces distributed over Couinaud's segments 1-8, including the 17 tumors that had not been identified by visual inspections of normal color images. The 23 tumors that were identified by fluorescence imaging were located closer to the liver surfaces than another nine tumors that were not identified by fluorescence imaging (median [range] depth 1 [0-5] vs. 11 [8-30] mm; p < 0.001). Like palpation during open hepatectomy, laparoscopic ICG fluorescence imaging enables real-time identification of subcapsular liver cancers, thus facilitating estimation of the required extent of hepatic mobilization and determination of the location of an appropriate hepatic transection line.

  18. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients.

    PubMed

    Manny, Ted B; Patel, Manish; Hemal, Ashok K

    2014-06-01

    Pilot studies have demonstrated the utility of indocyanine green (ICG) sentinel lymphadenectomy for prostate cancer. Prior work has used ICG with radiocontrast agents injected at a separate procedure and relied on assistant-controlled fluorescence systems, making the technique costly and cumbersome. To describe the initial optimization and feasibility of fluorescence-enhanced robotic radical prostatectomy (FERRP) using real-time injection of ICG for tissue marking and identification of sentinel lymphatic drainage visualized by a fully integrated surgeon-controlled system. Patients with clinically localized prostate cancer at a tertiary referral center were offered FERRP. Ten patients participated in a pilot arm in which ICG dosing and injection technique were optimized. Fifty consecutive patients then underwent FERRP. After development of the space of Retzius, 0.4 ml of a 2.5 mg/ml ICG solution were injected into each lobe of the prostate using a robotically guided percutaneous needle. After ICG was allowed to travel through the pelvic lymphatics, lymphadenectomy was performed from the endopelvic fascia to the aortic bifurcation. Parameters describing the time course of tissue fluorescence and pelvic lymphangiography were systematically recorded. Lymphatic packets containing fluorescent nodes were considered sentinel. Percutaneous, robotic-guided ICG injection proved superior to cystoscope or transrectal delivery. Tissue marking was achieved in all patients, positively identifying the prostate with uniform fluorescence relative to the obturator nerve, seminal vesicles, vas deferens, and neurovascular pedicles at a mean time of 10 min postinjection. Sentinel nodes were identified in 76% of patients at a mean time of 30 min postinjection and had 100% sensitivity, 75.4% specificity, 14.6% positive predictive value, and 100% negative predictive value for the detection of nodal metastasis. FERRP is safe, feasible, and allows for reliable prostate tissue marking and

  19. Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast cancer

    PubMed Central

    Schaafsma, Boudewijn E.; Verbeek, Floris P.R.; Rietbergen, Daphne D.D.; van der Hiel, Bernies; van der Vorst, Joost R.; Liefers, Gerrit-Jan; Frangioni, John V.; van de Velde, Cornelis J.H.; van Leeuwen, Fijs W.B.; Vahrmeijer, Alexander L.

    2013-01-01

    Background Combining radioactive colloids and a near-infrared (NIR) fluorophore permit preoperative planning and intraoperative localization of deeply located sentinel lymph nodes (SLNs) with direct optical guidance by a single lymphatic tracer. The aim of this clinical trial was to evaluate and optimize a hybrid NIR fluorescence and radioactive tracer for SLN detection in breast cancer patients. Method Patients with breast cancer undergoing SLN biopsy were enrolled. The day before surgery, indocyanine green (ICG)-99mTc-Nanocolloid was injected periareolarly and a lymphoscintigram was acquired. Directly before surgery, blue dye was injected. Intraoperative SLN localization was performed by a gamma probe and the Mini-FLARETM NIR fluorescence imaging system. Patients were divided into two dose groups, with one group receiving twice the particle density of ICG and nanocolloid, but the same dose of radioactive 99mTechnetium. Results Thirty-two patients were enrolled in the trial. At least one SLN was identified pre- and intraoperatively. All 48 axillary SLNs could be detected by gamma tracing and NIR fluorescence imaging, but only 42 of them stained blue. NIR fluorescence permitted detection of lymphatic vessels draining to the SLN up to 29 hours after injection. Increasing the particle density by two-fold did not yield a difference in fluorescence intensity, median 255 (range 98 – 542) vs. median 284 (90 – 921; P = 0.590), or signal- to- background ratio, median 5.4 (range 3.0 – 15.4) vs. median 4.9 (3.5 – 16.3; P = 1.000), of the SLN. Conclusion The hybrid NIR fluorescence and radioactive tracer ICG-99mTc-Nanocolloid permitted accurate pre- and intraoperative detection of the SLNs in patients with breast cancer. PMID:23696463

  20. Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy

    NASA Astrophysics Data System (ADS)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee

    2016-04-01

    Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.

  1. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    PubMed

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  2. [Indocyanine green infrared fluorescence angiography and vascular cast--preparation in experimental choroidal circulatory disturbance].

    PubMed

    Matsunaga, H; Andoh, A; Matsubara, T; Fukushima, I; Takahashi, K; Ohkuma, H; Uyama, M

    1996-03-01

    We performed experiments in 20 monkey eyes in order to clarify basic problems about interpretation of indocyanine green fluorescence angiography (ICG angiography). We severed the temporal group of posterior ciliary arteries to produce choroidal circulatory disturbance. ICG angiography was performed immediately, and 2 days, 4 days, and 2 weeks later. Following each ICG angiography, the eye was studied by plastic vascular cast technique with scanning electron microscopy. Immediately after occlusion, ICG angiography showed filling defect in the temporal choroidal hemisphere during the early phase. In the later phase, this area was gradually filled by the dye from choroidal arteries in the nasal hemisphere and the anterior ciliary arteries. Vascular cast preparations showed filling defect in the temporal choroidal hemisphere, corresponding with the early ICG angiogaphic findings. Both filling delay in ICG angiography and filling defect in vascular casts improved daily after occlusion. Two weeks after occlusion, The area of choroidal infarct temporal to the macula turned into chorioretinal atrophy. This area showed hypofluorescence in the early-phase ICG angiography and filling defect of the choriocapillaris in plastic casts. The early-phase ICG angiographic findings thus corresponded well with observations of vascular casts. We conclude that ICG angiography correctly reflects the actual circulatory disturbances in the choroid.

  3. An initial report on the intraoperative use of indocyanine green fluorescence imaging in the surgical management of liver tumorss.

    PubMed

    Takahashi, Hideo; Zaidi, Nisar; Berber, Eren

    2016-10-01

    There has been a recent interest in the use of Indocyanine green (ICG) imaging. The aim of this study is to review our initial experience in liver surgery. ICG fluorescent imaging was used in 15 patients undergoing surgical treatment of their liver tumors between 2015 and 2016. ICG imaging was initially performed, followed by intraoperative ultrasound (IOUS). Findings on fluorescence were compared with preoperative cross-sectional imaging and IOUS. Sixty-two lesions were identified, with 34 located superficially and 28 deeply in the liver. While 13 patients underwent surgery for malignant liver metastases, two patients had operations for benign liver diseases. Seven patients underwent open or robotic liver resections, five laparoscopic microwave liver ablation, and three diagnostic laparoscopy. ICG identified all of the superficial lesions. IOUS identified 98% of all lesions. The most benefit of ICG was in showing the margins of the superficial lesions in real-time and guiding surgical treatment, which was limited by IOUS. This is the first North American study to evaluate the potential utility of ICG during liver surgery. Its major benefit seems to be in providing real-time feedback to the surgeon about the margins of superficial tumors for resection or ablation. J. Surg. Oncol. 2016;114:625-629. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Detection of ICG at low concentrations by photoacoustic imaging system using LED light source

    NASA Astrophysics Data System (ADS)

    Shigeta, Yusuke; Agano, Toshitaka; Sato, Naoto; Nakatsuka, Hitoshi; Kitagawa, Kazuo; Hanaoka, Takamitsu; Morisono, Koji; Tanaka, Chizuyo

    2017-03-01

    Recently, various type of photoacoustic imaging (PAI) that can visualize properties and distribution of light absorber have been researched. We developed PAI system using LED light source and evaluated characteristics of photoacoustic signal intensity versus Indocyanine Green (ICG) concentration. In this experiment, a linear type PZT array transducer (128-elements, 10.0MHz center frequency) was used to be able to transmit and receive ultrasound and also detect photoacoustic signal from the target object. The transducer was connected to the PAI system, and two sets of LED light source that had 850nm wavelength chip array were set to the both side of the transducer. The transducer head was placed at a distance of 20 mm from the target in the water bath. The target object was a tube filled with ICG in it. The tubes containing ICG at concentrations from 300nanomolar to 3millimolar were made by diluting original ICG solution. We measured the photoacoustic signal strength from RF signal generated from the ICG in the tube, and the results showed that the intensity of the signal was almost linear response to the concentration in log-log scale.

  5. Fluorescence assessment of the delivery and distribution of nebulized indocyanine green in a murine model

    NASA Astrophysics Data System (ADS)

    Kassab, Giulia; C. Geralde, Mariana; M. Inada, Natalia; Bagnato, Vanderlei S.

    2018-02-01

    Photodynamic inactivation (PDI) is a promising alternative for the treatment of infectious diseases, and the combination of indocyanine green (ICG) and extracorporeal infrared light has shown optimistic results against pneumonia in vitro and in vivo. However, the pharmacokinetics and the possible side effects of the pulmonary delivery via nebulization have not been fully investigated. This study assessed the distribution of the photosensitizer within the lungs and to other organs of mice, and monitored the fluorescence of ICG in the thorax in the presence and absence of the activating light. The excitation wavelength was 780 nm and detection focused on the emission between 795 and 890 nm. Experiments demonstrated that the amount of fluorescence detected from outside the body was significantly higher after the nebulization of ICG, and reduced after the illumination, allowing for the monitoring of the PDI in real time. The fluorescence remained detectable in the mice for at least 24 hours, and was present in the lungs, stomach, liver, small and large intestines, bladder, spleen and heart after this time.

  6. Utility of Indocyanine Green Fluorescence Imaging for Intraoperative Localization in Reoperative Parathyroid Surgery.

    PubMed

    Sound, Sara; Okoh, Alexis; Yigitbas, Hakan; Yazici, Pinar; Berber, Eren

    2015-10-27

    Due to the variations in anatomic location, the identification of parathyroid glands may be challenging. Although there have been advances in preoperative imaging modalities, there is still a need for an accurate intraoperative guidance. Indocyanine green (ICG) is a new agent that has been used for intraoperative fluorescence imaging in a number of general surgical procedures. Its utility for parathyroid localization in humans has not been reported in the literature. We report 3 patients who underwent reoperative neck surgery for primary hyperparathyroidism. Using a video-assisted technique with intraoperative ICG fluorescence imaging, the parathyroid glands were recognized and removed successfully in all cases. Surrounding soft tissue structures remained nonfluorescent, and could be distinguished from the parathyroid glands. This report suggests a potential utility of ICG imaging in intraoperative localization of parathyroid glands in reoperative neck surgery. Future work is necessary to assess its benefit for first-time parathyroid surgery. © The Author(s) 2015.

  7. Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs

    PubMed Central

    Bahmani, Baharak; Lytle, Christian Y; Walker, Ameae M; Gupta, Sharad; Vullev, Valentine I; Anvari, Bahman

    2013-01-01

    Near-infrared nanoconstructs present a potentially effective platform for site-specific and deep tissue optical imaging and phototherapy. We have engineered a polymeric nanocapsule composed of polyallylamine hydrochloride (PAH) chains cross-linked with sodium phosphate and doped with indocyanine green (ICG) toward such endeavors. The ICG-doped nanocapsules were coated covalently with polyethylene glycol (5000 daltons) through reductive amination. We administrated the constructs by tail vein injection to healthy mice. To characterize the biodistribution of the constructs, we performed in vivo quantitative fluorescence imaging and subsequently analyzed the various extracted organs. Our results suggest that encapsulation of ICG in these PEGylated constructs is an effective approach to prolong the circulation time of ICG and delay its hepatic accumulation. Increased bioavailability of ICG, due to encapsulation, offers the potential of extending the clinical applications of ICG, which are currently limited due to rapid elimination of ICG from the vasculature. Our results also indicate that PAH and ICG-doped nanocapsules (ICG-NCs) are not cytotoxic at the levels used in this study. PMID:23637530

  8. Excitation-resolved wide-field fluorescence imaging of indocyanine green visualizes the microenvironment properties in vivo via solvatochromic shift (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cho, Jaedu; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    Near-infrared fluorescence imaging (NIRF) is a powerful wide-field optical imaging tool that has a potential to visualize molecular-specific exogenous fluorescence agents, such as FDA approved Indocyanine Green (ICG), in thick tissue. Indeed, ICG is sensitive to biochemical environment such that it can be used to detect micro- or macroscopic environmental changes in tissue by solvatochromic shift that is defined by the dependence of absorption and emission spectra with the solvent polarity. For example, dimethyl sulfoxide (DMSO) is a very powerful drug carrier that can penetrate biological barriers such as the skin, the membranes, and the blood-brain-barrier. In presence of DMSO, ICG in tissue shows the excitation blue shift. However, NIRF imaging of microenvironment dependent changes of ICG has been challenging for the following reasons. First, the Stoke's shift of ICG is too small to separate the excitation and emission spectra easily. Second, the solvatochromic shift of ICG is too small to be detected by conventional NIRF techniques. Last but not least, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We developed a wavelength-swept laser-based NIRF system that can resolve the excitation shift of ICG in tissue such that DMSO can be indirectly visualized. We plan to conduct an in-vivo lymph-node drug-delivery study in a mouse model to show feasibility of the indirect imaging of the drug-carrier with the wavelength-swept-laser based NIRF system.

  9. Indocyanine green retention test (ICG-r15) as a noninvasive predictor of portal hypertension in patients with different severity of cirrhosis.

    PubMed

    Pind, Marie-Louise L; Bendtsen, Flemming; Kallemose, Thomas; Møller, Søren

    2016-08-01

    Portal hypertension is a severe consequence of chronic liver disease, responsible for the main clinical complications of cirrhosis. Measurement of the hepatic venous pressure gradient (HVPG) provides important clinical information, but the procedure is invasive and demands expert skills of the staff.In the present study, we aimed to investigate the relationship between the constant infusion indocyanine green (ICG) clearance, the calculated ICG retention test after 15 min (ICG-r15), and HVPG in patients with different severity of cirrhosis for validation of ICG-r15 as a noninvasive predictor of portal hypertension. A total of 325 patients were studied. During a hemodynamic investigation, the ICG clearance was determined using the constant infusion technique and ICG-r15 was calculated. Assessment of the diagnostic performance of ICG clearance and ICG-r15 as predictors of HVPG above 10 mmHg was performed by receiver operating characteristic curve analyses.The ICG clearance and ICG-r15 performed well in all three Child classes, with the most significant results among Child class A patients [area under the receiver operating characteristic (AUROC)=0.832] and less significant results in Child class B (AUROC=0.7448) and Child class C patients (AUROC=0.7392). Only six out of 102 patients in Child class C had HVPG of less than 12 mmHg. ICG-r15 can be used as an indirect assessment of significant portal hypertension in compensated cirrhotic patients. ICG-r15 may be suitable as a screening tool for the identification of patients for endoscopy and measurement of HVPG.Further validation of ICG-r15 together with other predictors of portal hypertension and its clinical use is encouraged.

  10. Hepatic blood flow measurement III. Total hepatic blood flow measured by ICG clearance and electromagnetic flowmeters in a canine septic shock model.

    PubMed Central

    Nxumalo, J L; Teranaka, M; Schenk, W G

    1978-01-01

    The validity of the ICG clearance method for the measurement of THBF in abnormal circulatory states remains questionable. In this study THBF measured by this method is compared with the electromagnetic flow technique in a canine spetic model. Good correlation is demonstrated between the two in normal control animals. However, in the septic animals the ICG underestimated the electromagnetic flow result by 20%. This is true in both the high and the low cardiac output septic shock pictures that emerge. In the septic animals, the total hepatic blood flow as measured by the ICG was almost equal to the portal vein flow alone measured by the electromagnetic flowmeters suggesting that this was the quantity it was measuring in this abnormal state. Pathophysiologic mechanisms that may explain the discrepancy are given. PMID:637587

  11. Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: an animal study

    PubMed Central

    2013-01-01

    Background We propose a new approach to facilitate sentinel node biopsy examination by multimodality imaging in which radioactive and near-infrared (NIR) fluorescent nanoparticles depict deeply situated sentinel nodes and fluorescent nodes with anatomical resolution in the surgical field. For this purpose, we developed polyamidoamine (PAMAM)-coated silica nanoparticles loaded with technetium-99m (99mTc) and indocyanine green (ICG). Methods We conducted animal studies to test the feasibility and utility of this dual-modality imaging probe. The mean diameter of the PAMAM-coated silica nanoparticles was 30 to 50 nm, as evaluated from the images of transmission electron microscopy and scanning electron microscopy. The combined labeling with 99mTc and ICG was verified by thin-layer chromatography before each experiment. A volume of 0.1 ml of the nanoparticle solution (7.4 MBq, except for one rat that was injected with 3.7 MBq, and 1 μg of an ICG derivative [ICG-sulfo-OSu]) was injected submucosally into the tongue of six male Wistar rats. Results Scintigraphic images showed increased accumulation of 99mTc in the neck of four of the six rats. Nineteen lymph nodes were identified in the dissected neck of the six rats, and a contact radiographic study showed three nodes with a marked increase in uptake and three nodes with a weak uptake. NIR fluorescence imaging provided real-time clear fluorescent images of the lymph nodes in the neck with anatomical resolution. Six lymph nodes showed weak (+) to strong (+++) fluorescence, whereas other lymph nodes showed no fluorescence. Nodes showing increased radioactivity coincided with the fluorescent nodes. The radioactivity of 15 excised lymph nodes from the four rats was assayed using a gamma well counter. Comparisons of the levels of radioactivity revealed a large difference between the high-fluorescence-intensity group (four lymph nodes; mean, 0.109% ± 0.067%) and the low- or no-fluorescence-intensity group (11 lymph nodes

  12. NIR fluorescent image-based evaluation of gastric tube perfusion after esophagectomy in preclinical model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Han, Kook Nam; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    This study was to evaluate the feasibility of near infrared (NIR) fluorescent images as a tool for evaluating the perfusion of the gastric tube after esophagectomy. In addition, we investigated the time required to acquire enough signal to confirm the presence of ischemia in gastric tube after injection of indocyanine green (ICG) through peripheral versus and central venous route. 4 porcine underwent esophagogastrostomy and their right gastric arteries were ligated to mimic ischemic condition of gastric tube. ICG (0.6mg/kg) was intravenously injected and the fluorescence signal-to-background ratios (SBR) were measured by using the custom-built intraoperative color and fluorescence imaging system (ICFIS). We evaluated perfusion of gastric tubes by comparing their SBR with esophageal SBR. In ischemic models, SBR of esophagus was higher than that of gastric tube (2.8+/-0.54 vs. 1.7+/-0.37, p<0.05). It showed high esophagus-stomach signal to signal ratio. (SSR, 1.8+/-0.76). We also could observe recovery of blood perfusion in few minutes after releasing the ligation of right gastric artery. In addition, in comparison study according to the injection route of ICG, The time to acquire signal stabilization was faster in central than in peripheral route (119 +/- 65.1 seconds in central route vs. 295+/-130.4 in peripheral route, p<0.05). NIR fluorescent images could provide the real-time information if there was ischemia or not in gastric tube during operation. And, central injection of ICG might give that information faster than peripheral route.

  13. Identification of the Lymphatic Drainage Pattern of Esophageal Cancer with Near-Infrared Fluorescent Imaging.

    PubMed

    Schlottmann, Francisco; Barbetta, Arianna; Mungo, Benedetto; Lidor, Anne O; Molena, Daniela

    2017-03-01

    Nodal status is one of the most important long-term prognostic factors for esophageal cancer. The aim of this study was to evaluate the ability of near-infrared (NIR) light fluorescent imaging to identify the lymphatic drainage pattern of esophageal cancer. Patients with distal esophageal cancer or esophagogastric junction cancer scheduled for esophagectomy were enrolled in this study. Before surgery, an endoscopy was performed with submucosal injection of 2 cc of indocyanine green (ICG) around the tumor. Real-time NIR images from the surgical field were obtained for each patient to visualize the lymphatic ICG drainage. A total of nine patients were included in this study. Ivor Lewis esophagectomy was performed in all cases. ICG drainage was visualized to first drain along the left gastric nodes in eight patients (88.9%) and toward the diaphragmatic nodes in one patient (11.1%). The median number of resected nodes was 32. Three patients (33.3%) presented nodal involvement. All of them had positive nodes in the first nodal station identified with ICG. Evaluation of the lymphatic drainage pattern with real-time NIR light fluorescent technique is feasible. Distal and esophagogastric junction tumors showed to drain first in the left gastric nodes in most of the cases.

  14. Fluorescent Imaging With Indocyanine Green During Laparoscopic Cholecystectomy in Patients at Increased Risk of Bile Duct Injury

    PubMed Central

    Ankersmit, Marjolein; van Dam, Dieuwertje A.; van Rijswijk, Anne-Sophie; van den Heuvel, Baukje; Tuynman, Jurriaan B.; Meijerink, Wilhelmus J. H. J.

    2017-01-01

    Background. Although rare, injury to the common bile duct (CBD) during laparoscopic cholecystectomy (LC) can be reduced by better intraoperative visualization of the cystic duct (CD) and CBD. The aim of this study was to establish the efficacy of early visualization of the CD and the added value of CBD identification, using near-infrared (NIR) light and the fluorescent agent indocyanine green (ICG), in patients at increased risk of bile duct injury. Materials and Methods. Patients diagnosed with complicated cholecystitis and scheduled for LC were included. The CBD and CD were visualized with NIR light before and during dissection of the liver hilus and at critical view of safety (CVS). Results. Of the 20 patients originally included, 2 were later excluded due to conversion. In 6 of 18 patients, the CD was visualized early during dissection and prior to imaging with conventional white light. The CBD was additionally visualized with ICG-NIR in 7 of 18 patients. In 1 patient, conversion was prevented due to detection of the CD and CBD with ICG-NIR. Conclusions. Early visualization of the CD or additional identification of the CBD using ICG-NIR in patients with complicated cholecystolithiasis can be helpful in preventing CBD injury. Future studies should attempt to establish the optimal dosage and time frame for ICG administration and bile duct visualization with respect to different gallbladder pathologies. PMID:28178882

  15. Assessing pharmacokinetics of indocyanine green-loaded nanoparticle in tumor with a dynamic diffuse fluorescence tomography system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqi; Yin, Guoyan; Zhao, Huijuan; Ma, Wenjuan; Gao, Feng; Zhang, Limin

    2018-02-01

    Real-time and continuous monitoring of drug release in vivo is an important task in pharmaceutical development. Here, we devoted to explore a real-time continuous study of the pharmacokinetics of free indocyanine green (ICG) and ICG loaded in the shell-sheddable nanoparticles in tumor based on a dynamic diffuse fluorescence tomography (DFT) system: A highly-sensitive dynamic DFT system of CT-scanning mode generates informative and instantaneous sampling datasets; An analysis procedure extracts the pharmacokinetic parameters from the reconstructed time curves of the mean ICG concentration in tumor, using the Gauss-Newton scheme based on two-compartment model. Compared with the pharmacokinetic parameters of free ICG in tumor, the ICG loaded in the shell-sheddable nanoparticles shows efficient accumulation in tumor. The results demonstrate our proposed dynamic-DFT can provide an integrated and continuous view of the drug delivery of the injected agents in different formulations, which is helpful for the development of diagnosis and therapy for tumors.

  16. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.

    PubMed

    Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro

    2015-12-01

    Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.

  17. Indocyanine green-based fluorescent angiography in breast reconstruction

    PubMed Central

    Chae, Michael P.; Rozen, Warren Matthew

    2016-01-01

    Background Fluorescent angiography (FA) has been useful for assessing blood flow and assessing tissue perfusion in ophthalmology and other surgical disciplines for decades. In plastic surgery, indocyanine green (ICG) dye-based FA is a relatively novel imaging technology with high potential in various applications. We review the various FA detector systems currently available and critically appraise its utility in breast reconstruction. Methods A review of the published English literature dating from 1950 to 2015 using databases, such as PubMed, Medline, Web of Science, and EMBASE was undertaken. Results In comparison to the old fluorescein dye, ICG has a superior side effect profile and can be accurately detected by various commercial devices, such as SPY Elite (Novadaq, Canada), FLARE (Curadel LLC, USA), PDE-Neo (Hamamatsu Photonics, Japan), Fluobeam 800 (Fluoptics, France), and IC-View (Pulsion Medical Systems AG, Germany). In breast reconstruction, ICG has established as a safer, more accurate tracer agent, in lieu of the traditional blue dyes, for detection of sentinel lymph nodes with radioactive isotopes (99m-Technetium). In prosthesis-based breast reconstruction, intraoperative assessment of the mastectomy skin flap to guide excision of hypoperfused areas translates to improved clinical outcomes. Similarly, in autologous breast reconstructions, FA can be utilized to detect poorly perfused areas of the free flap, evaluate microvascular anastomosis for patency, and assess SIEA vascular territory for use as an alternative free flap with minimal donor site morbidity. Conclusions ICG-based FA is a novel, useful tool for various applications in breast reconstruction. More studies with higher level of evidence are currently lacking to validate this technology. PMID:27047782

  18. Towards Whole-Body Fluorescence Imaging in Humans

    PubMed Central

    Piper, Sophie K.; Habermehl, Christina; Schmitz, Christoph H.; Kuebler, Wolfgang M.; Obrig, Hellmuth; Steinbrink, Jens; Mehnert, Jan

    2013-01-01

    Dynamic near-infrared fluorescence (DNIF) whole-body imaging of small animals has become a popular tool in experimental biomedical research. In humans, however, the field of view has been limited to body parts, such as rheumatoid hands, diabetic feet or sentinel lymph nodes. Here we present a new whole-body DNIF-system suitable for adult subjects. We explored whether this system (i) allows dynamic whole-body fluorescence imaging and (ii) can detect modulations in skin perfusion. The non-specific fluorescent probe indocyanine green (ICG) was injected intravenously into two subjects, and fluorescence images were obtained at 5 Hz. The in- and out-flow kinetics of ICG have been shown to correlate with tissue perfusion. To validate the system, skin perfusion was modulated by warming and cooling distinct areas on the chest and the abdomen. Movies of fluorescence images show a bolus passage first in the face, then in the chest, abdomen and finally in the periphery (∼10, 15, 20 and 30 seconds, respectively). When skin perfusion is augmented by warming, bolus arrives about 5 seconds earlier than when the skin is cooled and perfusion decreased. Calculating bolus arrival times and spatial fitting of basis time courses extracted from different regions of interest allowed a mapping of local differences in subcutaneous skin perfusion. This experiment is the first to demonstrate the feasibility of whole-body dynamic fluorescence imaging in humans. Since the whole-body approach demonstrates sensitivity to circumscribed alterations in skinperfusion, it may be used to target autonomous changes in polyneuropathy and to screen for peripheral vascular diseases. PMID:24391820

  19. Assessment of tumor angiogenesis using fluorescence contrast agents

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Liu, Qian; Huang, Ping; Hyman, Shay; Intes, Xavier; Lee, William; Chance, Britton

    2003-12-01

    Angiogenesis is an important factor for further tumor growth and thus could be an attractive therapeutic target. Optical imaging can provide a non-invasive way to measure the permeability of tumor blood vessels and assess the tumor vasculature. We have developed a dual-channel near-infrared fluorescence system for simultaneous measurement of the pharmacokinetics of tumorous and normal tissues with exogenous contrast agents. This frequency-domain system consists of the light source (780 nm laser diode), fiber optics, interference filter (830 nm) and the detector (PMT). The fluorescent contrast agent used in this study is Indocyanine Green (ICG), and the normal dosage is 100 μl at a concentration of 5 μM. In vivo animal study is performed on the K1735 melanoma-bearing mouse. The fluorescence signals both tumorous and normal tissues after the bolus injection of ICG through the tail vein are continuously recorded as a function of time. The data is fitted by a double-exponential model to reveal the wash-in and wash-out parameters of different tissues. We observed an elongated wash-out from the tumor compared with normal tissue (leg). The effect of radiation therapy on the tumor vasculature is also discussed.

  20. In vivo laser assisted end-to-end anastomosis with ICG-infused chitosan patches

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Esposito, Giuseppe; Scerrati, Alba; Albanese, Alessio; Puca, Alfredo; Maira, Giulio; Rossi, Giacomo; Pini, Roberto

    2011-07-01

    Laser assisted vascular repair is a new optimized technique based on the use of ICG-infused chitosan patch to close a vessel wound, with or even without few supporting single stitches. We present an in vivo experimental study on an innovative end-to-end laser assisted vascular anastomotic (LAVA) technique, performed with the application of ICGinfused chitosan patches. The photostability and the mechanical properties of ICG-infused chitosan films were preliminary measured. The in vivo study was performed in 10 New Zealand rabbits. After anesthesia, a 3-cm segment of the right common carotid artery was exposed, thus clamped proximally and distally. The artery was then interrupted by means of a full thickness cut. Three single microsutures were used to approximate the two vessel edges. The ICG-infused chitosan patch was rolled all over the anastomotic site and welded by the use of a diode laser emitting at 810 nm and equipped with a 300 μm diameter optical fiber. Welding was obtained by delivering single laser spots to induce local patch/tissue adhesion. The result was an immediate closure of the anastomosis, with no bleeding at clamps release. Thus animals underwent different follow-up periods, in order to evaluate the welded vessels over time. At follow-up examinations, all the anastomoses were patent and no bleeding signs were documented. Samples of welded vessels underwent histological examinations. Results showed that this technique offer several advantages over conventional suturing methods: simplification of the surgical procedure, shortening of the operative time, better re-endothelization and optimal vascular healing process.

  1. Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans.

    PubMed

    Gholibegloo, Elham; Karbasi, Ashkan; Pourhajibagher, Maryam; Chiniforush, Nasim; Ramazani, Ali; Akbari, Tayebeh; Bahador, Abbas; Khoobi, Mehdi

    2018-04-01

    Antimicrobial photodynamic therapy (aPDT) has been emerged as a noninvasive strategy to remove bacterial contaminants such as S. mutans from the tooth surface. Photosensitizer (PS), like indocyanine green (ICG), plays a key role in this technique which mainly suffers from the poor stability and concentration-dependent aggregation. An appropriate nanocarrier (NC) with enhanced antibacterial effects could overcome these limitations and improve the efficiency of ICG as a PS. In this study, various ICG-loaded NCs including graphene oxide (GO), GO-carnosine (Car) and GO-Car/Hydroxyapatite (HAp) were synthesized and characterized by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Filed Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS), Zeta Potential and Ultraviolet-Visible spectrometry (UV-Vis). The colony forming unit and crystal violet assays were performed to evaluate the antimicrobial and anti-biofilm properties of PSs against S. mutans. The quantitative real-time PCR approach was also applied to determine the expression ratio of the gtfB gene in S. mutans. The zeta potential analysis and UV-Vis spectrometry indicated successful loading of ICG onto/into NCs. GO-Car/HAp showed highest amount of ICG loading (57.52%) and also highest aqueous stability after one week (94%). UV-Vis spectrometry analyses disclosed a red shift from 780 to 800 nm for the characteristic peak of ICG-loaded NCs. In the lack of aPDT, GO-Car@ICG showed the highest decrease in bacterial survival (86.4%) which indicated that Car could significantly promote the antibacterial effect of GO. GO@ICG, GO-Car@ICG and GO-Car/HAp@ICG mediated aPDT, dramatically declined the count of S. mutans strains to 91.2%, 95.5% and 93.2%, respectively (P < 0.05). The GO@ICG, GO-Car@ICG, GO-Car/HAp@ICG significantly suppressed the S. mutans biofilm formation by 51.4%, 63.8%, and 56.8%, respectively (P < 0.05). The expression of gtfB gene was

  2. Sensitivity and specificity of indocyanine green near-infrared fluorescence imaging in detection of metastatic lymph nodes in colorectal cancer: Systematic review and meta-analysis.

    PubMed

    Emile, Sameh H; Elfeki, Hossam; Shalaby, Mostafa; Sakr, Ahmad; Sileri, Pierpaolo; Laurberg, Søren; Wexner, Steven D

    2017-11-01

    This review aimed to determine the overall sensitivity and specificity of indocyanine green (ICG) near-infrared (NIR) fluorescence in sentinel lymph node (SLN) detection in Colorectal cancer (CRC). A systematic search in electronic databases was conducted. Twelve studies including 248 patients were reviewed. The median sensitivity, specificity, and accuracy rates were 73.7, 100, and 75.7. The pooled sensitivity and specificity rates were 71% and 84.6%. In conclusion, ICG-NIR fluorescence is a promising technique for detecting SLNs in CRC. © 2017 Wiley Periodicals, Inc.

  3. Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer.

    PubMed

    Mieog, J Sven D; Troyan, Susan L; Hutteman, Merlijn; Donohoe, Kevin J; van der Vorst, Joost R; Stockdale, Alan; Liefers, Gerrit-Jan; Choi, Hak Soo; Gibbs-Strauss, Summer L; Putter, Hein; Gioux, Sylvain; Kuppen, Peter J K; Ashitate, Yoshitomo; Löwik, Clemens W G M; Smit, Vincent T H B M; Oketokoun, Rafiou; Ngo, Long H; van de Velde, Cornelis J H; Frangioni, John V; Vahrmeijer, Alexander L

    2011-09-01

    Near-infrared (NIR) fluorescent sentinel lymph node (SLN) mapping in breast cancer requires optimized imaging systems and lymphatic tracers. A small, portable version of the FLARE imaging system, termed Mini-FLARE, was developed for capturing color video and two semi-independent channels of NIR fluorescence (700 and 800 nm) in real time. Initial optimization of lymphatic tracer dose was performed using 35-kg Yorkshire pigs and a 6-patient pilot clinical trial. More refined optimization was performed in 24 consecutive breast cancer patients. All patients received the standard of care using (99m)Technetium-nanocolloid and patent blue. In addition, 1.6 ml of indocyanine green adsorbed to human serum albumin (ICG:HSA) was injected directly after patent blue at the same location. Patients were allocated to 1 of 8 escalating ICG:HSA concentration groups from 50 to 1000 μM. The Mini-FLARE system was positioned easily in the operating room and could be used up to 13 in. from the patient. Mini-FLARE enabled visualization of lymphatic channels and SLNs in all patients. A total of 35 SLNs (mean = 1.45, range 1-3) were detected: 35 radioactive (100%), 30 blue (86%), and 35 NIR fluorescent (100%). Contrast agent quenching at the injection site and dilution within lymphatic channels were major contributors to signal strength of the SLN. Optimal injection dose of ICG:HSA ranged between 400 and 800 μM. No adverse reactions were observed. We describe the clinical translation of a new NIR fluorescence imaging system and define the optimal ICG:HSA dose range for SLN mapping in breast cancer.

  4. Simulation of 'pathologic' changes in ICG waveforms resulting from superposition of the 'preejection' and ejection waves induced by left ventricular contraction

    NASA Astrophysics Data System (ADS)

    Ermishkin, V. V.; Kolesnikov, V. A.; Lukoshkova, E. V.; Sonina, R. S.

    2013-04-01

    The impedance cardiography (ICG) is widely used for beat-to-beat noninvasive evaluation of the left ventricular stroke volume and contractility. It implies the correct determination of the ejection start and end points and the amplitudes of certain peaks in the differentiated impedance cardiogram. An accurate identification of ejection onset by ICG is often problematic, especially in the cardiologic patients, due to peculiar waveforms. Using a simple theoretical model, we tested the hypothesis that two major processes are responsible for the formation of impedance systolic wave: (1) the changes in the heart geometry and surrounding vessels produced by ventricular contraction, which occur during the isovolumic phase and precede ejection, and (2) expansion of aorta and adjacent arteries during the ejection phase. The former process initiates the preejection wave WpE and the latter triggers the ejection wave WEj. The model predicts a potential mechanism of generating the abnormal shapes of dZ/dt due to the presence of preejection waves and explains the related errors in ICG time and amplitude parameters. An appropriate decomposition method is a promising way to avoid the masking effects of these waves and a further step to correct determination of the onset of ejection and the corresponding peak amplitudes from 'pathologically shaped' ICG signals.

  5. Pilot Assessment of the Repeatability of Indocyanine Green Fluorescence Imaging and Correlation with Traditional Foot Perfusion Assessments.

    PubMed

    Venermo, M; Settembre, N; Albäck, A; Vikatmaa, P; Aho, P-S; Lepäntalo, M; Inoue, Y; Terasaki, H

    2016-10-01

    Ankle brachial index (ABI), toe pressures (TP), and transcutaneous oxygen pressure (TcPO 2 ) are traditionally used in the assessment of critical limb ischemia (CLI). Indocyanine green (ICG) fluorescence imaging can be used to evaluate local circulation in the foot and to evaluate the severity of ischemia. This prospective study analyzed the suitability of a fluorescence imaging system (photodynamic eye [PDE]) in CLI. Forty-one patients with CLI were included. Of the patients, 66% had diabetes and there was an ischemic tissue lesion in 70% of the limbs. ABI, toe pressures, TcPO 2 and ICG-fluorescence imaging (ICG-FI) were measured in each leg. To study the repeatability of the ICG-FI, each patient underwent the study twice. After the procedure, foot circulation was measured using a time-intensity curve, where T1/2 (the time needed to achieve half of the maximum fluorescence intensity) and PDE10 (increase of the intensity during the first 10 s) were determined. A time-intensity curve was plotted using the same areas as for the TcPO 2 probes (n=123). The mean ABI was 0.43, TP 21 mmHg, TcPO 2 23 mmHg, T1/2 38 s, and PDE10 19 AU. Time-intensity curves were repeatable. In a Bland-Altman scatter plot, the 95% limits of agreement of PDE10 was 9.9 AU and the corresponding value of T1/2 was 14 s. Correlation between ABI and TP was significant (R=.73, p<.001), and it was weaker in diabetic patients (R=.47, p=.048) compared with non-diabetic patients (R=.89, p=.002). Correlations between ABI and TcPO 2 and TP and TcPO 2 were weak (R=.37, p=.05 and R=.43, p=.037, respectively). Correlation between TcPO 2 and PDE10 was strong in diabetic patients (R=.70, p=.003). According to this pilot study, ICG-FI with PDE can be used in the assessment of blood supply in the ischemic foot. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Parathyroid gland angiography with indocyanine green fluorescence to predict parathyroid function after thyroid surgery

    PubMed Central

    Vidal Fortuny, J.; Belfontali, V.; Sadowski, S. M.; Karenovics, W.; Guigard, S.

    2016-01-01

    Background Postoperative hypoparathyroidism remains the most common complication following thyroidectomy. The aim of this pilot study was to evaluate the use of intraoperative parathyroid gland angiography in predicting normal parathyroid gland function after thyroid surgery. Methods Angiography with the fluorescent dye indocyanine green (ICG) was performed in patients undergoing total thyroidectomy, to visualize vascularization of identified parathyroid glands. Results Some 36 patients underwent ICG angiography during thyroidectomy. All patients received standard calcium and vitamin D supplementation. At least one well vascularized parathyroid gland was demonstrated by ICG angiography in 30 patients. All 30 patients had parathyroid hormone (PTH) levels in the normal range on postoperative day (POD) 1 and 10, and only one patient exhibited asymptomatic hypocalcaemia on POD 1. Mean(s.d.) PTH and calcium levels in these patients were 3·3(1·4) pmol/l and 2·27(0·10) mmol/l respectively on POD 1, and 4·0(1.6) pmol/l and 2·32(0·08) mmol/l on POD 10. Two of the six patients in whom no well vascularized parathyroid gland could be demonstrated developed transient hypoparathyroidism. None of the 36 patients presented symptomatic hypocalcaemia, and none received treatment for hypoparathyroidism. Conclusion PTH levels on POD 1 were normal in all patients who had at least one well vascularized parathyroid gland demonstrated during surgery by ICG angiography, and none required treatment for hypoparathyroidism. PMID:26864909

  7. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging.

    PubMed

    Kim, Chulhong; Song, Kwang Hyun; Gao, Feng; Wang, Lihong V

    2010-05-01

    To noninvasively map sentinel lymph nodes (SLNs) and lymphatic vessels in rats in vivo by using dual-modality nonionizing imaging-volumetric spectroscopic photoacoustic imaging, which measures optical absorption, and planar fluorescence imaging, which measures fluorescent emission-of indocyanine green (ICG). Institutional animal care and use committee approval was obtained. Healthy Sprague-Dawley rats weighing 250-420 g (age range, 60-120 days) were imaged by using volumetric photoacoustic imaging (n = 5) and planar fluorescence imaging (n = 3) before and after injection of 1 mmol/L ICG. Student paired t tests based on a logarithmic scale were performed to evaluate the change in photoacoustic signal enhancement of SLNs and lymphatic vessels before and after ICG injection. The spatial resolutions of both imaging systems were compared at various imaging depths (2-8 mm) by layering additional biologic tissues on top of the rats in vivo. Spectroscopic photoacoustic imaging was applied to identify ICG-dyed SLNs. In all five rats examined with photoacoustic imaging, SLNs were clearly visible, with a mean signal enhancement of 5.9 arbitrary units (AU) + or - 1.8 (standard error of the mean) (P < .002) at 0.2 hour after injection, while lymphatic vessels were seen in four of the five rats, with a signal enhancement of 4.3 AU + or - 0.6 (P = .001). In all three rats examined with fluorescence imaging, SLNs and lymphatic vessels were seen. The average full width at half maximum (FWHM) of the SLNs in the photoacoustic images at three imaging depths (2, 6, and 8 mm) was 2.0 mm + or - 0.2 (standard deviation), comparable to the size of a dissected lymph node as measured with a caliper. However, the FWHM of the SLNs in fluorescence images widened from 8 to 22 mm as the imaging depth increased, owing to strong light scattering. SLNs were identified spectroscopically in photoacoustic images. These two modalities, when used together with ICG, have the potential to help map SLNs in

  8. Vascularized osseous flaps and assessing their bipartate perfusion pattern via intraoperative fluorescence angiography.

    PubMed

    Valerio, Ian; Green, J Marshall; Sacks, Justin M; Thomas, Shane; Sabino, Jennifer; Acarturk, T Oguz

    2015-01-01

    Large segmental bone and composite tissue defects often require vascularized osseous flaps for definitive reconstruction. However, failed osseous flaps due to inadequate perfusion can lead to significant morbidity. Utilization of indocyanine green (ICG) fluorescence angiography has been previously shown to reliably assess soft tissue perfusion. Our group will outline the application of this useful intraoperative tool in evaluating the perfusion of vascularized osseous flaps. A retrospective review was performed to identify those osseous and/or osteocutaneous bone flaps, where ICG angiography was employed. Data analyzed included flap types, success and failure rates, and perfusion-related complications. All osseous flaps were evaluated by ICG angiography to confirm periosteal and endosteal perfusion. Overall 16 osseous free flaps utilizing intraoperative ICG angiography to assess vascularized osseous constructs were performed over a 3-year period. The flaps consisted of the following: nine osteocutaneous fibulas, two osseous-only fibulas, two scapular/parascapular with scapula bone, two quadricep-based muscle flaps, containing a vascularized femoral bone component, and one osteocutaneous fibula revision. All flap reconstructions were successful with the only perfusion-related complication being a case of delayed partial skin flap loss. Intraoperative fluorescence angiography is a useful adjunctive tool that can aid in flap design through angiosome mapping and can also assess flap perfusion, vascular pedicle flow, tissue perfusion before flap harvest, and flap perfusion after flap inset. Our group has successfully extended the application of this intraoperative tool to assess vascularized osseous flaps in an effort to reduce adverse outcomes related to preventable perfusion-related complications. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Sentinel lymph node detection in gynecologic malignancies by a handheld fluorescence camera

    NASA Astrophysics Data System (ADS)

    Hirsch, Ole; Szyc, Lukasz; Muallem, Mustafa Zelal; Ignat, Iulia; Chekerov, Radoslav; Macdonald, Rainer; Sehouli, Jalid; Braicu, Ioana; Grosenick, Dirk

    2017-02-01

    Near-infrared fluorescence imaging using indocyanine green (ICG) as a tracer is a promising technique for mapping the lymphatic system and for detecting sentinel lymph nodes (SLN) during cancer surgery. In our feasibility study we have investigated the application of a custom-made handheld fluorescence camera system for the detection of lymph nodes in gynecological malignancies. It comprises a low cost CCD camera with enhanced NIR sensitivity and two groups of LEDs emitting at wavelengths of 735 nm and 830 nm for interlaced recording of fluorescence and reflectance images of the tissue, respectively. With the help of our system, surgeons can observe fluorescent tissue structures overlaid onto the anatomical image on a monitor in real-time. We applied the camera system for intraoperative lymphatic mapping in 5 patients with vulvar cancer, 5 patients with ovarian cancer, 3 patients with cervical cancer, and 3 patients with endometrial cancer. ICG was injected at four loci around the primary malignant tumor during surgery. After a residence time of typically 15 min fluorescence images were taken in order to visualize the lymph nodes closest to the carcinomas. In cases with vulvar cancer about half of the lymph nodes detected by routinely performed radioactive SLN mapping have shown fluorescence in vivo as well. In the other types of carcinomas several lymph nodes could be detected by fluorescence during laparotomy. We conclude that our low cost camera system has sufficient sensitivity for lymphatic mapping during surgery.

  10. Time reversal optical tomography locates fluorescent targets in a turbid medium

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Gayen, S. K.

    2013-03-01

    A fluorescence optical tomography approach that extends time reversal optical tomography (TROT) to locate fluorescent targets embedded in a turbid medium is introduced. It uses a multi-source illumination and multi-detector signal acquisition scheme, along with TR matrix formalism, and multiple signal classification (MUSIC) to construct pseudo-image of the targets. The samples consisted of a single or two small tubes filled with water solution of Indocyanine Green (ICG) dye as targets embedded in a 250 mm × 250 mm × 60 mm rectangular cell filled with Intralipid-20% suspension as the scattering medium. The ICG concentration was 1μM, and the Intralipid-20% concentration was adjusted to provide ~ 1-mm transport length for both excitation wavelength of 790 nm and fluorescence wavelength around 825 nm. The data matrix was constructed using the diffusely transmitted fluorescence signals for all scan positions, and the TR matrix was constructed by multiplying data matrix with its transpose. A pseudo spectrum was calculated using the signal subspace of the TR matrix. Tomographic images were generated using the pseudo spectrum. The peaks in the pseudo images provided locations of the target(s) with sub-millimeter accuracy. Concurrent transmission TROT measurements corroborated fluorescence-TROT findings. The results demonstrate that TROT is a fast approach that can be used to obtain accurate three-dimensional position information of fluorescence targets embedded deep inside a highly scattering medium, such as, a contrast-enhanced tumor in a human breast.

  11. Compact solid-state CMOS single-photon detector array for in vivo NIR fluorescence lifetime oncology measurements.

    PubMed

    Homulle, H A R; Powolny, F; Stegehuis, P L; Dijkstra, J; Li, D-U; Homicsko, K; Rimoldi, D; Muehlethaler, K; Prior, J O; Sinisi, R; Dubikovskaya, E; Charbon, E; Bruschini, C

    2016-05-01

    In near infrared fluorescence-guided surgical oncology, it is challenging to distinguish healthy from cancerous tissue. One promising research avenue consists in the analysis of the exogenous fluorophores' lifetime, which are however in the (sub-)nanosecond range. We have integrated a single-photon pixel array, based on standard CMOS SPADs (single-photon avalanche diodes), in a compact, time-gated measurement system, named FluoCam. In vivo measurements were carried out with indocyanine green (ICG)-modified derivatives targeting the αvβ 3 integrin, initially on a genetically engineered mouse model of melanoma injected with ICG conjugated with tetrameric cyclic pentapeptide (ICG-E[c(RGD f K)4]), then on mice carrying tumour xenografts of U87-MG (a human primary glioblastoma cell line) injected with monomeric ICG-c(RGD f K). Measurements on tumor, muscle and tail locations allowed us to demonstrate the feasibility of in vivo lifetime measurements with the FluoCam, to determine the characteristic lifetimes (around 500 ps) and subtle lifetime differences between bound and unbound ICG-modified fluorophores (10% level), as well as to estimate the available photon fluxes under realistic conditions.

  12. Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: a prospective comparative study of 94 patients.

    PubMed

    Krane, L Spencer; Manny, Theodore B; Hemal, Ashok K

    2012-07-01

    To compare a consecutive prospective cohort of patients who underwent robotic partial nephrectomy (RPN) with near infrared fluorescence (NIRF) imaging with indocyanine green dye (ICG) with a previous consecutive patient cohort. A total of 47 consecutive patients with renal masses suspicious for malignancy undergoing RPN were given 5-7.5 mg of ICG before hilar clamping or tumor excision. This cohort of patients was compared with 47 immediate previous consecutive patients who had undergone RPN without NIRF real-time imaging using ICG. The intraoperative, perioperative, and postoperative parameters were collected in an institutional review board-approved prospective database. The preoperative demographics and tumor complexity according to the nephrometry or preoperative aspects and dimensions used for an anatomic (PADUA) scores were similar. The mean warm ischemia time was significantly decreased in the ICG group (15 vs 17 minutes, P = .01). The median hospital stay was 2 days in both groups. No significant difference was seen in the positive margin rate (ICG, 6% vs control, 8.5%; P = .69) or observed Clavien grade III-IV complications in these 2 cohorts (ICG, 4% vs control, 15%; P = .07). No adverse events were associated with ICG dye administration. Differential ICG uptake was observed with selective clamping or in patients with cystic tumors, hypofluorescent tumors with exophytic components, and angiomyelolipomas, but these benefits could not be quantified. NIRF-ICG was transiently helpful to identify the vascular anatomy and not helpful at all for endophytic tumors. RPN using NIRF-ICG can be performed safely and effectively. A decreased warm ischemia time in the ICG cohort was observed without specific measured advantages. Differential ICG uptake by different tumors did not lead to significant differences in the positive margin rate. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Intraoperative spatial frequency domain diffuse optical tomography with indo-cyanine green (ICG) fluorescence contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chong, Sang Hoon; Parthasarathy, Ashwin B.; Kavuri, Venkaiah C.; Moscatelli, Frank A.; Singhal, Sunil; Yodh, Arjun G.

    2017-02-01

    Surgical resection is the most effective treatment strategy for solid tumors, but complete removal of the tumor is critical for post-surgical recovery/long-term survival and is dependent on correct identification of the tumor margin and accurate excision of microscopic residual tumor in the surgical field. Fluorescence image guided surgery is an emerging technique that has shown promise for intraoperative location of tumors and tumor margins. Current versions of such intraoperative fluorescence imaging, however, are generally limited to 2D near-surface images, i.e., without information about tumor depth. Here we present an intraoperative fluorescence imaging system for 3D volumetric imaging of tumors; the system uses spatial frequency domain diffuse optical tomography with an analytic inversion reconstruction method. The new instrument can derive depth-sensitive 3D tumor images at depths up to 1 cm, and it employs compact epi-imaging and illumination suitable for the operating room, with quasi-real-time image reconstruction for surgical visualization. We present experimental results with FDA-approved Indocynanine Green using an extensive array of tissue phantoms and in a pilot in-vivo study.

  14. Fluorescence-enhanced robotic radical cystectomy using unconjugated indocyanine green for pelvic lymphangiography, tumor marking, and mesenteric angiography: the initial clinical experience.

    PubMed

    Manny, Ted B; Hemal, Ashok K

    2014-04-01

    To describe the initial feasibility of fluorescence-enhanced robotic radical cystectomy (FERRC) using real-time cystoscopic injection of unconjugated indocyanine green (ICG) for tumor marking and identification of sentinel lymphatic drainage with additional intravenous injection for mesenteric angiography. Ten patients with clinically localized high-grade bladder cancer underwent FERRC. Before robot docking, rigid cystoscopy was performed, during which a 2.5-mg/mL ICG solution was injected in the bladder submucosa and detrusor circumferentially around the tumor. After robot docking, parameters describing the time course of tissue fluorescence and pelvic lymphangiography were systematically recorded. Lymphatic packets containing fluorescent lymph nodes were considered the sentinel drainage. Eight patients underwent intracorporeal ileal conduit urinary diversion, during which an additional 2-mL ICG solution was given intravenously for mesenteric angiography, allowing maximal preservation of bowel vascularity to the conduit and remaining bowel segments. Bladder tumor marking and identification of sentinel drainage were achieved in 9 of 10 (90%) patients. The area of bladder tumor was identified at a median of 15 minutes after injection, whereas sentinel drainage was visualized at a median of 30 minutes. Mesenteric angiography was successful in 8 of 8 (100%) patients at a median time of <1 minutes after intravenous injection and enabled identification of bowel arcades before intracorporeal bowel stapling. FERRC using combined cystoscopic and intravenous injection of ICG is safe and feasible. FERRC allows for reliable bladder tumor marking, identification of sentinel lymphatic drainage, and identification of mesenteric vasculature in most patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Comparison of ICG-assisted ILM peeling and triamcinolone-assisted posterior vitreous removal in diffuse diabetic macular oedema.

    PubMed

    Bardak, Y; Cekiç, O; Tiğ, S U

    2006-12-01

    To compare the effect of indocyanine green (ICG)-assisted internal limiting membrane (ILM) peeling and triamcinolone acetonide-assisted posterior vitreous removal on visual acuity in patients with diffuse diabetic macular oedema (DMO). In total, 24 patients with diffuse DMO who underwent pars plana vitrectomy were included in this study. In all, 11 patients (mean age 57 years) were performed ICG-assisted ILM peeling; while 13 patients (mean age 54 years) underwent triamcinolone-assisted posterior vitreous removal. Patients from two different treatment regimens were compared in terms of best-corrected visual acuity (BCVA) at postoperative sixth months. In ICG-assisted ILM peeling group, preoperative BCVA (1.3+/-0.4, mean+/-SD, logMAR) improved postoperatively to 0.9+/-0.5 (P=0.011). In eyes underwent triamcinolone-assisted posterior vitreous removal, baseline BCVA of 1.4+/-0.4 improved to 1.0+/-0.5 (P=0.007). There was no difference between baseline as well as postoperative sixth-month BCVA results of both groups (P=0.59 and P=0.57, respectively). Triamcinolone-assisted posterior vitreous removal and ICG-assisted ILM peeling have the same effect in terms of postoperative BCVA in patients with diffuse DMO.

  16. Clinical values of intraoperative indocyanine green fluorescence video angiography with Flow 800 software in cerebrovascular surgery.

    PubMed

    Ye, Xun; Liu, Xing-Ju; Ma, Li; Liu, Ling-Tong; Wang, Wen-Lei; Wang, Shuo; Cao, Yong; Zhang, Dong; Wang, Rong; Zhao, Ji-Zong; Zhao, Yuan-Li

    2013-11-01

    Microscope-integrated near-infrared indocyanine green video angiography (ICG-VA) has been used in neurosurgery for a decade. This study aimed to assess the value of intraoperative indocyanine green (ICG) video angiography with Flow 800 software in cerebrovascular surgery and to discover its hemodynamic features and changes of cerebrovascular diseases during surgery. A total of 87 patients who received ICG-VA during various surgical procedures were enrolled in this study. Among them, 45 cases were cerebral aneurysms, 25 were cerebral arteriovenous malformations (AVMs), and 17 were moyamoya disease (MMD). A surgical microscope integrating an infrared fluorescence module was used to confirm the residual aneurysms and blocking of perforating arteries in aneurysms. Feeder arteries, draining veins, and normal cortical vessels were identified by the time delay color mode of Flow 800 software. Hemodynamic parameters were recorded. All data were analyzed by SPSS version 18.0 (SPSS Inc., USA). T-test was used to analyze the hemodynamic features of AVMs and MMDs, the influence on peripheral cortex after resection in AVMs, and superficial temporal artery to middle cerebral artery (STA-MCA) bypass in MMDs. The visual delay map obtained by Flow 800 software had more advantages than the traditional playback mode in identifying the feeder arteries, draining veins, and their relations to normal cortex vessels. The maximum fluorescence intensity (MFI) and the slope of ICG fluorescence curve of feeder arteries and draining veins were higher than normal peripheral vessels (MFI: 584.24±85.86 vs. 382.94 ± 91.50, slope: 144.95 ± 38.08 vs. 69.20 ± 13.08, P < 0.05). The arteriovenous transit time in AVM was significantly shorter than in normal cortical vessels ((0.60 ± 0.27) vs. (2.08 ± 1.42) seconds, P < 0.05). After resection of AVM, the slope of artery in the cortex increased, which reflected the increased cerebral flow. In patients with MMD, after STA-MCA bypass, cortex perfusion

  17. MRI-guided fluorescence tomography of the breast: a phantom study

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Dehghani, Hamid; Paulsen, Keith D.

    2009-02-01

    Tissue phantoms simulating the human breast were used to demonstrate the imaging capabilities of an MRI-coupled fluorescence molecular tomography (FMT) imaging system. Specifically, phantoms with low tumor-to-normal drug contrast and complex internal structure were imaged with the MR-coupled FMT system. Images of indocyanine green (ICG) fluorescence yield were recovered using a diffusion model-based approach capable of estimating the distribution of fluorescence activity in a tissue volume from tissue-boundary measurements of transmitted light. Tissue structural information, which can be determined from standard T1 and T2 MR images, was used to guide the recovery of fluorescence activity. The study revealed that this spatial guidance is critical for recovering images of fluorescence yield in tissue with low tumor-to-normal drug contrast.

  18. In vivo fluorescence confocal microscopy: indocyanine green enhances the contrast of epidermal and dermal structures

    NASA Astrophysics Data System (ADS)

    Skvara, Hans; Kittler, Harald; Schmid, Johannes A.; Plut, Ulrike; Jonak, Constanze

    2011-09-01

    In recent years, in vivo skin imaging devices have been successfully implemented in skin research as well as in clinical routine. Of particular importance is the use of reflectance confocal microscopy (RCM) and fluorescence confocal microscopy (FCM) that enable visualization of the tissue with a resolution comparable to histology. A newly developed commercially available multi-laser device in which both technologies are integrated now offers the possibility to directly compare RCM with FCM. The fluorophore indocyanine green (ICG) was intradermally injected into healthy forearm skin of 10 volunteers followed by in vivo imaging at various time points. In the epidermis, accurate assessment of cell morphology with FCM was supplemented by identification of pigmented cells and structures with RCM. In dermal layers, only with FCM connective tissue fibers were clearly contoured down to a depth of more than 100 μm. The fluorescent signal still provided a favorable image contrast 24 and 48 hours after injection. Subsequently, ICG was applied to different types of skin diseases (basal cell carcinoma, actinic keratosis, seborrhoeic keratosis, and psoriasis) in order to demonstrate the diagnostic benefit of FCM when directly compared with RCM. Our data suggest a great impact of FCM in combination with ICG on clinical and experimental dermatology in the future.

  19. Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent

    NASA Astrophysics Data System (ADS)

    Hong, Suk ho; Kim, Hyunjin; Choi, Yongdoo

    2017-05-01

    Here we report indocyanine green (ICG)-loaded hollow mesoporous silica nanoparticles (ICG@HMSNP) as an activatable theranostic platform. Near-infrared fluorescence and singlet oxygen generation of ICG@HMSNP was effectively quenched (i.e. turned off) in its native state because of the fluorescence resonance energy transfer between ICG molecules. Therefore, ICG@HMSNP was nonfluorescent and nonphototoxic in the extracellular region. After the nanoparticles entered the cancer cells via endocytosis, they became highly fluorescent and phototoxic. In addition, intracellular uptake of ICG@HMSNP was 2.75 times higher than that of free ICG, resulting in an enhanced phototherapy of cancer.

  20. [Sentinel node detection using optonuclear probe (gamma and fluorescence) after green indocyanine and radio-isotope injections].

    PubMed

    Poumellec, M-A; Dejode, M; Figl, A; Darcourt, J; Haudebourg, J; Sabah, Y; Voury, A; Martaens, A; Barranger, E

    2016-04-01

    Assess the biopsy's feasibility of the sentinel lymph node biopsy (SLNB) using optonuclear probe after of indocyanine green (ICG) and radio-isotope (RI) injections. Twenty-one patients with a localized breast cancer and unsuspicious axillary nodes underwent a SLNB after both injections of ICG and radio-isotope. One or more SLN were identified on the 21 patients (identification rate of 100%). The median number SLN was 2 (1-3). Twenty SLN were both radio-actives and fluorescents (54.1%), 11 fluorescent only (29.7%) and 6 were only radio-actives (16.2%). Seven patients had a metastatic SLN (8 SLN overall). Among them, only one had a micrometastasic SLN, 5 others had a macrometastatic SLN and one patient had two macrometastatic SLNs. Among the 8 metastatic SLN, 5 were both fluorescent and radioactive, 2 were only fluorescent and 1 was only radioactive. Detection SLN using optonuclear probe after indocyanine green and radio-isotope injections is effective and could be, after validation by randomized trial, a reliable alternative to the blue dye injection for teams who consider that combined detection as the reference. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. [Evaluation of green indocyanine interest compared to Technetium in sentinel lymph node detection in breast cancer].

    PubMed

    Guenane, Y; Gorj, M; Nguyen, V; Revol, M; Mazouz-Dorval, S

    2016-12-01

    Axillary sentinel lymph node (SN) biopsy by using indocyanine green (ICG) fluorescence for breast cancer is a recent technique. However, compared to Technetium-99m (Tc), which is the reference technique, its efficiency has received little testing. Between December 2013 and January 2014, 40 patients with node-negative breast cancer underwent SN biopsy by injecting sub areolar Tc in preoperative stage and injecting sub areolar ICG in intraoperative stage. SN were previously identified and resected by using ICG coupled with infrared camera. After resection of fluorescent SN, we check its radioactivity with a gamma probe (isotopic method). In case of residual radioactive labeling in the axillary crease, we remove the remaining SN. We have retrospectively analyzed the SN detection concordance rates of these two methods. In total we resected 53 SN, among which 48 (90.6%) were indocyanine green positive and 53 (100%) Tc positive. The remaining 5 SN were all ICG negative and Tc positive. Using ICG has not caused any side effect. SN detection for breast cancer by using ICG fluorescence is a promising, reliable technique which nonetheless requires a degree of expertise before reaching similar results as the Tc technique. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Calibrating the photo-thermal response of magneto-fluorescent gold nanoshells.

    PubMed

    Biswal, Nrusingh C; Ayala-Orzoco, Ciceron; Halas, Naomi J; Joshi, Amit

    2011-01-01

    We report the photothermal response and Near Infrared (NIR) imaging sensitivities of magneto-fluorescent silica core gold nanocomplexes designed for molecular image guided thermal therapy of cancer. Approximately 160 nm Silica core gold nanoshells were designed to provide NIR fluorescent and Magnetic Resonance (MR) contrast by incorporating FDA approved dye indocyanine green (ICG) and iron-oxide within an outer silica epilayer. The imaging and therapeutic sensitivity, and the stability of fluorescence contrast for 12 microliters of suspension (containing approximately 7.9 × 10(8) or 1.3 femtoMole nanoshells) buried at depths of 2-8 mm in tissue mimicking scattering media is reported.

  3. Real-time Visualization and Quantification of Retrograde Cardioplegia Delivery using Near Infrared Fluorescent Imaging

    PubMed Central

    Rangaraj, Aravind T.; Ghanta, Ravi K.; Umakanthan, Ramanan; Soltesz, Edward G.; Laurence, Rita G.; Fox, John; Cohn, Lawrence H.; Bolman, R. M.; Frangioni, John V.; Chen, Frederick Y.

    2009-01-01

    Background and Aim of the Study Homogeneous delivery of cardioplegia is essential for myocardial protection during cardiac surgery. Presently, there exist no established methods to quantitatively assess cardioplegia distribution intraoperatively and determine when retrograde cardioplegia is required. In this study, we evaluate the feasibility of near infrared (NIR) imaging for real-time visualization of cardioplegia distribution in a porcine model. Methods A portable, intraoperative, real-time NIR imaging system was utilized. NIR fluorescent cardioplegia solution was developed by incorporating indocyanine green (ICG) into crystalloid cardioplegia solution. Real-time NIR imaging was performed while the fluorescent cardioplegia solution was infused via the retrograde route in 5 ex-vivo normal porcine hearts and in 5 ex-vivo porcine hearts status post left anterior descending (LAD) coronary artery ligation. Horizontal cross-sections of the hearts were obtained at proximal, middle, and distal LAD levels. Videodensitometry was performed to quantify distribution of fluorophore content. Results The progressive distribution of cardioplegia was clearly visualized with NIR imaging. Complete visualization of retrograde distribution occurred within 4 minutes of infusion. Videodensitometry revealed that retrograde cardioplegia primarily distributed to the left ventricle and anterior septum. In hearts with LAD ligation, antegrade cardioplegia did not distribute to the anterior left ventricle. This deficiency was compensated for with retrograde cardioplegia supplementation. Conclusions Incorporation of ICG into cardioplegia allows real-time visualization of cardioplegia delivery via NIR imaging. This technology may prove useful in guiding intraoperative decisions pertaining to when retrograde cardioplegia is mandated. PMID:19016995

  4. Thermal damage assessment of blood vessels in a hamster skin flap model by fluorescence measurement of a liposome-dye system.

    PubMed

    Mordon, S; Desmettre, T; Devoisselle, J M; Soulie, S

    1997-01-01

    The present study was undertaken to evaluate the feasibility of thermal damage assessment of blood vessels by using laser-induced release of liposome-encapsulated dye. Experiments were performed in a hamster skin flap model. Laser irradiation was achieved with a 300 microm fiber connected to a 805 nm diode laser (power = 0.8W, spot diameter = 1.3 mm and pulse exposure time lasting from 1 to 6 s) after potentiation using a specific indocyanine green (ICG) formulation (water and oil emulsion). Liposomes-encapsulated carboxyfluorescein were prepared by the sonication procedure. Carboxyfluorescein (5,6-CF) was loaded at high concentration (100 mM) in order to quench its fluorescence. The measurements were performed after i.v. injection of DSPC liposomes (1.5 ml) and lasted 40 min. Fluorescence emission was measured with an ultra high sensitivity intensified camera. Three different shapes of fluorescent spots were identified depending on target (blood vessel or skin) and energy deposition in tissue: (i) intravascular fluorescence, (ii) transient low fluorescence circular spot, and (iii) persistent high intense fluorescence spot. These images are correlated with histological data. Real-time fluorescence imaging seems to be a good tool to estimate in a non-invasive manner the thermal damage induced by a diode laser combined with ICG potentiation.

  5. Assessment of plaque vulnerability in atherosclerosis via intravascular photoacoustic imaging of targeted liposomal ICG J-aggregates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Harris, Justin T.; Dumani, Diego S.; Cook, Jason R.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.; Homan, Kimberly A.

    2017-03-01

    While molecular and cellular imaging can be used to visualize the conventional morphology characteristics of vulnerable plaques, there is a need to monitor other physiological factors correlated with high rupture rates; a high M1 activated macrophage concentration is one such indicator of high plaque vulnerability. Here, we present a molecularly targeted contrast agent for intravascular photoacoustic (IVPA) imaging consisting of liposomes loaded with indocyanine green (ICG) J-aggregates with high absorption at 890 nm, allowing for imaging in the presence of blood. This "Lipo-ICG" was targeted to a biomarker of M1 activated macrophages in vulnerable plaques: folate receptor beta (FRβ). The targeted liposomes accumulate in plaques through areas of endothelial dysfunction, while the liposome encapsulation prevents nonspecific interaction with lipids and endothelium. Lipo-ICG specifically interacts with M1 activated macrophages, causing a spectral shift and change in the 890/780 nm photoacoustic intensity ratio upon breakdown of J-aggregates. This sensing mechanism enables assessment of the M1 activated macrophage concentration, providing a measure of plaque vulnerability. In a pilot in vivo study utilizing ApoE deficient mouse models of atherosclerosis, diseased mice showed increased uptake of FRβ targeted Lipo-ICG in the heart and arteries vs. normal mice. Likewise, targeted Lipo-ICG showed increased uptake vs. two non-targeted controls. Thus, we successfully synthesized a contrast agent to detect M1 activated macrophages in high risk atherosclerotic plaques and exhibited targeting both in vitro and in vivo. This biocompatible agent could enable M1 macrophage detection, allowing better clinical decision making in treatment of atherosclerosis.

  6. A review of performance of near-infrared fluorescence imaging devices used in clinical studies

    PubMed Central

    Zhu, B

    2015-01-01

    Near-infrared fluorescence (NIRF) molecular imaging holds great promise as a new “point-of-care” medical imaging modality that can potentially provide the sensitivity of nuclear medicine techniques, but without the radioactivity that can otherwise place limitations of usage. Recently, NIRF imaging devices of a variety of designs have emerged in the market and in investigational clinical studies using indocyanine green (ICG) as a non-targeting NIRF contrast agent to demark the blood and lymphatic vasculatures both non-invasively and intraoperatively. Approved in the USA since 1956 for intravenous administration, ICG has been more recently used off label in intradermal or subcutaneous administrations for fluorescence imaging of the lymphatic vasculature and lymph nodes. Herein, we summarize the devices of a variety of designs, summarize their performance in lymphatic imaging in a tabular format and comment on necessary efforts to develop standards for device performance to compare and use these emerging devices in future, NIRF molecular imaging studies. PMID:25410320

  7. Indocyanine green (ICG) as a new adjuvant for the antimicrobial photo-dynamic therapy (aPDT) in dentistry

    NASA Astrophysics Data System (ADS)

    Meister, Joerg; Hopp, Michael; Schäfers, Johannes; Verbeek, Jonas; Kraus, Dominik; Frentzen, Matthias

    2014-02-01

    Clinical surveys show a continuous increase of antimicrobial resistance related to the frequency of the administrated medication. The antimicrobial photodynamic therapy (aPDT) is an effective adjuvant to reduce the need of antibiotics in dentistry, especially in periodontics. The antimicrobial effect of lightactivated photosensitizers in periodontics is demonstrated in clinical studies and case reports. Indocyanine green (ICG) as a new adjuvant shows the high potential of antiphlogistic and antimicrobial effects in combination with laser-light activation. In trying to answer the question of just how far the influence of temperature is acting on bacteria, this study was carried out. The influences of ICG at different concentrations (0.01 up to 1 mg/ml) in combination with a culture medium (brain-heart-infusion) and a bacteria culture (Streptococcus salivarius) at different optical densities (OD600 0.5 and 0.1) were investigated under laser-light activation. Laser activation was carried out with diode laser at 810 nm and two different power settings (100 mW/300 mW). The pulse repetition rate was 2 kHz. Taking account of the fiber diameter, distance and spot size on the sample surface, the applicated intensities were 6.2 and 18.7 W/cm2. Total irradiation time was 20 s for all meaurements. Transmitted laser power and temperature increase in the culture medium as well as in the bacteria culture were determined. Additionally the influence of ICG regarding bacterial growth and bactericidal effect was investigated in the bacteria culture without laser irradiation. Without laser, no bactericidal effect of ICG was observed. Only a bacteriostatic effect could be proved. In dependence of the ICG concentration and the applied intensities a temperature increase of ΔT up to 80°C was measured.

  8. Near-Infrared Fluorescence Detection of Acetylcholine in Aqueous Solution Using a Complex of Rhodamine 800 and p-Sulfonato-calix[8]arene

    PubMed Central

    Jin, Takashi

    2010-01-01

    The complexing properties of p-sulfonatocalix[n]arenes (n = 4: S[4], n = 6: S[6], and n = 8: S[8]) for rhodamine 800 (Rh800) and indocyanine green (ICG) were examined to develop a near-infrared (NIR) fluorescence detection method for acetylcholine (ACh). We found that Rh800 (as a cation) forms an inclusion complex with S[n], while ICG (as a twitter ion) have no binding ability for S[n]. The binding ability of Rh800 to S[n] decreased in the order of S[8] > S[6] >> S[4]. By the formation of the complex between Rh800 and S[8], fluorescence intensity of the Rh800 was significantly decreased. From the fluorescence titration of Rh800 by S[8], stoichiometry of the Rh800-S[8] complex was determined to be 1:1 with a dissociation constant of 2.2 μM in PBS. The addition of ACh to the aqueous solution of the Rh800-S[8] complex caused a fluorescence increase of Rh800, resulting from a competitive replacement of Rh800 by ACh in the complex. From the fluorescence change by the competitive fluorophore replacement, stoichiometry of the Rh800-ACh complex was found to be 1:1 with a dissociation constant of 1.7 mM. The effects of other neurotransmitters on the fluorescence spectra of the Rh800-S[8] complex were examined for dopamine, GABA, glycine, and l-asparatic acid. Among the neurotransmitters examined, fluorescence response of the Rh800-S[8] complex was highly specific to ACh. Rh800-S[8] complexes can be used as a NIR fluorescent probe for the detection of ACh (5 × 10−4−10−3 M) in PBS buffer (pH = 7.2). PMID:22294934

  9. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles.

    PubMed

    Zhao, Pengfei; Zheng, Mingbin; Yue, Caixia; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Cai, Lintao

    2014-07-01

    A key challenge to strengthen anti-tumor efficacy is to improve drug accumulation in tumors through size control. To explore the biodistribution and tumor accumulation of nanoparticles, we developed indocyanine green (ICG) loaded poly (lactic-co-glycolic acid) (PLGA) -lecithin-polyethylene glycol (PEG) core-shell nanoparticles (INPs) with 39 nm, 68 nm and 116 nm via single-step nanoprecipitation. These INPs exhibited good monodispersity, excellent fluorescence and size stability, and enhanced temperature response after laser irradiation. Through cell uptake and photothermal efficiency in vitro, we demonstrated that 39 nm INPs were more easily be absorbed by pancreatic carcinoma tumor cells (BxPC-3) and showed better photothermal damage than that of 68 nm and 116 nm size of INPs. Simultaneously, the fluorescence of INPs offered a real-time imaging monitor for subcellular locating and in vivo metabolic distribution. Near-infrared imaging in vivo and photothermal therapy illustrated that 68 nm INPs showed the strongest efficiency to suppress tumor growth due to abundant accumulation in BxPC-3 xenograft tumor model. The findings revealed that a nontoxic, size-dependent, theranostic INPs model was built for in vivo cancer imaging and photothermal therapy without adverse effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  11. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    PubMed Central

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-01-01

    Abstract. There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here. PMID:27533438

  12. Indocyanine Green Fluorescence Endoscopy at Endonasal Transsphenoidal Surgery for an Intracavernous Sinus Dermoid Cyst: Case Report

    PubMed Central

    HIDE, Takuichiro; YANO, Shigetoshi; KURATSU, Jun-ichi

    2014-01-01

    The complete resection of intracavernous sinus dermoid cysts is very difficult due to tumor tissue adherence to important anatomical structures such as the internal carotid artery (ICA), cavernous sinus, and cranial nerves. As residual dermoid cyst tissue sometimes induces symptoms and repeat surgery may be required after cyst recurrence, minimal invasiveness is an important consideration when selecting the surgical approach to the lesion. We addressed a recurrent intracavernous sinus dermoid cyst by the endoscopic endonasal transsphenoidal approach assisted by neuronavigation and indocyanine green (ICG) endoscopy to confirm the ICA and patency of the cavernous sinus. The ICG endoscope detected the fluorescence signal from the ICA and cavernous sinus; its intensity changed with the passage of time. The ICG endoscope was very useful for real-time imaging, and its high spatial resolution facilitated the detection of the ICA and the patent cavernous sinus. We found it to be of great value for successful endonasal transsphenoidal surgery. PMID:25446381

  13. Fluorescence calibration method for single-particle aerosol fluorescence instruments

    NASA Astrophysics Data System (ADS)

    Shipley Robinson, Ellis; Gao, Ru-Shan; Schwarz, Joshua P.; Fahey, David W.; Perring, Anne E.

    2017-05-01

    Real-time, single-particle fluorescence instruments used to detect atmospheric bioaerosol particles are increasingly common, yet no standard fluorescence calibration method exists for this technique. This gap limits the utility of these instruments as quantitative tools and complicates comparisons between different measurement campaigns. To address this need, we have developed a method to produce size-selected particles with a known mass of fluorophore, which we use to calibrate the fluorescence detection of a Wideband Integrated Bioaerosol Sensor (WIBS-4A). We use mixed tryptophan-ammonium sulfate particles to calibrate one detector (FL1; excitation = 280 nm, emission = 310-400 nm) and pure quinine particles to calibrate the other (FL2; excitation = 280 nm, emission = 420-650 nm). The relationship between fluorescence and mass for the mixed tryptophan-ammonium sulfate particles is linear, while that for the pure quinine particles is nonlinear, likely indicating that not all of the quinine mass contributes to the observed fluorescence. Nonetheless, both materials produce a repeatable response between observed fluorescence and particle mass. This procedure allows users to set the detector gains to achieve a known absolute response, calculate the limits of detection for a given instrument, improve the repeatability of the instrumental setup, and facilitate intercomparisons between different instruments. We recommend calibration of single-particle fluorescence instruments using these methods.

  14. A Specific Mapping Study Using Fluorescence Sentinel Lymph Node Detection in Patients with Intermediate- and High-risk Prostate Cancer Undergoing Extended Pelvic Lymph Node Dissection.

    PubMed

    Nguyen, Daniel P; Huber, Philipp M; Metzger, Tobias A; Genitsch, Vera; Schudel, Hans H; Thalmann, George N

    2016-11-01

    Sentinel lymph node (SLN) detection techniques have the potential to change the standard of surgical care for patients with prostate cancer. We performed a lymphatic mapping study and determined the value of fluorescence SLN detection with indocyanine green (ICG) for the detection of lymph node metastases in intermediate- and high-risk patients undergoing radical prostatectomy and extended pelvic lymph node dissection. A total of 42 patients received systematic or specific ICG injections into the prostate base, the midportion, the apex, the left lobe, or the right lobe. We found (1) that external and internal iliac regions encompass the majority of SLNs, (2) that common iliac regions contain up to 22% of all SLNs, (3) that a prostatic lobe can drain into the contralateral group of pelvic lymph nodes, and (4) that the fossa of Marcille also receives significant drainage. Among the 12 patients who received systematic ICG injections, 5 (42%) had a total of 29 lymph node metastases. Of these, 16 nodes were ICG positive, yielding 55% sensitivity. The complex drainage pattern of the prostate and the low sensitivity of ICG for the detection of lymph node metastases reported in our study highlight the difficulties related to the implementation of SNL techniques in prostate cancer. There is controversy about how extensive lymph node dissection (LND) should be during prostatectomy. We investigated the lymphatic drainage of the prostate and whether sentinel node fluorescence techniques would be useful to detect node metastases. We found that the drainage pattern is complex and that the sentinel node technique is not able to replace extended pelvic LND. Copyright © 2016. Published by Elsevier B.V.

  15. Targeting of Pancreatic Cancer with Magneto-Fluorescent Theranostic Gold Nanoshells

    PubMed Central

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C.; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V.; Guha, Sushovan; Pautler, Robia G.; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    Aim We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Materials and Methods Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the NIR dye ICG, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Results AntiNGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2 weighted MR imaging with higher tumor contrast than can be obtained using long-circulating but non-targeted PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. Conclusions Theranostic gold nanoshells with embedded NIR and MR contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy. PMID:24063415

  16. Combined Partial Penectomy With Bilateral Robotic Inguinal Lymphadenectomy Using Near-infrared Fluorescence Guidance.

    PubMed

    Sávio, Luís Felipe; Panizzutti Barboza, Marcelo; Alameddine, Mahmoud; Ahdoot, Michael; Alonzo, David; Ritch, Chad R

    2018-03-01

    To describe our novel technique for performing a combined partial penectomy and bilateral robotic inguinal lymphadenectomy using intraoperative near-infrared (NIR) fluorescence guidance with indocyanine green (ICG) and the DaVinci Firefly camera system. A 58-year-old man presented status post recent excisional biopsy of a 2-cm lesion on the left coronal aspect of the glans penis. Pathology revealed "invasive squamous cell carcinoma of the penis with multifocal positive margins." His examination was suspicious for cT2 primary and his inguinal nodes were cN0. He was counseled to undergo partial penectomy with possible combined vs staged bilateral robotic inguinal lymphadenectomy. Preoperative computed tomography scan was negative for pathologic lymphadenopathy. Before incision, 5 mL of ICG was injected subcutaneously beneath the tumor. Bilateral thigh pockets were then developed simultaneously and a right, then left robotic modified inguinal lymphadenectomy was performed using NIR fluorescence guidance via the DaVinci Firefly camera. A partial penectomy was then performed in the standard fashion. The combined procedure was performed successfully without complication. Total operative time was 379 minutes and total robotic console time was 95 minutes for the right and 58 minutes to the left. Estimated blood loss on the right and left were 15 and 25 mL, respectively. A total of 24 lymph nodes were retrieved. This video demonstrates a safe and feasible approach for combined partial penectomy and bilateral inguinal lymphadenectomy with NIR guidance using ICG and the DaVinci Firefly camera system. The combined robotic approach has minimal morbidity and avoids the need for a staged procedure. Furthermore, use of NIR guidance with ICG during robotic inguinal lymphadenectomy is feasible and may help identify sentinel lymph nodes and improve the quality of dissection. Further studies are needed to confirm the utility of NIR guidance for robotic sentinel lymph node

  17. Real-time visualization and quantification of retrograde cardioplegia delivery using near infrared fluorescent imaging.

    PubMed

    Rangaraj, Aravind T; Ghanta, Ravi K; Umakanthan, Ramanan; Soltesz, Edward G; Laurence, Rita G; Fox, John; Cohn, Lawrence H; Bolman, R M; Frangioni, John V; Chen, Frederick Y

    2008-01-01

    Homogeneous delivery of cardioplegia is essential for myocardial protection during cardiac surgery. Presently, there exist no established methods to quantitatively assess cardioplegia distribution intraoperatively and determine when retrograde cardioplegia is required. In this study, we evaluate the feasibility of near infrared (NIR) imaging for real-time visualization of cardioplegia distribution in a porcine model. A portable, intraoperative, real-time NIR imaging system was utilized. NIR fluorescent cardioplegia solution was developed by incorporating indocyanine green (ICG) into crystalloid cardioplegia solution. Real-time NIR imaging was performed while the fluorescent cardioplegia solution was infused via the retrograde route in five ex vivo normal porcine hearts and in five ex vivo porcine hearts status post left anterior descending (LAD) coronary artery ligation. Horizontal cross-sections of the hearts were obtained at proximal, middle, and distal LAD levels. Videodensitometry was performed to quantify distribution of fluorophore content. The progressive distribution of cardioplegia was clearly visualized with NIR imaging. Complete visualization of retrograde distribution occurred within 4 minutes of infusion. Videodensitometry revealed retrograde cardioplegia, primarily distributed to the left ventricle (LV) and anterior septum. In hearts with LAD ligation, antegrade cardioplegia did not distribute to the anterior LV. This deficiency was compensated for with retrograde cardioplegia supplementation. Incorporation of ICG into cardioplegia allows real-time visualization of cardioplegia delivery via NIR imaging. This technology may prove useful in guiding intraoperative decisions pertaining to when retrograde cardioplegia is mandated.

  18. Indocyanine-green-loaded microballoons for biliary imaging in cholecystectomy

    NASA Astrophysics Data System (ADS)

    Mitra, Kinshuk; Melvin, James; Chang, Shufang; Park, Kyoungjin; Yilmaz, Alper; Melvin, Scott; Xu, Ronald X.

    2012-11-01

    We encapsulate indocyanine green (ICG) in poly[(D,L-lactide-co-glycolide)-co-PEG] diblock (PLGA-PEG) microballoons for real-time fluorescence and hyperspectral imaging of biliary anatomy. ICG-loaded microballoons show superior fluorescence characteristics and slower degradation in comparison with pure ICG. The use of ICG-loaded microballoons in biliary imaging is demonstrated in both biliary-simulating phantoms and an ex vivo tissue model. The biliary-simulating phantoms are prepared by embedding ICG-loaded microballoons in agar gel and imaged by a fluorescence imaging module in a Da Vinci surgical robot. The ex vivo model consists of liver, gallbladder, common bile duct, and part of the duodenum freshly dissected from a domestic swine. After ICG-loaded microballoons are injected into the gallbladder, the biliary structure is imaged by both hyperspectral and fluorescence imaging modalities. Advanced spectral analysis and image processing algorithms are developed to classify the tissue types and identify the biliary anatomy. While fluorescence imaging provides dynamic information of movement and flow in the surgical region of interest, data from hyperspectral imaging allow for rapid identification of the bile duct and safe exclusion of any contaminant fluorescence from tissue not part of the biliary anatomy. Our experiments demonstrate the technical feasibility of using ICG-loaded microballoons for biliary imaging in cholecystectomy.

  19. Retrospective validation of the laparoscopic ICG SLN mapping in patients with grade 3 endometrial cancer.

    PubMed

    Papadia, Andrea; Gasparri, Maria Luisa; Radan, Anda P; Stämpfli, Chantal A L; Rau, Tilman T; Mueller, Michael D

    2018-04-24

    To evaluate the sensitivity, negative predictive value (NPV) and false-negative (FN) rate of the near infrared (NIR) indocyanine green (ICG) sentinel lymph node (SLN) mapping in patients with poorly differentiated endometrial cancer who have undergone a full pelvic and para-aortic lymphadenectomy after SLN mapping. We performed a retrospective analysis of patients with endometrial cancer undergoing a laparoscopic NIR-ICG SLN mapping followed by a systematic pelvic and para-aortic lymphadenectomy. Inclusion criteria were a grade 3 endometrial cancer or a high-risk histology (papillary serous, clear cell carcinoma, carcinosarcoma, and neuroendocrine carcinoma) and a completion pelvic and para-aortic lymphadenectomy to the renal vessels after SLN mapping. Overall and bilateral detection rates, sensitivity, NPV, and FN rates were calculated. From December 2012 until January 2017, 42 patients fulfilled inclusion criteria. Overall and bilateral detection rates were 100 and 90.5%, respectively. Overall, 23.8% of the patients had lymph node metastases. In one patient, despite negative bilateral pelvic SLNs, a metastatic non-SLN-isolated para-aortic metastasis was detected. This NSLN was clinically suspicious and sent to frozen section analysis during the surgery. FN rate, sensitivity, and NPV were 10, 90, and 97.1%, respectively. For the SLN mapping algorithm, FN rate, sensitivity, and NPV were 0, 100, and 100%, respectively. Laparoscopic NIR-ICG SLN mapping in high-risk endometrial cancer patients has acceptable sensitivity, FN rate, and NPV.

  20. Near infrared lymphatic imaging demonstrates the dynamics of lymph flow and lymphangiogenesis during the acute vs. chronic phases of arthritis in mice

    PubMed Central

    Zhou, Quan; Wood, Ronald; Schwarz, Edward M.; Wang, Yong-Jun; Xing, Lianping

    2010-01-01

    Objective Development of an in vivo imaging method to assess lymphatic draining function in the K/B×N mouse model of inflammatory arthritis. Methods Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye, was injected intradermally into the footpad of wild-type mice, the limb was illuminated with an 806 nm NIR laser, and the movement of ICG from the injection site to the draining popliteal lymph node (PLN) was recorded with a CCD camera. ICG-NIR images were analyzed to obtain 5 measures of lymphatic function across time. K/B×N arthritic mice and control non-arthritic littermates were imaged at one-month of age when acute joint inflammation commenced, and repeated at 3 months when joint inflammation became chronic. Lymphangiogenesis in PLNs was assessed by immunochemistry. Results ICG and its transport within lymphatic vessels were readily visualized and quantitative measures derived. During the acute phase of arthritis, the lymphatic vessels were dilated with increased ICG signal intensity and lymphatic pulses, and PLNs became fluorescent quickly. During the chronic phase, new lymphatic vessels were present near the foot. However, ICG appearance in lymphatic vessels was delayed. The size and area of PLN lymphatic sinuses progressively increased in the K/B×N mice. Conclusion ICG-NIR lymphatic imaging is a valuable method to assess the lymphatic draining function in mice with inflammatory arthritis. ICG-NIR imaging of K/B×N mice identified two distinct lymphatic phenotypes during the acute and chronic phase of inflammation. This technique can be used to assess new therapies for lymphatic disorders. PMID:20309866

  1. Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience

    PubMed Central

    Verbeek, Floris P.R.; Troyan, Susan L.; Mieog, J. Sven D.; Liefers, Gerrit-Jan; Moffitt, Lorissa A.; Rosenberg, Mireille; Hirshfield-Bartek, Judith; Gioux, Sylvain; van de Velde, Cornelis J.H.; Vahrmeijer, Alexander L.; Frangioni, John V.

    2014-01-01

    NIR fluorescence imaging using indocyanine green (ICG) has the potential to improve the SLN procedure by facilitating percutaneous and intraoperative identification of lymphatic channels and SLNs. Previous studies suggested that a dose of 0.62 mg (1.6 ml of 0.5 mM) ICG is optimal for SLN mapping in breast cancer. The aim of this study was to evaluate the diagnostic accuracy of near-infrared (NIR) fluorescence for sentinel lymph node (SLN) mapping in breast cancer patients when used in conjunction with conventional techniques. Study subjects were 95 breast cancer patients planning to undergo SLN procedure at either the Dana-Farber/Harvard Cancer Center (Boston, MA, USA) or the Leiden University Medical Center (Leiden, the Netherlands) between July 2010 and January 2013. Subjects underwent the standard-of-care SLN procedure at each institution using 99Technetium-colloid in all subjects and patent blue in 27 (28%) of the subjects. NIR fluorescence-guided SLN detection was performed using the Mini-FLARE imaging system. SLN identification was successful in 94 of 95 subjects (99%) using NIR fluorescence imaging or a combination of both NIR fluorescence imaging and radioactive guidance. In 2 of 95 subjects, radioactive guidance was necessary for initial in vivo identification of SLNs. In 1 of 95 subjects, NIR fluorescence was necessary for initial in vivo identification of SLNs. A total of 177 SLNs (mean = 1.9, range = 1–5) were resected: 100% NIR fluorescent, 88% radioactive, and 78% (of 40 nodes) blue. In 2 of 95 subjects (2.1%), SLNs containing macrometastases were found only by NIR fluorescence, and in 1 patient this led to upstaging to N1. This study demonstrates the safe and accurate application of NIR fluorescence imaging for the identification of SLNs in breast cancer patients, but calls into question what technique should be used as the gold standard in future studies. PMID:24337507

  2. Co-registered photoacoustic and fluorescent imaging of a switchable nanoprobe based on J-aggregates of indocyanine green

    NASA Astrophysics Data System (ADS)

    Dumani, Diego S.; Brecht, Hans-Peter; Ivanov, Vassili; Deschner, Ryan; Harris, Justin T.; Homan, Kimberly A.; Cook, Jason R.; Emelianov, Stanislav Y.; Ermilov, Sergey A.

    2018-02-01

    We introduce a preclinical imaging platform - a 3D photoacoustic/fluorescence tomography (PAFT) instrument augmented with an environmentally responsive dual-contrast biocompatible nanoprobe. The PAFT instrument was designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct co-registration of the two imaging modalities. The nanoprobe was based on liposomes loaded with J-aggregates of indocyanine green (PAtrace). Once PAtrace interacts with the environment, a transition from J-aggregate to monomeric ICG is induced. The subsequent recovery of monomeric ICG is characterized by dramatic changes in the optical absorption spectrum and reinstated fluorescence. In the activated state, PAtrace can be simultaneously detected by both imaging modes of the PAFT instrument using 780 nm excitation and fluorescence detection at 810 nm. The fluorescence imaging component is used to boost detection sensitivity by providing lowresolution map of activated nanoprobes, which are then more precisely mapped in 3D by the photoacoustic imaging component. Activated vs non-activated particles can be distinguished based on their different optical absorption peaks, removing the requirements for complex image registration between reference and detection scans. Preliminary phantom and in vivo animal imaging results showed successful activation and visualization of PAtrace with high sensitivity and resolution. The proposed PAFT-PAtrace imaging platform could be used in various functional and molecular imaging applications including multi-point in vivo assessment of early metastasis.

  3. Development of thermosensitive chitosan/glicerophospate injectable in situ gelling solutions for potential application in intraoperative fluorescence imaging and local therapy of hepatocellular carcinoma: a preliminary study.

    PubMed

    Salis, Andrea; Rassu, Giovanna; Budai-Szűcs, Maria; Benzoni, Ilaria; Csányi, Erzsébet; Berkó, Szilvia; Maestri, Marcello; Dionigi, Paolo; Porcu, Elena P; Gavini, Elisabetta; Giunchedi, Paolo

    2015-01-01

    Thermosensitive chitosan/glycerophosphate (C/GP) solutions exhibiting sol-gel transition around body temperature were prepared to develop a class of injectable hydrogel platforms for the imaging and loco-regional treatment of hepatocellular carcinoma (HCC). Indocyanine green (ICG) was loaded in the thermosensitive solutions in order to assess their potential for the detection of tumor nodules by fluorescence. The gel formation of these formulations as well as their gelling time, injectability, compactness and resistance of gel structure, gelling temperature, storage conditions, biodegradability, and in vitro dye release behavior were investigated. Ex vivo studies were carried out for preliminary evaluation using an isolated bovine liver. Gel strengths and gelation rates increased with the cross-link density between C and GP. These behaviors are more evident for C/GP solutions, which displayed a gel-like precipitation at 4°C. Furthermore, formulations with the lowest cross-link density between C and GP exhibited the best injectability due to a lower resistance to flow. The loading of the dye did not influence the gelation rate. ICG was not released from the hydrogels because of a strong electrostatic interaction between C and ICG. Ex vivo preliminary studies revealed that these injectable formulations remain in correspondence of the injected site. The developed ICG-loaded hydrogels have the potential for intraoperative fluorescence imaging and local therapy of HCC as embolic agents. They form in situ compact gels and have a good potential for filling vessels and/or body cavities.

  4. Visualized Evaluation of Blood Flow to the Gastric Conduit and Complications in Esophageal Reconstruction.

    PubMed

    Noma, Kazuhiro; Shirakawa, Yasuhiro; Kanaya, Nobuhiko; Okada, Tsuyoshi; Maeda, Naoaki; Ninomiya, Takayuki; Tanabe, Shunsuke; Sakurama, Kazufumi; Fujiwara, Toshiyoshi

    2018-03-01

    Evaluation of the blood supply to gastric conduits is critically important to avoid complications after esophagectomy. We began visual evaluation of blood flow using indocyanine green (ICG) fluorescent imaging in July 2015, to reduce reconstructive complications. In this study, we aimed to statistically verify the efficacy of blood flow evaluation using our simplified ICG method. A total of 285 consecutive patients who underwent esophagectomy and gastric conduit reconstruction were reviewed and divided into 2 groups: before and after introduction of ICG evaluation. The entire cohort and 68 patient pairs after propensity score matching (PS-M) were evaluated for clinical outcomes and the effect of visualized evaluation on reducing the risk of complication. The leakage rate in the ICG group was significantly lower than in the non-ICG group for each severity grade, both in the entire cohort (285 subjects) and after PS-M; the rates of other major complications, including recurrent laryngeal nerve palsy and pneumonia, were not different. The duration of postoperative ICU stay was approximately 1 day shorter in the ICG group than in the non-ICG group in the entire cohort, and approximately 2 days shorter after PS-M. Visualized evaluation of blood flow with ICG methods significantly reduced the rate of anastomotic complications of all Clavien-Dindo (CD) grades. Odds ratios for ICG evaluation decreased with CD grade (0.3419 for CD ≥ 1; 0.241 for CD ≥ 2; and 0.2153 for CD ≥ 3). Objective evaluation of blood supply to the reconstructed conduit using ICG fluorescent imaging reduces the risk and degree of anastomotic complication. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Indocyanine green fluorescence-navigated thoracoscopic anatomical segmentectomy

    PubMed Central

    Okumura, Sakae; Nakao, Masayuki; Matsuura, Yosuke; Nakagawa, Ken

    2017-01-01

    Background To evaluate the feasibility and efficacy of thoracoscopic anatomical segmentectomy (TS-S) using three-dimensional computed tomography (3D-CT) reconstruction and indocyanine green-fluorescence (ICGF) navigation. Methods Twenty TS-S procedures were performed for 15 primary lung cancers and 5 metastatic lung tumors. Preoperatively we evaluated the target segmental pulmonary artery and created a virtual intersegmental plane using 3D-CT reconstruction. Intraoperatively, the target segmental artery and bronchus were divided, and after intravenous systemic injection of indocyanine green (ICG, 0.25 mg/kg), ICGF of the non-target segments (NTS) was observed using infrared thoracoscopy (KARL STORZ Endoskope Japan K.K., Tokyo, Japan). We marked the border between target and NTS with electrocautery and divided the lung parenchyma along this border using electrocautery or staples. Strength of contrast between target and NTS was quantified as contrast index (CI) and compared over time. Results ICGF provided demarcation of sufficient clarity and duration to mark the lung surface in 19 patients (95%). TS-S was successfully performed in all patients. Mean operative duration was 186 min (90–310 min) and mean blood loss was 30 mL (0–107 mL). Demarcation appeared 20 s (10–100 s) after injection of ICG, and ICGF lasted 180 s (90–300 s). CI peaked 30 s after the appearance of ICGF and decreased over time. Effective contrast continued for 70 s (30–116 s), which was sufficient to mark the line of demarcation. There were no complications attributable to this method. Conclusions ICGF navigation is a safe and effective technique for TS-S. PMID:29078643

  6. Clinically compatible flexible wide-field multi-color fluorescence endoscopy with a porcine colon model

    PubMed Central

    Oh, Gyugnseok; Park, Youngrong; Yoo, Su Woong; Hwang, Soonjoo; Chin-Yu, Alexey V. Dan; Ryu, Yeon-Mi; Kim, Sang-Yeob; Do, Eun-Ju; Kim, Ki Hean; Kim, Sungjee; Myung, Seung-Jae; Chung, Euiheon

    2017-01-01

    Early detection of structural or molecular changes in dysplastic epithelial tissues is crucial for cancer screening and surveillance. Multi-targeting molecular endoscopic fluorescence imaging may improve noninvasive detection of precancerous lesions in the colon. Here, we report the first clinically compatible, wide-field-of-view, multi-color fluorescence endoscopy with a leached fiber bundle scope using a porcine model. A porcine colon model that resembles the human colon is used for the detection of surrogate tumors composed of multiple biocompatible fluorophores (FITC, ICG, and heavy metal-free quantum dots (hfQDs)). With an ex vivo porcine colon tumor model, molecular imaging with hfQDs conjugated with MMP14 antibody was achieved by spraying molecular probes on a mucosa layer that contains xenograft tumors. With an in vivo porcine colon embedded with surrogate tumors, target-to-background ratios of 3.36 ± 0.43, 2.70 ± 0.72, and 2.10 ± 0.13 were achieved for FITC, ICG, and hfQD probes, respectively. This promising endoscopic technology with molecular contrast shows the capacity to reveal hidden tumors and guide treatment strategy decisions. PMID:28270983

  7. Photoacoustic Tomography of Human Hepatic Malignancies Using Intraoperative Indocyanine Green Fluorescence Imaging

    PubMed Central

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed

  8. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    PubMed

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed

  9. The hyper-fluorescent transitional bands in ultra-late phase of indocyanine green angiography in chronic central serous chorioretinopathy.

    PubMed

    Hua, Rui; Yao, Kai; Xia, Fan; Li, Jun; Guo, Lei; Yang, Guoxing; Tao, Jun

    2016-03-01

    Chronic central serous chorioretinopathy (CSCR) is regarded as a type of severe diffuse retinal pigment epitheliopathy. There is an atrophic tract at level of retinal pigment epithelium (RPE) due to hyper-permeability of choroidal vessels, along with photoreceptor (PR) atrophy. Indocyanine green angiography (ICGA) is considered a gold standard for diagnosis. The purpose of this work is to investigate the hyper-fluorescent transitional bands (HFTB) between hypo-fluorescent and normal regions of the retina in the ultra-late phase of ICGA in CSCR. 26 chronic CSCR eyes and 12 relative normal eyes received spectral domain optical coherence tomography (SD-OCT), and ICGA at the 24th hour after indocyanine green (ICG) intravenous injection. In the ultra-late phase, images showed homogenous fluorescence in all normal eyes. On the contrary, geographical hypofluorescent lesions with atrophy of RPE was noted in 26 chronic CSCR eyes. Moreover, HFTB with intact RPE and disrupted PR was detected in 20 out of 26 chronic CSCR eyes (76.9%). The HFTB may indicate the early damage in chronic CSCR. Ultra-late ICGA can monitor not only metabolic status by endogenous melanin, but also membrane function in RPE by exogenous ICG molecule. © 2015 Wiley Periodicals, Inc.

  10. A Classic Near-Infrared Probe Indocyanine Green for Detecting Singlet Oxygen.

    PubMed

    Tang, Cheng-Yi; Wu, Feng-Yao; Yang, Min-Kai; Guo, Yu-Min; Lu, Gui-Hua; Yang, Yong-Hua

    2016-02-06

    The revelation of mechanisms of photodynamic therapy (PDT) at the cellular level as well as singlet oxygen (¹O₂) as a second messengers requires the quantification of intracellular ¹O₂. To detect singlet oxygen, directly measuring the phosphorescence emitted from ¹O₂ at 1270 nm is simple but limited for the low quantum yield and intrinsic efficiency of ¹O₂ emission. Another method is chemically trapping ¹O₂ and measuring fluorescence, absorption and Electron Spin Resonance (ESR). In this paper, we used indocyanine green (ICG), the only near-infrared (NIR) probe approved by the Food and Drug Administration (FDA), to detect ¹O₂ in vitro. Once it reacts with ¹O₂, ICG is decomposed and its UV absorption at 780 nm decreases with the laser irradiation. Our data demonstrated that ICG could be more sensitive and accurate than Singlet Oxygen Sensor Green reagent(®) (SOSG, a commercialized fluorescence probe) in vitro, moreover, ICG functioned with Eosin Y while SOSG failed. Thus, ICG would reasonably provide the possibility to sense ¹O₂ in vitro, with high sensitivity, selectivity and suitability to most photosensitizers.

  11. Correlation fluorescence method of amine detection

    NASA Astrophysics Data System (ADS)

    Myslitsky, Valentin F.; Tkachuk, Svetlana S.; Rudeichuk, Volodimir M.; Strinadko, Miroslav T.; Slyotov, Mikhail M.; Strinadko, Marina M.

    1997-12-01

    The amines fluorescence spectra stimulated by UV laser radiation are investigated in this paper. The fluorescence is stimulated by the coherent laser beam with the wavelength 0.337 micrometers . At the sufficient energy of laser stimulation the narrow peaks of the fluorescence spectra are detected besides the wide maximum. The relationship between the fluorescence intensity and the concentration of amines solutions are investigated. The fluorescence intensity temporal dependence on wavelength 0.363 micrometers of the norepinephrine solution preliminarily radiated by UV laser with wavelength 0.337 micrometers was found. The computer stimulated and experimental investigations of adrenaline and norepinephrine mixtures fluorescence spectra were done. The correlation fluorescent method of amines detection is proposed.

  12. Enhanced visualization of the bile duct via parallel white light and indocyanine green fluorescence laparoscopic imaging

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Urayama, Shiro

    2014-03-01

    Despite best efforts, bile duct injury during laparoscopic cholecystectomy is a major potential complication. Precise detection method of extrahepatic bile duct during laparoscopic procedures would minimize the risk of injury. Towards this goal, we have developed a compact imaging instrumentation designed to enable simultaneous acquisition of conventional white color and NIR fluorescence endoscopic/laparoscopic imaging using ICG as contrast agent. The capabilities of this system, which offers optimized sensitivity and functionality, are demonstrated for the detection of the bile duct in an animal model. This design could also provide a low-cost real-time surgical navigation capability to enhance the efficacy of a variety of other image-guided minimally invasive procedures.

  13. Lipidots: competitive organic alternative to quantum dots for in vivo fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Gravier, Julien; Navarro, Fabrice P.; Delmas, Thomas; Mittler, Frédérique; Couffin, Anne-Claude; Vinet, Françoise; Texier, Isabelle

    2011-09-01

    The use of fluorescent nanostructures can bring several benefits on the signal to background ratio for in vitro microscopy, in vivo small animal imaging, and image-guided surgery. Fluorescent quantum dots (QDs) display outstanding optical properties, with high brightness and low photobleaching rate. However, because of their toxic element core composition and their potential long term retention in reticulo-endothelial organs such as liver, their in vivo human applications seem compromised. The development of new dye-loaded (DiO, DiI, DiD, DiR, and Indocyanine Green (ICG)) lipid nanoparticles for fluorescence imaging (lipidots) is described here. Lipidot optical properties quantitatively compete with those of commercial QDs (QTracker®705). Multichannel in vivo imaging of lymph nodes in mice is demonstrated for doses as low as 2 pmols of particles. Along with their optical properties, fluorescent lipidots display very low cytotoxicity (IC50 > 75 nM), which make them suitable tools for in vitro, and especially in vivo, fluorescence imaging applications.

  14. Feasibility of real‐time near‐infrared indocyanine green fluorescence endoscopy for the evaluation of mucosal head and neck lesions

    PubMed Central

    Schmidt, Florian; Dittberner, Andreas; Koscielny, Sven; Petersen, Iver

    2016-01-01

    Abstract Background The purpose of this study was to explore the feasibility and potential drawbacks of near‐infrared (NIR) endoscopy with indocyanine green (ICG) to examine mucosal head and neck lesions. Methods NIR ICG endoscopy was applied to image head and neck cancer epithelium in vivo. The evaluation of the ICG videos was performed off‐line independently by 2 evaluators and blinded with respect to final histopathological results from biopsies taken as the gold standard. Results Forty percent of the lesions from 55 patients were histologically malignant. ICG positivity showed a sensitivity, specificity, and accuracy to be related to a malignant tumor of 90.5%, 90.9%, and 89.1%, respectively. The kappa index for the interobserver assessment showed a 94.4% agreement for the assessment of the ICG positivity. Side effects of the NIR ICG endoscopy did not arise. Conclusion NIR ICG endoscopy in patients with mucosal head and neck lesions was feasible and safe. It might help intraoperatively to differentiate benign from malignant lesions. © 2016 Wiley Periodicals, Inc. Head Neck 39: 234–240, 2017 PMID:27590351

  15. Inhibition of canonical WNT signaling pathway by β-catenin/CBP inhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12.

    PubMed

    Akcora, Büsra Öztürk; Storm, Gert; Bansal, Ruchi

    2018-03-01

    Quiescent hepatic stellate cells (HSCs), in response to liver injury, undergo characteristic morphological transformation into proliferative, contractile and ECM-producing myofibroblasts. In this study, we investigated the implication of canonical Wnt signaling pathway in HSCs and liver fibrogenesis. Canonical Wnt signaling pathway activation and inhibition using β-catenin/CBP inhibitor ICG001 was examined in-vitro in TGFβ-activated 3T3, LX2, primary human HSCs, and in-vivo in CCl 4 -induced acute liver injury mouse model. Fibroblasts-conditioned medium studies were performed to assess the Wnt-regulated paracrine factors involved in crosstalk between HSCs-macrophages and HSCs-endothelial cells. Canonical Wnt signaling pathway components were significantly up-regulated in-vitro and in-vivo. In-vitro, ICG-001 significantly inhibited fibrotic parameters, 3D-collagen contractility and wound healing. Conditioned medium induced fibroblasts-mediated macrophage and endothelial cells activation was significantly inhibited by ICG-001. In-vivo, ICG-001 significantly attenuated collagen accumulation and HSC activation. Interestingly, ICG-001 drastically inhibited macrophage infiltration, intrahepatic inflammation and angiogenesis. We further analyzed the paracrine factors involved in Wnt-mediated effects and found CXCL12 was significantly suppressed both in-vitro and in-vivo following Wnt inhibition. Wnt-regulated CXCL12 secretion from activated HSCs potentiated macrophage infiltration and activation, and angiogenesis. Pharmacological inhibition of canonical Wnt signaling pathway via suppression of stromal CXCL12 suggests a potential therapeutic approach targeting activated HSCs in liver fibrosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy

    PubMed Central

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-01-01

    Purpose The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. Methods A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. Results The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Conclusions Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells. PMID:27564519

  17. Near infrared spatial frequency domain fluorescence imaging of tumor phantoms containing erythrocyte-derived optical nanoplatforms

    NASA Astrophysics Data System (ADS)

    Burns, Joshua M.; Schaefer, Elise; Anvari, Bahman

    2018-02-01

    Light-activated theranostic constructs provide a multi-functional platform for optical imaging and phototherapeutic applications. Our group has engineered nano-sized vesicles derived from erythrocytes that encapsulate the FDAapproved near infrared (NIR) absorber indocyanine green (ICG). We refer to these constructs as NIR erythrocytemimicking transducers (NETs). Once photo-excited by NIR light these constructs can transduce the photons energy to emit fluorescence, generate heat, or induce chemical reactions. In this study, we investigated fluorescence imaging of NETs embedded within tumor phantoms using spatial frequency domain imaging (SFDI). Using SFDI, we were able to fluorescently image simulated tumors doped with different concentration of NETs. These preliminary results suggest that NETs can be used in conjunction with SFDI for potential tumor imaging applications.

  18. Immunotargeting of Integrin α6β4 for Single-Photon Emission Computed Tomography and Near-Infrared Fluorescence Imaging in a Pancreatic Cancer Model

    PubMed Central

    Tsuji, Atsushi B.; Sudo, Hitomi; Sugyo, Aya; Furukawa, Takako; Ukai, Yoshinori; Kurosawa, Yoshikazu; Saga, Tsuneo

    2016-01-01

    To explore suitable imaging probes for early and specific detection of pancreatic cancer, we demonstrated that α6β4 integrin is a good target and employed single-photon emission computed tomography (SPECT) or near-infrared (NIR) imaging for immunotargeting. Expression levels of α6β4 were examined by Western blotting and flow cytometry in certain human pancreatic cancer cell lines. The human cell line BxPC-3 was used for α6β4-positive and a mouse cell line, A4, was used for negative counterpart. We labeled antibody against α6β4 with Indium-111 (111In) or indocyanine green (ICG). After injection of 111In-labeled probe to tumor-bearing mice, biodistribution, SPECT, autoradiography (ARG), and immunohistochemical (IHC) studies were conducted. After administration of ICG-labeled probe, in vivo and ex vivo NIR imaging and fluorescence microscopy of tumors were performed. BxPC-3 tumor showed a higher radioligand binding in SPECT and higher fluorescence intensity as well as a delay in the probe washout in NIR imaging when compared to A4 tumor. The biodistribution profile of 111In-labeled probe, ARG, and IHC confirmed the α6β4 specific binding of the probe. Here, we propose that α6β4 is a desirable target for the diagnosis of pancreatic cancer and that it could be detected by radionuclide imaging and NIR imaging using a radiolabeled or ICG-labeled α6β4 antibody. PMID:27030400

  19. Welcome to Methods and Applications in Fluorescence

    NASA Astrophysics Data System (ADS)

    Birch, David; Mély, Yves; Wolfbeis, Otto S.

    2013-03-01

    On behalf of the Editorial Board of Methods and Applications in Fluorescence and IOP Publishing we are delighted to invite you to read the first articles in our new journal. Methods and Applications in Fluorescence is forged out of the renowned MAF conference series of the same name and we fully expect the natural synergy between the two to provide the ideal platform for moving the field of fluorescence forward. Our aim is for this new journal to reflect the truly global and diverse impact fluorescence is having across many disciplines and help fluorescence achieve its full potential. Just as MAF is the leading conference in fluorescence we are confident of the high impact of this new journal. Methods and Applications in Fluorescence has a distinguished Editorial Board that is drawn from the MAF conference Permanent Steering Committee. Together with the Editorial Board and the rest of the community, the journal will closely track the very latest developments in fluorescence while delivering a fair and constructive review process. We are very pleased that this journal is backed by the Institute of Physics, one of the world's premier learned societies. IOP Publishing has a wealth of experience in science publishing that dates back to 1874. It is a not-for-profit organization that publishes over 60 journals, many on multidisciplinary topics and many including seminal contributions from Nobel Laureates. Any funding surplus generated by IOP Publishing goes directly back into science through the Institute of Physics, thus helping to nurture science for future generations. We invite submissions as regular articles, review articles and technical notes within the scope of the journal, which includes all the major aspects of fluorescence. This covers both theory and experiment across spectroscopy, imaging, materials, labels, probes and sensors. The applications of fluorescence to emerging areas in bionanotechnology, nanotechnology and medicine are very much part of the

  20. Welcome to Methods and Applications in Fluorescence.

    PubMed

    Birch, David; Mély, Yves; Wolfbeis, Otto S

    2013-01-28

    On behalf of the Editorial Board of Methods and Applications in Fluorescence and IOP Publishing we are delighted to invite you to read the first articles in our new journal. Methods and Applications in Fluorescence is forged out of the renowned MAF conference series of the same name and we fully expect the natural synergy between the two to provide the ideal platform for moving the field of fluorescence forward. Our aim is for this new journal to reflect the truly global and diverse impact fluorescence is having across many disciplines and help fluorescence achieve its full potential. Just as MAF is the leading conference in fluorescence we are confident of the high impact of this new journal. Methods and Applications in Fluorescence has a distinguished Editorial Board that is drawn from the MAF conference Permanent Steering Committee. Together with the Editorial Board and the rest of the community, the journal will closely track the very latest developments in fluorescence while delivering a fair and constructive review process. We are very pleased that this journal is backed by the Institute of Physics, one of the world's premier learned societies. IOP Publishing has a wealth of experience in science publishing that dates back to 1874. It is a not-for-profit organization that publishes over 60 journals, many on multidisciplinary topics and many including seminal contributions from Nobel Laureates. Any funding surplus generated by IOP Publishing goes directly back into science through the Institute of Physics, thus helping to nurture science for future generations. We invite submissions as regular articles, review articles and technical notes within the scope of the journal, which includes all the major aspects of fluorescence. This covers both theory and experiment across spectroscopy, imaging, materials, labels, probes and sensors. The applications of fluorescence to emerging areas in bionanotechnology, nanotechnology and medicine are very much part of the

  1. Quantitative Primary Tumor Indocyanine Green Measurements Predict Osteosarcoma Metastatic Lung Burden in a Mouse Model.

    PubMed

    Fourman, Mitchell S; Mahjoub, Adel; Mandell, Jon B; Yu, Shibing; Tebbets, Jessica C; Crasto, Jared A; Alexander, Peter E; Weiss, Kurt R

    2018-03-01

    Current preclinical osteosarcoma (OS) models largely focus on quantifying primary tumor burden. However, most fatalities from OS are caused by metastatic disease. The quantification of metastatic OS currently relies on CT, which is limited by motion artifact, requires intravenous contrast, and can be technically demanding in the preclinical setting. We describe the ability for indocyanine green (ICG) fluorescence angiography to quantify primary and metastatic OS in a previously validated orthotopic, immunocompetent mouse model. (1) Can near-infrared ICG fluorescence be used to attach a comparable, quantitative value to the primary OS tumor in our experimental mouse model? (2) Will primary tumor fluorescence differ in mice that go on to develop metastatic lung disease? (3) Does primary tumor fluorescence correlate with tumor volume measured with CT? Six groups of 4- to 6-week-old immunocompetent Balb/c mice (n = 6 per group) received paraphyseal injections into their left hindlimb proximal tibia consisting of variable numbers of K7M2 mouse OS cells. A hindlimb transfemoral amputation was performed 4 weeks after injection with euthanasia and lung extraction performed 10 weeks after injection. Histologic examination of lung and primary tumor specimens confirmed ICG localization only within the tumor bed. Mice with visible or palpable tumor growth had greater hindlimb fluorescence (3.5 ± 2.3 arbitrary perfusion units [APU], defined as the fluorescence pixel return normalized by the detector) compared with those with a negative examination (0.71 ± 0.38 APU, -2.7 ± 0.5 mean difference, 95% confidence interval -3.7 to -1.8, p < 0.001). A strong linear trend (r = 0.81, p < 0.01) was observed between primary tumor and lung fluorescence, suggesting that quantitative ICG tumor fluorescence is directly related to eventual metastatic burden. We did not find a correlation (r = 0.04, p = 0.45) between normalized primary tumor fluorescence and CT volumetric measurements. We

  2. Treatment of Near-Infrared Photodynamic Therapy Using a Liposomally Formulated Indocyanine Green Derivative for Squamous Cell Carcinoma

    PubMed Central

    Maruyama, Tetsuro; Akutsu, Yasunori; Suganami, Akiko; Tamura, Yutaka; Fujito, Hiromichi; Ouchi, Tomoki; Akanuma, Naoki; Isozaki, Yuka; Takeshita, Nobuyoshi; Hoshino, Isamu; Uesato, Masaya; Toyota, Taro; Hayashi, Hideki; Matsubara, Hisahiro

    2015-01-01

    Introduction Photodynamic therapy (PDT) is a less invasive option for cancer treatment that has evolved through recent developments in nanotechnology. We have designed and synthesized a novel liposome system that includes an indocyanine green (ICG) derivative, ICG-C18, in its bilayer. In addition to its use as an optical imager to visualize blood, lymphatic, and bile flow, ICG has also been used as an optical sensitizer. In the present report, we evaluate the use of our novel liposome system, LP-ICG-C18, in PDT for squamous cell carcinoma in an autologous murine model. Materials and Methods An excitation pulse beam (300 μJ/pulse) of a single band (800 nm) was used for sensitization. The cytotoxicity of the photodynamic therapy was evaluated in terms of cellular morphology changes, methyl thiazolyl tetrazolium (MTT) assay results, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining. We tested the enhanced permeability and retention effect of LP-ICG-C18 in tumor-bearing C3H/He mice using a near-infrared fluorescence imaging system and fluorescence microscopy. We also examined the antitumor effect of PDT by measuring tumor volume in tumor-bearing mice. Results Cell death and apoptosis were only observed in the PDT group receiving LP-ICG-C18. LP-ICG-C18 itself had no cytotoxic activity and showed good biocompatibility. LP-ICG-C18 accumulated on the tumor 24 hours after injection and was retained for approximately 3 weeks. Tumor cell apoptosis following PDT with LP-ICG-C18 was also observed under optical microscopy, MTT assay, and TUNEL staining. Conclusion These findings suggest that LP-ICG-C18 may be an effective intervening material in PDT for malignant disease. PMID:25850029

  3. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy.

    PubMed

    Liu, Yanlei; Zhi, Xiao; Yang, Meng; Zhang, Jingpu; Lin, Lingnan; Zhao, Xin; Hou, Wenxiu; Zhang, Chunlei; Zhang, Qian; Pan, Fei; Alfranca, Gabriel; Yang, Yuming; de la Fuente, Jesús M; Ni, Jian; Cui, Daxiang

    2017-01-01

    Different stimulus including pH, light and temperature have been used for controlled drug release to prevent drug inactivation and minimize side-effects. Herein a novel nano-platform (GNS@CaCO 3 /ICG) consisting of calcium carbonate-encapsulated gold nanostars loaded with ICG was established to couple the photothermal properties of gold nanostars (GNSs) and the photodynamic properties of indocyanine green (ICG) in the photodynamic/photothermal combination therapy (PDT/PTT). In this study, the calcium carbonate worked not only a drug keeper to entrap ICG on the surface of GNSs in the form of a stable aggregate which was protected from blood clearance, but also as the a pH-responder to achieve highly effective tumor-triggered drug release locally. The application of GNS@CaCO 3 /ICG for in vitro and in vivo therapy achieved the combined antitumor effects upon the NIR irradiation, which was superior to the single PDT or PTT. Meanwhile, the distinct pH-triggered drug release performance of GNS@CaCO 3 /ICG implemented the tumor-targeted NIR fluorescence imaging. In addition, we monitored the bio-distribution and excretion pathway of GNS@CaCO 3 /ICG based on the NIR fluorescence from ICG and two-photon fluorescence and photoacoustic signal from GNSs, and the results proved that GNS@CaCO 3 /ICG had a great ability for tumor-specific and tumor-triggered drug release. We therefore conclude that the GNS@CaCO 3 /ICG holds great promise for clinical applications in anti-tumor therapy with tumor imaging or drug tracing.

  4. Micro-scale temperature measurement method using fluorescence polarization

    NASA Astrophysics Data System (ADS)

    Tatsumi, K.; Hsu, C.-H.; Suzuki, A.; Nakabe, K.

    2016-09-01

    A novel method that can measure the fluid temperature in microscopic scale by measuring the fluorescence polarization is described in this paper. The measurement technique is not influenced by the quenching effects which appears in conventional LIF methods and is believed to show a higher reliability in temperature measurements. Experiment was performed using a microchannel flow and fluorescent molecule probes, and the effects of the fluid temperature, fluid viscosity, measurement time, and pH of the solution on the measured fluorescence polarization degree are discussed to understand the basic characteristics of the present method. The results showed that fluorescence polarization is considerably less sensible to these quenching factors. A good correlation with the fluid temperature, on the other hand, was obtained and agreed well with the theoretical values confirming the feasibility of the method.

  5. Performance of fluorescence retrieval methods and fluorescence spectrum reconstruction under various sensor spectral configurations

    NASA Astrophysics Data System (ADS)

    Li, Rong; Zhao, Feng

    2015-10-01

    Solar-induced chlorophyll fluorescence is closely related to photosynthesis and can serve as an indicator of plant status. Several methods have been proposed to retrieve fluorescence signal (Fs) either at specific spectral bands or within the whole fluorescence emission region. In this study, we investigated the precision of the fluorescence signal obtained through these methods under various sensor spectral characteristics. Simulated datasets generated by the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model with known `true' Fs as well as an experimental dataset are exploited to investigate four commonly used Fs retrieval methods, namely the original Fraunhofer Line Discriminator method (FLD), the 3 bands FLD (3FLD), the improved FLD (iFLD), and the Spectral Fitting Methods (SFMs). Fluorescence Spectrum Reconstruction (FSR) method is also investigated using simulated datasets. The sensor characteristics of spectral resolution (SR) and signal-to-noise ratio (SNR) are taken into account. According to the results, finer SR and SNR both lead to better accuracy. Lowest precision is obtained for the FLD method with strong overestimation. Some improvements are made by the 3FLD method, but it still tends to overestimate. Generally, the iFLD method and the SFMs provide better accuracy. As to FSR, the shape and magnitude of reconstructed Fs are generally consistent with the `true' Fs distributions when fine SR is exploited. With coarser SR, however, though R2 of the retrieved Fs may be high, large bias is likely to be obtained as well.

  6. Laser-initiated decomposition products of indocyanine green (ICG) and carbon black sensitized biological tissues

    NASA Astrophysics Data System (ADS)

    Kokosa, John M.; Przyjazny, Andrzej; Bartels, Kenneth E.; Motamedi, Massoud; Hayes, Donald J.; Wallace, David B.; Frederickson, Christopher J.

    1997-05-01

    Organic dyes have found increasing use a s sensitizers in laser surgical procedures, due to their high optical absorbances. Little is known, however, about the nature of the degradation products formed when these dyes are irradiated with a laser. Previous work in our laboratories has shown that irradiation of polymeric and biological tissues with CO2 and Nd:YAG lasers produces a host of volatile and semivolatile by-products, some of which are known to be potential carcinogens. This work focuses on the identification of the chemical by-products formed by diode laser and Nd:YAG laser irradiation of indocyanine green (ICG) and carbon black based ink sensitized tissues, including bone, tendon and sheep's teeth. Samples were mounted in a 0.5-L Pyrex sample chamber equipped with quartz optical windows, charcoal filtered air inlet and an outlet attached to an appropriate sample trap and a constant flow pump. By-products were analyzed by GC/MS and HPLC. Volatiles identified included benzene and formaldehyde. Semi-volatiles included traces of polycyclic aromatics, arising from the biological matrix and inks, as well as fragments of ICG and the carbon ink components. The significance of these results will be discussed, including the necessity of using appropriate evacuation devices when utilizing lasers for surgical procedures.

  7. New method of acne disease fluorescent diagnostics in natural and fluorescent light and treatment control

    NASA Astrophysics Data System (ADS)

    Karimova, L. N.; Berezin, A. N.; Shevchik, S. A.; Kharnas, S. S.; Kusmin, S. G.; Loschenov, V. B.

    2005-08-01

    In the given research the new method of fluorescent diagnostics (FD) and photodynamic therapy (PDT) control of acne disease is submitted. Method is based on simultaneous diagnostics in natural and fluorescent light. PDT was based on using 5-ALA (5- aminolevulinic acid) preparation and 600-730 nanometers radiation. If the examined site of a skin possessed a high endogenous porphyrin fluorescence level, PDT was carried out without 5-ALA. For FD and treatment control a dot spectroscopy and the fluorescent imaging of the affected skin were used.

  8. Multispectral photoacoustic characterization of ICG and porcine blood using an LED-based photoacoustic imaging system

    NASA Astrophysics Data System (ADS)

    Shigeta, Yusuke; Sato, Naoto; Kuniyil Ajith Singh, Mithun; Agano, Toshitaka

    2018-02-01

    Photoacoustic imaging is a hybrid biomedical imaging modality that has emerged over the last decade. In photoacoustic imaging, pulsed-light absorbed by the target emits ultrasound that can be detected using a conventional ultrasound array. This ultrasound data can be used to reconstruct the location and spatial details of the intrinsic/extrinsic light absorbers in the tissue. Recently we reported on the development of a multi-wavelength high frame-rate LED-based photoacoustic/ultrasound imaging system (AcousticX). In this work, we photoacoustically characterize the absorption spectrum of ICG and porcine blood using LED arrays with multiple wavelengths (405, 420, 470, 520, 620, 660, 690, 750, 810, 850, 925, 980 nm). Measurements were performed in a simple reflection mode configuration in which LED arrays where fixed on both sides of the linear array ultrasound probe. Phantom used consisted of micro-test tubes filled with ICG and porcine blood, which were placed in a tank filled with water. The photoacoustic spectrum obtained from our measurements matches well with the reference absorption spectrum. These results demonstrate the potential capability of our system in performing clinical/pre-clinical multispectral photoacoustic imaging.

  9. Pure laparoscopic hepatectomy with augmented reality-assisted indocyanine green fluorescence versus open hepatectomy for hepatocellular carcinoma with liver cirrhosis: A propensity analysis at a single center.

    PubMed

    Cheung, Tan To; Ma, Ka Wing; She, Wong Hoi; Dai, Wing Chiu; Tsang, Simon Hing Yin; Chan, Albert Chi Yan; Chok, Kenneth Siu Ho; Lo, Chung Mau

    2018-05-10

    Laparoscopic hepatectomy is considered an acceptable treatment of choice in selected patients with primary hepatocellular carcinoma (HCC). Whether indocyanine green (ICG) immunofluorescence, a new technology, may improve surgery outcomes has yet to be tested. The aim of the present study was to investigate and compare the effect of ICG fluorescence imaging on the outcomes of pure laparoscopic hepatectomy and open hepatectomy for primary HCC with background cirrhosis. From January 2015 to June 2016, 20 patients with HCC and liver cirrhosis underwent laparoscopic hepatectomy with ICG immunofluorescence. The outcomes of pure laparoscopic hepatectomy with ICG immunofluorescence were compared with those of open hepatectomy. To avoid selection bias, patients were propensity score matched in a ratio of 1 : 6, with 20 patients in the laparoscopic group and 120 in the open group. The laparoscopic group had 20 patients, and the open group had 120 patients. The laparoscopic group had less blood loss (125 vs 450 mL, P < 0.001), a shorter operation time (200 vs 250 min, P = 0.003), and a shorter hospital stay (5 vs 6 days, P < 0.001). The complication rate was 0% in the laparoscopic group compared to 15.0% in the open group (P = 0.135). All patients in the laparoscopic group had negative margin involvement. Four patients (3.3%) in the open resection group had positive margin involvement. Two patients in the ICG immunofluorescence group had additional lesions identified and resected during operation. Pure laparoscopic hepatectomy with ICG immunofluorescence for primary HCC can be carried out safely with favorable short-term outcomes even in cirrhotic patients. Better identification of the bile duct structure and better assessment of the tumor resection margin and perfusion are advantages of this new technique. © 2018 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  10. Three-dimensional dynamics of temperature fields in phantoms and biotissue under IR laser photothermal therapy using gold nanoparticles and ICG dye

    NASA Astrophysics Data System (ADS)

    Akchurin, Georgy G.; Garif, Akchurin G.; Maksimova, Irina L.; Skaptsov, Alexander A.; Terentyuk, Georgy S.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.; Tuchin, Valery V.

    2010-02-01

    We describe applications of silica (core)/gold (shell) nanoparticles and ICG dye to photothermal treatment of phantoms, biotissue and spontaneous tumor of cats and dogs. The laser irradiation parameters were optimized by preliminary experiments with laboratory rats. Three dimensional dynamics of temperature fields in tissue and solution samples was measured with a thermal imaging system. It is shown that the temperature in the volume region of nanoparticles localization can substantially exceed the surface temperature recorded by the thermal imaging system. We have demonstrated effective optical destruction of cancer cells by local injection of plasmon-resonant gold nanoshells and ICG dye followed by continuous wave (CW) diode laser irradiation at wavelength 808 nm.

  11. Optical imaging for the diagnosis of oral cancer and oral potentially malignant disorders

    NASA Astrophysics Data System (ADS)

    Yoshida, K.

    2016-03-01

    Optical Imaging is being conducted as a therapeutic non-invasive. Many kinds of the light source are selected for this purpose. Recently the oral cancer screening is conducted by using light-induced tissue autofluorescence examination such as several kinds of handheld devices. However, the mechanism of its action is still not clear. Therefore basic experimental research was conducted. One of auto fluorescence Imaging (AFI) device, VELscopeTM and near-infrared (NIR) fluorescence imaging using ICG-labeled antibody as a probe were compared using oral squamous cell carcinoma (OSCC) mouse models. The experiments revealed that intracutaneous tumor was successfully visualized as low density image by VELscopeTM and high density image by NIR image. In addition, VELscopeTM showed higher sensitivity and lower specificity than that of NIR fluorescence imaging and the sensitivity of identification of carcinoma areas with the VELscopeTM was good results. However, further more studies were needed to enhance the screening and diagnostic uses, sensitivity and specificity for detecting malignant lesions and differentiation from premalignant or benign lesions. Therefore, additional studies were conducted using a new developed near infrared (NIR) fluorescence imaging method targeting podoplanine (PDPN) which consists of indocyanine green (ICG)-labeled anti-human podoplanin antibody as a probe and IVIS imaging system or a handy realtime ICG imaging device that is overexpressed in oral malignant neoplasm to improve imaging for detection of early oral malignant neoplasm. Then evaluated for its sensitivity and specificity for detection of oral malignant neoplasm in xenografted mice model and compared with VELscopeTM. The results revealed that ICG fluorescence imaging method and VELscopeTM had the almost the same sensitivity for detection of oral malignant neoplasm. The current topics of optical imaging about oral malignant neoplasm were reviewed.

  12. The use of intraoperative near-infrared indocyanine green videoangiography in the microscopic resection of hemangioblastomas.

    PubMed

    Tamura, Yoji; Hirota, Yuki; Miyata, Shiro; Yamada, Yoshitaka; Tucker, Adam; Kuroiwa, Toshihiko

    2012-08-01

    The authors assessed the usefulness of intraoperative near-infrared indocyanine green videoangiography (ICG-VA) in the microscopic resection of hemangioblastomas. From January 2009 to February 2012, nine consecutive patients (seven men, two women) who underwent surgery for hemangioblastomas using intraoperative ICG-VA were included in this study. Surgery was performed on four cystic cerebellar lesions with mural nodules, two solid tumors (one in the cerebellar hemisphere and one in the medulla oblongata), one spinal tumor and multiple tumors in two patients with von Hippel-Lindau disease. Of the nine patients, three were treated for recurrent tumor. The ICG-induced fluorescence images of hemangioblastomas with variable presentation were evaluated. All tumors could be completely removed en bloc. Blood flow in the tumor and tumor-related vessels at the brain surface were clearly detected by ICG-VA in all cases, except one recurrent tumor where postoperative adhesive scar tissue obstructed ICG-induced fluorescence resulting in poor delineation of the blood flow patterns and tumor margins. ICG-VA was also helpful for detecting the multiple small mural nodules within the cyst or the tumors buried under thin gliotic neural tissue despite reduced fluorescence. Intraoperative ICG-VA is a safe and easy modality for confirming the vascular flow patterns in hemangioblastomas. In addition, ICG-VA provided useful information for intracystic small lesions or lesions concealed under thin brain tissue in order to accomplish total resection of these tumors.

  13. Methods on observation of fluorescence micro-imaging for microalgae

    NASA Astrophysics Data System (ADS)

    Ou, Lin; Zhuang, Hui-ru; Chen, Rong; Lei, Jin-pin; Liao, Xiao-hua; Lin, Wen-suo

    2007-11-01

    Objective: Auto-fluorescence micro-imaging of microalgae are observed by using of laser scanning confocal microscopy (LSCM) and fluorescence microscopy, so as to investigate the effect of auto fluorescence alteration on growth of irradiated microalgae irradiated, meanwhile, the method of microalgae cells stained also to be studied. Methods: Platymonas subcordiformis, Phaeodactylum tricormutum and Isochyrsis zhanjiangensis cells are stained with acridine orange, and observed by fluorescence microscopy; the three types microalgae mentioned above are irradiated by Nd:YAP laser with 10w at 1341nm, irradiating time:12s, 30s, 35s and 55s, than to be cultured 6 days, and the auto fluorescence images and fluorescence spectra of algae cells are obtained by LSCM on lambda scan mode, at excitation 488nm (Ar + laser). Results: It is showed that the shapes and the structural features of microalgae cells stained can be seen clearly, and the cytoplasm and nucleus also can be observed. The chloroplasts in cell is bigger on promoting effects, conversely, it is to be mutilated, deformation and shrink. Contrast to the CK, the peak positions of fluorescence of algae cells irradiated is similar to the whole while the peak light intensity alters. On irradiation of promoting dose, however, the auto fluorescence intensity is enhanced more than control. Conclusions: The method of cell stained can be used to observed genetic material in microalgae. There are obvious effects for laser irradiating to chloroplasts in cells, the bigger chloroplasts the greater fluorescence intensity. Physiological incentive effects of microalgae irradiated can be given expression on fluorescence characteristics and fluorescence intensity alteration of cells.

  14. Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence.

    PubMed

    Magney, Troy S; Frankenberg, Christian; Fisher, Joshua B; Sun, Ying; North, Gretchen B; Davis, Thomas S; Kornfeld, Ari; Siebke, Katharina

    2017-09-01

    Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view - allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (F λ , 670-850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, F t ) and saturation pulses (maximal fluorescence yields, F m ). Our results suggest that this method can accurately reproduce the full Chl emission spectra - capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, Daniel L.; Tangyunyong, Paiboon

    1998-01-01

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

  16. Use of invisible near infrared light fluorescence with indocyanine green and methylene blue in urology. Part 2.

    PubMed

    Polom, Wojciech; Markuszewski, Marcin; Rho, Young Soo; Matuszewski, Marcin

    2014-01-01

    In the second part of this paper, concerning the use of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urology, other possible uses of this new technique will be presented. In kidney transplantation, this concerns allograft perfusion and real time NIR-guided angiography; moreover, perfusion angiography of tissue flaps, NIRF visualization of ureters, NIR-guided visualization of urinary calcifications, NIRF in male infertility and semen quality assessment. In this part, we have also analysed cancer targeting and imaging fluorophores as well as cost benefits associated with the use of these new techniques. PubMed and Medline databases were searched for ICG and MB use in urological settings, along with data published in abstracts of urological conferences. Although NIR-guided ICG and MB are still in their initial phases, there have been significant developments in a few more major domains of urology, including 1) kidney transplantation: kidney allograft perfusion and vessel reconstruction; 2) angiography perfusion of tissue flaps; 3) visualization of ureters; 4) visualization of urinary calcifications; and 5) NIRF in male infertility and semen quality assessment. Near infrared technology in urology is at its early stages. More studies are needed to assess the true potential and limitations of the technology. Initial studies show that this pioneering tool may influence various aspects of urology.

  17. Patent blue V and indocyanine green for fluorescence microimaging of human peritoneal carcinomatosis using probe-based confocal laser endomicroscopy.

    PubMed

    Abbaci, Muriel; Dartigues, Peggy; De Leeuw, Frederic; Soufan, Ranya; Fabre, Monique; Laplace-Builhé, Corinne

    2016-12-01

    Peritoneal carcinomatosis is a metastatic stage aggravating abdominal and pelvic cancer dissemination. The preoperative evaluation of lesions remains difficult today. Probe-based confocal laser endomicroscopy (pCLE) provides dynamic images of tissue architecture and cellular details. This technology allows in vivo histological interpretation of tissue. The main limitation of pCLE for adoption in the clinic is the unavailability of fluorescent contrast agents. The aim of our study was to evaluate the staining performance of indocyanine green and patent blue V for histological diagnosis of pCLE images of pathological and non-pathological peritoneal tissue. We performed a correlative study with the histological gold standard on ex vivo human specimens from 25 patients operated for peritoneal carcinomatosis; 70 specimens were stained by topical application with ICG or patent blue V and then imaged with a probe-based confocal laser endomicroscope. A total of 350 pCLE images and 70 corresponding histological sections were randomly and blindly interpreted by two pathologists (PT1 and PT2). The images were first classified into two categories, tumoral versus non-tumoral, and a refined histological diagnosis was then given. All presented images were interpreted by PT1 (who received prior training on PCLE image reading) and PT2 (no training). 100 % sensitivity for PT1 and PT2 was noticed with tissues stained with ICG to differentiate tumoral and non-tumoral tissue. Global scores were always better for PT1 (major concordance between 86 and 94 %) than for PT2 (major concordance between 77 and 89 %) independently of the fluorescent dye when histological diagnosis was done on pCLE images. In conclusion, the pair ICG-pCLE offers the best combination for a non-trained pathologist for the interpretation of pCLE images from peritoneum.

  18. Fluorescence lifetime imaging to differentiate bound from unbound ICG-cRGD both in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Stegehuis, Paulien L.; Boonstra, Martin C.; de Rooij, Karien E.; Powolny, François E.; Sinisi, Riccardo; Homulle, Harald; Bruschini, Claudio; Charbon, Edoardo; van de Velde, Cornelis J. H.; Lelieveldt, Boudewijn P. F.; Vahrmeijer, Alexander L.; Dijkstra, Jouke; van de Giessen, Martijn

    2015-03-01

    Excision of the whole tumor is crucial, but remains difficult for many tumor types. Fluorescence lifetime imaging could be helpful intraoperative to differentiate normal from tumor tissue. In this study we investigated the difference in fluorescence lifetime imaging of indocyanine green coupled to cyclic RGD free in solution/serum or bound to integrins e.g. in tumors. The U87-MG glioblastoma cell line, expressing high integrin levels, was cultured to use in vitro and to induce 4 subcutaneous tumors in a-thymic mice (n=4). Lifetimes of bound and unbound probe were measured with an experimental time-domain single-photon avalanche diode array (time resolution <100ps). In vivo measurements were taken 30-60 minutes after intravenous injection, and after 24 hours. The in vitro lifetime of the fluorophores was similar at different concentrations (20, 50 and 100μM) and showed a statistically significant higher lifetime (p<0.001) of bound probe compared to unbound probe. In vivo, lifetimes of the fluorophores in tumors were significantly higher (p<0.001) than at the control site (tail) at 30-60 minutes after probe injection. Lifetimes after 24 hours confirmed tumor-specific binding (also validated by fluorescence intensity images). Based on the difference in lifetime imaging, it can be concluded that it is feasible to separate between bound and unbound probes in vivo.

  19. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, D.L.; Tangyunyong, P.

    1998-01-06

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

  20. Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy.

    PubMed

    Wang, Yazhe; Wang, Cheng; Ding, Yang; Li, Jing; Li, Min; Liang, Xiao; Zhou, Jianping; Wang, Wei

    2016-12-01

    Photodynamic therapy has emerged as a promising strategy for cancer treatment. To ensure the efficient delivery of a photosensitizer to tumor for anticancer effect, a safe and tumor-specific delivery system is highly desirable. Herein, we introduce a novel biomimetic nanoparticle named rHDL/ICG (rHDL/I), by loading amphiphilic near-infrared (NIR) fluorescent dye indocyanine green (ICG) into reconstituted high density lipoproteins (rHDL). In this system, rHDL can mediate photoprotection effect and receptor-guided tumor-targeting transportation of cargos into cells. Upon NIR irradiation, ICG can generate fluorescent imaging signals for diagnosis and monitoring therapeutic activity, and produce singlet oxygen to trigger photodynamic therapy (PDT). Our studies demonstrated that rHDL/I exhibited excellent size and fluorescence stability, light-triggered controlled release feature, and neglectable hemolytic activity. It also showed equivalent NIR response compared to free ICG under laser irradiation. Importantly, the fluorescent signal of ICG loaded in rHDL/I could be visualized subcellularly in vitro and exhibited metabolic distribution in vivo, presenting superior tumor targeting and internalization. This NIR-triggered image-guided nanoparticle produced outstanding therapeutic outcomes against cancer cells, demonstrating great potential of biomimetic delivery vehicles in future clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.

    PubMed

    Onda, Nobuhiko; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    Indocyanine green (ICG) is a fluorescent agent approved for clinical applications by the Food and Drug Administration and European Medicines Agency. This study examined the mechanism of tumor imaging using intravenously administered ICG. The in vivo kinetics of intravenously administered ICG were determined in tumor xenografts using microscopic approaches that enabled both spatio-temporal and high-magnification analyses. The mechanism of ICG-based tumor imaging was examined at the cellular level in six phenotypically different human colon cancer cell lines exhibiting different grades of epithelioid organization. ICG fluorescence imaging detected xenograft tumors, even those < 1 mm in size, based on their preferential cellular uptake and retention of the dye following its rapid tissue-non-specific delivery, in contrast to its rapid clearance by normal tissue. Live-cell imaging revealed that cellular ICG uptake is temperature-dependent and occurs after ICG binding to the cellular membrane, a pattern suggesting endocytic uptake as the mechanism. Cellular ICG uptake correlated inversely with the formation of tight junctions. Intracellular ICG was entrapped in the membrane traffic system, resulting in its slow turnover and prolonged retention by tumor cells. Our results suggest that tumor-specific imaging by ICG involves non-specific delivery of the dye to tissues followed by preferential tumor cellular uptake and retention. The tumor cell-preference of ICG is driven by passive tumor cell-targeting, the inherent ability of ICG to bind to cell membranes, and the high endocytic activity of tumor cells in association with the disruption of their tight junctions. © 2016 UICC.

  2. Determination of plasma volume by indocyanine green--validation of the method and use in patients after cardiopulmonary bypass.

    PubMed

    Menth-Meier, S E; Imoberdorf, R; Regli, B; Kipfer, B; Turgay, M; Ballmer, P E

    2001-05-01

    Validation of plasma volume (PV) determination by indocyanine green (ICG) in comparison to the gold-standard method with radioiodinated albumin, and investigation of the effect of commonly used plasma expanders (albumin, hydroxyethyl starch, and polygelatine) on PV in the early postoperative phase in patients undergoing cardiac surgery. Prospective clinical study. Department of medicine and intensive care unit at a university hospital. Ten healthy volunteers and 21 patients after elective open-heart surgery. PV of subjects was measured by i.v. injecting 5 microCi [125I]albumin (I-ALB). One hour later, PV was determined by a peripheral i. v. injection of 0.25 mg/kg body weight ICG (ICG1). In five subjects PV was measured repeatedly by ICG (ICG2) 1 h after ICG1. Mean PV of I-ALB and ICG1 or ICG2 showed consistent results. Further, we investigated central vs peripheral intravenous injection of ICG in six patients after open-heart surgery compared to [125I]albumin. There was no difference between mean PV measured by [125I]albumin and peripheral ICG (P = 0.40). PV determined by central injection of ICG was significantly higher than by the other methods. In 15 patients PV was determined by [125I]albumin. Thereafter, patients were randomly divided into three groups. Group ALB was infused with 1.75 ml/kg body weight human albumin 20%, group HAES with 5.25 ml/kg body weight hydroxyethyl starch 6%, and group HAEM with 7.0 ml/kg body weight polygelatine 3.5%. PV was measured 1 h and 4 h after infusion by ICG. There were no significant changes in PV between the groups. PV determination by peripheral i. v. injection of ICG produced reliable and consistent results when a reactive hyperaemia was produced by a tourniquet prior to injection. Therefore, central venous injection of ICG may not be prerequisite for precise measurements of PV. The expected acute increase in PV after infusion of commonly used plasma expanders after cardiac surgery was not found.

  3. Detecting thermal phase transitions in corneal stroma by fluorescence micro-imaging analysis

    NASA Astrophysics Data System (ADS)

    Matteini, P.; Rossi, F.; Ratto, F.; Bruno, I.; Nesi, P.; Pini, R.

    2008-02-01

    Thermal modifications induced in corneal stroma were investigated by the use of fluorescence microscopy. Freshly extracted porcine corneas were immersed for 5 minutes in a water bath at temperatures in the 35-90°C range and stored in formalin. The samples were then sliced in 200-μm-thick transversal sections and analyzed under a stereomicroscope to assess corneal shrinkage. Fluorescence images of the thermally treated corneal samples were acquired using a slow-scan cooled CCD camera, after staining the slices with Indocyanine Green (ICG) fluorescent dye which allowed to detect fluorescence signal from the whole tissue. All measurements were performed using an inverted epifluorescence microscope equipped with a mercury lamp. The thermally-induced modifications to the corneal specimens were evaluated by studying the grey level distribution in the fluorescence images. For each acquired image, Discrete Fourier Transform (DFT) and entropy analyses were performed. The spatial distribution of DFT absolute value indicated the spatial orientation of the lamellar planes, while entropy was used to study the image texture, correlated to the stromal structural transitions. As a result, it was possible to indicate a temperature threshold value (62°C) for high thermal damage, resulting in a disorganization of the lamellar planes and in full agreement with the measured temperature for corneal shrinkage onset. Analysis of the image entropy evidenced five strong modifications in stromal architecture at temperatures of ~45°C, 53°C, 57°C, 66°C, 75°C. The proposed procedure proved to be an effective micro-imaging method capable of detecting subtle changes in corneal tissue subjected to thermal treatment.

  4. [A Case of Gastric Cancer with Splenic Artery Aneurysm, Intraoperative ICG Fluorography Is Useful in Evaluating the Blood Flow of Stomach and Spleen].

    PubMed

    Usui, Kenji; Sakamoto, Kaoru; Akabane, Kentaro; Hayasaka, Kazuki; Mizuki, Toru; Yagi, Yutaka; Shirahata, Yasuhiro; Ichikawa, Hiroshi; Hanyu, Takaaki; Ishikawa, Takashi; Kameyama, Hitoshi; Suzuki, Satoshi; Saito, Kiyohiro; Wakai, Toshifumi

    2017-11-01

    An 81-year-oldwoman with advancedgastric cancer was referredto our hospital. Preoperative contrast-enhancedCT revealeda roundcalcification of the splenic hilum with 15mm in diameter as a splenic artery aneurysm. She underwent transcatheter arterial embolization(TAE)for the splenic artery aneurysm. Celiac artery angiography showedcollateral arterial network of the spleen from left gastric artery. Surgery for the gastric cancer was performed1 4 days after TAE. We cut the right gastric andbilateral epigastric arteries. After the left gastric artery clamping, we performedintraoperative indocyanine green(ICG)fluorography. ICG fluorography confirmedthat the bloodflow of the upper thirdof the stomach andspleen were maintained. We safely performed distal gastrectomy, and the postoperative course was uneventful.

  5. Engineering of near infrared fluorescent proteinoid-poly(L-lactic acid) particles for in vivo colon cancer detection.

    PubMed

    Kolitz-Domb, Michal; Grinberg, Igor; Corem-Salkmon, Enav; Margel, Shlomo

    2014-08-12

    The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer owing to the negligible absorption and autofluorescence of water and other intrinsic biomolecules in this region. The main aim of the present study is to synthesize and characterize novel NIR fluorescent nanoparticles based on proteinoid and PLLA for early detection of colon tumors. The present study describes the synthesis of new proteinoid-PLLA copolymer and the preparation of NIR fluorescent nanoparticles for use in diagnostic detection of colon cancer. These fluorescent nanoparticles were prepared by a self-assembly process in the presence of the NIR dye indocyanine green (ICG), a FDA-approved NIR fluorescent dye. Anti-carcinoembryonic antigen antibody (anti-CEA), a specific tumor targeting ligand, was covalently conjugated to the P(EF-PLLA) nanoparticles through the surface carboxylate groups using the carbodiimide activation method. The P(EF-PLLA) nanoparticles are stable in different conditions, no leakage of the encapsulated dye into PBS containing 4% HSA was detected. The encapsulation of the NIR fluorescent dye within the P(EF-PLLA) nanoparticles improves significantly the photostability of the dye. The fluorescent nanoparticles are non-toxic, and the biodistribution study in a mouse model showed they evacuate from the body over 24 h. Specific colon tumor detection in a chicken embryo model and a mouse model was demonstrated for anti-CEA-conjugated NIR fluorescent P(EF-PLLA) nanoparticles. The results of this study suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent P(EF-PLLA) nanoparticles over colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs such as paclitaxel and/or doxorubicin, within these biodegradable NIR fluorescent P(EF-PLLA) nanoparticles, for both detection and therapy of colon cancer.

  6. Prussian blue/serum albumin/indocyanine green as a multifunctional nanotheranostic agent for bimodal imaging guided laser mediated combinatorial phototherapy.

    PubMed

    Sahu, Abhishek; Lee, Jong Hyun; Lee, Hye Gyeong; Jeong, Yong Yeon; Tae, Giyoong

    2016-08-28

    Developing novel nanotheranostic agent using only clinically approved materials is highly desirable and challenging. In this study, we combined three clinically approved materials, Prussian blue (PB), serum albumin (BSA), and indocyanine green (ICG), by a simple and biocompatible method to prepare a multifunctional theranostic PB-BSA-ICG nanoparticle. The multifunctional nanoparticle system could provide dual mode magnetic resonance (MR) and near infrared (NIR) fluorescence imaging as well as combined photothermal and photodynamic (PTT-PDT) therapy in response to a single NIR laser. This nanoparticle showed an excellent stability in physiological solutions and could suppress the photo-instability of ICG. In the absence of light, the nanoparticles showed no cytotoxicity, but significant cell death was induced through combined PTT-PDT effect after irradiation with NIR laser light. A high tumor accumulation and minimal nonspecific uptake by other major organs of PB-BSA-ICG nanoparticle were observed in vivo, analyzed by T1-weighted MR and NIR fluorescence bimodal imaging in tumor xenograft mice after intravenous injection. The nanoparticles efficiently suppressed the tumor growth through combinatorial phototherapy with no tumor recurrence upon a single NIR laser irradiation. These results demonstrated that PB-BSA-ICG is potentially an interesting nanotheranostic agent for imaging guided cancer therapy by overcoming the limitations of each technology and enhancing the therapeutic efficiency as well as reducing side effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Novel characterization method of impedance cardiography signals using time-frequency distributions.

    PubMed

    Escrivá Muñoz, Jesús; Pan, Y; Ge, S; Jensen, E W; Vallverdú, M

    2018-03-16

    The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P = 0.780) and the extended modified beta distribution (P = 0.765) provided similar results, higher than the rest of analyzed kernels. Graphical abstract Flowchart for the optimization of time-frequency distribution kernels for impedance cardiography signals.

  8. Fully integrated optical coherence tomography, ultrasound, and indocyanine green based fluorescence tri-modality system for intravascular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Yan; Jing, Joseph C.; Qu, Yueqiao; Miao, Yusi; Ma, Teng; Yu, Mingyue; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    The rupture of atherosclerotic plaques is the leading cause of acute coronary events, so accurate assessment of plaque is critical. A large lipid pool, thin fibrous cap, and inflammatory reaction are the crucial characteristics for identifying vulnerable plaques. In our study, a tri-modality imaging system for intravascular imaging was designed and implemented. The tri-modality imaging system with a 1-mm probe diameter is able to simultaneously acquire optical coherence tomography (OCT), intravascular ultrasound (IVUS), and fluorescence imaging. Moreover, for fluorescence imaging, we used the FDA-approved indocyanine green (ICG) dye as the contrast agent to target lipid-loaded macrophages. Firstly, IVUS is used as the first step for identifying plaque since IVUS enables the visualization of the layered structures of the artery wall. Due to low soft-tissue contrast, IVUS only provides initial identification of the lipid plaque. Then OCT is used for differentiating fibrosis and lipid pool based on its relatively higher soft tissue contrast and high sensitivity/specificity. Last, fluorescence imaging is used for identifying inflammatory reaction to further confirm whether the plaque is vulnerable or not. Ex vivo experiment of a male New Zealand white rabbit aorta was performed to validate the performance of our tri-modality system. H and E histology results of the rabbit aorta were also presented to check assessment accuracy. The miniature tri-modality probe, together with the use of ICG dye suggest that the system is of great potential for providing a more accurate assessment of vulnerable plaques in clinical applications.

  9. Preparation study of indocyanine green-rituximab: A new receptor-targeted tracer for sentinel lymph node in breast cancer

    PubMed Central

    Cong, Bin-Bin; Sun, Xiao; Song, Xian-Rang; Liu, Yan-Bing; Zhao, Tong; Cao, Xiao-Shan; Qiu, Peng-Fei; Tian, Chong-Lin

    2016-01-01

    An appropriate receptor-targeted tracer for sentinel lymph node biopsy (SLNB) was prepared. We combined the fluorescence tracer (Indocyanine green, ICG) with Rituximab (a chimeric human/murine monoclonal antibody targeting the CD20 antigen on the surface of lymphocyte) directly to produce a new tracer (ICG-Rituximab). When the new tracer drains to the lymph node, Rituximab will combine with CD20 receptor on the B-cell surface in the lymph node. If the statue of antibody-receptor connection does not reach saturation, the number of Rituximab is less than CD20. With this appropriate injection dose, the new tracer could only stay in sentinel lymph node (SLN) and make it imaging. Positive fluorescence SLN was detected 12 minutes after injection with no other organs imaging. The imaging of SLN was stable and clear for 20–24 hours. Due to SLN stained with more ICG than the lymphatic vessel, the fluorescence situation of SLN would be brighter than the vessel. The surgeon can detect the positive fluorescence SLN easily without following the fluorescence imaging lymphatic vessel. The results of our preliminary study showed that the new tracer might be useful for improving SLN imaging and worth further clinical study. SLNB with the new tracer could be a convenient method for detecting SLN and would become a standard performance in clinical practice. PMID:27374088

  10. Preparation study of indocyanine green-rituximab: A new receptor-targeted tracer for sentinel lymph node in breast cancer.

    PubMed

    Cong, Bin-Bin; Sun, Xiao; Song, Xian-Rang; Liu, Yan-Bing; Zhao, Tong; Cao, Xiao-Shan; Qiu, Peng-Fei; Tian, Chong-Lin; Yu, Jin-Ming; Wang, Yong-Sheng

    2016-07-26

    An appropriate receptor-targeted tracer for sentinel lymph node biopsy (SLNB) was prepared. We combined the fluorescence tracer (Indocyanine green, ICG) with Rituximab (a chimeric human/murine monoclonal antibody targeting the CD20 antigen on the surface of lymphocyte) directly to produce a new tracer (ICG-Rituximab). When the new tracer drains to the lymph node, Rituximab will combine with CD20 receptor on the B-cell surface in the lymph node. If the statue of antibody-receptor connection does not reach saturation, the number of Rituximab is less than CD20. With this appropriate injection dose, the new tracer could only stay in sentinel lymph node (SLN) and make it imaging. Positive fluorescence SLN was detected 12 minutes after injection with no other organs imaging. The imaging of SLN was stable and clear for 20-24 hours. Due to SLN stained with more ICG than the lymphatic vessel, the fluorescence situation of SLN would be brighter than the vessel. The surgeon can detect the positive fluorescence SLN easily without following the fluorescence imaging lymphatic vessel. The results of our preliminary study showed that the new tracer might be useful for improving SLN imaging and worth further clinical study. SLNB with the new tracer could be a convenient method for detecting SLN and would become a standard performance in clinical practice.

  11. Biodistribution of Encapsulated Indocyanine Green in Healthy Mice

    PubMed Central

    Yaseen, Mohammad A.; Yu, Jie; Jung, Bongsu; Wong, Michael S.; Anvari, Bahman

    2009-01-01

    Indocyanine Green (ICG) is a fluorescent probe used in various optically-mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and non-specific localization. We have encapsulated ICG within electrostatically-assembled mesocapsules (MCs) to explore its potential for targeted optical diagnosis and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely the liver and spleen, as well as the lungs. The circulation kinetics of ICG remained unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies. PMID:19799463

  12. Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy.

    PubMed

    Weng, Yangziwan; Guan, Shanyue; Lu, Heng; Meng, Xiangmin; Kaassis, Abdessamad Y; Ren, Xiaoxue; Qu, Xiaozhong; Sun, Chenghua; Xie, Zheng; Zhou, Shuyun

    2018-07-01

    It is a great challenge to develop multifunctional nanocarriers for cancer diagnosis and therapy. Herein, versatile CDs/ICG-uLDHs nanovehicles for triple-modal fluorescence/photoacoustic/two-photon bioimaging and effective photothermal therapy were prepared via a facile self-assembly of red emission carbon dots (CDs), indocyanine green (ICG) with the ultrathin layered double hydroxides (uLDHs). Due to the J-aggregates of ICG constructed in the self-assembly process, CDs/ICG-uLDHs was able to stabilize the photothermal agent ICG and enhanced its photothermal efficiency. Furthermore, the unique confinement effect of uLDHs has extended the fluorescence lifetime of CDs in favor of bioimaging. Considering the excellent in vitro and in vivo phototherapeutics and multimodal imaging effects, this work provides a promising platform for the construction of multifunctional theranostic nanocarrier system for the cancer treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Infrared-laser-based fundus angiography

    NASA Astrophysics Data System (ADS)

    Klingbeil, Ulrich; Canter, Joseph M.; Lesiecki, Michael L.; Reichel, Elias

    1994-06-01

    Infrared fundus angiography, using the fluorescent dye indocyanine green (ICG), has shown great potential in delineating choroidal neovascularization (CNV) otherwise not detectable. A digital retinal imaging system containing a diode laser for illumination has been developed and optimized to perform high sensitivity ICG angiography. The system requires less power and generates less pseudo-fluorescence background than nonlaser devices. During clinical evaluation at three retinal centers more than 200 patients, the majority of which had age-related macular degeneration, were analyzed. Laser based ICG angiography was successful in outlining many of the ill-defined or obscure CNV as defined by fluorescein angiography. The procedure was not as successful with classic CNV. ICG angiograms were used to prepare and guide laser treatment.

  14. Comparison of Indocyanine Green Angiography and Laser Speckle Contrast Imaging for the Assessment of Vasculature Perfusion

    PubMed Central

    Towle, Erica L.; Richards, Lisa M.; Kazmi, S. M. Shams; Fox, Douglas J.; Dunn, Andrew K.

    2013-01-01

    BACKGROUND Assessment of the vasculature is critical for overall success in cranial vascular neurological surgery procedures. Although several methods of monitoring cortical perfusion intraoperatively are available, not all are appropriate or convenient in a surgical environment. Recently, 2 optical methods of care have emerged that are able to obtain high spatial resolution images with easily implemented instrumentation: indocyanine green (ICG) angiography and laser speckle contrast imaging (LSCI). OBJECTIVE To evaluate the usefulness of ICG and LSCI in measuring vessel perfusion. METHODS An experimental setup was developed that simultaneously collects measurements of ICG fluorescence and LSCI in a rodent model. A 785-nm laser diode was used for both excitation of the ICG dye and the LSCI illumination. A photothrombotic clot model was used to occlude specific vessels within the field of view to enable comparison of the 2 methods for monitoring vessel perfusion. RESULTS The induced blood flow change demonstrated that ICG is an excellent method for visualizing the volume and type of vessel at a single point in time; however, it is not always an accurate representation of blood flow. In contrast, LSCI provides a continuous and accurate measurement of blood flow changes without the need of an external contrast agent. CONCLUSION These 2 methods should be used together to obtain a complete understanding of tissue perfusion. PMID:22843129

  15. A superior bright NIR luminescent nanoparticle preparation and indicating calcium signaling detection in cells and small animals.

    PubMed

    Zhang, Jian; Lakowicz, Joseph R

    2018-01-01

    Near-field fluorescence (NFF) effects were employed to develop a novel near-infrared (NIR) luminescent nanoparticle (LNP) with superior brightness. The LNP is used as imaging contrast agent for cellular and small animal imaging and furthermore suggested to use for detecting voltage-sensitive calcium in living cells and animals with high sensitivity. NIR Indocyanine green (ICG) dye was conjugated with human serum albumin (HSA) followed by covalently binding to gold nanorod (AuNR). The AuNR displayed dual plasmons from transverse and longitudinal axis, and the longitudinal plasmon was localized at the NIR region which could efficiently couple with the excitation and emission of ICG dye leading to a largely enhanced NFF. The enhancement factor was measured to be about 16-fold using both ensemble and single nanoparticle spectral methods. As an imaging contrast agent, the ICG-HSA-Au complex (abbreviate as ICG-Au) was conjugated on HeLa cells and fluorescence cell images were recorded on a time-resolved confocal microscope. The emission signals of ICG-Au complexes were distinctly resolved as the individual spots that were observed over the cellular backgrounds due to their strong brightness as well as shortened lifetime. The LNPs were also tested to have a low cytotoxicity. The ICG-Au complexes were injected below the skin surface of mouse showing emission spots 5-fold brighter than those from the same amount of free ICG-HSA conjugates. Based on the observations in this research, the excitation and emission of NIR ICG dyes were found to be able to sufficiently couple with the longitudinal plasmon of AuNRs leading to a largely enhanced NFF. Using the LNP with super-brightness as a contrast agent, the ICG-Au complex could be resolved from the background in the cell and small animal imaging. The novel NIR LNP has also a great potential for detection of voltage-gated calcium concentration in the cell and living animal with a high sensitivity.

  16. Precise diagnosis in different scenarios using photoacoustic and fluorescence imaging with dual-modality nanoparticles

    NASA Astrophysics Data System (ADS)

    Peng, Dong; Du, Yang; Shi, Yiwen; Mao, Duo; Jia, Xiaohua; Li, Hui; Zhu, Yukun; Wang, Kun; Tian, Jie

    2016-07-01

    Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases.Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide

  17. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates

    PubMed Central

    Xu, Yan; Zanganeh, Saeid; Mohammad, Innus; Aguirre, Andres; Wang, Tianheng; Yang, Yi; Kuhn, Liisa; Smith, Michael B.

    2013-01-01

    Abstract. Tumor hypoxia is a major indicator of treatment resistance to chemotherapeutic drugs, and fluorescence optical tomography has tremendous potential to provide clinically useful, functional information by identifying tumor hypoxia. The synthesis of a 2-nitroimidazole-indocyanine green conjugate using a piperazine linker (piperazine-2-nitroimidazole-ICG) capable of robust fluorescent imaging of tumor hypoxia is described. In vivo mouse tumor imaging studies were completed and demonstrate an improved imaging capability of the new dye relative to an earlier version of the dye that was synthesized with an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG). Mouse tumors located at imaging depths of 1.5 and 2.0 cm in a turbid medium were imaged at various time points after intravenous injection of the dyes. On average, the reconstructed maximum fluorescence concentration of the tumors injected with piperazine-2-nitroimidazole-ICG was twofold higher than that injected with ethanolamine-2-nitroimidazole-ICG within 3 h postinjection period and 1.6 to 1.7 times higher beyond 3 h postinjection. The untargeted bis-carboxylic acid ICG completely washed out after 3 h postinjection. Thus, the optimal window to assess tumor hypoxia is beyond 3 h postinjection. These findings were supported with fluorescence images of histological sections of tumor samples and an immunohistochemistry technique for identifying tumor hypoxia. PMID:23764695

  18. Catheter-based time-gated near-infrared fluorescence/OCT imaging system

    NASA Astrophysics Data System (ADS)

    Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric

    2018-02-01

    We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.

  19. A new relative referencing method for crop monitoring using chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Norikane, J.; Goto, E.; Kurata, K.; Takakura, T.

    2003-01-01

    The measurement of plant chlorophyll fluorescence has been used for many years as a method to monitor a plant's health status. These types of methods have been mostly relegated to the laboratory. The newly developed Relative Referencing Method allows for the measurement of chlorophyll fluorescence under artificial lighting conditions. The fluorescence signal can be determined by first taking a reference signal measurement, then a second measurement with an additional fluorescence excitation source. The first signal can then be subtracted from the second and the plant's chlorophyll fluorescence due to the second lighting source can be determined. With this simple approach, a photosynthesizing plant can be monitored to detect signs of water stress. Using this approach experiments on tomato plants have shown that it was possible to detect water stress, while the plants were continuously illuminated by fluorescent lamps. This method is a promising tool for the remote monitoring of crops grown in a CELSS-type application. Published by Elsevier Science Ltd on behalf of COSPAR.

  20. Fluorescence-based enhanced reality (FLER) for real-time estimation of bowel perfusion in minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Diana, Michele

    2016-03-01

    Pre-anastomotic bowel perfusion is a key factor for a successful healing process. Clinical judgment has limited accuracy to evaluate intestinal microperfusion. Fluorescence videography is a promising tool for image-guided intraoperative assessment of the bowel perfusion at the future anastomotic site in the setting of minimally invasive procedures. The standard configuration for fluorescence videography includes a Near-Infrared endoscope able to detect the signal emitted by a fluorescent dye, more frequently Indocyanine Green (ICG), which is administered by intravenous injection. Fluorescence intensity is proportional to the amount of fluorescent dye diffusing in the tissue and consequently is a surrogate marker of tissue perfusion. However, fluorescence intensity alone remains a subjective approach and an integrated computer-based analysis of the over-time evolution of the fluorescence signal is required to obtain quantitative data. We have developed a solution integrating computer-based analysis for intra-operative evaluation of the optimal resection site, based on the bowel perfusion as determined by the dynamic fluorescence intensity. The software can generate a "virtual perfusion cartography", based on the "fluorescence time-to-peak". The virtual perfusion cartography can be overlapped onto real-time laparoscopic images to obtain the Enhanced Reality effect. We have defined this approach FLuorescence-based Enhanced Reality (FLER). This manuscript describes the stepwise development of the FLER concept.

  1. In vivo experimental study on laser welded ICG-loaded chitosan patches for vessel repair

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Esposito, Giuseppe; Albanese, Alessio; Puca, Alfredo; Maira, Giulio; Rossi, Giacomo; Pini, Roberto

    2011-03-01

    Laser welding of microvessels provides several advantages over conventional suturing techniques: surgical times reduction, vascular healing process improvement, tissue damage reduction. We present the first application of biopolymeric patches in an in vivo laser assisted procedure for vessel repair. The study was performed in 20 New Zealand rabbits. After anesthesia, a 3-cm segment of the right common carotid artery was exposed and clamped proximally and distally. A linear lesion 3 mm in length was carried out. We used a diode laser emitting at 810 nm and equipped with a 300 μm diameter optical fiber. To close the cut, ICG-loaded chitosan films were prepared: chitosan is characterized by biodegradability, biocompatibility, antimicrobial, haemostatic and wound healing-promoting activity. ICG is an organic chromophore commonly used in the laser welding procedures to mediate the photothermal conversion at the basis of the welding effect. The membranes were used to wrap the whole length of the cut, and then they were welded in the correct position by delivering single laser spots to induce local patch/tissue adhesion. The result is an immediate closure of the wound, with no bleeding at clamps release. The animals were observed during follow-up and sacrificed after 2, 7, 30 and 90 days. All the repaired vessels were patent, no bleeding signs were documented. The carotid samples underwent histological examinations. The advantages of the proposed technique are: simplification of the surgical procedure and shortening of the operative time; good strength of the vessel repair; decreased foreign-body reaction, reduced inflammatory response and improved vascular healing process.

  2. In vivo imaging of small animals with optical tomography and near-infrared fluorescent probes

    NASA Astrophysics Data System (ADS)

    Palmer, Matthew R.; Shibata, Yasushi; Kruskal, Jonathan B.; Lenkinski, Robert E.

    2002-06-01

    A developmental optical tomography has been designed for imaging small animals in vivo using near IR fluorophores. The system employs epi-illumination via a 450 W Xe arc lamp, filtered and collimated to illuminate a 10 cm square movable stage. Emission light is filtered then collected by a high- resolution, high quantum efficiency, cooled CCD camera. Stage movement and image acquisition are under the control of a personal computer running system integration and automation software. During an experiment, the anesthetized animal is secured to the stage and up to 200 projections can be acquired over 180 degrees rotation. Angular sampling of the light distribution at a point on the surface is used to determine relative contributions form ballistic and diffuse photons. We have employed the system to investigate a number of applications of in-vivo fluorescent imaging. In dynamic studies, hepatic function has been visualized in nude mice following intravenous injection of indocyanine green (ICG) and cerebrospinal fluid flow as been measured by injection of ICG-lipoprotein conjugate in the subarachnoid space of the lumbar spine followed by dynamic imaging of the brain. Further applications in physiological imaging, cancer detection, and molecular imaging are under investigation in our laboratory.

  3. Fluorescence imaging with multifunctional polyglycerol sulfates: novel polymeric near-IR probes targeting inflammation.

    PubMed

    Licha, Kai; Welker, Pia; Weinhart, Marie; Wegner, Nicole; Kern, Sylvia; Reichert, Stefanie; Gemeinhardt, Ines; Weissbach, Carmen; Ebert, Bernd; Haag, Rainer; Schirner, Michael

    2011-12-21

    We present a highly selective approach for the targeting of inflammation with a multivalent polymeric probe. Dendritic polyglycerol was employed to synthesize a polyanionic macromolecular conjugate with a near-infrared fluorescent dye related to Indocyanine Green (ICG). On the basis of the dense assembly of sulfate groups which were generated from the polyol core, the resulting polyglycerol sulfate (molecular weight 12 kD with ~70 sulfate groups) targets factors of inflammation (IC(50) of 3-6 nM for inhibition of L-selectin binding) and is specifically transported into inflammatory cells. The in vivo accumulation studied by near-IR fluorescence imaging in an animal model of rheumatoid arthritis demonstrated fast and selective uptake which enabled the differentiation of diseased joints (score 1-3) with a 3.5-fold higher fluorescence level and a signal maximum at 60 min post injection. Localization in tissues using fluorescence histology showed that the conjugates are deposited in the inflammatory infiltrate in the synovial membrane, whereas nonsulfated control was not detected in association with disease. Hence, this type of polymeric imaging probe is an alternative to current bioconjugates and provides future options for targeted imaging and drug delivery.

  4. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  5. Fluorescence measurement of diode (805 nm) laser-induced release of 5,6-CF from DSPC liposomes for monitoring of temperature: an in vivo study in rat liver using indocyanine green potentiation

    NASA Astrophysics Data System (ADS)

    Mordon, Serge R.; Desmettre, Thomas; Devoisselle, Jean-Marie; Soulie-Begu, Sylvie

    1995-05-01

    This in-vivo study examines the validity of fluorescence measurement of laser-induced release of temperature sensitive liposome-encapsulated dye for monitoring of temperature and prediction of tissue thermal damage. It is performed in rat liver after i.v. injection of liposomes loaded with a fluorescent dye and i.v. injection of Indocyanine Green (ICG) for diode laser potentiation. Temperature sensitive liposomes (DSPC: Di- Stearoyl-Phosphatidyl-Choline) are loaded with 5,6-Carboxyfluorescein (5,6-CF). These liposomes (1.5 ml solution) and ICG (1.5 ml solution-5 mg/kg) are injected to adult male wistar rats. Two hours later, the liver is exposed and irradiated with a 0.8 W diode laser using pulses lasting from 1 s to 6 s (fluence ranging from 16 to 98 J/cm+2)). Simultaneously, the fluorescence emission is measured with a fluorescent imaging system. Results show that the fluorescence intensity increases linearly form 18 J/cm2 up to 75 J/cm2. These fluences correspond to surface temperatures between 42°C to 64°C. The measurements appear to be highly reproducible. In this temperature range, the accuracy is +/- 3°C. The maximum intensity is observed immediately after the laser is switched off and a decrease of the fluorescence intensity is observed (27% in 20 minutes) due to the 5.6-CF clearance. However, the ratio (IF/Ibck) remains almost stable over this period of time and the determination of the temperature is still possible with a good accuracy even 20 minutes after laser irradiation. In conclusion, temperature monitoring by using fluorescence measurement of laser-induced release of liposome-encapsulated dye is clearly demonstrated. This procedure could conceivably prove useful for controlling the thermal coagulation of biological tissues.

  6. Feasibility of Real-Time Near-Infrared Fluorescence Tracer Imaging in Sentinel Node Biopsy for Oral Cavity Cancer Patients.

    PubMed

    Christensen, Anders; Juhl, Karina; Charabi, Birgitte; Mortensen, Jann; Kiss, Katalin; Kjær, Andreas; von Buchwald, Christian

    2016-02-01

    Sentinel node biopsy (SNB) is an established method in oral squamous cell carcinoma (OSCC) for staging the cN0 neck and to select patients who will benefit from a neck dissection. Near-infrared fluorescence (NIRF) imaging has the potential to improve the SNB procedure by facilitating intraoperative visual identification of the sentinel lymph node (SN). The purpose of this study was to evaluate the feasibility of fluorescence tracer imaging for SN detection in conjunction with conventional radio-guided technique. Prospective study of patients with primary OSCC planned for tumor resection and SNB. Thirty patients were injected peritumorally with a bimodal tracer (ICG-99mTc-Nanocoll) followed by lymphoscintigraphy and SPECT/CT to define the SNs and their anatomic allocation preoperatively. SNs were detected intraoperatively with a hand-held gamma-probe and a hand-held NIRF camera. In 29 of 30 subjects (97%), all preoperatively defined SNs could be identified intraoperatively using a combination of radioactive and fluorescence guidance. A total of 94 SNs (mean 3, range 1-5) that were both radioactive and fluorescent ex vivo were harvested. Eleven of 94 SNs (12%) could only be identified in vivo using NIRF imaging, and the majority of those were located in level 1 close to the primary tumor. A combined fluorescent and radioactive tracer for SNB is feasible, and the additional use of NIRF imaging may improve the accuracy of SN identification in oral cancer patients. Intraoperative fluorescence guidance seems of particular value when SNs are located in close proximity to the injection site.

  7. Holographic fluorescence mapping using space-division matching method

    NASA Astrophysics Data System (ADS)

    Abe, Ryosuke; Hayasaki, Yoshio

    2017-10-01

    Three-dimensional mapping of fluorescence light sources was performed by using self-interference digital holography. The positions of the sources were quantitatively determined by using Gaussian fitting of the axial and lateral intensity distributions obtained from diffraction calculations through position calibration from the observation space to the sample space. A space-division matching method was developed to perform the mapping of many fluorescence light sources, in this experiment, 500 nm fluorescent nanoparticles fixed in gelatin. A fluorescence digital holographic microscope having a 60 × objective lens with a numerical aperture of 1.25 detected 13 fluorescence light sources in a measurable region with a radius of ∼ 20 μm and a height of ∼ 5 μm. It was found that the measurable region had a conical shape resulting from the overlap between two beams.

  8. Highly enhanced optical properties of indocyanine green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bae, Pan Kee; Jung, Juyeon; Chung, Bong Hyun

    2014-03-01

    The near-infrared (NIR) fluorescence probe has better tissue penetration and lower autofluorescence. Indocyanine green (ICG) is an NIR organic dye for extensive biological application, and it has been clinically approved for human medical imaging and diagnosis. However, application of this dye is limited by its numerous disadvantageous properties in aqueous solution, including its concentration-dependent aggregation, poor aqueous stability in vitro, and low quantum yield. Its use in molecular imaging probes is limited because it loses fluorescence after binding to nonspecific plasma proteins, leading to rapid elimination from the body with a half-life of 2 - 4 min. In this study, the multifunctional perfluorocarbon (PFC)/ICG nanoemulsions were investigated with the aim of overcoming these limitations. The PFC/ICG nanoemulsions as a new type of delivery vehicle for contrast agents have both NIR optical imaging and 19 F-MR imaging moieties. These nanoemulsions exhibited less aggregation, increased fluorescence intensity, long-term stability, and physicochemical stability against external light and temperature compared to free aqueous ICG. Also, the PFC/ICG bimodal nanoemulsions allow excellent detection of lymph nodes in vivo through NIR optical imaging and 19 F-MR imaging. This result showed the suitability of the proposed nanoemulsions for non-invasive lymph node mapping as they enable long-time detection of lymph nodes.

  9. Near-infrared indocyanine dye permits real-time characterization of both venous and lymphatic circulation

    NASA Astrophysics Data System (ADS)

    Kurahashi, Toshikazu; Iwatsuki, Katsuyuki; Onishi, Tetsuro; Arai, Tetsuya; Teranishi, Katsunori; Hirata, Hitoshi

    2016-08-01

    We investigated the optical properties of a near-infrared (NIR) fluorochrome, di-β-cyclodextrin-binding indocyanine derivative (TK-1), and its pharmacokinetic differences with indocyanine green (ICG). TK-1 was designed to have hydrophilic cyclodextrin molecules and, thus, for higher water solubility and smaller particle sizes than the plasma protein-bound ICG. We compared optical properties such as the absorption and fluorescence spectra, quantum yield, and photostability between both dyes in vitro. In addition, we subcutaneously injected a 1 mM solution of TK-1 or ICG into the hind footpad of rats and observed real-time NIR fluorescence intensities in their femoral veins and accompanying lymphatics at the exposed groin site to analyze the dye pharmacokinetics. These optical experiments demonstrated that TK-1 has high water solubility, a low self-aggregation tendency, and high optical and chemical stabilities. Our in vivo imaging showed that TK-1 was transported via peripheral venous flow and lymphatic flow, whereas ICG was drained only through lymphatics. The results of this study showed that lymphatic and venous transport can be differentially regulated and is most likely influenced primarily by particle size, and that TK-1 can enable real-time NIR fluorescence imaging of whole fluids and solute movement via both microvessels and lymphatics, which conventional ICG cannot achieve.

  10. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  11. Clinical use of endovenous indocyanine green during rectosigmoid segmental resection for endometriosis.

    PubMed

    Seracchioli, Renato; Raimondo, Diego; Arena, Alessandro; Zanello, Margherita; Mabrouk, Mohamed

    2018-06-01

    To describe a new use of endovenous indocyanine green (ICG) to allow real-time visualization of bowel perfusion in women with recto-sigmoid endometriosis who may be candidates for segmental resection. Step-by-step explanation of this method using descriptive text and educational video. Tertiary level referral academic center. A nulliparous 36-year-old woman affected by a large rectal endometriotic nodule was referred for severe dysmenorrhea, dyspareunia, hematochezia, and dyschezia, despite progestinic therapy. An intravenous injection of 1.5 mL solution containing 3.75 mg dose of ICG for intraoperative fluorescence imaging. Evaluation of blood perfusion of bowel and rectal endometriosis nodule. Evaluation of neoanastomosis vascularization after bowel resection. The procedure of endometriosis removal was performed using the daVinciXi surgical platform (Intuitive Surgical, Sunnyvale, CA). After ovarian endometriosis removal and adhesiolysis, we identified the endometriosis nodule on the anterior surface of the rectum. Pararectal, rectovaginal, and retrorectal spaces were dissected with a nerve-sparing technique. Indocyanine green was administered through a peripheral line. A near-infrared camera head enabled vision of the colorant after latency of a few seconds. We observed the ischemic area around the rectal nodule and perfusion areas upstream and downstream from the lesion. We selected the transecting line for rectal resection, taking account of this objective evaluation, beyond the limits of macroscopic disease. After direct mechanical anastomosis, we checked the rectal vascularization with ICG. To the best of our knowledge, this is the first reported use of endovenous ICG during a bowel resection for deep endometriosis. Endovenous ICG is proposed during surgery for rectosigmoid endometriosis to assess the perfusion of the bowel and select the transecting line. With ICG fluorescence imaging, we can objectively evaluate whether blood supply to the anastomosis is

  12. [Use of indocyanine green angiography in oncological and reconstructive breast surgery].

    PubMed

    Struk, S; Honart, J-F; Qassemyar, Q; Leymarie, N; Sarfati, B; Alkhashnam, H; Mazouni, C; Rimareix, F; Kolb, F

    2018-02-01

    The Indocyanine green (ICG) is a soluble dye that is eliminated by the liver and excreted in bile. When illuminated by an near-infrared light, the ICG emits fluorescence in the near-infrared spectrum, which can be captured by a near-infrared camera-handled device. In case of intravenous injection, ICG may be used as a marker of skin perfusion. In case of interstitial injection, it may be useful for lymphatic network mapping. In oncological and reconstructive breast surgery, ICG is used for sentinel lymph node identification, to predict mastectomy skin flap necrosis, to assess the perfusion of free flaps in autologous reconstruction and for diagnosis and treatment of upper limb secondary lymphedema. Intraoperative indocyanine green fluorescence might also be used to guide the excision of nonpalpable breast cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Rethinking the Role of Nitroglycerin Ointment in Ischemic Vascular Filler Complications: An Animal Model With ICG Imaging.

    PubMed

    Hwang, Catherine J; Morgan, Payam V; Pimentel, Aline; Sayre, James W; Goldberg, Robert A; Duckwiler, Gary

    2016-01-01

    Soft tissue dermal fillers, both temporary and permanent, are used frequently in facial rejuvenation. As the use of fillers increases, ischemic complications including skin necrosis are becoming more prevalent. In the literature, topical nitroglycerin paste has been recommended in the early treatment of patients presenting with ischemia. The purpose of this study was to evaluate the vascular perfusion effects of topical nitroglycerin paste in an animal model using indocyanine green (ICG) imaging. After Animal Research Committee approval, a rabbit ear model was used to create filler-associated skin ischemia. Ischemia was confirmed to occur after intra-arterial occlusion. Four commonly used soft tissue fillers were injected intra-arterially: Radiesse (Merz USA, Greensboro NC), Restylane (Galderma, Ft. Worth, TX), Juvederm Ultra (Allergan, Irvine CA), Belotero (Merz USA, Greensboro NC) (0.1 ml). A total of 15 ears were used, 1 control and 4 experimental per product. Thirty minutes after occlusion, nitroglycerin ointment USP, 2%(Nitro-Bid) was applied topically to the experimental ears. Vascular perfusion was evaluated with the SPY System (Novadaq Inc.) using ICG imaging. Perfusion images were obtained at baseline, immediately after, and 30 minutes after intra-arterial filler injection, and at 30, 60, 90, and 120 minutes after application of topical nitroglycerin ointment. In this rabbit ear model, no statistically significant improvement in perfusion was noted after topical application of nitroglycerin paste with ICG imaging. In addition, the skin of the rabbit ear post-nitroglycerin ointment appeared to have more of a congested appearance than the controls. Ischemic filler complications are becoming increasingly prevalent. Practitioners often treat these complications with topical nitroglycerin paste based on the knowledge that topical nitroglycerin causes vasodilation. In filler-induced tissue ischemia, however, filler product is present within arterioles

  14. Use of Indocyanine Green for Detecting the Sentinel Lymph Node in Breast Cancer Patients: From Preclinical Evaluation to Clinical Validation

    PubMed Central

    Chi, Chongwei; Ye, Jinzuo; Ding, Haolong; He, De; Huang, Wenhe; Zhang, Guo-Jun; Tian, Jie

    2013-01-01

    Assessment of the sentinel lymph node (SLN) in patients with early stage breast cancer is vital in selecting the appropriate surgical approach. However, the existing methods, including methylene blue and nuclides, possess low efficiency and effectiveness in mapping SLNs, and to a certain extent exert side effects during application. Indocyanine green (ICG), as a fluorescent dye, has been proved reliable usage in SLN detection by several other groups. In this paper, we introduce a novel surgical navigation system to detect SLN with ICG. This system contains two charge-coupled devices (CCD) to simultaneously capture real-time color and fluorescent video images through two different bands. During surgery, surgeons only need to follow the fluorescence display. In addition, the system saves data automatically during surgery enabling surgeons to find the registration point easily according to image recognition algorithms. To test our system, 5 mice and 10 rabbits were used for the preclinical setting and 22 breast cancer patients were utilized for the clinical evaluation in our experiments. The detection rate was 100% and an average of 2.7 SLNs was found in 22 patients. Our results show that the usage of our surgical navigation system with ICG to detect SLNs in breast cancer patients is technically feasible. PMID:24358319

  15. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy.

    PubMed

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-08-01

    The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells.

  16. The use of a differential fluorescent staining method to detect bacteriuria.

    PubMed

    Ciancaglini, Ettore; Fazii, Paolo; Sforza, Giuseppe Riario

    2004-01-01

    This report describes a differential staining method which distinguishes gram-positive from gram-negative bacteria in fluorescence. Gram-positive bacteria appear yellow and gram-negative bacteria appear green. The method is based on two fluorochromes, one acting in the wavelength of red, i.e. the acridine orange, and another acting in the wavelength of green, i.e. the fluorescein, which together form a red/ green system. In this report we compared the accuracy of the differential fluorescent staining method and the Gram stain in screening for bacteriuria, as detected by conventional cultures. A total of 1487 urine samples were tested. 289 cultures were positive. 237 specimens grew a single organism at 10(5) and 10(4) CFU/ml. 224 smears were detected by the differential fluorescent staining method and 162 were detected by Gram stain. 1198 samples failed to grow organisms at 10(5) and 10(4) CFU/ml. 107 smears were falsely positive by the fluorescent staining procedure and 289 were falsely positive by the Gram stain. On the basis of the culture results, the sensitivity of the differential fluorescent staining method was 94.5% and that of the Gram stain 68.3%. The specificity of the fluorescent staining procedure was 91.6% and that of the Gram stain 75.8%. The positive predictive value and the negative predictive value of the fluorescent staining method were 67.6% and 98.8%, respectively. Those of the Gram stain were 35.9% and 92.3%, respectively. A wide range of microbiological and chemical techniques are available to identify bacteria in urine. This fluorescent staining method represents a simple, rapid, reliable method with low-running costs. The main advantage of this technique is that it enables the microbiologist to exclude the presence of bacteria in the urine within a short time after specimen receipt and to eliminate a large number of specimens for culture with significant cost saving. Another advantage of the method is that it allows to distinguish gram

  17. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.

    1996-01-01

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

  18. Indocyanine green-encapsulating calcium phosphosilicate nanoparticles: Bifunctional theranostic vectors for near infrared diagnostic imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Altinoglu, Erhan I.

    The synthesis, laundering, and properties of calcium phosphosilicate nanoparticles (CPSNPs) that encapsulate the NIR fluorophore indocyanine green (ICG) related to multifunctional fluorescent photosensitization is presented. Imaging with transmission electron microscopy (TEM) revealed the well dispersed state of the nanoparticles, the spherical morphology, and the log normal mean particle diameter of 16 nm. Electron energy loss spectroscopy (EELS) mapping identified a Ca:P:Si ratio of 1:1.72:0.41 and a homogeneous composition without evidence of an element rich or deficient architecture. Zeta potential of the as-synthesized, citrate-functionalized CPSNPs was -29 +/-3 mV. A theoretical solids loading of 1.9 x 1013 CPSNP/mL was calculated for a standard suspension. The mean ICG content per suspension is 2 x 10 -6 M, which equates to approximately 63 fluorophore molecules encapsulated per CPSNP. For imaging and diagnostic considerations, the doped CPSNPs exhibited significantly greater intensity at the maximum emission wavelength relative to the free constituent fluorophore. The quantum efficiency of the fluorescent agent is 200% greater at 0.053+/-0.003 over the free fluorophore in PBS. Also, photostability based on fluorescence half-life of encapsulated ICG in PBS is 500% longer under typical clinical imaging conditions relative to the free dye. These performance enhancements are attributed to the matrix shielding effect of the NP around the internalized fluorophore molecules. The in vivo emission signal stability from ICG-CPSNPs was compared to the free fluorophore by whole animal NIR imaging. The duration of fluorescent signal from the ICG-CPSPNPs was extended to up to four days post-injection, highlighting the potential for long-term imaging and sensitive tracking applications using ICG when encapsulated within the protective matrix of CPSNPs. The surfaces of the ICG-CPSNPs were covalently bound with polyethylene glycol (PEG). The pharmacokinetic behavior of the

  19. Axillary reverse mapping with indocyanine green or isosulfan blue demonstrate similar crossover rates to radiotracer identified sentinel nodes.

    PubMed

    Foster, Deshka; Choy, Nicole; Porter, Catherine; Ahmed, Shushmita; Wapnir, Irene

    2018-03-01

    Sentinel lymph node (SLN) resection is imperative for breast cancer staging. Axillary reverse mapping (ARM) can preserve arm draining nodes and lymphatics during surgery. ARM is generally performed with isosulfan blue (ISB), restricting its use for concurrent SLN biopsy. Indocyanine green (ICG) could serve as an alternative to ISB for ARM procedures. SLN mapping and biopsy was performed via periareolar injection of 99 technetium-sulfur colloid ( 99m TcSc, TSC). ISB and ICG were injected in the upper arm. Blue-stained lymphatics or nodes were visualized in the axilla; ICG was identified using the SPY Elite® system. Twenty-three patients underwent SLN biopsy with or without axillary node dissection and ARM procedures. Twenty of these patients had at least one hot node; 12 patients had SLNs that were only hot, 6 hot/blue/fluorescent, and 2 hot/fluorescent. Overall, crossover of ARM agents with SLNs occurred in 8 cases. Inspection of the axillary cavity after SLN biopsy revealed fluorescent lymphatics and nodes remaining in 14 and 7 patients, respectively. Blue lymphatics and blue nodes were detected in fewer cases. Nearly one-third of patients showed crossover between breast and arm draining nodes, which provides insight as to why some patients develop lymphedema symptoms after SLN biopsy. ICG and ISB identify similar numbers of SLNs. As such ICG could substitute for ISB in ARM procedures. © 2017 Wiley Periodicals, Inc.

  20. Development of fluorescent methods for DNA methyltransferase assay

    NASA Astrophysics Data System (ADS)

    Li, Yueying; Zou, Xiaoran; Ma, Fei; Tang, Bo; Zhang, Chun-yang

    2017-03-01

    DNA methylation modified by DNA methyltransferase (MTase) plays an important role in regulating gene transcription, cell growth and proliferation. The aberrant DNA MTase activity may lead to a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA MTase activity is crucial to biomedical research, clinical diagnostics and therapy. However, conventional DNA MTase assays often suffer from labor-intensive operations and time-consuming procedures. Alternatively, fluorescent methods have significant advantages of simplicity and high sensitivity, and have been widely applied for DNA MTase assay. In this review, we summarize the recent advances in the development of fluorescent methods for DNA MTase assay. These emerging methods include amplification-free and the amplification-assisted assays. Moreover, we discuss the challenges and future directions of this area.

  1. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser

    PubMed Central

    Liu, Yang; Xu, Ming; Chen, Qing; Guan, Guannan; Hu, Wen; Zhao, Xiuli; Qiao, Mingxi; Hu, Haiyang; Liang, Ying; Zhu, Heyun; Chen, Dawei

    2015-01-01

    Photothermal therapy (PTT) is widely regarded as a promising technology for cancer treatment. Gold nanorods (GNRs), as excellent PTT agent candidates, have shown high-performance photothermal conversion ability under laser irradiation, yet two major obstacles to their clinical application are the lack of selective accumulation in the target site following systemic administration and the greatly reduced photothermal conversion efficiency caused by self-aggregating in aqueous environment. Herein, we demonstrate that tLyp-1 peptide-functionalized, indocyanine green (ICG)-containing mesoporous silica-coated GNRs (I-TMSG) possessed dual-function as tumor cells-targeting near-infrared (NIR) fluorescent probe and PTT agents. The construction of the nanostructure began with synthesis of GNRs by seed-mediated growth method, followed by the coating of mesoporous silica, the chemical conjugation of PEG and tLyp-1 peptide, and the enclosure of ICG as an NIR imaging agent in the mesoporous. The as-prepared nanoparticles could shield the GNRs against their self-aggregation, improve the stability of ICG, and exhibit negligible dark cytotoxicity. More importantly, such a theranostic nanocomposite could realize the combination of GNRs-based photothermal ablation under NIR illumination, ICG-mediated fluorescent imaging, and tLyp-1-enabled more easy endocytosis into breast cancer cells. All in all, I-TMSG nanoparticles, in our opinion, possessed the strong potential to realize the effective diagnosis and PTT treatment of human mammary cancer. PMID:26251596

  2. Treatment of near-infrared photodynamic therapy using a liposomally formulated indocyanine green derivative for squamous cell carcinoma.

    PubMed

    Maruyama, Tetsuro; Akutsu, Yasunori; Suganami, Akiko; Tamura, Yutaka; Fujito, Hiromichi; Ouchi, Tomoki; Akanuma, Naoki; Isozaki, Yuka; Takeshita, Nobuyoshi; Hoshino, Isamu; Uesato, Masaya; Toyota, Taro; Hayashi, Hideki; Matsubara, Hisahiro

    2015-01-01

    Photodynamic therapy (PDT) is a less invasive option for cancer treatment that has evolved through recent developments in nanotechnology. We have designed and synthesized a novel liposome system that includes an indocyanine green (ICG) derivative, ICG-C18, in its bilayer. In addition to its use as an optical imager to visualize blood, lymphatic, and bile flow, ICG has also been used as an optical sensitizer. In the present report, we evaluate the use of our novel liposome system, LP-ICG-C18, in PDT for squamous cell carcinoma in an autologous murine model. An excitation pulse beam (300 μJ/pulse) of a single band (800 nm) was used for sensitization. The cytotoxicity of the photodynamic therapy was evaluated in terms of cellular morphology changes, methyl thiazolyl tetrazolium (MTT) assay results, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining. We tested the enhanced permeability and retention effect of LP-ICG-C18 in tumor-bearing C3H/He mice using a near-infrared fluorescence imaging system and fluorescence microscopy. We also examined the antitumor effect of PDT by measuring tumor volume in tumor-bearing mice. Cell death and apoptosis were only observed in the PDT group receiving LP-ICG-C18. LP-ICG-C18 itself had no cytotoxic activity and showed good biocompatibility. LP-ICG-C18 accumulated on the tumor 24 hours after injection and was retained for approximately 3 weeks. Tumor cell apoptosis following PDT with LP-ICG-C18 was also observed under optical microscopy, MTT assay, and TUNEL staining. These findings suggest that LP-ICG-C18 may be an effective intervening material in PDT for malignant disease.

  3. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

    1996-12-03

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

  4. Prospective Trial with Optical Molecular Imaging for Percutaneous Interventions in Focal Hepatic Lesions

    PubMed Central

    Sheth, Rahul A.; Arellano, Ronald S.; Uppot, Raul N.; Samir, Anthony E.; Goyal, Lipika; Zhu, Andrew X.; Gervais, Debra A.

    2015-01-01

    Purpose To demonstrate the clinical translation of optical molecular imaging (OMI) for the localization of focal hepatic lesions during percutaneous hepatic interventions. Materials and Methods Institutional review board approval was obtained for this prospective, single-center, HIPAA-compliant trial. Patients who were suspected of having hepatocellular carcinoma or liver metastases from colorectal cancer and were scheduled for percutaneous liver biopsy or thermal ablation were eligible for this study. Patients (n = 5) received 0.5 mg per kilogram of body weight of indocyanine green (ICG) intravenously 24 hours prior to their scheduled procedure in this study. Intraprocedurally, a handheld device composed of an endoscope that fits coaxially through a standard 17-gauge introducer needle was advanced into the liver, and real-time measurements of ICG fluorescence were obtained. A point-of-care fluorescence imaging system was used to image ICG fluorescence in biopsy samples. Target-to-background ratios (TBRs) were calculated by dividing the mean fluorescence intensity in the lesion by the mean fluorescence intensity in the adjacent liver parenchyma. The reference standard for determination of proper needle positioning in patients undergoing biopsy was final pathologic analysis of biopsy specimens or follow-up imaging. Results Intraprocedural OMI was successfully performed in six lesions (two lesions in patient 3) in five patients. The median size of the targeted lesions was 16 mm (range, 10–21 mm). Four of five biopsies (80%) yielded an accurate pathologic diagnosis, and one biopsy specimen showed benign liver parenchyma; both ablated lesions showed no residual disease 1 month after the procedure. The median overall added procedure time to perform OMI was 2 minutes. ICG was found to localize with TBRs greater than 2.0 (median, 7.9; range, 2.4–13.4) in all target lesions. No trial-related adverse events were reported. Conclusion The clinical translation of OMI to

  5. Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery

    PubMed Central

    Lee, John Y-K.; Thawani, Jayesh P.; Pierce, John; Zeh, Ryan; Martinez-Lage, Maria; Chanin, Michelle; Venegas, Ollin; Nims, Sarah; Learned, Kim; Keating, Jane; Singhal, Sunil

    2016-01-01

    Background Although real-time localization of gliomas has improved with intraoperative image guidance systems, these tools are limited by brain shift, surgical cavity deformation, and expense. Objective To propose a novel method to perform near-infrared (NIR) imaging during glioma resections based on preclinical and clinical investigations, in order to localize tumors and to potentially identify residual disease. Methods Fifteen patients were identified and administered an FDA-approved, NIR contrast agent (Second Window indocyanine green [ICG], 5 mg/kg) prior to surgical resection. An NIR camera was utilized to localize the tumor prior to resection and to visualize surgical margins following resection. Neuropathology and MR imaging data were used to assess the accuracy and precision of NIR-fluorescence in identifying tumor tissue. Results NIR visualization of 15 gliomas (10 glioblastoma multiforme, 1 anaplastic astrocytoma, 2 low grade astrocytoma, 1 juvenile pilocytic astrocytoma, and 1 ganglioglioma) was performed 22.7 hours (mean) after intravenous injection of ICG. During surgery, 12/15 tumors were visualized with the NIR camera. The mean signal-to-background ratio was 9.5 ± 0.8 and fluorescence was noted through the dura to a maximum parenchymal depth of 13 mm. The best predictor of positive fluorescence was enhancement on T1-weighted imaging; this correlated with SBR (P = .03). Non-enhancing tumors did not demonstrate NIR fluorescence. Using pathology as the gold standard, the technique demonstrated a sensitivity of 98% and specificity of 45% to identify tumor in gadolinium-enhancing specimens (n = 71). Conclusion Using Second Window ICG, gadolinium-enhancing tumors can be localized through brain parenchyma intraoperatively. Its utility for margin detection is promising but limited by lower specificity. PMID:27741220

  6. [The analysis of sinusoidal modulated method used for measuring fluorescence lifetime].

    PubMed

    Feng, Ying; Huang, Shi-hua

    2007-12-01

    This paper has built a system with a sinusoidal modulated LED as the excitation source. Such exciter was used upon the sample Eu2 L'3 x nH2O (L' = C4H4O4). Both the excitation light and the 5Do-7F2 emission of Eu3+ ion were measured. Fluorescence lifetime, which approximate to 0.680 ms, can then be obtained from the measured excitation and fluorescence waveforms by non-linear least square curve fitting based on the principle of phase-shift measurement of fluorescence lifetime. Data processing methods considering respectively the high order harmonics in the modulation and multi-exponential decay of the fluorescence were discussed. A method of utilizing Fourier series expandedness to amendatory the result was put forward. Accordingly, the applicability for phase-shift method was expanded as well as a more exact result was acquired.

  7. Affinity of Indocyanine Green in the Detection of Colorectal Peritoneal Carcinomatosis.

    PubMed

    Filippello, Alexandre; Porcheron, Jack; Klein, Jean Philippe; Cottier, Michèle; Barabino, Gabriele

    2017-04-01

    Indocyanine green (ICG) is increasingly being used in digestive oncology. In colorectal cancer, ICG can be used to detect lymph node metastasis and hepatic metastasis on the surface of the liver. In peritoneal carcinomatosis, it was previously suspected that the diffusion of ICG in the tumor mass was due to the enhanced permeability and retention effect; however, this phenomenon has not been clearly demonstrated. Using bevacizumab, an antibody directed against vascular endothelial growth factor that consequently inhibits neoangiogenesis, we sought to confirm the mode of ICG diffusion. We compared the fluorescence of peritoneal carcinomatosis nodules from patients who had previously received bevacizumab during their oncologic treatment with those who did not receive this therapy. The sensitivity of the carcinomatosis nodule fluorescence was higher in the patients who did not receive bevacizumab compared with those who received the drug (76.3% and 65.0%, respectively). The rate of false-negative results was higher in the bevacizumab group than in the group that did not receive the drug (53.8% and 42.9%, respectively). Using bevacizumab, we demonstrate that the enhanced permeability and retention effect causes ICG accumulation in peritoneal carcinomatosis resulting from colorectal cancer.

  8. Method for determining surface coverage by materials exhibiting different fluorescent properties

    NASA Technical Reports Server (NTRS)

    Chappelle, Emmett W. (Inventor); Daughtry, Craig S. T. (Inventor); Mcmurtrey, James E., III (Inventor)

    1995-01-01

    An improved method for detecting, measuring, and distinguishing crop residue, live vegetation, and mineral soil is presented. By measuring fluorescence in multiple bands, live and dead vegetation are distinguished. The surface of the ground is illuminated with ultraviolet radiation, inducing fluorescence in certain molecules. The emitted fluorescent emission induced by the ultraviolet radiation is measured by means of a fluorescence detector, consisting of a photodetector or video camera and filters. The spectral content of the emitted fluorescent emission is characterized at each point sampled, and the proportion of the sampled area covered by residue or vegetation is calculated.

  9. Use of Indocyanine Green for Sentinel Lymph Node Biopsy: Case Series and Methods Comparison.

    PubMed

    McGregor, Andrew; Pavri, Sabrina N; Tsay, Cynthia; Kim, Samuel; Narayan, Deepak

    2017-11-01

    Sentinel lymph node biopsy is indicated for patients with biopsy-proven thickness melanoma greater than 1.0 mm. Use of lymphoscintigraphy along with vital blue dyes is the gold standard for identifying sentinel lymph nodes intraoperatively. Indocyanine green (ICG) has recently been used as a method of identifying sentinel lymph nodes. We herein describe a case series of patients who have successfully undergone ICG-assisted sentinel lymph node biopsy for melanoma. We compare 2 imaging systems that are used for ICG-assisted sentinel lymph node biopsy. Fourteen patients underwent ICG-assisted sentinel lymph node biopsy for melanoma using the SPY Elite system (Novadaq, Mississigua, Canada) and the Hamamatsu PDE-Neo probe system (Mitaka USA, Park City, Utah). We analyzed costs for 2 systems that utilize ICG for sentinel lymph node biopsies. Intraoperative use of ICG for sentinel lymph node biopsies was successful in correctly identifying sentinel lymph nodes. There was no difference between the Hamamatsu PDE-Neo probe and SPY Elite systems in the ability to detect sentinel lymph nodes; however, the former was associated with a lower operating cost and ease of use compared with the latter. ICG-assisted sentinel lymph biopsy using the SPY Elite or the Hamamatsu PDE-Neo probe systems for melanoma are comparable in terms of sentinel node detection. The Neo probe system delivers pertinent clinical data with the advantages of lower cost and ease of operation.

  10. Advanced methods in fluorescence microscopy.

    PubMed

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbe limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.

  11. Advanced methods in fluorescence microscopy.

    PubMed

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.

  12. System and method for measuring fluorescence of a sample

    DOEpatents

    Riot, Vincent J

    2015-03-24

    The present disclosure provides a system and a method for measuring fluorescence of a sample. The sample may be a polymerase-chain-reaction (PCR) array, a loop-mediated-isothermal amplification array, etc. LEDs are used to excite the sample, and a photodiode is used to collect the sample's fluorescence. An electronic offset signal is used to reduce the effects of background fluorescence and the noises from the measurement system. An integrator integrates the difference between the output of the photodiode and the electronic offset signal over a given period of time. The resulting integral is then converted into digital domain for further processing and storage.

  13. Widely accessible method for superresolution fluorescence imaging of living systems

    PubMed Central

    Dedecker, Peter; Mo, Gary C. H.; Dertinger, Thomas; Zhang, Jin

    2012-01-01

    Superresolution fluorescence microscopy overcomes the diffraction resolution barrier and allows the molecular intricacies of life to be revealed with greatly enhanced detail. However, many current superresolution techniques still face limitations and their implementation is typically associated with a steep learning curve. Patterned illumination-based superresolution techniques [e.g., stimulated emission depletion (STED), reversible optically-linear fluorescence transitions (RESOLFT), and saturated structured illumination microscopy (SSIM)] require specialized equipment, whereas single-molecule–based approaches [e.g., stochastic optical reconstruction microscopy (STORM), photo-activation localization microscopy (PALM), and fluorescence-PALM (F-PALM)] involve repetitive single-molecule localization, which requires its own set of expertise and is also temporally demanding. Here we present a superresolution fluorescence imaging method, photochromic stochastic optical fluctuation imaging (pcSOFI). In this method, irradiating a reversibly photoswitching fluorescent protein at an appropriate wavelength produces robust single-molecule intensity fluctuations, from which a superresolution picture can be extracted by a statistical analysis of the fluctuations in each pixel as a function of time, as previously demonstrated in SOFI. This method, which uses off-the-shelf equipment, genetically encodable labels, and simple and rapid data acquisition, is capable of providing two- to threefold-enhanced spatial resolution, significant background rejection, markedly improved contrast, and favorable temporal resolution in living cells. Furthermore, both 3D and multicolor imaging are readily achievable. Because of its ease of use and high performance, we anticipate that pcSOFI will prove an attractive approach for superresolution imaging. PMID:22711840

  14. Quantitative cerebral perfusion assessment using microscope-integrated analysis of intraoperative indocyanine green fluorescence angiography versus positron emission tomography in superficial temporal artery to middle cerebral artery anastomosis.

    PubMed

    Kobayashi, Shinya; Ishikawa, Tatsuya; Tanabe, Jun; Moroi, Junta; Suzuki, Akifumi

    2014-01-01

    Intraoperative qualitative indocyanine green (ICG) angiography has been used in cerebrovascular surgery. Hyperperfusion may lead to neurological complications after superficial temporal artery to middle cerebral artery (STA-MCA) anastomosis. The purpose of this study is to quantitatively evaluate intraoperative cerebral perfusion using microscope-integrated dynamic ICG fluorescence analysis, and to assess whether this value predicts hyperperfusion syndrome (HPS) after STA-MCA anastomosis. Ten patients undergoing STA-MCA anastomosis due to unilateral major cerebral artery occlusive disease were included. Ten patients with normal cerebral perfusion served as controls. The ICG transit curve from six regions of interest (ROIs) on the cortex, corresponding to ROIs on positron emission tomography (PET) study, was recorded. Maximum intensity (IMAX), cerebral blood flow index (CBFi), rise time (RT), and time to peak (TTP) were evaluated. RT/TTP, but not IMAX or CBFi, could differentiate between control and study subjects. RT/TTP correlated (|r| = 0.534-0.807; P < 0.01) with mean transit time (MTT)/MTT ratio in the ipsilateral to contralateral hemisphere by PET study. Bland-Altman analysis showed a wide limit of agreement between RT and MTT and between TTP and MTT. The ratio of RT before and after bypass procedures was significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.60 ± 0.032 and 0.80 ± 0.056, respectively; P = 0.017). The ratio of TTP was also significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.64 ± 0.081 and 0.85 ± 0.095, respectively; P = 0.017). Time-dependent intraoperative parameters from the ICG transit curve provide quantitative information regarding cerebral circulation time with quality and utility comparable to information obtained by PET. These parameters may help predict the occurrence of postoperative HPS.

  15. [Study of the Detecting System of CH4 and SO2 Based on Spectral Absorption Method and UV Fluorescence Method].

    PubMed

    Wang, Shu-tao; Wang, Zhi-fang; Liu, Ming-hua; Wei, Meng; Chen, Dong-ying; Wang, Xing-long

    2016-01-01

    According to the spectral absorption characteristics of polluting gases and fluorescence characteristics, a time-division multiplexing detection system is designed. Through this system we can detect Methane (CH4) and sulfur dioxide (SO2) by using spectral absorption method and the SO2 can be detected by using UV fluorescence method. The system consists of four parts: a combination of a light source which could be switched, the common optical path, the air chamber and the signal processing section. The spectral absorption characteristics and fluorescence characteristics are measured first. Then the experiment of detecting CH4 and SO2 through spectral absorption method and the experiment of detecting SO2 through UV fluorescence method are conducted, respectively. Through measuring characteristics of spectral absorption and fluorescence, we get excitation wavelengths of SO2 and CH4 measured by spectral absorption method at the absorption peak are 280 nm and 1.64 μm, respectively, and the optimal excitation wavelength of SO2 measured by UV fluorescence method is 220 nm. we acquire the linear relation between the concentration of CH4 and relative intensity and the linear relation between the concentration of SO2 and output voltage after conducting the experiment of spectral absorption method, and the linearity are 98.7%, 99.2% respectively. Through the experiment of UV fluorescence method we acquire that the relation between the concentration of SO2 and the voltage is linear, and the linearity is 99.5%. Research shows that the system is able to be applied to detect the polluted gas by absorption spectrum method and UV fluorescence method. Combing these two measurement methods decreases the costing and the volume, and this system can also be used to measure the other gases. Such system has a certain value of application.

  16. Application of intraoperative indocyanine green angiography for CNS tumors: results on the first 100 cases.

    PubMed

    Ferroli, P; Acerbi, F; Albanese, E; Tringali, G; Broggi, M; Franzini, A; Broggi, G

    2011-01-01

    To investigate the application of indocyanine green (ICG) videoangiography during microsurgery for central nervous system (CNS) tumors. One hundred patients with CNS tumors who underwent microsurgical resection from December 2006 to December 2008 were retrospectively analyzed. The diagnosis was high grade glioma in 54 cases, low grade in 17 cases, meningioma in 14 cases, metastasis in 12 cases and hemangioblastoma in 3 cases. Overall, ICG was injected intraoperatively 194 times. The standard dose of 25mg of dye was injected intravenously and intravascular fluorescence from within the blood vessels was imaged through an ad hoc microscope with dedicated software (Pentero, Carl Zeiss Co., Oberkochen, Germany). Pre-resection and post-resection arterial, capillary and venous ICG videoangiographic phases were intraoperatively observed and recorded. ICG videangiography allowed for a good evaluation of blood flow in the tumoral and peritumoral exposed vessels in all cases. No side effects due to ICG were observed. ICG video-angiography is a significant method for monitoring blood flow in the exposed vessels during microsurgical removal of CNS tumors. Pre-resection videoangiography provides useful information on the tumoral circulation and the pathology-induced alteration in surrounding brain circulation. Post-resection examination allows for an immediate check of patency of those vessels that are closely related to the tumor mass and that the surgeon does not want to damage.

  17. Advanced Methods in Fluorescence Microscopy

    PubMed Central

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres. PMID:23271142

  18. Establishment of novel detection system for embryonic stem cell-derived hepatocyte-like cells based on nongenetic manipulation with indocyanine green.

    PubMed

    Yoshie, Susumu; Ito, Jun; Shirasawa, Sakiko; Yokoyama, Tadayuki; Fujimura, Yuu; Takeda, Kazuo; Mizuguchi, Masahiro; Matsumoto, Ken; Tomotsune, Daihachiro; Sasaki, Katsunori

    2012-01-01

    Hepatocytes derived from embryonic stem cells (ESCs) are expected to be useful for basic research and clinical applications. However, in several studies, genetic methods used to detect and obtain them are difficult and pose major safety problems. Therefore, in this study, we established a novel detection system for hepatocytes by using indocyanine green (ICG), which is selectively taken up by hepatocytes, based on nongenetic manipulation. ICG has maximum light absorption near 780 nm, and it fluoresces between 800 and 900 nm. Making use of these properties, we developed flow cytometry equipped with an excitation lazer of 785 nm and specific bandpass filters and successfully detected ESC-derived ICG-positive cells that were periodic acid-Schiff positive and expressed hepatocyte phenotypic mRNAs. These results demonstrate that this detection system based on nongenetic manipulation with ICG will lead to isolate hepatocytes generated from ESCs and provide the appropriate levels of stability, quality, and safety required for cell source for cell-based therapy and pharmaceutical studies such as toxicology.

  19. Excitation-resolved multispectral method for imaging pharmacokinetic parameters in dynamic fluorescent molecular tomography

    NASA Astrophysics Data System (ADS)

    Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen

    2017-04-01

    Imaging of the pharmacokinetic parameters in dynamic fluorescence molecular tomography (DFMT) can provide three-dimensional metabolic information for biological studies and drug development. However, owing to the ill-posed nature of the FMT inverse problem, the relatively low quality of the parametric images makes it difficult to investigate the different metabolic processes of the fluorescent targets with small distances. An excitation-resolved multispectral DFMT method is proposed; it is based on the fact that the fluorescent targets with different concentrations show different variations in the excitation spectral domain and can be considered independent signal sources. With an independent component analysis method, the spatial locations of different fluorescent targets can be decomposed, and the fluorescent yields of the targets at different time points can be recovered. Therefore, the metabolic process of each component can be independently investigated. Simulations and phantom experiments are carried out to evaluate the performance of the proposed method. The results demonstrated that the proposed excitation-resolved multispectral method can effectively improve the reconstruction accuracy of the parametric images in DFMT.

  20. Pure 3D laparoscopic living donor right hemihepatectomy in a donor with separate right posterior and right anterior hepatic ducts and portal veins.

    PubMed

    Hong, Suk Kyun; Suh, Kyung-Suk; Kim, Hyo-Sin; Yoon, Kyung Chul; Ahn, Sung-Woo; Oh, Dongkyu; Kim, Hyeyoung; Yi, Nam-Joon; Lee, Kwang-Woong

    2017-11-01

    Despite increases in the performance of pure laparoscopic living donor hepatectomy, variations in the bile duct or portal vein have been regarded as relative contraindications to this technique [1-3]. This report describes a donor with separate right posterior and right anterior hepatic ducts and portal veins who underwent pure laparoscopic living donor right hemihepatectomy, integrated with 3D laparoscopy and indocyanine green (ICG) near-infrared fluorescence cholangiography [1, 4, 5]. A 50-year-old man offered to donate part of his liver to his older brother, who required a transplant for hepatitis B-associated liver cirrhosis and hepatocellular carcinoma. Donor height was 178.0 cm, body weight was 82.7 kg, and body mass index was 26.1 kg/m 2 . Preoperative computed tomography and magnetic resonance cholangiopancreatography showed that the donor had separate right posterior and right anterior hepatic ducts and portal veins. The entire procedure was performed under 3D laparoscopic view. Following intravenous injections of 0.05 mg/kg ICG, ICG near-infrared fluorescence camera was used to demarcate the exact transection line and determine the optimal bile duct division point. The total operation time was 443 min; the donor required no transfusions and experienced no intraoperative complications. The graft weighed 1146 g with a graft-to-recipient weight ratio of 1.88%. The optimal bile duct division point was identified using ICG fluorescence cholangiography, and the bile duct was divided with good patency without any stricture. The right anterior and posterior portal veins were transected with endostaplers without any torsion. The patient was discharged on postoperative day 8, with no complications. Using a 3D view and ICG fluorescence cholangiography, pure 3D laparoscopic living donor right hemihepatectomy is feasible in a donor with separate right posterior and right anterior hepatic ducts and portal veins.

  1. Assessment of incomplete clipping of aneurysms intraoperatively by a near-infrared indocyanine green-video angiography (Niicg-Va) integrated microscope.

    PubMed

    Imizu, S; Kato, Y; Sangli, A; Oguri, D; Sano, H

    2008-08-01

    The objective of this article was to assess the clinical use and the completeness of clipping with total occlusion of the aneurysmal lumen, real-time assessment of vascular patency in the parent, branching and perforating vessels, intraoperative assessment of blood flow, image quality, spatial resolution and clinical value in difficult aneurysms using near infrared indocyanine green video angiography integrated on to an operative Pentero neurosurgical microscope (Carl Zeiss, Oberkochen Germany). Thirteen patients with aneurysms were operated upon. An infrared camera with near infrared technology was adapted on to the OPMI Pentero microscope with a special filter and infrared excitation light to illuminate the operating field which was designed to allow passage of the near infrared light required for excitation of indocyanine green (ICG) which was used as the intravascular marker. The intravascular fluorescence was imaged with a video camera attached to the microscope. ICG fluorescence (700-850 nm) from a modified microscope light source on to the surgical field and passage of ICG fluorescence (780-950 nm) from the surgical field, back into the optical path of the microscope was used to detect the completeness of aneurysmal clipping Incomplete clipping in three patients (1 female and 2 males) with unruptured complicated aneurysms was detected using indocyanine green video angiography. There were no adverse effects after injection of indocyanine green. The completeness of clipping was inadequately detected by Doppler ultrasound miniprobe and rigid endoscopy and was thus complemented by indocyanine green video angiography. The operative microscope-integrated ICG video angiography as a new intraoperative method for detecting vascular flow, was found to be quick, reliable, cost-effective and possibly a substitute or adjunct for Doppler ultrasonography or intraoperative DSA, which is presently the gold standard. The simplicity of the method, the speed with which the

  2. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery.

    PubMed

    Xin, Yu; Liu, Tie; Yang, Chenlong

    We have prepared novel poly(d,l-lactide- co -glycolide) (PLGA) lipid nanoparticles (PNPs) that covalently conjugate folic acid (FA) and indocyanine green (ICG), in addition to encapsulating resveratrol (RSV) (FA-RSV/ICG-PLGA-lipid NPs, abbreviated as FA-RIPNPs); these nanoparticles have been developed for simultaneous targeted delivery of anticancer drug and fluorescence imaging. The FA-RIPNPs, with an average particle size of 92.8±2.1 nm, were prepared by a facile self-assembly-and-nanoprecipitation method, and they showed excellent stability and biocompatibility characteristics. The FA-RIPNPs exhibited an RSV encapsulation efficiency of approximately 65.6%±4.7% and a maximum release ratio of 78.2%±4.1% at pH 5.0 and 37°C. Confocal fluorescence images showed that FA-RIPNPs may facilitate a high cellular uptake via FA receptor-mediated endocytosis. Furthermore, FA-RIPNPs (containing 50 μg/mL RSV) induced a 81.4%±2.1% U87 cell inhibition rate via apoptosis, a value that proved to be higher than what has been shown for free RSV (53.1%±1.1%, equivalent RSV concentration). With a formulated polyethylene glycol (PEG) shell around the PLGA core, FA-RIPNPs prolonged the blood circulation of both free RSV and ICG, which approximately increased 6.96- and 39.4-fold ( t 1/2 ), respectively. Regarding FA-RIPNP use as a near-infrared probe, in vivo fluorescence images indicated a highly efficient accumulation of FA-RIPNPs in the tumor tissue, which proved to be approximately 2.8- and 12.6-fold higher than the RIPNPs and free ICG, respectively. Intravenous injection of FA-RIPNPs into U87 tumor-bearing mice demonstrated the best tumor inhibition effect for all tested drugs, including free RSV and RIPNPs, with no relapse, showing high biocompatibility and with no significant systemic in vivo toxicity over the course of the treatment (1 month). The results obtained demonstrate the versatility of the NPs, featuring stable fluorescence and tumor-targeting characteristics, with

  3. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery

    PubMed Central

    Xin, Yu; Liu, Tie; Yang, Chenlong

    2016-01-01

    We have prepared novel poly(d,l-lactide-co-glycolide) (PLGA) lipid nanoparticles (PNPs) that covalently conjugate folic acid (FA) and indocyanine green (ICG), in addition to encapsulating resveratrol (RSV) (FA-RSV/ICG-PLGA-lipid NPs, abbreviated as FA-RIPNPs); these nanoparticles have been developed for simultaneous targeted delivery of anticancer drug and fluorescence imaging. The FA-RIPNPs, with an average particle size of 92.8±2.1 nm, were prepared by a facile self-assembly-and-nanoprecipitation method, and they showed excellent stability and biocompatibility characteristics. The FA-RIPNPs exhibited an RSV encapsulation efficiency of approximately 65.6%±4.7% and a maximum release ratio of 78.2%±4.1% at pH 5.0 and 37°C. Confocal fluorescence images showed that FA-RIPNPs may facilitate a high cellular uptake via FA receptor-mediated endocytosis. Furthermore, FA-RIPNPs (containing 50 μg/mL RSV) induced a 81.4%±2.1% U87 cell inhibition rate via apoptosis, a value that proved to be higher than what has been shown for free RSV (53.1%±1.1%, equivalent RSV concentration). With a formulated polyethylene glycol (PEG) shell around the PLGA core, FA-RIPNPs prolonged the blood circulation of both free RSV and ICG, which approximately increased 6.96- and 39.4-fold (t1/2), respectively. Regarding FA-RIPNP use as a near-infrared probe, in vivo fluorescence images indicated a highly efficient accumulation of FA-RIPNPs in the tumor tissue, which proved to be approximately 2.8- and 12.6-fold higher than the RIPNPs and free ICG, respectively. Intravenous injection of FA-RIPNPs into U87 tumor-bearing mice demonstrated the best tumor inhibition effect for all tested drugs, including free RSV and RIPNPs, with no relapse, showing high biocompatibility and with no significant systemic in vivo toxicity over the course of the treatment (1 month). The results obtained demonstrate the versatility of the NPs, featuring stable fluorescence and tumor-targeting characteristics, with

  4. Intraoperative indocyanine green videoangiography for identification of pituitary adenomas using a microscopic transsphenoidal approach.

    PubMed

    Sandow, N; Klene, W; Elbelt, U; Strasburger, C J; Vajkoczy, P

    2015-10-01

    Initial successful surgical treatment of pituitary adenomas is crucial to reach long-term remission. Indocyanine green (ICG) videoangiography (VA) is well established in vascular neurosurgery nowadays and several reports described ICG application in brain tumor surgery. We designed this study to evaluate the feasibility of intravenous application of ICG and visualisation of a pituitary lesion via the fluorescence mode of the operation microscope. 22 patients with pituitary adenomas were treated with transsphenoidal microsurgery and were included in this study. Intraoperatively 25 mg ICG was administered intravenously and visualized via the fluorescence mode of the operation microscope (Pentero/Zeiss). 22 patients qualified for transsphenoidal surgery presenting with different clinical symptoms (13 patients with acromegaly, 6 with M. Cushing and 3 with other symptoms like vision disorder or dizziness) and identification of a pituitary lesion (21 of 22 patients) in preoperative MR-imaging (mean diameter: 9 mm; SD 3.6; 6 macroadenomas, 15 microadenomas, 1 MR-negative). In all 22 patients ICG VA was performed during surgery. No technical failures or adverse events after drug administration occurred. Visualization was optimal approximately 2.4 min after intravenous application. In all patients the adenoma could be detected via two different types of visualization: direct visualization by fluorophore emission versus indirect detection of the adenoma by a lower ICG fluorescence compared to the surrounding tissue. Our data show that intraoperative ICG VA can be a useful and easily applicable additional diagnostic tool for visualization of pituitary lesions using the microscopic approach.

  5. Fluorescence quenching as an indirect detection method for nitrated explosives.

    PubMed

    Goodpaster, J V; McGuffin, V L

    2001-05-01

    A novel approach based on fluorescence quenching is presented for the analysis of nitrated explosives. Seventeen common explosives and their degradation products are shown to be potent quenchers of pyrene, having Stern-Volmer constants that generally increase with the degree of nitration. Aromatic explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT) are more effective quenchers than aliphatic or nitramine explosives. In addition, nitroaromatic explosives are found to have unique interactions with pyrene that lead to a wavelength dependence of their Stern-Volmer constants. This phenomenon allows for their differentiation from other nitrated explosives. The fluorescence quenching method is then applied to the determination of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine(HMX), 2,4,6-TNT, nitromethane, and ammonium nitrate in various commercial explosive samples. The samples are separated by capillary liquid chromatography with post-column addition of the pyrene solution and detection by laser-induced fluorescence. The indirect fluorescence quenching method shows increased sensitivity and selectivity over traditional UV-visible absorbance as well as the ability to detect a wider range of organic and inorganic nitrated compounds.

  6. Indocyanine green detects sentinel lymph nodes in early breast cancer.

    PubMed

    Liu, Jun; Huang, Linping; Wang, Ning; Chen, Ping

    2017-04-01

    Objective To explore the clinical value of indocyanine green (ICG) for the fluorescence-guided detection of sentinel lymph nodes (SLNs) during sentinel lymph node biopsy (SLNB) in patients with early breast cancer. Methods This retrospective study included female patients with breast cancer. Patients were administered methylene blue and ICG using standard techniques. All SLNs that were collected during surgery were submitted for pathological examination. SLNs were defined as those that were either fluorescent, blue, fluorescent and blue or palpably suspicious. Surgical complications, axillary recurrence, distant metastasis and overall survival rates were observed postoperatively. Results A total of 60 patients were enrolled in the study. The fluorescence detection rate of SLNs was 100% ( n = 177), with a mean of 2.95 SLNs per patient. The methylene blue staining rate was 88.3% ( n = 106), with a mean of 1.77 SLNs per patient. Pathological assessment of intraoperative frozen specimens revealed SLN metastases in 10 patients, who immediately underwent axillary lymph node dissection. No patient had axillary recurrence or distant metastases, with a survival rate of 100%. Patients who underwent SLNB showed good appearance in the axillary wound, with no limited shoulder joint abduction and upper limb oedema. Conclusion Fluorescence-guided SLNB has several advantages and is suitable for clinical application.

  7. Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria.

    PubMed

    Portnoy, Emma; Vakruk, Natalia; Bishara, Ameer; Shmuel, Miriam; Magdassi, Shlomo; Golenser, Jacob; Eyal, Sara

    2016-01-01

    Cerebral malaria (CM) is a major cause of death of Plasmodium falciparum infection. Misdiagnosis of CM often leads to treatment delay and mortality. Conventional brain imaging technologies are rarely applicable in endemic areas. Here we address the unmet need for a simple, non-invasive imaging methodology for early diagnosis of CM. This study presents the diagnostic and therapeutic monitoring using liposomes containing the FDA-approved fluorescent dye indocyanine green (ICG) in a CM murine model. Increased emission intensity of liposomal ICG was demonstrated in comparison with free ICG. The Liposomal ICG's emission was greater in the brains of the infected mice compared to naïve mice and drug treated mice (where CM was prevented). Histological analyses suggest that the accumulation of liposomal ICG in the cerebral vasculature is due to extensive uptake mediated by activated phagocytes. Overall, liposomal ICG offers a valuable diagnostic tool and a biomarker for effectiveness of CM treatment, as well as other diseases that involve inflammation and blood vessel occlusion.

  8. Comparison of fluorescence rejection methods of baseline correction and shifted excitation Raman difference spectroscopy

    NASA Astrophysics Data System (ADS)

    Cai, Zhijian; Zou, Wenlong; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been extensively used in biochemical tests, explosive detection, food additive and environmental pollutants. However, fluorescence disturbance brings a big trouble to the applications of portable Raman spectrometer. Currently, baseline correction and shifted-excitation Raman difference spectroscopy (SERDS) methods are the most prevailing fluorescence suppressing methods. In this paper, we compared the performances of baseline correction and SERDS methods, experimentally and simulatively. Through the comparison, it demonstrates that the baseline correction can get acceptable fluorescence-removed Raman spectrum if the original Raman signal has good signal-to-noise ratio, but it cannot recover the small Raman signals out of large noise background. By using SERDS method, the Raman signals, even very weak compared to fluorescence intensity and noise level, can be clearly extracted, and the fluorescence background can be completely rejected. The Raman spectrum recovered by SERDS has good signal to noise ratio. It's proved that baseline correction is more suitable for large bench-top Raman system with better quality or signal-to-noise ratio, while the SERDS method is more suitable for noisy devices, especially the portable Raman spectrometers.

  9. Development of a Terbium-Sensitized Fluorescence Method for Analysis of Silibinin.

    PubMed

    Ershadi, Saba; Jouyban, Abolghasem; Molavi, Ommoleila; Shayanfar, Ali

    2017-05-01

    Silibinin is a natural flavonoid with potent anticancer properties, as shown in both in vitro and in vivo experiments. Various methods have been used for silibinin analysis. Terbium-sensitized fluorescence methods have been widely used for the determination of drugs in pharmaceutical preparations and biological samples in recent years. The present work is aimed at providing a simple analytical method for the quantitative determination of silibinin in aqueous solutions based on the formation of a fluorescent complex with terbium ion. Terbium concentration, pH, and volume of buffer, the important effective parameters for the determination of silibinin by the proposed method, were optimized using response surface methodology. The fluorescence intensity of silibinin was measured at 545 nm using λex = 334 nm. The developed method was applied for the determination of silibinin in plasma samples after protein precipitation with acetone. Under optimum conditions, the method provided a linear range between 0.10 and 0.50 mg/L, with a coefficient of determination (R2) of 0.997. The LOD and LOQ were 0.034 and 0.112 mg/L, respectively. These results indicate that the developed method is a simple, low-cost, and suitable analytical method for the quantification of silibinin in aqueous solution and plasma samples.

  10. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  11. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green

    PubMed Central

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  12. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy†

    PubMed Central

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-soo; Torelli, Marco D.; Hamers, Robert J.; Murhpy, Catherine J.; Orr, Galya

    2015-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate eficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells. PMID:24816810

  13. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less

  14. Photo-multiplier Tube Based Hybrid MRI and Frequency Domain Fluorescence Tomography System for Small Animal Imaging

    PubMed Central

    Lin, Y; Ghijsen, M T; Gao, H; Liu, N; Nalcioglu, O; Gulsen, G

    2014-01-01

    Fluorescence tomography (FT) is a promising molecular imaging technique that can spatially resolve both fluorophore concentration and lifetime parameters. However, recovered fluorophore parameters highly depend on the size and depth of the object due to the ill-posedness of the FT inverse problem. Structural a priori information from another high spatial resolution imaging modality has been demonstrated to significantly improve FT reconstruction accuracy. In this study, we have constructed a combined magnetic resonance imaging (MRI) and FT system for small animal imaging. A photo-multiplier tube (PMT) is used as the detector to acquire frequency domain FT measurements. This is the first MR-compatible time-resolved FT system that can reconstruct both fluorescence concentration and lifetime maps simultaneously. The performance of the hybrid system is evaluated with phantom studies. Two different fluorophores, Indocyanine Green (ICG) and 3-3′ Diethylthiatricarbocyanine Iodide (DTTCI), which have similar excitation and emission spectra but different lifetimes, are utilized. The fluorescence concentration and lifetime maps are both reconstructed with and without the structural a priori information obtained from MRI for comparison. We show that the hybrid system can accurately recover both fluorescence intensity and lifetime within 10% error for two 4.2 mm-diameter cylindrical objects embedded in a 38 mm-diameter cylindrical phantom when MRI structural a priori information is utilized. PMID:21753235

  15. Development of a QDots 800 based fluorescent solid phantom for validation of NIRF imaging platforms

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Sevick-Muraca, Eva M.

    2013-02-01

    Over the past decade, we developed near-infrared fluorescence (NIRF) devices for non-invasive lymphatic imaging using microdosages of ICG in humans and for detection of lymph node metastasis in animal models mimicking metastatic human prostate cancer. To validate imaging, a NIST traceable phantom is needed so that developed "first-inhumans" drugs may be used with different luorescent imaging platforms. In this work, we developed a QDots 800 based fluorescent solid phantom for installation and operational qualification of clinical and preclinical, NIRF imaging devices. Due to its optical clearance, polyurethane was chosen as the base material. Titanium dioxide was used as the scattering agent because of its miscibility in polyurethane. QDots 800 was chosen owing to its stability and NIR emission spectra. A first phantom was constructed for evaluation of the noise floor arising from excitation light leakage, a phenomenon that can be minimized during engineering and design of fluorescent imaging systems. A second set of phantoms were constructed to enable quantification of device sensitivity associated with our preclinical and clinical devices. The phantoms have been successfully applied for installation and operational qualification of our preclinical and clinical devices. Assessment of excitation light leakage provides a figure of merit for "noise floor" and imaging sensitivity can be used to benchmark devices for specific imaging agents.

  16. Sentinel lymph node mapping in endometrial cancer: comparison of fluorescence dye with traditional radiocolloid and blue.

    PubMed

    Papadia, Andrea; Gasparri, Maria Luisa; Buda, Alessandro; Mueller, Michael D

    2017-10-01

    Sentinel lymph node (SLN) mapping in endometrial cancer (EMCA) is rapidly gaining acceptance in the clinical community. As compared to a full lymphadenectomy in every patient, to a selective lymphadenectomy after frozen section of uterus in selected patients with intrauterine risk factors or to a strategy in which a lymphadenectomy is always omitted, SLN mapping seems to be a reasonable and oncologically safe middle ground. Various protocols can be used when applying an SLN mapping. In this manuscript we review the characteristics, toxicity and clinical impact of technetium-99m radiocolloid (Tc-99m), of the blue dyes (methylene blue, isosulfan blue and patent blue) and of indocyanine green (ICG). ICG has an excellent toxicity profile, has higher overall and bilateral detection rates as compared to blue dyes and higher bilateral detection rates as compared to a combination of Tc-99m and blue dye. The detrimental effect of BMI on the detection rates is attenuated when ICG is used as a tracer. The ease of use of the ICG SLN mapping is perceived by the patients as a better quality of care delivered. Whenever possible, ICG should be favored over the other tracers for SLN mapping in EMCA patients.

  17. The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma

    PubMed Central

    Zhang, Caiqin; Zhao, Yong; Zhang, He; Chen, Xue; Zhao, Ningning; Tan, Dengxu; Zhang, Hai; Shi, Changhong

    2017-01-01

    Near infrared fluorescence (NIRF) imaging has strong potential for widespread use in noninvasive tumor imaging. Indocyanine green (ICG) is the only Food and Drug Administration (FDA) -approved NIRF dye for clinical diagnosis; however, it is unstable and poorly targets tumors. DZ-1 is a novel heptamethine cyanine NIRF dye, suitable for imaging and tumor targeting. Here, we compared the fluorescence intensity and metabolism of DZ-1 and ICG. Additionally, we assayed their specificities and abilities to target tumor cells, using cultured hepatocellular carcinoma (HCC) cell lines, a nude mouse subcutaneous xenograft model of liver cancer, and a rabbit orthotopic transplantation model. We found that DZ-1 accumulates in tumor tissue and specifically recognizes HCC in subcutaneous and orthotopic models. The NIRF intensity of DZ-1 was one order of magnitude stronger than that of ICG, and DZ-1 showed excellent intraoperative tumor targeting in the rabbit model. Importantly, ICG accumulated at tumor sites, as well as in the liver and kidney. Furthermore, DZ-1 analog-gemcitabine conjugate (NIRG) exhibited similar tumor-specific targeting and imaging properties, including inhibition of tumor growth, in HCC patient-derived xenograft (PDX) mice. DZ-1 and NIRG demonstrated superior tumor-targeting specificity, compared to ICG. We show that DZ-1 is an effective molecular probe for specific imaging, targeting, and therapy in HCC. PMID:28635650

  18. The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma.

    PubMed

    Zhang, Caiqin; Zhao, Yong; Zhang, He; Chen, Xue; Zhao, Ningning; Tan, Dengxu; Zhang, Hai; Shi, Changhong

    2017-06-21

    Near infrared fluorescence (NIRF) imaging has strong potential for widespread use in noninvasive tumor imaging. Indocyanine green (ICG) is the only Food and Drug Administration (FDA) -approved NIRF dye for clinical diagnosis; however, it is unstable and poorly targets tumors. DZ-1 is a novel heptamethine cyanine NIRF dye, suitable for imaging and tumor targeting. Here, we compared the fluorescence intensity and metabolism of DZ-1 and ICG. Additionally, we assayed their specificities and abilities to target tumor cells, using cultured hepatocellular carcinoma (HCC) cell lines, a nude mouse subcutaneous xenograft model of liver cancer, and a rabbit orthotopic transplantation model. We found that DZ-1 accumulates in tumor tissue and specifically recognizes HCC in subcutaneous and orthotopic models. The NIRF intensity of DZ-1 was one order of magnitude stronger than that of ICG, and DZ-1 showed excellent intraoperative tumor targeting in the rabbit model. Importantly, ICG accumulated at tumor sites, as well as in the liver and kidney. Furthermore, DZ-1 analog-gemcitabine conjugate (NIRG) exhibited similar tumor-specific targeting and imaging properties, including inhibition of tumor growth, in HCC patient-derived xenograft (PDX) mice. DZ-1 and NIRG demonstrated superior tumor-targeting specificity, compared to ICG. We show that DZ-1 is an effective molecular probe for specific imaging, targeting, and therapy in HCC.

  19. Methods for Broadband Spectral Analysis: Intrinsic Fluorescence Temperature Sensing as an Example.

    PubMed

    Zhang, Weiwei; Wang, Guoyao; Baxter, Greg W; Collins, Stephen F

    2017-06-01

    A systematic study was performed on the temperature-dependent fluorescence of (Ba,Sr) 2 SiO 4 :Eu 2+ . The barycenter and extended intensity ratio techniques were proposed to characterize the broadband fluorescence spectra. These techniques and other known methods (listed below) were employed and compared in the fluorescent temperature sensing experiment. Multiple sensing functions were obtained using the behaviors of: (1) the barycenter location of the emission band; (2) the emission bandwidth; and (3) the ratio of intensities at different wavelengths in the emission band, respectively. The barycenter technique was not limited by the spectrometer resolution and worked well while the peak location method failed. All the sensing functions were based on the intrinsic characteristics of the fluorescence of the phosphor and demonstrated nearly linear relationships with temperature in the measuring range. The multifunctional temperature-sensing abilities of the phosphor can be applied in a point thermometer or thermal mapping. The new techniques were validated successfully for characterizing various spectra.

  20. Fluorescence-based methods for detecting caries lesions: systematic review, meta-analysis and sources of heterogeneity.

    PubMed

    Gimenez, Thais; Braga, Mariana Minatel; Raggio, Daniela Procida; Deery, Chris; Ricketts, David N; Mendes, Fausto Medeiros

    2013-01-01

    Fluorescence-based methods have been proposed to aid caries lesion detection. Summarizing and analysing findings of studies about fluorescence-based methods could clarify their real benefits. We aimed to perform a comprehensive systematic review and meta-analysis to evaluate the accuracy of fluorescence-based methods in detecting caries lesions. Two independent reviewers searched PubMed, Embase and Scopus through June 2012 to identify papers/articles published. Other sources were checked to identify non-published literature. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS AND DIAGNOSTIC METHODS: The eligibility criteria were studies that: (1) have assessed the accuracy of fluorescence-based methods of detecting caries lesions on occlusal, approximal or smooth surfaces, in both primary or permanent human teeth, in the laboratory or clinical setting; (2) have used a reference standard; and (3) have reported sufficient data relating to the sample size and the accuracy of methods. A diagnostic 2×2 table was extracted from included studies to calculate the pooled sensitivity, specificity and overall accuracy parameters (Diagnostic Odds Ratio and Summary Receiver-Operating curve). The analyses were performed separately for each method and different characteristics of the studies. The quality of the studies and heterogeneity were also evaluated. Seventy five studies met the inclusion criteria from the 434 articles initially identified. The search of the grey or non-published literature did not identify any further studies. In general, the analysis demonstrated that the fluorescence-based method tend to have similar accuracy for all types of teeth, dental surfaces or settings. There was a trend of better performance of fluorescence methods in detecting more advanced caries lesions. We also observed moderate to high heterogeneity and evidenced publication bias. Fluorescence-based devices have similar overall performance; however, better accuracy in detecting more advanced caries

  1. Fluorescent aromatic sensors and their methods of use

    NASA Technical Reports Server (NTRS)

    Meador, Michael A. (Inventor); Tyson, Daniel S. (Inventor); Ilan, Ulvi F. (Inventor)

    2012-01-01

    Aromatic molecules that can be used as sensors are described. The aromatic sensors include a polycyclic aromatic hydrocarbon core with a five-membered imide rings fused to the core and at least two pendant aryl groups. The aromatic sensor molecules can detect target analytes or molecular strain as a result of changes in their fluorescence, in many cases with on-off behavior. Aromatic molecules that fluoresce at various frequencies can be prepared by altering the structure of the aromatic core or the substituents attached to it. The aromatic molecules can be used as sensors for various applications such as, for example, the detection of dangerous chemicals, biomedical diagnosis, and the detection of damage or strain in composite materials. Methods of preparing aromatic sensor molecules are also described.

  2. Detection of IgG aggregation by a high throughput method based on extrinsic fluorescence.

    PubMed

    He, Feng; Phan, Duke H; Hogan, Sabine; Bailey, Robert; Becker, Gerald W; Narhi, Linda O; Razinkov, Vladimir I

    2010-06-01

    The utility of extrinsic fluorescence as a tool for high throughput detection of monoclonal antibody aggregates was explored. Several IgG molecules were thermally stressed and the high molecular weight species were fractionated using size-exclusion chromatography (SEC). The isolated aggregates and monomers were studied by following the fluorescence of an extrinsic probe, SYPRO Orange. The dye displayed high sensitivity to structurally altered, aggregated IgG structures compared to the native form, which resulted in very low fluorescence in the presence of the dye. An example of the application is presented here to demonstrate the properties of this detection method. The fluorescence assay was shown to correlate with the SEC method in quantifying IgG aggregates. The fluorescent probe method appears to have potential to detect protein particles that could not be analyzed by SEC. This method may become a powerful high throughput tool to detect IgG aggregates in pharmaceutical solutions and to study other protein properties involving aggregation. It can also be used to study the kinetics of antibody particle formation, and perhaps allow identification of the species, which are the early building blocks of protein particles. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  3. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  4. A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Yansong; Jha, Abhinav K.; Dreyer, Jakob K.; Le, Hanh N. D.; Kang, Jin U.; Roland, Per E.; Wong, Dean F.; Rahmim, Arman

    2017-02-01

    Fluorescence molecular tomography (FMT) is a promising tool for real time in vivo quantification of neurotransmission (NT) as we pursue in our BRAIN initiative effort. However, the acquired image data are noisy and the reconstruction problem is ill-posed. Further, while spatial sparsity of the NT effects could be exploited, traditional compressive-sensing methods cannot be directly applied as the system matrix in FMT is highly coherent. To overcome these issues, we propose and assess a three-step reconstruction method. First, truncated singular value decomposition is applied on the data to reduce matrix coherence. The resultant image data are input to a homotopy-based reconstruction strategy that exploits sparsity via l1 regularization. The reconstructed image is then input to a maximum-likelihood expectation maximization (MLEM) algorithm that retains the sparseness of the input estimate and improves upon the quantitation by accurate Poisson noise modeling. The proposed reconstruction method was evaluated in a three-dimensional simulated setup with fluorescent sources in a cuboidal scattering medium with optical properties simulating human brain cortex (reduced scattering coefficient: 9.2 cm-1, absorption coefficient: 0.1 cm-1 and tomographic measurements made using pixelated detectors. In different experiments, fluorescent sources of varying size and intensity were simulated. The proposed reconstruction method provided accurate estimates of the fluorescent source intensity, with a 20% lower root mean square error on average compared to the pure-homotopy method for all considered source intensities and sizes. Further, compared with conventional l2 regularized algorithm, overall, the proposed method reconstructed substantially more accurate fluorescence distribution. The proposed method shows considerable promise and will be tested using more realistic simulations and experimental setups.

  5. Long-term effects of short-term retinal bleb detachments in rabbits.

    PubMed

    Ivert, Lena; Kjeldbye, Hild; Gouras, Peter

    2002-03-01

    To examine the effects of saline-induced bleb detachments in rabbit retina. Retinal bleb detachments were produced by the injection of 50 microl of balanced salt solution (BSS) into the subretinal space of one eye of each of six rabbits using a glass pipette with a flat tip, 50 microm in diameter. The retina was examined by biomicroscopy, scanning laser ophthalmoscopy (SLO), auto-fluorescence and simultaneous fluorescein and indocyanine green (ICG) angiography. Histological examination was carried out at 1, 2, 3 and 4 months after surgery. All rabbits showed leakage of fluorescein for at least a day after detachment, but within 1 month the leakage ceased. ICG staining developed gradually at the level of the RPE or Bruch's membrane near sites of previous staining. Lipofuscin fluorescence also developed gradually around areas of staining. Histology revealed the source of the excessive lipofuscin to be in the RPE layer, especially in cells migrating away from Bruch's membrane. Short-term bleb detachments cause a transient breakdown in the blood-retinal barrier, long-term ICG staining at or deep to the RPE layer, hyperlipofuscinosis and migration of the RPE. The abnormal lipofuscin accumulation is apparent on fluorescence ophthalmoscopy and can be confused with markers such as green fluorescent protein.

  6. Analytical method for the fast time-domain reconstruction of fluorescent inclusions in vitro and in vivo.

    PubMed

    Han, Sung-Ho; Farshchi-Heydari, Salman; Hall, David J

    2010-01-20

    A novel time-domain optical method to reconstruct the relative concentration, lifetime, and depth of a fluorescent inclusion is described. We establish an analytical method for the estimations of these parameters for a localized fluorescent object directly from the simple evaluations of continuous wave intensity, exponential decay, and temporal position of the maximum of the fluorescence temporal point-spread function. Since the more complex full inversion process is not involved, this method permits a robust and fast processing in exploring the properties of a fluorescent inclusion. This method is confirmed by in vitro and in vivo experiments. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM

    2009-04-14

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow-separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  8. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM

    2011-04-26

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  9. Evaluation of algorithm methods for fluorescence spectra of cancerous and normal human tissues

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Wang, Wubao; Alfano, Robert R.

    2016-03-01

    The paper focus on the various algorithms on to unravel the fluorescence spectra by unmixing methods to identify cancerous and normal human tissues from the measured fluorescence spectroscopy. The biochemical or morphologic changes that cause fluorescence spectra variations would appear earlier than the histological approach; therefore, fluorescence spectroscopy holds a great promise as clinical tool for diagnosing early stage of carcinomas and other deceases for in vivo use. The method can further identify tissue biomarkers by decomposing the spectral contributions of different fluorescent molecules of interest. In this work, we investigate the performance of blind source un-mixing methods (backward model) and spectral fitting approaches (forward model) in decomposing the contributions of key fluorescent molecules from the tissue mixture background when certain selected excitation wavelength is applied. Pairs of adenocarcinoma as well as normal tissues confirmed by pathologist were excited by selective wavelength of 340 nm. The emission spectra of resected fresh tissue were used to evaluate the relative changes of collagen, reduced nicotinamide adenine dinucleotide (NADH), and Flavin by various spectral un-mixing methods. Two categories of algorithms: forward methods and Blind Source Separation [such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA), and Nonnegative Matrix Factorization (NMF)] will be introduced and evaluated. The purpose of the spectral analysis is to discard the redundant information which conceals the difference between these two types of tissues, but keep their diagnostically significance. The facts predicted by different methods were compared to the gold standard of histopathology. The results indicate that these key fluorophores within tissue, e.g. tryptophan, collagen, and NADH, and flavin, show differences of relative contents of fluorophores among different types of human cancer and normal tissues. The

  10. Integrated Fluorescence

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Gruhlke, Russell W. (Inventor)

    1998-01-01

    A detection method is integrated with a filtering method and an enhancement method to create a fluorescence sensor that can be miniaturized. The fluorescence sensor comprises a thin film geometry including a waveguide layer, a metal film layer and sensor layer. The thin film geometry of the fluorescence sensor allows the detection of fluorescent radiation over a narrow wavelength interval. This enables wavelength discrimination and eliminates the detection of unwanted light from unknown or spurious sources.

  11. Aqueous Angiography–Mediated Guidance of Trabecular Bypass Improves Angiographic Outflow in Human Enucleated Eyes

    PubMed Central

    Huang, Alex S.; Saraswathy, Sindhu; Dastiridou, Anna; Begian, Alan; Mohindroo, Chirayu; Tan, James C. H.; Francis, Brian A.; Hinton, David R.; Weinreb, Robert N.

    2016-01-01

    Purpose To assess the ability of trabecular micro-bypass stents to improve aqueous humor outflow (AHO) in regions initially devoid of AHO as assessed by aqueous angiography. Methods Enucleated human eyes (14 total from 7 males and 3 females [ages 52–84]) were obtained from an eye bank within 48 hours of death. Eyes were oriented by inferior oblique insertion, and aqueous angiography was performed with indocyanine green (ICG; 0.4%) or fluorescein (2.5%) at 10 mm Hg. With an angiographer, infrared and fluorescent images were acquired. Concurrent anterior segment optical coherence tomography (OCT) was performed, and fixable fluorescent dextrans were introduced into the eye for histologic analysis of angiographically positive and negative areas. Experimentally, some eyes (n = 11) first received ICG aqueous angiography to determine angiographic patterns. These eyes then underwent trabecular micro-bypass sham or stent placement in regions initially devoid of angiographic signal. This was followed by fluorescein aqueous angiography to query the effects. Results Aqueous angiography in human eyes yielded high-quality images with segmental patterns. Distally, angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. Trabecular bypass but not sham in regions initially devoid of ICG aqueous angiography led to increased aqueous angiography as assessed by fluorescein (P = 0.043). Conclusions Using sequential aqueous angiography in an enucleated human eye model system, regions initially without angiographic flow or signal could be recruited for AHO using a trabecular bypass stent. PMID:27588614

  12. The Fluorescent-Oil Film Method and Other Techniques for Boundary-Layer Flow Visualization

    NASA Technical Reports Server (NTRS)

    Loving, Donald L.; Katzoff, S.

    1959-01-01

    A flow-visualization technique, known as the fluorescent-oil film method, has been developed which appears to be generally simpler and to require less experience and development of technique than previously published methods. The method is especially adapted to use in the large high-powered wind tunnels which require considerable time to reach the desired test conditions. The method consists of smearing a film of fluorescent oil over a surface and observing where the thickness is affected by the shearing action of the boundary layer. These films are detected and identified, and their relative thicknesses are determined by use of ultraviolet light. Examples are given of the use of this technique. Other methods that show promise in the study of boundary-layer conditions are described. These methods include the use of a temperature-sensitive fluorescent paint and the use of a radiometer that is sensitive to the heat radiation from a surface. Some attention is also given to methods that can be used with a spray apparatus in front of the test model.

  13. Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source

    PubMed Central

    Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.

    2010-01-01

    Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging. PMID:20459250

  14. Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; Zhu, Liang; Ma, Hui

    2015-05-19

    We presented a decoding method of quantum dots encoded microbeads with its fluorescence spectra using line scan hyperspectral fluorescence imaging (HFI) method. A HFI method was developed to attain both the spectra of fluorescence signal and the spatial information of the encoded microbeads. A decoding scheme was adopted to decode the spectra of multicolor microbeads acquired by the HFI system. Comparison experiments between the HFI system and the flow cytometer were conducted. The results showed that the HFI system has higher spectrum resolution; thus, more channels in spectral dimension can be used. The HFI system detection and decoding experiment with the single-stranded DNA (ssDNA) immobilized multicolor beads was done, and the result showed the efficiency of the HFI system. Surface modification of the microbeads by use of the polydopamine was characterized by the scanning electron microscopy and ssDNA immobilization was characterized by the laser confocal microscope. These results indicate that the designed HFI system can be applied to practical biological and medical applications.

  15. Comparison of parameter-adapted segmentation methods for fluorescence micrographs.

    PubMed

    Held, Christian; Palmisano, Ralf; Häberle, Lothar; Hensel, Michael; Wittenberg, Thomas

    2011-11-01

    Interpreting images from fluorescence microscopy is often a time-consuming task with poor reproducibility. Various image processing routines that can help investigators evaluate the images are therefore useful. The critical aspect for a reliable automatic image analysis system is a robust segmentation algorithm that can perform accurate segmentation for different cell types. In this study, several image segmentation methods were therefore compared and evaluated in order to identify the most appropriate segmentation schemes that are usable with little new parameterization and robustly with different types of fluorescence-stained cells for various biological and biomedical tasks. The study investigated, compared, and enhanced four different methods for segmentation of cultured epithelial cells. The maximum-intensity linking (MIL) method, an improved MIL, a watershed method, and an improved watershed method based on morphological reconstruction were used. Three manually annotated datasets consisting of 261, 817, and 1,333 HeLa or L929 cells were used to compare the different algorithms. The comparisons and evaluations showed that the segmentation performance of methods based on the watershed transform was significantly superior to the performance of the MIL method. The results also indicate that using morphological opening by reconstruction can improve the segmentation of cells stained with a marker that exhibits the dotted surface of cells. Copyright © 2011 International Society for Advancement of Cytometry.

  16. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy

    PubMed Central

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-01-01

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy. PMID:29160812

  17. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy.

    PubMed

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-11-21

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  18. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan

    1992-01-01

    A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.

  19. Differential fluorescent staining method for detection of bacteria in blood cultures, cerebrospinal fluid and other clinical specimens.

    PubMed

    Fazii, P; Ciancaglini, E; Riario Sforza, G

    2002-05-01

    The aim of this study was to evaluate a differential staining method to distinguish gram-positive from gram-negative bacteria in fluorescence. The method is based on two fluorochromes, one acting in the wavelength of red, i.e. the acridine orange, and another acting in the wavelength of green, i.e. the fluorescein. With this method, gram-positive bacteria appear yellow and gram-negative bacteria appear green. In view of the importance of a rapid aetiological diagnosis in cases of septicaemia, the differential staining method in fluorescence was compared with Gram stain for the detection of bacteria in blood. Of 5,820 blood cultures entered into the study and identified by the Bactec 9120 fluorescent series instrument (Becton Dickinson Europe, France), 774 were positive. Of the 774 positive cultures, 689 yielded only a single organism. The differential staining method in fluorescence detected 626 of the 689 cultures, while Gram stain detected 468. On the basis of these results, the sensitivity of the differential staining method in fluorescence was 90.9%, while that of Gram stain was 67.9%. The difference between the two methods was statistically significant ( P<0.001). The differential fluorescent staining method was more sensitive than Gram stain in the detection of bacteria in blood cultures during the incubation period. This technique provides a rapid, simple and highly sensitive staining method that can be used in conjunction with subculture methods. Whereas subculture requires an incubation period of 18-24 h, the fluorescent staining technique can detect bacteria on the same day that smears are prepared and examined. The differential fluorescent staining method was also evaluated for its ability to detect microorganisms in cerebrospinal fluid and other clinical specimens. The microorganisms were easily detected, even when bacterial counts in the specimens were low.

  20. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    PubMed

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-12-09

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  1. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    PubMed Central

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-01-01

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176

  2. Near-infrared fluorescence image quality test methods for standardized performance evaluation

    NASA Astrophysics Data System (ADS)

    Kanniyappan, Udayakumar; Wang, Bohan; Yang, Charles; Ghassemi, Pejhman; Wang, Quanzeng; Chen, Yu; Pfefer, Joshua

    2017-03-01

    Near-infrared fluorescence (NIRF) imaging has gained much attention as a clinical method for enhancing visualization of cancers, perfusion and biological structures in surgical applications where a fluorescent dye is monitored by an imaging system. In order to address the emerging need for standardization of this innovative technology, it is necessary to develop and validate test methods suitable for objective, quantitative assessment of device performance. Towards this goal, we develop target-based test methods and investigate best practices for key NIRF imaging system performance characteristics including spatial resolution, depth of field and sensitivity. Characterization of fluorescence properties was performed by generating excitation-emission matrix properties of indocyanine green and quantum dots in biological solutions and matrix materials. A turbid, fluorophore-doped target was used, along with a resolution target for assessing image sharpness. Multi-well plates filled with either liquid or solid targets were generated to explore best practices for evaluating detection sensitivity. Overall, our results demonstrate the utility of objective, quantitative, target-based testing approaches as well as the need to consider a wide range of factors in establishing standardized approaches for NIRF imaging system performance.

  3. A-TEEMTM, a new molecular fingerprinting technique: simultaneous absorbance-transmission and fluorescence excitation-emission matrix method

    NASA Astrophysics Data System (ADS)

    Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc

    2018-04-01

    We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.

  4. Determination of torasemide by fluorescence quenching method with some dihalogenated fluorescein dyes as probes

    NASA Astrophysics Data System (ADS)

    Cui, Zhiping; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Hu, Xiaoli; Tian, Jing

    2013-10-01

    A novel fluorescence quenching method for the determination of torasemide (TOR) with some dihalogenated fluorescein dyes as fluorescence probes was developed. In acidulous medium, TOR could interact with some dihalogenated fluorescein dyes such as dichlorofluorescein (DCF), dibromofluorescein (DBF) and diiodofluorescein (DIF) to form binary complexes, which could lead to fluorescence quenching of above dihalogenated fluorescein dyes. The maximum fluorescence emission wavelengths were located at 532 nm (TOR-DCF), 535 nm (TOR-DBF) and 554 nm (TOR-DIF). The relative fluorescence intensities (ΔF = F0 - F) were proportional to the concentration of TOR in certain ranges. The detection limits were 4.8 ng mL-1 for TOR-DCF system, 9.8 ng mL-1 for TOR-DBF system and 35.1 ng mL-1 for TOR-DIF system. The optimum reaction conditions, influencing factors were studied; and the effect of coexisting substances was investigated owing to the highest sensitivity of TOR-DCF system. In addition, the reaction mechanism, composition and structure of the complex were discussed by quantum chemical calculation and Job's method. The fluorescence quenching of dihalogenated fluorescein dyes by TOR was a static quenching process judging from the effect of temperature and the Stern-Volmer plots. The method was satisfactorily applied to the determination of TOR in tablets and human urine samples.

  5. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, R.A.; Peck, K.

    1992-02-25

    A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.

  6. Estrogen receptor-targeted optical imaging of breast cancer cells with near-infrared fluorescent dye

    NASA Astrophysics Data System (ADS)

    Jose, Iven; Deodhar, Kodand; Chiplunkar, Shuba V.; Patkar, Meena

    2010-02-01

    Molecular imaging provides the in vivo characterization of cellular molecular events involved in normal and pathologic processes. With the advent of optical molecular imaging, specific molecules, proteins and genes may be tagged with a luminescent reporter and visualized in small animals. This powerful new tool has pushed in vivo optical imaging to the forefront as it allows for direct determination of drug bio-distribution and uptake kinetics as well as an indicator of biochemical activity and drug efficacy. Although optical imaging encompasses diverse techniques and makes use of various wavelengths of light, a great deal of excitement in molecular research lies in the use of tomographic and fluorescence techniques to image living tissues with near-infrared (NIR) light. Nonionizing, noninvasive near-infrared optical imaging has great potential to become promising alternative for breast cancer detection. Fluorescence spectroscopy studies of human tissue suggest that a variety of lesions show distinct fluorescence spectra compared to those of normal tissue. It has also been shown that exogenous dyes exhibit selective uptake in neoplastic lesions and may offer the best contrast for optical imaging. Use of exogenous agents would provide fluorescent markers, which could serve to detect embedded tumors in the breast. In particular, the ability to monitor the fluorescent yield and lifetime may also enable biochemical specificity if the fluorophore is sensitive to a specific metabolite, such as oxygen. As a first step, we have synthesized and characterized one such NIR fluorescent dye conjugate, which could potentially be used to detect estrogen receptors (ER)[2] . The conjugate was synthesized by ester formation between 17-β estradiol and a hydrophilic derivative of indocyanine green (ICG) cyanine dye, bis-1, 1-(4-sulfobutyl) indotricarbocyanine-5- carboxylic acid, sodium salt. The ester formed was found to have an extra binding ability with the receptor cites as

  7. Novel use of indocyanine green for intraoperative, real-time localization of ureteral stenosis during robot-assisted ureteroureterostomy.

    PubMed

    Lee, Ziho; Simhan, Jay; Parker, Daniel C; Reilly, Christopher; Llukani, Elton; Lee, David I; Mydlo, Jack H; Eun, Daniel D

    2013-09-01

    To present a novel method to intraoperatively localize ureteral strictures during robot-assisted ureteroureterostomy via indocyanine green (ICG) visualization under near-infrared (NIR) light. Seven patients underwent robot-assisted ureteroureterostomy for ureteral stricture by a single surgeon (D.D.E.). Intraoperative localization of ureteral stricture involved instilling ICG (25 mg in 10 mL distilled water) above and below the level of stenosis through a ureteral catheter or a percutaneous nephrostomy tube, or both. The fluorescent tracer was detected as a green color using the NIR modality on the da Vinci Si (Intuitive Surgical, Sunnyvale, CA). All patients consented to off-label use of ICG after full disclosure. Intraoperative ICG injection and visualization under NIR light assisted in the performance of a tension-free anastomosis in all patients. At the time of surgery, mean age was 55.7 ± 12.4 years and mean body mass index was 30.3 ± 5.8 kg/m(2). Mean operative time was 171.3 ± 52.4 minutes, mean estimated blood loss was 175.0 ± 146.5 mL, and mean length of ureteral excision on pathologic analysis was 1.6 ± 0.7 cm. There were no immediate or delayed adverse effects attributable to intraureteral ICG administration. Mean hospital length of stay was 1.6 ± 1.5 days, with no postoperative complications. Mean follow-up was 5.9 ± 1.5 months, and all cases were clinically and radiographically successful at last follow-up. Intraureteral injection of ICG with visualization under NIR light allows for real-time delineation of the ureter. Additionally, ICG administration aids in discerning healthy ureter from diseased tissue, further assisting successful robotic ureteral repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Miller, Kathy; Kruger, Robert

    2006-02-01

    Purpose. To evaluate photoacoustic spectroscopy as a potential imaging modality capable of measuring intra-tumor heterogeneity and spectral features associated with hemoglobin and the molecular probe indocyanine green (ICG). Material and Methods. Immune deficient mice were injected with wildtype and VEGF enhanced MCF-7 breast cancer cells or SKOV3x ovarian cancer cells, which were allowed to grow to a size of 6-12 mm in diameter. Two mice were imaged alive and after euthanasia for (oxy/deoxy)-hemoglobin content. A 0.4 mL volume of 1 μg/mL concentration of ICG was injected into the tail veins of two mice prior to imaging using the photoacoustic computed tomography (PCT) spectrometer (Optosonics, Inc., Indianapolis, IN 46202) scanner. Mouse images were acquired for wavelengths spanning 700-920 nm, after which the major organs were excised, and similarly imaged. A histological study was performed by sectioning the organ and optically imaging the fluorescence distribution. Results. Calibration of PCT-spectroscopy with different samples of oxygenated blood reproduced a hemoglobin dissociation curve consistent with empirical formula with an average error of 5.6%. In vivo PCT determination of SaO II levels within the tumor vascular was measurably tracked, and spatially correlated to the periphery of the tumor. Statistical and systematic errors associated with hypoxia were estimated to be 10 and 13%, respectively. Measured ICG concentrations determined by contrast-differential PCT images in excised organs (tumor, liver) were approximately 0.8 μg/mL, consistent with fluorescent histological results. Also, the difference in the ratio of ICG concentration in the gall bladder-to-vasculature between the mice was consistent with excretion times between the two mice. Conclusion. PCT spectroscopic imaging has shown to be a noninvasive modality capable of imaging intra-tumor heterogeneity of (oxy/deoxy)-hemoglobin and ICG in vivo, with an estimated error in SaO II at 17% and in

  9. Development of accelerated Raman and fluorescent Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Dumont, Alexander P.; Patil, Chetan

    2018-02-01

    Monte Carlo (MC) modeling of photon propagation in turbid media is an essential tool for understanding optical interactions between light and tissue. Insight gathered from outputs of MC models assists in mapping between detected optical signals and bulk tissue optical properties, and as such, has proven useful for inverse calculations of tissue composition and optimization of the design of optical probes. MC models of Raman scattering have previously been implemented without consideration to background autofluorescence, despite its presence in raw measurements. Modeling both Raman and fluorescence profiles at high spectral resolution requires a significant increase in computation, but is more appropriate for investigating issues such as detection limits. We present a new Raman Fluorescence MC model developed atop an existing GPU parallelized MC framework that can run more than 300x times faster than CPU methods. The robust acceleration allows for the efficient production of both Raman and fluorescence outputs from the MC model. In addition, this model can handle arbitrary sample morphologies of excitation and collection geometries to more appropriately mimic experimental settings. We will present the model framework and initial results.

  10. Enhancement of indocyanine green stability and cellular uptake by incorporating cationic lipid into indocyanine green-loaded nanoemulsions.

    PubMed

    Lee, Eun-Hye; Kim, Jin-Ki; Lim, Joon-Seok; Lim, Soo-Jeong

    2015-12-01

    Indocyanine green (ICG) is a near-infrared optical dye approved by the Food and Drug Administration. ICG has been investigated as a simultaneous color and fluorescence-imaging tracer for the intraoperative identification of sentinel lymph nodes, but its use has recently expanded to include application as a photosensitizer for the local photodynamic/thermal treatment of identified lymph node metastases. The current study was designed to develop an ICG-loaded nanoemulsion as an effective agent for both the diagnosis and treatment of lymph node metastases. Incorporating the cationic lipid stearylamine (SA) together with ICG in the shell of nanoemulsions did not affect the loaded ICG concentration, but changed the surface charge of nanoemulsions from a negative to a positive value and improved the physical stability of nanoemulsions. Loading ICG into SA-incorporated nanoemulsions more effectively blocked the aggregation and degradation of ICG compared to loading in SA-free nanoemulsions. SA incorporation also enhanced tumor cell uptake of ICG-loaded nanoemulsions, resulting in greater cell killing upon light irradiation. After subcutaneous injection into the footpad of mice, SA-incorporated nanoemulsions increased the concentration of ICG accumulated in popliteal lymph nodes to a greater extent than SA-free nanoemulsions without affecting the kinetics of lymph node uptake of nanoemulsions. These multiple beneficial effects of incorporating SA in nanoemulsions are likely attributable to the electrostatic interaction between anionic ICG and cationic SA, as well as the change in the nanoemulsion surface charge from negative to positive. Our findings indicate that SA-incorporated nanoemulsions are promising ICG carriers for combined diagnosis and treatment of lymph node metastases. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. PubMed Central

    Hackethal, Andreas; Hirschburger, Markus; Eicker, Sven Oliver; Mücke, Thomas; Lindner, Christoph; Buchweitz, Olaf

    2018-01-01

    Modern surgical strategies aim to reduce trauma by using functional imaging to improve surgical outcomes. This reviews considers and evaluates the importance of the fluorescent dye indocyanine green (ICG) to visualize lymph nodes, lymphatic pathways and vessels and tissue borders in an interdisciplinary setting. The work is based on a selective search of the literature in PubMed, Scopus, and Google Scholar and the authorsʼ own clinical experience. Because of its simple, radiation-free and uncomplicated application, ICG has become an important clinical indicator in recent years. In oncologic surgery ICG is used extensively to identify sentinel lymph nodes with promising results. In some studies, the detection rates with ICG have been better than the rates obtained with established procedures. When ICG is used for visualization and the quantification of tissue perfusion, it can lead to fewer cases of anastomotic insufficiency or transplant necrosis. The use of ICG for the imaging of organ borders, flap plasty borders and postoperative vascularization has also been scientifically evaluated. Combining the easily applied ICG dye with technical options for intraoperative and interventional visualization has the potential to create new functional imaging procedures which, in future, could expand or even replace existing established surgical techniques, particularly the techniques used for sentinel lymph node and anastomosis imaging. PMID:29375146

  12. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study

    PubMed Central

    Lara-Severino, Reyna del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M.; Sandoval-Trujillo, Ángel H.; Isaac-Olive, Keila; Ramírez-Durán, Ninfa

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes. PMID:26925294

  13. Indocyanine Green Fluorescence for Free-Flap Perfusion Imaging Revisited: Advanced Decision Making by Virtual Perfusion Reality in Visionsense Fusion Imaging Angiography.

    PubMed

    Bigdeli, Amir Khosrow; Gazyakan, Emre; Schmidt, Volker Juergen; Hernekamp, Frederick Jochen; Harhaus, Leila; Henzler, Thomas; Kremer, Thomas; Kneser, Ulrich; Hirche, Christoph

    2016-06-01

    Near-infrared indocyanine green video angiography (ICG-NIR-VA) has been introduced for free-flap surgery and may provide intraoperative flap designing as well as postoperative monitoring. Nevertheless, the technique has not been established in clinical routine because of controversy over benefits. Improved technical features of the novel Visionsense ICG-NIR-VA surgery system are promising to revisit the field of application. It features a unique real-time fusion image of simultaneous NIR and white light visualization, with highlighted perfusion, including a color-coded perfusion flow scale for optimized anatomical understanding. In a feasibility study, the Visionsense ICG-NIR-VA system was applied during 10 free-flap surgeries in 8 patients at our center. Indications included anterior lateral thigh (ALT) flap (n = 4), latissimus dorsi muscle flap (n = 1), tensor fascia latae flap (n = 1), and two bilateral deep inferior epigastric artery perforator flaps (n = 4). The system was used intraoperatively and postoperatively to investigate its impact on surgical decision making and to observe perfusion patterns correlated to clinical monitoring. Visionsense ICG-NIR-VA aided assessing free-flap design and perfusion patterns in all cases and correlated with clinical observations. Additional interventions were performed in 2 cases (22%). One venous anastomosis was revised, and 1 flap was redesigned. Indicated by ICG-NIR-VA, 1 ALT flap developed partial flap necrosis (11%). The Visionsense ICG-NIR-VA system allowed a virtual view of flap perfusion anatomy by fusion imaging in real-time. The system improved decision making for flap design and surgical decisions. Clinical and ICG-NIR-VA parameters correlated. Its future implementation may aid in improving outcomes for free-flap surgery, but additional experience is needed to define its final role. © The Author(s) 2015.

  14. Method for detecting binding events using micro-X-ray fluorescence spectrometry

    DOEpatents

    Warner, Benjamin P.; Havrilla, George J.; Mann, Grace

    2010-12-28

    Method for detecting binding events using micro-X-ray fluorescence spectrometry. Receptors are exposed to at least one potential binder and arrayed on a substrate support. Each member of the array is exposed to X-ray radiation. The magnitude of a detectable X-ray fluorescence signal for at least one element can be used to determine whether a binding event between a binder and a receptor has occurred, and can provide information related to the extent of binding between the binder and receptor.

  15. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.

    PubMed

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2018-01-01

    We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.

  16. Preparation of Multifunctional Fe@Au Core-Shell Nanoparticles with Surface Grafting as a Potential Treatment for Magnetic Hyperthermia.

    PubMed

    Chung, Ren-Jei; Shih, Hui-Ting

    2014-01-24

    Iron core gold shell nanoparticles grafted with Methotrexate (MTX) and indocyanine green (ICG) were synthesized for the first time in this study, and preliminarily evaluated for their potential in magnetic hyperthermia treatment. The core-shell Fe@Au nanoparticles were prepared via the microemulsion process and then grafted with MTX and ICG using hydrolyzed poly(styrene-alt-maleic acid) (PSMA) to obtain core-shell Fe@Au-PSMA-ICG/MTX nanoparticles. MTX is an anti-cancer therapeutic, and ICG is a fluorescent dye. XRD, TEM, FTIR and UV-Vis spectrometry were performed to characterize the nanoparticles. The data indicated that the average size of the nanoparticles was 6.4 ± 09 nm and that the Au coating protected the Fe core from oxidation. MTX and ICG were successfully grafted onto the surface of the nanoparticles. Under exposure to high frequency induction waves, the superparamagnetic nanoparticles elevated the temperature of a solution in a few minutes, which suggested the potential for an application in magnetic hyperthermia treatment. The in vitro studies verified that the nanoparticles were biocompatible; nonetheless, the Fe@Au-PSMA-ICG/MTX nanoparticles killed cancer cells (Hep-G2) via the magnetic hyperthermia mechanism and the release of MTX.

  17. Calibrating the imaging and therapy performance of magneto-fluorescent gold nanoshells for breast cancer

    NASA Astrophysics Data System (ADS)

    Dowell, Adam; Chen, Wenxue; Biswal, Nrusingh; Ayala-Orozco, Ciceron; Giuliano, Mario; Schiff, Rachel; Halas, Naomi J.; Joshi, Amit

    2012-03-01

    Gold nanoshells with NIR plasmon resonance can be modified to simultaneously enhance conjugated NIR fluorescence dyes and T2 contrast of embedded iron-oxide nanoparticles, and molecularly targeted to breast and other cancers. We calibrated the theranostic performance of magneto-fluorescent nanoshells, and contrasted the performance of molecularly targeted and untargeted nanoshells for breast cancer therapy, employing MCF-7L and their HER2 overexpressing derivative MCF-7/HER2-18 breast cancer cells as in vitro model systems. Silica core gold nanoshells with plasmon resonance on ~810 nm were doped with NIR dye ICG and ~10 nm iron-oxide nanoparticles in a ~20 nm epilayer of silica. A subset of nanoshells was conjugated to antibodies targeting HER2. Cell viability with varying laser power levels in presence and absence of bare and HER2-targeted nanoshells was assessed by calcein and propidium iodide staining. For MCF-7L cells, increasing power resulted in increased cell death (F=5.63, p=0.0018), and bare nanoshells caused more cell death than HER2-targeted nanoshells or laser treatment alone (F=30.13, p<0.001). For MCF-7/HER2-18 cells, death was greater with HER2-targeted nanoshells and was independent of laser power. This study demonstrates the capability of magneto-fluorescent nanocomplexes for imaging and therapy of breast cancer cells, and the advantages of targeting receptors unique to cancer cells.

  18. Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods

    DOEpatents

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2013-01-15

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  19. Fluorescent microplate assay method for high-throughput detection of lipase transesterification activity.

    PubMed

    Zheng, Jianyong; Wei, Wei; Lan, Xing; Zhang, Yinjun; Wang, Zhao

    2018-05-15

    This study describes a sensitive and fluorescent microplate assay method to detect lipase transesterification activity. Lipase-catalyzed transesterification between butyryl 4-methyl umbelliferone (Bu-4-Mu) and methanol in tert-butanol was selected as the model reaction. The release of 4-methylumbelliferone (4-Mu) in the reaction was determined by detecting the fluorescence intensity at λ ex 330 nm and λ em 390 nm. Several lipases were used to investigate the accuracy and efficiency of the proposed method. Apparent Michaelis constant (Km) was calculated for transesterification between Bu-4-Mu and methanol by the lipases. The main advantages of the assay method include high sensitivity, inexpensive reagents, and simple detection process. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Optical spectroscopy for stereotactic biopsy of brain tumors

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; von Berg, Anna; Fiedler, Sebastian; Goetz, Marcus; Haj-Hosseini, Neda; Polzer, Christoph; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2015-07-01

    Stereotactic biopsy procedure is performed to obtain a tissue sample for diagnosis purposes. Currently, a fiber-based mechano-optical device for stereotactic biopsies of brain tumors is developed. Two different fluorophores are employed to improve the safety and reliability of this procedure: The fluorescence of intravenously applied indocyanine green (ICG) facilitates the recognition of blood vessels and thus helps minimize the risk of cerebral hemorrhages. 5- aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence is used to localize vital tumor tissue. ICG fluorescence detection using a 2-fiber probe turned out to be an applicable method to recognize blood vessels about 1.5 mm ahead of the fiber tip during a brain tumor biopsy. Moreover, the suitability of two different PpIX excitation wavelengths regarding practical aspects was investigated: While PpIX excitation in the violet region (at 405 nm) allows for higher sensitivity, red excitation (at 633 nm) is noticeably superior with regard to blood layers obscuring the fluorescence signal. Contact measurements on brain simulating agar phantoms demonstrated that a typical blood coverage of the tumor reduces the PpIX signal to about 75% and nearly 0% for 633 nm and 405 nm excitation, respectively. As a result, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy.

  1. Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics.

    PubMed

    Hu, Dehong; Zhang, Jingnan; Gao, Guanhui; Sheng, Zonghai; Cui, Haodong; Cai, Lintao

    2016-01-01

    Photoacoustic (PA) imaging and photothermal therapy (PTT) as light-induced theranostic platforms have been attracted much attention in recent years. However, the development of highly efficient and integrated phototheranostic nanoagents for amplifying PA imaging and PTT treatments poses great challenges. Here, we report a novel phototheranostic nanoagent using indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites (ICG-PDA-rGO) with amplifying PA and PTT effects for cancer theranostics. The results demonstrate that the PDA layer coating on the surface of rGO could effectively absorb a large number of ICG molecules, quench ICG's fluorescence, and enhance the PDA-rGO's optical absorption at 780 nm. The obtained ICG-PDA-rGO exhibits stronger PTT effect and higher PA contrast than that of pure GO and PDA-rGO. After PA imaging-guided PTT treatments, the tumors in 4T1 breast subcutaneous and orthotopic mice models are suppressed completely and no treatment-induced toxicity being observed. It illustrates that the ICG-PDA-rGO nanocomposites constitute a new class of theranostic nanomedicine for amplifying PA imaging and PTT treatments.

  2. Setup for testing cameras for image guided surgery using a controlled NIR fluorescence mimicking light source and tissue phantom

    NASA Astrophysics Data System (ADS)

    Georgiou, Giota; Verdaasdonk, Rudolf M.; van der Veen, Albert; Klaessens, John H.

    2017-02-01

    In the development of new near-infrared (NIR) fluorescence dyes for image guided surgery, there is a need for new NIR sensitive camera systems that can easily be adjusted to specific wavelength ranges in contrast the present clinical systems that are only optimized for ICG. To test alternative camera systems, a setup was developed to mimic the fluorescence light in a tissue phantom to measure the sensitivity and resolution. Selected narrow band NIR LED's were used to illuminate a 6mm diameter circular diffuse plate to create uniform intensity controllable light spot (μW-mW) as target/source for NIR camera's. Layers of (artificial) tissue with controlled thickness could be placed on the spot to mimic a fluorescent `cancer' embedded in tissue. This setup was used to compare a range of NIR sensitive consumer's cameras for potential use in image guided surgery. The image of the spot obtained with the cameras was captured and analyzed using ImageJ software. Enhanced CCD night vision cameras were the most sensitive capable of showing intensities < 1 μW through 5 mm of tissue. However, there was no control over the automatic gain and hence noise level. NIR sensitive DSLR cameras proved relative less sensitive but could be fully manually controlled as to gain (ISO 25600) and exposure time and are therefore preferred for a clinical setting in combination with Wi-Fi remote control. The NIR fluorescence testing setup proved to be useful for camera testing and can be used for development and quality control of new NIR fluorescence guided surgery equipment.

  3. In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe

    NASA Astrophysics Data System (ADS)

    Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong

    2018-02-01

    Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.

  4. Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis.

    PubMed Central

    Sieracki, M E; Reichenbach, S E; Webb, K L

    1989-01-01

    The accurate measurement of bacterial and protistan cell biomass is necessary for understanding their population and trophic dynamics in nature. Direct measurement of fluorescently stained cells is often the method of choice. The tedium of making such measurements visually on the large numbers of cells required has prompted the use of automatic image analysis for this purpose. Accurate measurements by image analysis require an accurate, reliable method of segmenting the image, that is, distinguishing the brightly fluorescing cells from a dark background. This is commonly done by visually choosing a threshold intensity value which most closely coincides with the outline of the cells as perceived by the operator. Ideally, an automated method based on the cell image characteristics should be used. Since the optical nature of edges in images of light-emitting, microscopic fluorescent objects is different from that of images generated by transmitted or reflected light, it seemed that automatic segmentation of such images may require special considerations. We tested nine automated threshold selection methods using standard fluorescent microspheres ranging in size and fluorescence intensity and fluorochrome-stained samples of cells from cultures of cyanobacteria, flagellates, and ciliates. The methods included several variations based on the maximum intensity gradient of the sphere profile (first derivative), the minimum in the second derivative of the sphere profile, the minimum of the image histogram, and the midpoint intensity. Our results indicated that thresholds determined visually and by first-derivative methods tended to overestimate the threshold, causing an underestimation of microsphere size. The method based on the minimum of the second derivative of the profile yielded the most accurate area estimates for spheres of different sizes and brightnesses and for four of the five cell types tested. A simple model of the optical properties of fluorescing objects and

  5. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edward S.; Kuhr, Werner G.

    1996-02-20

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  6. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edwards; Kuhr, Werner G.

    1991-04-09

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  7. Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release.

    PubMed

    Lajunen, Tatu; Kontturi, Leena-Stiina; Viitala, Lauri; Manna, Moutusi; Cramariuc, Oana; Róg, Tomasz; Bunker, Alex; Laaksonen, Timo; Viitala, Tapani; Murtomäki, Lasse; Urtti, Arto

    2016-06-06

    Light-triggered drug delivery systems enable site-specific and time-controlled drug release. In previous work, we have achieved this with liposomes containing gold nanoparticles in the aqueous core. Gold nanoparticles absorb near-infrared light and release the energy as heat that increases the permeability of the liposomal bilayer, thus releasing the contents of the liposome. In this work, we replaced the gold nanoparticles with the clinically approved imaging agent indocyanine green (ICG). The ICG liposomes were stable at storage conditions (4-22 °C) and at body temperature, and fast near-infrared (IR) light-triggered drug release was achieved with optimized phospholipid composition and a 1:50 ICG-to-lipid molar ratio. Encapsulated small molecular calcein and FITC-dextran (up to 20 kDa) were completely released from the liposomes after light exposure for 15 s. Location of ICG in the PEG layer of the liposomes was simulated with molecular dynamics. ICG has important benefits as a light-triggering agent in liposomes: fast content release, improved stability, improved possibility of liposomal size control, regulatory approval to use in humans, and the possibility of imaging the in vivo location of the liposomes based on the fluorescence of ICG. Near-infrared light used as a triggering mechanism has good tissue penetration and safety. Thus, ICG liposomes are an attractive option for light-controlled and efficient delivery of small and large drug molecules.

  8. Formulation of long-wavelength indocyanine green nanocarriers

    NASA Astrophysics Data System (ADS)

    Pansare, Vikram J.; Faenza, William J.; Lu, Hoang; Adamson, Douglas H.; Prud'homme, Robert K.

    2017-09-01

    Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICG-tetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 1∶1 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations.

  9. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOEpatents

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  10. Method of determining the optimal dilution ratio for fluorescence fingerprint of food constituents.

    PubMed

    Trivittayasil, Vipavee; Tsuta, Mizuki; Kokawa, Mito; Yoshimura, Masatoshi; Sugiyama, Junichi; Fujita, Kaori; Shibata, Mario

    2015-01-01

    Quantitative determination by fluorescence spectroscopy is possible because of the linear relationship between the intensity of emitted fluorescence and the fluorophore concentration. However, concentration quenching may cause the relationship to become nonlinear, and thus, the optimal dilution ratio has to be determined. In the case of fluorescence fingerprint (FF) measurement, fluorescence is measured under multiple wavelength conditions and a method of determining the optimal dilution ratio for multivariate data such as FFs has not been reported. In this study, the FFs of mixed solutions of tryptophan and epicatechin of different concentrations and composition ratios were measured. Principal component analysis was applied, and the resulting loading plots were found to contain useful information about each constituent. The optimal concentration ranges could be determined by identifying the linear region of the PC score plotted against total concentration.

  11. Comparison of Fluorescence Microscopy and Different Growth Media Culture Methods for Acanthamoeba Keratitis Diagnosis.

    PubMed

    Peretz, Avi; Geffen, Yuval; Socea, Soergiu D; Pastukh, Nina; Graffi, Shmuel

    2015-08-01

    Acanthamoeba keratitis (AK), a potentially blinding infection of the cornea, is caused by a free-living protozoan. Culture and microscopic examination of corneal scraping tissue material is the conventional method for identifying Acanthamoeba. In this article, we compared several methods for AK diagnosis of 32 patients: microscopic examination using fluorescent dye, specific culture on growth media-non-nutrient agar (NNA), culture on liquid growth media-peptone yeast glucose (PYG), and TYI-S-33. AK was found in 14 patients. Thirteen of the specimens were found AK positive by fluorescence microscopic examination, 11 specimens were found AK positive on PYG growth media, and 9 specimens were found AK positive on TYI-S-33 growth media. Only five specimens were found AK positive on NNA growth media. Therefore, we recommend using fluorescence microscopy technique and culture method, especially PYG liquid media. © The American Society of Tropical Medicine and Hygiene.

  12. A fluorescence-based method for rapid and direct determination of polybrominated diphenyl ethers in water

    DOE PAGES

    Shan, Huimei; Liu, Chongxuan; Wang, Zheming; ...

    2015-01-01

    A new method was developed for rapid and direct measurement of polybrominated diphenyl ethers (PBDEs) in aqueous samples using fluorescence spectroscopy. The fluorescence spectra of tri- to deca-BDE (BDE 28, 47, 99, 153, 190, and 209) commonly found in environment were measured at variable emission and excitation wavelengths. The results revealed that the PBDEs have distinct fluorescence spectral profiles and peak positions that can be exploited to identify these species and determine their concentrations in aqueous solutions. The detection limits as determined in deionized water spiked with PBDEs are 1.71-5.82 ng/L for BDE 28, BDE 47, BDE 190, and BDEmore » 209 and 45.55–69.95 ng/L for BDE 99 and BDE 153. The effects of environmental variables including pH, humic substance, and groundwater chemical composition on PBDEs measurements were also investigated. These environmental variables affected fluorescence intensity, but their effect can be corrected through linear additivity and separation of spectral signal contribution. Compared with conventional GC-based analytical methods, the fluorescence spectroscopy method is more efficient as it only uses a small amount of samples (2-4 mL), avoids lengthy complicated concentration and extraction steps, and has a low detection limit of a few ng/L.« less

  13. Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model.

    PubMed

    Deng, Yong; Luo, Zhaoyang; Jiang, Xu; Xie, Wenhao; Luo, Qingming

    2015-07-01

    We propose a method based on a decoupled fluorescence Monte Carlo model for constructing fluorescence Jacobians to enable accurate quantification of fluorescence targets within turbid media. The effectiveness of the proposed method is validated using two cylindrical phantoms enclosing fluorescent targets within homogeneous and heterogeneous background media. The results demonstrate that our method can recover relative concentrations of the fluorescent targets with higher accuracy than the perturbation fluorescence Monte Carlo method. This suggests that our method is suitable for quantitative fluorescence diffuse optical tomography, especially for in vivo imaging of fluorophore targets for diagnosis of different diseases and abnormalities.

  14. Research on fluorescence detection method of Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-xiong

    2017-07-01

    The paper studied the viability determination of Microcystis aeruginosa by FDA and PI staining. The staining results were measured by fluorescence microscopy. The results indicated that viable and dead cells were stained as bright green and red fluorescent respectively by FDA and PI. Through PI-FDA dual color fluorescence staining, the color of green and red distinct obviously by fluorescence microscope. The staining rate has relation with the cell density. If the cell density of M. aeruginosa was 1.0×107-1.0×109 cell·mL-1, the staining rate would be 100.0% or 98.0% by PI and of FDA respectively.

  15. Preclinical evaluation of a novel cyanine dye for tumor imaging with in vivo photoacoustic imaging.

    PubMed

    Temma, Takashi; Onoe, Satoru; Kanazaki, Kengo; Ono, Masahiro; Saji, Hideo

    2014-09-01

    Photoacoustic imaging (PA imaging or PAI) has shown great promise in the detection and monitoring of cancer. Although nanocarrier-based contrast agents have been studied for use in PAI, small molecule contrast agents are required due to their ease of preparation, costeffectiveness, and low toxicity. Here, we evaluated the usefulness of a novel cyanine dye IC7-1-Bu as a PAI contrast agent without conjugated targeting moieties for in vivo tumor imaging in a mice model. Basic PA characteristics of IC7-1-Bu were compared with indocyanine green (ICG), a Food and Drug Administration approved dye, in an aqueous solution. We evaluated the tumor accumulation profile of IC7-1-Bu and ICG by in vivo fluorescence imaging. In vivo PAI was then performed with a photoacoustic tomography system 24 and 48 h after intravenous injection of IC7-1-Bu into tumor bearing mice. IC7-1-Bu showed about a 2.3-fold higher PA signal in aqueous solution compared with that of ICG. Unlike ICG, IC7-1-Bu showed high tumor fluorescence after intravenous injection. In vivo PAI provided a tumor to background PA signal ratio of approximately 2.5 after intravenous injection of IC7-1-Bu. These results indicate that IC7-1-Bu is a promising PAI contrast agent for cancer imaging without conjugation of targeting moieties.

  16. Determination of trace aluminum by fluorescence quenching method based on catalysis of potassium chlorate oxidizing alizarin red

    NASA Astrophysics Data System (ADS)

    Shao-Qin, Lin; Xuan, Lin; Shi-Rong, Hu; Li-Qing, Zeng; Yan, Wang; Li, Chen; Jia-Ming, Liu; Long-Di, Li

    2005-11-01

    A new method for the determination of trace aluminum has been proposed. It is based on the fact that alizarin red can emit strong and stable fluorescence at 80 °C for 30 min and Al 3+ can effectively catalyze potassium chlorate oxidizing alizarin red to form non-fluorescence complex which cause the fluorescence quenching. The linear dynamic range of this method is 0.040-4.00 ng l -1 with a detection limit of 5.3 pg l -1. The regression equation can be expressed as Δ If = 8.731 + 21.73 c (ng l -1), with the correlation coefficient r = 0.9992 ( n = 6). This sensitive, rapid and accurate method has been applied to the determination of trace aluminum(III) in human hair and tea samples successfully. What is more, the mechanism of catalyzing potassium chlorate oxidizing alizarin red by the fluorescence quenching method is also discussed.

  17. Determination of trace aluminum by fluorescence quenching method based on catalysis of potassium chlorate oxidizing alizarin red.

    PubMed

    Shao-Qin, Lin; Xuan, Lin; Shi-Rong, Hu; Li-Qing, Zeng; Yan, Wang; Li, Chen; Jia-Ming, Liu; Long-Di, Li

    2005-11-01

    A new method for the determination of trace aluminum has been proposed. It is based on the fact that alizarin red can emit strong and stable fluorescence at 80 degrees C for 30 min and Al(3+) can effectively catalyze potassium chlorate oxidizing alizarin red to form non-fluorescence complex which cause the fluorescence quenching. The linear dynamic range of this method is 0.040-4.00 ngl(-1) with a detection limit of 5.3 pgl(-1). The regression equation can be expressed as DeltaI(f)=8.731+21.73c(Al(3+)) (ngl(-1)), with the correlation coefficient r=0.9992 (n=6). This sensitive, rapid and accurate method has been applied to the determination of trace aluminum(III) in human hair and tea samples successfully. What is more, the mechanism of catalyzing potassium chlorate oxidizing alizarin red by the fluorescence quenching method is also discussed.

  18. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  19. Cyanine-based probe\\tag-peptide pair for fluorescence protein imaging and fluorescence protein imaging methods

    DOEpatents

    Mayer-Cumblidge, M Uljana [Richland, WA; Cao, Haishi [Richland, WA

    2010-08-17

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  20. Feasibility and optimal dosage of indocyanine green fluorescence for sentinel lymph node detection using robotic single-site instrumentation: preclinical study.

    PubMed

    Levinson, Kimberly L; Mahdi, Haider; Escobar, Pedro F

    2013-01-01

    The present study was performed to determine the optimal dosage of indocyanine green (ICG) to accurately differentiate the sentinel node from surrounding tissue and then to test this dosage using novel single-port robotic instrumentation. The study was performed in healthy female pigs. After induction of anesthesia, all pigs underwent exploratory laparotomy, dissection of the bladder, and colpotomy to reveal the cervical os. With use of a 21-gauge needle, 0.5 mL normal saline solution was injected at the 3- and 9-o'clock positions as control. Four concentrations of ICG were constituted for doses of 1000, 500, 250, and 175 μg per 0.5 mL. ICG was then injected at the 3- and 9-o'clock positions on the cervix. The SPY camera was used to track ICG into the sentinel nodes and to quantify the intensity of light emitted. SPY technology uses an intensity scale of 1 to 256; this scale was used to determine the difference in intensity between the sentinel node and surrounding tissues. The optimal dosage was tested using single-port robotic instrumentation with the same injection techniques. A sentinel node was identified at all doses except 175 μg, at which ICG stayed in the cervix and vasculature only. For both the 500- and 250-μg doses, the sentinel node was identified before reaching maximum intensity. At maximum intensity, the difference between the surrounding tissue and the node was 207 (251 vs 44) for the 500-μg dose and 159 (251 vs 92) for the 250-μg dose. Sentinel lymph node (SLN) biopsy was successfully performed using single-port robotic technology with both the 250- and 500-μg doses. For SLN detection, the dose of ICG is related to the ability to differentiate the sentinel node from the surrounding tissue. An ICG dose of 250 to 500 μg enables identification of a SLN with more distinction from the surrounding tissues, and this procedure is feasible using single-port robotics instrumentation. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights

  1. Donor-acceptor-pair emission in fluorescent 4H-SiC grown by PVT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xi, E-mail: liuxi@mail.sic.ac.cn; Zhuo, Shi-Yi; Gao, Pan

    Fluorescent SiC, which contains donor and acceptor impurities with optimum concentrations, can work as a phosphor for visible light emission by donor-acceptor-pair (DAP) recombination. In this work, 3 inch N-B-Al co-doped fluorescent 4H-SiC crystals are prepared by PVT method. The p-type fluorescent 4H-SiC with low aluminum doping concentration can show intensive yellow-green fluorescence at room temperature. N-B DAP peak wavelength shifts from 578nm to 525nm and weak N-Al DAP emission occurred 403/420 nm quenches, when the temperature increases from 4K to 298K. The aluminum doping induces higher defect concentration in the fluorescent crystal and decreases optical transmissivity of the crystalmore » in the visible light range. It triggers more non-radiative recombination and light absorption losses in the crystal.« less

  2. Laparoscopic Sentinel Lymph Node Mapping with Indocyanine Green Using the iSpies Platform: Initial Experience Argentina.

    PubMed

    Di Guilmi, Julian; Darin, Maria Cecilia; Toscano, Maria; Maya, Gustavo

    To demonstrate the initial experience in Argentina using the iSpies indocyanine green (ICG) platform in sentinel lymph node mapping in patients with early-stage cervical cancer. Step-by-step demonstration of the technique using a video and pictures (educative video) (Canadian Task Force classification III). Laparoscopic and robotic sentinel lymph node mapping using ICG has been shown to be safe and feasible; however, in developing countries, the opportunities to use fluorescent imaging through a minimally invasive approach are very limited, given the cost restrictions of acquiring the near-infrared technology and the fluorescent dyes. A 47-year-old woman presented with a stage IB1 squamous cervical cancer. Physical examination revealed a 1.5-cm tumor without evidence of parametrial involvement. Magnetic resonance imaging did not show any evidence of metastatic disease. The patient underwent laparoscopic radical hysterectomy with sentinel lymph node mapping. On laparoscopic exposure of the pelvic spaces, a cervical injection of ICG (1 mL superficial and deep) was administered using a spinal needle at the 3 o'clock and 9 o'clock positions. Sentinel lymph node mapping was then performed using the ICG (Pulsion Medical Systems, Feldkirchen, Germany) and an iSpies near-infrared camera (Karl Storz Endoskope, Tuttlingen, Germany). Bilateral sentinel lymph nodes were detected on the left external iliac artery and in the right obturator space. Both were confirmed ex vivo. The total operative time was 170 minutes. No intraoperative or postoperative complications were reported, and the patient was discharged at 48 hours after surgery. Estimated blood loss was minimal. Sentinel lymph node mapping alone is not the standard of care in our institution, and thus bilateral lymphadenectomy was performed. Ultrastaging is routinely performed when a sentinel lymph node is evaluated. Final pathology revealed a tumor confined to the cervix, with tumor-free margins, and a total of 10

  3. Novel Spectrofluorimetric Method for the Determination of Perindopril Erbumine Based on Fluorescence Quenching of Rhodamine B.

    PubMed

    Fael, Hanan; Sakur, Amir Al-Haj

    2015-11-01

    A novel, simple and specific spectrofluorimetric method was developed and validated for the determination of perindopril erbumine (PDE). The method is based on the fluorescence quenching of Rhodamine B upon adding perindopril erbumine. The quenched fluorescence was monitored at 578 nm after excitation at 500 nm. The optimization of the reaction conditions such as the solvent, reagent concentration, and reaction time were investigated. Under the optimum conditions, the fluorescence quenching was linear over a concentration range of 1.0-6.0 μg/mL. The proposed method was fully validated and successfully applied to the analysis of perindopril erbumine in pure form and tablets. Statistical comparison of the results obtained by the developed and reference methods revealed no significant differences between the methods compared in terms of accuracy and precision. The method was shown to be highly specific in the presence of indapamide, a diuretic that is commonly combined with perindopril erbumine. The mechanism of rhodamine B quenching was also discussed.

  4. Histological methods to determine blood flow distribution with fluorescent microspheres.

    PubMed

    Luchtel, D L; Boykin, J C; Bernard, S L; Glenny, R W

    1998-11-01

    We evaluated several histological methods and determined their advantages and disadvantages for histological studies of tissues and organs perfused with fluorescent microspheres. Microspheres retained their fluorescence in 7-10 microm serial sections with a change in the antimedium from toluene when samples were fixed in formalin and embedded in paraffin. Several antimedia allowed both wax infiltration of tissue and preservation of microsphere fluorescence. Histoclear II was the best substitute for toluene. When samples were fixed in formalin and embedded in glycol methacrylate, thinner (3-5 microm) sections provided greater histological detail but had fewer microspheres per section. Air dried lung tissue followed by Vibratome sectioning provided thick sections (100 microm) that facilitated rapid survey of large volumes of tissue for microspheres but limited histological detail, and the air drying procedure was restricted to lung tissue. Samples fixed in formalin followed by Vibratome sectioning of unembedded tissue provided better histological detail of lung tissue and was also useful for other organs. These sections were more difficult to handle and to mount on slides compared to air dried tissue, whereas fixed tissue embedded in gelatin provided better tissue support for Vibratome sectioning. Rapid freezing followed by cryo-microtome sectioning resulted in frozen sections that were relatively difficult to handle compared to embedded or unembedded tissue; they also deteriorated relatively rapidly with time. Paraffin sections were stained with hematoxylin and eosin or with aqueous methyl green, although tissue autofluorescence by itself was usually sufficient to identify histological features. Methacrylate sections quenched tissue autofluorescence, and Lee's stain or Richardson's stain were used for staining sections. Toluene based mountants such as Cytoseal quenched fluorescence, particularly the red fluorescent microspheres. Aqueous based mountants such as

  5. Comparative study of protoporphyrin IX fluorescence image enhancement methods to improve an optical imaging system for oral cancer detection

    NASA Astrophysics Data System (ADS)

    Jiang, Ching-Fen; Wang, Chih-Yu; Chiang, Chun-Ping

    2011-07-01

    Optoelectronics techniques to induce protoporphyrin IX fluorescence with topically applied 5-aminolevulinic acid on the oral mucosa have been developed to noninvasively detect oral cancer. Fluorescence imaging enables wide-area screening for oral premalignancy, but the lack of an adequate fluorescence enhancement method restricts the clinical imaging application of these techniques. This study aimed to develop a reliable fluorescence enhancement method to improve PpIX fluorescence imaging systems for oral cancer detection. Three contrast features, red-green-blue reflectance difference, R/B ratio, and R/G ratio, were developed first based on the optical properties of the fluorescence images. A comparative study was then carried out with one negative control and four biopsy confirmed clinical cases to validate the optimal image processing method for the detection of the distribution of malignancy. The results showed the superiority of the R/G ratio in terms of yielding a better contrast between normal and neoplastic tissue, and this method was less prone to errors in detection. Quantitative comparison with the clinical diagnoses in the four neoplastic cases showed that the regions of premalignancy obtained using the proposed method accorded with the expert's determination, suggesting the potential clinical application of this method for the detection of oral cancer.

  6. Uptake of indocyanine green by hamster sebaceous glands

    NASA Astrophysics Data System (ADS)

    McMillan, Kathleen; Lo, Kai-Ming; Wang, Zhi

    2001-05-01

    Photothermal injury to the sebaceous glands is a potential curative treatment for the common skin disease acne vulgaris. Accumulation of the exogenous chromophore indocyanine green in the sebaceous glands may be accomplished using an emulsion or liposomal formulation applied to the skin surface. An emulsion containing 0.09% by weight indocyanine green (ICG) was applied to the epidermis of hamster ears ex vivo and the flank organ in vivo. Fluorescence microscopy demonstrated selective accumulation of ICG in the underlying sebaceous glands. The concentration of ICG that may be expected to accumulate in sebaceous glands of humans was then estimated on the basis of the gland size and orifice area, for the case of topical application of a more concentrated 1% ICG liposomal formulation. Monte Carlo modeling and heat transfer calculations showed that the sebaceous glands containing the exogenous chromophore may be selectively damaged by pulsed 810 nm laser radiation in conjunction with cryogen spray cooling.

  7. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid

    NASA Astrophysics Data System (ADS)

    Lin, Haitao; Ding, Liyun; Zhang, Bingyu; Huang, Jun

    2018-05-01

    A fluorescent carbon dots probe for the detection of aqueous nitrite was fabricated by a one-pot hydrothermal method, and the transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer were used to study the property of carbon dots. The fluorescent property of carbon dots influenced by the concentration of aqueous nitrite was studied. The interaction between the electron-donating functional groups and the electron-accepting nitrous acid could account for the quenching effect on carbon dots by adding aqueous nitrite. The products of the hydrolysis of aqueous nitrite performed a stronger quenching effect at lower pH. The relationship between the relative fluorescence intensity of carbon dots and the concentration of nitrite was described by the Stern-Volmer equation (I0/I - 1 = 0.046[Q]) with a fine linearity (R2 = 0.99). The carbon dots-based probe provides a convenient method for the detection of nitrite concentration.

  8. Direct led-fluorescence method for Mao-B inactivation in the treatment of Parkinson's

    NASA Astrophysics Data System (ADS)

    Castillo, Jimmy A.; Hung, Jannett; Rodriguez, M.; Bastidas, E.; Laboren, I.; Jaimes, A.

    2004-10-01

    A led-fluorescence spectroscopy method determinate the inhibitory effects of probe compounds on MAO-B activity is described. In this assay, we demonstrate the possibility of determinate the activity of MAO-B efficiently and rapidly without the use of reference substrate. Measuring variations in fluorescence intensity of MAO-B enzyme during the reaction with inhibitors, L-deprenyl and berberine IC50 and KI values were obtained. For L-deprenyl (IC50 = 0.017 μM and KI = 0.019 μM) and berberine (IC50 = 90 μM and KI = 47 μM) were in agreement to the values obtained with a standard method and literature reported.

  9. Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method

    NASA Astrophysics Data System (ADS)

    Xiao, Jianbo; Wei, Xinlin; Wang, Yuanfeng; Liu, Chunxi

    2009-11-01

    The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants ( Ka) obtained by the double-logarithm curve for esculin-BSA and esculin-HSA were 1.02 × 10 7 and 2.07 × 10 4 L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S 0 → S 1 transition of esculin ( λexmax≈340 nm) appears, which is similar to the λemmax of BSA and HSA. The critical distance ( R0) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.

  10. Formulation of long-wavelength indocyanine green nanocarriers.

    PubMed

    Pansare, Vikram J; Faenza, William J; Lu, Hoang; Adamson, Douglas H; Prud'homme, Robert K

    2017-09-01

    Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICG-tetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 1∶1 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Comparison of Near-Infrared Imaging Camera Systems for Intracranial Tumor Detection.

    PubMed

    Cho, Steve S; Zeh, Ryan; Pierce, John T; Salinas, Ryan; Singhal, Sunil; Lee, John Y K

    2018-04-01

    Distinguishing neoplasm from normal brain parenchyma intraoperatively is critical for the neurosurgeon. 5-Aminolevulinic acid (5-ALA) has been shown to improve gross total resection and progression-free survival but has limited availability in the USA. Near-infrared (NIR) fluorescence has advantages over visible light fluorescence with greater tissue penetration and reduced background fluorescence. In order to prepare for the increasing number of NIR fluorophores that may be used in molecular imaging trials, we chose to compare a state-of-the-art, neurosurgical microscope (System 1) to one of the commercially available NIR visualization platforms (System 2). Serial dilutions of indocyanine green (ICG) were imaged with both systems in the same environment. Each system's sensitivity and dynamic range for NIR fluorescence were documented and analyzed. In addition, brain tumors from six patients were imaged with both systems and analyzed. In vitro, System 2 demonstrated greater ICG sensitivity and detection range (System 1 1.5-251 μg/l versus System 2 0.99-503 μg/l). Similarly, in vivo, System 2 demonstrated signal-to-background ratio (SBR) of 2.6 ± 0.63 before dura opening, 5.0 ± 1.7 after dura opening, and 6.1 ± 1.9 after tumor exposure. In contrast, System 1 could not easily detect ICG fluorescence prior to dura opening with SBR of 1.2 ± 0.15. After the dura was reflected, SBR increased to 1.4 ± 0.19 and upon exposure of the tumor SBR increased to 1.8 ± 0.26. Dedicated NIR imaging platforms can outperform conventional microscopes in intraoperative NIR detection. Future microscopes with improved NIR detection capabilities could enhance the use of NIR fluorescence to detect neoplasm and improve patient outcome.

  12. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Di; Li Yuhua; Wong, Molly D.

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signalmore » radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.« less

  13. Indocyanine green for intraoperative localization of ureter.

    PubMed

    Siddighi, Sam; Yune, Junchan Joshua; Hardesty, Jeffrey

    2014-10-01

    Intraurethral injection of indocyanine green (ICG; Akorn, Lake Forest, IL) and visualization under near-infrared (NIR) light allows for real-time delineation of the ureter. This technology can be helpful to prevent iatrogenic ureteral injury during pelvic surgery. Patients were scheduled to undergo robot-assisted laparoscopic sacrocolpopexy. Before the robotic surgery started, the tip of a 6-F ureteral catheter was inserted into the ureteral orifice. Twenty-five milligrams of ICG was dissolved in 10-mL of sterile water and injected through the open catheter. The same procedure was repeated on the opposite side. The ICG reversibly stained the inside lining of the ureter by binding to proteins on urothelial layer. During the course of robotic surgery, the NIR laser on the da Vinci Si surgical robot (Intuitive Surgical, Inc, Sunnyvale, CA) was used to excite ICG molecules, and infrared emission was captured by the da Vinci filtered lens system and electronically converted to green color. Thus, the ureter fluoresced green, which allowed its definitive identification throughout the entire case. In all cases of >10 patients, we were able to visualize bilateral ureters with this technology, even though there was some variation in brightness that depended on the depth of the ureter from the peritoneal surface. For example, in a morbidly obese patient, the ureters were not as bright green. There were no intraoperative or postoperative adverse effects attributable to ICG administration for up to 2 months of observation. In our experience, this novel method of intraurethral ICG injection was helpful to identify the entire course of ureter and allowed a safe approach to tissues that were adjacent to the urinary tract. The advantage of our technique is that it requires the insertion of just the tip of ureteral catheter. Despite our limited cohort of patients, our findings are consistent with previous reports of the excellent safety profile of intravenous and intrabiliary ICG

  14. Confocal laser scanning microscopic photoconversion: a new method to stabilize fluorescently labeled cellular elements for electron microscopic analysis.

    PubMed

    Colello, Raymond J; Tozer, Jordan; Henderson, Scott C

    2012-01-01

    Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.

  15. A new screening method for amphetamine and methamphetamine using dansyl chloride derivatization and cartridge fluorescence.

    PubMed

    Yamada, H; Ikeda-Wada, S; Oguri, K

    1998-07-01

    A new screening method for amphetamines was developed. It consists of derivatization with dansyl chloride, extraction of the derivative using a Sep-Pak C18 or a Bond Elut C18, solid phase extraction columns, and visualization of the fluorescence of the cartridge. A control test using drug-free urine showed no fluorescence. Amphetamine, methamphetamine and the methylenedioxy derivatives exhibited strong fluorescence, while related compounds, such as N-ethylamphetamine and fenetylline, were negative or weakly positive. The disadvantage of the present method is that it is a multi-step procedure and 20-30 min is required for screening. However, since it has a different specificity from the widely used immunochemical technique, it is suggested to be a useful screen for amphetamines.

  16. A facile fluorescent "turn-off" method for sensing paraquat based on pyranine-paraquat interaction

    NASA Astrophysics Data System (ADS)

    Zhao, Zuzhi; Zhang, Fengwei; Zhang, Zipin

    2018-06-01

    Development of a technically simple yet effective method for paraquat (PQ) detection is of great importance due to its high clinical and environmental relevance. In this study, we developed a pyranine-based fluorescent "turn-off" method for PQ sensing based on pyranine-PQ interaction. We investigated the dependence of analytical performance of this method on the experimental conditions, such as the ion strength, medium pH, and so on. Under the optimized conditions, the method is sensitive and selective, and could be used for PQ detection in real-world sample. This study essentially provides a readily accessible fluorescent system for PQ sensing which is cheap, robust, and technically simple, and it is envisaged to find more interesting clinical and environmental applications.

  17. Diagnostic evaluation of sentinel lymph node biopsy using indocyanine green and infrared or fluorescent imaging in gastric cancer: a systematic review and meta-analysis.

    PubMed

    Skubleny, Daniel; Dang, Jerry T; Skulsky, Samuel; Switzer, Noah; Tian, Chunhong; Shi, Xinzhe; de Gara, Christopher; Birch, Daniel W; Karmali, Shahzeer

    2018-06-01

    Sentinel node navigation surgery (SNNS) for gastric cancer using infrared visualization of indocyanine green (ICG) is intriguing because it may limit operative morbidity. We are the first to systematically review and perform meta-analysis on the diagnostic utility of ICG and infrared electronic endoscopy (IREE) or near infrared fluorescent imaging (NIFI) for SNNS exclusively in gastric cancer. A search of electronic databases MEDLINE, EMBASE, SCOPUS, Web of Science, and the Cochrane Library using search terms "gastric/stomach" AND "tumor/carcinoma/cancer/neoplasm/adenocarcinoma/malignancy" AND "indocyanine green" was completed in May 2017. Articles were selected by two independent reviewers based on the following major inclusion criteria: (1) diagnostic accuracy study design; (2) indocyanine green was injected at tumor site; (3) IREE or NIFI was used for intraoperative visualization. 327 titles or abstracts were screened. The quality of included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. Ten full text studies were selected. 643 patients were identified with the majority of patients possessing T1 tumors (79.8%). Pooled identification rate, diagnostic odds ratio, sensitivity, and specificity were 0.99 (0.97-1.0), 380.0 (68.71-2101), 0.87 (0.80-0.93), and 1.00 (0.99-1.00), respectively. The summary receiver operator characteristic for ICG + IREE/NIFI demonstrated a test accuracy of 98.3%. Subgroup analysis found improved test performance for studies with low-risk QUADAS-2 scores, studies published after 2010 and submucosal ICG injection. IREE had improved diagnostic odds ratio, sensitivity, and identification rate compared to NIFI. Heterogeneity among studies ranged from low (I 2  < 25%) to high (I 2  > 75%). We found encouraging results regarding the accuracy, diagnostic odds ratio, and specificity of the test. The sensitivity was not optimal but may be improved by a strict protocol to augment the technique. Given

  18. Sentinel lymph node detection in breast cancer patients using surgical navigation system based on fluorescence molecular imaging technology

    NASA Astrophysics Data System (ADS)

    Chi, Chongwei; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Tian, Jie

    2015-03-01

    Introduction: Precision and personalization treatments are expected to be effective methods for early stage cancer studies. Breast cancer is a major threat to women's health and sentinel lymph node biopsy (SLNB) is an effective method to realize precision and personalized treatment for axillary lymph node (ALN) negative patients. In this study, we developed a surgical navigation system (SNS) based on optical molecular imaging technology for the precise detection of the sentinel lymph node (SLN) in breast cancer patients. This approach helps surgeons in precise positioning during surgery. Methods: The SNS was mainly based on the technology of optical molecular imaging. A novel optical path has been designed in our hardware system and a feature-matching algorithm has been devised to achieve rapid fluorescence and color image registration fusion. Ten in vivo studies of SLN detection in rabbits using indocyanine green (ICG) and blue dye were executed for system evaluation and 8 breast cancer patients accepted the combination method for therapy. Results: The detection rate of the combination method was 100% and an average of 2.6 SLNs was found in all patients. Our results showed that the method of using SNS to detect SLN has the potential to promote its application. Conclusion: The advantage of this system is the real-time tracing of lymph flow in a one-step procedure. The results demonstrated the feasibility of the system for providing accurate location and reliable treatment for surgeons. Our approach delivers valuable information and facilitates more detailed exploration for image-guided surgery research.

  19. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    PubMed

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  20. Delayed near-infrared analysis permits visualization of rodent retinal pigment epithelium layer in vivo

    NASA Astrophysics Data System (ADS)

    Pankova, Natalie; Zhao, Xu; Liang, Huiyuan; Baek, David Sung Hyeon; Wang, Hai; Boyd, Shelley

    2014-07-01

    Patches of atrophy of the retinal pigment epithelium (RPE) have not been described in rodent models of retinal degeneration, as they have the clinical setting using fundus autofluorescence. We hypothesize that prelabeling the RPE would increase contrast and allow for improved visualization of RPE loss in vivo. Here, we demonstrate a new technique termed "delayed near-infrared analysis (DNIRA)" that permits ready detection of rat RPE, using optical imaging in the near-infrared (IR) spectrum with aid of indocyanine green (ICG) dye. Using DNIRA, we demonstrate a fluorescent RPE signal that is detected using confocal scanning laser ophthalmoscopy up to 28 days following ICG injection. This signal is apparent only after ICG injection, is dose dependent, requires the presence of the ICG filters (795/810 nm excitation/emission), does not appear in the IR reflectance channel, and is eliminated in the presence of sodium iodate, a toxin that causes RPE loss. Rat RPE explants confirm internalization of ICG dye. Together with normal retinal electrophysiology, these findings demonstrate that DNIRA is a new and safe noninvasive optical imaging technique for in vivo visualization of the RPE in models of retinal disease.

  1. Directed evolution methods for improving polypeptide folding and solubility and superfolder fluorescent proteins generated thereby

    DOEpatents

    Waldo, Geoffrey S.

    2007-09-18

    The current invention provides methods of improving folding of polypeptides using a poorly folding domain as a component of a fusion protein comprising the poorly folding domain and a polypeptide of interest to be improved. The invention also provides novel green fluorescent proteins (GFPs) and red fluorescent proteins that have enhanced folding properties.

  2. A Patch-Based Method for Repetitive and Transient Event Detection in Fluorescence Imaging

    PubMed Central

    Boulanger, Jérôme; Gidon, Alexandre; Kervran, Charles; Salamero, Jean

    2010-01-01

    Automatic detection and characterization of molecular behavior in large data sets obtained by fast imaging in advanced light microscopy become key issues to decipher the dynamic architectures and their coordination in the living cell. Automatic quantification of the number of sudden and transient events observed in fluorescence microscopy is discussed in this paper. We propose a calibrated method based on the comparison of image patches expected to distinguish sudden appearing/vanishing fluorescent spots from other motion behaviors such as lateral movements. We analyze the performances of two statistical control procedures and compare the proposed approach to a frame difference approach using the same controls on a benchmark of synthetic image sequences. We have then selected a molecular model related to membrane trafficking and considered real image sequences obtained in cells stably expressing an endocytic-recycling trans-membrane protein, the Langerin-YFP, for validation. With this model, we targeted the efficient detection of fast and transient local fluorescence concentration arising in image sequences from a data base provided by two different microscopy modalities, wide field (WF) video microscopy using maximum intensity projection along the axial direction and total internal reflection fluorescence microscopy. Finally, the proposed detection method is briefly used to statistically explore the effect of several perturbations on the rate of transient events detected on the pilot biological model. PMID:20976222

  3. Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua

    2017-03-01

    Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.

  4. Estimation of the electric plasma membrane potential difference in yeast with fluorescent dyes: comparative study of methods.

    PubMed

    Peña, Antonio; Sánchez, Norma Silvia; Calahorra, Martha

    2010-10-01

    Different methods to estimate the plasma membrane potential difference (PMP) of yeast cells with fluorescent monitors were compared. The validity of the methods was tested by the fluorescence difference with or without glucose, and its decrease by the addition of 10 mM KCl. Low CaCl₂ concentrations avoid binding of the dye to the cell surface, and low CCCP concentrations avoid its accumulation by mitochondria. Lower concentrations of Ba²+ produce a similar effect as Ca²+, without producing the fluorescence changes derived from its transport. Fluorescence changes without considering binding of the dyes to the cells and accumulation by mitochondria are overshadowed by their distribution between this organelle and the cytoplasm. Other factors, such as yeast starvation, dye used, parameters of the fluorescence changes, as well as buffers and incubation times were analyzed. An additional approach to measure the actual or relative values of PMP, determining the accumulation of the dye, is presented.

  5. New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach

    NASA Astrophysics Data System (ADS)

    Bowman, M. M.; Sanclements, M.; McKnight, D. M.

    2017-12-01

    Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase

  6. Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method.

    PubMed

    Xiao, Jianbo; Wei, Xinlin; Wang, Yuanfeng; Liu, Chunxi

    2009-11-01

    The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants (K(a)) obtained by the double-logarithm curve for esculin-BSA and esculin-HSA were 1.02x10(7) and 2.07x10(4)L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S(0)-->S(1) transition of esculin (lambda(ex)(max) approximately 340nm) appears, which is similar to the lambda(em)(max) of BSA and HSA. The critical distance (R(0)) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.

  7. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66-1.06, 1.06-1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  8. Sentinel lymph node biopsy in cutaneous melanoma of the head and neck using the indocyanine green SPY Elite system.

    PubMed

    Vahabzadeh-Hagh, Andrew M; Blackwell, Keith E; Abemayor, Elliot; St John, Maie A

    2018-05-17

    Lymph node status is the single most important prognostic factor for patients with early-stage cutaneous melanoma. Sentinel lymph node biopsy (SLNB) has become the standard of care for intermediate depth melanomas. Modern SLNB implementation includes technetium-99 lymphoscintigraphy combined with local administration of a vital blue dye. However, sentinel lymph nodes may fail to localize in some cases and false-negative rates range from 0 to 34%. Here we demonstrate the feasibility of a new sentinel lymph node biopsy technique using indocyanine green (ICG) and the SPY Elite near-infrared imaging system. Cases of primary cutaneous melanoma of the head and neck without locoregional metastasis, underwent SLNB at a single quaternary care institution between May 2016 and June 2017. Intraoperatively, 0.25 mL of ICG was injected intradermal in 4 quadrants around the primary lesion. 10-15 minute circulation time was permitted. SPY Elite identified the sentinel lymph node within the nodal basin marked by lymphoscintigraphy. Target first echelon lymph nodes were confirmed with a gamma probe and ICG fluorescence. 14 patients were included with T1a to T4b cutaneous melanomas. Success rates for sentinel lymph node identification using lymphoscintigraphy and the SPY Elite system were both 86%. Zero false negatives occurred. Median length of follow-up was 323 days. In this pilot study, Indocyanine green near-infrared fluorescence demonstrates a safe, and facile method of sentinel lymph node biopsy for cutaneous melanoma of the head and neck compared with lymphoscintigraphy and vital blue dyes. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Development of a facile and sensitive HPLC-FLD method via fluorescence labeling for triterpenic acid bioavailability investigation.

    PubMed

    You, Jinmao; Wu, Di; Zhao, Mei; Li, Guoliang; Gong, Peiwei; Wu, Yueyue; Guo, Yu; Chen, Guang; Zhao, Xianen; Sun, Zhiwei; Xia, Lian; Wu, Yongning

    2017-06-01

    Triterpenic acids are widely distributed in many fruits and are known for their medicinal benefits. The study of bioavailability has been an important task for a better understanding of the triterpenic acids. Although many methods based on fluorescence labeling for triterpenic acid determination have been established, these reported methods needed anhydrous conditions, which are not suitable for the convenient study of triterpenic acid bioavailability. Inspired by that, a versatile method, which overcomes the difficulty of the reported methods, has been first developed in this study. The novel method using 2-[12-benzo[b]acridin-5- (12H)-yl]-acetohydrazide (BAAH) as the fluorescence labeling reagent coupled with high-performance liquid chromatography with fluorescence detection was first developed for the study of triterpenic acid bioavailability. Furthermore, the labeling conditions have been optimized in order to achieve the best fluorescence labeling yield. Under the optimal conditions, the quantitative linear range of analytes was 2-1000 ng mL -1 , and the correlation coefficients were >0.9998. The detection limits for all triterpenic acid derivatives were achieved within the range of 0.28-0.29 ng mL -1 . The proposed method was successfully applied to the study of triterpenic acid bioavailability with excellent applicability and good reproducibility. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Use of an automated fluorescent microsphere method to measure regional blood flow in the fetal lamb.

    PubMed

    Tan, W; Riggs, K W; Thies, R L; Rurak, D W

    1997-08-01

    We have developed a method for measuring regional blood flow by means of fluorescent microspheres in all organs and tissues of the fetal lamb, including brain, heart, lung, liver, gut, spleen, kidney, adrenal, brown fat, skin, muscle, bone, and placenta. Five different fluorescent-labeled microspheres were used: blue (B), yellow-green (Y), orange (O), red (R), and crimson (C). An automated, 96-well microplate fluorescent reader (bottom reading) was chosen for the assay because of the rapidity and high throughput that it offers. Tissue samples were digested by 4 M ethanolic KOH. The sedimentation method and dye extraction with Cellosolve acetate, as previously reported by others, were used for the sample processing. The bones were crushed and allowed to directly soak in Cellosolve acetate to extract the dye. The relationship between microsphere number and fluorescent intensity was linear over a broad range of microsphere numbers (80-20,000/mL). The coefficients of variation of within-run and between-run precision were 3.39 +/- 1.10% and 4.54 +/- 1.10%, respectively. Recovery of microspheres from tissues and blood averaged 94.3 +/- 2.5% and was not dependent on microsphere number. The spillover of the fluorescent signals into adjacent colors was 4.0 +/- 0.1% for O to Y, 8.1 +/- 0.4% for O to R, and 9.1 +/- 0.5% for R to C, and these values were constant over a wide range in concentrations of the microsphere pairs. No evidence was obtained for quenching of the emission of one fluorophore via photon absorption by another fluorophore. The measurements of regional blood flow obtained with fluorescent microspheres in three chronically instrumented fetal lambs at approximately 140 days gestation were similar to the flow estimates obtained using radioactive microspheres in four other fetal lambs at the same gestational age. The fluorescent method is thus a viable alternative to the radioactive technique for the measurement of regional blood flow to all fetal organs and

  11. Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by a Double Passivation Method

    PubMed Central

    Chang, Tao; Zhao, Haiping; Du, Huanhuan; Liu, Shan; Wu, Baoshuang; Qin, Shenjun

    2017-01-01

    In this work, we present the fabrication of highly luminescent carbon dots (CDs) by a double passivation method with the assistance of Ca(OH)2. In the reaction process, Ca2+ protects the active functional groups from overconsumption during dehydration and carbonization, and the electron-withdrawing groups on the CD surface are converted to electron-donating groups by the hydroxyl ions. As a result, the fluorescence quantum yield of the CDs was found to increase with increasing Ca(OH)2 content in the reaction process. A blue-shift optical spectrum of the CDs was also found with increasing Ca(OH)2 content, which could be attributed to the increasing of the energy gaps for the CDs. The highly photoluminescent CDs obtained (quantum yield: 86%) were used to cultivate fluorescent carnations by a water culture method, while the results of fluorescence microscopy analysis indicated that the CDs had entered the plant tissue structure. PMID:28686178

  12. Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by a Double Passivation Method.

    PubMed

    Han, Shuai; Chang, Tao; Zhao, Haiping; Du, Huanhuan; Liu, Shan; Wu, Baoshuang; Qin, Shenjun

    2017-07-07

    In this work, we present the fabrication of highly luminescent carbon dots (CDs) by a double passivation method with the assistance of Ca(OH)₂. In the reaction process, Ca 2+ protects the active functional groups from overconsumption during dehydration and carbonization, and the electron-withdrawing groups on the CD surface are converted to electron-donating groups by the hydroxyl ions. As a result, the fluorescence quantum yield of the CDs was found to increase with increasing Ca(OH)₂ content in the reaction process. A blue-shift optical spectrum of the CDs was also found with increasing Ca(OH)₂ content, which could be attributed to the increasing of the energy gaps for the CDs. The highly photoluminescent CDs obtained (quantum yield: 86%) were used to cultivate fluorescent carnations by a water culture method, while the results of fluorescence microscopy analysis indicated that the CDs had entered the plant tissue structure.

  13. A fluorescent-photochrome method for the quantitative characterization of solid phase antibody orientation.

    PubMed

    Ahluwalia, Arti; De Rossi, Danilo; Giusto, Giuseppe; Chen, Oren; Papper, Vladislav; Likhtenshtein, Gertz I

    2002-06-15

    A fluorescent-photochrome method of quantifying the orientation and surface density of solid phase antibodies is described. The method is based on measurements of quenching and rates of cis-trans photoisomerization and photodestruction of a stilbene-labeled hapten by a quencher in solution. These experimental parameters enable a quantitative description of the order of binding sites of antibodies immobilized on a surface and can be used to characterize the microviscosity and steric hindrance in the vicinity of the binding site. Furthermore, a theoretical method for the determination of the depth of immersion of the fluorescent label in a two-phase system was developed. The model exploits the concept of dynamic interactions and is based on the empirical dependence of parameters of static exchange interactions on distances between exchangeable centers. In the present work, anti-dinitrophenyl (DNP) antibodies and stilbene-labeled DNP were used to investigate three different protein immobilization methods: physical adsorption, covalent binding, and the Langmuir-Blodgett technique. Copyright 2002 Elsevier Science (USA).

  14. Fluorescence background removal method for biological Raman spectroscopy based on empirical mode decomposition.

    PubMed

    Leon-Bejarano, Maritza; Dorantes-Mendez, Guadalupe; Ramirez-Elias, Miguel; Mendez, Martin O; Alba, Alfonso; Rodriguez-Leyva, Ildefonso; Jimenez, M

    2016-08-01

    Raman spectroscopy of biological tissue presents fluorescence background, an undesirable effect that generates false Raman intensities. This paper proposes the application of the Empirical Mode Decomposition (EMD) method to baseline correction. EMD is a suitable approach since it is an adaptive signal processing method for nonlinear and non-stationary signal analysis that does not require parameters selection such as polynomial methods. EMD performance was assessed through synthetic Raman spectra with different signal to noise ratio (SNR). The correlation coefficient between synthetic Raman spectra and the recovered one after EMD denoising was higher than 0.92. Additionally, twenty Raman spectra from skin were used to evaluate EMD performance and the results were compared with Vancouver Raman algorithm (VRA). The comparison resulted in a mean square error (MSE) of 0.001554. High correlation coefficient using synthetic spectra and low MSE in the comparison between EMD and VRA suggest that EMD could be an effective method to remove fluorescence background in biological Raman spectra.

  15. Development of a time-resolved fluorometric method for observing hybridization in living cells using fluorescence resonance energy transfer.

    PubMed Central

    Tsuji, A; Sato, Y; Hirano, M; Suga, T; Koshimoto, H; Taguchi, T; Ohsuka, S

    2001-01-01

    We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells. PMID:11423432

  16. Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background

    PubMed Central

    Chen, Shuo; Ong, Yi Hong; Lin, Xiaoqian; Liu, Quan

    2015-01-01

    Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging. PMID:26203387

  17. The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis

    NASA Astrophysics Data System (ADS)

    Rabizah Makhsin, Siti; Razak, Khairunisak Abdul; Noordin, Rahmah; Dyana Zakaria, Nor; Chun, Tan Soo

    2012-12-01

    This study describes the properties of colloidal gold nanoparticles (AuNPs) with sizes of 20, 30 and 40 nm, which were synthesized using citrate reduction or seeding-growth methods. Likewise, the conjugation of these AuNPs to mouse anti-human IgG4 (MαHIgG4) was evaluated for an immunochromatographic (ICG) strip test to detect brugian filariasis. The morphology of the AuNPs was studied based on the degree of ellipticity (G) of the transmission electron microscopy images. The AuNPs produced using the seeding-growth method showed lower ellipticity (G ≤ 1.11) as compared with the AuNPs synthesized using the citrate reduction method (G ≤ 1.18). Zetasizer analysis showed that the AuNPs that were synthesized using the seeding-growth method were almost monodispersed with a lower polydispersity index (PDI; PDI≤0.079), as compared with the AuNPs synthesized using the citrate reduction method (PDI≤0.177). UV-visible spectroscopic analysis showed a red-shift of the absorbance spectra after the reaction with MαHIgG4, which indicated that the AuNPs were successfully conjugated. The optimum concentration of the BmR1 recombinant antigen that was immobilized on the surface of the ICG strip on the test line was 1.0 mg ml-1. When used with the ICG test strip assay and brugian filariasis serum samples, the conjugated AuNPs-MαHIgG4 synthesized using the seeding-growth method had faster detection times, as compared with the AuNPs synthesized using the citrate reduction method. The 30 nm AuNPs-MαHIgG4, with an optical density of 4 from the seeding-growth method, demonstrated the best performance for labelling ICG strips because it displayed the best sensitivity and the highest specificity when tested with serum samples from brugian filariasis patients and controls.

  18. The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis.

    PubMed

    Makhsin, Siti Rabizah; Razak, Khairunisak Abdul; Noordin, Rahmah; Zakaria, Nor Dyana; Chun, Tan Soo

    2012-12-14

    This study describes the properties of colloidal gold nanoparticles (AuNPs) with sizes of 20, 30 and 40 nm, which were synthesized using citrate reduction or seeding-growth methods. Likewise, the conjugation of these AuNPs to mouse anti-human IgG(4) (MαHIgG(4)) was evaluated for an immunochromatographic (ICG) strip test to detect brugian filariasis. The morphology of the AuNPs was studied based on the degree of ellipticity (G) of the transmission electron microscopy images. The AuNPs produced using the seeding-growth method showed lower ellipticity (G ≤ 1.11) as compared with the AuNPs synthesized using the citrate reduction method (G ≤ 1.18). Zetasizer analysis showed that the AuNPs that were synthesized using the seeding-growth method were almost monodispersed with a lower polydispersity index (PDI; PDI≤0.079), as compared with the AuNPs synthesized using the citrate reduction method (PDI≤0.177). UV-visible spectroscopic analysis showed a red-shift of the absorbance spectra after the reaction with MαHIgG(4), which indicated that the AuNPs were successfully conjugated. The optimum concentration of the BmR1 recombinant antigen that was immobilized on the surface of the ICG strip on the test line was 1.0 mg ml(-1). When used with the ICG test strip assay and brugian filariasis serum samples, the conjugated AuNPs-MαHIgG(4) synthesized using the seeding-growth method had faster detection times, as compared with the AuNPs synthesized using the citrate reduction method. The 30 nm AuNPs-MαHIgG(4), with an optical density of 4 from the seeding-growth method, demonstrated the best performance for labelling ICG strips because it displayed the best sensitivity and the highest specificity when tested with serum samples from brugian filariasis patients and controls.

  19. A fluorescence anisotropy method for measuring protein concentration in complex cell culture media.

    PubMed

    Groza, Radu Constantin; Calvet, Amandine; Ryder, Alan G

    2014-04-22

    The rapid, quantitative analysis of the complex cell culture media used in biopharmaceutical manufacturing is of critical importance. Requirements for cell culture media composition profiling, or changes in specific analyte concentrations (e.g. amino acids in the media or product protein in the bioprocess broth) often necessitate the use of complicated analytical methods and extensive sample handling. Rapid spectroscopic methods like multi-dimensional fluorescence (MDF) spectroscopy have been successfully applied for the routine determination of compositional changes in cell culture media and bioprocess broths. Quantifying macromolecules in cell culture media is a specific challenge as there is a need to implement measurements rapidly on the prepared media. However, the use of standard fluorescence spectroscopy is complicated by the emission overlap from many media components. Here, we demonstrate how combining anisotropy measurements with standard total synchronous fluorescence spectroscopy (TSFS) provides a rapid, accurate quantitation method for cell culture media. Anisotropy provides emission resolution between large and small fluorophores while TSFS provides a robust measurement space. Model cell culture media was prepared using yeastolate (2.5 mg mL(-1)) spiked with bovine serum albumin (0 to 5 mg mL(-1)). Using this method, protein emission is clearly discriminated from background yeastolate emission, allowing for accurate bovine serum albumin (BSA) quantification over a 0.1 to 4.0 mg mL(-1) range with a limit of detection (LOD) of 13.8 μg mL(-1). Copyright © 2014. Published by Elsevier B.V.

  20. Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters

    DOEpatents

    Kolber, Zbigniew; Falkowski, Paul

    1995-06-20

    A fast repetition rate fluorometer device and method for measuring in vivo fluorescence of phytoplankton or higher plants chlorophyll and photosynthetic parameters of phytoplankton or higher plants by illuminating the phytoplankton or higher plants with a series of fast repetition rate excitation flashes effective to bring about and measure resultant changes in fluorescence yield of their Photosystem II. The series of fast repetition rate excitation flashes has a predetermined energy per flash and a rate greater than 10,000 Hz. Also, disclosed is a flasher circuit for producing the series of fast repetition rate flashes.

  1. Application of normal fluorescence and stability-indicating derivative synchronous fluorescence spectroscopy for the determination of gliquidone in presence of its fluorescent alkaline degradation product

    NASA Astrophysics Data System (ADS)

    El-ghobashy, Mohamed R.; Yehia, Ali M.; Helmy, Aya H.; Youssef, Nadia F.

    2018-01-01

    Simple, smart and sensitive normal fluorescence and stability-indicating derivative synchronous spectrofluorimetric methods have been developed and validated for the determination of gliquidone in the drug substance and drug product. Normal spectrofluorimetric method of gliquidone was established in methanol at λ excitation 225 nm and λ emission 400 nm in concentration range 0.2-3 μg/ml with LOD equal 0.028. The fluorescence quantum yield of gliquidone was calculated using quinine sulfate as a reference and found to be 0.542. Stability-indicating first and third derivative synchronous fluorescence spectroscopy were successfully utilized to overcome the overlapped spectra in normal fluorescence of gliquidone and its alkaline degradation product. Derivative synchronous methods are based on using the synchronous fluorescence of gliquidone and its degradation product in methanol at Δ λ50 nm. Peak amplitude in the first derivative of synchronous fluorescence spectra was measured at 309 nm where degradation product showed zero-crossing without interference. The peak amplitudes in the third derivative of synchronous fluorescence spectra, peak to trough were measured at 316,329 nm where degradation product showed zero-crossing. The different experimental parameters affecting the normal and synchronous fluorescence intensity of gliquidone were studied and optimized. Moreover, the cited methods have been validated as per ICH guidelines. The peak amplitude-concentration plots of the derivative synchronous fluorescence were linear over the concentration range 0.05-2 μg/ml for gliquidone. Limits of detection were 0.020 and 0.022 in first and third derivative synchronous spectra, respectively. The adopted methods were successfully applied to commercial tablets and the results demonstrated that the derivative synchronous fluorescence spectroscopy is a powerful stability-indicating method, suitable for routine use with a short analysis time. Statistical comparison between

  2. Development of a quantitative diagnostic method of estrogen receptor expression levels by immunohistochemistry using organic fluorescent material-assembled nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonda, Kohsuke, E-mail: gonda@med.tohoku.ac.jp; Miyashita, Minoru; Watanabe, Mika

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Organic fluorescent material-assembled nanoparticles for IHC were prepared. Black-Right-Pointing-Pointer New nanoparticle fluorescent intensity was 10.2-fold greater than Qdot655. Black-Right-Pointing-Pointer Nanoparticle staining analyzed a wide range of ER expression levels in tissue. Black-Right-Pointing-Pointer Nanoparticle staining enhanced the quantitative sensitivity for ER diagnosis. -- Abstract: The detection of estrogen receptors (ERs) by immunohistochemistry (IHC) using 3,3 Prime -diaminobenzidine (DAB) is slightly weak as a prognostic marker, but it is essential to the application of endocrine therapy, such as antiestrogen tamoxifen-based therapy. IHC using DAB is a poor quantitative method because horseradish peroxidase (HRP) activity depends on reaction time, temperature andmore » substrate concentration. However, IHC using fluorescent material provides an effective method to quantitatively use IHC because the signal intensity is proportional to the intensity of the photon excitation energy. However, the high level of autofluorescence has impeded the development of quantitative IHC using fluorescence. We developed organic fluorescent material (tetramethylrhodamine)-assembled nanoparticles for IHC. Tissue autofluorescence is comparable to the fluorescence intensity of quantum dots, which are the most representative fluorescent nanoparticles. The fluorescent intensity of our novel nanoparticles was 10.2-fold greater than quantum dots, and they did not bind non-specifically to breast cancer tissues due to the polyethylene glycol chain that coated their surfaces. Therefore, the fluorescent intensity of our nanoparticles significantly exceeded autofluorescence, which produced a significantly higher signal-to-noise ratio on IHC-imaged cancer tissues than previous methods. Moreover, immunostaining data from our nanoparticle fluorescent IHC and IHC with DAB were compared in the same region of adjacent tissues

  3. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy.

    PubMed

    Sheng, Zonghai; Hu, Dehong; Zheng, Mingbin; Zhao, Pengfei; Liu, Huilong; Gao, Duyang; Gong, Ping; Gao, Guanhui; Zhang, Pengfei; Ma, Yifan; Cai, Lintao

    2014-12-23

    Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a light-activated local treatment modality that is under intensive preclinical and clinical investigations for cancer. To enhance the treatment efficiency of phototherapy and reduce the light-associated side effects, it is highly desirable to improve drug accumulation and precision guided phototherapy for efficient conversion of the absorbed light energy to reactive oxygen species (ROS) and local hyperthermia. In the present study, a programmed assembly strategy was developed for the preparation of human serum albumin (HSA)-indocyanine green (ICG) nanoparticles (HSA-ICG NPs) by intermolecular disulfide conjugations. This study indicated that HSA-ICG NPs had a high accumulation with tumor-to-normal tissue ratio of 36.12±5.12 at 24 h and a long-term retention with more than 7 days in 4T1 tumor-bearing mice, where the tumor and its margin, normal tissue were clearly identified via ICG-based in vivo near-infrared (NIR) fluorescence and photoacoustic dual-modal imaging and spectrum-resolved technology. Meanwhile, HSA-ICG NPs efficiently induced ROS and local hyperthermia simultaneously for synergetic PDT/PTT treatments under a single NIR laser irradiation. After an intravenous injection of HSA-ICG NPs followed by imaging-guided precision phototherapy (808 nm, 0.8 W/cm2 for 5 min), the tumor was completely suppressed, no tumor recurrence and treatments-induced toxicity were observed. The results suggest that HSA-ICG NPs generated by programmed assembly as smart theranostic nanoplatforms are highly potential for imaging-guided cancer phototherapy with PDT/PTT synergistic effects.

  4. A Passive Method for Detecting Vegetation Stress from Orbit: Chlorophyll Fluorescence Spectra from Fraunhofer Lines

    NASA Technical Reports Server (NTRS)

    Theisen, Arnold F.

    2000-01-01

    Solar-stimulated chlorophyll fluorescence measured with the Fraunhofer line depth method has correlated well with vegetation stress in previous studies. However, the instruments used in those studies were limited to a single solar absorption line (e.g. 656.3 nm), obviating the red/far-red ratio (R/FR) method. Optics and detector technology have reached the level whereby multiple, very narrow Fraunhofer lines are resolvable. Thirteen such lines span the visible spectrum in the red to far-red region where chlorophyll fluorescence occurs. Fluorescence intensities at the 13 Fraunhofer line wavelengths were used to model emission spectra. The source data were collected for summer and fall bean crops (Phaseolus vulgaris L.) subjected to various levels of nitrogen fertilization. The intensities were adjusted to account for Fraunhofer line depth and atmospheric transmittance. Multiple R/FR fluorescence ratios, calculated from the modeled fluorescence spectra, correlated strongly with leaf chlorophyll concentration and well with applied nitrogen. The ratio yielding the best correlation with chlorophyll utilized red fluorescence at the 694.5 nm Fraunhofer line and farred fluorescence at the 755.6 nm Fraunhofer line. Twenty R/FR ratios, each evaluated for the maximum differential between low and high (optimal) nitrogen treatments, ranked higher in some cases and lower in others, possibly related to the time of year the crops were grown and the stage of growth of the crops. Ratios with 728.9 nm and 738.9 nm in the denominator consistently ranked in the lowest and next lowest quartile, respectively. Ratios of the 656.3 nm Fraunhofer line and the 755.6 nm line consistently ranked highest for the summer crop. Ratios with 755.6 nm in the denominator ranked in the upper quartile for 10 out of 12 measurement dates. Differences in ratio ranking indicate that physiological conditions may be estimated using selected ratios of Fraunhofer lines within the context of R/FR analysis. A

  5. Fluorescence recovery after photo-bleaching as a method to determine local diffusion coefficient in the stratum corneum.

    PubMed

    Anissimov, Yuri G; Zhao, Xin; Roberts, Michael S; Zvyagin, Andrei V

    2012-10-01

    Fluorescence recovery after photo-bleaching experiments were performed in human stratum corneum in vitro. Fluorescence multiphoton tomography was used, which allowed the dimensions of the photobleached volume to be at the micron scale and located fully within the lipid phase of the stratum corneum. Analysis of the fluorescence recovery data with simplified mathematical models yielded the diffusion coefficient of small molecular weight organic fluorescent dye Rhodamine B in the stratum corneum lipid phase of about (3-6) × 10(-9)cm(2) s(-1). It was concluded that the presented method can be used for detailed analysis of localised diffusion coefficients in the stratum corneum phases for various fluorescent probes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv. 'Cogshall') without growth conditions bias.

    PubMed

    Lechaudel, Mathieu; Urban, Laurent; Joas, Jacques

    2010-07-14

    The quality of ripe mango fruits depends on maturity stage at harvest, which is usually assessed by visible criteria or from estimates of the age of fruit. The present study deals with the potential of chlorophyll fluorescence as a nondestructive method to assess the degree of fruit maturity regardless of fruit growing conditions. Chlorophyll fluorescence parameters were measured along with respiration rates of fruits still attached to the tree. At the same harvest stage, based on the fruit age or the thermal time sum (degree-days) method, physical and biochemical measurements related to fruit maturity and quality were made. Shaded fruits had a significantly greener flesh color, as well as a lower fruit density and flesh dry matter content, than well-exposed fruits, showing that fruits at the top of the canopy were more mature than fruits within the canopy, which were still in a growth phase. Additionally, chlorophyll fluorescence parameters, F(o), F(m), and F(v), were significantly lower for fruits taken from the top of the canopy than for those from within the canopy. The unique relationship observed between chlorophyll fluorescence parameters and fruit maturity, estimated by internal carbon dioxide content, on fruit still attached to trees is independent of growing conditions, such as the position of the fruit in the canopy and carbohydrate supply. The chlorophyll fluorescence method evaluates maturity much more accurately than the degree-day method and, moreover, nondestructively provides values for individual fruits before harvest.

  7. Development of a rapid method for the automatic classification of biological agents' fluorescence spectral signatures

    NASA Astrophysics Data System (ADS)

    Carestia, Mariachiara; Pizzoferrato, Roberto; Gelfusa, Michela; Cenciarelli, Orlando; Ludovici, Gian Marco; Gabriele, Jessica; Malizia, Andrea; Murari, Andrea; Vega, Jesus; Gaudio, Pasquale

    2015-11-01

    Biosecurity and biosafety are key concerns of modern society. Although nanomaterials are improving the capacities of point detectors, standoff detection still appears to be an open issue. Laser-induced fluorescence of biological agents (BAs) has proved to be one of the most promising optical techniques to achieve early standoff detection, but its strengths and weaknesses are still to be fully investigated. In particular, different BAs tend to have similar fluorescence spectra due to the ubiquity of biological endogenous fluorophores producing a signal in the UV range, making data analysis extremely challenging. The Universal Multi Event Locator (UMEL), a general method based on support vector regression, is commonly used to identify characteristic structures in arrays of data. In the first part of this work, we investigate fluorescence emission spectra of different simulants of BAs and apply UMEL for their automatic classification. In the second part of this work, we elaborate a strategy for the application of UMEL to the discrimination of different BAs' simulants spectra. Through this strategy, it has been possible to discriminate between these BAs' simulants despite the high similarity of their fluorescence spectra. These preliminary results support the use of SVR methods to classify BAs' spectral signatures.

  8. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  9. Fluorescence-based methods for the detection of pressure-induced spore germination and inactivation

    NASA Astrophysics Data System (ADS)

    Baier, Daniel; Reineke, Kai; Doehner, Isabel; Mathys, Alexander; Knorr, Dietrich

    2011-03-01

    The application of high pressure (HP) provides an opportunity for the non-thermal preservation of high-quality foods, whereas highly resistant bacterial endospores play an important role. It is known that the germination of spores can be initiated by the application of HP. Moreover, the resistance properties of spores are highly dependent on their physiological states, which are passed through during the germination. To distinguish between different physiological states and to detect the amount of germinated spores after HP treatments, two fluorescence-based methods were applied. A flow cytometric method using a double staining with SYTO 16 as an indicator for germination and propidium iodide as an indicator for membrane damage was used to detect different physiological states of the spores. During the first step of germination, the spore-specific dipicolinic acid (DPA) is released [P. Setlow, Spore germination, Curr. Opin. Microbiol. 6 (2003), pp. 550-556]. DPA reacts with added terbium to form a distinctive fluorescent complex. After measuring the fluorescence intensity at 270 nm excitation wavelength in a fluorescence spectrophotometer, the amount of germinated spores can be determined. Spores of Bacillus subtilis were treated at pressures from 150 to 600 MPa and temperatures from 37 °C to 60 °C in 0.05 M ACES buffer solution (pH 7) for dwell times of up to 2 h. During the HP treatments, inactivation up to 2log 10 cycles and thermal sensitive populations up to 4log 10 cycles could be detected by plate counts. With an increasing number of thermal sensitive spores, an increased proportion of spores in germinated states was detected by flow cytometry. Also the released amount of DPA increased during the dwell times. Moreover, a clear pressure-temperature-time-dependency was shown by screening different conditions. The fluorescence-based measurement of the released DPA can provide the opportunity of an online monitoring of the germination of spores under HP inside

  10. Hydroxypropyl-beta-cyclodextrin enhanced determination for the Vitamin B12 by fluorescence quenching method.

    PubMed

    Sun, Jing; Zhu, Xiashi; Wu, Ming

    2007-05-01

    A novel fluorescence quenching method for the determination of Vitamin B12(VB12) had been developed. It was based on that the fluorescence intensity of erythrosine sodium(ES) could be enhanced by Hydroxypropyl-beta-cyclodextrin(HP-beta-CD) due to the formation of inclusion complex (HP-beta-CD-ES), while the fluorescence intensity of HP-beta-CD-ES was diminished after adding VB12 into the system, and there was a linear relationship between the fluorescence quenching value of the system (DeltaF) and the concentration of VB12 (c). The mechanism of the determination of VB12 was discussed. The results showed that under the optimal conditions, the linear range of calibration curve for the determination of VB12 was 0.0 approximately 2.1 x 10(-5) mol/L, and the detection limit was 1.8 x 10(-7) mol/ L. It could be satisfactorily applied to the determination of VB12 in injections.

  11. Intraoperative imaging using intravascular contrast agent

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Garland, Summer; Lemole, G. Michael; Romanowski, Marek

    2016-03-01

    Near-infrared (NIR) contrast agents are becoming more frequently studied in medical imaging due to their advantageous characteristics, most notably the ability to capture near-infrared signal across the tissue and the safety of the technique. This produces a need for imaging technology that can be specific for both the NIR dye and medical application. Indocyanine green (ICG) is currently the primary NIR dye used in neurosurgery. Here we report on using the augmented microscope we described previously for image guidance in a rat glioma resection. Luc-C6 cells were implanted in a rat in the left-frontal lobe and grown for 22 days. Surgical resection was performed by a neurosurgeon using augmented microscopy guidance with ICG contrast. Videos and images were acquired to evaluate image quality and resection margins. ICG accumulated in the tumor tissue due to enhanced permeation and retention from the compromised bloodbrain- barrier. The augmented microscope was capable of guiding the rat glioma resection and intraoperatively highlighted tumor tissue regions via ICG fluorescence under normal illumination of the surgical field.

  12. Absorption into fluorescence. A method to sense biologically relevant gas molecules

    NASA Astrophysics Data System (ADS)

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  13. Flow Cytometric Analysis of Bimolecular Fluorescence Complementation: A High Throughput Quantitative Method to Study Protein-protein Interaction

    PubMed Central

    Wang, Li; Carnegie, Graeme K.

    2013-01-01

    Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells. BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction. PMID:23979513

  14. Flow cytometric analysis of bimolecular fluorescence complementation: a high throughput quantitative method to study protein-protein interaction.

    PubMed

    Wang, Li; Carnegie, Graeme K

    2013-08-15

    Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells. BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction.

  15. New fluorescence spectroscopic method for the simultaneous determination of alkaloids in aqueous extract of green coffee beans.

    PubMed

    Yisak, Hagos; Redi-Abshiro, Mesfin; Chandravanshi, Bhagwan Singh

    2018-05-11

    There is no fluorescence spectroscopic method for the determination of trigonelline and theobromine in green coffee beans. Therefore, the objective of this study was to develop a new fluorescence spectroscopic method to determine the alkaloids simultaneously in the aqueous extract of green coffee beans. The calibration curves were linear in the range 2-6, 1-6, 1-5 mg/L for caffeine, theobromine and trigonelline, respectively, with R 2  ≥ 0.9987. The limit of detection and limit of quantification were 2, 6 and 7 µg/L and 40, 20 and 20 µg/L for caffeine, theobromine and trigonelline, respectively. Caffeine and trigonelline exhibited well separated fluorescence excitation spectra and therefore the two alkaloids were selectively quantified in the aqueous extract of green coffee. While theobromine showed overlapping fluorescence excitation spectra with caffeine and hence theobromine could not be determined in the aqueous extract of green coffee beans. The amount of caffeine and trigonelline in the three samples of green coffee beans were found to be 0.95-1.10 and 1.00-1.10% (w/w), respectively. The relative standard deviations (RSD ≤ 4%) of the method for the three compounds of interest were of very good. The accuracy of the developed analytical method was evaluated by spiking standard caffeine and trigonelline to green coffee beans and the average recoveries were 99 ± 2% for both the alkaloids. A fast, sensitive and reliable fluorescence method for the simultaneous determination of caffeine and trigonelline in the aqueous extract of green coffee beans was developed and validated. The developed method reflected an effective performance to the direct determination of the two alkaloids in the aqueous extract of green coffee beans.

  16. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avonto, Cristina; Chittiboyina, Amar G.; Rua, Diego

    2015-12-01

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles aftermore » incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, ‘HTS-DCYA assay’, is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. - Highlights: • A novel fluorescence-based method to detect electrophilic sensitizers is proposed. • A model fluorescent thiol was used to directly quantify the reaction products. • A discussion of the reaction

  17. Fast Decomposition of Three-Component Spectra of Fluorescence Quenching by White and Grey Methods of Data Modeling.

    PubMed

    Kałka, Andrzej J; Turek, Andrzej M

    2018-04-03

    'White' and 'grey' methods of data modeling have been employed to resolve the heterogeneous fluorescence from a fluorophore mixture of 9-cyanoanthracene (CNA), 10-chloro-9-cyanoanthracene (ClCNA) and 9,10-dicyanoanthracene (DCNA) into component individual fluorescence spectra. The three-component spectra of fluorescence quenching in methanol were recorded for increasing amounts of lithium bromide used as a quencher. The associated intensity decay profiles of differentially quenched fluorescence of single components were modeled on the basis of a linear Stern-Volmer plot. These profiles are necessary to initiate the fitting procedure in both 'white' and 'grey' modeling of the original data matrices. 'White' methods of data modeling, called also 'hard' methods, are based on chemical/physical laws expressed in terms of some well-known or generally accepted mathematical equations. The parameters of these models are not known and they are estimated by least squares curve fitting. 'Grey' approaches to data modeling, also known as hard-soft modeling techniques, make use of both hard-model and soft-model parts. In practice, the difference between 'white' and 'grey' methods lies in the way in which the 'crude' fluorescence intensity decays of the mixture components are estimated. In the former case they are given in a functional form while in the latter as digitized curves which, in general, can only be obtained by using dedicated techniques of factor analysis. In the paper, the initial values of the Stern-Volmer constants of pure components were evaluated by both 'point-by-point' and 'matrix' versions of the method making use of the concept of wavelength dependent intensity fractions as well as by the rank annihilation factor analysis applied to the data matrices of the difference fluorescence spectra constructed in two ways: from the spectra recorded for a few excitation lines at the same concentration of a fluorescence quencher or classically from a series of the spectra

  18. Simultaneous determination of micellar structure and drag reduction in a surfactant solution flow using the fluorescence probe method

    NASA Astrophysics Data System (ADS)

    Wakimoto, Tatsuro; Araga, Koichi; Katoh, Kenji

    2018-03-01

    As widely known, the addition of a specific type of surfactant to water reduces drag in a pipe flow. This effect is considered to be a result of the suppression of turbulent transition caused by the ordered structure of rod-like micelles that is referred to as a shear-induced structure (SIS). However, it is typically difficult to determine the SIS since it is necessary to noninvasively detect the SIS with several hundred nanometers in the actual moving flow. In this study, we used the fluorescence probe method to locally determine the SIS in a pipe flow. When hydrophobic fluorescence molecules are added to the surfactant solution, the fluorescence molecules are trapped in micelles. Thus, fluorescence intensity varies based on the change in the micellar structure. We verified the applicability of the fluorescence probe method to the SIS detection and determined the relationship between the micellar structure and the drag reduction in the pipe flow by simultaneously measuring the fluorescence intensity and pipe friction factor. The experimental result demonstrates that the SIS formation in the near-wall region is closely correlated with the drag reduction and suggests that the near-wall SIS suppresses the turbulent transition.

  19. A low-cost method for visible fluorescence imaging.

    PubMed

    Tarver, Crissy L; Pusey, Marc

    2017-12-01

    A wide variety of crystallization solutions are screened to establish conditions that promote the growth of a diffraction-quality crystal. Screening these conditions requires the assessment of many crystallization plates for the presence of crystals. Automated systems for screening and imaging are very expensive. A simple approach to imaging trace fluorescently labeled protein crystals in crystallization plates has been devised, and can be implemented at a cost as low as $50. The proteins β-lactoglobulin B, trypsin and purified concanavalin A (ConA) were trace fluorescently labeled using three different fluorescent probes: Cascade Yellow (CY), Carboxyrhodamine 6G (CR) and Pacific Blue (PB). A crystallization screening plate was set up using β-lactoglobulin B labeled with CR, trypsin labeled with CY, ConA labeled with each probe, and a mixture consisting of 50% PB-labeled ConA and 50% CR-labeled ConA. The wells of these plates were imaged using a commercially available macro-imaging lens attachment for smart devices that have a camera. Several types of macro lens attachments were tested with smartphones and tablets. Images with the highest quality were obtained with an iPhone 6S and an AUKEY Ora 10× macro lens. Depending upon the fluorescent probe employed and its Stokes shift, a light-emitting diode or a laser diode was used for excitation. An emission filter was used for the imaging of protein crystals labeled with CR and crystals with two-color fluorescence. This approach can also be used with microscopy systems commonly used to observe crystallization plates.

  20. Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters

    DOEpatents

    Kolber, Z.; Falkowski, P.

    1995-06-20

    A fast repetition rate fluorometer device and method for measuring in vivo fluorescence of phytoplankton or higher plants chlorophyll and photosynthetic parameters of phytoplankton or higher plants is revealed. The phytoplankton or higher plants are illuminated with a series of fast repetition rate excitation flashes effective to bring about and measure resultant changes in fluorescence yield of their Photosystem II. The series of fast repetition rate excitation flashes has a predetermined energy per flash and a rate greater than 10,000 Hz. Also, disclosed is a flasher circuit for producing the series of fast repetition rate flashes. 14 figs.

  1. Relationship between intraprostatic tracer deposits and sentinel lymph node mapping in prostate cancer patients.

    PubMed

    Buckle, Tessa; Brouwer, Oscar R; Valdés Olmos, Renato A; van der Poel, Henk G; van Leeuwen, Fijs W B

    2012-07-01

    Intraprostatic injection of the hybrid tracer indocyanine green (ICG)-(99m)Tc-nanocolloid enables both preoperative sentinel node (SN) identification and intraoperative visualization of the SN. Relating the fluorescence deposits in embedded prostate tissue specimens to the preoperatively detected SNs also provides the opportunity to study the influence of their placement on lymphatic drainage pattern. Nineteen patients with prostate carcinoma scheduled for robot-assisted laparoscopic prostatectomy and lymph node (LN) dissection were included. ICG-(99m)Tc-nanocolloid was injected intraprostatically, guided by ultrasound. SN biopsy was performed using a combination of radioguidance and fluorescence guidance. Tracer distribution was visualized in paraffin-embedded prostate samples using ex vivo fluorescence imaging. This distribution was correlated to the number and location of the SNs identified on preoperative lymphoscintigraphy and SPECT/CT. ICG-(99m)Tc-nanocolloid helped guide surgical excision of the SNs. Ex vivo fluorescence imaging revealed a large variation in the locations of intraprostatic tracer deposits among patients. Tracer deposits in the peripheral zone correlated with a higher number of visualized LNs than deposits in the central zone (on average, 4.7 vs. 2.4 LNs per patient). Furthermore, tracer deposits in the mid gland correlated with a higher number of visualized LNs than deposits near the base or apex of the prostate (on average, 6 vs. 3.5 LNs per patient). The hybrid nature of the tracer not only enables surgical guidance but also provides an opportunity to study the correlation between the location of tracer deposits within the prostate and the number and location of preoperatively visualized SNs. These data suggest that the location at which a tracer deposit is placed influences the lymphatic drainage pattern.

  2. Determination of human albumin in serum and urine samples by constant-energy synchronous fluorescence method.

    PubMed

    Madrakian, Tayyebeh; Bagheri, Habibollah; Afkhami, Abbas

    2015-08-01

    A sensitive spectrofluorimetric method using constant-energy synchronous fluorescence technique is proposed for the determination of human albumin without separation. In this method, no reagent was used for enhancement of the fluorescence signal of albumin in the solution. Effects of some parameters, such as energy difference between excitation and emission monochromators (ΔE), emission and excitation slit widths and scan rate of wavelength were studied and the optimum conditions were established. For this purpose factorial design and response surface method were employed for optimization of the effective parameters on the fluorescence signal. The results showed that the scan rate of the wavelength has no significant effect on the analytical signal. The calibration curve was linear in the range 0.1-220.0 µg mL(-1) of albumin with a detection limit of 7.0 × 10(-3)  µg mL(-1). The relative standard deviations (RSD) for six replicate measurements of albumin were calculated as 2.2%, 1.7% and 1.3% for 0.5, 10.0 and 100.0 µg mL(-1) albumin, respectively. Furthermore the proposed method has been employed for the determination of albumin in human serum and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Localization of near-infrared contrast agents in tumors by intravital microscopy

    NASA Astrophysics Data System (ADS)

    Becker, Andreas; Schneider, Guenther; Riefke, Bjoern; Licha, Kai; Semmler, Wolfhard

    1999-01-01

    In this contribution we use intravital microscopy to study the dynamics of extravasation into normal and tumor tissue of several hydrophilic cyanine dyes used as near-infrared (NIR) contrast agents. The technique provides information about the angiographic properties of the dyes and about their interaction with tumor tissue under dynamic conditions in vivo. In our previous work we demonstrated that several NIR- absorbing fluorescent dyes enable in vivo fluorescence detection of tumors in mice and rats. However, the mechanism leading to dye accumulation and enhanced fluorescence in tumors is not fully understood. Increased extravasation of dyes into tumor tissue due to pathologically altered tumor vessels may be an important factor in this process. Indocyanine green (ICG) displayed predominantly intravascular distribution and rapid elimination resulting in enhanced fluorescence signal of vessels during the first 15 min after administration only. No elevated extravasation into tumor tissue was observed with ICG. A hydrophilic indotricarbocyanine derivative with a high molecular weight displayed prolonged intravascular distribution and increased fluorescence signal of the vasculature compared to surrounding tissue for up to five hours. Rapid extravasation and accumulation in tumor areas, yielding elevated contrast of tumors up to 15 min after administration, was observed with hydrophilic, low molecular weight indotricarbocyanine derivatives.

  4. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII.

    PubMed

    Wei, Wei; Gao, Chunyan; Xiong, Yanxiang; Zhang, Yuanjian; Liu, Songqin; Pu, Yuepu

    2015-01-01

    DNA methylation plays an important role in many biological events and is associated with various diseases. Most traditional methods for detection of DNA methylation are based on the complex and expensive bisulfite method. In this paper, we report a novel fluorescence method to detect DNA and DNA methylation based on graphene oxide (GO) and restriction endonuclease HpaII. The skillfully designed probe DNA labeled with 5-carboxyfluorescein (FAM) and optimized GO concentration keep the probe/target DNA still adsorbed on the GO. After the cleavage action of HpaII the labeled FAM is released from the GO surface and its fluorescence recovers, which could be used to detect DNA in the linear range of 50 pM-50 nM with a detection limit of 43 pM. DNA methylation induced by transmethylase (Mtase) or other chemical reagents prevents HpaII from recognizing and cleaving the specific site; as a result, fluorescence cannot recover. The fluorescence recovery efficiency is closely related to the DNA methylation level, which can be used to detect DNA methylation by comparing it with the fluorescence in the presence of intact target DNA. The method for detection of DNA and DNA methylation is simple, reliable and accurate. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Can the individual calibration be modified when laser fluorescence method is used for caries detection?

    PubMed

    Reyes, Alessandra; Ferreira, Gisele E; Santos, Joyce; Mendes, Fausto M; Imparato, Jose C P; Braga, Mariana M

    2013-03-01

    Individual calibration (IC) for caries detection methods based on fluorescence is time-consuming, especially for paediatric dentists, if the calibration has to be performed tooth-by-tooth. However, it is not clear how this calibration actually interfere in laser fluorescence (LF) readings. This in vivo study was to verify the influence of different modes of IC on laser fluorescence (LF) readings. Ninety six occlusal and 95 buccal surfaces of 1st permanent molars were examined using LF device after IC performed on control (no IC), the examined teeth, a permanent incisor, a 1st primary molar or a 2nd primary molar. All modes of IC were performed in the same child. Wilcoxon test and Bland-Altman analysis were used to compare the readings. Intraclass correlation coefficients (ICC) were calculated. Laser fluorescence readings without prior calibration were higher than readings performed after any mode of IC and resulted in different values of ICC. After other IC modes, the LF readings were statistically similar. The absence of IC influences LF readings and LF reproducibility, but different IC methods can be considered in clinical practice. © 2012 The Authors. International Journal of Paediatric Dentistry © 2012 BSPD, IAPD and Blackwell Publishing Ltd.

  6. Confocal laser induced fluorescence with comparable spatial localization to the conventional method

    NASA Astrophysics Data System (ADS)

    Thompson, Derek S.; Henriquez, Miguel F.; Scime, Earl E.; Good, Timothy N.

    2017-10-01

    We present measurements of ion velocity distributions obtained by laser induced fluorescence (LIF) using a single viewport in an argon plasma. A patent pending design, which we refer to as the confocal fluorescence telescope, combines large objective lenses with a large central obscuration and a spatial filter to achieve high spatial localization along the laser injection direction. Models of the injection and collection optics of the two assemblies are used to provide a theoretical estimate of the spatial localization of the confocal arrangement, which is taken to be the full width at half maximum of the spatial optical response. The new design achieves approximately 1.4 mm localization at a focal length of 148.7 mm, improving on previously published designs by an order of magnitude and approaching the localization achieved by the conventional method. The confocal method, however, does so without requiring a pair of separated, perpendicular optical paths. The confocal technique therefore eases the two window access requirement of the conventional method, extending the application of LIF to experiments where conventional LIF measurements have been impossible or difficult, or where multiple viewports are scarce.

  7. Gaseous phase ion detection method based on laser-induced fluorescence for ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Guo, Kaitai; Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2015-08-01

    Ion mobility spectrometry (IMS) is widely used in the field of chemical composition analysis. Faraday cup is the most classical method to detect ions for IMS in the atmospheric pressure. However, the performance of Faraday plate was limited by many kinds of factors, including interfering electromagnetic waves, thermal(Johnson) noise, induced current , gain bandwidth product, etc. There is a theoretical limit in detection of ions at ambient condition which is approximately 106 ions per second. In this paper, we introduced a novel way using laser-induced fluorescence (LIF) to bypass the limitation of Faraday plate. Fluorescent ions which were selected by IMS get excited when they fly through the laser excitation area. The fluorescence emitted by the excited ions was captured exponentially and amplified through proper optoelectronic system. Rhodamine 6G (R6G) was selected as the fluorochrome for the reason that excitation wavelength, emission wavelength, and fluorescence quantum yield were more appropriate than others. An orthometric light path is designed to eliminate the adverse impact which was caused by induced laser. The experiment result shows that a fluorescence signal from the sample ions of the IMS could be observed. Compared with Faraday plate, the LIF-IMS may find a potential application in more system at the atmosphere condition.

  8. [Change in soil enzymes activities after adding biochar or straw by fluorescent microplate method].

    PubMed

    Zhang, Yu-Lan; Chen, Li-Jun; Duan, Zheng-Hu; Wu, Zhi-Jie; Sun, Cai-Xia; Wang, Jun-Yu

    2014-02-01

    The present work was aimed to study soil a-glucosidase and beta-glucosidase activities of and red soils based on fluorescence detection method combined with 96 microplates with TECAN Infinite 200 Multi-Mode Microplate Reader. We added biochar or straw (2.5 g air dry sample/50g air dry soil sample) into and red soils and the test was carried under fixed temperature and humidity condition (25 degrees C, 20% soil moisture content). The results showed that straw addition enhances soil alpha-glucosidase and beta-glucosidase activities, beta-glucosidase activity stimulated by rice straw treatment was higher than that of corn straw treatment, and activity still maintains strong after 40 days, accounting for increasing soil carbon transformation with straw inputting. Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme activities. Different effects of straw kinds may be related to material source that needs further research. However, biochar inputting has little effect on soil alpha-glucosidase and beta-glucosidase activity. Biochar contains less available nutrients than straw and have degradation-resistant characteristics. Compared with the conventional spectrophotometric method, fluorescence microplate method is more sensitive to soil enzyme activities in suspension liquid, which can be used in a large number of samples. In brief, fluorescence microplate method is fast, accurate, and simple to determine soil enzymes activities.

  9. An accurate proteomic quantification method: fluorescence labeling absolute quantification (FLAQ) using multidimensional liquid chromatography and tandem mass spectrometry.

    PubMed

    Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin

    2012-08-01

    A facile proteomic quantification method, fluorescent labeling absolute quantification (FLAQ), was developed. Instead of using MS for quantification, the FLAQ method is a chromatography-based quantification in combination with MS for identification. Multidimensional liquid chromatography (MDLC) with laser-induced fluorescence (LIF) detection with high accuracy and tandem MS system were employed for FLAQ. Several requirements should be met for fluorescent labeling in MS identification: Labeling completeness, minimum side-reactions, simple MS spectra, and no extra tandem MS fragmentations for structure elucidations. A fluorescence dye, 5-iodoacetamidofluorescein, was finally chosen to label proteins on all cysteine residues. The fluorescent dye was compatible with the process of the trypsin digestion and MALDI MS identification. Quantitative labeling was achieved with optimization of reacting conditions. A synthesized peptide and model proteins, BSA (35 cysteines), OVA (five cysteines), were used for verifying the completeness of labeling. Proteins were separated through MDLC and quantified based on fluorescent intensities, followed by MS identification. High accuracy (RSD% < 1.58) and wide linearity of quantification (1-10(5) ) were achieved by LIF detection. The limit of quantitation for the model protein was as low as 0.34 amol. Parts of proteins in human liver proteome were quantified and demonstrated using FLAQ. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method.

    PubMed

    Ye, Jinzuo; Chi, Chongwei; Xue, Zhenwen; Wu, Ping; An, Yu; Xu, Han; Zhang, Shuang; Tian, Jie

    2014-02-01

    Fluorescence molecular tomography (FMT), as a promising imaging modality, can three-dimensionally locate the specific tumor position in small animals. However, it remains challenging for effective and robust reconstruction of fluorescent probe distribution in animals. In this paper, we present a novel method based on sparsity adaptive subspace pursuit (SASP) for FMT reconstruction. Some innovative strategies including subspace projection, the bottom-up sparsity adaptive approach, and backtracking technique are associated with the SASP method, which guarantees the accuracy, efficiency, and robustness for FMT reconstruction. Three numerical experiments based on a mouse-mimicking heterogeneous phantom have been performed to validate the feasibility of the SASP method. The results show that the proposed SASP method can achieve satisfactory source localization with a bias less than 1mm; the efficiency of the method is much faster than mainstream reconstruction methods; and this approach is robust even under quite ill-posed condition. Furthermore, we have applied this method to an in vivo mouse model, and the results demonstrate the feasibility of the practical FMT application with the SASP method.

  11. Detection of singlet oxygen that uses fluorescence probe APF

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yumiko; Awazu, Kunio

    2006-04-01

    The non-invasive methods of treatments have been studying for the improvement of quality of life (QOL) of patients undergoing treatment. A photodynamic therapy (PDT) is one of the non-invasive treatments. PDT is the method of treatment using interactions of a laser and a photosensitizer. PDT has few risks for patients. Furthermore, PDT enables function preservation of a disease part. PDT has been used for early cancer till now, but in late years it is applied for age-related macular degeneration (AMD). AMD is one of the causes of vision loss in older people. However, PDT for AMD does not produce the best improvement in visual acuity. The skin photosensivity by an absorption characteristic of a photosensitizer is avoided. We examined new PDT using combination of an ultra-short pulsed laser and indocyanine green (ICG).

  12. Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer

    DOEpatents

    Kwok, Pui-Yan; Chen, Xiangning

    1999-01-01

    A method for detecting the presence of a target nucleotide or sequence of nucleotides in a nucleic acid is disclosed. The method is comprised of forming an oligonucleotide labeled with two fluorophores on the nucleic acid target site. The doubly labeled oligonucleotide is formed by addition of a singly labeled dideoxynucleoside triphosphate to a singly labeled polynucleotide or by ligation of two singly labeled polynucleotides. Detection of fluorescence resonance energy transfer upon denaturation indicates the presence of the target. Kits are also provided. The method is particularly applicable to genotyping.

  13. Double-excitation fluorescence spectral imaging: eliminating tissue auto-fluorescence from in vivo PPIX measurements

    NASA Astrophysics Data System (ADS)

    Torosean, Sason; Flynn, Brendan; Samkoe, Kimberley S.; Davis, Scott C.; Gunn, Jason; Axelsson, Johan; Pogue, Brian W.

    2012-02-01

    An ultrasound coupled handheld-probe-based optical fluorescence molecular tomography (FMT) system has been in development for the purpose of quantifying the production of Protoporphyrin IX (PPIX) in aminolevulinic acid treated (ALA), Basal Cell Carcinoma (BCC) in vivo. The design couples fiber-based spectral sampling of PPIX fluorescence emission with a high frequency ultrasound imaging system, allowing regionally localized fluorescence intensities to be quantified [1]. The optical data are obtained by sequential excitation of the tissue with a 633nm laser, at four source locations and five parallel detections at each of the five interspersed detection locations. This method of acquisition permits fluorescence detection for both superficial and deep locations in ultrasound field. The optical boundary data, tissue layers segmented from ultrasound image and diffusion theory are used to estimate the fluorescence in tissue layers. To improve the recovery of the fluorescence signal of PPIX, eliminating tissue autofluorescence is of great importance. Here the approach was to utilize measurements which straddled the steep Qband excitation peak of PPIX, via the integration of an additional laser source, exciting at 637 nm; a wavelength with a 2 fold lower PPIX excitation value than 633nm.The auto-fluorescence spectrum acquired from the 637 nm laser is then used to spectrally decouple the fluorescence data and produce an accurate fluorescence emission signal, because the two wavelengths have very similar auto-fluorescence but substantially different PPIX excitation levels. The accuracy of this method, using a single source detector pair setup, is verified through animal tumor model experiments, and the result is compared to different methods of fluorescence signal recovery.

  14. Uncertainty analysis for fluorescence tomography with Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Reinbacher-Köstinger, Alice; Freiberger, Manuel; Scharfetter, Hermann

    2011-07-01

    Fluorescence tomography seeks to image an inaccessible fluorophore distribution inside an object like a small animal by injecting light at the boundary and measuring the light emitted by the fluorophore. Optical parameters (e.g. the conversion efficiency or the fluorescence life-time) of certain fluorophores depend on physiologically interesting quantities like the pH value or the oxygen concentration in the tissue, which allows functional rather than just anatomical imaging. To reconstruct the concentration and the life-time from the boundary measurements, a nonlinear inverse problem has to be solved. It is, however, difficult to estimate the uncertainty of the reconstructed parameters in case of iterative algorithms and a large number of degrees of freedom. Uncertainties in fluorescence tomography applications arise from model inaccuracies, discretization errors, data noise and a priori errors. Thus, a Markov chain Monte Carlo method (MCMC) was used to consider all these uncertainty factors exploiting Bayesian formulation of conditional probabilities. A 2-D simulation experiment was carried out for a circular object with two inclusions. Both inclusions had a 2-D Gaussian distribution of the concentration and constant life-time inside of a representative area of the inclusion. Forward calculations were done with the diffusion approximation of Boltzmann's transport equation. The reconstruction results show that the percent estimation error of the lifetime parameter is by a factor of approximately 10 lower than that of the concentration. This finding suggests that lifetime imaging may provide more accurate information than concentration imaging only. The results must be interpreted with caution, however, because the chosen simulation setup represents a special case and a more detailed analysis remains to be done in future to clarify if the findings can be generalized.

  15. Dual x-ray fluorescence spectrometer and method for fluid analysis

    DOEpatents

    Wilson, Bary W.; Shepard, Chester L.

    2005-02-22

    Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.

  16. Measurement of the cytosolic sodium ion concentration in rat brain synaptosomes by a fluorescence method.

    PubMed

    Kongsamut, S; Nachshen, D A

    1988-05-24

    A method for the measurement of the cytosolic Na+ concentration in intact synaptosomes is described. This method makes use of a pH sensitive dye (BCECF) that can be loaded into the cytosol and a relatively specific ionophore (monensin) that can exchange Na+ for H+ across the synaptosomal membrane. By setting conditions such that there is no electrochemical potential difference for H+ across the membrane (no membrane potential and pHi = pHo), addition of ionophore would induce a H+ flux only if there is a concentration difference for Na+. Thus, when there is no fluorescence change (no cytosolic pH change) extracellular [Na+] equals intrasynaptosomal [Na+]. The intrasynaptosomal [Na+] concentration was determined to be 7 +/- 3 mM (n = 5; mean +/- S.E.). The results obtained with this fluorescence method are compared with estimates obtained by atomic absorption spectrometry. Limitations and applications of the method are discussed.

  17. PH-sensitive fluorescence detection by diffuse fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Li, Jiao; Gao, Feng; Duan, Linjing; Wang, Xin; Zhang, Limin; Zhao, Huijuan

    2012-03-01

    The importance of cellular pH has been shown clearly in the study of cell activity, pathological feature, drug metabolism, etc. Monitoring pH changes of living cells and imaging the regions with abnormal pH values in vivo could provide the physiologic and pathologic information for the research of the cell biology, pharmacokinetics, diagnostics and therapeutics of certain diseases such as cancer. Thus, pH-sensitive fluorescence imaging of bulk tissues has been attracting great attention in the regime of near-infrared diffuse fluorescence tomography (DFT), an efficient small-animal imaging tool. In this paper, the feasibility of quantifying pH-sensitive fluorescence targets in turbid medium is investigated using both time-domain and steady-state DFT methods. By use of the specifically designed time-domain and continuous-wave systems and the previously proposed image reconstruction scheme, we validate the method through 2-dimensional imaging experiments on a small-animal-sized phantom with multiply targets of distinct pH values. The results show that the approach can localize the targets with reasonable accuracy and achieve quantitative reconstruction of the pH-sensitive fluorescent yield.

  18. Near-infrared fluorescence imaging of experimentally collagen-induced arthritis in rats using the nonspecific dye tetrasulfocyanine in comparison with gadolinium-based contrast-enhanced magnetic resonance imaging, histology, and clinical score

    NASA Astrophysics Data System (ADS)

    Gemeinhardt, Ines; Puls, Dorothee; Gemeinhardt, Ole; Taupitz, Matthias; Wagner, Susanne; Schnorr, Beatrix; Licha, Kai; Schirner, Michael; Ebert, Bernd; Petzelt, Diethard; Macdonald, Rainer; Schnorr, Jörg

    2012-10-01

    Using 15 rats with collagen-induced arthritis (30 joints) and 7 control rats (14 joints), we correlated the intensity of near-infrared fluorescence (NIRF) of the nonspecific dye tetrasulfocyanine (TSC) with magnetic resonance imaging (MRI), histopathology, and clinical score. Fluorescence images were obtained in reflection geometry using a NIRF camera system. Normalized fluorescence intensity (INF) was determined after intravenous dye administration on different time points up to 120 min. Contrast-enhanced MRI using gadodiamide was performed after NIRF imaging. Analyses were performed in a blinded fashion. Histopathological and clinical scores were determined for each ankle joint. INF of moderate and high-grade arthritic joints were significantly higher (p<0.005) than the values of control and low-grade arthritic joints between 5 and 30 min after TSC-injection. This result correlated well with post-contrast MRI signal intensities at about 5 min after gadodiamide administration. Furthermore, INF and signal increase on contrast-enhanced MRI showed high correlation with clinical and histopathological scores. Sensitivities and specificities for detection of moderate and high-grade arthritic joints were slightly lower for NIRF imaging (89%/81%) than for MRI (100%/91%). NIRF imaging using TSC, which is characterized by slower plasma clearance compared to indocyanine green (ICG), has the potential to improve monitoring of inflamed joints.

  19. Quantification of zinc-porphyrin in dry-cured ham products by spectroscopic methods Comparison of absorption, fluorescence and X-ray fluorescence spectroscopy.

    PubMed

    Laursen, Kristoffer; Adamsen, Christina E; Laursen, Jens; Olsen, Karsten; Møller, Jens K S

    2008-03-01

    Zinc-protoporphyrin (Zn-pp), which has been identified as the major pigment in certain dry-cured meat products, was extracted with acetone/water (75%) and isolated from the following meat products: Parma ham, Iberian ham and dry-cured ham with added nitrite. The quantification of Zn-pp by electron absorption, fluorescence and X-ray fluorescence (XRF) spectroscopy was compared (concentration range used [Zn-pp]=0.8-9.7μM). All three hams were found to contain Zn-pp, and the results show no significant difference among the content of Zn-pp quantified by fluorescence, absorbance and X-ray fluorescence spectroscopy for Parma ham and Iberian ham. All three methods can be used for quantification of Zn-pp in acetone/water extracts of different ham types if the content is higher than 1.0ppm. For dry-cured ham with added nitrite, XRF was not applicable due to the low content of Zn-pp (<0.1ppm). In addition, XRF spectroscopy provides further information regarding other trace elements and can therefore be advantageous in this aspect. This study also focused on XRF determination of Fe in the extracts and as no detectable Fe was found in the three types of ham extracts investigated (limit of detection; Fe⩽1.8ppm), it allows the conclusion that iron containing pigments, e.g., heme, do not contribute to the noticeable red colour observed in some of the extracts.

  20. Accuracy of indocyanine green pulse spectrophotometry clearance test for liver function prediction in transplanted patients

    PubMed Central

    Hsieh, Chung-Bao; Chen, Chung-Jueng; Chen, Teng-Wei; Yu, Jyh-Cherng; Shen, Kuo-Liang; Chang, Tzu-Ming; Liu, Yao-Chi

    2004-01-01

    AIM: To investigate whether the non-invasive real-time Indocynine green (ICG) clearance is a sensitive index of liver viability in patients before, during, and after liver transplantation. METHODS: Thirteen patients were studied, two before, three during, and eight following liver transplantation, with two patients suffering acute rejection. The conventional invasive ICG clearance test and ICG pulse spectrophotometry non-invasive real-time ICG clearance test were performed simultaneously. Using linear regression analysis we tested the correlation between these two methods. The transplantation condition of these patients and serum total bilirubin (T. Bil), alanine aminotransferase (ALT), and platelet count were also evaluated. RESULTS: The correlation between these two methods was excellent (r2 = 0.977). CONCLUSION: ICG pulse spectrophotometry clearance is a quick, non-invasive, and reliable liver function test in transplantation patients. PMID:15285026

  1. A simple method for in vivo labelling of infiltrating leukocytes in the mouse retina using indocyanine green dye.

    PubMed

    Sim, Dawn A; Chu, Colin J; Selvam, Senthil; Powner, Michael B; Liyanage, Sidath; Copland, David A; Keane, Pearse A; Tufail, Adnan; Egan, Catherine A; Bainbridge, James W B; Lee, Richard W; Dick, Andrew D; Fruttiger, Marcus

    2015-11-01

    We have developed a method to label and image myeloid cells infiltrating the mouse retina and choroid in vivo, using a single depot injection of indocyanine green dye (ICG). This was demonstrated using the following ocular models of inflammation and angiogenesis: endotoxin-induced uveitis, experimental autoimmune uveoretinitis and laser-induced choroidal neovascularization model. A near-infrared scanning ophthalmoscope was used for in vivo imaging of the eye, and flow cytometry was used on blood and spleen to assess the number and phenotype of labelled cells. ICG was administered 72 h before the induction of inflammation to ensure clearance from the systemic circulation. We found that in vivo intravenous administration failed to label any leukocytes, whereas depot injection, either intraperitoneal or subcutaneous, was successful in labelling leukocytes infiltrating into the retina. Progression of inflammation in the retina could be traced over a period of 14 days following a single depot injection of ICG. Additionally, bright-field microscopy, spectrophotometry and flow cytometric analysis suggest that the predominant population of cells stained by ICG are circulating myeloid cells. The translation of this approach into clinical practice would enable visualization of immune cells in situ. This will not only provide a greater understanding of pathogenesis, monitoring and assessment of therapy in many human ocular diseases but might also open the ability to image immunity live for neurodegenerative disorders, cardiovascular disease and systemic immune-mediated disorders. © 2015. Published by The Company of Biologists Ltd.

  2. The Analysis of Fluorescence Decay by a Method of Moments

    PubMed Central

    Isenberg, Irvin; Dyson, Robert D.

    1969-01-01

    The fluorescence decay of the excited state of most biopolymers, and biopolymer conjugates and complexes, is not, in general, a simple exponential. The method of moments is used to establish a means of analyzing such multi-exponential decays. The method is tested by the use of computer simulated data, assuming that the limiting error is determined by noise generated by a pseudorandom number generator. Multi-exponential systems with relatively closely spaced decay constants may be successfully analyzed. The analyses show the requirements, in terms of precision, that data must meet. The results may be used both as an aid in the design of equipment and in the analysis of data subsequently obtained. PMID:5353139

  3. Fluorescence And Alternative Methods In Urine Drug Testing

    NASA Astrophysics Data System (ADS)

    Jain, Naresh C.

    1988-04-01

    Drug abuse has become-one of the most compelling realities _ ot contemporary society. It has penetrated every segment ot our population: trom schools to sports and trom organized crime to board rooms . Drugs in tie w9rkplace allegedly cost government agencies and business millions ot dollars each year in increased absenteeism,. poor work performance, thefts,accidents andwastedtime. The President's Commission on Organized Crime and the federal government are in tavor ot urine drug testing. In fact many employers are now resorting to urine drug testing on current and prospective employees. This presep.tation discusses different laboratory methods used in urine drug.testing, including immunoassays, fluorescence polarization, thin layer chromatography, high pressure liquid chromatography, gas chromatography and gas-chromatography-mass spectrometry.

  4. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  5. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  6. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  7. [A novel method for extracting leaf-level solar-induced fluorescence of typical crops under Cu stress].

    PubMed

    Qu, Ying; Liu, Su-hong; Li, Xiao-wen

    2012-05-01

    The leaf-level solar-induced fluorescence changes when the typical crops are under Cu stress, which can be considered as a sensitive indicator to estimate the stress level. In the present study, wheat (Triticum aestivum L.), pea (Pisum sativum L.) and Chinese cabbage (Brassica campestris L.) were selected and cultured with copper solutions or copper polluted soil with different Cu stress. The apparent reflectance of leaves was measured by an ASD Fieldspec spectrometer and an integrating sphere. As the apparent reflectance was seldom affected by the fluorescence emission at 580-650 and 800-1000 nm, so the apparent solar-induced fluorescence can be separated from the apparent reflectance based on PROSPECT model. The re-absorption effect of chlorophyll was corrected by three methods, called GM (Gitelson et al.'s model), AM (Agati et al.'s model) and LM (Lagorio et al.'s model). After the re-absorption correction, the solar-induced fluorescence under different Cu stress was obtained, and a positive relationship was found between the height of far RED fluorescence (FRF) and the copper contents in leaves.

  8. NIR-driven Smart Theranostic Nanomedicine for On-demand Drug Release and Synergistic Antitumour Therapy.

    PubMed

    Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2015-09-24

    Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL 'opens' to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.

  9. NIR-driven Smart Theranostic Nanomedicine for On-demand Drug Release and Synergistic Antitumour Therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2015-09-01

    Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL ‘opens’ to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.

  10. Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer

    PubMed Central

    Tsujimoto, Hironori; Morimoto, Yuji; Takahata, Risa; Nomura, Shinsuke; Yoshida, Kazumichi; Horiguchi, Hiroyuki; Hiraki, Shuichi; Ono, Satoshi; Miyazaki, Hiromi; Saito, Daizo; Hara, Isao; Ozeki, Eiichi; Yamamoto, Junji; Hase, Kazuo

    2014-01-01

    Although there have been multiple advances in the development of novel anticancer agents and operative procedures, prognosis of patients with advanced gastric cancer remains poor, especially in patients with peritoneal metastasis. In this study, we established nanoparticles loaded with indocyanine green (ICG) derivatives: ICG loaded lactosomes (ICGm) and investigated the diagnostic and therapeutic value of photodynamic therapy (PDT) using ICGm for experimental peritoneal dissemination of gastric cancer. Experimental peritoneal disseminated xenografts of human gastric cancer were established in nude mice. Three weeks after intraperitoneal injection of the cancer cells, either ICGm (ICGm-treated mice) or ICG solution (ICG-treated mice) was injected through the tail vein. Forty-eight hours after injection of the photosensitizer, in vivo and ex vivo imaging was carried out. For PDT, 48 h after injection of the photosensitizer, other mice were irradiated through the abdominal wall, and the body weight and survival rate were monitored. In vivo imaging revealed that peritoneal tumors were visualized through the abdominal wall in ICGm-treated mice, whereas only non-specific fluorescence was observed in ICG-treated mice. The PDT reduced the total weight of the disseminated nodules and significantly improved weight loss and survival rate in ICGm-treated mice. In conclusion, ICGm can be used as a novel diagnostic and therapeutic nanodevice in peritoneal dissemination of gastric cancer. PMID:25287817

  11. Fluorescence diffuse tomography of small animals with DsRed2 fluorescent protein

    NASA Astrophysics Data System (ADS)

    Turchin, I. V.; Plehanov, V. I.; Orlova, A. G.; Kamenskiy, V. A.; Kleshnin, M. S.; Shirmanova, M. V.; Shakhova, N. M.; Balalaeva, I. V.; Savitskiy, A. P.

    2006-05-01

    Fluorescent compounds are used as markers to diagnose oncological diseases, to study molecular processes typical for carcinogenesis, and to investigate metastasis formation and tumor regress under the influence of therapeutics. Different types of tomography, such as continuous wave (CW), frequency-domain (FD), and time-domain (TD) tomography, allow fluorescence imaging of tumors located deep in human or animal tissue. In this work, preliminary results of the frequency domain fluorescent diffuse tomography (FDT) method in application to DsRed2 protein as a fluorescent agent are presented. For the first step of our experiments, we utilized low-frequency amplitude modulation (1 kHz) of second harmonic of Nd: YAG (532 nm). The transilluminative configuration was used in the setup. The results of post mortem experiments with capsules containing DsRed2 inserted inside the esophagus of a 3-day-old hairless rat to simulate tumor are shown. An algorithm of processing fluorescent images based on calculating the zero of maximum curvature has been applied to detect fluorescent inclusion boundaries in the image. This work demonstrates the potential capability of the FDT method for imaging deep fluorescent tumors in human tissue or animal models of human cancer. Improvement of the setup can be accomplished by using high-frequency modulation (using a 110-MHz acoustooptical modulator).

  12. Preclinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications

    PubMed Central

    Leblond, Frederic; Davis, Scott C.; Valdés, Pablo A.; Pogue, Brain W.

    2013-01-01

    Fluorescence sampling of cellular function is widely used in all aspects of biology, allowing the visualization of cellular and sub-cellular biological processes with spatial resolutions in the range from nanometers up to centimeters. Imaging of fluorescence in vivo has become the most commonly used radiological tool in all pre-clinical work. In the last decade, full-body pre-clinical imaging systems have emerged with a wide range of utilities and niche application areas. The range of fluorescent probes that can be excited in the visible to near-infrared part of the electromagnetic spectrum continues to expand, with the most value for in vivo use being beyond the 630 nm wavelength, because the absorption of light sharply decreases. Whole-body in vivo fluorescence imaging has not yet reached a state of maturity that allows its routine use in the scope of large-scale pre-clinical studies. This is in part due to an incomplete understanding of what the actual fundamental capabilities and limitations of this imaging modality are. However, progress is continuously being made in research laboratories pushing the limits of the approach to consistently improve its performance in terms of spatial resolution, sensitivity and quantification. This paper reviews this imaging technology with a particular emphasis on its potential uses and limitations, the required instrumentation, and the possible imaging geometries and applications. A detailed account of the main commercially available systems is provided as well as some perspective relating to the future of the technology development. Although the vast majority of applications of in vivo small animal imaging are based on epi-illumination planar imaging, the future success of the method relies heavily on the design of novel imaging systems based on state-of-the-art optical technology used in conjunction with high spatial resolution structural modalities such as MRI, CT or ultra-sound. PMID:20031443

  13. System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levenson, Richard; Demos, Stavros

    A method is disclosed for analyzing a thin tissue sample and adapted to be supported on a slide. The tissue sample may be placed on a slide and exposed to one or more different exogenous fluorophores excitable in a range of about 300 nm-200 nm, and having a useful emission band from about 350 nm-900 nm, and including one or more fluorescent dyes or fluorescently labeled molecular probes that accumulate in tissue or cellular components. The fluorophores may be excited with a first wavelength of UV light between about 200 nm-290 nm. An optical system collects emissions from the fluorophoresmore » at a second wavelength, different from the first wavelength, which are generated in response to the first wavelength of UV light, to produce an image for analysis.« less

  14. A novel HPLC fluorescence method for the quantification of methylphenidate in human plasma

    PubMed Central

    Zhu, Hao-Jie; Wang, Jun-Sheng; Patrick, Kennerly S.; Donovan, Jennifer L.; DeVane, C. Lindsay; Markowitz, John S.

    2007-01-01

    A number of analytical methods have been established to quantify methylphenidate (MPH). However, to date no HPLC methods are applicable to human pharmacokinetic studies without the use of mass spectrometry (MS) detection. We developed a sensitive and reliable HPLC-fluorescence method for the determination of MPH in human plasma using 4-(4,5-diphenyl-1H-imidazol-2-yl) benzoyl chloride (DIB-Cl) as the derivatizing agent. An established GC-MS method was adopted in this study as a comparator assay. MPH was derivatized DIB-Cl, and separated isocratically on a C18 column using a HPLC system with fluorescence detection (λex: 330 nm, λem: 460 nm). The lower limit of determination was found to be 1 ng/mL. A linear calibration curve was obtained over the concentrations ranging from 1 to 80 ng/mL (r=0.998). The relative standard deviations of intra-day and inter-day variations were ≤ 9.10 % and ≤ 7.58 %, respectively. The accuracy ranged between 92.59 % and 103.06 %. The method was successfully applied to the pharmacokinetic study of a subject who received a single oral dose (0.3 mg/kg) of immediate-release MPH and yielded consistent results with that of the GC-MS method. This method is the first HPLC assay with non-MS detection providing sufficient reliability and sensitivity for both pre-clinical and clinical studies of MPH. PMID:17804308

  15. Two-photon fluorescence anisotropy imaging

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yi; Shao, Hanrong; He, Yonghong; Ma, Hui

    2006-09-01

    We have developed a novel method for imaging the fluorescence intensity and anisotropy by two-photon fluorescence microscopy and tested its capability in biological application. This method is applied to model sample including FITC and FITC-CD44 antibody solution and also FITC-CD44 stained cells. The fluorescence anisotropy (FA) of FITC-CD44ab solution is higher than the FITC solution with the same concentration. The fluorescence in cell sample has even higher FA than in solution because the rotation diffusion is restrained in membrane. The method is employed to study the effect of berberine a kind of Chinese medicine, on tumor metastasis. The results indicated that tumor cell membrane fluidity is decreasing with increasing the concentration of berberine in culture medium.

  16. Before In Vivo Imaging: Evaluation of Fluorescent Probes Using Fluorescence Microscopy, Multiplate Reader, and Cytotoxicity Assays.

    PubMed

    Zhang, Shaojuan

    2016-01-01

    Fluorescent probes are widely utilized for noninvasive fluorescence imaging. Continuing efforts have been made in developing novel fluorescent probes with improved fluorescence quantum yield, enhanced target-specificity, and lower cytotoxicity. Before such probes are administrated into a living system, it is essential to evaluate the subcellular uptake, targeting specificity, and cytotoxicity in vitro. In this chapter, we briefly outline common methods used to evaluate fluorescent probes using fluorescence microscopy, multiplate reader, and cytotoxicity assay.

  17. Acoustically levitated droplets: a contactless sampling method for fluorescence studies.

    PubMed

    Leiterer, Jork; Grabolle, Markus; Rurack, Knut; Resch-Genger, Ute; Ziegler, Jan; Nann, Thomas; Panne, Ulrich

    2008-01-01

    Acoustic levitation is used as a new tool to study concentration-dependent processes in fluorescence spectroscopy. With this technique, small amounts of liquid and solid samples can be measured without the need for sample supports or containers, which often limits signal acquisition and can even alter sample properties due to interactions with the support material. We demonstrate that, because of the small sample volume, fluorescence measurements at high concentrations of an organic dye are possible without the limitation of inner-filter effects, which hamper such experiments in conventional, cuvette-based measurements. Furthermore, we show that acoustic levitation of liquid samples provides an experimentally simple way to study distance-dependent fluorescence modulations in semiconductor nanocrystals. The evaporation of the solvent during levitation leads to a continuous increase of solute concentration and can easily be monitored by laser-induced fluorescence.

  18. A novel method to quantify IRDye800CW fluorescent antibody probes ex vivo in tissue distribution studies.

    PubMed

    Oliveira, Sabrina; Cohen, Ruth; Walsum, Marijke Stigter-van; van Dongen, Guus Ams; Elias, Sjoerd G; van Diest, Paul J; Mali, Willem; van Bergen En Henegouwen, Paul Mp

    2012-09-25

    We describe a new method for biodistribution studies with IRDye800CW fluorescent antibody probes. This method allows the quantification of the IRDye800CW fluorescent tracer in percentage of injected dose per gram of tissue (% ID/g), and it is herein compared to the generally used reference method that makes use of radioactivity. Cetuximab was conjugated to both the near-infrared fluorophore IRDye800CW and/or the positron emitter 89-zirconium, which was injected in nude mice bearing A431 human tumor xenografts. Positron emission tomography (PET) and optical imaging were performed 24 h post-injection (p.i.). For the biodistribution study, organs and tumors were collected 24 h p.i., and each of these was halved. One half was used for the determination of probe uptake by radioactivity measurement. The other half was homogenized, and the content of the fluorescent probe was determined by extrapolation from a calibration curve made with the injected probe. Tumors were clearly visualized with both modalities, and the calculated tumor-to-normal tissue ratios were very similar for optical and PET imaging: 3.31 ± 1.09 and 3.15 ± 0.99, respectively. Although some variations were observed in ex vivo analyses, tumor uptake was within the same range for IRDye800CW and gamma ray quantification: 15.07 ± 3.66% ID/g and 13.92 ± 2.59% ID/g, respectively. The novel method for quantification of the optical tracer IRDye800CW gives similar results as the reference method of gamma ray quantification. This new method is considered very useful in the context of the preclinical development of IRDye800CW fluorescent probes for optical molecular imaging, likely contributing to the selection of lead compounds that are the most promising for clinical translation.

  19. Validation of a LC-fluorescence method for determination of free captopril in human plasma, using a pre-column derivatization reaction with monobromobimane.

    PubMed

    Tache, Florentin; Farca, Alexandru; Medvedovici, Andrei; David, Victor

    2002-05-15

    Both derivatization of free captopril in human plasma samples using monobromobimane as fluorescent label and the corresponding HPLC-fluorescence detection (FLD) method were validated. Calibration curve for the fluorescent captopril derivative in plasma samples is linear in the ppb-ppm range with a detection limit of 4 ppb and an identification limit of 10 ppb (P%: 90; nu > or = 5). These methods were successfully applied on bioequivalence studies carried out on some marketed pharmaceutical formulations.

  20. Variation in Ambient and 77K Leaf-Level Chlorophyll Fluorescence Spectra of Boreal Species During Spring Recovery of Photosynthesis. Comparison of Methods.

    NASA Astrophysics Data System (ADS)

    Rajewicz, P. A.; Atherton, J.; Porcar-Castell, A.

    2017-12-01

    Chlorophyll fluorescence (ChF) is widely used as a tool for tracking changes in photosynthetic activity. In contrast to traditional active methods, which can be applied to leaf-level studies, new passive fluorescence methods are applied to study the photosynthetic dynamics of whole plants, canopies and ecosystems. A number of open questions still remain as to how the shape and intensity of the fluorescence spectra is connected to the mechanistic acclimation of photosynthesis. This is particularly critical at the leaf-level, which is the smallest scale at which spectral fluorescence can be measured in vivo, and especially for conifer needles which are difficult to measure due to their complex geometry.The goal of our research was to develop a protocol for measuring ambient and 77K spectral fluorescence in intact leaves and to use it for tracking the seasonal dynamics in leaf fluorescence properties across boreal species and different canopy heights, including: two conifers, Pinus silvestris and Picea abies; one broadleaf tree, Betula Pendula; and two ground species: Vaccinium vitis-idaea and Vaccinium myrtillus. This activity was organized as part of the multiscale FAST campaign "Fluorescence Across Space and Time" (February 9th - July 11th 2017, Hyytiälä Forest Station, SMEAR II, Finland).We assessed the impact of using "needle-mats" as a reliable method to track seasonal changes in spectral fluorescence properties of needles. In addition, we developed a spectral box to facilitate the measurement of ambient and 77K temperature fluorescence spectra from exactly the same leaf sample footprint. The resulting data can be used to study the impact of photosystem reorganization on the in vivo spectra. Here we present our findings in regard to the comparison of ambient and 77K fluorescence spectra, which can improve the current understanding of structural photosystems' changes detectable through fluorescence signal.

  1. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    PubMed

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus

  2. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-03-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.

  3. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.

    PubMed

    Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua

    2017-11-15

    A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.

  4. A new screening method for flunitrazepam in vodka and tequila by fluorescence spectroscopy.

    PubMed

    Leesakul, Nararak; Pongampai, Sirintip; Kanatharana, Proespichaya; Sudkeaw, Pravit; Tantirungrotechai, Yuthana; Buranachai, Chittanon

    2013-01-01

    A new screening method for flunitrazepam in colourless alcoholic beverages based on a spectroscopic technique is proposed. Absorption and steady-state fluorescence of flunitrazepam and its protonated form with various acids were investigated. The redshift of the wavelength of maximum absorption was distinctively observed in protonated flunitrazepam. An emissive fluorescence at 472 nm was detected in colourless spirits (vodka and tequila) at room temperature. 2-M perchloric acid was the most appropriated proton source. By using electron ionization mass spectrometry and time-dependent density functional theory calculations, the possible structure of protonated flunitrazepam was identified to be 2-nitro-N-methylacridone, an acridone derivative as opposed to 2-methylamino-5-nitro-2'-fluorobenzophenone, a benzophenone derivative. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Fluorescent staining for leukocyte chemotaxis. Eosinophil-specific fluorescence with aniline blue.

    PubMed

    McCrone, E L; Lucey, D R; Weller, P F

    1988-11-10

    To overcome problems associated with the quantitation of human eosinophil chemotaxis in micropore filters, we have developed a fluorescent method of specifically staining eosinophils in chemotactic filters. A neutral solution of aniline blue yielded bright green fluorescent staining of the cytoplasmic granules of eosinophils. Other leukocytes and contaminating neutrophils potentially present with eosinophils did not fluoresce with aniline blue. The fluorescent staining eosinophils within filters provided bright, non-fading images that facilitated visual microscopic counting and were of sufficiently high contrast, unlike those with conventional eosinophil stains, to allow image analyzer based enumeration of eosinophil chemotactic responses at levels through the filters. Although not cell type-specific, congo red and ethidium bromide also provided high contrast, fluorescent images of all leukocyte types within chemotactic filters. Fluorescent staining with aniline blue constitutes a rapid, stable and eosinophil-specific stain that facilitates the visual or image analyzer-based quantitation of eosinophil chemotaxis.

  6. Application of kernel method in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Baikejiang, Reheman; Li, Changqing

    2017-02-01

    Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.

  7. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy.

    PubMed

    Akamatsu, Ken; Shikazono, Naoya; Saito, Takeshi

    2017-11-01

    We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (r obs ) decreases as averaged AP density (λ AP : number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60 Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that r obs -λ AP relationships differed significantly between MMS and NCS. At low AP density (λ AP  < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60 Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Measuring fluorescence polarization with a dichrometer.

    PubMed

    Sutherland, John C

    2017-09-01

    A method for obtaining fluorescence polarization data from an instrument designed to measure circular and linear dichroism is compared with a previously reported approach. The new method places a polarizer between the sample and a detector mounted perpendicular to the direction of the incident beam and results in determination of the fluorescence polarization ratio, whereas the previous method does not use a polarizer and yields the fluorescence anisotropy. A similar analysis with the detector located axially with the excitation beam demonstrates that there is no frequency modulated signal due to fluorescence polarization in the absence of a polarizer. Copyright © 2017. Published by Elsevier Inc.

  9. Measuring fluorescence polarization with a dichrometer

    DOE PAGES

    Sutherland, John C.

    2017-04-06

    In this article, a method for obtaining fluorescence polarization data from an instrument designed to measure circular and linear dichroism is compared with a previously reported approach. The new method places a polarizer between the sample and a detector mounted perpendicular to the direction of the incident beam and results in determination of the fluorescence polarization ratio, whereas the previous method does not use a polarizer and yields the fluorescence anisotropy. A similar analysis with the detector located axially with the excitation beam demonstrates that there is no frequency modulated signal due to fluorescence polarization in the absence of amore » polarizer.« less

  10. Fluorescence molecular imaging system with a novel mouse surface extraction method and a rotary scanning scheme

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-03-01

    We have developed a new fluorescence molecular tomography (FMT) imaging system, in which we utilized a phase shifting method to extract the mouse surface geometry optically and a rotary laser scanning approach to excite fluorescence molecules and acquire fluorescent measurements on the whole mouse body. Nine fringe patterns with a phase shifting of 2π/9 are projected onto the mouse surface by a projector. The fringe patterns are captured using a webcam to calculate a phase map that is converted to the geometry of the mouse surface with our algorithms. We used a DigiWarp approach to warp a finite element mesh of a standard digital mouse to the measured mouse surface thus the tedious and time-consuming procedure from a point cloud to mesh is avoided. Experimental results indicated that the proposed method is accurate with errors less than 0.5 mm. In the FMT imaging system, the mouse is placed inside a conical mirror and scanned with a line pattern laser that is mounted on a rotation stage. After being reflected by the conical mirror, the emitted fluorescence photons travel through central hole of the rotation stage and the band pass filters in a motorized filter wheel, and are collected by a CCD camera. Phantom experimental results of the proposed new FMT imaging system can reconstruct the target accurately.

  11. Morphological observation and analysis using automated image cytometry for the comparison of trypan blue and fluorescence-based viability detection method.

    PubMed

    Chan, Leo Li-Ying; Kuksin, Dmitry; Laverty, Daniel J; Saldi, Stephanie; Qiu, Jean

    2015-05-01

    The ability to accurately determine cell viability is essential to performing a well-controlled biological experiment. Typical experiments range from standard cell culturing to advanced cell-based assays that may require cell viability measurement for downstream experiments. The traditional cell viability measurement method has been the trypan blue (TB) exclusion assay. However, since the introduction of fluorescence-based dyes for cell viability measurement using flow or image-based cytometry systems, there have been numerous publications comparing the two detection methods. Although previous studies have shown discrepancies between TB exclusion and fluorescence-based viability measurements, image-based morphological analysis was not performed in order to examine the viability discrepancies. In this work, we compared TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells. Imaging results showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics. Dead cells with these characteristics may be difficult to count under light microscopy, thus generating an artificially higher viability measurement compared to fluorescence-based method. These morphological observations can potentially explain the differences in viability measurement between the two methods.

  12. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  13. Technique for Increasing the Selectivity of the Method of Laser Fragmentation/Laser-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, S. M.; Gorlov, E. V.; Zharkov, V. I.

    2018-05-01

    A technique for increasing the selectivity of the method of detecting high-energy materials (HEMs) based on laser fragmentation of HEM molecules with subsequent laser excitation of fluorescence of the characteristic NO fragments from the first vibrational level of the ground state is suggested.

  14. Features of lymphatic dysfunction in compressed skin tissues - Implications in pressure ulcer aetiology.

    PubMed

    Gray, Robert J; Voegeli, David; Bader, Dan L

    2016-02-01

    Impaired lymph formation and clearance has previously been proposed as a contributory factor in the development of pressure ulcers. The present study has been designed to trial fluorescence lymphangiography for establishing how lymphatic function is altered under a clinically relevant form of mechanical loading. Lymph formation and clearance was traced in both forearms by an intradermal injection of indocyanine green (ICG) (50 μl, 0.05%w/v), imaged using a commercial near-infrared fluorescence imaging unit (Fluobeam(®) 800). External uniaxial loading equivalent to a pressure of 60 mmHg was applied for 45 min in one arm using a custom-built indenter. Loading was associated with a decreased frequency of normal directional drainage (DD) of ICG within delineated vessels, both immediately after loading and 45 min thereafter. Loading was also associated with non-directional drainage (NDD) of ICG within the interstitium. Signal intensity within NDD was often greatest at areas of stress concentration, producing a 'halo pattern', corresponding to the rounded edges of the indenter. These results suggest that loading skin with a clinically relevant magnitude of pressure alters both lymph formation and clearance. Further work to quantify impaired clearance under mechanical loading could provide valuable insight into their involvement in the development of pressure ulcers. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  15. Method and apparatus for detection of fluorescently labeled materials

    DOEpatents

    Stern, David; Fiekowsky, Peter

    2004-05-25

    Fluorescently marked targets bind to a substrate 230 synthesized with polymer sequences at known locations. The targets are detected by exposing selected regions of the substrate 230 to light from a light source 100 and detecting the photons from the light fluoresced therefrom, and repeating the steps of exposure and detection until the substrate 230 is completely examined. The resulting data can be used to determine binding affinity of the targets to specific polymer sequences.

  16. The indirect fluorescent antibody technique as a method for detecting antibodies in aborted fetuses.

    PubMed Central

    Miller, R B; Wilkie, B N

    1979-01-01

    In this investigation the indirect fluorescent antibody technique was used to titrate antibodies in bovine sera to parainfluenza 3, infectious bovine rhinotracheitis virus and bovine viral diarrhea virus. These results were compared to those determined on the same samples by hemagglutination inhibition for parainfluenza 3 virus and serum neutralization for bovine virus diarrhea and infectious bovine rhinotracheitis virus. The results of the serological methods agreed closely. The indirect fluorescent antibody technique is a rapid and sensitive method for detecting antibodies and the procedure lends itself to use in diagnostic laboratories. In addition to the above viruses the presence or absence of antibodies to bovine coronavirus and bovine adenovirus 3 were determined by the indirect fluorescent antibody technique in thoracic fluids from 100 aborted fetuses and 50 nonaborted fetuses. Results on these samples were not compared to hemagglutination inhibition or serum neutralization as the condition of fluid samples from aborted fetuses renders interpretation of such tests unreliable. Antibodies to one or more viruses were detected in 30 of the 100 aborted fetuses and in seven of the 50 nonaborted fetuses. Antibodies to more than one agent were detected in eleven of the 100 aborted and in one of the 50 nonaborted fetuses. Reasons for this occurrence and application of the test in determination of causes of abortion are discussed. PMID:226243

  17. Discrimination of several Indonesian specialty coffees using Fluorescence Spectroscopy combined with SIMCA method

    NASA Astrophysics Data System (ADS)

    Suhandy, D.; Yulia, M.

    2018-03-01

    Indonesia is one of the important producers of several specialty coffees, which have a particularly high economic value, including Civet coffee (‘kopi luwak’ in Indonesian language) and Peaberry coffee (‘kopi lanang’ in Indonesian language). The production of Civet and Peaberry coffee is very limited. In order to provide authentication of Civet and Peaberry coffee and protect consumers from adulteration, a robust and easy method for evaluating ground Civet and Peaberry coffee and detection of its adulteration is needed. In this study, we investigate the use of fluorescence spectroscopy combined with SIMCA (soft independent modelling of class analogies) method to discriminate three Indonesian specialty coffee: ground Peaberry, Civet and Pagar Alam coffee. Total 90 samples were used (30 samples for Civet, Peaberry and Pagar Alam coffee, respectively). All coffee samples were ground using a home-coffee-grinder. Since particle size in coffee powder has a significant influence on the spectra obtained, we sieved all coffee samples through a nest of U. S. standard sieves (mesh number of 40) on a Meinzer II sieve shaker for 10 minutes to obtain a particle size of 420 µm. The experiments were performed at room temperature (around 27-29°C). All samples were extracted with distilled water and then filtered. For each samples, 3 mL of extracted sample then was pipetted into 10 mm cuvettes for spectral data acquisition. The EEM (excitation-emission matrix) spectral data of coffee samples were acquired using JASCO FP-8300 Fluorescence Spectrometer. The principal component analysis (PCA) result shows that it is possible to discriminate types of coffee based on information from EEM (excitation-emission matrix) spectral data. Using SIMCA method, the discrimination model of Indonesian specialty coffee was successfully developed and resulted in high performance of discrimination with 100% of sensitivity and specificity for Peaberry, Civet and Pagar Alam coffee. This research

  18. Development of a quantitative validation method for forensic investigation of human spermatozoa using a commercial fluorescence staining kit (SPERM HY-LITER™ Express).

    PubMed

    Takamura, Ayari; Watanabe, Ken; Akutsu, Tomoko

    2016-11-01

    In investigations of sexual assaults, as well as in identifying a suspect, the detection of human sperm is important. Recently, a kit for fluorescent staining of human spermatozoa, SPERM HY-LITER™, has become available. This kit allows for microscopic observation of the heads of human sperm using an antibody tagged with a fluorescent dye. This kit is specific to human sperm and provides easy detection by luminescence. However, criteria need to be established to objectively evaluate the fluorescent signals and to evaluate the staining efficiency of this kit. These criteria will be indispensable for investigation of forensic samples. In the present study, the SPERM HY-LITER™ Express kit, which is an improved version of SPERM HY-LITER™, was evaluated using an image analysis procedure using Laplacian and Gaussian methods. This method could be used to automatically select important regions of fluorescence produced by sperm. The fluorescence staining performance was evaluated and compared under various experimental conditions, such as for aged traces and in combination with other chemical staining methods. The morphological characteristics of human sperm were incorporated into the criteria for objective identification of sperm, based on quantified features of the fluorescent spots. Using the criteria, non-specific or insignificant fluorescent spots were excluded, and the specificity of the kit for human sperm was confirmed. The image analysis method and criteria established in this study are universal and could be applied under any experimental conditions. These criteria will increase the reliability of operator judgment in the analysis of human sperm samples in forensics.

  19. A convenient method for determination of quizalofop-p-ethyl based on the fluorescence quenching of eosin Y in the presence of Pd(II)

    NASA Astrophysics Data System (ADS)

    Wu, Huan; Zhao, Yanmei; Tan, Xuanping; Zeng, Xiaoqing; Guo, Yuan; Yang, Jidong

    2017-03-01

    A convenient fluorescence quenching method for determination of Quizalofop-p-ethyl(Qpe) was proposed in this paper. Eosin Y(EY) is a red dye with strong green fluorescence (λex/λem = 519/540 nm). The interaction between EY, Pd(II) and Qpe was investigated by fluorescence spectroscopy, resonance Rayleigh scattering(RRS) and UV-Vis absorption. Based on changes in spectrum, Pd(II) associated with Qpe giving a positively charged chelate firstly, then reacted with EY through electrostatic and hydrophobic interaction formed ternary chelate could be demonstrated. Under optimum conditions, the fluorescence intensity of EY could be quenched by Qpe in the presence of Pd(II) and the RRS intensity had a remarkable enhancement, which was directly proportional to the Qpe concentration within a certain concentration range, respectively. Based on the fluorescence quenching of EY-Pd(II) system by Qpe, a novel, convenient and specific method for Qpe determination was developed. To our knowledge, this is the first fluorescence method for determination of Qpe was reported. The detection limit for Qpe was 20.3 ng/mL and the quantitative determination range was 0.04-1.0 μg/mL. The method was highly sensitive and had larger detection range compared to other methods. The influence of coexisting substances was investigated with good anti-interference ability. The new analytical method has been applied to determine of Qpe in real samples with satisfactory results.

  20. Distance Mapping in Proteins Using Fluorescence Spectroscopy: The Tryptophan-Induced Quenching (TrIQ) Method

    PubMed Central

    Mansoor, Steven E.; DeWitt, Mark A.; Farrens, David L.

    2014-01-01

    Studying the interplay between protein structure and function remains a daunting task. Especially lacking are methods for measuring structural changes in real time. Here we report our most recent improvements to a method that can be used to address such questions. This method, which we now call Tryptophan induced quenching (TrIQ), provides a straightforward, sensitive and inexpensive way to address questions of conformational dynamics and short-range protein interactions. Importantly, TrIQ only occurs over relatively short distances (~5 to 15 Å), making it complementary to traditional fluorescence resonance energy transfer (FRET) methods that occur over distances too large for precise studies of protein structure. As implied in the name, TrIQ measures the efficient quenching induced in some fluorophores by tryptophan (Trp). We present here our analysis of the TrIQ effect for five different fluorophores that span a range of sizes and spectral properties. Each probe was attached to four different cysteine residues on T4 lysozyme and the extent of TrIQ caused by a nearby Trp was measured. Our results show that for smaller probes, TrIQ is distance dependent. Moreover, we also demonstrate how TrIQ data can be analyzed to determine the fraction of fluorophores involved in a static, non-fluorescent complex with Trp. Based on this analysis, our study shows that each fluorophore has a different TrIQ profile, or "sphere of quenching", which correlates with its size, rotational flexibility, and the length of attachment linker. This TrIQ-based "sphere of quenching" is unique to every Trp-probe pair and reflects the distance within which one can expect to see the TrIQ effect. It provides a straightforward, readily accessible approach for mapping distances within proteins and monitoring conformational changes using fluorescence spectroscopy. PMID:20886836

  1. A New Low Cost Wide-Field Illumination Method for Photooxidation of Intracellular Fluorescent Markers

    PubMed Central

    da Silva Filho, Manoel; Santos, Daniel Valle Vasconcelos; Costa, Kauê Machado

    2013-01-01

    Analyzing cell morphology is crucial in the fields of cell biology and neuroscience. One of the main methods for evaluating cell morphology is by using intracellular fluorescent markers, including various commercially available dyes and genetically encoded fluorescent proteins. These markers can be used as free radical sources in photooxidation reactions, which in the presence of diaminobenzidine (DAB) forms an opaque and electron-dense precipitate that remains localized within the cellular and organelle membranes. This method confers many methodological advantages for the investigator, including absence of photo-bleaching, high visual contrast and the possibility of correlating optical imaging with electron microscopy. However, current photooxidation techniques require the continuous use of fluorescent or confocal microscopes, which wastes valuable mercury lamp lifetime and limits the conversion process to a few cells at a time. We developed a low cost optical apparatus for performing photooxidation reactions and propose a new procedure that solves these methodological restrictions. Our “photooxidizer” consists of a high power light emitting diode (LED) associated with a custom aluminum and acrylic case and a microchip-controlled current source. We demonstrate the efficacy of our method by converting intracellular DiI in samples of developing rat neocortex and post-mortem human retina. DiI crystals were inserted in the tissue and allowed to diffuse for 20 days. The samples were then processed with the new photooxidation technique and analyzed under optical microscopy. The results show that our protocols can unveil the fine morphology of neurons in detail. Cellular structures such as axons, dendrites and spine-like appendages were well defined. In addition to its low cost, simplicity and reliability, our method precludes the use of microscope lamps for photooxidation and allows the processing of many labeled cells simultaneously in relatively large tissue

  2. Feasibility of simultaneous sodium fluorescein and indocyanine green injection in neurosurgical procedures.

    PubMed

    Acerbi, F; Restelli, F; Broggi, M; Schiariti, M; Ferroli, P

    2016-07-01

    The objective of this study is to assess the feasibility of simultaneous Sodium Fluorescein (SF) and Indocyanine Green (ICG) injection during neurosurgical procedures. Three patients harboring a high-grade glioma (HGG) were retrospectively identified in the surgical database of the Neurosurgical Unit 2 at the Foundation IRCCS Istituto Neurologico C. Besta in Milan, by having received intraoperatively both SF for tumor resection and ICG for vasculature angiographic studies in the same surgical procedure. We identified 2 males and 1 female (age range 25-60). Lesions were located in the left temporo-polar area and hippocampus (1 case), right superior frontal gyrus (1 case), left supplementary motor area (1 case). All the three lesions showed Magnetic Resonance Imaging (MRI) characteristics of HGG and, for this reason, in all patients a fluorescein-guided tumor removal was proposed. In the same surgical procedure ICG videoangiography was considered necessary in order to study arterial and venous vasculature, given by the strict relation of the tumor with an unexpected Posterior Communicating Artery (PComA) aneurysm in one case and with cortical drainage veins complexes in the other two cases. In all cases a microscope equipped with both YELLOW560 and IR800 integrated filters (Pentero 900, Carl Zeiss, Oberkorchen, Germany) was used. Fluorescein was i.v. injected at a dose of 5mg/kg immediately after patient intubation. ICG was i.v. injected in bolus on demand of the operating surgeon at a dose of 12.5mg. No side-effects related to simultaneous injection of SF and ICG were identified. In all three cases, the use of SF allowed to better visualize the tumor areas during surgical removal, thus leading to a radical resection until no macroscopic appearance of residual tumor mass and no fluorescence was visible in the surgical cavity. ICG videoangiography confirmed the patency of branches of internal carotid artery after clipping of an unexpected small PComA aneurysm found

  3. Fluorescence in situ detection of human cutaneous melanoma: study of diagnostic parameters of the method.

    PubMed

    Chwirot, B W; Chwirot, S; Sypniewska, N; Michniewicz, Z; Redzinski, J; Kurzawski, G; Ruka, W

    2001-12-01

    Multicenter study of the diagnostic parameters was conducted by three groups in Poland to determine if in situ fluorescence detection of human cutaneous melanoma based on digital imaging of spectrally resolved autofluorescence can be used as a tool for a preliminary selection of patients at increased risk of the disease. Fluorescence examinations were performed for 7228 pigmented lesions in 4079 subjects. Histopathologic examinations showed 56 cases of melanoma. A sensitivity of fluorescence detection of melanoma was 82.7% in agreement with 82.5% found in earlier work. Using as a reference only the results of histopathologic examinations obtained for 568 cases we found a specificity of 59.9% and a positive predictive value of 17.5% (melanomas versus all pigmented lesions) or 24% (melanomas versus common and dysplastic naevi). The specificity and positive predictive value found in this work are significantly lower than reported earlier but still comparable with those reported for typical screening programs. In conclusion, the fluorescence method of in situ detection of melanoma can be used in screening large populations of patients for a selection of patients who should be examined by specialists.

  4. Insights into accelerated liposomal release of topotecan in plasma monitored by a non-invasive fluorescence spectroscopic method

    PubMed Central

    Fugit, Kyle D.; Jyoti, Amar; Upreti, Meenakshi; Anderson, Bradley D.

    2014-01-01

    A non-invasive fluorescence method was developed to monitor liposomal release kinetics of the anticancer agent topotecan (TPT) in physiological fluids and subsequently used to explore the cause of accelerated release in plasma. Analyses of fluorescence excitation spectra confirmed that unencapsulated TPT exhibits a red shift in its spectrum as pH is increased. This property was used to monitor TPT release from actively loaded liposomal formulations having a low intravesicular pH. Mathematical release models were developed to extract reliable rate constants for TPT release in aqueous solutions monitored by fluorescence and release kinetics obtained by HPLC. Using the fluorescence method, accelerated TPT release was observed in plasma as previously reported in the literature. Simulations to estimate the intravesicular pH were conducted to demonstrate that accelerated release correlated with alterations in the low intravesicular pH. This was attributed to the presence of ammonia in plasma samples rather than proteins and other plasma components generally believed to alter release kinetics in physiological samples. These findings shed light on the critical role that ammonia may play in contributing to the preclinical/clinical variability and performance seen with actively-loaded liposomal formulations of TPT and other weakly-basic anticancer agents. PMID:25456833

  5. A Rapid and Convenient Method for in Vivo Fluorescent Imaging of Protoscolices of Echinococcus multilocularis.

    PubMed

    Yang, Tao; Wang, Sibo; Zhang, Xuyong; Xia, Jie; Guo, Jun; Hou, Jixue; Zhang, Hongwei; Chen, Xueling; Wu, Xiangwei

    2016-04-01

    Human and animal alveolar echinococcosis (AE) are important helminth infections endemic in wide areas of the Northern hemisphere. Monitoring Echinococcus multilocularis viability and spread using real-time fluorescent imaging in vivo provides a fast method to evaluate the load of parasite. Here, we generated a kind of fluorescent protoscolices in vivo imaging model and utilized this model to assess the activity against E. multilocularis protoscolices of metformin (Met). Results indicated that JC-1 tagged E. multilocularis can be reliably and confidently used to monitor protoscolices in vitro and in vivo. The availability of this transient in vivo fluorescent imaging of E. multilocularis protoscolices constitutes an important step toward the long term bio-imaging research of the AE-infected mouse models. In addition, this will be of great interest for further research on infection strategies and development of drugs and vaccines against E. multilocularis and other cestodes.

  6. Hybrid lymph node imaging using 64Cu-labeled mannose-conjugated human serum albumin with and without indocyanine green.

    PubMed

    Kang, Choong Mo; An, Gwang Il; Choe, Yearn Seong

    2015-10-01

    Human serum albumin (HSA), which has 58 Lys residues, one Cys residue, and indocyanine green (ICG) adsorption sites, can be used as a multifunctional platform for the development of hybrid imaging probes. In this study, we prepared 64Cu-labeled mannose-conjugated HSA with and without ICG ([64Cu]1-ICG and [64Cu]1, respectively) and compared hybrid PET/near-infrared fluorescence (NIRF) imaging with positron emission tomography (PET)/Cerenkov luminescence (CL) imaging of lymph nodes (LNs). 1,4,7,10-Tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)/mannose-conjugated HSA (1) was synthesized by conjugating mannose molecules to Lys residues and a DOTA molecule to a Cys residue of HSA. Compound 1 was then labeled with Cu ([64Cu]1), and the resulting [64Cu]1 was adsorbed with ICG ([64Cu]1-ICG). PET/NIRF or PET/CL imaging and subsequent biodistribution studies were performed in ICR mice after injection of the probes into the foot pads. The numbers of mannose and DOTA molecules conjugated to HSA were 7.17 ± 0.49 and 0.95 ± 0.18, respectively. The site-specific conjugation of one DOTA molecule to HSA was sufficient for 64Cu-labeling with high efficiency (96.0 ± 1.1%). PET/NIRF and PET/CL imaging and subsequent biodistribution studies demonstrated that the probes were avidly taken up by the popliteal LNs (PO), with a slightly higher uptake ratio of the PO to the lumbar LNs by [64Cu]1. In-vivo studies suggest that [64Cu]1 has more specific and selective binding to mannose receptors in the PO than [64Cu]1-ICG.

  7. Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles.

    PubMed

    Yan, Fei; Wu, Hao; Liu, Hongmei; Deng, Zhiting; Liu, Hong; Duan, Wanlu; Liu, Xin; Zheng, Hairong

    2016-02-28

    Multifunctional near-infrared (NIR) nanoparticles demonstrate great potential in tumor theranostic applications. To achieve the sensitive detection and effective phototherapy in the early stage of tumor genesis, it is highly desirable to improve the targeting of NIR theranostic agents to biomarkers and to enhance their accumulation in tumor. Here we report a novel targeted multifunctional theranostic nanoparticle, internalized RGD (iRGD)-modified indocyanine green (ICG) liposomes (iRGD-ICG-LPs), for molecular imaging-guided photothermal therapy (PTT) and photodynamic therapy (PDT) therapy against breast tumor. The iRGD peptides with high affinity to αvβ3 integrin and effective tumor-internalized property were firstly used to synthesize iRGD-PEG2000-DSPE lipopeptides, which were further utilized to fabricate the targeted ICG liposomes. The results indicated that iRGD-ICG-LPs exhibited excellent stability and could provide an accurate and sensitive detection of breast tumor through NIR fluorescence molecular imaging. We further employed this nanoparticle for tumor theranostic application, demonstrating significantly higher tumor accumulation and tumor inhibition efficacy through PTT/PDT effects. Histological analysis further revealed much more apoptotic cells, confirming the advantageous anti-tumor effect of iRGD-ICG-LPs over non-targeted ICG-LPs. Notably, the targeting therapy mediated by iRGD provides almost equivalent anti-tumor efficacy at a 12.5-fold lower drug dose than that by monoclonal antibody, and no tumor recurrence and obvious treatment-induced toxicity were observed in our study. Our study provides a promising strategy to realize the sensitive detection and effective treatment of tumors by integrating molecular imaging into PTT/PDT therapy. Copyright © 2015. Published by Elsevier B.V.

  8. A simple fluorescence quenching method for berberine determination using water-soluble CdTe quantum dots as probes

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Liu, Meigui; Cao, Chun; Xia, Yunsheng; Bao, Linjun; Jin, Yingqiong; Yang, Song; Zhu, Changqing

    2010-03-01

    A novel method for the determination of berberine has been developed based on quenching of the fluorescence of thioglycolic acid-capped CdTe quantum dots (TGA-CdTe QDs) by berberine in aqueous solutions. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of berberine between 2.5 × 10 -8 and 8.0 × 10 -6 mol L -1 with a detection limit of 6.0 × 10 -9 mol L -1. The method has been applied to the determination of berberine in real samples, and satisfactory results were obtained. The mechanism of the proposed reaction was also discussed.

  9. Entangled-photon coincidence fluorescence imaging

    PubMed Central

    Scarcelli, Giuliano; Yun, Seok H.

    2009-01-01

    We describe fluorescence imaging using the second-order correlation of entangled photon pairs. The proposed method is based on the principle that one photon of the pair carries information on where the other photon has been absorbed and has produced fluorescence in a sample. Because fluorescent molecules serve as “detectors” breaking the entanglement, multiply-scattered fluorescence photons within the sample do not cause image blur. We discuss experimental implementations. PMID:18825257

  10. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications.

    PubMed

    Han, Ya-Hui; Kankala, Ranjith Kumar; Wang, Shi-Bin; Chen, Ai-Zheng

    2018-05-24

    In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.

  11. Reconstruction method for fluorescent X-ray computed tomography by least-squares method using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-02-01

    We describe a new attenuation correction method for fluorescent X-ray computed tomography (FXCT) applied to image nonradioactive contrast materials in vivo. The principle of the FXCT imaging is that of computed tomography of the first generation. Using monochromatized synchrotron radiation from the BLNE-5A bending-magnet beam line of Tristan Accumulation Ring in KEK, Japan, we studied phantoms with the FXCT method, and we succeeded in delineating a 4-mm-diameter channel filled with a 500 /spl mu/g I/ml iodine solution in a 20-mm-diameter acrylic cylindrical phantom. However, to detect smaller iodine concentrations, attenuation correction is needed. We present a correction method based on the equation representing the measurement process. The discretized equation system is solved by the least-squares method using the singular value decomposition. The attenuation correction method is applied to the projections by the Monte Carlo simulation and the experiment to confirm its effectiveness.

  12. Labeling of indocyanine green with carrier-free iodine-123

    DOEpatents

    Ansari, Azizullah N.; Lambrecht, Richard M.; Redvanly, Carol S.; Wolf, Alfred P.

    1976-01-01

    The method of labeling indocyanine green (ICG) with carrier-free iodine-123 comprising the steps of condensing xenon-123 on crystals of ICG followed by permitting decay of the .sup.123 Xe a sufficient length of time to produce .sup.123 I-electronically excited ions and atoms which subsequently label ICG.

  13. Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis.

    PubMed

    Varga, Viktor Sebestyén; Bocsi, József; Sipos, Ferenc; Csendes, Gábor; Tulassay, Zsolt; Molnár, Béla

    2004-07-01

    Fluorescent measurements on cells are performed today with FCM and laser scanning cytometry. The scientific community dealing with quantitative cell analysis would benefit from the development of a new digital multichannel and virtual microscopy based scanning fluorescent microscopy technology and from its evaluation on routine standardized fluorescent beads and clinical specimens. We applied a commercial motorized fluorescent microscope system. The scanning was done at 20 x (0.5 NA) magnification, on three channels (Rhodamine, FITC, Hoechst). The SFM (scanning fluorescent microscopy) software included the following features: scanning area, exposure time, and channel definition, autofocused scanning, densitometric and morphometric cellular feature determination, gating on scatterplots and frequency histograms, and preparation of galleries of the gated cells. For the calibration and standardization Immuno-Brite beads were used. With application of shading compensation, the CV of fluorescence of the beads decreased from 24.3% to 3.9%. Standard JPEG image compression until 1:150 resulted in no significant change. The change of focus influenced the CV significantly only after +/-5 microm error. SFM is a valuable method for the evaluation of fluorescently labeled cells. Copyright 2004 Wiley-Liss, Inc.

  14. Fluorescence Live Cell Imaging

    PubMed Central

    Ettinger, Andreas

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023

  15. Laser-induced fluorescence imaging of bacteria

    NASA Astrophysics Data System (ADS)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  16. Native Fluorescence Detection Methods, Devices, and Systems for Organic Compounds

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor); Reid, Ray D. (Inventor)

    2018-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.

  17. Native Fluorescence Detection Methods, Devices, and Systems for Organic Compounds

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor); Bhartia, Rohit (Inventor)

    2016-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.

  18. Reconstruction of fluorescence molecular tomography with a cosinoidal level set method.

    PubMed

    Zhang, Xuanxuan; Cao, Xu; Zhu, Shouping

    2017-06-27

    Implicit shape-based reconstruction method in fluorescence molecular tomography (FMT) is capable of achieving higher image clarity than image-based reconstruction method. However, the implicit shape method suffers from a low convergence speed and performs unstably due to the utilization of gradient-based optimization methods. Moreover, the implicit shape method requires priori information about the number of targets. A shape-based reconstruction scheme of FMT with a cosinoidal level set method is proposed in this paper. The Heaviside function in the classical implicit shape method is replaced with a cosine function, and then the reconstruction can be accomplished with the Levenberg-Marquardt method rather than gradient-based methods. As a result, the priori information about the number of targets is not required anymore and the choice of step length is avoided. Numerical simulations and phantom experiments were carried out to validate the proposed method. Results of the proposed method show higher contrast to noise ratios and Pearson correlations than the implicit shape method and image-based reconstruction method. Moreover, the number of iterations required in the proposed method is much less than the implicit shape method. The proposed method performs more stably, provides a faster convergence speed than the implicit shape method, and achieves higher image clarity than the image-based reconstruction method.

  19. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    NASA Astrophysics Data System (ADS)

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-05-01

    Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach's feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method.

  20. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    PubMed Central

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-01-01

    Abstract. Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method. PMID:28464120

  1. Laparoscopic Sentinel Node Mapping in Endometrial Cancer After Hysteroscopic Injection of Indocyanine Green.

    PubMed

    Martinelli, Fabio; Ditto, Antonino; Bogani, Giorgio; Signorelli, Mauro; Chiappa, Valentina; Lorusso, Domenica; Haeusler, Edward; Raspagliesi, Francesco

    2017-01-01

    To report the detection rate (DR) of sentinel lymph nodes (SLNs) in endometrial cancer (EC) patients after hysteroscopic injection of indocyanine green (ICG) and laparoscopic near-infrared (L-NIR) fluorescence mapping. Prospectively collected data (Canadian Task Force classification II-2). Gynecologic oncology referral center. Consecutive patients with apparent early-stage endometrioid EC scheduled for surgical treatment: total laparoscopic hysterectomy, bilateral salpingo-oophorectomy, SLN mapping. The mapping technique consisted in an intraoperative hysteroscopic peritumoral injection of 5 mg ICG followed by L-NIR fluorescence mapping. Evaluations of the SLN DR and sites of mapping were performed. A total of 57 procedures was performed. Patient mean age was 60 years (range, 28-80) and mean body mass index was 28.2 kg/m 2 (range, 19-43). At least 1 SLN was detected in 89.5% of the whole population (51/57). After the first 16 cases, L-NIR camera technical improvement led to a 95% DR (39/41). The mean number of harvested SLNs was 4.1 (range. 1-8), and in 47% of cases SLNs mapped to aortic nodes (24/51). Bilateral pelvic mapping was found in 74.5% of cases (38/51). Three patients had SLN metastases: 1 in the pelvic area only, 1 both in the pelvic and aortic area, and 1 presented with 2 metastatic aortic SLNs with negative pelvic SLNs. Overall, 2 of 3 node-positive patients (67%) had aortic SLN involvement. No adverse events were reported. Laparoscopic SLN mapping after the hysteroscopic injection of ICG has comparable DRs with both radioactive tracer series and ICG series with cervical injection, overcoming the need for radioactive substances. Hysteroscopic injection leads to a higher mapping in the aortic area compared with cervical injection. Further investigation is warranted on this topic. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  2. Dual-Image Videoangiography During Intracranial Microvascular Surgery.

    PubMed

    Feletti, Alberto; Wang, Xiangdong; Tanaka, Riki; Yamada, Yasuhiro; Suyama, Daisuke; Kawase, Tsukasa; Sano, Hirotoshi; Kato, Yoko

    2017-03-01

    Indocyanine green videoangiography (ICG-VA) is a valuable tool to assess vessel and aneurysm patency during neurovascular surgical procedures. However, ICG-VA highlights vascular structures, which appear white over a black background. Anatomic relationships are sometimes difficult to understand at first glance. Dual-image videoangiography (DIVA) enables simultaneous visualization of light and near-infrared fluorescence images of ICG-VA. The DIVA system was mounted on an OPMI Pentero Flow 800 intraoperative microscope. DIVA was used during microsurgical procedures on 5 patients who were operated for aneurysm clipping and superficial temporal artery-middle cerebral artery bypass. DIVA provides real-time simultaneous visualization of aneurysm and vessels and surrounding structures including brain, nerves, and surgical clips. Although visual contrast between vessels and background is higher with standard black-and-white imaging, DIVA makes it easier to understand anatomic relationships between intracranial structures. DIVA also provides better vision of the depth of field. DIVA has the potential to become a widely used intraoperative tool to check patency of intracranial vessels. It should be considered as an adjunct to standard ICG-VA for better understanding of vascular anatomy in relation to surrounding structures and can have an impact on decision making during surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Biliary tract visualization using near-infrared imaging with indocyanine green during laparoscopic cholecystectomy: results of a systematic review.

    PubMed

    Vlek, S L; van Dam, D A; Rubinstein, S M; de Lange-de Klerk, E S M; Schoonmade, L J; Tuynman, J B; Meijerink, W J H J; Ankersmit, M

    2017-07-01

    Near-infrared imaging with indocyanine green (ICG) has been extensively investigated during laparoscopic cholecystectomy (LC). However, methods vary between studies, especially regarding patient selection, dosage and timing. The aim of this systematic review was to evaluate the potential of the near-infrared imaging technique with ICG to identify biliary structures during LC. A comprehensive systematic literature search was performed. Prospective trials examining the use of ICG during LC were included. Primary outcome was biliary tract visualization. Risk of bias was assessed using ROBINS-I. Secondly, a meta-analysis was performed comparing ICG to intraoperative cholangiography (IOC) for identification of biliary structures. GRADE was used to assess the quality of the evidence. Nineteen studies were included. Based upon the pooled data from 13 studies, cystic duct (Lusch et al. in J Endourol 28:261-266, 2014) visualization was 86.5% (95% CI 71.2-96.6%) prior to dissection of Calot's triangle with a 2.5-mg dosage of ICG and 96.5% (95% CI 93.9-98.4%) after dissection. The results were not appreciably different when the dosage was based upon bodyweight. There is moderate quality evidence that the CD is more frequently visualized using ICG than IOC (RR 1.16; 95% CI 1.00-1.35); however, this difference was not statistically significant. This systematic review provides equal results for biliary tract visualization with near-infrared imaging with ICG during LC compared to IOC. Near-infrared imaging with ICG has the potential to replace IOC for biliary mapping. However, methods of near-infrared imaging with ICG vary. Future research is necessary for optimization and standardization of the near-infrared ICG technique.

  4. Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro.

    PubMed

    Claudia, Meindl; Kristin, Öhlinger; Jennifer, Ober; Eva, Roblegg; Eleonore, Fröhlich

    2017-03-01

    At many portals of entry the relative uptake by phagocytes and non-phagocytic cells has a prominent effect on availability and biological action of nanoparticles (NPs). Cellular uptake can be determined for fluorescence-labeled NPs. The present study compares three methods (plate reader, flow cytometry and image analysis) in order to investigate the influence of particle size and functionalization and medium content on cellular uptake of fluorescence-labeled polystyrene particles and to study the respective method́s suitability for uptake studies. For comparison between the techniques, ratios of macrophage to alveolar epithelial cell uptakes were used. Presence of serum protein in the exposure solution decreased uptake of carboxyl-functionalized and non-functionalized particles; there was no clear effect for the amine-functionalized particles. The 200nm non- or carboxyl-functionalized NPs were taken up preferentially by phagocytes while for amine-functionalized particles preference was lowest. The presence of the serum slightly increased the preference for these particles. In conclusion, due to the possibility of calibration, plate reader measurements might present a better option than the other techniques to (semi)quantify differences between phagocytes and non-phagocytic cells for particles with different fluorescence. In order to obtain unbiased data the fluorescent labeling has to fulfill certain requirements. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. A porphyrin-based fluorescence method for zinc determination in commercial propolis extracts without sample pretreatment.

    PubMed

    Pierini, Gastón Darío; Pinto, Victor Hugo A; Maia, Clarissa G C; Fragoso, Wallace D; Reboucas, Julio S; Centurión, María Eugenia; Pistonesi, Marcelo Fabián; Di Nezio, María Susana

    2017-11-01

    The quantification of zinc in over-the-counter drugs as commercial propolis extracts by molecular fluorescence technique using meso-tetrakis(4-carboxyphenyl)porphyrin (H 2 TCPP 4 ) was developed for the first time. The calibration curve is linear from 6.60 to 100 nmol L -1 of Zn 2+ . The detection and quantification limits were 6.22 nmol L -1 and 19.0 nmol L -1 , respectively. The reproducibility and repeatability calculated as the percentage variation of slopes of seven calibration curves were 6.75% and 4.61%, respectively. Commercial propolis extract samples from four Brazilian states were analyzed and the results (0.329-0.797 mg/100 mL) obtained with this method are in good agreement with that obtained with the Atomic Absorption Spectroscopy (AAS) technique. The method is simple, fast, of low cost and allows the analysis of the samples without pretreatment. Moreover the major advantage is that Zn-porphyrin complex presents fluorescent characteristic promoting the selectivity and sensitivity of the method. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Optical measurement of mouse strain differences in cerebral blood flow using indocyanine green

    PubMed Central

    Kang, Hye-Min; Sohn, Inkyung; Kim, Seunggyu; Kim, Daehwan; Jung, Junyang; Jeong, Joo-Won; Park, Chan

    2015-01-01

    C57BL/6 mice have more cerebral arterial branches and collaterals than BALB/c mice. We measured and compared blood flow dynamics of the middle cerebral artery (MCA) in these two strains, using noninvasive optical imaging with indocyanine green (ICG). Relative maximum fluorescence intensity (Imax) and the time needed for ICG to reach Imax in the MCA of C57BL/c were lower than that in BALB/c mice. Moreover, the mean transit time was significantly lower in C57BL/6 than in BALB/c mice. These data suggest that the higher number of arterial branches and collaterals in C57BL/6 mice yields a lower blood flow per cerebral artery. PMID:25833343

  7. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.

    PubMed

    Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu

    2017-07-15

    We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Value of Indocyanine Green Videoangiography in Deciding the Completeness of Cerebrovascular Surgery

    PubMed Central

    Moon, Hyung-Sik; Joo, Sung-Pil; Seo, Bo-Ra; Jang, Jae-Won; Kim, Jae-Hyoo

    2013-01-01

    Objective Recently, microscope-integrated near infrared indocyanine green videoangiography (ICG-VA) has been widely used in cerebrovascular surgery because it provides real-time high resolution images. In our study, we evaluate the efficacy of intraoperative ICG-VA during cerebrovascular surgery. Methods Between August 2011 and April 2012, 188 patients with cerebrovascular disease were surgically treated in our institution. We used ICG-VA in that operations with half of recommended dose (0.2 to 0.3 mg/kg). Postoperative digital subtraction angiography and computed tomography angiography was used to confirm anatomical results. Results Intraoperative ICG-VA demonstrated fully occluded aneurysm sack, no neck remnant, and without vessel compromise in 119 cases (93.7%) of 127 aneurysms. Eight clipping (6.3%) of 127 operations were identified as an incomplete aneurysm occlusion or compromising vessel after ICG-VA. In 41 (97.6%) of 42 patients after carotid endarterectomy, the results were the same as that of postoperative angiography with good patency. One case (5.9%) of 17 bypass surgeries was identified as a nonfunctioning anastomosis after ICG-VA, which could be revised successfully. In the two patients of arteriovenous malformation, ICG-VA was useful for find the superficial nature of the feeding arteries and draining veins. Conclusion ICG-VA is simple and provides real-time information of the patency of vessels including very small perforators within the field of the microscope and has a lower rate of adverse reactions. However, ICG-VA is not a perfect method, and so a combination of monitoring tools assures the quality of cerebrovascular surgery. PMID:24003369

  9. Imaging transcription factors dynamics with advanced fluorescence microscopy methods.

    PubMed

    Verneri, Paula; Romero, Juan José; De Rossi, María Cecilia; Alvarez, Yanina; Oses, Camila; Guberman, Alejandra; Levi, Valeria

    2018-05-10

    Pluripotent stem cells (PSCs) are capable of self-renewing and producing all cell types derived from the three germ layers in response to developmental cues, constituting an important promise for regenerative medicine. Pluripotency depends on specific transcription factors (TFs) that induce genes required to preserve the undifferentiated state and repress other genes related to differentiation. The transcription machinery and regulatory components such as TFs are recruited dynamically on their target genes making it essential exploring their dynamics in living cells to understand the transcriptional output. Non-invasive and very sensitive fluorescence microscopy methods are making it possible visualizing the dynamics of TFs in living specimens, complementing the information extracted from studies in fixed specimens and bulk assays. In this work, we briefly describe the basis of these microscopy methods and review how they contributed to our knowledge of the function of TFs relevant to embryo development and cell differentiation in a variety of systems ranging from single cells to whole organisms. Copyright © 2017. Published by Elsevier B.V.

  10. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods.

    PubMed

    Westergaard Mulberg, Mads; Taskova, Maria; Thomsen, Rasmus P; Okholm, Anders H; Kjems, Jørgen; Astakhova, Kira

    2017-08-17

    For decades the detection of nucleic acids and their interactions at low abundances has been a challenging task that has thus far been solved by enzymatic target amplification. In this work we aimed at developing efficient tools for amplification-free nucleic acid detection, which resulted in the synthesis of new fluorescent nanoparticles. Here, the fluorescent nanoparticles were made by simple and inexpensive radical emulsion polymerization of butyl acrylate in the presence of fluorescent dyes and additional functionalization reagents. This provided ultra-bright macrofluorophores of 9-84 nm mean diameter, modified with additional alkyne and amino groups for bioconjugation. By using click and NHS chemistries, the new nanoparticles were attached to target-specific DNA probes that were used in fluorimetry and fluorescence microscopy. Overall, these fluorescent nanoparticles and their oligonucleotide derivatives have higher photostability, brighter fluorescence and hence dramatically lower limits of target detection than the individual organic dyes. These properties make them useful in approaches directed towards ultrasensitive detection of nucleic acids, in particular for imaging and in vitro diagnostics of DNA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rapid and reliable diagnostic method to detect Zika virus by real-time fluorescence reverse transcription loop-mediated isothermal amplification.

    PubMed

    Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian

    2018-04-18

    To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.

  12. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.

    PubMed

    Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian

    2017-05-01

    This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  13. 10 CFR Appendix Q to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Fluorescent Lamp Ballasts

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of Fluorescent Lamp Ballasts Q Appendix Q to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. Q Appendix Q to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Fluorescent...

  14. 10 CFR Appendix Q to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Fluorescent Lamp Ballasts

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Fluorescent Lamp Ballasts Q Appendix Q to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. Q Appendix Q to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Fluorescent...

  15. 10 CFR Appendix Q to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Fluorescent Lamp Ballasts

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of Fluorescent Lamp Ballasts Q Appendix Q to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. Q Appendix Q to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Fluorescent...

  16. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.

    PubMed

    Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2014-08-20

    In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.

  17. Using Fluorescent Viruses for Detecting Bacteria in Water

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  18. Frequency division multiplexed multi-color fluorescence microscope system

    NASA Astrophysics Data System (ADS)

    Le, Vu Nam; Yang, Huai Dong; Zhang, Si Chun; Zhang, Xin Rong; Jin, Guo Fan

    2017-10-01

    Grayscale camera can only obtain gray scale image of object, while the multicolor imaging technology can obtain the color information to distinguish the sample structures which have the same shapes but in different colors. In fluorescence microscopy, the current method of multicolor imaging are flawed. Problem of these method is affecting the efficiency of fluorescence imaging, reducing the sampling rate of CCD etc. In this paper, we propose a novel multiple color fluorescence microscopy imaging method which based on the Frequency division multiplexing (FDM) technology, by modulating the excitation lights and demodulating the fluorescence signal in frequency domain. This method uses periodic functions with different frequency to modulate amplitude of each excitation lights, and then combine these beams for illumination in a fluorescence microscopy imaging system. The imaging system will detect a multicolor fluorescence image by a grayscale camera. During the data processing, the signal obtained by each pixel of the camera will be processed with discrete Fourier transform, decomposed by color in the frequency domain and then used inverse discrete Fourier transform. After using this process for signals from all of the pixels, monochrome images of each color on the image plane can be obtained and multicolor image is also acquired. Based on this method, this paper has constructed and set up a two-color fluorescence microscope system with two excitation wavelengths of 488 nm and 639 nm. By using this system to observe the linearly movement of two kinds of fluorescent microspheres, after the data processing, we obtain a two-color fluorescence dynamic video which is consistent with the original image. This experiment shows that the dynamic phenomenon of multicolor fluorescent biological samples can be generally observed by this method. Compared with the current methods, this method can obtain the image signals of each color at the same time, and the color video's frame

  19. RNA-ID, a highly sensitive and robust method to identify cis-regulatory sequences using superfolder GFP and a fluorescence-based assay.

    PubMed

    Dean, Kimberly M; Grayhack, Elizabeth J

    2012-12-01

    We have developed a robust and sensitive method, called RNA-ID, to screen for cis-regulatory sequences in RNA using fluorescence-activated cell sorting (FACS) of yeast cells bearing a reporter in which expression of both superfolder green fluorescent protein (GFP) and yeast codon-optimized mCherry red fluorescent protein (RFP) is driven by the bidirectional GAL1,10 promoter. This method recapitulates previously reported progressive inhibition of translation mediated by increasing numbers of CGA codon pairs, and restoration of expression by introduction of a tRNA with an anticodon that base pairs exactly with the CGA codon. This method also reproduces effects of paromomycin and context on stop codon read-through. Five key features of this method contribute to its effectiveness as a selection for regulatory sequences: The system exhibits greater than a 250-fold dynamic range, a quantitative and dose-dependent response to known inhibitory sequences, exquisite resolution that allows nearly complete physical separation of distinct populations, and a reproducible signal between different cells transformed with the identical reporter, all of which are coupled with simple methods involving ligation-independent cloning, to create large libraries. Moreover, we provide evidence that there are sequences within a 9-nt library that cause reduced GFP fluorescence, suggesting that there are novel cis-regulatory sequences to be found even in this short sequence space. This method is widely applicable to the study of both RNA-mediated and codon-mediated effects on expression.

  20. In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.

    PubMed

    Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao

    2017-08-01

    Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.