Sample records for icg fluorescence navigation

  1. Clinical application of indocyanine green (ICG) fluorescent imaging of hepatoblastoma.

    PubMed

    Yamamichi, Taku; Oue, Takaharu; Yonekura, Takeo; Owari, Mitsugu; Nakahata, Kengo; Umeda, Satoshi; Nara, Keigo; Ueno, Takehisa; Uehara, Shuichiro; Usui, Noriaki

    2015-05-01

    Although the usefulness of intraoperative indocyanine green (ICG) fluorescent imaging for the resection of hepatocellular carcinoma has been reported, its usefulness for the resection of hepatoblastoma remains unclear. This study clarifies the feasibility of intraoperative ICG fluorescent imaging for the resection of hepatoblastoma. In three hepatoblastoma patients, a primary tumor, recurrent tumor, and lung metastatic lesions were intraoperatively examined using a near-infrared fluorescence imaging system after the preoperative administration of ICG. ICG fluorescent imaging was useful for the surgical navigation in hepatoblastoma patients. In the first case, the primary hepatoblastoma exhibited intense fluorescence during right hepatectomy, but no fluorescence was detected in the residual liver. In the second case, a recurrent tumor exhibited fluorescence between the residual liver and diaphragm. A complete resection of the residual liver, with a partial resection of the diaphragm, followed by liver transplantation was performed. In the third case with multiple lung metastases, each metastatic lesion showed positive fluorescence, and all were completely resected. These fluorescence-positive lesions were pathologically proven to be viable hepatoblastoma cells. Intraoperative ICG fluorescence imaging for patients with hepatoblastoma was feasible and useful for identifying small viable lesions and confirming that no remnant tumor remained after resection. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Localization of pulmonary nodules using navigation bronchoscope and a near-infrared fluorescence thoracoscope.

    PubMed

    Anayama, Takashi; Qiu, Jimmy; Chan, Harley; Nakajima, Takahiro; Weersink, Robert; Daly, Michael; McConnell, Judy; Waddell, Thomas; Keshavjee, Shaf; Jaffray, David; Irish, Jonathan C; Hirohashi, Kentaro; Wada, Hironobu; Orihashi, Kazumasa; Yasufuku, Kazuhiro

    2015-01-01

    Video-assisted thoracoscopic wedge resection of multiple small, non-visible, and nonpalpable pulmonary nodules is a clinical challenge. We propose an ultra-minimally invasive technique for localization of pulmonary nodules using the electromagnetic navigation bronchoscope (ENB)-guided transbronchial indocyanine green (ICG) injection and intraoperative fluorescence detection with a near-infrared (NIR) fluorescence thoracoscope. Fluorescence properties of ICG topically injected into the lung parenchyma were determined using a resected porcine lung. The combination of ENB-guided ICG injection and NIR fluorescence detection was tested using a live porcine model. An electromagnetic sensor integrated flexible bronchoscope was geometrically registered to the three-dimensional chest computed tomographic image data by way of a real-time electromagnetic tracking system. The ICG mixed with iopamidol was injected into the pulmonary nodules by ENB guidance; ICG fluorescence was visualized by a near-infrared (NIR) thoracoscope. The ICG existing under 24-mm depth of inflated lung was detectable by the NIR fluorescence thoracoscope. The size of the fluorescence spot made by 0.1 mL of ICG was 10.4 ± 2.2 mm. An ICG or iopamidol spot remained at the injected point of the lung for more than 6 hours in vivo. The ICG fluorescence spot injected into the pulmonary nodule with ENB guidance was identified at the pulmonary nodule with the NIR thoracoscope. The ENB-guided transbronchial ICG injection and intraoperative NIR thoracoscopic detection is a feasible method to localize multiple pulmonary nodules. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging

    PubMed Central

    Yu, Shuai; Cheng, Bingbing; Yao, Tingfeng; Xu, Cancan; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    Recently, we developed a new technology, ultrasound-switchable fluorescence (USF), for high-resolution imaging in centimeter-deep tissues via fluorescence contrast. The success of USF imaging highly relies on excellent contrast agents. ICG-encapsulated poly(N-isopropylacrylamide) nanoparticles (ICG-NPs) are one of the families of the most successful near-infrared (NIR) USF contrast agents. However, the first-generation ICG-NPs have a short shelf life (<1 month). This work significantly increases the shelf life of the new-generation ICG-NPs (>6 months). In addition, we have conjugated hydroxyl or carboxyl function groups on the ICG-NPs for future molecular targeting. Finally, we have demonstrated the effect of temperature-switching threshold (Tth) and the background temperature (TBG) on the quality of USF images. We estimated that the Tth of the ICG-NPs should be controlled at ~38–40 °C (slightly above the body temperature of 37 °C) for future in vivo USF imaging. Addressing these challenges further reduces the application barriers of USF imaging. PMID:27775014

  4. Navigation surgery for intraoperative sentinel lymph node detection using Indocyanine green (ICG) fluorescence real-time imaging in breast cancer.

    PubMed

    Toh, U; Iwakuma, N; Mishima, M; Okabe, M; Nakagawa, S; Akagi, Y

    2015-09-01

    A new sensitive fluorescence imaging system was developed for the real-time identification of sentinel lymph nodes (SLNs) in patients with early breast cancer. The purpose of this study was to evaluate the utility of a color charge-coupled device camera system for the intraoperative detection of SLNs and to determine its clinical efficacy and sensitivity in patients with operable breast cancer. We assessed a total of 168 patients diagnosed with or suspected of having early-stage breast cancer without metastasis in SLNs. The intraoperative detection of SLNs was performed using the conventional Indigo Carmine dye (indigotindisulfonate sodium) technique combined with a new Indocyanine green (ICG) imaging system (HyperEye Medical System: HEMS, MIZUHO IKAKOGYO, Japan) to map SLNs, in which the lymphatic vessels and SLNs were visualized transcutaneously with illuminating ICG fluorescence. Between January 2012 and May 2013, SLNs were successfully identified in all 168 patients (detection rate: 100%). By histopathology, the sensitivity was 93.8% for the detection of the metastatic involvement of SLNs (15 of 16 nodal-positive patients). After a median follow-up of 30.5 months, none of the patients presented with axillary recurrence. These results suggest that the HEMS imaging system is a feasible and effective method for the detection of SLNs in breast cancer. Furthermore, the HEMS device permitted the transcutaneous visualization of lymphatic vessels under light conditions, thus facilitating the identification and detection of SLNs without affecting the surgical procedure, together with a high sensitivity and specificity.

  5. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging.

    PubMed

    Zhang, Ya-Min; Shi, Rui; Hou, Jian-Cun; Liu, Zi-Rong; Cui, Zi-Lin; Li, Yang; Wu, Di; Shi, Yuan; Shen, Zhong-Yang

    2017-01-01

    Clear delineation between tumors and normal tissues is ideal for real-time surgical navigation imaging. We investigated applying indocyanine green (ICG) fluorescence imaging navigation using an intraoperative administration method in liver resection. Fifty patients who underwent liver resection were divided into two groups based on clinical situation and operative purpose. In group I, sizes of superficial liver tumors were determined; tiny tumors were identified. In group II, the liver resection margin was determined; real-time navigation was performed. ICG was injected intravenously at the beginning of the operation; the liver surface was observed with a photodynamic eye (PDE). Liver resection margins were determined using PDE. Fluorescence contrast between normal liver and tumor tissues was obvious in 32 of 35 patients. A boundary for half the liver or specific liver segments was determined in nine patients by examining the portal vein anatomy after ICG injection. Eight small tumors not observed preoperatively were detected; the smallest was 2 mm. ICG fluorescence imaging navigation is a promising, simple, and safe tool for routine real-time intraoperative imaging during hepatic resection and clinical exploration in hepatocellular carcinoma, enabling high sensibility for identifying liver resection margins and detecting tiny superficial tumors.

  6. Indocyanine green fluorescence-navigated thoracoscopic anatomical segmentectomy

    PubMed Central

    Okumura, Sakae; Nakao, Masayuki; Matsuura, Yosuke; Nakagawa, Ken

    2017-01-01

    Background To evaluate the feasibility and efficacy of thoracoscopic anatomical segmentectomy (TS-S) using three-dimensional computed tomography (3D-CT) reconstruction and indocyanine green-fluorescence (ICGF) navigation. Methods Twenty TS-S procedures were performed for 15 primary lung cancers and 5 metastatic lung tumors. Preoperatively we evaluated the target segmental pulmonary artery and created a virtual intersegmental plane using 3D-CT reconstruction. Intraoperatively, the target segmental artery and bronchus were divided, and after intravenous systemic injection of indocyanine green (ICG, 0.25 mg/kg), ICGF of the non-target segments (NTS) was observed using infrared thoracoscopy (KARL STORZ Endoskope Japan K.K., Tokyo, Japan). We marked the border between target and NTS with electrocautery and divided the lung parenchyma along this border using electrocautery or staples. Strength of contrast between target and NTS was quantified as contrast index (CI) and compared over time. Results ICGF provided demarcation of sufficient clarity and duration to mark the lung surface in 19 patients (95%). TS-S was successfully performed in all patients. Mean operative duration was 186 min (90–310 min) and mean blood loss was 30 mL (0–107 mL). Demarcation appeared 20 s (10–100 s) after injection of ICG, and ICGF lasted 180 s (90–300 s). CI peaked 30 s after the appearance of ICGF and decreased over time. Effective contrast continued for 70 s (30–116 s), which was sufficient to mark the line of demarcation. There were no complications attributable to this method. Conclusions ICGF navigation is a safe and effective technique for TS-S. PMID:29078643

  7. Fab fragment labeled with ICG-derivative for detecting digestive tract cancer.

    PubMed

    Yano, Hiromi; Muguruma, Naoki; Ito, Susumu; Aoyagi, Eriko; Kimura, Tetsuo; Imoto, Yoshitaka; Cao, Jianxin; Inoue, Shohei; Sano, Shigeki; Nagao, Yoshimitsu; Kido, Hiroshi

    2006-09-01

    In previous studies, we generated infrared ray fluorescence-labeled monoclonal antibodies and developed an infrared ray fluorescence endoscope capable of detecting the monoclonal antibodies to establish a novel diagnostic technique for gastrointestinal cancer. Although the whole IgG molecule has commonly been used for preparation of labeled antibodies, labeled IgG displays insufficient sensitivity and specificity, probably resulting from non-specific binding of the Fc fragment to target cells or interference between fluorochromes on the identical labeled antibody, which might be caused by molecular structure. In this in vitro study, we characterized an Fc-free fluorescence-labeled Fab fragment, which was expected to yield more specific binding to target cells than the whole IgG molecule. An anti-mucin antibody and ICG-ATT, an ICG derivative, were used as the labeled antibody and labeling compound, respectively. Paraffin sections of excised gastric cancer tissues were subjected to staining. The labeled whole IgG molecule (ICG-ATT-labeled IgG) and the labeled Fab fragment (ICG-ATT-labeled Fab) were prepared according to a previous report, and the fluorescence properties, antibody activities, and features of fluorescence microscope images obtained from paraffin sections were compared. Both ICG-ATT-labeled Fab and ICG-ATT-labeled IgG were excited by a near infrared ray of 766nm, and maximum emission occurred at 804nm. Antibody activities of ICG-ATT-labeled Fab were shown to be similar to those of unlabeled anti-MUC1 antibody. The fluorescence intensity obtained from paraffin sections of excised gastric cancer tissues revealed a tendency to be greater with ICG-ATT-labeled Fab than with ICG-ATT-labeled IgG. The infrared ray fluorescence-labeled Fab fragment was likely to be more specific than the conventionally labeled antibodies. Fragmentation of antibodies is considered to contribute to improved sensitivity and specificity of labeled antibodies for detection of micro

  8. Activatable thermo-sensitive ICG encapsulated pluronic nanocapsules for temperature sensitive fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Nouizi, Farouk; Sampathkumaran, Uma; Zhu, Yue; Alam, Maksudul M.; Gulsen, Gultekin

    2015-03-01

    Fluorescent tomography has been hindered by poor tissue penetration and weak signal which results in poor spatial resolution and quantification accuracy. Recently, it has been reported that activatable temperature responsive fluorescent probes which respond to focused ultrasound heating can improve the resolution and quantification of fluorescent tomography in deep tissue. This has lead to a new imaging modality, "Temperature-modulated fluorescent tomography." This technique relies on activatable thermo-sensitive fluorescent nanocapsules for whose fluorescence quantum efficiency is temperature dependent. Within a 4-5° C temperature range, the fluorescent signal increase more than 10-fold. In this molecular probe, Indocyanine Green (ICG) is encapsulated inside the core of a thermo-reversible pluronic micelle. Here we show the fluorescence response and temperature range of the nanocapsules which have been optimized for a higher temperature range to be used for in vivo animal imaging. We report on the feasibility of these temperature-sensitive reversible nanocapsules for in vivo applications by studying the pharmacokinetics in a subcutaneous mouse tumor model in vivo.

  9. The second window ICG technique demonstrates a broad plateau period for near infrared fluorescence tumor contrast in glioblastoma

    PubMed Central

    Sheikh, Saad; Xia, Leilei; Pierce, John; Newton, Andrew; Predina, Jarrod; Cho, Steve; Nasrallah, MacLean; Singhal, Sunil; Dorsey, Jay; Lee, John Y. K.

    2017-01-01

    Introduction Fluorescence-guided surgery has emerged as a powerful tool to detect, localize and resect tumors in the operative setting. Our laboratory has pioneered a novel way to administer an FDA-approved near-infrared (NIR) contrast agent to help surgeons with this task. This technique, coined Second Window ICG, exploits the natural permeability of tumor vasculature and its poor clearance to deliver high doses of indocyanine green (ICG) to tumors. This technique differs substantially from established ICG video angiography techniques that visualize ICG within minutes of injection. We hypothesized that Second Window ICG can provide NIR optical contrast with good signal characteristics in intracranial brain tumors over a longer period of time than previously appreciated with ICG video angiography alone. We tested this hypothesis in an intracranial mouse glioblastoma model, and corroborated this in a human clinical trial. Methods Intracranial tumors were established in 20 mice using the U251-Luc-GFP cell line. Successful grafts were confirmed with bioluminescence. Intravenous tail vein injections of 5.0 mg/kg (high dose) or 2.5 mg/kg (low dose) ICG were performed. The Perkin Elmer IVIS Spectrum (closed field) was used to visualize NIR fluorescence signal at seven delayed time points following ICG injection. NIR signals were quantified using LivingImage software. Based on the success of our results, human subjects were recruited to a clinical trial and intravenously injected with high dose 5.0 mg/kg. Imaging was performed with the VisionSense Iridium (open field) during surgery one day after ICG injection. Results In the murine model, the NIR signal-to-background ratio (SBR) in gliomas peaks at one hour after infusion, then plateaus and remains strong and stable for at least 48 hours. Higher dose 5.0 mg/kg improves NIR signal as compared to lower dose at 2.5 mg/kg (SBR = 3.5 vs. 2.8; P = 0.0624). Although early (≤ 6 hrs) visualization of the Second Window ICG

  10. ICG-loaded polymeric nanocapsules functionalized with anti-HER2 for targeted fluorescence imaging and photodestruction of ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Bahmani, Baharak; Guerrero, Yadir; Vullev, Valentine; Singh, Sheela P.; Kundra, Vikas; Anvari, Bahman

    2013-03-01

    Optical nano-materials present a promising platform for targeted molecular imaging of cancer biomarkers and its photodestruction. Our group is investigating the use of polymeric nanoparticles, loaded with indocyanine green, an FDA-approved chromophore, as a theranostic agent for targeted intraoperative optical imaging and laser-mediated destruction of ovarian cancer. These ICG-loaded nanocapsules (ICG-NCs) can be functionalized by covalent attachment of targeting moieties onto their surface. Here, we investigate ICG-NCs functionalized with anti-HER2 for targeted fluorescence imaging and laser-mediated destruction of ovarian cancer cells in vitro. ICG-NCs are formed through ionic cross-linking between polyallylamine hydrochloride chains and sodium phosphate ions followed by diffusion-mediated loading with ICG. Before functionalization with antibodies, the surface of ICG-NCs is coated with single and double aldehyde terminated polyethylene glycol (PEG). The monoclonal anti-HER2 is covalently coupled to the PEGylated ICG-NCs using reductive amination to target the HER2 receptor, a biomarker whose over-expression is associated with increased risk of cancer progression. We quantify uptake of anti-HER2 conjugated ICG-NCs by ovarian cancer cells using flow cytometery. The in-vitro laser-mediated destruction of SKOV3 cells incubated with anti-HER2 functionalized ICG-NCs is performed using an 808 nm diode laser. Cell viability is characterized using the Calcein and Ethidium homodimer-1 assays following laser irradiation. Our results indicate that anti-HER2 functionalized ICG-NCs can be used as theranostic agents for optical molecular imaging and photodestruction of ovarian cancers in-vitro.

  11. Fluorescence spectroscopy using indocyanine green for lymph node mapping

    NASA Astrophysics Data System (ADS)

    Haj-Hosseini, Neda; Behm, Pascal; Shabo, Ivan; Wârdell, Karin

    2014-02-01

    The principles of cancer treatment has for years been radical resection of the primary tumor. In the oncologic surgeries where the affected cancer site is close to the lymphatic system, it is as important to detect the draining lymph nodes for metastasis (lymph node mapping). As a replacement for conventional radioactive labeling, indocyanine green (ICG) has shown successful results in lymph node mapping; however, most of the ICG fluorescence detection techniques developed are based on camera imaging. In this work, fluorescence spectroscopy using a fiber-optical probe was evaluated on a tissue-like ICG phantom with ICG concentrations of 6-64 μM and on breast tissue from five patients. Fiber-optical based spectroscopy was able to detect ICG fluorescence at low intensities; therefore, it is expected to increase the detection threshold of the conventional imaging systems when used intraoperatively. The probe allows spectral characterization of the fluorescence and navigation in the tissue as opposed to camera imaging which is limited to the view on the surface of the tissue.

  12. A comparison of indocyanine green fluorescence imaging plus blue dye and blue dye alone for sentinel node navigation surgery in breast cancer patients.

    PubMed

    Hirano, Akira; Kamimura, Mari; Ogura, Kaoru; Kim, Naomi; Hattori, Akinori; Setoguchi, Yumika; Okubo, Fumie; Inoue, Hiroaki; Miyamoto, Reiko; Kinoshita, Jun; Fujibayashi, Mariko; Shimizu, Tadao

    2012-12-01

    To evaluate two methods of sentinel node navigation surgery (SNNS) using blue dye with and without indocyanine green (ICG) fluorescence imaging (FI) to determine the usefulness of combined ICG and blue dye. Between 2005 and 2010, a total of 501 patients underwent SNNS in our hospital. Detection of sentinel lymph node (SLN) was performed with sulfan blue (SB) alone until 2008 and with a combination of SB and ICG-FI since 2009. ICG 5 mg and SB 15 mg were injected in the subareolar region, and FI was obtained by a fluorescence imaging device. We attempted to identify SLNs in 393 patients by SB alone and in 108 patients by a combination of SB and FI. The mean number of SLNs detected was 1.6 (0-5) for SB alone and 2.2 (1-6) for the combination method. The SLN identification rate was 95.7 % for SB alone and 100 % for the combination method so that the combination was significantly superior to SB in terms of the identification rate (p = 0.0037). In patients who received the combination method, detection of SLN was made through only SB in 1 patient, only ICG in 8 patients, and both in 99 patients. Lymph node metastasis was found in 56 patients with SB alone and in 16 patients with the combination method. Recurrence of an axillary node was observed in 3 patients (0.8 %) with SB alone and in no patients with the combination method. ICG-FI is a useful method and is especially recommended in cases where no radiotracers are available.

  13. Effects of ICG concentration and particle diameter on photophysical properties of ICG-doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Crovisier, Jason; Bahmani, Baharak; Saleh, Reema; Vullev, Valentine; Anvari, Bahman

    2014-03-01

    The variety of nanoparticles developed by numerous investigators has presented a diverse platform for various optical imaging applications in biomedicine. We have previously reported that the FDA-approved chromophore Indocyanine Green (ICG) can be successfully encapsulated by cross-linked poly-allylamine hydrochloride (PAH)-Disodium Monophosphate (Na2HPO4) to form a nanoparticle for near-infrared imaging applications. The diameter of the constructs is dependent on the charge ratio between the polymer and salt used to encapsulate the chromophore. Modifications of the synthesis methods can alter the photophysical properties of the capsules, either through the adjustment of the charge ratio between PAH and Na2HPO4 or concentration of ICG successfully impregnated into the capsule. Through understanding the effects of tuning the nanoparticle properties, the photophysical characteristics of the constructs can be optimized. Here we present the results of adjusting the diameter of the nanoparticle and amount of ICG on the hydrodynamic diameters, absorption and fluorescence characteristics, and the relative fluorescence quantum yield. Optimizing the photophysical properties of the constructs can lead to increased imaging sensitivity and contrast for potential translational applications, including tumor imaging, which may utilize these nanoconstructs.

  14. Clinical application of indocyanine green-fluorescence imaging during hepatectomy

    PubMed Central

    Ishizawa, Takeaki; Saiura, Akio

    2016-01-01

    In hepatobiliary surgery, the fluorescence and bile excretion of indocyanine green (ICG) can be used for real-time visualization of biological structure. Fluorescence cholangiography is used to obtain fluorescence images of the bile ducts following intrabiliary injection of 0.025−0.5 mg/mL ICG or intravenous injection of 2.5 mg ICG. Recently, the latter technique has been used in laparoscopic/robotic cholecystectomy. Intraoperative fluorescence imaging can be used to identify subcapsular hepatic tumors. Primary and secondary hepatic malignancy can be identified by intraoperative fluorescence imaging using preoperative intravenous injection of ICG through biliary excretion disorders that exist in cancerous tissues of hepatocellular carcinoma (HCC) and in non-cancerous hepatic parenchyma around adenocarcinoma foci. Intraoperative fluorescence imaging may help detect tumors to be removed, especially during laparoscopic hepatectomy, in which visual inspection and palpation are limited, compared with open surgery. Fluorescence imaging can also be used to identify hepatic segments. Boundaries of hepatic segments can be visualized following injection of 0.25−2.5 mg/mL ICG into the portal veins or by intravenous injection of 2.5 mg ICG following closure of the proximal portal pedicle toward hepatic regions to be removed. These techniques enable identification of hepatic segments before hepatectomy and during parenchymal transection for anatomic resection. Advances in imaging systems will increase the use of fluorescence imaging as an intraoperative navigation tool that can enhance the safety and accuracy of open and laparoscopic/robotic hepatobiliary surgery. PMID:27500144

  15. ICG-enhanced imaging of arthritis with an integrated Optical Imaging/X-ray System

    PubMed Central

    Meier, Reinhard; Krug, Christian; Golovko, Daniel; Boddington, Sophie; Piontek, Guido; Rudelius, Martina; Sutton, Elizabeth J.; Baur-Melnyk, Andrea; Jones, Ella F.; Daldrup-Link, Heike E.

    2010-01-01

    Background Optical Imaging (OI) is a promising technique that is quick, inexpensive and, in combination with Indocyanine Green (ICG), an FDA-approved fluorescent dye, could provide early detection of rheumatoid arthritis. Objective The purpose of this study was to evaluate a combined X-ray/OI imaging system for ICG-enhanced detection of arthritic joints in a rat model of antigen induced arthritis. Methods Arthritis of the knee and ankle joints was induced in six Harlan rats with peptidoglycan polysaccharide polymers (PGPS). Three rats served as non-treated controls. Optical imaging of the knee and ankle joints was done with an integrated OI/X-ray system before and up to 24h post intravenous injection (p.i.) of 10mg/kg ICG. The fluorescence signal intensities of arthritic and normal joints were compared for significant differences using generalized estimation equation models. Specimen of knee and ankle joints were further processed and evaluated by histology. Results ICG provided a significant increase in fluorescence signal of arthritic joints compared to baseline values immediately after administration (p<0.05). The fluorescence signal of arthritic joints was significantly higher compared to the non-arthritic control joints at 1 - 720 min p.i. (p<0.05). Fusion of ICG-enhanced OI and X-rays allowed for anatomical co-registration of the inflamed tissue with the associated joint. H&E stains confirmed marked synovial inflammation of arthritic joints and absence of inflammation in control joints. Conclusion ICG-enhanced OI is a clinically applicable tool for detection of arthritic tissue. Using relatively high doses of ICG, a long term fluorescence enhancement of arthritic joints can be achieved. This may facilitate simultaneous evaluations of multiple joints in a clinical setting. Fusion of ICG-OI scans with X-ray imaging increases anatomical resolution. PMID:20506388

  16. Superselective intra-arterial hepatic injection of indocyanine green (ICG) for fluorescence image-guided segmental positive staining: experimental proof of the concept.

    PubMed

    Diana, Michele; Liu, Yu-Yin; Pop, Raoul; Kong, Seong-Ho; Legnèr, Andras; Beaujeux, Remy; Pessaux, Patrick; Soler, Luc; Mutter, Didier; Dallemagne, Bernard; Marescaux, Jacques

    2017-03-01

    Intraoperative liver segmentation can be obtained by means of percutaneous intra-portal injection of a fluorophore and illumination with a near-infrared light source. However, the percutaneous approach is challenging in the minimally invasive setting. We aimed to evaluate the feasibility of fluorescence liver segmentation by superselective intra-hepatic arterial injection of indocyanine green (ICG). Eight pigs (mean weight: 26.01 ± 5.21 kg) were involved. Procedures were performed in a hybrid experimental operative suite equipped with the Artis Zeego ® , multiaxis robotic angiography system. A pneumoperitoneum was established and four laparoscopic ports were introduced. The celiac trunk was catheterized, and a microcatheter was advanced into different segmental hepatic artery branches. A near-infrared laparoscope (D-Light P, Karl Storz) was used to detect the fluorescent signal. To assess the correspondence between arterial-based fluorescence demarcation and liver volume, metallic markers were placed along the fluorescent border, followed by a 3D CT-scanning, after injecting intra-arterial radiological contrast (n = 3). To assess the correspondence between arterial and portal supplies, percutaneous intra-portal angiography and intra-arterial angiography were performed simultaneously (n = 1). Bright fluorescence signal enhancing the demarcation of target segments was obtained from 0.1 mg/mL, in matter of seconds. Correspondence between the volume of hepatic segments and arterial territories was confirmed by CT angiography. Higher background fluorescence noise was found after positive staining by intra-portal ICG injection, due to parenchymal accumulation and porto-systemic shunting. Intra-hepatic arterial ICG injection, rapidly highlights hepatic target segment borders, with a better signal-to-background ratio as compared to portal vein injection, in the experimental setting.

  17. ICG-fluorescence imaging for detection of peritoneal metastases and residual tumoral scars in locally advanced ovarian cancer: A pilot study.

    PubMed

    Veys, Isabelle; Pop, Florin-Catalin; Vankerckhove, Sophie; Barbieux, Romain; Chintinne, Marie; Moreau, Michel; Nogaret, Jean-Marie; Larsimont, Denis; Donckier, Vincent; Bourgeois, Pierre; Liberale, Gabriel

    2018-02-01

    No intraoperative imaging techniques exist for detecting tumor nodules or tumor scar tissues in patients treated with upfront or interval cytoreductive surgery (CS) after neoadjuvant chemotherapy (NAC). The aims of this study were to evaluate the role of indocyanine green (ICG) fluorescence imaging (FI) for the detection of peritoneal metastases (PM) and evaluate whether it can be used to detect remnant tumor cells in scar tissue. Patients with PM from ovarian cancer admitted for CS were included. ICG, at 0.25 mg per kg of patient weight, was injected intraoperatively after explorative laparotomy before CS. A total of 108 peritoneal lesions, including 25 scars, were imaged in 20 patients. Seventy-three were malignant (67.6%) and 35 benign (32.4%). The mean Tumor to Background Ratio (ex vivo) was 1.8 (SD 1.3) in malignant and 1.0 (SD 0.79) in benign nodules (P = 0.007). Of 25 post-NAC scars, the mean Tumor to Background Ratio (TBR) (in vivo) was 2.06 (SD 1.15) in malignant and 1.21 (SD 0.50) in benign nodules (P = 0.26). The positive predictive value of ICG-FI to detect tumor cells in scars was 57.1%. ICG-FI is accurate to demonstrate PM in ovarian cancer but unable to discriminate between benign and malignant post-NAC. © 2017 Wiley Periodicals, Inc.

  18. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source.

    PubMed

    Namikawa, Tsutomu; Fujisawa, Kazune; Munekage, Eri; Iwabu, Jun; Uemura, Sunao; Tsujii, Shigehiro; Maeda, Hiromichi; Kitagawa, Hiroyuki; Fukuhara, Hideo; Inoue, Keiji; Sato, Takayuki; Kobayashi, Michiya; Hanazaki, Kazuhiro

    2018-04-04

    The natural amino acid 5-aminolevulinic acid (ALA) is a protoporphyrin IX (PpIX) precursor and a new-generation photosensitive substance that accumulates specifically in cancer cells. When indocyanine green (ICG) is irradiated with near-infrared (NIR) light, it shifts to a higher energy state and emits infrared light with a longer wavelength than the irradiated NIR light. Photodynamic diagnosis (PDD) using ALA and ICG-based NIR fluorescence imaging has emerged as a new diagnostic technique. Specifically, in laparoscopic examinations for serosa-invading advanced gastric cancer, peritoneal metastases could be detected by ALA-PDD, but not by conventional visible-light imaging. The HyperEye Medical System (HEMS) can visualize ICG fluorescence as color images simultaneously projected with visible light in real time. This ICG fluorescence method is widely applicable, including for intraoperative identification of sentinel lymph nodes, visualization of blood vessels in organ resection, and blood flow evaluation during surgery. Fluorescence navigation by ALA-PDD and NIR using ICG imaging provides good visualization and detection of the target lesions that is not possible with the naked eye. We propose that this technique should be used in fundamental research on the relationship among cellular dynamics, metabolic enzymes, and tumor tissues, and to evaluate clinical efficacy and safety in multicenter cooperative clinical trials.

  19. The combination design for open and endoscopic surgery using fluorescence molecular imaging technology

    NASA Astrophysics Data System (ADS)

    Mao, Yamin; Jiang, Shixin; Ye, Jinzuo; An, Yu; Yang, Xin; Chi, Chongwei; Tian, Jie

    2015-03-01

    For clinical surgery, it is still a challenge to objectively determine tumor margins during surgery. With the development of medical imaging technology, fluorescence molecular imaging (FMI) method can provide real-time intraoperative tumor margin information. Furthermore, surgical navigation system based on FMI technology plays an important role for the aid of surgeons' precise tumor margin decision. However, detection depth is the most limitation exists in the FMI technique and the method convenient for either macro superficial detection or micro deep tissue detection is needed. In this study, we combined advantages of both open surgery and endoscopic imaging systems with FMI technology. Indocyanine green (ICG) experiments were performed to confirm the feasibility of fluorescence detection in our system. Then, the ICG signal was photographed in the detection area with our system. When the system connected with endoscope lens, the minimum quantity of ICG detected by our system was 0.195 ug. For aspect of C mount lens, the sensitivity of ICG detection with our system was 0.195ug. Our experiments results proved that it was feasible to detect fluorescence images with this combination method. Our system shows great potential in the clinical applications of precise dissection of various tumors

  20. Development of ultrasound-assisted fluorescence imaging of indocyanine green.

    PubMed

    Morikawa, Hiroyasu; Toyota, Shin; Wada, Kenji; Uchida-Kobayashi, Sawako; Kawada, Norifumi; Horinaka, Hiromichi

    2017-01-01

    Indocyanine green (ICG) accumulation in hepatocellular carcinoma means tumors can be located by fluorescence. However, because of light scattering, it is difficult to detect ICG fluorescence from outside the body. We propose a new fluorescence imaging method that detects changes in the intensity of ICG fluorescence by ultrasound-induced temperature changes. ICG fluorescence intensity decreases as the temperature rises. Therefore, it should theoretically be possible to detect tissue distribution of ICG using ultrasound to heat tissue, moving the point of ultrasound transmission, and monitoring changes in fluorescence intensity. A new probe was adapted for clinical application. It consisted of excitation light from a laser, fluorescence sensing through a light pipe, and heating by ultrasound. We applied the probe to bovine liver to image the accumulation of ICG. ICG emits fluorescence (820 nm) upon light irradiation (783 nm). With a rise in temperature, the fluorescence intensity of ICG decreased by 0.85 %/°C. The distribution of fluorescent ICG was detected using an ultrasonic warming method in a new integrated probe. Modulating fluorescence by changing the temperature using ultrasound can determine where ICG accumulates at a depth, highlighting its potential as a means to locate hepatocellular carcinoma.

  1. Navigating surgical fluorescence cameras using near-infrared optical tracking.

    PubMed

    van Oosterom, Matthias; den Houting, David; van de Velde, Cornelis; van Leeuwen, Fijs

    2018-05-01

    Fluorescence guidance facilitates real-time intraoperative visualization of the tissue of interest. However, due to attenuation, the application of fluorescence guidance is restricted to superficial lesions. To overcome this shortcoming, we have previously applied three-dimensional surgical navigation to position the fluorescence camera in reach of the superficial fluorescent signal. Unfortunately, in open surgery, the near-infrared (NIR) optical tracking system (OTS) used for navigation also induced an interference during NIR fluorescence imaging. In an attempt to support future implementation of navigated fluorescence cameras, different aspects of this interference were characterized and solutions were sought after. Two commercial fluorescence cameras for open surgery were studied in (surgical) phantom and human tissue setups using two different NIR OTSs and one OTS simulating light-emitting diode setup. Following the outcome of these measurements, OTS settings were optimized. Measurements indicated the OTS interference was caused by: (1) spectral overlap between the OTS light and camera, (2) OTS light intensity, (3) OTS duty cycle, (4) OTS frequency, (5) fluorescence camera frequency, and (6) fluorescence camera sensitivity. By optimizing points 2 to 4, navigation of fluorescence cameras during open surgery could be facilitated. Optimization of the OTS and camera compatibility can be used to support navigated fluorescence guidance concepts. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Cellular uptake of polymeric nanocapsules loaded with ICG by human blood monocytes and human spleen macrophages

    NASA Astrophysics Data System (ADS)

    Bahmani, Baharak; Jung, Bongsu; Gupta, Sharad; Anvari, Bahman

    2010-02-01

    Indocyanine green (ICG) is an FDA approved near infrared dye used in assessment of hepatic function and ophthalmological vascular imaging. However, given the rapid clearance of ICG from the blood stream, its imaging and phototherapeutic applications remain very limited. As a potential method to increase circulation time of ICG, and extend its clinical applications, we have encapsulated ICG within polymeric based nanoconstructs whose surface can be coated with various materials including polyethylene glycol (PEG). To gain an understanding of the interaction between ICG-containing nanocapsules (ICG-NCs) and vascular cells, we are characterizing the uptake of the nanocapsules coated with various materials by human peripheral blood monocytes and human spleen macrophages using fluorescence microscopy. Results of these studies will be useful in identifying the appropriate coating material that will result in increased circulation time of ICG-NCs within the vasculature.

  3. Effects of ICG concentration on the optical properties of erythrocyte-derived nano-vectors

    NASA Astrophysics Data System (ADS)

    Tang, Jack; Bahmani, Baharak; Burns, Joshua; Nuñez, Vicente; Mac, Jenny; Bacon, Danielle; Vullev, Valentine; Sun, Victor; Jia, Wangcun; Nelson, J. S.; Anvari, Bahman

    2015-03-01

    Erythrocyte-based nanoparticle platforms can offer long circulation times not offered by traditional drug delivery methods. We have developed a novel erythrocyte-based nanoparticle doped with indocyanine green (ICG), the only FDA-approved near-infrared chromophore. Here, we report on the absorption and fluorescence emission characteristics of these nanoparticles fabricated using ICG concentrations in the range of 161-323 μM. These nanoparticles may serve as biocompatible optical materials for various clinical imaging and phototherapeutic applications.

  4. Geometrical-Based Navigation System Performance Assessment in the Space Service Volume Using a Multiglobal Navigation Satellite System Methodology

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.

  5. Near-infrared-fluorescence imaging of lymph nodes by using liposomally formulated indocyanine green derivatives.

    PubMed

    Toyota, Taro; Fujito, Hiromichi; Suganami, Akiko; Ouchi, Tomoki; Ooishi, Aki; Aoki, Akira; Onoue, Kazutaka; Muraki, Yutaka; Madono, Tomoyuki; Fujinami, Masanori; Tamura, Yutaka; Hayashi, Hideki

    2014-01-15

    Liposomally formulated indocyanine green (LP-ICG) has drawn much attention as a highly sensitive near-infrared (NIR)-fluorescence probe for tumors or lymph nodes in vivo. We synthesized ICG derivatives tagged with alkyl chains (ICG-Cn), and we examined NIR-fluorescence imaging for lymph nodes in the lower extremities of mice by using liposomally formulated ICG-Cn (LP-ICG-Cn) as well as conventional liposomally formulated ICG (LP-ICG) and ICG. Analysis with a noninvasive preclinical NIR-fluorescence imaging system revealed that LP-ICG-Cn accumulates in only the popliteal lymph node 1h after injection into the footpad, whereas LP-ICG and ICG accumulate in the popliteal lymph node and other organs like the liver. This result indicates that LP-ICG-Cn is a useful NIR-fluorescence probe for noninvasive in vivo bioimaging, especially for the sentinel lymph node. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma.

    PubMed

    Ishizawa, Takeaki; Masuda, Koichi; Urano, Yasuteru; Kawaguchi, Yoshikuni; Satou, Shouichi; Kaneko, Junichi; Hasegawa, Kiyoshi; Shibahara, Junji; Fukayama, Masashi; Tsuji, Shingo; Midorikawa, Yutaka; Aburatani, Hiroyuki; Kokudo, Norihiro

    2014-02-01

    Although clinical applications of intraoperative fluorescence imaging of liver cancer using indocyanine green (ICG) have begun, the mechanistic background of ICG accumulation in the cancerous tissues remains unclear. In 170 patients with hepatocellular carcinoma cells (HCC), the liver surfaces and resected specimens were intraoperatively examined by using a near-infrared fluorescence imaging system after preoperative administration of ICG (0.5 mg/kg i.v.). Microscopic examinations, gene expression profile analysis, and immunohistochemical staining were performed for HCCs, which showed ICG fluorescence in the cancerous tissues (cancerous-type fluorescence), and HCCs showed fluorescence only in the surrounding non-cancerous liver parenchyma (rim-type fluorescence). ICG fluorescence imaging enabled identification of 273 of 276 (99%) HCCs in the resected specimens. HCCs showed that cancerous-type fluorescence was associated with higher cancer cell differentiation as compared with rim-type HCCs (P < 0.001). Fluorescence microscopy identified the presence of ICG in the canalicular side of the cancer cell cytoplasm, and pseudoglands of the HCCs showed a cancerous-type fluorescence pattern. The ratio of the gene and protein expression levels in the cancerous to non-cancerous tissues for Na(+)/taurocholate cotransporting polypeptide (NTCP) and organic anion-transporting polypeptide 8 (OATP8), which are associated with portal uptake of ICG by hepatocytes that tended to be higher in the HCCs that showed cancerous-type fluorescence than in those that showed rim-type fluorescence. Preserved portal uptake of ICG in differentiated HCC cells by NTCP and OATP8 with concomitant biliary excretion disorders causes accumulation of ICG in the cancerous tissues after preoperative intravenous administration. This enables highly sensitive identification of HCC by intraoperative ICG fluorescence imaging.

  7. Indocyanine green fluorescence imaging in hepatobiliary surgery.

    PubMed

    Majlesara, Ali; Golriz, Mohammad; Hafezi, Mohammadreza; Saffari, Arash; Stenau, Esther; Maier-Hein, Lena; Müller-Stich, Beat P; Mehrabi, Arianeb

    2017-03-01

    Indocyanine green (ICG) is a fluorescent dye that has been widely used for fluorescence imaging during hepatobiliary surgery. ICG is injected intravenously, selectively taken up by the liver, and then secreted into the bile. The catabolism and fluorescence properties of ICG permit a wide range of visualization methods in hepatobiliary surgery. We have characterized the applications of ICG during hepatobiliary surgery into: 1) liver mapping, 2) cholangiography, 3) tumor visualization, and 4) partial liver graft evaluation. In this literature review, we summarize the current understanding of ICG use during hepatobiliary surgery. Intra-operative ICG fluorescence imaging is a safe, simple, and feasible method that improves the visualization of hepatobiliary anatomy and liver tumors. Intravenous administration of ICG is not toxic and avoids the drawbacks of conventional imaging. In addition, it reduces post-operative complications without any known side effects. ICG fluorescence imaging provides a safe and reliable contrast for extra-hepatic cholangiography when detecting intra-hepatic bile leakage following liver resection. In addition, liver tumors can be visualized and well-differentiated hepatocellular carcinoma tumors can be accurately identified. Moreover, vascular reconstruction and outflow can be evaluated following partial liver transplantation. However, since tissue penetration is limited to 5-10mm, deeper tissue cannot be visualized using this method. Many instances of false positive or negative results have been reported, therefore further characterization is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Development of anti-HER2 conjugated ICG-loaded polymeric nanoparticles for targeted optical imaging of ovarian cancer

    NASA Astrophysics Data System (ADS)

    Bahmani, Baharak; Vullev, Valentine; Anvari, Bahman

    2012-03-01

    Targeted delivery of therapeutic and imaging agents using surface modified nanovectors has been explored immensely in recent years. The growing demand for site-specific and efficient delivery of nanovectors entails stable surface conjugation of targeting moieties. We have developed a polymeric nanocapsule doped with Indocyanine green (ICG) with potential for targeted and deep tissue optical imaging and phototherapy. Our ICG-loaded nanocapsules (ICG-NCs) have potential for covalent coupling of various targeting moieties and materials due to presence of amine groups on the surface. Here, we covalently bioconjugate polyethylene glycol(PEG)-coated ICG-NCs with monoclonal antibody against HER2 through reductive amination-mediated procedures. The irreversible and stable bonds are formed between anti- EGFR and aldehyde termini of PEG chains on the surface of ICG-NCs. We confirm the uptake of conjugated ICG-NCs by ovarian cancer cells over-expressing HER2 using fluorescent confocal microscopy. The proposed process for covalent attachment of anti-HER2 to PEGylated ICG-NCs can be used as a methodology for bioconjugation of various antibodies to such nano-constrcuts, and provides the capability to use these optically active nano-probes for targeted optical imaging of ovarian and other cancer types.

  9. Image navigation as a means to expand the boundaries of fluorescence-guided surgery

    NASA Astrophysics Data System (ADS)

    Brouwer, Oscar R.; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L.; Wendler, Thomas; Valdés-Olmos, Renato A.; van der Poel, Henk G.; van Leeuwen, Fijs W. B.

    2012-05-01

    Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.

  10. Direct Gallbladder Indocyanine Green Injection Fluorescence Cholangiography During Laparoscopic Cholecystectomy.

    PubMed

    Graves, Claire; Ely, Sora; Idowu, Olajire; Newton, Christopher; Kim, Sunghoon

    2017-10-01

    Intravenous injection of indocyanine green (ICG) is used to illuminate extrahepatic biliary anatomy. Fluorescence of biliary structures may lower surgical complications that can arise due to inadvertent injury to the common bile duct. We describe a method of injecting ICG directly into the gallbladder to define the cystic duct and common bile duct anatomy. A standard laparoscopic cholecystectomy was performed using a laparoscope with near-infrared imaging capability. Before dissection, the gallbladder was punctured with a cholangiogram catheter or a pigtail catheter to aspirate the bile within the gallbladder. The aspirated bile is mixed with ICG solution, which is reinjected into the gallbladder to fluoresce the gallbladder, cystic duct, and common bile duct structures. Eleven patients underwent direct gallbladder ICG injection for fluorescence cholangiography during cholecystectomy. Direct gallbladder ICG injection clearly defined the extrahepatic biliary anatomy, including the cystic duct-common bile duct junction, by fluorescence. In addition, the dissection plane between the gallbladder and the liver is highlighted with the gallbladder ICG fluorescence. Direct gallbladder ICG injection provides immediate visualization of extrahepatic biliary structures and clarifies the dissection plane between the gallbladder and the liver bed.

  11. Fluorescence guided surgery and tracer-dose, fact or fiction?

    PubMed

    KleinJan, Gijs H; Bunschoten, Anton; van den Berg, Nynke S; Olmos, Renato A Valdès; Klop, W Martin C; Horenblas, Simon; van der Poel, Henk G; Wester, Hans-Jürgen; van Leeuwen, Fijs W B

    2016-09-01

    Fluorescence guidance is an upcoming methodology to improve surgical accuracy. Challenging herein is the identification of the minimum dose at which the tracer can be detected with a clinical-grade fluorescence camera. Using a hybrid tracer such as indocyanine green (ICG)-(99m)Tc-nanocolloid, it has become possible to determine the accumulation of tracer and correlate this to intraoperative fluorescence-based identification rates. In the current study, we determined the lower detection limit of tracer at which intraoperative fluorescence guidance was still feasible. Size exclusion chromatography (SEC) provided a laboratory set-up to analyze the chemical content and to simulate the migratory behavior of ICG-nanocolloid in tissue. Tracer accumulation and intraoperative fluorescence detection findings were derived from a retrospective analysis of 20 head-and-neck melanoma patients, 40 penile and 20 prostate cancer patients scheduled for sentinel node (SN) biopsy using ICG-(99m)Tc-nanocolloid. In these patients, following tracer injection, single photon emission computed tomography fused with computed tomography (SPECT/CT) was used to identify the SN(s). The percentage injected dose (% ID), the amount of ICG (in nmol), and the concentration of ICG in the SNs (in μM) was assessed for SNs detected on SPECT/CT and correlated with the intraoperative fluorescence imaging findings. SEC determined that in the hybrid tracer formulation, 41 % (standard deviation: 12 %) of ICG was present in nanocolloid-bound form. In the SNs detected using fluorescence guidance a median of 0.88 % ID was present, compared to a median of 0.25 % ID in the non-fluorescent SNs (p-value < 0.001). The % ID values could be correlated to the amount ICG in a SN (range: 0.003-10.8 nmol) and the concentration of ICG in a SN (range: 0.006-64.6 μM). The ability to provide intraoperative fluorescence guidance is dependent on the amount and concentration of the fluorescent dye accumulated in the

  12. Application of indocyanine green-fluorescence imaging to full-thickness cholecystectomy.

    PubMed

    Morita, Kiyomi; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Shimizu, Atsushi; Yamamoto, Satoshi; Takemura, Nobuyuki; Kaneko, Junichi; Aoki, Taku; Sakamoto, Yoshihiro; Sugawara, Yasuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2014-05-01

    Fluorescence imaging using indocyanine green (ICG) has recently been applied to laparoscopic surgery to identify cancerous tissues, lymph nodes, and vascular anatomy. Here we report the application of ICG-fluorescence imaging to visualize the boundary between the liver and subserosal tissues of the gallbladder during laparoscopic full-thickness cholecystectomy. A patient with a potentially malignant gallbladder lesion was administered 2.5-mg intravenous ICG just before laparoscopic full-thickness cholecystectomy. Intraoperative fluorescence imaging enabled the real-time delineation of both extrahepatic bile duct anatomy and hepatic parenchyma throughout the procedure, which resulted in complete removal of subserosal tissues between liver and gallbladder. Safe and feasible ICG-fluorescence imaging can be widely applied to laparoscopic hepatobiliary surgery by utilizing a biliary excretion property of ICG. © 2014 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  13. Fabrication of Indocyanine Green and 2H, 3H-perfluoropentane loaded microbubbles for fluorescence and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    He, Yutong; Wu, Qiang; Ma, Rong; Chang, Shufang; Shao, Pengfei; Xu, Ronald

    2016-03-01

    As a near-infrared (NIR) fluorescence dye, Indocyanine Green (ICG) has not gained broader clinical applications, owing to its multiple limitations such as concentration-dependent aggregation, low fluorescence quantum yield, poor physicochemical stability and rapid elimination from the body. In the meanwhile, 2H,3H-perfluoropentane (H-PFP) has been widely studied in ultrasound imaging as a vehicle for targeted delivery of contrast agents and drugs. We synthesized a novel dual-modal fluorescence and ultrasound contrast agent by encapsulating ICG and H-PFP in lipid microbubbles using a liquid-driven coaxial flow focusing (LDCFF) process. Uniform microbubbles with the sizes ranging from 1-10um and great ICG loading efficiency was achieved by this method. Our benchtop experiments showed that ICG/H-PFP microbubbles exhibited less aggregation, increased fluorescence intensity and more stable photostability compared to free ICG aqueous solution. Our phantom experiments demonstrated that ICG/H-PFP microbubbles enhanced the imaging contrasts in fluorescence imaging and ultrasonography. Our animal experiments indicated that ICG/H-PFP microbubbles extended the ICG life time and facilitated dual mode fluorescence and ultrasound imaging in vivo.

  14. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wu, Chenxin; Zhang, Yejun; Li, Zhen; Li, Chunyan; Wang, Qiangbin

    2016-06-01

    Atherosclerosis is a major cause of cardiovascular and cerebrovascular diseases that have high mortality and disability rates. Because of its unclear pathogenic mechanism and heterogeneous distribution feature, it is still a big challenge to achieve precise diagnosis and therapy of atherosclerosis at its early stage in vivo. Herein, we fabricated a new ICG@PEG-Ag2S nanoprobe by a simple self-assembly of DT-Ag2S QDs, amphipathic C18/PEG polymer molecules and ICG. The ICG@PEG-Ag2S nanoprobe showed relatively long blood retention and was selectively accumulated in the region of atherosclerotic plaque due to the lipophilicity of the C18 chain to the atherosclerosis microenvironment, and thus the atherosclerosis was real-time monitored by high contrast-enhanced photoacoustic (PA) imaging of ICG. Combining the high signal-to-noise ratio (SNR) and high spatial resolution fluorescence imaging of Ag2S QDs in the second near-infrared window (NIR-II) and related histological assessment in vitro, the feasibility of this new nanoprobe for atherosclerosis targeting in an Apoe-/- mouse model was verified. Additionally, hemolysis and coagulation assays of the ICG@PEG-Ag2S revealed its decent hemocompatibility and no histological changes were observed in the main organs of the mouse. Such a simple, multifunctional nanoprobe for targeting and PA imaging of atherosclerosis will have a great potential for future clinical applications.Atherosclerosis is a major cause of cardiovascular and cerebrovascular diseases that have high mortality and disability rates. Because of its unclear pathogenic mechanism and heterogeneous distribution feature, it is still a big challenge to achieve precise diagnosis and therapy of atherosclerosis at its early stage in vivo. Herein, we fabricated a new ICG@PEG-Ag2S nanoprobe by a simple self-assembly of DT-Ag2S QDs, amphipathic C18/PEG polymer molecules and ICG. The ICG@PEG-Ag2S nanoprobe showed relatively long blood retention and was selectively

  15. A pilot study to assess near infrared laparoscopy with indocyanine green (ICG) for intraoperative sentinel lymph node mapping in early colon cancer.

    PubMed

    Currie, A C; Brigic, A; Thomas-Gibson, S; Suzuki, N; Moorghen, M; Jenkins, J T; Faiz, O D; Kennedy, R H

    2017-11-01

    Previous attempts at sentinel lymph node (SLN) mapping in colon cancer have been compromised by ineffective tracers and the inclusion of advanced disease. This study evaluated the feasibility of fluorescence detection of SLNs with indocyanine green (ICG) for lymphatic mapping in T1/T2 clinically staged colonic malignancy. Consecutive patients with clinical T1/T2 stage colon cancer underwent endoscopic peritumoral submucosal injection of indocyanine green (ICG) for fluorescence detection of SLN using a near-infrared (NIR) camera. All patients underwent laparoscopic complete mesocolic excision surgery. Detection rate and sensitivity of the NIR-ICG technique were the study endpoints. Thirty patients mean age = 68 years [range = 38-80], mean BMI = 26.2 (IQR = 24.7-28.6) were studied. Mesocolic sentinel nodes (median = 3/patient) were detected by fluorescence within the standard resection field in 27/30 patients. Overall, ten patients had lymph node metastases, with one of these patients having a failed SLN procedure. Of the 27 patients with completed SLN mapping, nine patients had histologically positive lymph nodes containing malignancy. 3/9 had positive SLNs with 6 false negatives. In five of these false negative patients, tumours were larger than 35 mm with four also being T3/T4. ICG mapping with NIR fluorescence allowed mesenteric detection of SLNs in clinical T1/T2 stage colonic cancer. CLINICALTRIALS.GOV: ID: NCT01662752. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  16. Interactions of Indocyanine Green and Lipid in Enhancing Near-Infrared Fluorescence Properties: The Basis for Near-Infrared Imaging in Vivo

    PubMed Central

    2015-01-01

    Indocyanine green (ICG) is a near-infrared (NIR) contrast agent commonly used for in vivo cardiovascular and eye imaging. For medical diagnosis, ICG is limited by its aqueous instability, concentration-dependent aggregation, and rapid degradation. To overcome these limitations, scientists have formulated ICG in various liposomes, which are spherical lipid membrane vesicles with an aqueous core. Some encapsulate ICG, while others mix it with liposomes. There is no clear understanding of lipid–ICG interactions. Therefore, we investigated lipid–ICG interactions by fluorescence and photon correlation spectroscopy. These data were used to design stable and maximally fluorescent liposomal ICG nanoparticles for NIR optical imaging of the lymphatic system. We found that ICG binds to and is incorporated completely and stably into the lipid membrane. At a lipid:ICG molar ratio of 250:1, the maximal fluorescence intensity was detected. ICG incorporated into liposomes enhanced the fluorescence intensity that could be detected across 1.5 cm of muscle tissue, while free ICG only allowed 0.5 cm detection. When administered subcutaneously in mice, lipid-bound ICG in liposomes exhibited a higher intensity, NIR image resolution, and enhanced lymph node and lymphatic vessel visualization. It also reduced the level of fluorescence quenching due to light exposure and degradation in storage. Lipid-bound ICG could provide additional medical diagnostic value with NIR optical imaging for early intervention in cases of lymphatic abnormalities. PMID:24512123

  17. Photothermal and photochemical effects of laser light absorption by indocyanine green (ICG)

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Diagaradjane, Parmeswaran; Pikkula, Brian M.; Yu, Jie; Wong, Michael S.; Anvari, Bahman

    2005-04-01

    Indocyanine Green (ICG) is clinically used as a fluorescent dye for imaging purposes. Its rapid circulation kinetics and minimal toxicity has prompted investigation into ICG's utility as a photosentitizer for therapeutic applications. Traditionally, optically mediated tumor therapy has focused on photodynamic therapy, which employs a photochemical mechanism resulting from the absorption of low intensity CW laser light by localized photosensitizers such as Photofrin II, Benzoporphyrin Derivative (BPD), ICG. Treatment of cutaneous vascular malformations such as port-wine stains, on the other hand, is based on a photothermal mechanism resulting from the absorption of high intensity pulsed laser light by hemoglobin. In this study, we compared the effectiveness of combining photochemical and photothermal mechanisms during application of ICG in conjunction with laser irradiation with the intention that the combined approach may lead to a reduction in the threshold dose of pulsed laser light required to treat hypervascular malformations. The blood vessels in rabbit ears were used as an in vivo model for targeted vasculature. Irradiation of the ears with IR light (λ=785 nm, Δτ = 3 min, Io = 120 mW) was used to elicit photochemical damage, while photothermal damage was brought about using pulses from a ruby laser (λ=694 nm, τ = 3 ms) with different fluences. For the combined modality, photochemical damage was induced first and followed by photothermal irradiation. This modality was compared with photothermal irradiation alone. The effectiveness of each irradiation scheme was assessed using histopathological analysis. We present preliminary data that suggests that pretreatment with photodynamic therapy before photothermal coagulation results in more severe vascular damage with lower photothermal fluence levels. The results of this study provide the foundation work for further exploration of the therapeutic potentials of photochemical and photothermal effects during

  18. A novel small molecule mediate 18F-FDG excited fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Zeyu; Guo, Hongbo; Hu, Zhenhua; Tian, Jie

    2018-02-01

    Fluorescence molecular imaging (FMI) has been widely used in many medical fields with small molecule indocyanine green (ICG). However, low signal-background ratio and limited specificity to tumor remain big challenges for FMI. In this study, a novel excitation strategy is proposed on the basis of clinical approved ICG and 18F-FDG. A series of in vitro experiments are designed to reveal the mechanism and results show obvious decreasing of ICG fluorescence intensity with the increasing distance to excitation source. Meanwhile, the ICG fluorescence intensity is proportional to the activity of radiopharmaceutical. Results from different respects illustrate the promising of this proposed excitation strategy.

  19. Intraoperative Detection of Superficial Liver Tumors by Fluorescence Imaging Using Indocyanine Green and 5-aminolevulinic Acid.

    PubMed

    Kaibori, Masaki; Matsui, Kosuke; Ishizaki, Morihiko; Iida, Hiroya; Okumura, Tadayoshi; Sakaguchi, Tatsuma; Inoue, Kentaro; Ikeura, Tsukasa; Asano, Hiroaki; Kon, Masanori

    2016-04-01

    Indocyanine green (ICG) and the porphyrin precursor 5-aminolevulinic acid (5-ALA) have been approved as fluorescence imaging agents in the clinical setting. This study evaluated the usefulness of fluorescence imaging with both ICG and 5-ALA for intraoperative identification of latent small liver tumors. There were 48 patients who had main tumors within 5 mm of the liver surface. 5-ALA hydrochloride was orally administered to patients 3 h before surgery. ICG had been intravenously injected within 14 days prior to surgery. Intraoperatively, after visual inspection, manual palpation and ultrasonography fluorescence images of the liver surface were obtained with ICG and 5-ALA prior to resection. With ICG, the sensitivity, specificity and accuracy for detecting the preoperatively identified main tumors were 96%, 50% and 94%, respectively. Twelve latent small tumors were newly detected on the liver surface using ICG, five of which proved to be carcinomas. With 5-ALA, the sensitivity, specificity and accuracy for detecting the main tumors were 57%, 100% and 58%, respectively. Five latent small tumors were newly detected using 5-ALA; all were carcinomas. Overall, five new tumors were detected by both ICG and 5-ALA fluorescence imaging; two were hepatocellular carcinomas (HCCs) and three were metastases of colorectal cancer. The sensitivity and specificity of ICG fluorescence imaging for main tumor detection were relatively high and low, respectively, but the opposite was true of 5-ALA imaging. Fluorescence imaging using 5-ALA may provide greater specificity in the detection of surface-invisible malignant liver tumors than using ICG fluorescence imaging alone. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Near-Infrared Fluorescence Imaging of Liver Metastases in Rats using Indocyanine Green

    PubMed Central

    van der Vorst, Joost R.; Hutteman, Merlijn; Mieog, Sven D.; de Rooij, Karien E.; Kaijzel, Eric L.; Löwik, Clemens W.G.M.; Putter, Hein; Kuppen, Peter J.K.; Frangioni, John V.; van de Velde, Cornelis J.H.; Vahrmeijer, Alexander L.

    2011-01-01

    Background Near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) is a promising technique to obtain real-time assessment of the extent and number of colorectal liver metastases during surgery. The current study aims to optimize dosage and timing of ICG administration. Materials and methods Liver tumors were induced in 18 male WAG/Rij rats by subcapsular inoculation of CC531 rat colorectal cancer cells into three distinct liver lobes. Rats were divided in 2 groups: imaging after 24 and 48 hours or 72 and 96 hours after intravenous ICG administration. In each time group, rats were allocated to three dose groups: 0.04, 0.08, or 0.16 mg ICG. Intraoperative imaging and ex vivo measurements were performed using Mini-FLARE™ and confirmed by fluorescence microscopy. Fluorescence intensity was quantified using the Mini-FLARE software and the difference between tumor signal and liver signal (tumor-to-liver ratio; TLR) was calculated. Results In all 18 rats, all colorectal liver metastases (N = 34), some as small as 1.2 mm, were identified using ICG and the Mini-FLARE™ imaging system. Average tumor-to-liver ratio (TLR) over all groups was 3.0 ± 1.2. TLR was significantly higher in the 72 h time group compared to other time points. ICG dose did not significantly influence TLR, but a trend was found favoring the 0.08 mg dose group. Fluorescence microscopy demonstrated a clear fluorescent rim around the tumor. Conclusions This study demonstrates that colorectal cancer liver metastases can be clearly identified during surgery using ICG and the Mini-FLARE™ imaging system, with optimal timing of 72 h post-injection and an optimal dose of 0.08 mg (0.25 mg/kg) ICG. NIR fluorescence imaging has the potential to improve intraoperative detection of micrometastases and thus the completeness of resection. PMID:21396660

  1. ICG laser therapy of acne vulgaris

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Altshuler, Gregory B.; Genina, Elina A.; Bashkatov, Alexey N.; Simonenko, Georgy V.; Odoevskaya, Olga D.; Yaroslavsky, Ilya V.

    2004-07-01

    The near-infrared (NIR) laser radiation due to its high penetration depth is widely used in phototherapy. In application to skin appendages a high selectivity of laser treatment is needed to prevent light action on surrounding tissues. Indocyanine Green (ICG) dye may provide a high selectivity of treatment due to effective ICG uploading by a target and its narrow band of considerable absorption just at the wavelength of the NIR diode laser. The goal of this study is to demonstrate the efficacy of the NIR diode laser phototherapy in combination with topical application of ICG suggested for soft and thermal treatment of acne vulgaris. 28 volunteers with facile or back-located acne were enrolled. Skin sites of subjects were stained by ICG and irradiated by NIR laser-diode light (803 or 809 nm). Untreated, only stained and only light irradiated skin areas served as controls. For soft acne treatment, the low-intensity (803 nm, 10 - 50 mW/cm2, 5-10 min) or the medium-intensity (809 nm, 150 - 190 mW/cm2, 15 min) protocols were used. The single and multiple (up to 8-9) treatments were provided. The individual acne lesions were photothermally treated at 18 W/cm2 (803 nm, 0.5 sec) without skin surface cooling or at 200 W/cm2 (809 nm, 0.5 sec) with cooling. The results of the observations during 1-2 months after the completion of the treatment have shown that only in the case of the multiple-wise treatment a combined action of ICG and NIR irradiation reduces inflammation and improves skin state during a month without any side effects. At high power densities (up to 200 W/cm2) ICG stained acne inflammatory elements were destructed for light exposures of 0.5 sec. Based on the concept that hair follicle, especially sebaceous gland, can be intensively and selectively stained by ICG due to dye diffusion through pilosebaceous canal and its fast uptake by living microorganisms, by vital keratinocytes of epithelium of the canal and sebaceous duct, and by rapidly proliferating

  2. Detection of rheumatoid arthritis in humans by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Ebert, Bernd; Dziekan, Thomas; Weissbach, Carmen; Mahler, Marianne; Schirner, Michael; Berliner, Birgitt; Bauer, Daniel; Voigt, Jan; Berliner, Michael; Bahner, Malte L.; Macdonald, Rainer

    2010-02-01

    The blood pool agent indo-cyanine green (ICG) has been investigated in a prospective clinical study for detection of rheumatoid arthritis using fluorescence imaging. Temporal behavior as well as spatial distribution of fluorescence intensity are suited to differentiate healthy and inflamed finger joints after i.v. injection of an ICG bolus.

  3. Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method.

    PubMed

    Weigl, W; Milej, D; Gerega, A; Toczylowska, B; Kacprzak, M; Sawosz, P; Botwicz, M; Maniewski, R; Mayzner-Zawadzka, E; Liebert, A

    2014-01-15

    The aim of this study was to verify the usefulness of the time-resolved optical method utilizing diffusely reflected photons and fluorescence signals combined with intravenous injection of indocyanine green (ICG) in the assessment of brain perfusion in post-traumatic brain injury patients. The distributions of times of flight (DTOFs) of diffusely reflected photons were acquired together with the distributions of times of arrival (DTAs) of fluorescence photons. The data analysis methodology was based on the observation of delays between the signals of statistical moments (number of photons, mean time of flight and variance) of DTOFs and DTAs related to the inflow of ICG to the extra- and intracerebral tissue compartments. Eleven patients with brain hematoma, 15 patients with brain edema and a group of 9 healthy subjects were included in this study. Statistically significant differences between parameters obtained in healthy subjects and patients with brain hematoma and brain edema were observed. The best optical parameter to differentiate patients and control group was variance of the DTOFs or DTAs. Results of the study suggest that time-resolved optical monitoring of inflow of the ICG seems to be a promising tool for detecting cerebral perfusion insufficiencies in critically ill patients. © 2013 Elsevier Inc. All rights reserved.

  4. Sulfobutyl ether β-cyclodextrin (Captisol(®) ) and methyl β-cyclodextrin enhance and stabilize fluorescence of aqueous indocyanine green.

    PubMed

    DeDora, Daniel J; Suhrland, Cassandra; Goenka, Shilpi; Mullick Chowdhury, Sayan; Lalwani, Gaurav; Mujica-Parodi, Lilianne R; Sitharaman, Balaji

    2016-10-01

    As the only FDA-approved near-infrared fluorophore, indocyanine green (ICG) is commonly used to image vasculature in vivo. ICG degrades rapidly in solution, which limits its usefulness in certain applications, including time-sensitive surgical procedures. We propose formulations that address this shortcoming via complexation with β-cyclodextrin derivatives (β-CyD), which are known to create stabilizing inclusion complexes with hydrophobic molecules. Here, we complexed ICG with highly soluble methyl β-CyD and FDA-approved sulfobutyl ether β-CyD (Captisol(®) ) in aqueous solution. We measured the fluorescence of the complexes over 24 h. We found that both CyD+ICG complexes exhibit sustained fluorescence increases of >2.0× versus ICG in water and >20.0× in PBS. Using transmission electron microscopy, we found evidence of reduced aggregation in complexes versus ICG alone. We thus conclude that this reduction in aggregation helps mitigate fluorescence autoquenching of CyD+ICG complexes compared in ICG alone. We also found that while ICG complexed with methyl β-CyD severely reduced the viability of MRC-5 fibroblasts, ICG complexed with sulfobutyl ether β-CyD had no effect on viability. These results represent an important first step toward enhancing the utility of aqueous ICG by reducing aggregation-dependent fluorescence degradation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1457-1464, 2016. © 2015 Wiley Periodicals, Inc.

  5. The utility of indocyanine green near infrared fluorescent imaging in the identification of parathyroid glands during surgery for primary hyperparathyroidism.

    PubMed

    Zaidi, Nisar; Bucak, Emre; Okoh, Alexis; Yazici, Pinar; Yigitbas, Hakan; Berber, Eren

    2016-06-01

    Intraoperative adjuncts for the localization of parathyroid glands in parathyroid surgery are limited. The aim of this study is to assess the usefulness of indocyanine green (ICG) near-infrared (NIR) fluorescent imaging in patients undergoing surgery for primary hyperparathyroidism (PHPT). ICG imaging was performed in 33 patients undergoing parathyroidectomy (PTX). Thyroid and parathyroid ICG uptake were assessed and independently verified on a grading scale. Clinical variables were recorded and analyzed for factors associated with ICG uptake. Of 112 glands identified by naked eye, 104 (92.9%) demonstrated ICG uptake. Concomitant ICG fluorescence was identified in the thyroid in all patients. There was a trend toward increased ICG fluorescence in patients <60 years of age (P = 0.05). A higher degree of fluorescence was seen in patients presenting with pre-operative calcium values >11 mg/dl (P = 0.04) and in those parathyroids larger than 10 mm (P < 0.01). All patients had biochemically proven cure. No patients who underwent subtotal PTX (n = 6) developed postoperative hypoparathyroidism. ICG can reliably localize parathyroid glands during PTX and additionally allow for assessment of parathyroid perfusion in patients undergoing subtotal resection. Concomitant fluorescence of the thyroid gland limits ICG's usefulness in directing the course of PTX. J. Surg. Oncol. 2016;113:771-774. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence

    PubMed Central

    Koyanagi, Kazuo; Ozawa, Soji; Oguma, Junya; Kazuno, Akihito; Yamazaki, Yasushi; Ninomiya, Yamato; Ochiai, Hiroki; Tachimori, Yuji

    2016-01-01

    Abstract Anastomotic leakage is considered as an independent risk factor for postoperative mortality after esophagectomy, and an insufficient blood flow in the reconstructed conduit may be a risk factor of anastomotic leakage. We investigated the clinical significance of blood flow visualization by indocyanine green (ICG) fluorescence in the gastric conduit as a means of predicting the leakage of esophagogastric anastomosis after esophagectomy. Forty patients who underwent an esophagectomy with gastric conduit reconstruction were prospectively investigated. ICG fluorescence imaging of the gastric conduit was detected by a near-infrared camera system during esophagectomy and correlated with clinical parameters or surgical outcomes. In 25 patients, the flow speed of ICG fluorescence in the gastric conduit wall was simultaneous with that of the greater curvature vessels (simultaneous group), whereas in 15 patients this was slower than that of the greater curvature vessels (delayed group). The reduced speed of ICG fluorescence stream in the gastric conduit wall was associated with intraoperative blood loss (P = 0.008). Although anastomotic leakage was not found in the simultaneous group, it occurred in 7 patients of the delayed group (P < 0.001). A flow speed of ICG fluorescence in the gastric conduit wall of 1.76 cm/s or less was determined by a receiver operating characteristic (ROC) curve, identified as a significant independent predictor of anastomotic leakage after esophagectomy (P = 0.004). This preliminary study demonstrates that intraoperative evaluation of blood flow speed by ICG fluorescence in the gastric conduit wall is a useful means to predict the risk of anastomotic leakage after esophagectomy. PMID:27472732

  7. Doxorubicin and Indocyanine Green Loaded Hybrid Bicelles for Fluorescence Imaging Guided Synergetic Chemo/Photothermal Therapy.

    PubMed

    Lin, Li; Liang, Xiaolong; Xu, Yunxue; Yang, Yongbo; Li, Xiaoda; Dai, Zhifei

    2017-09-20

    Hybrid bicelles have been demonstrated to have great potential for hydrophobic drug delivery. Herein, we report a near-infrared light-driven, temperature-sensitive hybrid bicelles co-encapsulating hydrophobic doxorubicin (DOX) and indocyanine green (ICG) (DOX/ICG@HBs). Encapsulation of ICG into the lipid bilayer membrane of DOX/ICG@HBs results in higher photostability than free ICG. DOX/ICG@HBs exhibited temperature-regulated drug release behavior and significant photothermal cytotoxicity. After tail vein injection, such discotic nanoparticles of DOX/ICG@HBs were found to accumulate selectively at the tumor site and act as an efficient probe to enhance fluorescence imaging greatly. The in vivo experiments showed that the DOX/ICG@HBs-mediated chemo- and photothermal combination therapy was more cytotoxic to tumor cells than the photothermal treatment or the chemotherapy alone due to the synergistic effect, reducing the occurrence of tumor metastasis. Therefore, DOX/ICG@HBs can act as a powerful nanotheranostic agent for chemo/photothermal therapy of cancer under the guidance of near-infrared fluorescence imaging.

  8. Indocyanine green fluorescence in second near-infrared (NIR-II) window

    PubMed Central

    Bhavane, Rohan; Ghaghada, Ketan B.; Vasudevan, Sanjeev A.; Kaay, Alexander; Annapragada, Ananth

    2017-01-01

    Indocyanine green (ICG), a FDA approved near infrared (NIR) fluorescent agent, is used in the clinic for a variety of applications including lymphangiography, intra-operative lymph node identification, tumor imaging, superficial vascular imaging, and marking ischemic tissues. These applications operate in the so-called “NIR-I” window (700–900 nm). Recently, imaging in the “NIR-II” window (1000–1700 nm) has attracted attention since, at longer wavelengths, photon absorption, and scattering effects by tissue components are reduced, making it possible to image deeper into the underlying tissue. Agents for NIR-II imaging are, however, still in pre-clinical development. In this study, we investigated ICG as a NIR-II dye. The absorbance and NIR-II fluorescence emission of ICG were measured in different media (PBS, plasma and ethanol) for a range of ICG concentrations. In vitro and in vivo testing were performed using a custom-built spectral NIR assembly to facilitate simultaneous imaging in NIR-I and NIR-II window. In vitro studies using ICG were performed using capillary tubes (as a simulation of blood vessels) embedded in Intralipid solution and tissue phantoms to evaluate depth of tissue penetration in NIR-I and NIR-II window. In vivo imaging using ICG was performed in nude mice to evaluate vascular visualization in the hind limb in the NIR-I and II windows. Contrast-to-noise ratios (CNR) were calculated for comparison of image quality in NIR-I and NIR-II window. ICG exhibited significant fluorescence emission in the NIR-II window and this emission (similar to the absorption profile) is substantially affected by the environment of the ICG molecules. In vivo imaging further confirmed the utility of ICG as a fluorescent dye in the NIR-II domain, with the CNR values being ~2 times those in the NIR-I window. The availability of an FDA approved imaging agent could accelerate the clinical translation of NIR-II imaging technology. PMID:29121078

  9. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager

    NASA Astrophysics Data System (ADS)

    Pallotta, Olivia J.; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  10. Indocyanine Green Fluorescence Navigation Thoracoscopic Metastasectomy for Pulmonary Metastasis of Hepatocellular Carcinoma.

    PubMed

    Kawakita, Naoya; Takizawa, Hiromitsu; Kondo, Kazuya; Sakiyama, Shoji; Tangoku, Akira

    2016-12-20

    Indocyanine green can selectively accumulate in primary hepatocellular carcinoma (HCC) and extrahepatic metastases. We report a patient who underwent resection of pulmonary metastasis of HCC using a thoracoscopic near-infrared imaging system and fluorescent navigation surgery. A 66-year-old man with suspicion of pulmonary metastasis of HCC was referred to our hospital. Indocyanine green was injected intravenously at a dose of 0.5 mg/kg body weight, 20 h before thoracoscopic surgery. An endoscopic indocyanine green near-infrared fluorescence imaging system showed clear blue fluorescence, indicating pulmonary metastasis of HCC in a lingular segment. We performed wide wedge resection using the fluorescence image for navigation to confirm the surgical margins. The specimen was histologically confirmed as a pulmonary metastasis of HCC. In conclusion, thoracoscopic indocyanine green near-infrared fluorescence imaging for pulmonary metastases of HCC is useful in identifying tumor locations and ensuring resection margins.

  11. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature.

    PubMed

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V; Backer, Marina V; Backer, Joseph M; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.

  12. Conditions for NIR fluorescence-guided tumor resectioning in preclinical lung cancer model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    Pulmonary nodule could be identified by intraoperative fluorescence imaging system from systemic injection of indocyanine green (ICG) which achieves enhanced permeability and retention (EPR) effects. This study was performed to evaluate optimal injection time of ICG for detecting cancer during surgery in rabbit lung cancer model. VX2 carcinoma cell was injected in rabbit lung under fluoroscopic computed tomography-guidance. Solitary lung cancer was confirmed on positron emitting tomography with CT (PET/CT) 2 weeks after inoculation. ICG was administered intravenously and fluorescent intensity of lung tumor was measured using the custom-built intraoperative color and fluorescence merged imaging system (ICFIS) for 15 hours. Solitary lung cancer was resected through thoracoscopic version of ICFIS. ICG was observed in all animals. Because Lung has fast blood pulmonary circulation, Fluorescent signal showed maximum intensity earlier than previous studies in other organs. Fluorescent intensity showed maximum intensity within 6-9 hours in rabbit lung cancer. Overall, Fluorescent intensity decreased with increasing time, however, all tumors were detectable using fluorescent images until 12 hours. In conclusion, while there had been studies in other organs showed that optimal injection time was at least 24 hours before operation, this study showed shorter optimal injection time at lung cancer. Since fluorescent signal showed the maximum intensity within 6-9 hours, cancer resection could be performed during this time. This data informed us that optimal injection time of ICG should be evaluated in each different solid organ tumor for fluorescent image guided surgery.

  13. Principal component analysis of indocyanine green fluorescence dynamics for diagnosis of vascular diseases

    NASA Astrophysics Data System (ADS)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee

    2015-03-01

    Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.

  14. Sentinel lymph node mapping in minimally invasive surgery: Role of imaging with color-segmented fluorescence (CSF).

    PubMed

    Lopez Labrousse, Maite I; Frumovitz, Michael; Guadalupe Patrono, M; Ramirez, Pedro T

    2017-09-01

    Sentinel lymph node mapping, alone or in combination with pelvic lymphadenectomy, is considered a standard approach in staging of patients with cervical or endometrial cancer [1-3]. The goal of this video is to demonstrate the use of indocyanine green (ICG) and color-segmented fluorescence when performing lymphatic mapping in patients with gynecologic malignancies. Injection of ICG is performed in two cervical sites using 1mL (0.5mL superficial and deep, respectively) at the 3 and 9 o'clock position. Sentinel lymph nodes are identified intraoperatively using the Pinpoint near-infrared imaging system (Novadaq, Ontario, CA). Color-segmented fluorescence is used to image different levels of ICG uptake demonstrating higher levels of perfusion. A color key on the side of the monitor shows the colors that coordinate with different levels of ICG uptake. Color-segmented fluorescence may help surgeons identify true sentinel nodes from fatty tissue that, although absorbing fluorescent dye, does not contain true nodal tissue. It is not intended to differentiate the primary sentinel node from secondary sentinel nodes. The key ranges from low levels of ICG uptake (gray) to the highest rate of ICG uptake (red). Bilateral sentinel lymph nodes are identified along the external iliac vessels using both standard and color-segmented fluorescence. No evidence of disease was noted after ultra-staging was performed in each of the sentinel nodes. Use of ICG in sentinel lymph node mapping allows for high bilateral detection rates. Color-segmented fluorescence may increase accuracy of sentinel lymph node identification over standard fluorescent imaging. The following are the supplementary data related to this article. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Signal Strength-Based Global Navigation Satellite System Performance Assessment in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The second phase of that increasing complexity and fidelity analysis initiative is based on augmenting the Phase 1 pure geometrical approach with signal strength-based limitations to determine if access is valid. The second phase of analysis has been completed, and the results are documented in this paper.

  16. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: A systematic review.

    PubMed

    Liberale, G; Bourgeois, P; Larsimont, D; Moreau, M; Donckier, V; Ishizawa, T

    2017-09-01

    Indocyanine green fluorescence-guided surgery (ICG-FGS) has emerged as a potential new imaging modality for improving the detection of hepatic, lymph node (LN), and peritoneal metastases in colorectal cancer (CRC) patients. The aim of this paper is to review the available literature in the clinical setting of ICG-FGS for tumoral detection in various fields of metastatic colorectal disease. PubMed and Medline literature databases were searched for original articles on the use of ICG in the setting of clinical studies on colorectal cancer. The search terms used were "near-infrared fluorescence", "intraoperative imaging", "indocyanine green", "human" and "colorectal cancer". ICG fluorescence imaging (ICG-FI) is clearly supported as an intraoperative technique that allows the detection of additional superficial hepatic metastases of CRC. Data on the role of ICG-FI in the intraoperative detection of peritoneal metastases and LN metastases are scarce but encouraging and ICG-FI could potentially improve the staging and treatment of these patients. ICG-FI is a promising imaging technique in the detection of small infraclinic LN, hepatic, and peritoneal metastatic deposits that may allow better staging and more complete surgical resection with a potential prognostic benefit for patients. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  17. Fluorescence contrast-enhanced proliferative lesion imaging by enema administration of indocyanine green in a rat model of colon carcinogenesis

    PubMed Central

    Onda, Nobuhiko; Mizutani-Morita, Reiko; Yamashita, Susumu; Nagahara, Rei; Matsumoto, Shinya; Yoshida, Toshinori; Shibutani, Makoto

    2017-01-01

    The fluorescent contrast agent indocyanine green (ICG) is approved by the Food and Drug Administration for clinical applications. We previously reported that cultured human colon tumor cells preferentially take up ICG by endocytic activity in association with disruption of their tight junctions. The present study explored ICG availability in fluorescence imaging of the colon to identify proliferative lesions during colonoscopy. The cellular uptake of ICG in cultured rat colon tumor cells was examined using live-cell imaging. Colon lesions in rats administered an ICG-containing enema were further assessed in rats with azoxymethane-induced colon carcinogenesis, using in vivo endoscopy, ex vivo microscopy, and immunofluorescence microscopy. The uptake of ICG by the cultured cells was temperature-dependent. The intracellular retention of the dye in the membrane trafficking system suggested endocytosis as the uptake mechanism. ICG administered via enema accumulated in colon proliferative lesions ranging from tiny aberrant crypt foci to adenomas and localized in proliferating cells. Fluorescence endoscopy detected these ICG-positive colonic proliferative lesions in vivo. The immunoreactivity of the tight-junction molecule occludin was altered in the proliferative lesions, suggesting the disruption of the integrity of tight junctions. These results suggest that fluorescence contrast-enhanced imaging following the administration of an ICG-containing enema can enhance the detection of mucosal proliferative lesions of the colon during colonoscopy. The tissue preference of ICG in the rat model evaluated in this study can be attributed to the disruption of tight junctions, which in turn promotes endocytosis by proliferative cells and the cellular uptake of ICG. PMID:29163827

  18. Multispectral Fluorescence Imaging During Robot-assisted Laparoscopic Sentinel Node Biopsy: A First Step Towards a Fluorescence-based Anatomic Roadmap.

    PubMed

    van den Berg, Nynke S; Buckle, Tessa; KleinJan, Gijs H; van der Poel, Henk G; van Leeuwen, Fijs W B

    2017-07-01

    During (robot-assisted) sentinel node (SN) biopsy procedures, intraoperative fluorescence imaging can be used to enhance radioguided SN excision. For this combined pre- and intraoperative SN identification was realized using the hybrid SN tracer, indocyanine green- 99m Tc-nanocolloid. Combining this dedicated SN tracer with a lymphangiographic tracer such as fluorescein may further enhance the accuracy of SN biopsy. Clinical evaluation of a multispectral fluorescence guided surgery approach using the dedicated SN tracer ICG- 99m Tc-nanocolloid, the lymphangiographic tracer fluorescein, and a commercially available fluorescence laparoscope. Pilot study in ten patients with prostate cancer. Following ICG- 99m Tc-nanocolloid administration and preoperative lymphoscintigraphy and single-photon emission computed tomograpy imaging, the number and location of SNs were determined. Fluorescein was injected intraprostatically immediately after the patient was anesthetized. A multispectral fluorescence laparoscope was used intraoperatively to identify both fluorescent signatures. Multispectral fluorescence imaging during robot-assisted radical prostatectomy with extended pelvic lymph node dissection and SN biopsy. (1) Number and location of preoperatively identified SNs. (2) Number and location of SNs intraoperatively identified via ICG- 99m Tc-nanocolloid imaging. (3) Rate of intraoperative lymphatic duct identification via fluorescein imaging. (4) Tumor status of excised (sentinel) lymph node(s). (5) Postoperative complications and follow-up. Near-infrared fluorescence imaging of ICG- 99m Tc-nanocolloid visualized 85.3% of the SNs. In 8/10 patients, fluorescein imaging allowed bright and accurate identification of lymphatic ducts, although higher background staining and tracer washout were observed. The main limitation is the small patient population. Our findings indicate that a lymphangiographic tracer can provide additional information during SN biopsy based on ICG- 99m

  19. Navigation of a robot-integrated fluorescence laparoscope in preoperative SPECT/CT and intraoperative freehand SPECT imaging data: a phantom study

    NASA Astrophysics Data System (ADS)

    van Oosterom, Matthias Nathanaël; Engelen, Myrthe Adriana; van den Berg, Nynke Sjoerdtje; KleinJan, Gijs Hendrik; van der Poel, Henk Gerrit; Wendler, Thomas; van de Velde, Cornelis Jan Hadde; Navab, Nassir; van Leeuwen, Fijs Willem Bernhard

    2016-08-01

    Robot-assisted laparoscopic surgery is becoming an established technique for prostatectomy and is increasingly being explored for other types of cancer. Linking intraoperative imaging techniques, such as fluorescence guidance, with the three-dimensional insights provided by preoperative imaging remains a challenge. Navigation technologies may provide a solution, especially when directly linked to both the robotic setup and the fluorescence laparoscope. We evaluated the feasibility of such a setup. Preoperative single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) or intraoperative freehand SPECT (fhSPECT) scans were used to navigate an optically tracked robot-integrated fluorescence laparoscope via an augmented reality overlay in the laparoscopic video feed. The navigation accuracy was evaluated in soft tissue phantoms, followed by studies in a human-like torso phantom. Navigation accuracies found for SPECT/CT-based navigation were 2.25 mm (coronal) and 2.08 mm (sagittal). For fhSPECT-based navigation, these were 1.92 mm (coronal) and 2.83 mm (sagittal). All errors remained below the <1-cm detection limit for fluorescence imaging, allowing refinement of the navigation process using fluorescence findings. The phantom experiments performed suggest that SPECT-based navigation of the robot-integrated fluorescence laparoscope is feasible and may aid fluorescence-guided surgery procedures.

  20. The utility of indocyanine green fluorescence imaging during robotic adrenalectomy.

    PubMed

    Colvin, Jennifer; Zaidi, Nisar; Berber, Eren

    2016-08-01

    Indocyanine green (ICG) has been used for medical imaging since 1950s, but has more recently become available for use in minimally invasive surgery owing to improvements in technology. This study investigates the use of ICG florescence to guide an accurate dissection by delineating the borders of adrenal tumors during robotic adrenalectomy (RA). This prospective study compared conventional robotic view with ICG fluorescence imaging in 40 consecutive patients undergoing RA. Independent, non-blinded observers assessed how accurately ICG fluorescence delineated the borders of adrenal tumors compared to conventional robotic view. A total of 40 patients underwent 43 adrenalectomies. ICG imaging was superior, equivalent, or inferior to conventional robotic view in 46.5% (n = 20), 25.6% (n = 11), and 27.9% (n = 12) of the procedures. On univariate analysis, the only parameter that predicted the superiority of ICG imaging over conventional robotic view was the tumor type, with adrenocortical tumors being delineated more accurately on ICG imaging compared to conventional robotic view. This study demonstrates the utility of ICG to guide the dissection and removal of adrenal tumors during RA. A simple reproducible method is reported, with a detailed description of the utility based on tumor type, approach and side. J. Surg. Oncol. 2016;114:153-156. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  2. Navigation lymphatic supermicrosurgery for the treatment of cancer-related peripheral lymphedema.

    PubMed

    Yamamoto, Takumi; Yamamoto, Nana; Numahata, Takao; Yokoyama, Ai; Tashiro, Kensuke; Yoshimatsu, Hidehiko; Narushima, Mitsunaga; Koshima, Isao

    2014-02-01

    Lymphatic supermicrosurgery is becoming the treatment of choice for refractory lymphedema. Detection and anastomosis of functional lymphatic vessels are important for lymphatic supermicrosurgery. Navigation lymphatic supermicrosurgery was performed using an operating microscope equipped with an integrated near-infrared illumination system (OPMI Pentero Infrared 800; Carl Zeiss, Oberkochen, Germany). Eight patients with extremity lymphedema who underwent navigation lymphatic supermicrosurgery were evaluated. A total of 21 lymphaticovenular anastomoses were performed on 8 limbs through 14 skin incisions. Lymphatic vessels were enhanced by intraoperative microscopic indocyanine green (ICG) lymphography in 12 of the 14 skin incisions, which resulted in early dissection of lymphatic vessels. All anastomoses showed good anastomosis patency after completion of anastomoses. Postoperative extremity lymphedema index decreased in all limbs. Navigation lymphatic supermicrosurgery, in which lymphatic vessels are visualized with intraoperative microscopic ICG lymphography, allows a lymphatic supermicrosurgeon to find and dissect lymphatic vessels earlier and facilitates successful performance of lymphaticovenular anastomosis.

  3. Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Jingqin; Liu, Chengbo; Zeng, Guang; You, Yujia; Wang, Huina; Gong, Xiaojing; Zheng, Rongqin; Kim, Jeesu; Kim, Chulhong; Song, Liang

    2016-02-01

    Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.

  4. The feasibility of indocyanine green fluorescence imaging for identifying and assessing the perfusion of parathyroid glands during total thyroidectomy.

    PubMed

    Zaidi, Nisar; Bucak, Emre; Yazici, Pinar; Soundararajan, Sarah; Okoh, Alexis; Yigitbas, Hakan; Dural, Cem; Berber, Eren

    2016-06-01

    There are limited adjuncts available for identifying and assessing the viability of parathyroid glands (PGs) during total thyroidectomy (TT). The aim of this study is to determine the feasibility of indocyanine green (ICG) imaging in identifying and assessing perfusion of PGs during TT. ICG was administered in patients undergoing TT and fluorescence of PGs was assessed. A grading scale was developed for assessing degree of ICG uptake. Patients were evaluated for hypocalcemia and hypoparathyroidism on post-operative day (POD) #1. Twenty-seven patients underwent TT with ICG imaging for multinodular goiter (n = 13), thyroid cancer (n = 10), and Graves' disease (n = 4). Eight-five PGs were identified visually, 71 (84%) of which showed ICG fluorescence. False negative rate was 6%. Post-operatively, three patients (11%) had a serum calcium value <8 mg/dl. ICG uptake after TT correlated with post-operative PTH levels: mean POD#1 PTH of those patients with at least two PGs exhibiting <30% fluorescence was 9 pg/ml; whereas those with fewer than two demonstrating <30% fluorescence had a POD#1 PTH of 19.5 pg/ml (P = 0.05). ICG imaging of PGs during TT is feasible. ICG might be a useful adjunct in identifying those patients at risk for post-thyroidectomy hypoparathyroidism. J. Surg. Oncol. 2016;113:775-778. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors

    NASA Astrophysics Data System (ADS)

    Kumar, Anand T. N.; Carp, Stefan A.; Yang, Jing; Ross, Alana; Medarova, Zdravka; Ran, Chongzhao

    2017-04-01

    Although the development of tumor-targeted fluorescent probes is a major area of investigation, it will be several years before these probes are realized for clinical use. Here, we report an approach that employs indocyanine-green (ICG), a clinically approved, nontargeted dye, in conjunction with fluorescence lifetime (FLT) detection to provide high accuracy for tumor-tissue identification in mouse models of subcutaneous human breast and brain tmors. The improved performance relies on the distinct FLTs of ICG within tumors versus tissue autofluorescence and is further aided by the well-known enhanced permeability and retention of ICG in tumors and the clearance of ICG from normal tissue several hours after intravenous injection. We demonstrate that FLT detection can provide more than 98% sensitivity and specificity, and a 10-fold reduction in error rates compared to intensity-based detection. Our studies suggest the significant potential of FLT-contrast for accurate tumor-tissue identification using ICG and other targeted probes under development, both for intraoperative imaging and for ex-vivo margin assessment of surgical specimens.

  6. Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart

    PubMed Central

    Martišienė, Irma; Mačianskienė, Regina; Treinys, Rimantas; Navalinskas, Antanas; Almanaitytė, Mantė; Karčiauskas, Dainius; Kučinskas, Audrius; Grigalevičiūtė, Ramunė; Zigmantaitė, Vilma; Benetis, Rimantas; Jurevičius, Jonas

    2016-01-01

    So far, the optical mapping of cardiac electrical signals using voltage-sensitive fluorescent dyes has only been performed in experimental studies because these dyes are not yet approved for clinical use. It was recently reported that the well-known and widely used fluorescent dye indocyanine green (ICG), which has FDA approval, exhibits voltage sensitivity in various tissues, thus raising hopes that electrical activity could be optically mapped in the clinic. The aim of this study was to explore the possibility of using ICG to monitor cardiac electrical activity. Optical mapping experiments were performed on Langendorff rabbit hearts stained with ICG and perfused with electromechanical uncouplers. The residual contraction force and electrical action potentials were recorded simultaneously. Our research confirms that ICG is a voltage-sensitive dye with a dual-component (fast and slow) response to membrane potential changes. The fast component of the optical signal (OS) can have opposite polarities in different parts of the fluorescence spectrum. In contrast, the polarity of the slow component remains the same throughout the entire spectrum. Separating the OS into these components revealed two different voltage-sensitivity mechanisms for ICG. The fast component of the OS appears to be electrochromic in nature, whereas the slow component may arise from the redistribution of the dye molecules within or around the membrane. Both components quite accurately track the time of electrical signal propagation, but only the fast component is suitable for estimating the shape and duration of action potentials. Because ICG has voltage-sensitive properties in the entire heart, we suggest that it can be used to monitor cardiac electrical behavior in the clinic. PMID:26840736

  7. The effect of ICG on mitomycin C cytotoxicity in human tenon fibroblasts.

    PubMed

    Reeves, Graham; Wallis, Richard; Crowston, Jonathan G; Small, Keith M; Wells, Anthony P

    2007-08-01

    To examine the effects of indocyanine green (ICG) with and without mitomycin C (MMC) on proliferation of cultured human Tenon fibroblasts. Fibroblast monolayers were exposed to either MMC [0.4 mg/mL in phosphate buffered saline (PBS)] or PBS containing ICG (0.0625%, 0.125%, 0.25%, and 0.5% in 200 microL PBS) or a combination of MMC (0.4 mg/mL in PBS) and ICG (0.25% and 0.5%) for 5 minutes. Controls were exposed for 5 minutes to MMC, PBS, or culture medium containing no ICG. After treatment, the monolayers were washed and incubated in culture medium for 24, 48, 72 hours, and 1 week periods after which the number of viable cells was quantified. The presence of ICG alone, at concentrations ranging from 0.0625% to 0.5%, had no effect on the rate of fibroblast proliferation measured at any of the incubation periods. As expected, MMC treatment resulted in a significant reduction in viable fibroblast number (8.4+/-0.13x10(3)). ICG in combination with MMC did not significantly alter fibroblast numbers (8.5+/-0.05x10(3)) up to 1 week compared with MMC alone (8.4+/-0.12x10(3)). ICG at concentrations of 0.5% and below do not reduce proliferation of Tenon capsule fibroblasts. ICG did not potentiate or diminish the effect of MMC on Tenon capsule fibroblast proliferation.

  8. Augmented microscopy with near-infrared fluorescence detection

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-03-01

    Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.

  9. Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Rajian, Justin R.; Fabiilli, Mario L.; Fowlkes, J. Brian; Carson, Paul L.

    2012-02-01

    We successfully encapsulated ICG in an ultrasound-triggerable perfluorocarbon double emulsion that prevents ICG from binding with plasma proteins. Photoacoustic spectral measurements on point target as well as 2-D photoacoustic images of blood vessels revealed that the photoacoustic spectrum changes significantly in blood when the ICG-loaded emulsion undergoes acoustic droplet vaporization (ADV), which is the conversion of liquid droplets into gas bubbles using ultrasound. Other than providing a new photoacoustic contrast agent, the ICG encapsulated double emulsion, when imaged with photoacoustic tomography, could facilitate spatial and quantitative monitoring of ultrasound initiated drug delivery.

  10. Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion

    NASA Astrophysics Data System (ADS)

    Rajian, Justin Rajesh; Fabiilli, Mario L.; Fowlkes, J. Brian; Carson, Paul L.; Wang, Xueding

    2011-07-01

    The absorption spectrum of indocyanine green (ICG), a nontoxic dye used for medical diagnostics, depends upon its concentration as well as the nature of its environment, i.e., the solvent medium into which it is dissolved. In blood, ICG binds with plasma proteins, thus causing changes in its photoacoustic spectrum. We successfully encapsulated ICG in an ultrasound-triggerable perfluorocarbon double emulsion that prevents ICG from binding with plasma proteins. Photoacoustic spectral measurements on point target as well as 2-D photoacoustic images of blood vessels revealed that the photoacoustic spectrum changes significantly in blood when the ICG-loaded emulsion undergoes acoustic droplet vaporization (ADV), which is the conversion of liquid droplets into gas bubbles using ultrasound. We propose that these changes in the photoacoustic spectrum of the ICG emulsion in blood, coupled with photoacoustic tomography, could be used to spatially and quantitatively monitor ultrasound initiated drug delivery. In addition, we suggest that the photoacoustic spectral change induced by ultrasound exposure could also be used as contrast in photoacoustic imaging to obtain a background free image.

  11. Combined use of fluorescence with a magnetic tracer and dilution effect upon sentinel node localization in a murine model.

    PubMed

    Kuwahata, Akihiro; Ahmed, Muneer; Saeki, Kohei; Chikaki, Shinichi; Kaneko, Miki; Qiu, Wenqi; Xin, Zonghao; Yamaguchi, Shinji; Kaneko, Akiko; Douek, Michael; Kusakabe, Moriaki; Sekino, Masaki

    2018-01-01

    Sentinel node biopsy using radioisotope and blue dye remains a gold standard for axillary staging in breast cancer patients with low axillary burden. However, limitations in the use of radioisotopes have resulted in emergence of novel techniques. This is the first in vivo study to assess the feasibility of combining the two most common novel techniques of using a magnetic tracer and indocyanine green (ICG) fluorescence. A total of 48 mice were divided into eight groups. Groups 1 and 2, the co-localization groups, received an injection of magnetic tracers (Resovist ® and Sienna+ ® , respectively) and ICG fluorescence; distilled water was used as the solvent of ICG. Groups 3 and 4, the diluted injection groups, received an injection of magnetic tracers (Resovist and Sienna+, respectively) and saline for dilution. Groups 5, 6, and 7, the control groups, received magnetic tracer (Resovist, Sienna+) and ICG alone, respectively. Fluorescent intensity assessment and iron quantification of excised popliteal lymph nodes were performed. Group 1', a co-localization group, received an injection of magnetic tracers (Resovist) and ICG' fluorescence: saline was used as the solvent for ICG. Lymphatic uptake of all tracers was confined to the popliteal nodes only, with co-localization confirmed in all cases and no significant difference in fluorescent intensity or iron content of ex vivo nodes between the groups (except for Group 1'). There was no impact of dilution on the iron content in the diluted Sienna+ group, but it significantly enhanced Resovist uptake ( P =0.005). In addition, there was a significant difference in iron content ( P =0.003) in Group 1'. The combination of a magnetic tracer (Resovist or Sienna+) and ICG fluorescence is feasible for sentinel node biopsy and will potentially allow for precise transcutaneous node identification, in addition to accurate intraoperative assessment. This radioisotope-free "combined technique" warrants further assessment within a

  12. Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection.

    PubMed

    Navarro, Fabrice P; Berger, Michel; Guillermet, Stéphanie; Josserand, Véronique; Guyon, Laurent; Neumann, Emmanuelle; Vinet, Françoise; Texier, Isabelle

    2012-10-01

    Fluorescence imaging is opening a new era in image-guided surgery and other medical applications. The only FDA approved contrast agent in the near infrared is IndoCyanine Green (ICG), which despites its low toxicity, displays poor chemical and optical properties for long-term and sensitive imaging applications in human. Lipid nanoparticles are investigated for improving ICG optical properties and in vivo fluorescence imaging sensitivity. 30 nm diameter lipid nanoparticles (LNP) are loaded with ICG. Their characterization and use for tumor and lymph node imaging are described. Nano-formulation benefits dye optical properties (6 times improved brightness) and chemical stability (>6 months at 4 degrees C in aqueous buffer). More importantly, LNP vectorization allows never reported sensitive and prolonged (>1 day) labeling of tumors and lymph nodes. Composed of human-use approved ingredients, this novel ICG nanometric formulation is foreseen to expand rapidly the field of clinical fluorescence imaging applications.

  13. Portal vein territory identification using indocyanine green fluorescence imaging: Technical details and short-term outcomes.

    PubMed

    Kobayashi, Yuta; Kawaguchi, Yoshikuni; Kobayashi, Kosuke; Mori, Kazuhiro; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2017-12-01

    Portal vein (PV) territory identification during liver resection may be performed using indocyanine green (ICG) fluorescence imaging technique. However, the technical details of the fluorescence staining technique have not been fully elucidated. This study was performed to demonstrate the technical details of PV territory identification using fluorescence imaging and evaluates the short-term outcomes. From 2011 to 2015, 105 underwent liver resection at the University of Tokyo Hospital with one of the following fluorescence staining techniques by transhepatic PV injection or intravenous injection of ICG: single staining (n = 36), multiple staining (n = 31), counterstaining (n = 22), negative staining (n = 13), or paradoxical negative staining (n = 3). The PV territory was identified as a region with fluorescence or a defect of fluorescence using one of the five staining techniques. ICG was administered by transhepatic PV injection in all but the negative staining technique, which employed intravenous injection. No adverse events associated with the ICG administration occurred. The mortality, postoperative total morbidity, and the major complication (Clavien-Dindo grade ≥III) rates were 0.0%, 14.3%, and 7.6%. We have demonstrated the technical details of five types of fluorescence staining techniques. These techniques are safe to perform and facilitate clear visualization of the PV territory in real time, enhancing the efficacy of anatomical removal of such territories. © 2017 Wiley Periodicals, Inc.

  14. Benchtop and animal validation of a portable fluorescence microscopic imaging system for potential use in cholecystectomy

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J.; Liu, Chenhai; Xu, Ronald X.

    2018-02-01

    We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings.

  15. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.

    PubMed

    Carr, Jessica A; Franke, Daniel; Caram, Justin R; Perkinson, Collin F; Saif, Mari; Askoxylakis, Vasileios; Datta, Meenal; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G; Bruns, Oliver T

    2018-04-24

    Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.

  16. Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.

    PubMed

    Verjans, Johan W; Osborn, Eric A; Ughi, Giovanni J; Calfon Press, Marcella A; Hamidi, Ehsan; Antoniadis, Antonios P; Papafaklis, Michail I; Conrad, Mark F; Libby, Peter; Stone, Peter H; Cambria, Richard P; Tearney, Guillermo J; Jaffer, Farouc A

    2016-09-01

    This study sought to determine whether indocyanine green (ICG)-enhanced near-infrared fluorescence (NIRF) imaging can illuminate high-risk histologic plaque features of human carotid atherosclerosis, and in coronary atheroma of living swine, using intravascular NIRF-optical coherence tomography (OCT) imaging. New translatable imaging approaches are needed to identify high-risk biological signatures of atheroma. ICG is a U.S. Food and Drug Administration-approved NIRF imaging agent that experimentally targets plaque macrophages and lipid in areas of enhanced endothelial permeability. However, it is unknown whether ICG can target atheroma in patients. Eight patients were enrolled in the BRIGHT-CEA (Indocyanine Green Fluorescence Uptake in Human Carotid Artery Plaque) trial. Five patients were injected intravenously with ICG 99 ± 25 min before clinically indicated carotid endarterectomy. Three saline-injected endarterectomy patients served as control subjects. Excised plaques underwent analysis by intravascular NIRF-OCT, reflectance imaging, microscopy, and histopathology. Next, following ICG intravenous injection, in vivo intracoronary NIRF-OCT and intravascular ultrasound imaged 3 atheroma-bearing coronary arteries of a diabetic, cholesterol-fed swine. ICG was well tolerated; no adverse clinical events occurred up to 30 days post-injection. Multimodal NIRF imaging including intravascular NIRF-OCT revealed that ICG accumulated in all endarterectomy specimens. Plaques from saline-injected control patients exhibited minimal NIRF signal. In the swine experiment, intracoronary NIRF-OCT identified ICG uptake in all intravascular ultrasound-identified plaques in vivo. On detailed microscopic evaluation, ICG localized to plaque areas exhibiting impaired endothelial integrity, including disrupted fibrous caps, and within areas of neovascularization. Within human plaque areas of endothelial abnormality, ICG was spatially related to localized zones of plaque macrophages and

  17. Near-infrared fluorescence cholangiography with indocyanine green for biliary atresia. Real-time imaging during the Kasai procedure: a pilot study.

    PubMed

    Hirayama, Yutaka; Iinuma, Yasushi; Yokoyama, Naoyuki; Otani, Tetsuya; Masui, Daisuke; Komatsuzaki, Naoko; Higashidate, Naruki; Tsuruhisa, Shiori; Iida, Hisataka; Nakaya, Kengo; Naito, Shinichi; Nitta, Koju; Yagi, Minoru

    2015-12-01

    Hepatoportoenterostomy (HPE) with the Kasai procedure is the treatment of choice for biliary atresia (BA) as the initial surgery. However, the appropriate level of dissection level of the fibrous cone (FC) of the porta hepatis (PH) is frequently unclear, and the procedure sometimes results in unsuccessful outcomes. Recently, indocyanine green near-infrared fluorescence imaging (ICG-FCG) has been developed as a form of real-time cholangiography. We applied this technique in five patients with BA to visualize the biliary flow at the PH intraoperatively. ICG was injected intravenously the day before surgery as the liver function test, and the liver was observed with a near-infrared camera system during the operation while the patient's feces was also observed. In all patients, the whole liver fluoresced diffusely with ICG-containing stagnant bile, whereas no extrahepatic structures fluoresced. The findings of the ICG fluorescence pattern of the PH after dissection of the FC were classified into three types: spotty fluorescence, one patient; diffuse weak fluorescence, three patients; and diffuse strong fluorescence, one patient. In all five patients, the feces evacuated after HPE showed distinct fluorescent spots, although that obtained before surgery showed no fluorescence. One patient with diffuse strong fluorescence who did not achieve JF underwent living related liver transplantation six months after the initial HPE procedure. Four patients, including three cases involving diffuse weak fluorescence and one case involving spotty fluorescence showed weak fluorescence compared to that of the surrounding liver surface. We were able to detect the presence of bile excretion at the time of HPE intraoperatively and successfully evaluated the extent of bile excretion using this new technique. Furthermore, the ICG-FCG findings may provide information leading to a new classification and potentially function as an indicator predicting the clinical outcomes after HPE.

  18. Intraoperative Identification of a Normal Pituitary Gland and an Adenoma Using Near-Infrared Fluorescence Imaging and Low-Dose Indocyanine Green.

    PubMed

    Verstegen, Marco J T; Tummers, Quirijn R J G; Schutte, Pieter J; Pereira, Alberto M; van Furth, Wouter R; van de Velde, Cornelis J H; Malessy, Martijn J A; Vahrmeijer, Alexander L

    2016-09-01

    The intraoperative distinction between normal and abnormal pituitary tissue is crucial during pituitary adenoma surgery to obtain a complete tumor resection while preserving endocrine function. Near-infrared (NIR) fluorescence imaging is a technique to intraoperatively visualize tumors by using indocyanine green (ICG), a contrast agent allowing visualization of differences in tissue vascularization. Although NIR fluorescence imaging has been described in pituitary surgery, it has, in contrast to other surgical areas, never become widely used. To evaluate NIR fluorescence imaging in pituitary surgery, both qualitatively and quantitatively, and to assess the additional value of resecting adenoma tissue under NIR fluorescence guidance. We included 10 patients planned to undergo transnasal transsphenoidal selective adenomectomy. Patients received multiple intravenous administrations of 5 mg ICG, up to a maximum of 15 mg per patient. Endoscopic NIR fluorescence imaging was performed at multiple points in time. The NIR fluorescent signal in both the adenoma and pituitary gland was obtained, and the fluorescence contrast ratio was assessed. Four patients had Cushing disease, 1 had acromegaly, and 1 had a prolactinoma. Four patients had a nonfunctioning macroadenoma. In 9 of 10 patients with a histologically proven pituitary adenoma, the normal pituitary gland showed a stronger fluorescent signal than the adenoma. A fluorescence contrast ratio of normal pituitary gland to adenoma of 1.5 ± 0.2 was obtained. In 2 patients; adenoma resection was actually performed under NIR fluorescence guidance instead of under white light. NIR fluorescence imaging can easily and safely be implemented in pituitary surgery. The timing of ICG administration is important for optimal results and warrants further study. It appears that injection of ICG can best be postponed until some part of the normal pituitary gland is identified. Subsequent repeated low-dose ICG administrations improved the

  19. Enhanced visualization of the bile duct via parallel white light and indocyanine green fluorescence laparoscopic imaging

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Urayama, Shiro

    2014-03-01

    Despite best efforts, bile duct injury during laparoscopic cholecystectomy is a major potential complication. Precise detection method of extrahepatic bile duct during laparoscopic procedures would minimize the risk of injury. Towards this goal, we have developed a compact imaging instrumentation designed to enable simultaneous acquisition of conventional white color and NIR fluorescence endoscopic/laparoscopic imaging using ICG as contrast agent. The capabilities of this system, which offers optimized sensitivity and functionality, are demonstrated for the detection of the bile duct in an animal model. This design could also provide a low-cost real-time surgical navigation capability to enhance the efficacy of a variety of other image-guided minimally invasive procedures.

  20. Near-infrared fluorescence imaging and photodynamic therapy with indocyanine green lactosome has antineoplastic effects for hepatocellular carcinoma.

    PubMed

    Tsuda, Takumi; Kaibori, Masaki; Hishikawa, Hidehiko; Nakatake, Richi; Okumura, Tadayoshi; Ozeki, Eiichi; Hara, Isao; Morimoto, Yuji; Yoshii, Kengo; Kon, Masanori

    2017-01-01

    Anticancer agents and operating procedures have been developed for hepatocellular carcinoma (HCC) patients, but their prognosis remains poor. It is necessary to develop novel diagnostic and therapeutic strategies for HCC to improve its prognosis. Lactosome is a core-shell-type polymeric micelle, and enclosing labeling or anticancer agents into this micelle enables drug delivery. In this study, we investigated the diagnostic and therapeutic efficacies of indocyanine green (ICG)-loaded lactosome for near-infrared fluorescence (NIF) imaging and photodynamic therapy (PDT) for HCC. The human HCC cell line HuH-7 was treated with ICG or ICG-lactosome, followed by PDT, and the cell viabilities were measured (in vitro PDT efficiency). For NIF imaging, HuH-7 cells were subcutaneously transplanted into BALB/c nude mice, followed by intravenous administration of ICG or ICG-lactosome. The transplanted animals were treated with PDT, and the antineoplastic effects were analyzed (in vivo PDT efficiency). PDT had toxic effects on HuH-7 cells treated with ICG-lactosome, but not ICG alone. NIF imaging revealed that the fluorescence of tumor areas in ICG-lactosome-treated animals was higher than that of contralateral regions at 24 h after injection and thereafter. PDT exerted immediate and continuous phototoxic effects in the transplanted mice treated with ICG-lactosome. Our results demonstrate that ICG-lactosome accumulated in xenograft tumors, and that PDT had antineoplastic effects on these malignant implants. NIF imaging and PDT with ICG-lactosome could be useful diagnostic and/or therapeutic strategies for HCC.

  1. Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult's brain

    NASA Astrophysics Data System (ADS)

    Gerega, Anna; Milej, Daniel; Weigl, Wojciech; Botwicz, Marcin; Zolek, Norbert; Kacprzak, Michal; Wierzejski, Wojciech; Toczylowska, Beata; Mayzner-Zawadzka, Ewa; Maniewski, Roman; Liebert, Adam

    2012-08-01

    Optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for clinical assessment of brain perfusion in adults at the bedside. Methodology of multiwavelength and time-resolved detection of fluorescence light excited in the ICG is presented and advantages of measurements at multiple wavelengths are discussed. Measurements were carried out: 1. on a physical homogeneous phantom to study the concentration dependence of the fluorescence signal, 2. on the phantom to simulate the dynamic inflow of ICG at different depths, and 3. in vivo on surface of the human head. Pattern of inflow and washout of ICG in the head of healthy volunteers after intravenous injection of the dye was observed for the first time with time-resolved instrumentation at multiple emission wavelengths. The multiwavelength detection of fluorescence signal confirms that at longer emission wavelengths, probability of reabsorption of the fluorescence light by the dye itself is reduced. Considering different light penetration depths at different wavelengths, and the pronounced reabsorption at longer wavelengths, the time-resolved multiwavelength technique may be useful in signal decomposition, leading to evaluation of extra- and intracerebral components of the measured signals.

  2. Wnt/β-catenin signaling inhibitor ICG-001 enhances pigmentation of cultured melanoma cells.

    PubMed

    Kim, Kyung-Il; Jeong, Do-Sun; Jung, Eui Chang; Lee, Jeung-Hoon; Kim, Chang Deok; Yoon, Tae-Jin

    2016-11-01

    Wnt/β-catenin signaling is important in development and differentiation of melanocytes. The object of this study was to evaluate the effects of several Wnt/β-catenin signaling inhibitors on pigmentation using melanoma cells. Melanoma cells were treated with Wnt/β-catenin signaling inhibitors, and then melanin content and tyrosinase activity were checked. Although some inhibitors showed slight inhibition of pigmentation, we failed to observe potential inhibitory effect of those chemicals on pigmentation of HM3KO melanoma cells. Rather, one of powerful Wnt/β-catenin signaling inhibitors, ICG-001, increased the pigmentation of HM3KO melanoma cells. Pigmentation-enhancing effect of ICG-001 was reproducible in other melanoma cell line MNT-1. Consistent with these results. ICG-001 increased the expression of pigmentation-related genes, such as MITF, tyrosinase and TRP1. When ICG-001 was treated, the phosphorylation of CREB was significantly increased. In addition, ICG-001 treatment led to quick increase of intracellular cAMP level, suggesting that ICG-001 activated PKA signaling. The blockage of PKA signaling with pharmaceutical inhibitor H89 inhibited the ICG-001-induced pigmentation significantly. These results suggest that PKA signaling is pivotal in pigmentation process itself, while the importance of Wnt/β-catenin signaling should be emphasized in the context of development and differentiation. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Intraoperative real-time localization of parathyroid gland with near infrared fluorescence imaging

    PubMed Central

    Kim, Sung Won; Lee, Hyoung Shin

    2017-01-01

    Surgeons have cited difficulties in identifying the parathyroid glands (PG) during thyroidectomy. To overcome the limitation of naked eye, many studies on near-infrared fluorescence imaging of PGs have been introduced and suggested that fluorescence imaging is useful for both localizing PGs and evaluating their function. This imaging technique has been reported in two ways: (I) imaging using a fluorescent material called indocyanine green (ICG); and (II) autofluorescence using intrinsic fluorophores. These innovative and novel techniques are expected to have a significant impact on performing thyroid or parathyroid surgery. In this article, current papers that describe ICG fluorescence and autofluorescence imaging of PG during thyroid and parathyroid surgery are reviewed. PMID:29142843

  4. Benchtop and animal validation of a portable fluorescence microscopic imaging system for potential use in cholecystectomy.

    PubMed

    Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J; Liu, Chenhai; Xu, Ronald X

    2018-02-01

    We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Portable widefield imaging device for ICG-detection of the sentinel lymph node

    NASA Astrophysics Data System (ADS)

    Govone, Angelo Biasi; Gómez-García, Pablo Aurelio; Carvalho, André Lopes; Capuzzo, Renato de Castro; Magalhães, Daniel Varela; Kurachi, Cristina

    2015-06-01

    Metastasis is one of the major cancer complications, since the malignant cells detach from the primary tumor and reaches other organs or tissues. The sentinel lymph node (SLN) is the first lymphatic structure to be affected by the malignant cells, but its location is still a great challenge for the medical team. This occurs due to the fact that the lymph nodes are located between the muscle fibers, making it visualization difficult. Seeking to aid the surgeon in the detection of the SLN, the present study aims to develop a widefield fluorescence imaging device using the indocyanine green as fluorescence marker. The system is basically composed of a 780nm illumination unit, optical components for 810nm fluorescence detection, two CCD cameras, a laptop, and dedicated software. The illumination unit has 16 diode lasers. A dichroic mirror and bandpass filters select and deliver the excitation light to the interrogated tissue, and select and deliver the fluorescence light to the camera. One camera is responsible for the acquisition of visible light and the other one for the acquisition of the ICG fluorescence. The software developed at the LabVIEW® platform generates a real time merged image where it is possible to observe the fluorescence spots, related to the lymph nodes, superimposed at the image under white light. The system was tested in a mice model, and a first patient with tongue cancer was imaged. Both results showed the potential use of the presented fluorescence imaging system assembled for sentinel lymph node detection.

  6. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery

    PubMed Central

    Schaafsma, Boudewijn E.; Mieog, J.Sven D.; Hutteman, Merlijn; van der Vorst, Joost R.; Kuppen, Peter J.K.; Löwik, Clemens W.G.M.; Frangioni, John V.; van de Velde, Cornelis J.H.; Vahrmeijer, Alexander L.

    2011-01-01

    Optical imaging using near-infrared (NIR) fluorescence provides new prospects for general and oncologic surgery. ICG is currently utilised in NIR fluorescence cancer-related surgery for three indications: sentinel lymph node (SLN) mapping, intraoperative identification of solid tumours, and angiography during reconstructive surgery. Therefore, understanding its advantages and limitations is of significant importance. Although non-targeted and non-conjugatable, ICG appears to be laying the foundation for more widespread use of NIR fluorescence-guided surgery. PMID:21495033

  7. Molecular targeted PDT with selective delivery of ICG Photo-Immunoconjugates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Hüttmann, Gereon; Hasan, Tayyaba; Rahmanzadeh, Ramtin

    2016-03-01

    Light-induced inhibition of intracellular molecules holds great promise for a selective treatment of cancer and other diseases. Challenges for the targeting of intracellular proteins are the synthesis of effective photoimmuno-conjugates and their functional delivery inside living cells. In earlier studies we have shown, that photodynamic inactivation of the nuclear Ki-67 protein leads to an effective elimination of proliferating tumor cells. Here we show a selective treatment for EGFR and Ki-67 positive cancer cells after light-controlled delivery of indocyanine green (ICG) photo-immunoconjugates. The Ki-67 antibody TuBB-9, which recognizes an active state of the protein, was labeled with different ratios of ICG and encapsulated into immuno-liposomes that selectively deliver the conjugates to EGFR overexpressing cells. To overcome endosomal entrapment of the delivered agents, ovarian carcinoma cells were treated with the photosensitizer benzoporphyrin monoacid derivative (BPD) and irradiated first for endosomal escape of the TuBB-9-ICG constructs. 24 h after irradiation TuBB-9-ICG antibodies showed a relocalization from spots in the cytoplasm to the cell nucleus. A second irradiation of the delivered TuBB-9-ICG led to a significant elimination of cells after Ki-67 inactivation.

  8. Intestinal blood flow assessment by indocyanine green fluorescence imaging in a patient with the incarcerated umbilical hernia: Report of a case.

    PubMed

    Ryu, Shunjin; Yoshida, Masashi; Ohdaira, Hironori; Tsutsui, Nobuhiro; Suzuki, Norihiko; Ito, Eisaku; Nakajima, Keigo; Yanagisawa, Satoru; Kitajima, Masaki; Suzuki, Yutaka

    2016-06-01

    After reduction of the incarceration during surgery for incarcerated hernia, intestinal blood flow (IBF) and the need for bowel resection must be evaluated. We report the case of a patient with incarcerated umbilical hernia in whom the bowel was preserved after evaluating IBF using indocyanine green (ICG) fluorescence. A woman in her 40s with a chief complaint of abdominal pain visited our hospital, was diagnosed with incarcerated umbilical hernia and underwent surgery. Laparotomy was performed to reduce bowel incarceration. After reducing the incarceration, IBF was observed using ICG fluorescence detected using a brightfield full-color fluorescence camera. The small bowel that had been incarcerated showed deep-red discoloration on gross evaluation, but intravenous injection of ICG revealed uniform fluorescence of the mesentery and bowel wall. This indicated an absence of irreversible ischemic changes of the bowel, so no resection was performed. The patient showed a good postoperative course, including resumption of eating on day 4 and discharge on day 11. In surgery for incarcerated hernia, ICG fluorescence may offer a useful method to evaluate IBF after reducing the incarceration. This case implied that PINPOINT could be used in open conventional surgery.

  9. Multiparametric evaluation of hindlimb ischemia using time-series indocyanine green fluorescence imaging.

    PubMed

    Guang, Huizhi; Cai, Chuangjian; Zuo, Simin; Cai, Wenjuan; Zhang, Jiulou; Luo, Jianwen

    2017-03-01

    Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time-series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time-series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post-ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time-varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time-series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo-perfused tissues from well-perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis. The estimated perfusion rate and vascular perfusion density maps (left) and the time-varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.

    PubMed

    Lee, Sunki; Lee, Min Woo; Cho, Han Saem; Song, Joon Woo; Nam, Hyeong Soo; Oh, Dong Joo; Park, Kyeongsoon; Oh, Wang-Yuhl; Yoo, Hongki; Kim, Jin Won

    2014-08-01

    Lipid-rich inflamed coronary plaques are prone to rupture. The purpose of this study was to assess lipid-rich inflamed plaques in vivo using fully integrated high-speed optical coherence tomography (OCT)/near-infrared fluorescence (NIRF) molecular imaging with a Food and Drug Administration-approved indocyanine green (ICG). An integrated high-speed intravascular OCT/NIRF imaging catheter and a dual-modal OCT/NIRF system were constructed based on a clinical OCT platform. For imaging lipid-rich inflamed plaques, the Food and Drug Administration-approved NIRF-emitting ICG (2.25 mg/kg) or saline was injected intravenously into rabbit models with experimental atheromata induced by balloon injury and 12- to 14-week high-cholesterol diets. Twenty minutes after injection, in vivo OCT/NIRF imaging of the infrarenal aorta and iliac arteries was acquired only under contrast flushing through catheter (pullback speed up to ≤20 mm/s). NIRF signals were strongly detected in the OCT-visualized atheromata of the ICG-injected rabbits. The in vivo NIRF target-to-background ratio was significantly larger in the ICG-injected rabbits than in the saline-injected controls (P<0.01). Ex vivo peak plaque target-to-background ratios were significantly higher in ICG-injected rabbits than in controls (P<0.01) on fluorescence reflectance imaging, which correlated well with the in vivo target-to-background ratios (P<0.01; r=0.85) without significant bias (0.41). Cellular ICG uptake, correlative fluorescence microscopy, and histopathology also corroborated the in vivo imaging findings. Integrated OCT/NIRF structural/molecular imaging with a Food and Drug Administration -approved ICG accurately identified lipid-rich inflamed atheromata in coronary-sized vessels. This highly translatable dual-modal imaging approach could enhance our capabilities to detect high-risk coronary plaques. © 2014 American Heart Association, Inc.

  11. Sentinel lymph node detection in breast cancer patients using surgical navigation system based on fluorescence molecular imaging technology

    NASA Astrophysics Data System (ADS)

    Chi, Chongwei; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Tian, Jie

    2015-03-01

    Introduction: Precision and personalization treatments are expected to be effective methods for early stage cancer studies. Breast cancer is a major threat to women's health and sentinel lymph node biopsy (SLNB) is an effective method to realize precision and personalized treatment for axillary lymph node (ALN) negative patients. In this study, we developed a surgical navigation system (SNS) based on optical molecular imaging technology for the precise detection of the sentinel lymph node (SLN) in breast cancer patients. This approach helps surgeons in precise positioning during surgery. Methods: The SNS was mainly based on the technology of optical molecular imaging. A novel optical path has been designed in our hardware system and a feature-matching algorithm has been devised to achieve rapid fluorescence and color image registration fusion. Ten in vivo studies of SLN detection in rabbits using indocyanine green (ICG) and blue dye were executed for system evaluation and 8 breast cancer patients accepted the combination method for therapy. Results: The detection rate of the combination method was 100% and an average of 2.6 SLNs was found in all patients. Our results showed that the method of using SNS to detect SLN has the potential to promote its application. Conclusion: The advantage of this system is the real-time tracing of lymph flow in a one-step procedure. The results demonstrated the feasibility of the system for providing accurate location and reliable treatment for surgeons. Our approach delivers valuable information and facilitates more detailed exploration for image-guided surgery research.

  12. Use of Indocyanine Green for Detecting the Sentinel Lymph Node in Breast Cancer Patients: From Preclinical Evaluation to Clinical Validation

    PubMed Central

    Chi, Chongwei; Ye, Jinzuo; Ding, Haolong; He, De; Huang, Wenhe; Zhang, Guo-Jun; Tian, Jie

    2013-01-01

    Assessment of the sentinel lymph node (SLN) in patients with early stage breast cancer is vital in selecting the appropriate surgical approach. However, the existing methods, including methylene blue and nuclides, possess low efficiency and effectiveness in mapping SLNs, and to a certain extent exert side effects during application. Indocyanine green (ICG), as a fluorescent dye, has been proved reliable usage in SLN detection by several other groups. In this paper, we introduce a novel surgical navigation system to detect SLN with ICG. This system contains two charge-coupled devices (CCD) to simultaneously capture real-time color and fluorescent video images through two different bands. During surgery, surgeons only need to follow the fluorescence display. In addition, the system saves data automatically during surgery enabling surgeons to find the registration point easily according to image recognition algorithms. To test our system, 5 mice and 10 rabbits were used for the preclinical setting and 22 breast cancer patients were utilized for the clinical evaluation in our experiments. The detection rate was 100% and an average of 2.7 SLNs was found in 22 patients. Our results show that the usage of our surgical navigation system with ICG to detect SLNs in breast cancer patients is technically feasible. PMID:24358319

  13. Microscope-integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: first experience in 30 patients.

    PubMed

    Kamp, Marcel A; Slotty, Philipp; Turowski, Bernd; Etminan, Nima; Steiger, Hans-Jakob; Hänggi, Daniel; Stummer, Walter

    2012-03-01

    Intraoperative measurements of cerebral blood flow are of interest during vascular neurosurgery. Near-infrared indocyanine green (ICG) fluorescence angiography was introduced for visualizing vessel patency intraoperatively. However, quantitative information has not been available. To report our experience with a microscope with an integrated dynamic ICG fluorescence analysis system supplying semiquantitative information on blood flow. We recorded ICG fluorescence curves of cortex and cerebral vessels using software integrated into the surgical microscope (Flow 800 software; Zeiss Pentero) in 30 patients undergoing surgery for different pathologies. The following hemodynamic parameters were assessed: maximum intensity, rise time, time to peak, time to half-maximal fluorescence, cerebral blood flow index, and transit times from arteries to cortex. For patients without obvious perfusion deficit, maximum fluorescence intensity was 177.7 arbitrary intensity units (AIs; 5-mg ICG bolus), mean rise time was 5.2 seconds (range, 2.9-8.2 seconds; SD, 1.3 seconds), mean time to peak was 9.4 seconds (range, 4.9-15.2 seconds; SD, 2.5 seconds), mean cerebral blood flow index was 38.6 AI/s (range, 13.5-180.6 AI/s; SD, 36.9 seconds), and mean transit time was 1.5 seconds (range, 360 milliseconds-3 seconds; SD, 0.73 seconds). For 3 patients with impaired cerebral perfusion, time to peak, rise time, and transit time between arteries and cortex were markedly prolonged (>20, >9 , and >5 seconds). In single patients, the degree of perfusion impairment could be quantified by the cerebral blood flow index ratios between normal and ischemic tissue. Transit times also reflected blood flow perturbations in arteriovenous fistulas. Quantification of ICG-based fluorescence angiography appears to be useful for intraoperative monitoring of arterial patency and regional cerebral blood flow.

  14. Visualization of subcapsular hepatic malignancy by indocyanine-green fluorescence imaging during laparoscopic hepatectomy.

    PubMed

    Kudo, Hiroki; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Ichida, Akihiko; Shimizu, Atsushi; Kaneko, Junichi; Aoki, Taku; Sakamoto, Yoshihiro; Sugawara, Yasuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2014-08-01

    Although laparoscopic hepatectomy has increasingly been used to treat cancers in the liver, the accuracy of intraoperative diagnosis may be inferior to that of open surgery because the ability to visualize and palpate the liver surface during laparoscopy is relatively limited. Fluorescence imaging has the potential to provide a simple compensatory diagnostic tool for identification of cancers in the liver during laparoscopic hepatectomy. In 17 patients who were to undergo laparoscopic hepatectomy, 0.5 mg/kg body weight of indocyanine green (ICG) was administered intravenously within the 2 weeks prior to surgery. Intraoperatively, a laparoscopic fluorescence imaging system obtained fluorescence images of its surfaces during mobilization of the liver. In all, 16 hepatocellular carcinomas (HCCs) and 16 liver metastases (LMs) were resected. Of these, laparoscopic ICG fluorescence imaging identified 12 HCCs (75%) and 11 LMs (69%) on the liver surfaces distributed over Couinaud's segments 1-8, including the 17 tumors that had not been identified by visual inspections of normal color images. The 23 tumors that were identified by fluorescence imaging were located closer to the liver surfaces than another nine tumors that were not identified by fluorescence imaging (median [range] depth 1 [0-5] vs. 11 [8-30] mm; p < 0.001). Like palpation during open hepatectomy, laparoscopic ICG fluorescence imaging enables real-time identification of subcapsular liver cancers, thus facilitating estimation of the required extent of hepatic mobilization and determination of the location of an appropriate hepatic transection line.

  15. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients.

    PubMed

    Manny, Ted B; Patel, Manish; Hemal, Ashok K

    2014-06-01

    Pilot studies have demonstrated the utility of indocyanine green (ICG) sentinel lymphadenectomy for prostate cancer. Prior work has used ICG with radiocontrast agents injected at a separate procedure and relied on assistant-controlled fluorescence systems, making the technique costly and cumbersome. To describe the initial optimization and feasibility of fluorescence-enhanced robotic radical prostatectomy (FERRP) using real-time injection of ICG for tissue marking and identification of sentinel lymphatic drainage visualized by a fully integrated surgeon-controlled system. Patients with clinically localized prostate cancer at a tertiary referral center were offered FERRP. Ten patients participated in a pilot arm in which ICG dosing and injection technique were optimized. Fifty consecutive patients then underwent FERRP. After development of the space of Retzius, 0.4 ml of a 2.5 mg/ml ICG solution were injected into each lobe of the prostate using a robotically guided percutaneous needle. After ICG was allowed to travel through the pelvic lymphatics, lymphadenectomy was performed from the endopelvic fascia to the aortic bifurcation. Parameters describing the time course of tissue fluorescence and pelvic lymphangiography were systematically recorded. Lymphatic packets containing fluorescent nodes were considered sentinel. Percutaneous, robotic-guided ICG injection proved superior to cystoscope or transrectal delivery. Tissue marking was achieved in all patients, positively identifying the prostate with uniform fluorescence relative to the obturator nerve, seminal vesicles, vas deferens, and neurovascular pedicles at a mean time of 10 min postinjection. Sentinel nodes were identified in 76% of patients at a mean time of 30 min postinjection and had 100% sensitivity, 75.4% specificity, 14.6% positive predictive value, and 100% negative predictive value for the detection of nodal metastasis. FERRP is safe, feasible, and allows for reliable prostate tissue marking and

  16. Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy

    NASA Astrophysics Data System (ADS)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee

    2016-04-01

    Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.

  17. [Indocyanine green infrared fluorescence angiography and vascular cast--preparation in experimental choroidal circulatory disturbance].

    PubMed

    Matsunaga, H; Andoh, A; Matsubara, T; Fukushima, I; Takahashi, K; Ohkuma, H; Uyama, M

    1996-03-01

    We performed experiments in 20 monkey eyes in order to clarify basic problems about interpretation of indocyanine green fluorescence angiography (ICG angiography). We severed the temporal group of posterior ciliary arteries to produce choroidal circulatory disturbance. ICG angiography was performed immediately, and 2 days, 4 days, and 2 weeks later. Following each ICG angiography, the eye was studied by plastic vascular cast technique with scanning electron microscopy. Immediately after occlusion, ICG angiography showed filling defect in the temporal choroidal hemisphere during the early phase. In the later phase, this area was gradually filled by the dye from choroidal arteries in the nasal hemisphere and the anterior ciliary arteries. Vascular cast preparations showed filling defect in the temporal choroidal hemisphere, corresponding with the early ICG angiogaphic findings. Both filling delay in ICG angiography and filling defect in vascular casts improved daily after occlusion. Two weeks after occlusion, The area of choroidal infarct temporal to the macula turned into chorioretinal atrophy. This area showed hypofluorescence in the early-phase ICG angiography and filling defect of the choriocapillaris in plastic casts. The early-phase ICG angiographic findings thus corresponded well with observations of vascular casts. We conclude that ICG angiography correctly reflects the actual circulatory disturbances in the choroid.

  18. Volumetrically-Derived Global Navigation Satellite System Performance Assessment from the Earths Surface through the Terrestrial Service Volume and the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user from the Earth's surface through the Terrestrial Service Volume (TSV) to the edge of the Space Service Volume (SSV), when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative was recently expanded to compare nadir-facing and zenith-facing user hemispherical antenna coverage with omnidirectional antenna coverage at different distances of 8,000 km altitude and 36,000 km altitude. This report summarizes the performance using these antenna coverage techniques at distances ranging from 100 km altitude to 36,000 km to be all encompassing, as well as the volumetrically-derived system availability metrics.

  19. Indocyanine Green Enables Near-Infrared Fluorescence Imaging of Lipid-Rich, Inflamed Atherosclerotic Plaques

    PubMed Central

    Vinegoni, Claudio; Botnaru, Ion; Aikawa, Elena; Calfon, Marcella A.; Iwamoto, Yoshiko; Folco, Eduardo J.; Ntziachristos, Vasilis; Weissleder, Ralph; Libby, Peter; Jaffer, Farouc A.

    2011-01-01

    New high-resolution molecular and structural imaging strategies are needed to visualize high-risk plaques that are likely to cause acute myocardial infarction, because current diagnostic methods do not reliably identify at-risk subjects. While molecular imaging agents are available for lower-resolution detection of atherosclerosis in large arteries, a lack of imaging agents coupled to high-resolution modalities has limited molecular imaging of atherosclerosis in the smaller coronary arteries [AU: ok? YES]. Here, we have demonstrated that indocyanine green (ICG), an FDA-approved near-infrared fluorescence (NIRF) emitting compound, targets atheromas within 20 minutes of injection and provides sufficient signal enhancement for in vivo detection of lipid-rich, inflamed, coronary-sized plaques in atherosclerotic rabbits. In vivo NIRF sensing was achieved with an intravascular wire in the aortae, a vessel of comparable caliber to human coronary arteries. Ex vivo fluorescence reflectance imaging studies showed high plaque target-to-background ratios in atheroma-bearing rabbits injected with ICG, compared to atheroma-bearing rabbits injected with saline. In vitro studies using human macrophages established that ICG preferentially targets lipid-loaded macrophages. In an early clinical study of human atheroma specimens from four patients, we found that ICG colocalized with plaque macrophages and lipids. The atheroma-targeting capability of ICG has the potential to accelerate the clinical development of NIRF molecular imaging of high-risk plaques in humans. PMID:21613624

  20. An initial report on the intraoperative use of indocyanine green fluorescence imaging in the surgical management of liver tumorss.

    PubMed

    Takahashi, Hideo; Zaidi, Nisar; Berber, Eren

    2016-10-01

    There has been a recent interest in the use of Indocyanine green (ICG) imaging. The aim of this study is to review our initial experience in liver surgery. ICG fluorescent imaging was used in 15 patients undergoing surgical treatment of their liver tumors between 2015 and 2016. ICG imaging was initially performed, followed by intraoperative ultrasound (IOUS). Findings on fluorescence were compared with preoperative cross-sectional imaging and IOUS. Sixty-two lesions were identified, with 34 located superficially and 28 deeply in the liver. While 13 patients underwent surgery for malignant liver metastases, two patients had operations for benign liver diseases. Seven patients underwent open or robotic liver resections, five laparoscopic microwave liver ablation, and three diagnostic laparoscopy. ICG identified all of the superficial lesions. IOUS identified 98% of all lesions. The most benefit of ICG was in showing the margins of the superficial lesions in real-time and guiding surgical treatment, which was limited by IOUS. This is the first North American study to evaluate the potential utility of ICG during liver surgery. Its major benefit seems to be in providing real-time feedback to the surgeon about the margins of superficial tumors for resection or ablation. J. Surg. Oncol. 2016;114:625-629. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Axillary lymph node recurrence after sentinel lymph node biopsy performed using a combination of indocyanine green fluorescence and the blue dye method in early breast cancer.

    PubMed

    Inoue, Tomoo; Nishi, Toshio; Nakano, Yoshiaki; Nishimae, Ayaka; Sawai, Yuka; Yamasaki, Masaru; Inaji, Hideo

    2016-03-01

    There is limited information on indocyanine green (ICG) fluorescence and blue dye for detecting sentinel lymph node (SLN) in early breast cancer. A retrospective study was conducted to assess the feasibility of an SLN biopsy using the combination of ICG fluorescence and the blue dye method. Seven hundred and fourteen patients with clinically node-negative breast cancer were included in this study. They underwent SLN biopsy using a combination of ICG fluorescence and the blue dye method from March 2007 to February 2014. The ICG (a fluorescence-emitting source) and patent blue (the blue dye) were injected into the patients' subareolar region. The removed lymph nodes that had ICG fluorescence and/or blue dye uptake were defined as SLNs. The results of the SLN biopsies and follow-up results of patients who underwent SLN biopsy alone were investigated. In 711 out of 714 patients, SLNs were identified by a combination of ICG fluorescence and the blue dye method (detection rate, 99.6 %). The average number of SLNs was 2.4 (range 1-7), and the average number of resected swollen para-SLNs was 0.4 (range 0-5). Ninety-nine patients with an SLN and/or para-SLN involvement during the intraoperative pathological diagnosis underwent axillary lymph node resection (ALND). In addition, two of three patients whose SLN was not identified also underwent ALND. In 46 of 101 patients with an ALND, non-SLN involvement was not found. Follow-up results were analyzed in 464 patients with invasive carcinoma excluding those with ductal carcinoma in situ (n = 148) and those who underwent ALND (n = 101). During the follow-up period (range 4.4-87.7 months; median, 38 months), two patients (0.4 %) developed axillary lymph node recurrence. They were successfully salvaged, and to date, no further locoregional recurrence has been observed. A high rate of SLN detection and low rate of axillary lymph node recurrence were confirmed by an SLN biopsy using a combination of ICG fluorescence and the blue dye

  2. Detection of ICG at low concentrations by photoacoustic imaging system using LED light source

    NASA Astrophysics Data System (ADS)

    Shigeta, Yusuke; Agano, Toshitaka; Sato, Naoto; Nakatsuka, Hitoshi; Kitagawa, Kazuo; Hanaoka, Takamitsu; Morisono, Koji; Tanaka, Chizuyo

    2017-03-01

    Recently, various type of photoacoustic imaging (PAI) that can visualize properties and distribution of light absorber have been researched. We developed PAI system using LED light source and evaluated characteristics of photoacoustic signal intensity versus Indocyanine Green (ICG) concentration. In this experiment, a linear type PZT array transducer (128-elements, 10.0MHz center frequency) was used to be able to transmit and receive ultrasound and also detect photoacoustic signal from the target object. The transducer was connected to the PAI system, and two sets of LED light source that had 850nm wavelength chip array were set to the both side of the transducer. The transducer head was placed at a distance of 20 mm from the target in the water bath. The target object was a tube filled with ICG in it. The tubes containing ICG at concentrations from 300nanomolar to 3millimolar were made by diluting original ICG solution. We measured the photoacoustic signal strength from RF signal generated from the ICG in the tube, and the results showed that the intensity of the signal was almost linear response to the concentration in log-log scale.

  3. Fluorescence assessment of the delivery and distribution of nebulized indocyanine green in a murine model

    NASA Astrophysics Data System (ADS)

    Kassab, Giulia; C. Geralde, Mariana; M. Inada, Natalia; Bagnato, Vanderlei S.

    2018-02-01

    Photodynamic inactivation (PDI) is a promising alternative for the treatment of infectious diseases, and the combination of indocyanine green (ICG) and extracorporeal infrared light has shown optimistic results against pneumonia in vitro and in vivo. However, the pharmacokinetics and the possible side effects of the pulmonary delivery via nebulization have not been fully investigated. This study assessed the distribution of the photosensitizer within the lungs and to other organs of mice, and monitored the fluorescence of ICG in the thorax in the presence and absence of the activating light. The excitation wavelength was 780 nm and detection focused on the emission between 795 and 890 nm. Experiments demonstrated that the amount of fluorescence detected from outside the body was significantly higher after the nebulization of ICG, and reduced after the illumination, allowing for the monitoring of the PDI in real time. The fluorescence remained detectable in the mice for at least 24 hours, and was present in the lungs, stomach, liver, small and large intestines, bladder, spleen and heart after this time.

  4. Utility of Indocyanine Green Fluorescence Imaging for Intraoperative Localization in Reoperative Parathyroid Surgery.

    PubMed

    Sound, Sara; Okoh, Alexis; Yigitbas, Hakan; Yazici, Pinar; Berber, Eren

    2015-10-27

    Due to the variations in anatomic location, the identification of parathyroid glands may be challenging. Although there have been advances in preoperative imaging modalities, there is still a need for an accurate intraoperative guidance. Indocyanine green (ICG) is a new agent that has been used for intraoperative fluorescence imaging in a number of general surgical procedures. Its utility for parathyroid localization in humans has not been reported in the literature. We report 3 patients who underwent reoperative neck surgery for primary hyperparathyroidism. Using a video-assisted technique with intraoperative ICG fluorescence imaging, the parathyroid glands were recognized and removed successfully in all cases. Surrounding soft tissue structures remained nonfluorescent, and could be distinguished from the parathyroid glands. This report suggests a potential utility of ICG imaging in intraoperative localization of parathyroid glands in reoperative neck surgery. Future work is necessary to assess its benefit for first-time parathyroid surgery. © The Author(s) 2015.

  5. Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs

    PubMed Central

    Bahmani, Baharak; Lytle, Christian Y; Walker, Ameae M; Gupta, Sharad; Vullev, Valentine I; Anvari, Bahman

    2013-01-01

    Near-infrared nanoconstructs present a potentially effective platform for site-specific and deep tissue optical imaging and phototherapy. We have engineered a polymeric nanocapsule composed of polyallylamine hydrochloride (PAH) chains cross-linked with sodium phosphate and doped with indocyanine green (ICG) toward such endeavors. The ICG-doped nanocapsules were coated covalently with polyethylene glycol (5000 daltons) through reductive amination. We administrated the constructs by tail vein injection to healthy mice. To characterize the biodistribution of the constructs, we performed in vivo quantitative fluorescence imaging and subsequently analyzed the various extracted organs. Our results suggest that encapsulation of ICG in these PEGylated constructs is an effective approach to prolong the circulation time of ICG and delay its hepatic accumulation. Increased bioavailability of ICG, due to encapsulation, offers the potential of extending the clinical applications of ICG, which are currently limited due to rapid elimination of ICG from the vasculature. Our results also indicate that PAH and ICG-doped nanocapsules (ICG-NCs) are not cytotoxic at the levels used in this study. PMID:23637530

  6. Intraoperative tumor localization and tissue distinction during robotic adrenalectomy using indocyanine green fluorescence imaging: a feasibility study.

    PubMed

    Sound, Sara; Okoh, Alexis K; Bucak, Emre; Yigitbas, Hakan; Dural, Cem; Berber, Eren

    2016-02-01

    To investigate the feasibility of a method for intraoperative tumor localization and tissue distinction during robotic adrenalectomy (RA) via indocyanine green (ICG) imaging under near-infrared light. Ten patients underwent RA. After exposure of the retroperitoneal space, but before adrenal dissection was started, ICG was given intravenously (IV). Fluorescence Firefly™ imaging was performed at 1-, 5-, 10-, and 20-min time points. The precision with which the borders of the adrenal tissue were distinguished with ICG imaging was compared to that with the conventional robotic view. The number and the total volume of injections for each patient were recorded. There were six male and four female patients. Diagnosis was primary hyperaldosteronism in four patients and myelolipoma, adrenocortical neoplasm, adrenocortical hyperplasia, Cushing's syndrome, pheochromocytoma, and metastasis in one patient each. Procedures were done through a robotic lateral transabdominal approach in nine and through a robotic posterior retroperitoneal approach in one patient. Dose per injection ranged between 2.5 and 6.3 mg and total dose per patient 7.5-18.8 mg. The adrenal gland took up the dye in 1 min, with contrast between adrenal mass and surrounding retroperitoneal fat becoming most distinguished at 5 min. Fluorescence of adrenal tissue lasted up to 20 min after injection. Overall, ICG imaging was felt to help with the conduct of operation in 8 out of 10 procedures. There were no conversions to open or morbidity. There were no immediate or delayed adverse effects attributable to IV ICG administration. In this pilot study, we demonstrated the feasibility and safety of ICG imaging in a small group of patients undergoing RA. We described a method that enabled an effective fluorescence imaging to localize the adrenal glands and guide dissection. Future research is necessary to study how this imaging affects perioperative outcomes.

  7. A portable near-infrared fluorescence image overlay device for surgical navigation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McWade, Melanie A.

    2016-03-01

    A rise in the use of near-infrared (NIR) fluorescent dyes or intrinsic fluorescent markers for surgical guidance and tissue diagnosis has triggered the development of NIR fluorescence imaging systems. Because NIR wavelengths are invisible to the naked eye, instrumentation must allow surgeons to visualize areas of high fluorescence. Current NIR fluorescence imaging systems have limited ease-of-use because they display fluorescent information on remote display monitors that require surgeons to divert attention away from the patient to identify the location of tissue fluorescence. Furthermore, some systems lack simultaneous visible light imaging which provides valuable spatial context to fluorescence images. We have developed a novel, portable NIR fluorescence imaging approach for intraoperative surgical guidance that provides information for surgical navigation within the clinician's line of sight. The system utilizes a NIR CMOS detector to collect excited NIR fluorescence from the surgical field. Tissues with NIR fluorescence are overlaid with visible light to provide information on tissue margins directly on the surgical field. In vitro studies have shown this versatile imaging system can be applied to applications with both extrinsic NIR contrast agents such as indocyanine green and weaker sources of biological fluorescence such as parathyroid gland tissue. This non-invasive, portable NIR fluorescence imaging system overlays an image directly on tissue, potentially allowing surgical decisions to be made quicker and with greater ease-of-use than current NIR fluorescence imaging systems.

  8. Excitation-resolved wide-field fluorescence imaging of indocyanine green visualizes the microenvironment properties in vivo via solvatochromic shift (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cho, Jaedu; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    Near-infrared fluorescence imaging (NIRF) is a powerful wide-field optical imaging tool that has a potential to visualize molecular-specific exogenous fluorescence agents, such as FDA approved Indocyanine Green (ICG), in thick tissue. Indeed, ICG is sensitive to biochemical environment such that it can be used to detect micro- or macroscopic environmental changes in tissue by solvatochromic shift that is defined by the dependence of absorption and emission spectra with the solvent polarity. For example, dimethyl sulfoxide (DMSO) is a very powerful drug carrier that can penetrate biological barriers such as the skin, the membranes, and the blood-brain-barrier. In presence of DMSO, ICG in tissue shows the excitation blue shift. However, NIRF imaging of microenvironment dependent changes of ICG has been challenging for the following reasons. First, the Stoke's shift of ICG is too small to separate the excitation and emission spectra easily. Second, the solvatochromic shift of ICG is too small to be detected by conventional NIRF techniques. Last but not least, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We developed a wavelength-swept laser-based NIRF system that can resolve the excitation shift of ICG in tissue such that DMSO can be indirectly visualized. We plan to conduct an in-vivo lymph-node drug-delivery study in a mouse model to show feasibility of the indirect imaging of the drug-carrier with the wavelength-swept-laser based NIRF system.

  9. Indocyanine green retention test (ICG-r15) as a noninvasive predictor of portal hypertension in patients with different severity of cirrhosis.

    PubMed

    Pind, Marie-Louise L; Bendtsen, Flemming; Kallemose, Thomas; Møller, Søren

    2016-08-01

    Portal hypertension is a severe consequence of chronic liver disease, responsible for the main clinical complications of cirrhosis. Measurement of the hepatic venous pressure gradient (HVPG) provides important clinical information, but the procedure is invasive and demands expert skills of the staff.In the present study, we aimed to investigate the relationship between the constant infusion indocyanine green (ICG) clearance, the calculated ICG retention test after 15 min (ICG-r15), and HVPG in patients with different severity of cirrhosis for validation of ICG-r15 as a noninvasive predictor of portal hypertension. A total of 325 patients were studied. During a hemodynamic investigation, the ICG clearance was determined using the constant infusion technique and ICG-r15 was calculated. Assessment of the diagnostic performance of ICG clearance and ICG-r15 as predictors of HVPG above 10 mmHg was performed by receiver operating characteristic curve analyses.The ICG clearance and ICG-r15 performed well in all three Child classes, with the most significant results among Child class A patients [area under the receiver operating characteristic (AUROC)=0.832] and less significant results in Child class B (AUROC=0.7448) and Child class C patients (AUROC=0.7392). Only six out of 102 patients in Child class C had HVPG of less than 12 mmHg. ICG-r15 can be used as an indirect assessment of significant portal hypertension in compensated cirrhotic patients. ICG-r15 may be suitable as a screening tool for the identification of patients for endoscopy and measurement of HVPG.Further validation of ICG-r15 together with other predictors of portal hypertension and its clinical use is encouraged.

  10. NIR fluorescent image-based evaluation of gastric tube perfusion after esophagectomy in preclinical model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Han, Kook Nam; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    This study was to evaluate the feasibility of near infrared (NIR) fluorescent images as a tool for evaluating the perfusion of the gastric tube after esophagectomy. In addition, we investigated the time required to acquire enough signal to confirm the presence of ischemia in gastric tube after injection of indocyanine green (ICG) through peripheral versus and central venous route. 4 porcine underwent esophagogastrostomy and their right gastric arteries were ligated to mimic ischemic condition of gastric tube. ICG (0.6mg/kg) was intravenously injected and the fluorescence signal-to-background ratios (SBR) were measured by using the custom-built intraoperative color and fluorescence imaging system (ICFIS). We evaluated perfusion of gastric tubes by comparing their SBR with esophageal SBR. In ischemic models, SBR of esophagus was higher than that of gastric tube (2.8+/-0.54 vs. 1.7+/-0.37, p<0.05). It showed high esophagus-stomach signal to signal ratio. (SSR, 1.8+/-0.76). We also could observe recovery of blood perfusion in few minutes after releasing the ligation of right gastric artery. In addition, in comparison study according to the injection route of ICG, The time to acquire signal stabilization was faster in central than in peripheral route (119 +/- 65.1 seconds in central route vs. 295+/-130.4 in peripheral route, p<0.05). NIR fluorescent images could provide the real-time information if there was ischemia or not in gastric tube during operation. And, central injection of ICG might give that information faster than peripheral route.

  11. Highly specific spectroscopic photoacoustic molecular imaging of dynamic optical absorption shifts of an antibody-ICG contrast agent (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wilson, Katheryne E.; Bachawal, Sunitha; Abou-Elkacem, Lotfi; Jensen, Kristen C.; Machtaler, Steven; Tian, Lu; Willmann, Juergen K.

    2017-03-01

    Improved techniques for breast cancer screening are critically needed as current methods lack diagnostic accuracy. Using spectroscopic photoacoustic (sPA) molecular imaging with a priori knowledge of optical absorption spectra allows suppression of endogenous background signal, increasing the overall sensitivity and specificity of the modality to exogenous contrast agents. Here, sPA imaging was used to monitor antibody-indocyanine green (ICG) conjugates as they undergo optical absorption spectrum shifts after cellular endocytosis and degradation to allow differentiation between normal murine mammary glands from breast cancer by enhancing molecular imaging signal from target (B7-H3)-bound antibody-ICG. First, B7-H3 was shown to have highly specific (AUC of 0.93) expression on both vascular endothelium and tumor stroma in malignant lesions through quantitative immunohistochemical staining of B7-H3 on 279 human samples (normal (n=53), benign lesions (11 subtypes, n=182), breast cancers (4 subtypes, n=97)), making B7-H3 a promising target for sPA imaging. Second, absorption spectra of intracellular and degraded B7-H3-ICG and Isotype control (Iso-ICG) were characterized through in vitro and in vivo experiments. Finally, a transgenic murine breast cancer model (FVB/N-Tg(MMTVPyMT)634Mul) was imaged, and sPA imaging in found a 3.01 (IQR 2.63, 3.38, P<0.001) fold increase in molecular B7-H3-ICG signal in tumors (n=80) compared to control conditions (B7-H3-ICG in tumor negative animals (n=60), Iso-ICG (n=30), blocking B7-H3+B7-H3-ICG (n=20), and free ICG (n=20)) despite significant tumor accumulation of Iso-ICG, confirmed through ex vivo histology. Overall, leveraging anti-B7-H3 antibody-ICG contrast agents, which have dynamic optical absorption spectra representative of molecular interactions, allows for highly specific sPA imaging of murine breast cancer.

  12. [Development of a Surgical Navigation System with Beam Split and Fusion of the Visible and Near-Infrared Fluorescence].

    PubMed

    Yang, Xiaofeng; Wu, Wei; Wang, Guoan

    2015-04-01

    This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI. 2011 1 0292374. 1.

  13. Identification of the Lymphatic Drainage Pattern of Esophageal Cancer with Near-Infrared Fluorescent Imaging.

    PubMed

    Schlottmann, Francisco; Barbetta, Arianna; Mungo, Benedetto; Lidor, Anne O; Molena, Daniela

    2017-03-01

    Nodal status is one of the most important long-term prognostic factors for esophageal cancer. The aim of this study was to evaluate the ability of near-infrared (NIR) light fluorescent imaging to identify the lymphatic drainage pattern of esophageal cancer. Patients with distal esophageal cancer or esophagogastric junction cancer scheduled for esophagectomy were enrolled in this study. Before surgery, an endoscopy was performed with submucosal injection of 2 cc of indocyanine green (ICG) around the tumor. Real-time NIR images from the surgical field were obtained for each patient to visualize the lymphatic ICG drainage. A total of nine patients were included in this study. Ivor Lewis esophagectomy was performed in all cases. ICG drainage was visualized to first drain along the left gastric nodes in eight patients (88.9%) and toward the diaphragmatic nodes in one patient (11.1%). The median number of resected nodes was 32. Three patients (33.3%) presented nodal involvement. All of them had positive nodes in the first nodal station identified with ICG. Evaluation of the lymphatic drainage pattern with real-time NIR light fluorescent technique is feasible. Distal and esophagogastric junction tumors showed to drain first in the left gastric nodes in most of the cases.

  14. Indocyanine green fluorescence angiography for free flap monitoring: A pilot study.

    PubMed

    Hitier, Marine; Cracowski, Jean-Luc; Hamou, Cynthia; Righini, Christian; Bettega, Georges

    2016-11-01

    We evaluated the feasibility and the tolerance of repeated fluorescent indocyanine green angiography in free flap monitoring, and determined the intraoperative predictive values of flap vitality. The free flap failure rate has been significantly reduced, but free flap loss still occurs and remains a costly disaster. Repeated clinical examinations are commonly used for flap monitoring, but they can be unreliable because of their subjectivity. Laser-induced fluorescence of indocyanine green is a new method for assessing tissue perfusion. 20 patients undergoing microsurgical reconstruction were monitored by indocyanine green fluorescence angiography, intraoperatively, and during 4 days after surgery, with 18 injections. Monitoring was made by clinical examination, and then compared to angiographic findings. The vascular complication rate was 15% (3/20) with 2 cases of venous thrombosis and one case of partial necrosis of the flap skin paddle. Both cases of venous thrombosis were salvaged by secondary surgery. There was no total flap loss. ICG angiography allowed detecting each intra and postoperative complication, earlier than clinical examination. The mean per-operative intensity of fluorescence was significantly lower in flaps with vascular complications (23.8 GL/ms; p = 0.008). The postoperative slope (p = 0.02) and amplitude (p = 0.03) of the fluorescent signal were both significantly lower than for uncomplicated flaps, before surgical revision. These 2 parameters came back to normal values after secondary surgery. There was no adverse effect of ICG despite the repeated injections. ICG angiography is a feasible and safe technique for the detection of free flap vascular complications. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. A near-infrared fluorescence-based surgical navigation system imaging software for sentinel lymph node detection

    NASA Astrophysics Data System (ADS)

    Ye, Jinzuo; Chi, Chongwei; Zhang, Shuang; Ma, Xibo; Tian, Jie

    2014-02-01

    Sentinel lymph node (SLN) in vivo detection is vital in breast cancer surgery. A new near-infrared fluorescence-based surgical navigation system (SNS) imaging software, which has been developed by our research group, is presented for SLN detection surgery in this paper. The software is based on the fluorescence-based surgical navigation hardware system (SNHS) which has been developed in our lab, and is designed specifically for intraoperative imaging and postoperative data analysis. The surgical navigation imaging software consists of the following software modules, which mainly include the control module, the image grabbing module, the real-time display module, the data saving module and the image processing module. And some algorithms have been designed to achieve the performance of the software, for example, the image registration algorithm based on correlation matching. Some of the key features of the software include: setting the control parameters of the SNS; acquiring, display and storing the intraoperative imaging data in real-time automatically; analysis and processing of the saved image data. The developed software has been used to successfully detect the SLNs in 21 cases of breast cancer patients. In the near future, we plan to improve the software performance and it will be extensively used for clinical purpose.

  16. A convenient method of attaching fluorescent dyes on single-walled carbon nanotubes pre-wrapped with DNA molecules.

    PubMed

    Tomura, Akihiro; Umemura, Kazuo

    2018-04-15

    We demonstrated the attachment of different kinds of dyes, Uranine, Rhodamime 800 (R800), and Indocyanine green (ICG), to single-walled carbon nanotubes pre-wrapped with single-stranded DNAs (ssDNA-SWCNTs). A new but simple method was employed, in which a dye solution was added to ssDNA-SWCNTs that had been prepared beforehand in the conventional way. Resulting conjugates of dyes, DNA, and SWCNTs were precisely evaluated by ultraviolet to near-infrared fluorescence/absorbance spectrometry and atomic force microscopy. In particular, simultaneous measurements of fluorescence and absorbance spectroscopy enabled us to find differences in the behaviors of the dyes on SWCNT surfaces. As a result, the fluorescence/absorbance spectra of dyes showed significant changes upon adsorption on SWCNTs. The fluorescence/absorbance peaks of Uranine, R800, and ICG were quenched by 41.3/2.8%, 72.3/48.9%, and 88.3/45.0%, respectively, in the presence of 11.5 μg/mL SWCNTs. We concluded firstly that by pre-wrapping SWCNTs with ssDNA, stable hybrids with these components were obtained even if the dyes used were relatively hydrophobic and secondly that Uranine retained light absorption on the surface of SWCNT while R800 and ICG did not. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Assessing pharmacokinetics of indocyanine green-loaded nanoparticle in tumor with a dynamic diffuse fluorescence tomography system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqi; Yin, Guoyan; Zhao, Huijuan; Ma, Wenjuan; Gao, Feng; Zhang, Limin

    2018-02-01

    Real-time and continuous monitoring of drug release in vivo is an important task in pharmaceutical development. Here, we devoted to explore a real-time continuous study of the pharmacokinetics of free indocyanine green (ICG) and ICG loaded in the shell-sheddable nanoparticles in tumor based on a dynamic diffuse fluorescence tomography (DFT) system: A highly-sensitive dynamic DFT system of CT-scanning mode generates informative and instantaneous sampling datasets; An analysis procedure extracts the pharmacokinetic parameters from the reconstructed time curves of the mean ICG concentration in tumor, using the Gauss-Newton scheme based on two-compartment model. Compared with the pharmacokinetic parameters of free ICG in tumor, the ICG loaded in the shell-sheddable nanoparticles shows efficient accumulation in tumor. The results demonstrate our proposed dynamic-DFT can provide an integrated and continuous view of the drug delivery of the injected agents in different formulations, which is helpful for the development of diagnosis and therapy for tumors.

  18. A portable fluorescence microscopic imaging system for cholecystectomy

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Yang, Chaoyu; Gan, Qi; Ma, Rong; Zhang, Zeshu; Chang, Shufang; Shao, Pengfei; Zhang, Shiwu; Liu, Chenhai; Xu, Ronald

    2016-03-01

    In this paper we proposed a portable fluorescence microscopic imaging system to prevent iatrogenic biliary injuries from occurring during cholecystectomy due to misidentification of the cystic structures. The system consisted of a light source module, a CMOS camera, a Raspberry Pi computer and a 5 inch HDMI LCD. Specifically, the light source module was composed of 690 nm and 850 nm LEDs, allowing the CMOS camera to simultaneously acquire both fluorescence and background images. The system was controlled by Raspberry Pi using Python programming with the OpenCV library under Linux. We chose Indocyanine green(ICG) as a fluorescent contrast agent and then tested fluorescence intensities of the ICG aqueous solution at different concentration levels by our fluorescence microscopic system compared with the commercial Xenogen IVIS system. The spatial resolution of the proposed fluorescence microscopic imaging system was measured by a 1951 USAF resolution target and the dynamic response was evaluated quantitatively with an automatic displacement platform. Finally, we verified the technical feasibility of the proposed system in mouse models of bile duct, performing both correct and incorrect gallbladder resection. Our experiments showed that the proposed system can provide clear visualization of the confluence between the cystic duct and common bile duct or common hepatic duct, suggesting that this is a potential method for guiding cholecystectomy. The proposed portable system only cost a total of $300, potentially promoting its use in resource-limited settings.

  19. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.

    PubMed

    Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro

    2015-12-01

    Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.

  20. Towards Whole-Body Fluorescence Imaging in Humans

    PubMed Central

    Piper, Sophie K.; Habermehl, Christina; Schmitz, Christoph H.; Kuebler, Wolfgang M.; Obrig, Hellmuth; Steinbrink, Jens; Mehnert, Jan

    2013-01-01

    Dynamic near-infrared fluorescence (DNIF) whole-body imaging of small animals has become a popular tool in experimental biomedical research. In humans, however, the field of view has been limited to body parts, such as rheumatoid hands, diabetic feet or sentinel lymph nodes. Here we present a new whole-body DNIF-system suitable for adult subjects. We explored whether this system (i) allows dynamic whole-body fluorescence imaging and (ii) can detect modulations in skin perfusion. The non-specific fluorescent probe indocyanine green (ICG) was injected intravenously into two subjects, and fluorescence images were obtained at 5 Hz. The in- and out-flow kinetics of ICG have been shown to correlate with tissue perfusion. To validate the system, skin perfusion was modulated by warming and cooling distinct areas on the chest and the abdomen. Movies of fluorescence images show a bolus passage first in the face, then in the chest, abdomen and finally in the periphery (∼10, 15, 20 and 30 seconds, respectively). When skin perfusion is augmented by warming, bolus arrives about 5 seconds earlier than when the skin is cooled and perfusion decreased. Calculating bolus arrival times and spatial fitting of basis time courses extracted from different regions of interest allowed a mapping of local differences in subcutaneous skin perfusion. This experiment is the first to demonstrate the feasibility of whole-body dynamic fluorescence imaging in humans. Since the whole-body approach demonstrates sensitivity to circumscribed alterations in skinperfusion, it may be used to target autonomous changes in polyneuropathy and to screen for peripheral vascular diseases. PMID:24391820

  1. Assessment of tumor angiogenesis using fluorescence contrast agents

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Liu, Qian; Huang, Ping; Hyman, Shay; Intes, Xavier; Lee, William; Chance, Britton

    2003-12-01

    Angiogenesis is an important factor for further tumor growth and thus could be an attractive therapeutic target. Optical imaging can provide a non-invasive way to measure the permeability of tumor blood vessels and assess the tumor vasculature. We have developed a dual-channel near-infrared fluorescence system for simultaneous measurement of the pharmacokinetics of tumorous and normal tissues with exogenous contrast agents. This frequency-domain system consists of the light source (780 nm laser diode), fiber optics, interference filter (830 nm) and the detector (PMT). The fluorescent contrast agent used in this study is Indocyanine Green (ICG), and the normal dosage is 100 μl at a concentration of 5 μM. In vivo animal study is performed on the K1735 melanoma-bearing mouse. The fluorescence signals both tumorous and normal tissues after the bolus injection of ICG through the tail vein are continuously recorded as a function of time. The data is fitted by a double-exponential model to reveal the wash-in and wash-out parameters of different tissues. We observed an elongated wash-out from the tumor compared with normal tissue (leg). The effect of radiation therapy on the tumor vasculature is also discussed.

  2. From Conventional Radiotracer Tc-99(m) with Blue Dye to Indocyanine Green Fluorescence: A Comparison of Methods Towards Optimization of Sentinel Lymph Node Mapping in Early Stage Cervical Cancer for a Laparoscopic Approach.

    PubMed

    Buda, Alessandro; Papadia, Andrea; Zapardiel, Ignacio; Vizza, Enrico; Ghezzi, Fabio; De Ponti, Elena; Lissoni, Andrea Alberto; Imboden, Sara; Diestro, Maria Dolores; Verri, Debora; Gasparri, Maria Luisa; Bussi, Beatrice; Di Martino, Giampaolo; de la Noval, Begoña Diaz; Mueller, Michael; Crivellaro, Cinzia

    2016-09-01

    The credibility of sentinel lymph node (SLN) mapping is becoming increasingly more established in cervical cancer. We aimed to assess the sensitivity of SLN biopsy in terms of detection rate and bilateral mapping in women with cervical cancer by comparing technetium-99 radiocolloid (Tc-99(m)) and blue dye (BD) versus fluorescence mapping with indocyanine green (ICG). Data of patients with cervical cancer stage 1A2 to 1B1 from 5 European institutions were retrospectively reviewed. All centers used a laparoscopic approach with the same intracervical dye injection. Detection rate and bilateral mapping of ICG were compared, respectively, with results obtained by standard Tc-99(m) with BD. Overall, 76 (53 %) of 144 of women underwent preoperative SLN mapping with radiotracer and intraoperative BD, whereas 68 of (47 %) 144 patients underwent mapping using intraoperative ICG. The detection rate of SLN mapping was 96 % and 100 % for Tc-99(m) with BD and ICG, respectively. Bilateral mapping was achieved in 98.5 % for ICG and 76.3 % for Tc-99(m) with BD; this difference was statistically significant (p < 0.0001). The fluorescence SLN mapping with ICG achieved a significantly higher detection rate and bilateral mapping compared to standard radiocolloid and BD technique in women with early stage cervical cancer. Nodal staging with an intracervical injection of ICG is accurate, safe, and reproducible in patients with cervical cancer. Before replacing lymphadenectomy completely, the additional value of fluorescence SLN mapping on both perioperative morbidity and survival should be explored and confirmed by ongoing controlled trials.

  3. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model.

    PubMed

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P; Martin, Edward W; Hitchcock, Charles L; Yilmaz, Alper; Tweedle, Michael F; Shao, Pengfei; Xu, Ronald X

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)-fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting.

  4. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model

    PubMed Central

    Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P.; Martin, Edward W.; Hitchcock, Charles L.; Yilmaz, Alper; Tweedle, Michael F.; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)—fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting. PMID:27367051

  5. Lymphatic mapping with fluorescence navigation using indocyanine green and axillary surgery in patients with primary breast cancer.

    PubMed

    Takeuchi, Megumi; Sugie, Tomoharu; Abdelazeem, Kassim; Kato, Hironori; Shinkura, Nobuhiko; Takada, Masahiro; Yamashiro, Hiroyasu; Ueno, Takayuki; Toi, Masakazu

    2012-01-01

    The indocyanine green fluorescence (ICGf) navigation method provides real-time lymphatic mapping and sentinel lymph node (SLN) visualization, which enables the removal of SLNs and their associated lymphatic networks. In this study, we investigated the features of the drainage pathways detected with the ICGf navigation system and the order of metastasis in axillary nodes. From April 2008 to February 2010, 145 patients with clinically node-negative breast cancer underwent SLN surgery with ICGf navigation. The video-recorded data from 79 patients were used for lymphatic mapping analysis. We analyzed 145 patients with clinically node-negative breast cancer who underwent SLN surgery with the ICGf navigation system. Fluorescence-positive SLNs were identified in 144 (99%) of 145 patients. Both single and multiple routes to the axilla were identified in 47% of cases using video-recorded lymphatic mapping data. An internal mammary route was detected in 6% of the cases. Skip metastasis to the second or third SLNs was observed in 6 of the 28 node-positive patients. We also examined the strategy of axillary surgery using the ICGf navigation system. We found that, based on the features of nodal involvement, 4-node resection could provide precise information on the nodal status. The ICGf navigation system may provide a different lymphatic mapping result than computed tomography lymphography in clinically node-negative breast cancer patients. Furthermore, it enables the identification of lymph nodes that do not accumulate indocyanine green or dye adjacent to the SLNs in the sequence of drainage. Knowledge of the order of nodal metastasis as revealed by the ICGf system may help to personalize the surgical treatment of axilla in SLN-positive cases, although additional studies are required. © 2012 Wiley Periodicals, Inc.

  6. Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans.

    PubMed

    Gholibegloo, Elham; Karbasi, Ashkan; Pourhajibagher, Maryam; Chiniforush, Nasim; Ramazani, Ali; Akbari, Tayebeh; Bahador, Abbas; Khoobi, Mehdi

    2018-04-01

    Antimicrobial photodynamic therapy (aPDT) has been emerged as a noninvasive strategy to remove bacterial contaminants such as S. mutans from the tooth surface. Photosensitizer (PS), like indocyanine green (ICG), plays a key role in this technique which mainly suffers from the poor stability and concentration-dependent aggregation. An appropriate nanocarrier (NC) with enhanced antibacterial effects could overcome these limitations and improve the efficiency of ICG as a PS. In this study, various ICG-loaded NCs including graphene oxide (GO), GO-carnosine (Car) and GO-Car/Hydroxyapatite (HAp) were synthesized and characterized by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Filed Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS), Zeta Potential and Ultraviolet-Visible spectrometry (UV-Vis). The colony forming unit and crystal violet assays were performed to evaluate the antimicrobial and anti-biofilm properties of PSs against S. mutans. The quantitative real-time PCR approach was also applied to determine the expression ratio of the gtfB gene in S. mutans. The zeta potential analysis and UV-Vis spectrometry indicated successful loading of ICG onto/into NCs. GO-Car/HAp showed highest amount of ICG loading (57.52%) and also highest aqueous stability after one week (94%). UV-Vis spectrometry analyses disclosed a red shift from 780 to 800 nm for the characteristic peak of ICG-loaded NCs. In the lack of aPDT, GO-Car@ICG showed the highest decrease in bacterial survival (86.4%) which indicated that Car could significantly promote the antibacterial effect of GO. GO@ICG, GO-Car@ICG and GO-Car/HAp@ICG mediated aPDT, dramatically declined the count of S. mutans strains to 91.2%, 95.5% and 93.2%, respectively (P < 0.05). The GO@ICG, GO-Car@ICG, GO-Car/HAp@ICG significantly suppressed the S. mutans biofilm formation by 51.4%, 63.8%, and 56.8%, respectively (P < 0.05). The expression of gtfB gene was

  7. Sensitivity and specificity of indocyanine green near-infrared fluorescence imaging in detection of metastatic lymph nodes in colorectal cancer: Systematic review and meta-analysis.

    PubMed

    Emile, Sameh H; Elfeki, Hossam; Shalaby, Mostafa; Sakr, Ahmad; Sileri, Pierpaolo; Laurberg, Søren; Wexner, Steven D

    2017-11-01

    This review aimed to determine the overall sensitivity and specificity of indocyanine green (ICG) near-infrared (NIR) fluorescence in sentinel lymph node (SLN) detection in Colorectal cancer (CRC). A systematic search in electronic databases was conducted. Twelve studies including 248 patients were reviewed. The median sensitivity, specificity, and accuracy rates were 73.7, 100, and 75.7. The pooled sensitivity and specificity rates were 71% and 84.6%. In conclusion, ICG-NIR fluorescence is a promising technique for detecting SLNs in CRC. © 2017 Wiley Periodicals, Inc.

  8. ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization.

    PubMed

    Sang, Jian; Wang, Zhennan; Li, Man; Cao, Jiabao; Niu, Guangyi; Xia, Lin; Zou, Dong; Wang, Fan; Xu, Xingjian; Han, Xiaojiao; Fan, Jinqi; Yang, Ye; Zuo, Wanzhu; Zhang, Yang; Zhao, Wenming; Bao, Yiming; Xiao, Jingfa; Hu, Songnian; Hao, Lili; Zhang, Zhang

    2018-01-04

    Real-time quantitative PCR (RT-qPCR) has become a widely used method for accurate expression profiling of targeted mRNA and ncRNA. Selection of appropriate internal control genes for RT-qPCR normalization is an elementary prerequisite for reliable expression measurement. Here, we present ICG (http://icg.big.ac.cn), a wiki-driven knowledgebase for community curation of experimentally validated internal control genes as well as their associated experimental conditions. Unlike extant related databases that focus on qPCR primers in model organisms (mainly human and mouse), ICG features harnessing collective intelligence in community integration of internal control genes for a variety of species. Specifically, it integrates a comprehensive collection of more than 750 internal control genes for 73 animals, 115 plants, 12 fungi and 9 bacteria, and incorporates detailed information on recommended application scenarios corresponding to specific experimental conditions, which, collectively, are of great help for researchers to adopt appropriate internal control genes for their own experiments. Taken together, ICG serves as a publicly editable and open-content encyclopaedia of internal control genes and accordingly bears broad utility for reliable RT-qPCR normalization and gene expression characterization in both model and non-model organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report.

    PubMed

    Rosenthal, Eben L; Warram, Jason M; de Boer, Esther; Basilion, James P; Biel, Merrill A; Bogyo, Matthew; Bouvet, Michael; Brigman, Brian E; Colson, Yolonda L; DeMeester, Steven R; Gurtner, Geoffrey C; Ishizawa, Takeaki; Jacobs, Paula M; Keereweer, Stijn; Liao, Joseph C; Nguyen, Quyen T; Olson, James M; Paulsen, Keith D; Rieves, Dwaine; Sumer, Baran D; Tweedle, Michael F; Vahrmeijer, Alexander L; Weichert, Jamey P; Wilson, Brian C; Zenn, Michael R; Zinn, Kurt R; van Dam, Gooitzen M

    2016-01-01

    Navigation with fluorescence guidance has emerged in the last decade as a promising strategy to improve the efficacy of oncologic surgery. To achieve routine clinical use, the onus is on the surgical community to objectively assess the value of this technique. This assessment may facilitate both Food and Drug Administration approval of new optical imaging agents and reimbursement for the imaging procedures. It is critical to characterize fluorescence-guided procedural benefits over existing practices and to elucidate both the costs and the safety risks. This report is the result of a meeting of the International Society of Image Guided Surgery (www.isigs.org) on February 6, 2015, in Miami, Florida, and reflects a consensus of the participants' opinions. Our objective was to critically evaluate the imaging platform technology and optical imaging agents and to make recommendations for successful clinical trial development of this highly promising approach in oncologic surgery. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer.

    PubMed

    Mieog, J Sven D; Troyan, Susan L; Hutteman, Merlijn; Donohoe, Kevin J; van der Vorst, Joost R; Stockdale, Alan; Liefers, Gerrit-Jan; Choi, Hak Soo; Gibbs-Strauss, Summer L; Putter, Hein; Gioux, Sylvain; Kuppen, Peter J K; Ashitate, Yoshitomo; Löwik, Clemens W G M; Smit, Vincent T H B M; Oketokoun, Rafiou; Ngo, Long H; van de Velde, Cornelis J H; Frangioni, John V; Vahrmeijer, Alexander L

    2011-09-01

    Near-infrared (NIR) fluorescent sentinel lymph node (SLN) mapping in breast cancer requires optimized imaging systems and lymphatic tracers. A small, portable version of the FLARE imaging system, termed Mini-FLARE, was developed for capturing color video and two semi-independent channels of NIR fluorescence (700 and 800 nm) in real time. Initial optimization of lymphatic tracer dose was performed using 35-kg Yorkshire pigs and a 6-patient pilot clinical trial. More refined optimization was performed in 24 consecutive breast cancer patients. All patients received the standard of care using (99m)Technetium-nanocolloid and patent blue. In addition, 1.6 ml of indocyanine green adsorbed to human serum albumin (ICG:HSA) was injected directly after patent blue at the same location. Patients were allocated to 1 of 8 escalating ICG:HSA concentration groups from 50 to 1000 μM. The Mini-FLARE system was positioned easily in the operating room and could be used up to 13 in. from the patient. Mini-FLARE enabled visualization of lymphatic channels and SLNs in all patients. A total of 35 SLNs (mean = 1.45, range 1-3) were detected: 35 radioactive (100%), 30 blue (86%), and 35 NIR fluorescent (100%). Contrast agent quenching at the injection site and dilution within lymphatic channels were major contributors to signal strength of the SLN. Optimal injection dose of ICG:HSA ranged between 400 and 800 μM. No adverse reactions were observed. We describe the clinical translation of a new NIR fluorescence imaging system and define the optimal ICG:HSA dose range for SLN mapping in breast cancer.

  11. Triple assessment of sentinel lymph node metastasis in early breast cancer using preoperative CTLG, intraoperative fluorescence navigation and OSNA.

    PubMed

    Mokhtar, Mohamed; Tadokoro, Yukiko; Nakagawa, Misako; Morimoto, Masami; Takechi, Hirokazu; Kondo, Kazuya; Tangoku, Akira

    2016-03-01

    Sentinel lymph node biopsy (SLNB) became a standard surgical procedure for patients with early breast cancer; however, the optimal method of sentinel lymph node (SLN) identification remains controversial. The current study presents the protocol of our institution for preoperative and intraoperative SLN detection. Fifty female patients with early breast cancer and clinically node-negative axilla were enrolled in this study. All patients underwent preoperative CT lymphography (CTLG), intraoperative SLNB using fluorescence navigation, intraoperative one-step nucleic acid amplification (OSNA) and postoperative hematoxylin and eosin histopathological analysis. Prediction of metastasis by CTLG and detection of metastasis by OSNA were compared to results of histopathology as standard reference. SLN were identified by preoperative CTLG and intraoperative SLNB with fluorescence navigation in all patients, the identification rate was 100 %. SLN metastases were detected as positive by OSNA in 9 patients (18 %), 4 were (++), 4 were (+) and 1 was (+I). SLN metastases were detected as positive by histopathology in 10 patients (20 %). The concordance rate between OSNA and permanent sections was 90 %. The negative predictive value of CTLG was 80 %. Use of CTLG and fluorescence navigation made performing SLNB with high accuracy possible in institutions that cannot use the radioisotope method. OSNA provided accurate intraoperative method, allowing for completion of axillary node dissection during surgery and avoidance of second surgical procedure in patients with positive SLNs, thereby reducing patient distress and, finally, saving hospital costs.

  12. Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast cancer

    PubMed Central

    Schaafsma, Boudewijn E.; Verbeek, Floris P.R.; Rietbergen, Daphne D.D.; van der Hiel, Bernies; van der Vorst, Joost R.; Liefers, Gerrit-Jan; Frangioni, John V.; van de Velde, Cornelis J.H.; van Leeuwen, Fijs W.B.; Vahrmeijer, Alexander L.

    2013-01-01

    Background Combining radioactive colloids and a near-infrared (NIR) fluorophore permit preoperative planning and intraoperative localization of deeply located sentinel lymph nodes (SLNs) with direct optical guidance by a single lymphatic tracer. The aim of this clinical trial was to evaluate and optimize a hybrid NIR fluorescence and radioactive tracer for SLN detection in breast cancer patients. Method Patients with breast cancer undergoing SLN biopsy were enrolled. The day before surgery, indocyanine green (ICG)-99mTc-Nanocolloid was injected periareolarly and a lymphoscintigram was acquired. Directly before surgery, blue dye was injected. Intraoperative SLN localization was performed by a gamma probe and the Mini-FLARETM NIR fluorescence imaging system. Patients were divided into two dose groups, with one group receiving twice the particle density of ICG and nanocolloid, but the same dose of radioactive 99mTechnetium. Results Thirty-two patients were enrolled in the trial. At least one SLN was identified pre- and intraoperatively. All 48 axillary SLNs could be detected by gamma tracing and NIR fluorescence imaging, but only 42 of them stained blue. NIR fluorescence permitted detection of lymphatic vessels draining to the SLN up to 29 hours after injection. Increasing the particle density by two-fold did not yield a difference in fluorescence intensity, median 255 (range 98 – 542) vs. median 284 (90 – 921; P = 0.590), or signal- to- background ratio, median 5.4 (range 3.0 – 15.4) vs. median 4.9 (3.5 – 16.3; P = 1.000), of the SLN. Conclusion The hybrid NIR fluorescence and radioactive tracer ICG-99mTc-Nanocolloid permitted accurate pre- and intraoperative detection of the SLNs in patients with breast cancer. PMID:23696463

  13. Pilot Assessment of the Repeatability of Indocyanine Green Fluorescence Imaging and Correlation with Traditional Foot Perfusion Assessments.

    PubMed

    Venermo, M; Settembre, N; Albäck, A; Vikatmaa, P; Aho, P-S; Lepäntalo, M; Inoue, Y; Terasaki, H

    2016-10-01

    Ankle brachial index (ABI), toe pressures (TP), and transcutaneous oxygen pressure (TcPO 2 ) are traditionally used in the assessment of critical limb ischemia (CLI). Indocyanine green (ICG) fluorescence imaging can be used to evaluate local circulation in the foot and to evaluate the severity of ischemia. This prospective study analyzed the suitability of a fluorescence imaging system (photodynamic eye [PDE]) in CLI. Forty-one patients with CLI were included. Of the patients, 66% had diabetes and there was an ischemic tissue lesion in 70% of the limbs. ABI, toe pressures, TcPO 2 and ICG-fluorescence imaging (ICG-FI) were measured in each leg. To study the repeatability of the ICG-FI, each patient underwent the study twice. After the procedure, foot circulation was measured using a time-intensity curve, where T1/2 (the time needed to achieve half of the maximum fluorescence intensity) and PDE10 (increase of the intensity during the first 10 s) were determined. A time-intensity curve was plotted using the same areas as for the TcPO 2 probes (n=123). The mean ABI was 0.43, TP 21 mmHg, TcPO 2 23 mmHg, T1/2 38 s, and PDE10 19 AU. Time-intensity curves were repeatable. In a Bland-Altman scatter plot, the 95% limits of agreement of PDE10 was 9.9 AU and the corresponding value of T1/2 was 14 s. Correlation between ABI and TP was significant (R=.73, p<.001), and it was weaker in diabetic patients (R=.47, p=.048) compared with non-diabetic patients (R=.89, p=.002). Correlations between ABI and TcPO 2 and TP and TcPO 2 were weak (R=.37, p=.05 and R=.43, p=.037, respectively). Correlation between TcPO 2 and PDE10 was strong in diabetic patients (R=.70, p=.003). According to this pilot study, ICG-FI with PDE can be used in the assessment of blood supply in the ischemic foot. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging.

    PubMed

    Kim, Chulhong; Song, Kwang Hyun; Gao, Feng; Wang, Lihong V

    2010-05-01

    To noninvasively map sentinel lymph nodes (SLNs) and lymphatic vessels in rats in vivo by using dual-modality nonionizing imaging-volumetric spectroscopic photoacoustic imaging, which measures optical absorption, and planar fluorescence imaging, which measures fluorescent emission-of indocyanine green (ICG). Institutional animal care and use committee approval was obtained. Healthy Sprague-Dawley rats weighing 250-420 g (age range, 60-120 days) were imaged by using volumetric photoacoustic imaging (n = 5) and planar fluorescence imaging (n = 3) before and after injection of 1 mmol/L ICG. Student paired t tests based on a logarithmic scale were performed to evaluate the change in photoacoustic signal enhancement of SLNs and lymphatic vessels before and after ICG injection. The spatial resolutions of both imaging systems were compared at various imaging depths (2-8 mm) by layering additional biologic tissues on top of the rats in vivo. Spectroscopic photoacoustic imaging was applied to identify ICG-dyed SLNs. In all five rats examined with photoacoustic imaging, SLNs were clearly visible, with a mean signal enhancement of 5.9 arbitrary units (AU) + or - 1.8 (standard error of the mean) (P < .002) at 0.2 hour after injection, while lymphatic vessels were seen in four of the five rats, with a signal enhancement of 4.3 AU + or - 0.6 (P = .001). In all three rats examined with fluorescence imaging, SLNs and lymphatic vessels were seen. The average full width at half maximum (FWHM) of the SLNs in the photoacoustic images at three imaging depths (2, 6, and 8 mm) was 2.0 mm + or - 0.2 (standard deviation), comparable to the size of a dissected lymph node as measured with a caliper. However, the FWHM of the SLNs in fluorescence images widened from 8 to 22 mm as the imaging depth increased, owing to strong light scattering. SLNs were identified spectroscopically in photoacoustic images. These two modalities, when used together with ICG, have the potential to help map SLNs in

  15. Vascularized osseous flaps and assessing their bipartate perfusion pattern via intraoperative fluorescence angiography.

    PubMed

    Valerio, Ian; Green, J Marshall; Sacks, Justin M; Thomas, Shane; Sabino, Jennifer; Acarturk, T Oguz

    2015-01-01

    Large segmental bone and composite tissue defects often require vascularized osseous flaps for definitive reconstruction. However, failed osseous flaps due to inadequate perfusion can lead to significant morbidity. Utilization of indocyanine green (ICG) fluorescence angiography has been previously shown to reliably assess soft tissue perfusion. Our group will outline the application of this useful intraoperative tool in evaluating the perfusion of vascularized osseous flaps. A retrospective review was performed to identify those osseous and/or osteocutaneous bone flaps, where ICG angiography was employed. Data analyzed included flap types, success and failure rates, and perfusion-related complications. All osseous flaps were evaluated by ICG angiography to confirm periosteal and endosteal perfusion. Overall 16 osseous free flaps utilizing intraoperative ICG angiography to assess vascularized osseous constructs were performed over a 3-year period. The flaps consisted of the following: nine osteocutaneous fibulas, two osseous-only fibulas, two scapular/parascapular with scapula bone, two quadricep-based muscle flaps, containing a vascularized femoral bone component, and one osteocutaneous fibula revision. All flap reconstructions were successful with the only perfusion-related complication being a case of delayed partial skin flap loss. Intraoperative fluorescence angiography is a useful adjunctive tool that can aid in flap design through angiosome mapping and can also assess flap perfusion, vascular pedicle flow, tissue perfusion before flap harvest, and flap perfusion after flap inset. Our group has successfully extended the application of this intraoperative tool to assess vascularized osseous flaps in an effort to reduce adverse outcomes related to preventable perfusion-related complications. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Sentinel lymph node detection in gynecologic malignancies by a handheld fluorescence camera

    NASA Astrophysics Data System (ADS)

    Hirsch, Ole; Szyc, Lukasz; Muallem, Mustafa Zelal; Ignat, Iulia; Chekerov, Radoslav; Macdonald, Rainer; Sehouli, Jalid; Braicu, Ioana; Grosenick, Dirk

    2017-02-01

    Near-infrared fluorescence imaging using indocyanine green (ICG) as a tracer is a promising technique for mapping the lymphatic system and for detecting sentinel lymph nodes (SLN) during cancer surgery. In our feasibility study we have investigated the application of a custom-made handheld fluorescence camera system for the detection of lymph nodes in gynecological malignancies. It comprises a low cost CCD camera with enhanced NIR sensitivity and two groups of LEDs emitting at wavelengths of 735 nm and 830 nm for interlaced recording of fluorescence and reflectance images of the tissue, respectively. With the help of our system, surgeons can observe fluorescent tissue structures overlaid onto the anatomical image on a monitor in real-time. We applied the camera system for intraoperative lymphatic mapping in 5 patients with vulvar cancer, 5 patients with ovarian cancer, 3 patients with cervical cancer, and 3 patients with endometrial cancer. ICG was injected at four loci around the primary malignant tumor during surgery. After a residence time of typically 15 min fluorescence images were taken in order to visualize the lymph nodes closest to the carcinomas. In cases with vulvar cancer about half of the lymph nodes detected by routinely performed radioactive SLN mapping have shown fluorescence in vivo as well. In the other types of carcinomas several lymph nodes could be detected by fluorescence during laparotomy. We conclude that our low cost camera system has sufficient sensitivity for lymphatic mapping during surgery.

  17. Time reversal optical tomography locates fluorescent targets in a turbid medium

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Gayen, S. K.

    2013-03-01

    A fluorescence optical tomography approach that extends time reversal optical tomography (TROT) to locate fluorescent targets embedded in a turbid medium is introduced. It uses a multi-source illumination and multi-detector signal acquisition scheme, along with TR matrix formalism, and multiple signal classification (MUSIC) to construct pseudo-image of the targets. The samples consisted of a single or two small tubes filled with water solution of Indocyanine Green (ICG) dye as targets embedded in a 250 mm × 250 mm × 60 mm rectangular cell filled with Intralipid-20% suspension as the scattering medium. The ICG concentration was 1μM, and the Intralipid-20% concentration was adjusted to provide ~ 1-mm transport length for both excitation wavelength of 790 nm and fluorescence wavelength around 825 nm. The data matrix was constructed using the diffusely transmitted fluorescence signals for all scan positions, and the TR matrix was constructed by multiplying data matrix with its transpose. A pseudo spectrum was calculated using the signal subspace of the TR matrix. Tomographic images were generated using the pseudo spectrum. The peaks in the pseudo images provided locations of the target(s) with sub-millimeter accuracy. Concurrent transmission TROT measurements corroborated fluorescence-TROT findings. The results demonstrate that TROT is a fast approach that can be used to obtain accurate three-dimensional position information of fluorescence targets embedded deep inside a highly scattering medium, such as, a contrast-enhanced tumor in a human breast.

  18. Compact solid-state CMOS single-photon detector array for in vivo NIR fluorescence lifetime oncology measurements.

    PubMed

    Homulle, H A R; Powolny, F; Stegehuis, P L; Dijkstra, J; Li, D-U; Homicsko, K; Rimoldi, D; Muehlethaler, K; Prior, J O; Sinisi, R; Dubikovskaya, E; Charbon, E; Bruschini, C

    2016-05-01

    In near infrared fluorescence-guided surgical oncology, it is challenging to distinguish healthy from cancerous tissue. One promising research avenue consists in the analysis of the exogenous fluorophores' lifetime, which are however in the (sub-)nanosecond range. We have integrated a single-photon pixel array, based on standard CMOS SPADs (single-photon avalanche diodes), in a compact, time-gated measurement system, named FluoCam. In vivo measurements were carried out with indocyanine green (ICG)-modified derivatives targeting the αvβ 3 integrin, initially on a genetically engineered mouse model of melanoma injected with ICG conjugated with tetrameric cyclic pentapeptide (ICG-E[c(RGD f K)4]), then on mice carrying tumour xenografts of U87-MG (a human primary glioblastoma cell line) injected with monomeric ICG-c(RGD f K). Measurements on tumor, muscle and tail locations allowed us to demonstrate the feasibility of in vivo lifetime measurements with the FluoCam, to determine the characteristic lifetimes (around 500 ps) and subtle lifetime differences between bound and unbound ICG-modified fluorophores (10% level), as well as to estimate the available photon fluxes under realistic conditions.

  19. Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: a prospective comparative study of 94 patients.

    PubMed

    Krane, L Spencer; Manny, Theodore B; Hemal, Ashok K

    2012-07-01

    To compare a consecutive prospective cohort of patients who underwent robotic partial nephrectomy (RPN) with near infrared fluorescence (NIRF) imaging with indocyanine green dye (ICG) with a previous consecutive patient cohort. A total of 47 consecutive patients with renal masses suspicious for malignancy undergoing RPN were given 5-7.5 mg of ICG before hilar clamping or tumor excision. This cohort of patients was compared with 47 immediate previous consecutive patients who had undergone RPN without NIRF real-time imaging using ICG. The intraoperative, perioperative, and postoperative parameters were collected in an institutional review board-approved prospective database. The preoperative demographics and tumor complexity according to the nephrometry or preoperative aspects and dimensions used for an anatomic (PADUA) scores were similar. The mean warm ischemia time was significantly decreased in the ICG group (15 vs 17 minutes, P = .01). The median hospital stay was 2 days in both groups. No significant difference was seen in the positive margin rate (ICG, 6% vs control, 8.5%; P = .69) or observed Clavien grade III-IV complications in these 2 cohorts (ICG, 4% vs control, 15%; P = .07). No adverse events were associated with ICG dye administration. Differential ICG uptake was observed with selective clamping or in patients with cystic tumors, hypofluorescent tumors with exophytic components, and angiomyelolipomas, but these benefits could not be quantified. NIRF-ICG was transiently helpful to identify the vascular anatomy and not helpful at all for endophytic tumors. RPN using NIRF-ICG can be performed safely and effectively. A decreased warm ischemia time in the ICG cohort was observed without specific measured advantages. Differential ICG uptake by different tumors did not lead to significant differences in the positive margin rate. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. A Review of Indocyanine Green Fluorescent Imaging in Surgery

    PubMed Central

    Alander, Jarmo T.; Kaartinen, Ilkka; Laakso, Aki; Pätilä, Tommi; Spillmann, Thomas; Tuchin, Valery V.; Venermo, Maarit; Välisuo, Petri

    2012-01-01

    The purpose of this paper is to give an overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used. Well over 200 papers describing this technique in clinical setting are reviewed. In addition to the surgical applications, other recent medical applications of ICG are briefly examined. PMID:22577366

  1. Fluorescence-enhanced robotic radical cystectomy using unconjugated indocyanine green for pelvic lymphangiography, tumor marking, and mesenteric angiography: the initial clinical experience.

    PubMed

    Manny, Ted B; Hemal, Ashok K

    2014-04-01

    To describe the initial feasibility of fluorescence-enhanced robotic radical cystectomy (FERRC) using real-time cystoscopic injection of unconjugated indocyanine green (ICG) for tumor marking and identification of sentinel lymphatic drainage with additional intravenous injection for mesenteric angiography. Ten patients with clinically localized high-grade bladder cancer underwent FERRC. Before robot docking, rigid cystoscopy was performed, during which a 2.5-mg/mL ICG solution was injected in the bladder submucosa and detrusor circumferentially around the tumor. After robot docking, parameters describing the time course of tissue fluorescence and pelvic lymphangiography were systematically recorded. Lymphatic packets containing fluorescent lymph nodes were considered the sentinel drainage. Eight patients underwent intracorporeal ileal conduit urinary diversion, during which an additional 2-mL ICG solution was given intravenously for mesenteric angiography, allowing maximal preservation of bowel vascularity to the conduit and remaining bowel segments. Bladder tumor marking and identification of sentinel drainage were achieved in 9 of 10 (90%) patients. The area of bladder tumor was identified at a median of 15 minutes after injection, whereas sentinel drainage was visualized at a median of 30 minutes. Mesenteric angiography was successful in 8 of 8 (100%) patients at a median time of <1 minutes after intravenous injection and enabled identification of bowel arcades before intracorporeal bowel stapling. FERRC using combined cystoscopic and intravenous injection of ICG is safe and feasible. FERRC allows for reliable bladder tumor marking, identification of sentinel lymphatic drainage, and identification of mesenteric vasculature in most patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Comparison of ICG-assisted ILM peeling and triamcinolone-assisted posterior vitreous removal in diffuse diabetic macular oedema.

    PubMed

    Bardak, Y; Cekiç, O; Tiğ, S U

    2006-12-01

    To compare the effect of indocyanine green (ICG)-assisted internal limiting membrane (ILM) peeling and triamcinolone acetonide-assisted posterior vitreous removal on visual acuity in patients with diffuse diabetic macular oedema (DMO). In total, 24 patients with diffuse DMO who underwent pars plana vitrectomy were included in this study. In all, 11 patients (mean age 57 years) were performed ICG-assisted ILM peeling; while 13 patients (mean age 54 years) underwent triamcinolone-assisted posterior vitreous removal. Patients from two different treatment regimens were compared in terms of best-corrected visual acuity (BCVA) at postoperative sixth months. In ICG-assisted ILM peeling group, preoperative BCVA (1.3+/-0.4, mean+/-SD, logMAR) improved postoperatively to 0.9+/-0.5 (P=0.011). In eyes underwent triamcinolone-assisted posterior vitreous removal, baseline BCVA of 1.4+/-0.4 improved to 1.0+/-0.5 (P=0.007). There was no difference between baseline as well as postoperative sixth-month BCVA results of both groups (P=0.59 and P=0.57, respectively). Triamcinolone-assisted posterior vitreous removal and ICG-assisted ILM peeling have the same effect in terms of postoperative BCVA in patients with diffuse DMO.

  3. Clinical values of intraoperative indocyanine green fluorescence video angiography with Flow 800 software in cerebrovascular surgery.

    PubMed

    Ye, Xun; Liu, Xing-Ju; Ma, Li; Liu, Ling-Tong; Wang, Wen-Lei; Wang, Shuo; Cao, Yong; Zhang, Dong; Wang, Rong; Zhao, Ji-Zong; Zhao, Yuan-Li

    2013-11-01

    Microscope-integrated near-infrared indocyanine green video angiography (ICG-VA) has been used in neurosurgery for a decade. This study aimed to assess the value of intraoperative indocyanine green (ICG) video angiography with Flow 800 software in cerebrovascular surgery and to discover its hemodynamic features and changes of cerebrovascular diseases during surgery. A total of 87 patients who received ICG-VA during various surgical procedures were enrolled in this study. Among them, 45 cases were cerebral aneurysms, 25 were cerebral arteriovenous malformations (AVMs), and 17 were moyamoya disease (MMD). A surgical microscope integrating an infrared fluorescence module was used to confirm the residual aneurysms and blocking of perforating arteries in aneurysms. Feeder arteries, draining veins, and normal cortical vessels were identified by the time delay color mode of Flow 800 software. Hemodynamic parameters were recorded. All data were analyzed by SPSS version 18.0 (SPSS Inc., USA). T-test was used to analyze the hemodynamic features of AVMs and MMDs, the influence on peripheral cortex after resection in AVMs, and superficial temporal artery to middle cerebral artery (STA-MCA) bypass in MMDs. The visual delay map obtained by Flow 800 software had more advantages than the traditional playback mode in identifying the feeder arteries, draining veins, and their relations to normal cortex vessels. The maximum fluorescence intensity (MFI) and the slope of ICG fluorescence curve of feeder arteries and draining veins were higher than normal peripheral vessels (MFI: 584.24±85.86 vs. 382.94 ± 91.50, slope: 144.95 ± 38.08 vs. 69.20 ± 13.08, P < 0.05). The arteriovenous transit time in AVM was significantly shorter than in normal cortical vessels ((0.60 ± 0.27) vs. (2.08 ± 1.42) seconds, P < 0.05). After resection of AVM, the slope of artery in the cortex increased, which reflected the increased cerebral flow. In patients with MMD, after STA-MCA bypass, cortex perfusion

  4. MRI-guided fluorescence tomography of the breast: a phantom study

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Dehghani, Hamid; Paulsen, Keith D.

    2009-02-01

    Tissue phantoms simulating the human breast were used to demonstrate the imaging capabilities of an MRI-coupled fluorescence molecular tomography (FMT) imaging system. Specifically, phantoms with low tumor-to-normal drug contrast and complex internal structure were imaged with the MR-coupled FMT system. Images of indocyanine green (ICG) fluorescence yield were recovered using a diffusion model-based approach capable of estimating the distribution of fluorescence activity in a tissue volume from tissue-boundary measurements of transmitted light. Tissue structural information, which can be determined from standard T1 and T2 MR images, was used to guide the recovery of fluorescence activity. The study revealed that this spatial guidance is critical for recovering images of fluorescence yield in tissue with low tumor-to-normal drug contrast.

  5. In vivo fluorescence confocal microscopy: indocyanine green enhances the contrast of epidermal and dermal structures

    NASA Astrophysics Data System (ADS)

    Skvara, Hans; Kittler, Harald; Schmid, Johannes A.; Plut, Ulrike; Jonak, Constanze

    2011-09-01

    In recent years, in vivo skin imaging devices have been successfully implemented in skin research as well as in clinical routine. Of particular importance is the use of reflectance confocal microscopy (RCM) and fluorescence confocal microscopy (FCM) that enable visualization of the tissue with a resolution comparable to histology. A newly developed commercially available multi-laser device in which both technologies are integrated now offers the possibility to directly compare RCM with FCM. The fluorophore indocyanine green (ICG) was intradermally injected into healthy forearm skin of 10 volunteers followed by in vivo imaging at various time points. In the epidermis, accurate assessment of cell morphology with FCM was supplemented by identification of pigmented cells and structures with RCM. In dermal layers, only with FCM connective tissue fibers were clearly contoured down to a depth of more than 100 μm. The fluorescent signal still provided a favorable image contrast 24 and 48 hours after injection. Subsequently, ICG was applied to different types of skin diseases (basal cell carcinoma, actinic keratosis, seborrhoeic keratosis, and psoriasis) in order to demonstrate the diagnostic benefit of FCM when directly compared with RCM. Our data suggest a great impact of FCM in combination with ICG on clinical and experimental dermatology in the future.

  6. Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent

    NASA Astrophysics Data System (ADS)

    Hong, Suk ho; Kim, Hyunjin; Choi, Yongdoo

    2017-05-01

    Here we report indocyanine green (ICG)-loaded hollow mesoporous silica nanoparticles (ICG@HMSNP) as an activatable theranostic platform. Near-infrared fluorescence and singlet oxygen generation of ICG@HMSNP was effectively quenched (i.e. turned off) in its native state because of the fluorescence resonance energy transfer between ICG molecules. Therefore, ICG@HMSNP was nonfluorescent and nonphototoxic in the extracellular region. After the nanoparticles entered the cancer cells via endocytosis, they became highly fluorescent and phototoxic. In addition, intracellular uptake of ICG@HMSNP was 2.75 times higher than that of free ICG, resulting in an enhanced phototherapy of cancer.

  7. [Sentinel node detection using optonuclear probe (gamma and fluorescence) after green indocyanine and radio-isotope injections].

    PubMed

    Poumellec, M-A; Dejode, M; Figl, A; Darcourt, J; Haudebourg, J; Sabah, Y; Voury, A; Martaens, A; Barranger, E

    2016-04-01

    Assess the biopsy's feasibility of the sentinel lymph node biopsy (SLNB) using optonuclear probe after of indocyanine green (ICG) and radio-isotope (RI) injections. Twenty-one patients with a localized breast cancer and unsuspicious axillary nodes underwent a SLNB after both injections of ICG and radio-isotope. One or more SLN were identified on the 21 patients (identification rate of 100%). The median number SLN was 2 (1-3). Twenty SLN were both radio-actives and fluorescents (54.1%), 11 fluorescent only (29.7%) and 6 were only radio-actives (16.2%). Seven patients had a metastatic SLN (8 SLN overall). Among them, only one had a micrometastasic SLN, 5 others had a macrometastatic SLN and one patient had two macrometastatic SLNs. Among the 8 metastatic SLN, 5 were both fluorescent and radioactive, 2 were only fluorescent and 1 was only radioactive. Detection SLN using optonuclear probe after indocyanine green and radio-isotope injections is effective and could be, after validation by randomized trial, a reliable alternative to the blue dye injection for teams who consider that combined detection as the reference. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Calibrating the photo-thermal response of magneto-fluorescent gold nanoshells.

    PubMed

    Biswal, Nrusingh C; Ayala-Orzoco, Ciceron; Halas, Naomi J; Joshi, Amit

    2011-01-01

    We report the photothermal response and Near Infrared (NIR) imaging sensitivities of magneto-fluorescent silica core gold nanocomplexes designed for molecular image guided thermal therapy of cancer. Approximately 160 nm Silica core gold nanoshells were designed to provide NIR fluorescent and Magnetic Resonance (MR) contrast by incorporating FDA approved dye indocyanine green (ICG) and iron-oxide within an outer silica epilayer. The imaging and therapeutic sensitivity, and the stability of fluorescence contrast for 12 microliters of suspension (containing approximately 7.9 × 10(8) or 1.3 femtoMole nanoshells) buried at depths of 2-8 mm in tissue mimicking scattering media is reported.

  9. Thermal damage assessment of blood vessels in a hamster skin flap model by fluorescence measurement of a liposome-dye system.

    PubMed

    Mordon, S; Desmettre, T; Devoisselle, J M; Soulie, S

    1997-01-01

    The present study was undertaken to evaluate the feasibility of thermal damage assessment of blood vessels by using laser-induced release of liposome-encapsulated dye. Experiments were performed in a hamster skin flap model. Laser irradiation was achieved with a 300 microm fiber connected to a 805 nm diode laser (power = 0.8W, spot diameter = 1.3 mm and pulse exposure time lasting from 1 to 6 s) after potentiation using a specific indocyanine green (ICG) formulation (water and oil emulsion). Liposomes-encapsulated carboxyfluorescein were prepared by the sonication procedure. Carboxyfluorescein (5,6-CF) was loaded at high concentration (100 mM) in order to quench its fluorescence. The measurements were performed after i.v. injection of DSPC liposomes (1.5 ml) and lasted 40 min. Fluorescence emission was measured with an ultra high sensitivity intensified camera. Three different shapes of fluorescent spots were identified depending on target (blood vessel or skin) and energy deposition in tissue: (i) intravascular fluorescence, (ii) transient low fluorescence circular spot, and (iii) persistent high intense fluorescence spot. These images are correlated with histological data. Real-time fluorescence imaging seems to be a good tool to estimate in a non-invasive manner the thermal damage induced by a diode laser combined with ICG potentiation.

  10. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    PubMed

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  11. Assessment of plaque vulnerability in atherosclerosis via intravascular photoacoustic imaging of targeted liposomal ICG J-aggregates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Harris, Justin T.; Dumani, Diego S.; Cook, Jason R.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.; Homan, Kimberly A.

    2017-03-01

    While molecular and cellular imaging can be used to visualize the conventional morphology characteristics of vulnerable plaques, there is a need to monitor other physiological factors correlated with high rupture rates; a high M1 activated macrophage concentration is one such indicator of high plaque vulnerability. Here, we present a molecularly targeted contrast agent for intravascular photoacoustic (IVPA) imaging consisting of liposomes loaded with indocyanine green (ICG) J-aggregates with high absorption at 890 nm, allowing for imaging in the presence of blood. This "Lipo-ICG" was targeted to a biomarker of M1 activated macrophages in vulnerable plaques: folate receptor beta (FRβ). The targeted liposomes accumulate in plaques through areas of endothelial dysfunction, while the liposome encapsulation prevents nonspecific interaction with lipids and endothelium. Lipo-ICG specifically interacts with M1 activated macrophages, causing a spectral shift and change in the 890/780 nm photoacoustic intensity ratio upon breakdown of J-aggregates. This sensing mechanism enables assessment of the M1 activated macrophage concentration, providing a measure of plaque vulnerability. In a pilot in vivo study utilizing ApoE deficient mouse models of atherosclerosis, diseased mice showed increased uptake of FRβ targeted Lipo-ICG in the heart and arteries vs. normal mice. Likewise, targeted Lipo-ICG showed increased uptake vs. two non-targeted controls. Thus, we successfully synthesized a contrast agent to detect M1 activated macrophages in high risk atherosclerotic plaques and exhibited targeting both in vitro and in vivo. This biocompatible agent could enable M1 macrophage detection, allowing better clinical decision making in treatment of atherosclerosis.

  12. A review of performance of near-infrared fluorescence imaging devices used in clinical studies

    PubMed Central

    Zhu, B

    2015-01-01

    Near-infrared fluorescence (NIRF) molecular imaging holds great promise as a new “point-of-care” medical imaging modality that can potentially provide the sensitivity of nuclear medicine techniques, but without the radioactivity that can otherwise place limitations of usage. Recently, NIRF imaging devices of a variety of designs have emerged in the market and in investigational clinical studies using indocyanine green (ICG) as a non-targeting NIRF contrast agent to demark the blood and lymphatic vasculatures both non-invasively and intraoperatively. Approved in the USA since 1956 for intravenous administration, ICG has been more recently used off label in intradermal or subcutaneous administrations for fluorescence imaging of the lymphatic vasculature and lymph nodes. Herein, we summarize the devices of a variety of designs, summarize their performance in lymphatic imaging in a tabular format and comment on necessary efforts to develop standards for device performance to compare and use these emerging devices in future, NIRF molecular imaging studies. PMID:25410320

  13. Indocyanine green (ICG) as a new adjuvant for the antimicrobial photo-dynamic therapy (aPDT) in dentistry

    NASA Astrophysics Data System (ADS)

    Meister, Joerg; Hopp, Michael; Schäfers, Johannes; Verbeek, Jonas; Kraus, Dominik; Frentzen, Matthias

    2014-02-01

    Clinical surveys show a continuous increase of antimicrobial resistance related to the frequency of the administrated medication. The antimicrobial photodynamic therapy (aPDT) is an effective adjuvant to reduce the need of antibiotics in dentistry, especially in periodontics. The antimicrobial effect of lightactivated photosensitizers in periodontics is demonstrated in clinical studies and case reports. Indocyanine green (ICG) as a new adjuvant shows the high potential of antiphlogistic and antimicrobial effects in combination with laser-light activation. In trying to answer the question of just how far the influence of temperature is acting on bacteria, this study was carried out. The influences of ICG at different concentrations (0.01 up to 1 mg/ml) in combination with a culture medium (brain-heart-infusion) and a bacteria culture (Streptococcus salivarius) at different optical densities (OD600 0.5 and 0.1) were investigated under laser-light activation. Laser activation was carried out with diode laser at 810 nm and two different power settings (100 mW/300 mW). The pulse repetition rate was 2 kHz. Taking account of the fiber diameter, distance and spot size on the sample surface, the applicated intensities were 6.2 and 18.7 W/cm2. Total irradiation time was 20 s for all meaurements. Transmitted laser power and temperature increase in the culture medium as well as in the bacteria culture were determined. Additionally the influence of ICG regarding bacterial growth and bactericidal effect was investigated in the bacteria culture without laser irradiation. Without laser, no bactericidal effect of ICG was observed. Only a bacteriostatic effect could be proved. In dependence of the ICG concentration and the applied intensities a temperature increase of ΔT up to 80°C was measured.

  14. Sentinel lymph node navigation surgery for early stage gastric cancer.

    PubMed

    Mitsumori, Norio; Nimura, Hiroshi; Takahashi, Naoto; Kawamura, Masahiko; Aoki, Hiroaki; Shida, Atsuo; Omura, Nobuo; Yanaga, Katsuhiko

    2014-05-21

    We attempted to evaluate the history of sentinel node navigation surgery (SNNS), technical aspects, tracers, and clinical applications of SNNS using Infrared Ray Electronic Endoscopes (IREE) combined with Indocyanine Green (ICG). The sentinel lymph node (SLN) is defined as a first lymph node (LN) which receives cancer cells from a primary tumor. Reports on clinical application of SNNS for gastric cancers started to appear since early 2000s. Two prospective multicenter trials of SNNS for gastric cancer have also been accomplished in Japan. Kitagawa et al reported that the endoscopic dual (dye and radioisotope) tracer method for SN biopsy was confirmed acceptable and effective when applied to the early-stage gastric cancer (EGC). We have previously reported the usefulness of SNNS in gastrointestinal cancer using ICG as a tracer, combined with IREE (Olympus Optical, Tokyo, Japan) to detect SLN. LN metastasis rate of EGC is low. Hence, clinical application of SNNS for EGC might lead us to avoid unnecessary LN dissection, which could preserve the patient's quality of life after operation. The most ideal method of SNNS should allow secure and accurate detection of SLN, and real time observation of lymphatic flow during operation.

  15. Sentinel lymph node navigation surgery for early stage gastric cancer

    PubMed Central

    Mitsumori, Norio; Nimura, Hiroshi; Takahashi, Naoto; Kawamura, Masahiko; Aoki, Hiroaki; Shida, Atsuo; Omura, Nobuo; Yanaga, Katsuhiko

    2014-01-01

    We attempted to evaluate the history of sentinel node navigation surgery (SNNS), technical aspects, tracers, and clinical applications of SNNS using Infrared Ray Electronic Endoscopes (IREE) combined with Indocyanine Green (ICG). The sentinel lymph node (SLN) is defined as a first lymph node (LN) which receives cancer cells from a primary tumor. Reports on clinical application of SNNS for gastric cancers started to appear since early 2000s. Two prospective multicenter trials of SNNS for gastric cancer have also been accomplished in Japan. Kitagawa et al reported that the endoscopic dual (dye and radioisotope) tracer method for SN biopsy was confirmed acceptable and effective when applied to the early-stage gastric cancer (EGC). We have previously reported the usefulness of SNNS in gastrointestinal cancer using ICG as a tracer, combined with IREE (Olympus Optical, Tokyo, Japan) to detect SLN. LN metastasis rate of EGC is low. Hence, clinical application of SNNS for EGC might lead us to avoid unnecessary LN dissection, which could preserve the patient’s quality of life after operation. The most ideal method of SNNS should allow secure and accurate detection of SLN, and real time observation of lymphatic flow during operation. PMID:24914329

  16. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles.

    PubMed

    Zhao, Pengfei; Zheng, Mingbin; Yue, Caixia; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Cai, Lintao

    2014-07-01

    A key challenge to strengthen anti-tumor efficacy is to improve drug accumulation in tumors through size control. To explore the biodistribution and tumor accumulation of nanoparticles, we developed indocyanine green (ICG) loaded poly (lactic-co-glycolic acid) (PLGA) -lecithin-polyethylene glycol (PEG) core-shell nanoparticles (INPs) with 39 nm, 68 nm and 116 nm via single-step nanoprecipitation. These INPs exhibited good monodispersity, excellent fluorescence and size stability, and enhanced temperature response after laser irradiation. Through cell uptake and photothermal efficiency in vitro, we demonstrated that 39 nm INPs were more easily be absorbed by pancreatic carcinoma tumor cells (BxPC-3) and showed better photothermal damage than that of 68 nm and 116 nm size of INPs. Simultaneously, the fluorescence of INPs offered a real-time imaging monitor for subcellular locating and in vivo metabolic distribution. Near-infrared imaging in vivo and photothermal therapy illustrated that 68 nm INPs showed the strongest efficiency to suppress tumor growth due to abundant accumulation in BxPC-3 xenograft tumor model. The findings revealed that a nontoxic, size-dependent, theranostic INPs model was built for in vivo cancer imaging and photothermal therapy without adverse effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: an animal study

    PubMed Central

    2013-01-01

    Background We propose a new approach to facilitate sentinel node biopsy examination by multimodality imaging in which radioactive and near-infrared (NIR) fluorescent nanoparticles depict deeply situated sentinel nodes and fluorescent nodes with anatomical resolution in the surgical field. For this purpose, we developed polyamidoamine (PAMAM)-coated silica nanoparticles loaded with technetium-99m (99mTc) and indocyanine green (ICG). Methods We conducted animal studies to test the feasibility and utility of this dual-modality imaging probe. The mean diameter of the PAMAM-coated silica nanoparticles was 30 to 50 nm, as evaluated from the images of transmission electron microscopy and scanning electron microscopy. The combined labeling with 99mTc and ICG was verified by thin-layer chromatography before each experiment. A volume of 0.1 ml of the nanoparticle solution (7.4 MBq, except for one rat that was injected with 3.7 MBq, and 1 μg of an ICG derivative [ICG-sulfo-OSu]) was injected submucosally into the tongue of six male Wistar rats. Results Scintigraphic images showed increased accumulation of 99mTc in the neck of four of the six rats. Nineteen lymph nodes were identified in the dissected neck of the six rats, and a contact radiographic study showed three nodes with a marked increase in uptake and three nodes with a weak uptake. NIR fluorescence imaging provided real-time clear fluorescent images of the lymph nodes in the neck with anatomical resolution. Six lymph nodes showed weak (+) to strong (+++) fluorescence, whereas other lymph nodes showed no fluorescence. Nodes showing increased radioactivity coincided with the fluorescent nodes. The radioactivity of 15 excised lymph nodes from the four rats was assayed using a gamma well counter. Comparisons of the levels of radioactivity revealed a large difference between the high-fluorescence-intensity group (four lymph nodes; mean, 0.109% ± 0.067%) and the low- or no-fluorescence-intensity group (11 lymph nodes

  18. Fluorescent Imaging With Indocyanine Green During Laparoscopic Cholecystectomy in Patients at Increased Risk of Bile Duct Injury

    PubMed Central

    Ankersmit, Marjolein; van Dam, Dieuwertje A.; van Rijswijk, Anne-Sophie; van den Heuvel, Baukje; Tuynman, Jurriaan B.; Meijerink, Wilhelmus J. H. J.

    2017-01-01

    Background. Although rare, injury to the common bile duct (CBD) during laparoscopic cholecystectomy (LC) can be reduced by better intraoperative visualization of the cystic duct (CD) and CBD. The aim of this study was to establish the efficacy of early visualization of the CD and the added value of CBD identification, using near-infrared (NIR) light and the fluorescent agent indocyanine green (ICG), in patients at increased risk of bile duct injury. Materials and Methods. Patients diagnosed with complicated cholecystitis and scheduled for LC were included. The CBD and CD were visualized with NIR light before and during dissection of the liver hilus and at critical view of safety (CVS). Results. Of the 20 patients originally included, 2 were later excluded due to conversion. In 6 of 18 patients, the CD was visualized early during dissection and prior to imaging with conventional white light. The CBD was additionally visualized with ICG-NIR in 7 of 18 patients. In 1 patient, conversion was prevented due to detection of the CD and CBD with ICG-NIR. Conclusions. Early visualization of the CD or additional identification of the CBD using ICG-NIR in patients with complicated cholecystolithiasis can be helpful in preventing CBD injury. Future studies should attempt to establish the optimal dosage and time frame for ICG administration and bile duct visualization with respect to different gallbladder pathologies. PMID:28178882

  19. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  20. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    PubMed Central

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-01-01

    Abstract. There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here. PMID:27533438

  1. Indocyanine green-based fluorescent angiography in breast reconstruction

    PubMed Central

    Chae, Michael P.; Rozen, Warren Matthew

    2016-01-01

    Background Fluorescent angiography (FA) has been useful for assessing blood flow and assessing tissue perfusion in ophthalmology and other surgical disciplines for decades. In plastic surgery, indocyanine green (ICG) dye-based FA is a relatively novel imaging technology with high potential in various applications. We review the various FA detector systems currently available and critically appraise its utility in breast reconstruction. Methods A review of the published English literature dating from 1950 to 2015 using databases, such as PubMed, Medline, Web of Science, and EMBASE was undertaken. Results In comparison to the old fluorescein dye, ICG has a superior side effect profile and can be accurately detected by various commercial devices, such as SPY Elite (Novadaq, Canada), FLARE (Curadel LLC, USA), PDE-Neo (Hamamatsu Photonics, Japan), Fluobeam 800 (Fluoptics, France), and IC-View (Pulsion Medical Systems AG, Germany). In breast reconstruction, ICG has established as a safer, more accurate tracer agent, in lieu of the traditional blue dyes, for detection of sentinel lymph nodes with radioactive isotopes (99m-Technetium). In prosthesis-based breast reconstruction, intraoperative assessment of the mastectomy skin flap to guide excision of hypoperfused areas translates to improved clinical outcomes. Similarly, in autologous breast reconstructions, FA can be utilized to detect poorly perfused areas of the free flap, evaluate microvascular anastomosis for patency, and assess SIEA vascular territory for use as an alternative free flap with minimal donor site morbidity. Conclusions ICG-based FA is a novel, useful tool for various applications in breast reconstruction. More studies with higher level of evidence are currently lacking to validate this technology. PMID:27047782

  2. Indocyanine Green Fluorescence Endoscopy at Endonasal Transsphenoidal Surgery for an Intracavernous Sinus Dermoid Cyst: Case Report

    PubMed Central

    HIDE, Takuichiro; YANO, Shigetoshi; KURATSU, Jun-ichi

    2014-01-01

    The complete resection of intracavernous sinus dermoid cysts is very difficult due to tumor tissue adherence to important anatomical structures such as the internal carotid artery (ICA), cavernous sinus, and cranial nerves. As residual dermoid cyst tissue sometimes induces symptoms and repeat surgery may be required after cyst recurrence, minimal invasiveness is an important consideration when selecting the surgical approach to the lesion. We addressed a recurrent intracavernous sinus dermoid cyst by the endoscopic endonasal transsphenoidal approach assisted by neuronavigation and indocyanine green (ICG) endoscopy to confirm the ICA and patency of the cavernous sinus. The ICG endoscope detected the fluorescence signal from the ICA and cavernous sinus; its intensity changed with the passage of time. The ICG endoscope was very useful for real-time imaging, and its high spatial resolution facilitated the detection of the ICA and the patent cavernous sinus. We found it to be of great value for successful endonasal transsphenoidal surgery. PMID:25446381

  3. In vivo laser assisted end-to-end anastomosis with ICG-infused chitosan patches

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Esposito, Giuseppe; Scerrati, Alba; Albanese, Alessio; Puca, Alfredo; Maira, Giulio; Rossi, Giacomo; Pini, Roberto

    2011-07-01

    Laser assisted vascular repair is a new optimized technique based on the use of ICG-infused chitosan patch to close a vessel wound, with or even without few supporting single stitches. We present an in vivo experimental study on an innovative end-to-end laser assisted vascular anastomotic (LAVA) technique, performed with the application of ICGinfused chitosan patches. The photostability and the mechanical properties of ICG-infused chitosan films were preliminary measured. The in vivo study was performed in 10 New Zealand rabbits. After anesthesia, a 3-cm segment of the right common carotid artery was exposed, thus clamped proximally and distally. The artery was then interrupted by means of a full thickness cut. Three single microsutures were used to approximate the two vessel edges. The ICG-infused chitosan patch was rolled all over the anastomotic site and welded by the use of a diode laser emitting at 810 nm and equipped with a 300 μm diameter optical fiber. Welding was obtained by delivering single laser spots to induce local patch/tissue adhesion. The result was an immediate closure of the anastomosis, with no bleeding at clamps release. Thus animals underwent different follow-up periods, in order to evaluate the welded vessels over time. At follow-up examinations, all the anastomoses were patent and no bleeding signs were documented. Samples of welded vessels underwent histological examinations. Results showed that this technique offer several advantages over conventional suturing methods: simplification of the surgical procedure, shortening of the operative time, better re-endothelization and optimal vascular healing process.

  4. A Specific Mapping Study Using Fluorescence Sentinel Lymph Node Detection in Patients with Intermediate- and High-risk Prostate Cancer Undergoing Extended Pelvic Lymph Node Dissection.

    PubMed

    Nguyen, Daniel P; Huber, Philipp M; Metzger, Tobias A; Genitsch, Vera; Schudel, Hans H; Thalmann, George N

    2016-11-01

    Sentinel lymph node (SLN) detection techniques have the potential to change the standard of surgical care for patients with prostate cancer. We performed a lymphatic mapping study and determined the value of fluorescence SLN detection with indocyanine green (ICG) for the detection of lymph node metastases in intermediate- and high-risk patients undergoing radical prostatectomy and extended pelvic lymph node dissection. A total of 42 patients received systematic or specific ICG injections into the prostate base, the midportion, the apex, the left lobe, or the right lobe. We found (1) that external and internal iliac regions encompass the majority of SLNs, (2) that common iliac regions contain up to 22% of all SLNs, (3) that a prostatic lobe can drain into the contralateral group of pelvic lymph nodes, and (4) that the fossa of Marcille also receives significant drainage. Among the 12 patients who received systematic ICG injections, 5 (42%) had a total of 29 lymph node metastases. Of these, 16 nodes were ICG positive, yielding 55% sensitivity. The complex drainage pattern of the prostate and the low sensitivity of ICG for the detection of lymph node metastases reported in our study highlight the difficulties related to the implementation of SNL techniques in prostate cancer. There is controversy about how extensive lymph node dissection (LND) should be during prostatectomy. We investigated the lymphatic drainage of the prostate and whether sentinel node fluorescence techniques would be useful to detect node metastases. We found that the drainage pattern is complex and that the sentinel node technique is not able to replace extended pelvic LND. Copyright © 2016. Published by Elsevier B.V.

  5. Combined Partial Penectomy With Bilateral Robotic Inguinal Lymphadenectomy Using Near-infrared Fluorescence Guidance.

    PubMed

    Sávio, Luís Felipe; Panizzutti Barboza, Marcelo; Alameddine, Mahmoud; Ahdoot, Michael; Alonzo, David; Ritch, Chad R

    2018-03-01

    To describe our novel technique for performing a combined partial penectomy and bilateral robotic inguinal lymphadenectomy using intraoperative near-infrared (NIR) fluorescence guidance with indocyanine green (ICG) and the DaVinci Firefly camera system. A 58-year-old man presented status post recent excisional biopsy of a 2-cm lesion on the left coronal aspect of the glans penis. Pathology revealed "invasive squamous cell carcinoma of the penis with multifocal positive margins." His examination was suspicious for cT2 primary and his inguinal nodes were cN0. He was counseled to undergo partial penectomy with possible combined vs staged bilateral robotic inguinal lymphadenectomy. Preoperative computed tomography scan was negative for pathologic lymphadenopathy. Before incision, 5 mL of ICG was injected subcutaneously beneath the tumor. Bilateral thigh pockets were then developed simultaneously and a right, then left robotic modified inguinal lymphadenectomy was performed using NIR fluorescence guidance via the DaVinci Firefly camera. A partial penectomy was then performed in the standard fashion. The combined procedure was performed successfully without complication. Total operative time was 379 minutes and total robotic console time was 95 minutes for the right and 58 minutes to the left. Estimated blood loss on the right and left were 15 and 25 mL, respectively. A total of 24 lymph nodes were retrieved. This video demonstrates a safe and feasible approach for combined partial penectomy and bilateral inguinal lymphadenectomy with NIR guidance using ICG and the DaVinci Firefly camera system. The combined robotic approach has minimal morbidity and avoids the need for a staged procedure. Furthermore, use of NIR guidance with ICG during robotic inguinal lymphadenectomy is feasible and may help identify sentinel lymph nodes and improve the quality of dissection. Further studies are needed to confirm the utility of NIR guidance for robotic sentinel lymph node

  6. Indocyanine-green-loaded microballoons for biliary imaging in cholecystectomy

    NASA Astrophysics Data System (ADS)

    Mitra, Kinshuk; Melvin, James; Chang, Shufang; Park, Kyoungjin; Yilmaz, Alper; Melvin, Scott; Xu, Ronald X.

    2012-11-01

    We encapsulate indocyanine green (ICG) in poly[(D,L-lactide-co-glycolide)-co-PEG] diblock (PLGA-PEG) microballoons for real-time fluorescence and hyperspectral imaging of biliary anatomy. ICG-loaded microballoons show superior fluorescence characteristics and slower degradation in comparison with pure ICG. The use of ICG-loaded microballoons in biliary imaging is demonstrated in both biliary-simulating phantoms and an ex vivo tissue model. The biliary-simulating phantoms are prepared by embedding ICG-loaded microballoons in agar gel and imaged by a fluorescence imaging module in a Da Vinci surgical robot. The ex vivo model consists of liver, gallbladder, common bile duct, and part of the duodenum freshly dissected from a domestic swine. After ICG-loaded microballoons are injected into the gallbladder, the biliary structure is imaged by both hyperspectral and fluorescence imaging modalities. Advanced spectral analysis and image processing algorithms are developed to classify the tissue types and identify the biliary anatomy. While fluorescence imaging provides dynamic information of movement and flow in the surgical region of interest, data from hyperspectral imaging allow for rapid identification of the bile duct and safe exclusion of any contaminant fluorescence from tissue not part of the biliary anatomy. Our experiments demonstrate the technical feasibility of using ICG-loaded microballoons for biliary imaging in cholecystectomy.

  7. Retrospective validation of the laparoscopic ICG SLN mapping in patients with grade 3 endometrial cancer.

    PubMed

    Papadia, Andrea; Gasparri, Maria Luisa; Radan, Anda P; Stämpfli, Chantal A L; Rau, Tilman T; Mueller, Michael D

    2018-04-24

    To evaluate the sensitivity, negative predictive value (NPV) and false-negative (FN) rate of the near infrared (NIR) indocyanine green (ICG) sentinel lymph node (SLN) mapping in patients with poorly differentiated endometrial cancer who have undergone a full pelvic and para-aortic lymphadenectomy after SLN mapping. We performed a retrospective analysis of patients with endometrial cancer undergoing a laparoscopic NIR-ICG SLN mapping followed by a systematic pelvic and para-aortic lymphadenectomy. Inclusion criteria were a grade 3 endometrial cancer or a high-risk histology (papillary serous, clear cell carcinoma, carcinosarcoma, and neuroendocrine carcinoma) and a completion pelvic and para-aortic lymphadenectomy to the renal vessels after SLN mapping. Overall and bilateral detection rates, sensitivity, NPV, and FN rates were calculated. From December 2012 until January 2017, 42 patients fulfilled inclusion criteria. Overall and bilateral detection rates were 100 and 90.5%, respectively. Overall, 23.8% of the patients had lymph node metastases. In one patient, despite negative bilateral pelvic SLNs, a metastatic non-SLN-isolated para-aortic metastasis was detected. This NSLN was clinically suspicious and sent to frozen section analysis during the surgery. FN rate, sensitivity, and NPV were 10, 90, and 97.1%, respectively. For the SLN mapping algorithm, FN rate, sensitivity, and NPV were 0, 100, and 100%, respectively. Laparoscopic NIR-ICG SLN mapping in high-risk endometrial cancer patients has acceptable sensitivity, FN rate, and NPV.

  8. Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience

    PubMed Central

    Verbeek, Floris P.R.; Troyan, Susan L.; Mieog, J. Sven D.; Liefers, Gerrit-Jan; Moffitt, Lorissa A.; Rosenberg, Mireille; Hirshfield-Bartek, Judith; Gioux, Sylvain; van de Velde, Cornelis J.H.; Vahrmeijer, Alexander L.; Frangioni, John V.

    2014-01-01

    NIR fluorescence imaging using indocyanine green (ICG) has the potential to improve the SLN procedure by facilitating percutaneous and intraoperative identification of lymphatic channels and SLNs. Previous studies suggested that a dose of 0.62 mg (1.6 ml of 0.5 mM) ICG is optimal for SLN mapping in breast cancer. The aim of this study was to evaluate the diagnostic accuracy of near-infrared (NIR) fluorescence for sentinel lymph node (SLN) mapping in breast cancer patients when used in conjunction with conventional techniques. Study subjects were 95 breast cancer patients planning to undergo SLN procedure at either the Dana-Farber/Harvard Cancer Center (Boston, MA, USA) or the Leiden University Medical Center (Leiden, the Netherlands) between July 2010 and January 2013. Subjects underwent the standard-of-care SLN procedure at each institution using 99Technetium-colloid in all subjects and patent blue in 27 (28%) of the subjects. NIR fluorescence-guided SLN detection was performed using the Mini-FLARE imaging system. SLN identification was successful in 94 of 95 subjects (99%) using NIR fluorescence imaging or a combination of both NIR fluorescence imaging and radioactive guidance. In 2 of 95 subjects, radioactive guidance was necessary for initial in vivo identification of SLNs. In 1 of 95 subjects, NIR fluorescence was necessary for initial in vivo identification of SLNs. A total of 177 SLNs (mean = 1.9, range = 1–5) were resected: 100% NIR fluorescent, 88% radioactive, and 78% (of 40 nodes) blue. In 2 of 95 subjects (2.1%), SLNs containing macrometastases were found only by NIR fluorescence, and in 1 patient this led to upstaging to N1. This study demonstrates the safe and accurate application of NIR fluorescence imaging for the identification of SLNs in breast cancer patients, but calls into question what technique should be used as the gold standard in future studies. PMID:24337507

  9. Co-registered photoacoustic and fluorescent imaging of a switchable nanoprobe based on J-aggregates of indocyanine green

    NASA Astrophysics Data System (ADS)

    Dumani, Diego S.; Brecht, Hans-Peter; Ivanov, Vassili; Deschner, Ryan; Harris, Justin T.; Homan, Kimberly A.; Cook, Jason R.; Emelianov, Stanislav Y.; Ermilov, Sergey A.

    2018-02-01

    We introduce a preclinical imaging platform - a 3D photoacoustic/fluorescence tomography (PAFT) instrument augmented with an environmentally responsive dual-contrast biocompatible nanoprobe. The PAFT instrument was designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct co-registration of the two imaging modalities. The nanoprobe was based on liposomes loaded with J-aggregates of indocyanine green (PAtrace). Once PAtrace interacts with the environment, a transition from J-aggregate to monomeric ICG is induced. The subsequent recovery of monomeric ICG is characterized by dramatic changes in the optical absorption spectrum and reinstated fluorescence. In the activated state, PAtrace can be simultaneously detected by both imaging modes of the PAFT instrument using 780 nm excitation and fluorescence detection at 810 nm. The fluorescence imaging component is used to boost detection sensitivity by providing lowresolution map of activated nanoprobes, which are then more precisely mapped in 3D by the photoacoustic imaging component. Activated vs non-activated particles can be distinguished based on their different optical absorption peaks, removing the requirements for complex image registration between reference and detection scans. Preliminary phantom and in vivo animal imaging results showed successful activation and visualization of PAtrace with high sensitivity and resolution. The proposed PAFT-PAtrace imaging platform could be used in various functional and molecular imaging applications including multi-point in vivo assessment of early metastasis.

  10. Development of thermosensitive chitosan/glicerophospate injectable in situ gelling solutions for potential application in intraoperative fluorescence imaging and local therapy of hepatocellular carcinoma: a preliminary study.

    PubMed

    Salis, Andrea; Rassu, Giovanna; Budai-Szűcs, Maria; Benzoni, Ilaria; Csányi, Erzsébet; Berkó, Szilvia; Maestri, Marcello; Dionigi, Paolo; Porcu, Elena P; Gavini, Elisabetta; Giunchedi, Paolo

    2015-01-01

    Thermosensitive chitosan/glycerophosphate (C/GP) solutions exhibiting sol-gel transition around body temperature were prepared to develop a class of injectable hydrogel platforms for the imaging and loco-regional treatment of hepatocellular carcinoma (HCC). Indocyanine green (ICG) was loaded in the thermosensitive solutions in order to assess their potential for the detection of tumor nodules by fluorescence. The gel formation of these formulations as well as their gelling time, injectability, compactness and resistance of gel structure, gelling temperature, storage conditions, biodegradability, and in vitro dye release behavior were investigated. Ex vivo studies were carried out for preliminary evaluation using an isolated bovine liver. Gel strengths and gelation rates increased with the cross-link density between C and GP. These behaviors are more evident for C/GP solutions, which displayed a gel-like precipitation at 4°C. Furthermore, formulations with the lowest cross-link density between C and GP exhibited the best injectability due to a lower resistance to flow. The loading of the dye did not influence the gelation rate. ICG was not released from the hydrogels because of a strong electrostatic interaction between C and ICG. Ex vivo preliminary studies revealed that these injectable formulations remain in correspondence of the injected site. The developed ICG-loaded hydrogels have the potential for intraoperative fluorescence imaging and local therapy of HCC as embolic agents. They form in situ compact gels and have a good potential for filling vessels and/or body cavities.

  11. Benchtop and Animal Validation of a Projective Imaging System for Potential Use in Intraoperative Surgical Guidance

    PubMed Central

    Gan, Qi; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Hu, Chuanzhen; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    We propose a projective navigation system for fluorescence imaging and image display in a natural mode of visual perception. The system consists of an excitation light source, a monochromatic charge coupled device (CCD) camera, a host computer, a projector, a proximity sensor and a Complementary metal–oxide–semiconductor (CMOS) camera. With perspective transformation and calibration, our surgical navigation system is able to achieve an overall imaging speed higher than 60 frames per second, with a latency of 330 ms, a spatial sensitivity better than 0.5 mm in both vertical and horizontal directions, and a projection bias less than 1 mm. The technical feasibility of image-guided surgery is demonstrated in both agar-agar gel phantoms and an ex vivo chicken breast model embedding Indocyanine Green (ICG). The biological utility of the system is demonstrated in vivo in a classic model of ICG hepatic metabolism. Our benchtop, ex vivo and in vivo experiments demonstrate the clinical potential for intraoperative delineation of disease margin and image-guided resection surgery. PMID:27391764

  12. Real-time navigation system for sentinel lymph node biopsy in breast cancer patients using projection mapping with indocyanine green fluorescence.

    PubMed

    Takada, Masahiro; Takeuchi, Megumi; Suzuki, Eiji; Sato, Fumiaki; Matsumoto, Yoshiaki; Torii, Masae; Kawaguchi-Sakita, Nobuko; Nishino, Hiroto; Seo, Satoru; Hatano, Etsuro; Toi, Masakazu

    2018-05-09

    Inability to visualize indocyanine green fluorescence images in the surgical field limits the application of current near-infrared fluorescence imaging (NIR) systems for real-time navigation during sentinel lymph node (SLN) biopsy in breast cancer patients. The aim of this study was to evaluate the usefulness of the Medical Imaging Projection System (MIPS), which uses active projection mapping, for SLN biopsy. A total of 56 patients (59 procedures) underwent SLN biopsy using the MIPS between March 2016 and November 2017. After SLN biopsy using the MIPS, residual SLNs were removed using a conventional NIR camera and/or radioisotope method. The primary endpoint of this study was identification rate of SLNs using the MIPS. In all procedures, at least one SLN was detected by the MIPS, giving an SLN identification rate of 100% [95% confidence interval (CI) 94-100%]. SLN biopsy was successfully performed without operating lights in all procedures. In total, 3 positive SLNs were excised using MIPS, but were not included in the additional SLNs excised by other methods. The median number of SLNs excised using the MIPS was 3 (range 1-7). Of procedures performed after preoperative systemic therapy, the median number of SLNs excised using the MIPS was 3 (range 2-6). The MIPS is effective in detecting SLNs in patients with breast cancer, providing continuous and accurate projection of fluorescence signals in the surgical field, without need for operating lights, and could be useful in real-time navigation surgery for SLN biopsy.

  13. Simulation of 'pathologic' changes in ICG waveforms resulting from superposition of the 'preejection' and ejection waves induced by left ventricular contraction

    NASA Astrophysics Data System (ADS)

    Ermishkin, V. V.; Kolesnikov, V. A.; Lukoshkova, E. V.; Sonina, R. S.

    2013-04-01

    The impedance cardiography (ICG) is widely used for beat-to-beat noninvasive evaluation of the left ventricular stroke volume and contractility. It implies the correct determination of the ejection start and end points and the amplitudes of certain peaks in the differentiated impedance cardiogram. An accurate identification of ejection onset by ICG is often problematic, especially in the cardiologic patients, due to peculiar waveforms. Using a simple theoretical model, we tested the hypothesis that two major processes are responsible for the formation of impedance systolic wave: (1) the changes in the heart geometry and surrounding vessels produced by ventricular contraction, which occur during the isovolumic phase and precede ejection, and (2) expansion of aorta and adjacent arteries during the ejection phase. The former process initiates the preejection wave WpE and the latter triggers the ejection wave WEj. The model predicts a potential mechanism of generating the abnormal shapes of dZ/dt due to the presence of preejection waves and explains the related errors in ICG time and amplitude parameters. An appropriate decomposition method is a promising way to avoid the masking effects of these waves and a further step to correct determination of the onset of ejection and the corresponding peak amplitudes from 'pathologically shaped' ICG signals.

  14. Improvement of the sentinel lymph node detection rate of cervical sentinel lymph node biopsy using real-time fluorescence navigation with indocyanine green in head and neck skin cancer.

    PubMed

    Nakamura, Yasuhiro; Fujisawa, Yasuhiro; Nakamura, Yoshiyuki; Maruyama, Hiroshi; Furuta, Jun-ichi; Kawachi, Yasuhiro; Otsuka, Fujio

    2013-06-01

    The standard technique using lymphoscintigraphy, blue dye and a gamma probe has established a reliable method for sentinel node biopsy for skin cancer. However, the detection rate of cervical sentinel lymph nodes (SLN) is generally lower than that of inguinal or axillary SLN because of the complexity of lymphatic drainage in the head and neck region and the "shine-through" phenomenon. Recently, indocyanine green fluorescence imaging has been reported as a new method to detect SLN. We hypothesized that fluorescence navigation with indocyanine green in combination with the standard technique would improve the detection rate of cervical sentinel nodes. We performed cervical sentinel node biopsies using the standard technique in 20 basins of 18 patients (group A) and using fluorescence navigation in combination with the standard technique in 12 basins of 16 patients (group B). The mean number of sentinel nodes was two per basin (range, 1-4) in group A and three per basin (range, 1-5) in group B. The detection rate of sentinel nodes was 83% (29/35) in group A and 95% (36/38) in group B. The false-negative rate was 6% (1/18 patients) in group A and 0% in group B. Fluorescence navigation with indocyanine green may improve the cervical sentinel node detection rate. However, greater collection of data regarding the usefulness of cervical sentinel node biopsy using indocyanine green is necessary. © 2013 Japanese Dermatological Association.

  15. Parathyroid gland angiography with indocyanine green fluorescence to predict parathyroid function after thyroid surgery

    PubMed Central

    Vidal Fortuny, J.; Belfontali, V.; Sadowski, S. M.; Karenovics, W.; Guigard, S.

    2016-01-01

    Background Postoperative hypoparathyroidism remains the most common complication following thyroidectomy. The aim of this pilot study was to evaluate the use of intraoperative parathyroid gland angiography in predicting normal parathyroid gland function after thyroid surgery. Methods Angiography with the fluorescent dye indocyanine green (ICG) was performed in patients undergoing total thyroidectomy, to visualize vascularization of identified parathyroid glands. Results Some 36 patients underwent ICG angiography during thyroidectomy. All patients received standard calcium and vitamin D supplementation. At least one well vascularized parathyroid gland was demonstrated by ICG angiography in 30 patients. All 30 patients had parathyroid hormone (PTH) levels in the normal range on postoperative day (POD) 1 and 10, and only one patient exhibited asymptomatic hypocalcaemia on POD 1. Mean(s.d.) PTH and calcium levels in these patients were 3·3(1·4) pmol/l and 2·27(0·10) mmol/l respectively on POD 1, and 4·0(1.6) pmol/l and 2·32(0·08) mmol/l on POD 10. Two of the six patients in whom no well vascularized parathyroid gland could be demonstrated developed transient hypoparathyroidism. None of the 36 patients presented symptomatic hypocalcaemia, and none received treatment for hypoparathyroidism. Conclusion PTH levels on POD 1 were normal in all patients who had at least one well vascularized parathyroid gland demonstrated during surgery by ICG angiography, and none required treatment for hypoparathyroidism. PMID:26864909

  16. A Google Glass navigation system for ultrasound and fluorescence dual-mode image-guided surgery

    NASA Astrophysics Data System (ADS)

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Hu, Chuanzhen; Ye, Jian; Gan, Qi; Liu, Peng; Yue, Jian; Wang, Benzhong; Shao, Pengfei; Povoski, Stephen P.; Martin, Edward W.; Yilmaz, Alper; Tweedle, Michael F.; Xu, Ronald X.

    2016-03-01

    Surgical resection remains the primary curative intervention for cancer treatment. However, the occurrence of a residual tumor after resection is very common, leading to the recurrence of the disease and the need for re-resection. We develop a surgical Google Glass navigation system that combines near infrared fluorescent imaging and ultrasonography for intraoperative detection of sites of tumor and assessment of surgical resection boundaries, well as for guiding sentinel lymph node (SLN) mapping and biopsy. The system consists of a monochromatic CCD camera, a computer, a Google Glass wearable headset, an ultrasonic machine and an array of LED light sources. All the above components, except the Google Glass, are connected to a host computer by a USB or HDMI port. Wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A control program is written in C++ to call OpenCV functions for image calibration, processing and display. The technical feasibility of the system is tested in both tumor simulating phantoms and in a human subject. When the system is used for simulated phantom resection tasks, the tumor boundaries, invisible to the naked eye, can be clearly visualized with the surgical Google Glass navigation system. This system has also been used in an IRB approved protocol in a single patient during SLN mapping and biopsy in the First Affiliated Hospital of Anhui Medical University, demonstrating the ability to successfully localize and resect all apparent SLNs. In summary, our tumor simulating phantom and human subject studies have demonstrated the technical feasibility of successfully using the proposed goggle navigation system during cancer surgery.

  17. Clinically compatible flexible wide-field multi-color fluorescence endoscopy with a porcine colon model

    PubMed Central

    Oh, Gyugnseok; Park, Youngrong; Yoo, Su Woong; Hwang, Soonjoo; Chin-Yu, Alexey V. Dan; Ryu, Yeon-Mi; Kim, Sang-Yeob; Do, Eun-Ju; Kim, Ki Hean; Kim, Sungjee; Myung, Seung-Jae; Chung, Euiheon

    2017-01-01

    Early detection of structural or molecular changes in dysplastic epithelial tissues is crucial for cancer screening and surveillance. Multi-targeting molecular endoscopic fluorescence imaging may improve noninvasive detection of precancerous lesions in the colon. Here, we report the first clinically compatible, wide-field-of-view, multi-color fluorescence endoscopy with a leached fiber bundle scope using a porcine model. A porcine colon model that resembles the human colon is used for the detection of surrogate tumors composed of multiple biocompatible fluorophores (FITC, ICG, and heavy metal-free quantum dots (hfQDs)). With an ex vivo porcine colon tumor model, molecular imaging with hfQDs conjugated with MMP14 antibody was achieved by spraying molecular probes on a mucosa layer that contains xenograft tumors. With an in vivo porcine colon embedded with surrogate tumors, target-to-background ratios of 3.36 ± 0.43, 2.70 ± 0.72, and 2.10 ± 0.13 were achieved for FITC, ICG, and hfQD probes, respectively. This promising endoscopic technology with molecular contrast shows the capacity to reveal hidden tumors and guide treatment strategy decisions. PMID:28270983

  18. Hepatic blood flow measurement III. Total hepatic blood flow measured by ICG clearance and electromagnetic flowmeters in a canine septic shock model.

    PubMed Central

    Nxumalo, J L; Teranaka, M; Schenk, W G

    1978-01-01

    The validity of the ICG clearance method for the measurement of THBF in abnormal circulatory states remains questionable. In this study THBF measured by this method is compared with the electromagnetic flow technique in a canine spetic model. Good correlation is demonstrated between the two in normal control animals. However, in the septic animals the ICG underestimated the electromagnetic flow result by 20%. This is true in both the high and the low cardiac output septic shock pictures that emerge. In the septic animals, the total hepatic blood flow as measured by the ICG was almost equal to the portal vein flow alone measured by the electromagnetic flowmeters suggesting that this was the quantity it was measuring in this abnormal state. Pathophysiologic mechanisms that may explain the discrepancy are given. PMID:637587

  19. Visualization of Motor Axon Navigation and Quantification of Axon Arborization In Mouse Embryos Using Light Sheet Fluorescence Microscopy.

    PubMed

    Liau, Ee Shan; Yen, Ya-Ping; Chen, Jun-An

    2018-05-11

    Spinal motor neurons (MNs) extend their axons to communicate with their innervating targets, thereby controlling movement and complex tasks in vertebrates. Thus, it is critical to uncover the molecular mechanisms of how motor axons navigate to, arborize, and innervate their peripheral muscle targets during development and degeneration. Although transgenic Hb9::GFP mouse lines have long served to visualize motor axon trajectories during embryonic development, detailed descriptions of the full spectrum of axon terminal arborization remain incomplete due to the pattern complexity and limitations of current optical microscopy. Here, we describe an improved protocol that combines light sheet fluorescence microscopy (LSFM) and robust image analysis to qualitatively and quantitatively visualize developing motor axons. This system can be easily adopted to cross genetic mutants or MN disease models with Hb9::GFP lines, revealing novel molecular mechanisms that lead to defects in motor axon navigation and arborization.

  20. Diagnostic evaluation of sentinel lymph node biopsy using indocyanine green and infrared or fluorescent imaging in gastric cancer: a systematic review and meta-analysis.

    PubMed

    Skubleny, Daniel; Dang, Jerry T; Skulsky, Samuel; Switzer, Noah; Tian, Chunhong; Shi, Xinzhe; de Gara, Christopher; Birch, Daniel W; Karmali, Shahzeer

    2018-06-01

    Sentinel node navigation surgery (SNNS) for gastric cancer using infrared visualization of indocyanine green (ICG) is intriguing because it may limit operative morbidity. We are the first to systematically review and perform meta-analysis on the diagnostic utility of ICG and infrared electronic endoscopy (IREE) or near infrared fluorescent imaging (NIFI) for SNNS exclusively in gastric cancer. A search of electronic databases MEDLINE, EMBASE, SCOPUS, Web of Science, and the Cochrane Library using search terms "gastric/stomach" AND "tumor/carcinoma/cancer/neoplasm/adenocarcinoma/malignancy" AND "indocyanine green" was completed in May 2017. Articles were selected by two independent reviewers based on the following major inclusion criteria: (1) diagnostic accuracy study design; (2) indocyanine green was injected at tumor site; (3) IREE or NIFI was used for intraoperative visualization. 327 titles or abstracts were screened. The quality of included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. Ten full text studies were selected. 643 patients were identified with the majority of patients possessing T1 tumors (79.8%). Pooled identification rate, diagnostic odds ratio, sensitivity, and specificity were 0.99 (0.97-1.0), 380.0 (68.71-2101), 0.87 (0.80-0.93), and 1.00 (0.99-1.00), respectively. The summary receiver operator characteristic for ICG + IREE/NIFI demonstrated a test accuracy of 98.3%. Subgroup analysis found improved test performance for studies with low-risk QUADAS-2 scores, studies published after 2010 and submucosal ICG injection. IREE had improved diagnostic odds ratio, sensitivity, and identification rate compared to NIFI. Heterogeneity among studies ranged from low (I 2  < 25%) to high (I 2  > 75%). We found encouraging results regarding the accuracy, diagnostic odds ratio, and specificity of the test. The sensitivity was not optimal but may be improved by a strict protocol to augment the technique. Given

  1. Photoacoustic Tomography of Human Hepatic Malignancies Using Intraoperative Indocyanine Green Fluorescence Imaging

    PubMed Central

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed

  2. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    PubMed

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed

  3. A projective surgical navigation system for cancer resection

    NASA Astrophysics Data System (ADS)

    Gan, Qi; Shao, Pengfei; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Xu, Ronald

    2016-03-01

    Near infrared (NIR) fluorescence imaging technique can provide precise and real-time information about tumor location during a cancer resection surgery. However, many intraoperative fluorescence imaging systems are based on wearable devices or stand-alone displays, leading to distraction of the surgeons and suboptimal outcome. To overcome these limitations, we design a projective fluorescence imaging system for surgical navigation. The system consists of a LED excitation light source, a monochromatic CCD camera, a host computer, a mini projector and a CMOS camera. A software program is written by C++ to call OpenCV functions for calibrating and correcting fluorescence images captured by the CCD camera upon excitation illumination of the LED source. The images are projected back to the surgical field by the mini projector. Imaging performance of this projective navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex-vivo chicken tissue model. In all the experiments, the projected images by the projector match well with the locations of fluorescence emission. Our experimental results indicate that the proposed projective navigation system can be a powerful tool for pre-operative surgical planning, intraoperative surgical guidance, and postoperative assessment of surgical outcome. We have integrated the optoelectronic elements into a compact and miniaturized system in preparation for further clinical validation.

  4. The hyper-fluorescent transitional bands in ultra-late phase of indocyanine green angiography in chronic central serous chorioretinopathy.

    PubMed

    Hua, Rui; Yao, Kai; Xia, Fan; Li, Jun; Guo, Lei; Yang, Guoxing; Tao, Jun

    2016-03-01

    Chronic central serous chorioretinopathy (CSCR) is regarded as a type of severe diffuse retinal pigment epitheliopathy. There is an atrophic tract at level of retinal pigment epithelium (RPE) due to hyper-permeability of choroidal vessels, along with photoreceptor (PR) atrophy. Indocyanine green angiography (ICGA) is considered a gold standard for diagnosis. The purpose of this work is to investigate the hyper-fluorescent transitional bands (HFTB) between hypo-fluorescent and normal regions of the retina in the ultra-late phase of ICGA in CSCR. 26 chronic CSCR eyes and 12 relative normal eyes received spectral domain optical coherence tomography (SD-OCT), and ICGA at the 24th hour after indocyanine green (ICG) intravenous injection. In the ultra-late phase, images showed homogenous fluorescence in all normal eyes. On the contrary, geographical hypofluorescent lesions with atrophy of RPE was noted in 26 chronic CSCR eyes. Moreover, HFTB with intact RPE and disrupted PR was detected in 20 out of 26 chronic CSCR eyes (76.9%). The HFTB may indicate the early damage in chronic CSCR. Ultra-late ICGA can monitor not only metabolic status by endogenous melanin, but also membrane function in RPE by exogenous ICG molecule. © 2015 Wiley Periodicals, Inc.

  5. A novel endoscopic fluorescent band ligation method for tumor localization.

    PubMed

    Hyun, Jong Hee; Kim, Seok-Ki; Kim, Kwang Gi; Kim, Hong Rae; Lee, Hyun Min; Park, Sunup; Kim, Sung Chun; Choi, Yongdoo; Sohn, Dae Kyung

    2016-10-01

    Accurate tumor localization is essential for minimally invasive surgery. This study describes the development of a novel endoscopic fluorescent band ligation method for the rapid and accurate identification of tumor sites during surgery. The method utilized a fluorescent rubber band, made of indocyanine green (ICG) and a liquid rubber solution mixture, as well as a near-infrared fluorescence laparoscopic system with a dual light source using a high-powered light-emitting diode (LED) and a 785-nm laser diode. The fluorescent rubber bands were endoscopically placed on the mucosae of porcine stomachs and colons. During subsequent conventional laparoscopic stomach and colon surgery, the fluorescent bands were assayed using the near-infrared fluorescence laparoscopy system. The locations of the fluorescent clips were clearly identified on the fluorescence images in real time. The system was able to distinguish the two or three bands marked on the mucosal surfaces of the stomach and colon. Resection margins around the fluorescent bands were sufficient in the resected specimens obtained during stomach and colon surgery. These novel endoscopic fluorescent bands could be rapidly and accurately localized during stomach and colon surgery. Use of these bands may make possible the excision of exact target sites during minimally invasive gastrointestinal surgery.

  6. Lipidots: competitive organic alternative to quantum dots for in vivo fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Gravier, Julien; Navarro, Fabrice P.; Delmas, Thomas; Mittler, Frédérique; Couffin, Anne-Claude; Vinet, Françoise; Texier, Isabelle

    2011-09-01

    The use of fluorescent nanostructures can bring several benefits on the signal to background ratio for in vitro microscopy, in vivo small animal imaging, and image-guided surgery. Fluorescent quantum dots (QDs) display outstanding optical properties, with high brightness and low photobleaching rate. However, because of their toxic element core composition and their potential long term retention in reticulo-endothelial organs such as liver, their in vivo human applications seem compromised. The development of new dye-loaded (DiO, DiI, DiD, DiR, and Indocyanine Green (ICG)) lipid nanoparticles for fluorescence imaging (lipidots) is described here. Lipidot optical properties quantitatively compete with those of commercial QDs (QTracker®705). Multichannel in vivo imaging of lymph nodes in mice is demonstrated for doses as low as 2 pmols of particles. Along with their optical properties, fluorescent lipidots display very low cytotoxicity (IC50 > 75 nM), which make them suitable tools for in vitro, and especially in vivo, fluorescence imaging applications.

  7. A goggle navigation system for cancer resection surgery

    NASA Astrophysics Data System (ADS)

    Xu, Junbin; Shao, Pengfei; Yue, Ting; Zhang, Shiwu; Ding, Houzhu; Wang, Jinkun; Xu, Ronald

    2014-02-01

    We describe a portable fluorescence goggle navigation system for cancer margin assessment during oncologic surgeries. The system consists of a computer, a head mount display (HMD) device, a near infrared (NIR) CCD camera, a miniature CMOS camera, and a 780 nm laser diode excitation light source. The fluorescence and the background images of the surgical scene are acquired by the CCD camera and the CMOS camera respectively, co-registered, and displayed on the HMD device in real-time. The spatial resolution and the co-registration deviation of the goggle navigation system are evaluated quantitatively. The technical feasibility of the proposed goggle system is tested in an ex vivo tumor model. Our experiments demonstrate the feasibility of using a goggle navigation system for intraoperative margin detection and surgical guidance.

  8. Inhibition of canonical WNT signaling pathway by β-catenin/CBP inhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12.

    PubMed

    Akcora, Büsra Öztürk; Storm, Gert; Bansal, Ruchi

    2018-03-01

    Quiescent hepatic stellate cells (HSCs), in response to liver injury, undergo characteristic morphological transformation into proliferative, contractile and ECM-producing myofibroblasts. In this study, we investigated the implication of canonical Wnt signaling pathway in HSCs and liver fibrogenesis. Canonical Wnt signaling pathway activation and inhibition using β-catenin/CBP inhibitor ICG001 was examined in-vitro in TGFβ-activated 3T3, LX2, primary human HSCs, and in-vivo in CCl 4 -induced acute liver injury mouse model. Fibroblasts-conditioned medium studies were performed to assess the Wnt-regulated paracrine factors involved in crosstalk between HSCs-macrophages and HSCs-endothelial cells. Canonical Wnt signaling pathway components were significantly up-regulated in-vitro and in-vivo. In-vitro, ICG-001 significantly inhibited fibrotic parameters, 3D-collagen contractility and wound healing. Conditioned medium induced fibroblasts-mediated macrophage and endothelial cells activation was significantly inhibited by ICG-001. In-vivo, ICG-001 significantly attenuated collagen accumulation and HSC activation. Interestingly, ICG-001 drastically inhibited macrophage infiltration, intrahepatic inflammation and angiogenesis. We further analyzed the paracrine factors involved in Wnt-mediated effects and found CXCL12 was significantly suppressed both in-vitro and in-vivo following Wnt inhibition. Wnt-regulated CXCL12 secretion from activated HSCs potentiated macrophage infiltration and activation, and angiogenesis. Pharmacological inhibition of canonical Wnt signaling pathway via suppression of stromal CXCL12 suggests a potential therapeutic approach targeting activated HSCs in liver fibrosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Intraoperative spatial frequency domain diffuse optical tomography with indo-cyanine green (ICG) fluorescence contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chong, Sang Hoon; Parthasarathy, Ashwin B.; Kavuri, Venkaiah C.; Moscatelli, Frank A.; Singhal, Sunil; Yodh, Arjun G.

    2017-02-01

    Surgical resection is the most effective treatment strategy for solid tumors, but complete removal of the tumor is critical for post-surgical recovery/long-term survival and is dependent on correct identification of the tumor margin and accurate excision of microscopic residual tumor in the surgical field. Fluorescence image guided surgery is an emerging technique that has shown promise for intraoperative location of tumors and tumor margins. Current versions of such intraoperative fluorescence imaging, however, are generally limited to 2D near-surface images, i.e., without information about tumor depth. Here we present an intraoperative fluorescence imaging system for 3D volumetric imaging of tumors; the system uses spatial frequency domain diffuse optical tomography with an analytic inversion reconstruction method. The new instrument can derive depth-sensitive 3D tumor images at depths up to 1 cm, and it employs compact epi-imaging and illumination suitable for the operating room, with quasi-real-time image reconstruction for surgical visualization. We present experimental results with FDA-approved Indocynanine Green using an extensive array of tissue phantoms and in a pilot in-vivo study.

  10. Near infrared spatial frequency domain fluorescence imaging of tumor phantoms containing erythrocyte-derived optical nanoplatforms

    NASA Astrophysics Data System (ADS)

    Burns, Joshua M.; Schaefer, Elise; Anvari, Bahman

    2018-02-01

    Light-activated theranostic constructs provide a multi-functional platform for optical imaging and phototherapeutic applications. Our group has engineered nano-sized vesicles derived from erythrocytes that encapsulate the FDAapproved near infrared (NIR) absorber indocyanine green (ICG). We refer to these constructs as NIR erythrocytemimicking transducers (NETs). Once photo-excited by NIR light these constructs can transduce the photons energy to emit fluorescence, generate heat, or induce chemical reactions. In this study, we investigated fluorescence imaging of NETs embedded within tumor phantoms using spatial frequency domain imaging (SFDI). Using SFDI, we were able to fluorescently image simulated tumors doped with different concentration of NETs. These preliminary results suggest that NETs can be used in conjunction with SFDI for potential tumor imaging applications.

  11. Near-Infrared Fluorescence Detection of Acetylcholine in Aqueous Solution Using a Complex of Rhodamine 800 and p-Sulfonato-calix[8]arene

    PubMed Central

    Jin, Takashi

    2010-01-01

    The complexing properties of p-sulfonatocalix[n]arenes (n = 4: S[4], n = 6: S[6], and n = 8: S[8]) for rhodamine 800 (Rh800) and indocyanine green (ICG) were examined to develop a near-infrared (NIR) fluorescence detection method for acetylcholine (ACh). We found that Rh800 (as a cation) forms an inclusion complex with S[n], while ICG (as a twitter ion) have no binding ability for S[n]. The binding ability of Rh800 to S[n] decreased in the order of S[8] > S[6] >> S[4]. By the formation of the complex between Rh800 and S[8], fluorescence intensity of the Rh800 was significantly decreased. From the fluorescence titration of Rh800 by S[8], stoichiometry of the Rh800-S[8] complex was determined to be 1:1 with a dissociation constant of 2.2 μM in PBS. The addition of ACh to the aqueous solution of the Rh800-S[8] complex caused a fluorescence increase of Rh800, resulting from a competitive replacement of Rh800 by ACh in the complex. From the fluorescence change by the competitive fluorophore replacement, stoichiometry of the Rh800-ACh complex was found to be 1:1 with a dissociation constant of 1.7 mM. The effects of other neurotransmitters on the fluorescence spectra of the Rh800-S[8] complex were examined for dopamine, GABA, glycine, and l-asparatic acid. Among the neurotransmitters examined, fluorescence response of the Rh800-S[8] complex was highly specific to ACh. Rh800-S[8] complexes can be used as a NIR fluorescent probe for the detection of ACh (5 × 10−4−10−3 M) in PBS buffer (pH = 7.2). PMID:22294934

  12. Immunotargeting of Integrin α6β4 for Single-Photon Emission Computed Tomography and Near-Infrared Fluorescence Imaging in a Pancreatic Cancer Model

    PubMed Central

    Tsuji, Atsushi B.; Sudo, Hitomi; Sugyo, Aya; Furukawa, Takako; Ukai, Yoshinori; Kurosawa, Yoshikazu; Saga, Tsuneo

    2016-01-01

    To explore suitable imaging probes for early and specific detection of pancreatic cancer, we demonstrated that α6β4 integrin is a good target and employed single-photon emission computed tomography (SPECT) or near-infrared (NIR) imaging for immunotargeting. Expression levels of α6β4 were examined by Western blotting and flow cytometry in certain human pancreatic cancer cell lines. The human cell line BxPC-3 was used for α6β4-positive and a mouse cell line, A4, was used for negative counterpart. We labeled antibody against α6β4 with Indium-111 (111In) or indocyanine green (ICG). After injection of 111In-labeled probe to tumor-bearing mice, biodistribution, SPECT, autoradiography (ARG), and immunohistochemical (IHC) studies were conducted. After administration of ICG-labeled probe, in vivo and ex vivo NIR imaging and fluorescence microscopy of tumors were performed. BxPC-3 tumor showed a higher radioligand binding in SPECT and higher fluorescence intensity as well as a delay in the probe washout in NIR imaging when compared to A4 tumor. The biodistribution profile of 111In-labeled probe, ARG, and IHC confirmed the α6β4 specific binding of the probe. Here, we propose that α6β4 is a desirable target for the diagnosis of pancreatic cancer and that it could be detected by radionuclide imaging and NIR imaging using a radiolabeled or ICG-labeled α6β4 antibody. PMID:27030400

  13. Quantitative Primary Tumor Indocyanine Green Measurements Predict Osteosarcoma Metastatic Lung Burden in a Mouse Model.

    PubMed

    Fourman, Mitchell S; Mahjoub, Adel; Mandell, Jon B; Yu, Shibing; Tebbets, Jessica C; Crasto, Jared A; Alexander, Peter E; Weiss, Kurt R

    2018-03-01

    Current preclinical osteosarcoma (OS) models largely focus on quantifying primary tumor burden. However, most fatalities from OS are caused by metastatic disease. The quantification of metastatic OS currently relies on CT, which is limited by motion artifact, requires intravenous contrast, and can be technically demanding in the preclinical setting. We describe the ability for indocyanine green (ICG) fluorescence angiography to quantify primary and metastatic OS in a previously validated orthotopic, immunocompetent mouse model. (1) Can near-infrared ICG fluorescence be used to attach a comparable, quantitative value to the primary OS tumor in our experimental mouse model? (2) Will primary tumor fluorescence differ in mice that go on to develop metastatic lung disease? (3) Does primary tumor fluorescence correlate with tumor volume measured with CT? Six groups of 4- to 6-week-old immunocompetent Balb/c mice (n = 6 per group) received paraphyseal injections into their left hindlimb proximal tibia consisting of variable numbers of K7M2 mouse OS cells. A hindlimb transfemoral amputation was performed 4 weeks after injection with euthanasia and lung extraction performed 10 weeks after injection. Histologic examination of lung and primary tumor specimens confirmed ICG localization only within the tumor bed. Mice with visible or palpable tumor growth had greater hindlimb fluorescence (3.5 ± 2.3 arbitrary perfusion units [APU], defined as the fluorescence pixel return normalized by the detector) compared with those with a negative examination (0.71 ± 0.38 APU, -2.7 ± 0.5 mean difference, 95% confidence interval -3.7 to -1.8, p < 0.001). A strong linear trend (r = 0.81, p < 0.01) was observed between primary tumor and lung fluorescence, suggesting that quantitative ICG tumor fluorescence is directly related to eventual metastatic burden. We did not find a correlation (r = 0.04, p = 0.45) between normalized primary tumor fluorescence and CT volumetric measurements. We

  14. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy.

    PubMed

    Liu, Yanlei; Zhi, Xiao; Yang, Meng; Zhang, Jingpu; Lin, Lingnan; Zhao, Xin; Hou, Wenxiu; Zhang, Chunlei; Zhang, Qian; Pan, Fei; Alfranca, Gabriel; Yang, Yuming; de la Fuente, Jesús M; Ni, Jian; Cui, Daxiang

    2017-01-01

    Different stimulus including pH, light and temperature have been used for controlled drug release to prevent drug inactivation and minimize side-effects. Herein a novel nano-platform (GNS@CaCO 3 /ICG) consisting of calcium carbonate-encapsulated gold nanostars loaded with ICG was established to couple the photothermal properties of gold nanostars (GNSs) and the photodynamic properties of indocyanine green (ICG) in the photodynamic/photothermal combination therapy (PDT/PTT). In this study, the calcium carbonate worked not only a drug keeper to entrap ICG on the surface of GNSs in the form of a stable aggregate which was protected from blood clearance, but also as the a pH-responder to achieve highly effective tumor-triggered drug release locally. The application of GNS@CaCO 3 /ICG for in vitro and in vivo therapy achieved the combined antitumor effects upon the NIR irradiation, which was superior to the single PDT or PTT. Meanwhile, the distinct pH-triggered drug release performance of GNS@CaCO 3 /ICG implemented the tumor-targeted NIR fluorescence imaging. In addition, we monitored the bio-distribution and excretion pathway of GNS@CaCO 3 /ICG based on the NIR fluorescence from ICG and two-photon fluorescence and photoacoustic signal from GNSs, and the results proved that GNS@CaCO 3 /ICG had a great ability for tumor-specific and tumor-triggered drug release. We therefore conclude that the GNS@CaCO 3 /ICG holds great promise for clinical applications in anti-tumor therapy with tumor imaging or drug tracing.

  15. Laser-initiated decomposition products of indocyanine green (ICG) and carbon black sensitized biological tissues

    NASA Astrophysics Data System (ADS)

    Kokosa, John M.; Przyjazny, Andrzej; Bartels, Kenneth E.; Motamedi, Massoud; Hayes, Donald J.; Wallace, David B.; Frederickson, Christopher J.

    1997-05-01

    Organic dyes have found increasing use a s sensitizers in laser surgical procedures, due to their high optical absorbances. Little is known, however, about the nature of the degradation products formed when these dyes are irradiated with a laser. Previous work in our laboratories has shown that irradiation of polymeric and biological tissues with CO2 and Nd:YAG lasers produces a host of volatile and semivolatile by-products, some of which are known to be potential carcinogens. This work focuses on the identification of the chemical by-products formed by diode laser and Nd:YAG laser irradiation of indocyanine green (ICG) and carbon black based ink sensitized tissues, including bone, tendon and sheep's teeth. Samples were mounted in a 0.5-L Pyrex sample chamber equipped with quartz optical windows, charcoal filtered air inlet and an outlet attached to an appropriate sample trap and a constant flow pump. By-products were analyzed by GC/MS and HPLC. Volatiles identified included benzene and formaldehyde. Semi-volatiles included traces of polycyclic aromatics, arising from the biological matrix and inks, as well as fragments of ICG and the carbon ink components. The significance of these results will be discussed, including the necessity of using appropriate evacuation devices when utilizing lasers for surgical procedures.

  16. Multispectral photoacoustic characterization of ICG and porcine blood using an LED-based photoacoustic imaging system

    NASA Astrophysics Data System (ADS)

    Shigeta, Yusuke; Sato, Naoto; Kuniyil Ajith Singh, Mithun; Agano, Toshitaka

    2018-02-01

    Photoacoustic imaging is a hybrid biomedical imaging modality that has emerged over the last decade. In photoacoustic imaging, pulsed-light absorbed by the target emits ultrasound that can be detected using a conventional ultrasound array. This ultrasound data can be used to reconstruct the location and spatial details of the intrinsic/extrinsic light absorbers in the tissue. Recently we reported on the development of a multi-wavelength high frame-rate LED-based photoacoustic/ultrasound imaging system (AcousticX). In this work, we photoacoustically characterize the absorption spectrum of ICG and porcine blood using LED arrays with multiple wavelengths (405, 420, 470, 520, 620, 660, 690, 750, 810, 850, 925, 980 nm). Measurements were performed in a simple reflection mode configuration in which LED arrays where fixed on both sides of the linear array ultrasound probe. Phantom used consisted of micro-test tubes filled with ICG and porcine blood, which were placed in a tank filled with water. The photoacoustic spectrum obtained from our measurements matches well with the reference absorption spectrum. These results demonstrate the potential capability of our system in performing clinical/pre-clinical multispectral photoacoustic imaging.

  17. Pure laparoscopic hepatectomy with augmented reality-assisted indocyanine green fluorescence versus open hepatectomy for hepatocellular carcinoma with liver cirrhosis: A propensity analysis at a single center.

    PubMed

    Cheung, Tan To; Ma, Ka Wing; She, Wong Hoi; Dai, Wing Chiu; Tsang, Simon Hing Yin; Chan, Albert Chi Yan; Chok, Kenneth Siu Ho; Lo, Chung Mau

    2018-05-10

    Laparoscopic hepatectomy is considered an acceptable treatment of choice in selected patients with primary hepatocellular carcinoma (HCC). Whether indocyanine green (ICG) immunofluorescence, a new technology, may improve surgery outcomes has yet to be tested. The aim of the present study was to investigate and compare the effect of ICG fluorescence imaging on the outcomes of pure laparoscopic hepatectomy and open hepatectomy for primary HCC with background cirrhosis. From January 2015 to June 2016, 20 patients with HCC and liver cirrhosis underwent laparoscopic hepatectomy with ICG immunofluorescence. The outcomes of pure laparoscopic hepatectomy with ICG immunofluorescence were compared with those of open hepatectomy. To avoid selection bias, patients were propensity score matched in a ratio of 1 : 6, with 20 patients in the laparoscopic group and 120 in the open group. The laparoscopic group had 20 patients, and the open group had 120 patients. The laparoscopic group had less blood loss (125 vs 450 mL, P < 0.001), a shorter operation time (200 vs 250 min, P = 0.003), and a shorter hospital stay (5 vs 6 days, P < 0.001). The complication rate was 0% in the laparoscopic group compared to 15.0% in the open group (P = 0.135). All patients in the laparoscopic group had negative margin involvement. Four patients (3.3%) in the open resection group had positive margin involvement. Two patients in the ICG immunofluorescence group had additional lesions identified and resected during operation. Pure laparoscopic hepatectomy with ICG immunofluorescence for primary HCC can be carried out safely with favorable short-term outcomes even in cirrhotic patients. Better identification of the bile duct structure and better assessment of the tumor resection margin and perfusion are advantages of this new technique. © 2018 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  18. Three-dimensional dynamics of temperature fields in phantoms and biotissue under IR laser photothermal therapy using gold nanoparticles and ICG dye

    NASA Astrophysics Data System (ADS)

    Akchurin, Georgy G.; Garif, Akchurin G.; Maksimova, Irina L.; Skaptsov, Alexander A.; Terentyuk, Georgy S.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.; Tuchin, Valery V.

    2010-02-01

    We describe applications of silica (core)/gold (shell) nanoparticles and ICG dye to photothermal treatment of phantoms, biotissue and spontaneous tumor of cats and dogs. The laser irradiation parameters were optimized by preliminary experiments with laboratory rats. Three dimensional dynamics of temperature fields in tissue and solution samples was measured with a thermal imaging system. It is shown that the temperature in the volume region of nanoparticles localization can substantially exceed the surface temperature recorded by the thermal imaging system. We have demonstrated effective optical destruction of cancer cells by local injection of plasmon-resonant gold nanoshells and ICG dye followed by continuous wave (CW) diode laser irradiation at wavelength 808 nm.

  19. The use of intraoperative near-infrared indocyanine green videoangiography in the microscopic resection of hemangioblastomas.

    PubMed

    Tamura, Yoji; Hirota, Yuki; Miyata, Shiro; Yamada, Yoshitaka; Tucker, Adam; Kuroiwa, Toshihiko

    2012-08-01

    The authors assessed the usefulness of intraoperative near-infrared indocyanine green videoangiography (ICG-VA) in the microscopic resection of hemangioblastomas. From January 2009 to February 2012, nine consecutive patients (seven men, two women) who underwent surgery for hemangioblastomas using intraoperative ICG-VA were included in this study. Surgery was performed on four cystic cerebellar lesions with mural nodules, two solid tumors (one in the cerebellar hemisphere and one in the medulla oblongata), one spinal tumor and multiple tumors in two patients with von Hippel-Lindau disease. Of the nine patients, three were treated for recurrent tumor. The ICG-induced fluorescence images of hemangioblastomas with variable presentation were evaluated. All tumors could be completely removed en bloc. Blood flow in the tumor and tumor-related vessels at the brain surface were clearly detected by ICG-VA in all cases, except one recurrent tumor where postoperative adhesive scar tissue obstructed ICG-induced fluorescence resulting in poor delineation of the blood flow patterns and tumor margins. ICG-VA was also helpful for detecting the multiple small mural nodules within the cyst or the tumors buried under thin gliotic neural tissue despite reduced fluorescence. Intraoperative ICG-VA is a safe and easy modality for confirming the vascular flow patterns in hemangioblastomas. In addition, ICG-VA provided useful information for intracystic small lesions or lesions concealed under thin brain tissue in order to accomplish total resection of these tumors.

  20. Use of invisible near infrared light fluorescence with indocyanine green and methylene blue in urology. Part 2.

    PubMed

    Polom, Wojciech; Markuszewski, Marcin; Rho, Young Soo; Matuszewski, Marcin

    2014-01-01

    In the second part of this paper, concerning the use of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urology, other possible uses of this new technique will be presented. In kidney transplantation, this concerns allograft perfusion and real time NIR-guided angiography; moreover, perfusion angiography of tissue flaps, NIRF visualization of ureters, NIR-guided visualization of urinary calcifications, NIRF in male infertility and semen quality assessment. In this part, we have also analysed cancer targeting and imaging fluorophores as well as cost benefits associated with the use of these new techniques. PubMed and Medline databases were searched for ICG and MB use in urological settings, along with data published in abstracts of urological conferences. Although NIR-guided ICG and MB are still in their initial phases, there have been significant developments in a few more major domains of urology, including 1) kidney transplantation: kidney allograft perfusion and vessel reconstruction; 2) angiography perfusion of tissue flaps; 3) visualization of ureters; 4) visualization of urinary calcifications; and 5) NIRF in male infertility and semen quality assessment. Near infrared technology in urology is at its early stages. More studies are needed to assess the true potential and limitations of the technology. Initial studies show that this pioneering tool may influence various aspects of urology.

  1. Patent blue V and indocyanine green for fluorescence microimaging of human peritoneal carcinomatosis using probe-based confocal laser endomicroscopy.

    PubMed

    Abbaci, Muriel; Dartigues, Peggy; De Leeuw, Frederic; Soufan, Ranya; Fabre, Monique; Laplace-Builhé, Corinne

    2016-12-01

    Peritoneal carcinomatosis is a metastatic stage aggravating abdominal and pelvic cancer dissemination. The preoperative evaluation of lesions remains difficult today. Probe-based confocal laser endomicroscopy (pCLE) provides dynamic images of tissue architecture and cellular details. This technology allows in vivo histological interpretation of tissue. The main limitation of pCLE for adoption in the clinic is the unavailability of fluorescent contrast agents. The aim of our study was to evaluate the staining performance of indocyanine green and patent blue V for histological diagnosis of pCLE images of pathological and non-pathological peritoneal tissue. We performed a correlative study with the histological gold standard on ex vivo human specimens from 25 patients operated for peritoneal carcinomatosis; 70 specimens were stained by topical application with ICG or patent blue V and then imaged with a probe-based confocal laser endomicroscope. A total of 350 pCLE images and 70 corresponding histological sections were randomly and blindly interpreted by two pathologists (PT1 and PT2). The images were first classified into two categories, tumoral versus non-tumoral, and a refined histological diagnosis was then given. All presented images were interpreted by PT1 (who received prior training on PCLE image reading) and PT2 (no training). 100 % sensitivity for PT1 and PT2 was noticed with tissues stained with ICG to differentiate tumoral and non-tumoral tissue. Global scores were always better for PT1 (major concordance between 86 and 94 %) than for PT2 (major concordance between 77 and 89 %) independently of the fluorescent dye when histological diagnosis was done on pCLE images. In conclusion, the pair ICG-pCLE offers the best combination for a non-trained pathologist for the interpretation of pCLE images from peritoneum.

  2. Fluorescence lifetime imaging to differentiate bound from unbound ICG-cRGD both in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Stegehuis, Paulien L.; Boonstra, Martin C.; de Rooij, Karien E.; Powolny, François E.; Sinisi, Riccardo; Homulle, Harald; Bruschini, Claudio; Charbon, Edoardo; van de Velde, Cornelis J. H.; Lelieveldt, Boudewijn P. F.; Vahrmeijer, Alexander L.; Dijkstra, Jouke; van de Giessen, Martijn

    2015-03-01

    Excision of the whole tumor is crucial, but remains difficult for many tumor types. Fluorescence lifetime imaging could be helpful intraoperative to differentiate normal from tumor tissue. In this study we investigated the difference in fluorescence lifetime imaging of indocyanine green coupled to cyclic RGD free in solution/serum or bound to integrins e.g. in tumors. The U87-MG glioblastoma cell line, expressing high integrin levels, was cultured to use in vitro and to induce 4 subcutaneous tumors in a-thymic mice (n=4). Lifetimes of bound and unbound probe were measured with an experimental time-domain single-photon avalanche diode array (time resolution <100ps). In vivo measurements were taken 30-60 minutes after intravenous injection, and after 24 hours. The in vitro lifetime of the fluorophores was similar at different concentrations (20, 50 and 100μM) and showed a statistically significant higher lifetime (p<0.001) of bound probe compared to unbound probe. In vivo, lifetimes of the fluorophores in tumors were significantly higher (p<0.001) than at the control site (tail) at 30-60 minutes after probe injection. Lifetimes after 24 hours confirmed tumor-specific binding (also validated by fluorescence intensity images). Based on the difference in lifetime imaging, it can be concluded that it is feasible to separate between bound and unbound probes in vivo.

  3. Real-time Visualization and Quantification of Retrograde Cardioplegia Delivery using Near Infrared Fluorescent Imaging

    PubMed Central

    Rangaraj, Aravind T.; Ghanta, Ravi K.; Umakanthan, Ramanan; Soltesz, Edward G.; Laurence, Rita G.; Fox, John; Cohn, Lawrence H.; Bolman, R. M.; Frangioni, John V.; Chen, Frederick Y.

    2009-01-01

    Background and Aim of the Study Homogeneous delivery of cardioplegia is essential for myocardial protection during cardiac surgery. Presently, there exist no established methods to quantitatively assess cardioplegia distribution intraoperatively and determine when retrograde cardioplegia is required. In this study, we evaluate the feasibility of near infrared (NIR) imaging for real-time visualization of cardioplegia distribution in a porcine model. Methods A portable, intraoperative, real-time NIR imaging system was utilized. NIR fluorescent cardioplegia solution was developed by incorporating indocyanine green (ICG) into crystalloid cardioplegia solution. Real-time NIR imaging was performed while the fluorescent cardioplegia solution was infused via the retrograde route in 5 ex-vivo normal porcine hearts and in 5 ex-vivo porcine hearts status post left anterior descending (LAD) coronary artery ligation. Horizontal cross-sections of the hearts were obtained at proximal, middle, and distal LAD levels. Videodensitometry was performed to quantify distribution of fluorophore content. Results The progressive distribution of cardioplegia was clearly visualized with NIR imaging. Complete visualization of retrograde distribution occurred within 4 minutes of infusion. Videodensitometry revealed that retrograde cardioplegia primarily distributed to the left ventricle and anterior septum. In hearts with LAD ligation, antegrade cardioplegia did not distribute to the anterior left ventricle. This deficiency was compensated for with retrograde cardioplegia supplementation. Conclusions Incorporation of ICG into cardioplegia allows real-time visualization of cardioplegia delivery via NIR imaging. This technology may prove useful in guiding intraoperative decisions pertaining to when retrograde cardioplegia is mandated. PMID:19016995

  4. Real-time visualization and quantification of retrograde cardioplegia delivery using near infrared fluorescent imaging.

    PubMed

    Rangaraj, Aravind T; Ghanta, Ravi K; Umakanthan, Ramanan; Soltesz, Edward G; Laurence, Rita G; Fox, John; Cohn, Lawrence H; Bolman, R M; Frangioni, John V; Chen, Frederick Y

    2008-01-01

    Homogeneous delivery of cardioplegia is essential for myocardial protection during cardiac surgery. Presently, there exist no established methods to quantitatively assess cardioplegia distribution intraoperatively and determine when retrograde cardioplegia is required. In this study, we evaluate the feasibility of near infrared (NIR) imaging for real-time visualization of cardioplegia distribution in a porcine model. A portable, intraoperative, real-time NIR imaging system was utilized. NIR fluorescent cardioplegia solution was developed by incorporating indocyanine green (ICG) into crystalloid cardioplegia solution. Real-time NIR imaging was performed while the fluorescent cardioplegia solution was infused via the retrograde route in five ex vivo normal porcine hearts and in five ex vivo porcine hearts status post left anterior descending (LAD) coronary artery ligation. Horizontal cross-sections of the hearts were obtained at proximal, middle, and distal LAD levels. Videodensitometry was performed to quantify distribution of fluorophore content. The progressive distribution of cardioplegia was clearly visualized with NIR imaging. Complete visualization of retrograde distribution occurred within 4 minutes of infusion. Videodensitometry revealed retrograde cardioplegia, primarily distributed to the left ventricle (LV) and anterior septum. In hearts with LAD ligation, antegrade cardioplegia did not distribute to the anterior LV. This deficiency was compensated for with retrograde cardioplegia supplementation. Incorporation of ICG into cardioplegia allows real-time visualization of cardioplegia delivery via NIR imaging. This technology may prove useful in guiding intraoperative decisions pertaining to when retrograde cardioplegia is mandated.

  5. Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy.

    PubMed

    Wang, Yazhe; Wang, Cheng; Ding, Yang; Li, Jing; Li, Min; Liang, Xiao; Zhou, Jianping; Wang, Wei

    2016-12-01

    Photodynamic therapy has emerged as a promising strategy for cancer treatment. To ensure the efficient delivery of a photosensitizer to tumor for anticancer effect, a safe and tumor-specific delivery system is highly desirable. Herein, we introduce a novel biomimetic nanoparticle named rHDL/ICG (rHDL/I), by loading amphiphilic near-infrared (NIR) fluorescent dye indocyanine green (ICG) into reconstituted high density lipoproteins (rHDL). In this system, rHDL can mediate photoprotection effect and receptor-guided tumor-targeting transportation of cargos into cells. Upon NIR irradiation, ICG can generate fluorescent imaging signals for diagnosis and monitoring therapeutic activity, and produce singlet oxygen to trigger photodynamic therapy (PDT). Our studies demonstrated that rHDL/I exhibited excellent size and fluorescence stability, light-triggered controlled release feature, and neglectable hemolytic activity. It also showed equivalent NIR response compared to free ICG under laser irradiation. Importantly, the fluorescent signal of ICG loaded in rHDL/I could be visualized subcellularly in vitro and exhibited metabolic distribution in vivo, presenting superior tumor targeting and internalization. This NIR-triggered image-guided nanoparticle produced outstanding therapeutic outcomes against cancer cells, demonstrating great potential of biomimetic delivery vehicles in future clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. [Evaluation of green indocyanine interest compared to Technetium in sentinel lymph node detection in breast cancer].

    PubMed

    Guenane, Y; Gorj, M; Nguyen, V; Revol, M; Mazouz-Dorval, S

    2016-12-01

    Axillary sentinel lymph node (SN) biopsy by using indocyanine green (ICG) fluorescence for breast cancer is a recent technique. However, compared to Technetium-99m (Tc), which is the reference technique, its efficiency has received little testing. Between December 2013 and January 2014, 40 patients with node-negative breast cancer underwent SN biopsy by injecting sub areolar Tc in preoperative stage and injecting sub areolar ICG in intraoperative stage. SN were previously identified and resected by using ICG coupled with infrared camera. After resection of fluorescent SN, we check its radioactivity with a gamma probe (isotopic method). In case of residual radioactive labeling in the axillary crease, we remove the remaining SN. We have retrospectively analyzed the SN detection concordance rates of these two methods. In total we resected 53 SN, among which 48 (90.6%) were indocyanine green positive and 53 (100%) Tc positive. The remaining 5 SN were all ICG negative and Tc positive. Using ICG has not caused any side effect. SN detection for breast cancer by using ICG fluorescence is a promising, reliable technique which nonetheless requires a degree of expertise before reaching similar results as the Tc technique. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.

    PubMed

    Onda, Nobuhiko; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    Indocyanine green (ICG) is a fluorescent agent approved for clinical applications by the Food and Drug Administration and European Medicines Agency. This study examined the mechanism of tumor imaging using intravenously administered ICG. The in vivo kinetics of intravenously administered ICG were determined in tumor xenografts using microscopic approaches that enabled both spatio-temporal and high-magnification analyses. The mechanism of ICG-based tumor imaging was examined at the cellular level in six phenotypically different human colon cancer cell lines exhibiting different grades of epithelioid organization. ICG fluorescence imaging detected xenograft tumors, even those < 1 mm in size, based on their preferential cellular uptake and retention of the dye following its rapid tissue-non-specific delivery, in contrast to its rapid clearance by normal tissue. Live-cell imaging revealed that cellular ICG uptake is temperature-dependent and occurs after ICG binding to the cellular membrane, a pattern suggesting endocytic uptake as the mechanism. Cellular ICG uptake correlated inversely with the formation of tight junctions. Intracellular ICG was entrapped in the membrane traffic system, resulting in its slow turnover and prolonged retention by tumor cells. Our results suggest that tumor-specific imaging by ICG involves non-specific delivery of the dye to tissues followed by preferential tumor cellular uptake and retention. The tumor cell-preference of ICG is driven by passive tumor cell-targeting, the inherent ability of ICG to bind to cell membranes, and the high endocytic activity of tumor cells in association with the disruption of their tight junctions. © 2016 UICC.

  8. [A Case of Gastric Cancer with Splenic Artery Aneurysm, Intraoperative ICG Fluorography Is Useful in Evaluating the Blood Flow of Stomach and Spleen].

    PubMed

    Usui, Kenji; Sakamoto, Kaoru; Akabane, Kentaro; Hayasaka, Kazuki; Mizuki, Toru; Yagi, Yutaka; Shirahata, Yasuhiro; Ichikawa, Hiroshi; Hanyu, Takaaki; Ishikawa, Takashi; Kameyama, Hitoshi; Suzuki, Satoshi; Saito, Kiyohiro; Wakai, Toshifumi

    2017-11-01

    An 81-year-oldwoman with advancedgastric cancer was referredto our hospital. Preoperative contrast-enhancedCT revealeda roundcalcification of the splenic hilum with 15mm in diameter as a splenic artery aneurysm. She underwent transcatheter arterial embolization(TAE)for the splenic artery aneurysm. Celiac artery angiography showedcollateral arterial network of the spleen from left gastric artery. Surgery for the gastric cancer was performed1 4 days after TAE. We cut the right gastric andbilateral epigastric arteries. After the left gastric artery clamping, we performedintraoperative indocyanine green(ICG)fluorography. ICG fluorography confirmedthat the bloodflow of the upper thirdof the stomach andspleen were maintained. We safely performed distal gastrectomy, and the postoperative course was uneventful.

  9. Fully integrated optical coherence tomography, ultrasound, and indocyanine green based fluorescence tri-modality system for intravascular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Yan; Jing, Joseph C.; Qu, Yueqiao; Miao, Yusi; Ma, Teng; Yu, Mingyue; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    The rupture of atherosclerotic plaques is the leading cause of acute coronary events, so accurate assessment of plaque is critical. A large lipid pool, thin fibrous cap, and inflammatory reaction are the crucial characteristics for identifying vulnerable plaques. In our study, a tri-modality imaging system for intravascular imaging was designed and implemented. The tri-modality imaging system with a 1-mm probe diameter is able to simultaneously acquire optical coherence tomography (OCT), intravascular ultrasound (IVUS), and fluorescence imaging. Moreover, for fluorescence imaging, we used the FDA-approved indocyanine green (ICG) dye as the contrast agent to target lipid-loaded macrophages. Firstly, IVUS is used as the first step for identifying plaque since IVUS enables the visualization of the layered structures of the artery wall. Due to low soft-tissue contrast, IVUS only provides initial identification of the lipid plaque. Then OCT is used for differentiating fibrosis and lipid pool based on its relatively higher soft tissue contrast and high sensitivity/specificity. Last, fluorescence imaging is used for identifying inflammatory reaction to further confirm whether the plaque is vulnerable or not. Ex vivo experiment of a male New Zealand white rabbit aorta was performed to validate the performance of our tri-modality system. H and E histology results of the rabbit aorta were also presented to check assessment accuracy. The miniature tri-modality probe, together with the use of ICG dye suggest that the system is of great potential for providing a more accurate assessment of vulnerable plaques in clinical applications.

  10. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates

    PubMed Central

    Chen, Jin; Venugopal, Vivek; Intes, Xavier

    2011-01-01

    Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610

  11. Biodistribution of Encapsulated Indocyanine Green in Healthy Mice

    PubMed Central

    Yaseen, Mohammad A.; Yu, Jie; Jung, Bongsu; Wong, Michael S.; Anvari, Bahman

    2009-01-01

    Indocyanine Green (ICG) is a fluorescent probe used in various optically-mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and non-specific localization. We have encapsulated ICG within electrostatically-assembled mesocapsules (MCs) to explore its potential for targeted optical diagnosis and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely the liver and spleen, as well as the lungs. The circulation kinetics of ICG remained unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies. PMID:19799463

  12. Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy.

    PubMed

    Weng, Yangziwan; Guan, Shanyue; Lu, Heng; Meng, Xiangmin; Kaassis, Abdessamad Y; Ren, Xiaoxue; Qu, Xiaozhong; Sun, Chenghua; Xie, Zheng; Zhou, Shuyun

    2018-07-01

    It is a great challenge to develop multifunctional nanocarriers for cancer diagnosis and therapy. Herein, versatile CDs/ICG-uLDHs nanovehicles for triple-modal fluorescence/photoacoustic/two-photon bioimaging and effective photothermal therapy were prepared via a facile self-assembly of red emission carbon dots (CDs), indocyanine green (ICG) with the ultrathin layered double hydroxides (uLDHs). Due to the J-aggregates of ICG constructed in the self-assembly process, CDs/ICG-uLDHs was able to stabilize the photothermal agent ICG and enhanced its photothermal efficiency. Furthermore, the unique confinement effect of uLDHs has extended the fluorescence lifetime of CDs in favor of bioimaging. Considering the excellent in vitro and in vivo phototherapeutics and multimodal imaging effects, this work provides a promising platform for the construction of multifunctional theranostic nanocarrier system for the cancer treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Infrared-laser-based fundus angiography

    NASA Astrophysics Data System (ADS)

    Klingbeil, Ulrich; Canter, Joseph M.; Lesiecki, Michael L.; Reichel, Elias

    1994-06-01

    Infrared fundus angiography, using the fluorescent dye indocyanine green (ICG), has shown great potential in delineating choroidal neovascularization (CNV) otherwise not detectable. A digital retinal imaging system containing a diode laser for illumination has been developed and optimized to perform high sensitivity ICG angiography. The system requires less power and generates less pseudo-fluorescence background than nonlaser devices. During clinical evaluation at three retinal centers more than 200 patients, the majority of which had age-related macular degeneration, were analyzed. Laser based ICG angiography was successful in outlining many of the ill-defined or obscure CNV as defined by fluorescein angiography. The procedure was not as successful with classic CNV. ICG angiograms were used to prepare and guide laser treatment.

  14. Targeting of Pancreatic Cancer with Magneto-Fluorescent Theranostic Gold Nanoshells

    PubMed Central

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C.; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V.; Guha, Sushovan; Pautler, Robia G.; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    Aim We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Materials and Methods Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the NIR dye ICG, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Results AntiNGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2 weighted MR imaging with higher tumor contrast than can be obtained using long-circulating but non-targeted PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. Conclusions Theranostic gold nanoshells with embedded NIR and MR contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy. PMID:24063415

  15. Precise diagnosis in different scenarios using photoacoustic and fluorescence imaging with dual-modality nanoparticles

    NASA Astrophysics Data System (ADS)

    Peng, Dong; Du, Yang; Shi, Yiwen; Mao, Duo; Jia, Xiaohua; Li, Hui; Zhu, Yukun; Wang, Kun; Tian, Jie

    2016-07-01

    Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases.Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide

  16. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates

    PubMed Central

    Xu, Yan; Zanganeh, Saeid; Mohammad, Innus; Aguirre, Andres; Wang, Tianheng; Yang, Yi; Kuhn, Liisa; Smith, Michael B.

    2013-01-01

    Abstract. Tumor hypoxia is a major indicator of treatment resistance to chemotherapeutic drugs, and fluorescence optical tomography has tremendous potential to provide clinically useful, functional information by identifying tumor hypoxia. The synthesis of a 2-nitroimidazole-indocyanine green conjugate using a piperazine linker (piperazine-2-nitroimidazole-ICG) capable of robust fluorescent imaging of tumor hypoxia is described. In vivo mouse tumor imaging studies were completed and demonstrate an improved imaging capability of the new dye relative to an earlier version of the dye that was synthesized with an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG). Mouse tumors located at imaging depths of 1.5 and 2.0 cm in a turbid medium were imaged at various time points after intravenous injection of the dyes. On average, the reconstructed maximum fluorescence concentration of the tumors injected with piperazine-2-nitroimidazole-ICG was twofold higher than that injected with ethanolamine-2-nitroimidazole-ICG within 3 h postinjection period and 1.6 to 1.7 times higher beyond 3 h postinjection. The untargeted bis-carboxylic acid ICG completely washed out after 3 h postinjection. Thus, the optimal window to assess tumor hypoxia is beyond 3 h postinjection. These findings were supported with fluorescence images of histological sections of tumor samples and an immunohistochemistry technique for identifying tumor hypoxia. PMID:23764695

  17. Catheter-based time-gated near-infrared fluorescence/OCT imaging system

    NASA Astrophysics Data System (ADS)

    Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric

    2018-02-01

    We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.

  18. Fluorescence-based enhanced reality (FLER) for real-time estimation of bowel perfusion in minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Diana, Michele

    2016-03-01

    Pre-anastomotic bowel perfusion is a key factor for a successful healing process. Clinical judgment has limited accuracy to evaluate intestinal microperfusion. Fluorescence videography is a promising tool for image-guided intraoperative assessment of the bowel perfusion at the future anastomotic site in the setting of minimally invasive procedures. The standard configuration for fluorescence videography includes a Near-Infrared endoscope able to detect the signal emitted by a fluorescent dye, more frequently Indocyanine Green (ICG), which is administered by intravenous injection. Fluorescence intensity is proportional to the amount of fluorescent dye diffusing in the tissue and consequently is a surrogate marker of tissue perfusion. However, fluorescence intensity alone remains a subjective approach and an integrated computer-based analysis of the over-time evolution of the fluorescence signal is required to obtain quantitative data. We have developed a solution integrating computer-based analysis for intra-operative evaluation of the optimal resection site, based on the bowel perfusion as determined by the dynamic fluorescence intensity. The software can generate a "virtual perfusion cartography", based on the "fluorescence time-to-peak". The virtual perfusion cartography can be overlapped onto real-time laparoscopic images to obtain the Enhanced Reality effect. We have defined this approach FLuorescence-based Enhanced Reality (FLER). This manuscript describes the stepwise development of the FLER concept.

  19. In vivo experimental study on laser welded ICG-loaded chitosan patches for vessel repair

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Esposito, Giuseppe; Albanese, Alessio; Puca, Alfredo; Maira, Giulio; Rossi, Giacomo; Pini, Roberto

    2011-03-01

    Laser welding of microvessels provides several advantages over conventional suturing techniques: surgical times reduction, vascular healing process improvement, tissue damage reduction. We present the first application of biopolymeric patches in an in vivo laser assisted procedure for vessel repair. The study was performed in 20 New Zealand rabbits. After anesthesia, a 3-cm segment of the right common carotid artery was exposed and clamped proximally and distally. A linear lesion 3 mm in length was carried out. We used a diode laser emitting at 810 nm and equipped with a 300 μm diameter optical fiber. To close the cut, ICG-loaded chitosan films were prepared: chitosan is characterized by biodegradability, biocompatibility, antimicrobial, haemostatic and wound healing-promoting activity. ICG is an organic chromophore commonly used in the laser welding procedures to mediate the photothermal conversion at the basis of the welding effect. The membranes were used to wrap the whole length of the cut, and then they were welded in the correct position by delivering single laser spots to induce local patch/tissue adhesion. The result is an immediate closure of the wound, with no bleeding at clamps release. The animals were observed during follow-up and sacrificed after 2, 7, 30 and 90 days. All the repaired vessels were patent, no bleeding signs were documented. The carotid samples underwent histological examinations. The advantages of the proposed technique are: simplification of the surgical procedure and shortening of the operative time; good strength of the vessel repair; decreased foreign-body reaction, reduced inflammatory response and improved vascular healing process.

  20. In vivo imaging of small animals with optical tomography and near-infrared fluorescent probes

    NASA Astrophysics Data System (ADS)

    Palmer, Matthew R.; Shibata, Yasushi; Kruskal, Jonathan B.; Lenkinski, Robert E.

    2002-06-01

    A developmental optical tomography has been designed for imaging small animals in vivo using near IR fluorophores. The system employs epi-illumination via a 450 W Xe arc lamp, filtered and collimated to illuminate a 10 cm square movable stage. Emission light is filtered then collected by a high- resolution, high quantum efficiency, cooled CCD camera. Stage movement and image acquisition are under the control of a personal computer running system integration and automation software. During an experiment, the anesthetized animal is secured to the stage and up to 200 projections can be acquired over 180 degrees rotation. Angular sampling of the light distribution at a point on the surface is used to determine relative contributions form ballistic and diffuse photons. We have employed the system to investigate a number of applications of in-vivo fluorescent imaging. In dynamic studies, hepatic function has been visualized in nude mice following intravenous injection of indocyanine green (ICG) and cerebrospinal fluid flow as been measured by injection of ICG-lipoprotein conjugate in the subarachnoid space of the lumbar spine followed by dynamic imaging of the brain. Further applications in physiological imaging, cancer detection, and molecular imaging are under investigation in our laboratory.

  1. Fluorescence imaging with multifunctional polyglycerol sulfates: novel polymeric near-IR probes targeting inflammation.

    PubMed

    Licha, Kai; Welker, Pia; Weinhart, Marie; Wegner, Nicole; Kern, Sylvia; Reichert, Stefanie; Gemeinhardt, Ines; Weissbach, Carmen; Ebert, Bernd; Haag, Rainer; Schirner, Michael

    2011-12-21

    We present a highly selective approach for the targeting of inflammation with a multivalent polymeric probe. Dendritic polyglycerol was employed to synthesize a polyanionic macromolecular conjugate with a near-infrared fluorescent dye related to Indocyanine Green (ICG). On the basis of the dense assembly of sulfate groups which were generated from the polyol core, the resulting polyglycerol sulfate (molecular weight 12 kD with ~70 sulfate groups) targets factors of inflammation (IC(50) of 3-6 nM for inhibition of L-selectin binding) and is specifically transported into inflammatory cells. The in vivo accumulation studied by near-IR fluorescence imaging in an animal model of rheumatoid arthritis demonstrated fast and selective uptake which enabled the differentiation of diseased joints (score 1-3) with a 3.5-fold higher fluorescence level and a signal maximum at 60 min post injection. Localization in tissues using fluorescence histology showed that the conjugates are deposited in the inflammatory infiltrate in the synovial membrane, whereas nonsulfated control was not detected in association with disease. Hence, this type of polymeric imaging probe is an alternative to current bioconjugates and provides future options for targeted imaging and drug delivery.

  2. Fluorescence measurement of diode (805 nm) laser-induced release of 5,6-CF from DSPC liposomes for monitoring of temperature: an in vivo study in rat liver using indocyanine green potentiation

    NASA Astrophysics Data System (ADS)

    Mordon, Serge R.; Desmettre, Thomas; Devoisselle, Jean-Marie; Soulie-Begu, Sylvie

    1995-05-01

    This in-vivo study examines the validity of fluorescence measurement of laser-induced release of temperature sensitive liposome-encapsulated dye for monitoring of temperature and prediction of tissue thermal damage. It is performed in rat liver after i.v. injection of liposomes loaded with a fluorescent dye and i.v. injection of Indocyanine Green (ICG) for diode laser potentiation. Temperature sensitive liposomes (DSPC: Di- Stearoyl-Phosphatidyl-Choline) are loaded with 5,6-Carboxyfluorescein (5,6-CF). These liposomes (1.5 ml solution) and ICG (1.5 ml solution-5 mg/kg) are injected to adult male wistar rats. Two hours later, the liver is exposed and irradiated with a 0.8 W diode laser using pulses lasting from 1 s to 6 s (fluence ranging from 16 to 98 J/cm+2)). Simultaneously, the fluorescence emission is measured with a fluorescent imaging system. Results show that the fluorescence intensity increases linearly form 18 J/cm2 up to 75 J/cm2. These fluences correspond to surface temperatures between 42°C to 64°C. The measurements appear to be highly reproducible. In this temperature range, the accuracy is +/- 3°C. The maximum intensity is observed immediately after the laser is switched off and a decrease of the fluorescence intensity is observed (27% in 20 minutes) due to the 5.6-CF clearance. However, the ratio (IF/Ibck) remains almost stable over this period of time and the determination of the temperature is still possible with a good accuracy even 20 minutes after laser irradiation. In conclusion, temperature monitoring by using fluorescence measurement of laser-induced release of liposome-encapsulated dye is clearly demonstrated. This procedure could conceivably prove useful for controlling the thermal coagulation of biological tissues.

  3. Highly enhanced optical properties of indocyanine green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bae, Pan Kee; Jung, Juyeon; Chung, Bong Hyun

    2014-03-01

    The near-infrared (NIR) fluorescence probe has better tissue penetration and lower autofluorescence. Indocyanine green (ICG) is an NIR organic dye for extensive biological application, and it has been clinically approved for human medical imaging and diagnosis. However, application of this dye is limited by its numerous disadvantageous properties in aqueous solution, including its concentration-dependent aggregation, poor aqueous stability in vitro, and low quantum yield. Its use in molecular imaging probes is limited because it loses fluorescence after binding to nonspecific plasma proteins, leading to rapid elimination from the body with a half-life of 2 - 4 min. In this study, the multifunctional perfluorocarbon (PFC)/ICG nanoemulsions were investigated with the aim of overcoming these limitations. The PFC/ICG nanoemulsions as a new type of delivery vehicle for contrast agents have both NIR optical imaging and 19 F-MR imaging moieties. These nanoemulsions exhibited less aggregation, increased fluorescence intensity, long-term stability, and physicochemical stability against external light and temperature compared to free aqueous ICG. Also, the PFC/ICG bimodal nanoemulsions allow excellent detection of lymph nodes in vivo through NIR optical imaging and 19 F-MR imaging. This result showed the suitability of the proposed nanoemulsions for non-invasive lymph node mapping as they enable long-time detection of lymph nodes.

  4. Near-infrared indocyanine dye permits real-time characterization of both venous and lymphatic circulation

    NASA Astrophysics Data System (ADS)

    Kurahashi, Toshikazu; Iwatsuki, Katsuyuki; Onishi, Tetsuro; Arai, Tetsuya; Teranishi, Katsunori; Hirata, Hitoshi

    2016-08-01

    We investigated the optical properties of a near-infrared (NIR) fluorochrome, di-β-cyclodextrin-binding indocyanine derivative (TK-1), and its pharmacokinetic differences with indocyanine green (ICG). TK-1 was designed to have hydrophilic cyclodextrin molecules and, thus, for higher water solubility and smaller particle sizes than the plasma protein-bound ICG. We compared optical properties such as the absorption and fluorescence spectra, quantum yield, and photostability between both dyes in vitro. In addition, we subcutaneously injected a 1 mM solution of TK-1 or ICG into the hind footpad of rats and observed real-time NIR fluorescence intensities in their femoral veins and accompanying lymphatics at the exposed groin site to analyze the dye pharmacokinetics. These optical experiments demonstrated that TK-1 has high water solubility, a low self-aggregation tendency, and high optical and chemical stabilities. Our in vivo imaging showed that TK-1 was transported via peripheral venous flow and lymphatic flow, whereas ICG was drained only through lymphatics. The results of this study showed that lymphatic and venous transport can be differentially regulated and is most likely influenced primarily by particle size, and that TK-1 can enable real-time NIR fluorescence imaging of whole fluids and solute movement via both microvessels and lymphatics, which conventional ICG cannot achieve.

  5. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  6. [Use of indocyanine green angiography in oncological and reconstructive breast surgery].

    PubMed

    Struk, S; Honart, J-F; Qassemyar, Q; Leymarie, N; Sarfati, B; Alkhashnam, H; Mazouni, C; Rimareix, F; Kolb, F

    2018-02-01

    The Indocyanine green (ICG) is a soluble dye that is eliminated by the liver and excreted in bile. When illuminated by an near-infrared light, the ICG emits fluorescence in the near-infrared spectrum, which can be captured by a near-infrared camera-handled device. In case of intravenous injection, ICG may be used as a marker of skin perfusion. In case of interstitial injection, it may be useful for lymphatic network mapping. In oncological and reconstructive breast surgery, ICG is used for sentinel lymph node identification, to predict mastectomy skin flap necrosis, to assess the perfusion of free flaps in autologous reconstruction and for diagnosis and treatment of upper limb secondary lymphedema. Intraoperative indocyanine green fluorescence might also be used to guide the excision of nonpalpable breast cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Rethinking the Role of Nitroglycerin Ointment in Ischemic Vascular Filler Complications: An Animal Model With ICG Imaging.

    PubMed

    Hwang, Catherine J; Morgan, Payam V; Pimentel, Aline; Sayre, James W; Goldberg, Robert A; Duckwiler, Gary

    2016-01-01

    Soft tissue dermal fillers, both temporary and permanent, are used frequently in facial rejuvenation. As the use of fillers increases, ischemic complications including skin necrosis are becoming more prevalent. In the literature, topical nitroglycerin paste has been recommended in the early treatment of patients presenting with ischemia. The purpose of this study was to evaluate the vascular perfusion effects of topical nitroglycerin paste in an animal model using indocyanine green (ICG) imaging. After Animal Research Committee approval, a rabbit ear model was used to create filler-associated skin ischemia. Ischemia was confirmed to occur after intra-arterial occlusion. Four commonly used soft tissue fillers were injected intra-arterially: Radiesse (Merz USA, Greensboro NC), Restylane (Galderma, Ft. Worth, TX), Juvederm Ultra (Allergan, Irvine CA), Belotero (Merz USA, Greensboro NC) (0.1 ml). A total of 15 ears were used, 1 control and 4 experimental per product. Thirty minutes after occlusion, nitroglycerin ointment USP, 2%(Nitro-Bid) was applied topically to the experimental ears. Vascular perfusion was evaluated with the SPY System (Novadaq Inc.) using ICG imaging. Perfusion images were obtained at baseline, immediately after, and 30 minutes after intra-arterial filler injection, and at 30, 60, 90, and 120 minutes after application of topical nitroglycerin ointment. In this rabbit ear model, no statistically significant improvement in perfusion was noted after topical application of nitroglycerin paste with ICG imaging. In addition, the skin of the rabbit ear post-nitroglycerin ointment appeared to have more of a congested appearance than the controls. Ischemic filler complications are becoming increasingly prevalent. Practitioners often treat these complications with topical nitroglycerin paste based on the knowledge that topical nitroglycerin causes vasodilation. In filler-induced tissue ischemia, however, filler product is present within arterioles

  8. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green-Labeled Podoplanin Antibody.

    PubMed

    Ito, Akihiro; Ohta, Mitsuhiko; Kato, Yukinari; Inada, Shunko; Kato, Toshio; Nakata, Susumu; Yatabe, Yasushi; Goto, Mitsuo; Kaneda, Norio; Kurita, Kenichi; Nakanishi, Hayao; Yoshida, Kenji

    2018-01-01

    Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)-labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma-xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression-dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings.

  9. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green–Labeled Podoplanin Antibody

    PubMed Central

    Ito, Akihiro; Ohta, Mitsuhiko; Kato, Yukinari; Inada, Shunko; Kato, Toshio; Nakata, Susumu; Yatabe, Yasushi; Goto, Mitsuo; Kaneda, Norio; Kurita, Kenichi; Nakanishi, Hayao; Yoshida, Kenji

    2018-01-01

    Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)–labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma–xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression–dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings. PMID:29649929

  10. Visualized Evaluation of Blood Flow to the Gastric Conduit and Complications in Esophageal Reconstruction.

    PubMed

    Noma, Kazuhiro; Shirakawa, Yasuhiro; Kanaya, Nobuhiko; Okada, Tsuyoshi; Maeda, Naoaki; Ninomiya, Takayuki; Tanabe, Shunsuke; Sakurama, Kazufumi; Fujiwara, Toshiyoshi

    2018-03-01

    Evaluation of the blood supply to gastric conduits is critically important to avoid complications after esophagectomy. We began visual evaluation of blood flow using indocyanine green (ICG) fluorescent imaging in July 2015, to reduce reconstructive complications. In this study, we aimed to statistically verify the efficacy of blood flow evaluation using our simplified ICG method. A total of 285 consecutive patients who underwent esophagectomy and gastric conduit reconstruction were reviewed and divided into 2 groups: before and after introduction of ICG evaluation. The entire cohort and 68 patient pairs after propensity score matching (PS-M) were evaluated for clinical outcomes and the effect of visualized evaluation on reducing the risk of complication. The leakage rate in the ICG group was significantly lower than in the non-ICG group for each severity grade, both in the entire cohort (285 subjects) and after PS-M; the rates of other major complications, including recurrent laryngeal nerve palsy and pneumonia, were not different. The duration of postoperative ICU stay was approximately 1 day shorter in the ICG group than in the non-ICG group in the entire cohort, and approximately 2 days shorter after PS-M. Visualized evaluation of blood flow with ICG methods significantly reduced the rate of anastomotic complications of all Clavien-Dindo (CD) grades. Odds ratios for ICG evaluation decreased with CD grade (0.3419 for CD ≥ 1; 0.241 for CD ≥ 2; and 0.2153 for CD ≥ 3). Objective evaluation of blood supply to the reconstructed conduit using ICG fluorescent imaging reduces the risk and degree of anastomotic complication. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  11. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy

    PubMed Central

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-01-01

    Purpose The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. Methods A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. Results The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Conclusions Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells. PMID:27564519

  12. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy.

    PubMed

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-08-01

    The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells.

  13. A Classic Near-Infrared Probe Indocyanine Green for Detecting Singlet Oxygen.

    PubMed

    Tang, Cheng-Yi; Wu, Feng-Yao; Yang, Min-Kai; Guo, Yu-Min; Lu, Gui-Hua; Yang, Yong-Hua

    2016-02-06

    The revelation of mechanisms of photodynamic therapy (PDT) at the cellular level as well as singlet oxygen (¹O₂) as a second messengers requires the quantification of intracellular ¹O₂. To detect singlet oxygen, directly measuring the phosphorescence emitted from ¹O₂ at 1270 nm is simple but limited for the low quantum yield and intrinsic efficiency of ¹O₂ emission. Another method is chemically trapping ¹O₂ and measuring fluorescence, absorption and Electron Spin Resonance (ESR). In this paper, we used indocyanine green (ICG), the only near-infrared (NIR) probe approved by the Food and Drug Administration (FDA), to detect ¹O₂ in vitro. Once it reacts with ¹O₂, ICG is decomposed and its UV absorption at 780 nm decreases with the laser irradiation. Our data demonstrated that ICG could be more sensitive and accurate than Singlet Oxygen Sensor Green reagent(®) (SOSG, a commercialized fluorescence probe) in vitro, moreover, ICG functioned with Eosin Y while SOSG failed. Thus, ICG would reasonably provide the possibility to sense ¹O₂ in vitro, with high sensitivity, selectivity and suitability to most photosensitizers.

  14. Indocyanine green-encapsulating calcium phosphosilicate nanoparticles: Bifunctional theranostic vectors for near infrared diagnostic imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Altinoglu, Erhan I.

    The synthesis, laundering, and properties of calcium phosphosilicate nanoparticles (CPSNPs) that encapsulate the NIR fluorophore indocyanine green (ICG) related to multifunctional fluorescent photosensitization is presented. Imaging with transmission electron microscopy (TEM) revealed the well dispersed state of the nanoparticles, the spherical morphology, and the log normal mean particle diameter of 16 nm. Electron energy loss spectroscopy (EELS) mapping identified a Ca:P:Si ratio of 1:1.72:0.41 and a homogeneous composition without evidence of an element rich or deficient architecture. Zeta potential of the as-synthesized, citrate-functionalized CPSNPs was -29 +/-3 mV. A theoretical solids loading of 1.9 x 1013 CPSNP/mL was calculated for a standard suspension. The mean ICG content per suspension is 2 x 10 -6 M, which equates to approximately 63 fluorophore molecules encapsulated per CPSNP. For imaging and diagnostic considerations, the doped CPSNPs exhibited significantly greater intensity at the maximum emission wavelength relative to the free constituent fluorophore. The quantum efficiency of the fluorescent agent is 200% greater at 0.053+/-0.003 over the free fluorophore in PBS. Also, photostability based on fluorescence half-life of encapsulated ICG in PBS is 500% longer under typical clinical imaging conditions relative to the free dye. These performance enhancements are attributed to the matrix shielding effect of the NP around the internalized fluorophore molecules. The in vivo emission signal stability from ICG-CPSNPs was compared to the free fluorophore by whole animal NIR imaging. The duration of fluorescent signal from the ICG-CPSPNPs was extended to up to four days post-injection, highlighting the potential for long-term imaging and sensitive tracking applications using ICG when encapsulated within the protective matrix of CPSNPs. The surfaces of the ICG-CPSNPs were covalently bound with polyethylene glycol (PEG). The pharmacokinetic behavior of the

  15. Axillary reverse mapping with indocyanine green or isosulfan blue demonstrate similar crossover rates to radiotracer identified sentinel nodes.

    PubMed

    Foster, Deshka; Choy, Nicole; Porter, Catherine; Ahmed, Shushmita; Wapnir, Irene

    2018-03-01

    Sentinel lymph node (SLN) resection is imperative for breast cancer staging. Axillary reverse mapping (ARM) can preserve arm draining nodes and lymphatics during surgery. ARM is generally performed with isosulfan blue (ISB), restricting its use for concurrent SLN biopsy. Indocyanine green (ICG) could serve as an alternative to ISB for ARM procedures. SLN mapping and biopsy was performed via periareolar injection of 99 technetium-sulfur colloid ( 99m TcSc, TSC). ISB and ICG were injected in the upper arm. Blue-stained lymphatics or nodes were visualized in the axilla; ICG was identified using the SPY Elite® system. Twenty-three patients underwent SLN biopsy with or without axillary node dissection and ARM procedures. Twenty of these patients had at least one hot node; 12 patients had SLNs that were only hot, 6 hot/blue/fluorescent, and 2 hot/fluorescent. Overall, crossover of ARM agents with SLNs occurred in 8 cases. Inspection of the axillary cavity after SLN biopsy revealed fluorescent lymphatics and nodes remaining in 14 and 7 patients, respectively. Blue lymphatics and blue nodes were detected in fewer cases. Nearly one-third of patients showed crossover between breast and arm draining nodes, which provides insight as to why some patients develop lymphedema symptoms after SLN biopsy. ICG and ISB identify similar numbers of SLNs. As such ICG could substitute for ISB in ARM procedures. © 2017 Wiley Periodicals, Inc.

  16. Feasibility of real‐time near‐infrared indocyanine green fluorescence endoscopy for the evaluation of mucosal head and neck lesions

    PubMed Central

    Schmidt, Florian; Dittberner, Andreas; Koscielny, Sven; Petersen, Iver

    2016-01-01

    Abstract Background The purpose of this study was to explore the feasibility and potential drawbacks of near‐infrared (NIR) endoscopy with indocyanine green (ICG) to examine mucosal head and neck lesions. Methods NIR ICG endoscopy was applied to image head and neck cancer epithelium in vivo. The evaluation of the ICG videos was performed off‐line independently by 2 evaluators and blinded with respect to final histopathological results from biopsies taken as the gold standard. Results Forty percent of the lesions from 55 patients were histologically malignant. ICG positivity showed a sensitivity, specificity, and accuracy to be related to a malignant tumor of 90.5%, 90.9%, and 89.1%, respectively. The kappa index for the interobserver assessment showed a 94.4% agreement for the assessment of the ICG positivity. Side effects of the NIR ICG endoscopy did not arise. Conclusion NIR ICG endoscopy in patients with mucosal head and neck lesions was feasible and safe. It might help intraoperatively to differentiate benign from malignant lesions. © 2016 Wiley Periodicals, Inc. Head Neck 39: 234–240, 2017 PMID:27590351

  17. Treatment of Near-Infrared Photodynamic Therapy Using a Liposomally Formulated Indocyanine Green Derivative for Squamous Cell Carcinoma

    PubMed Central

    Maruyama, Tetsuro; Akutsu, Yasunori; Suganami, Akiko; Tamura, Yutaka; Fujito, Hiromichi; Ouchi, Tomoki; Akanuma, Naoki; Isozaki, Yuka; Takeshita, Nobuyoshi; Hoshino, Isamu; Uesato, Masaya; Toyota, Taro; Hayashi, Hideki; Matsubara, Hisahiro

    2015-01-01

    Introduction Photodynamic therapy (PDT) is a less invasive option for cancer treatment that has evolved through recent developments in nanotechnology. We have designed and synthesized a novel liposome system that includes an indocyanine green (ICG) derivative, ICG-C18, in its bilayer. In addition to its use as an optical imager to visualize blood, lymphatic, and bile flow, ICG has also been used as an optical sensitizer. In the present report, we evaluate the use of our novel liposome system, LP-ICG-C18, in PDT for squamous cell carcinoma in an autologous murine model. Materials and Methods An excitation pulse beam (300 μJ/pulse) of a single band (800 nm) was used for sensitization. The cytotoxicity of the photodynamic therapy was evaluated in terms of cellular morphology changes, methyl thiazolyl tetrazolium (MTT) assay results, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining. We tested the enhanced permeability and retention effect of LP-ICG-C18 in tumor-bearing C3H/He mice using a near-infrared fluorescence imaging system and fluorescence microscopy. We also examined the antitumor effect of PDT by measuring tumor volume in tumor-bearing mice. Results Cell death and apoptosis were only observed in the PDT group receiving LP-ICG-C18. LP-ICG-C18 itself had no cytotoxic activity and showed good biocompatibility. LP-ICG-C18 accumulated on the tumor 24 hours after injection and was retained for approximately 3 weeks. Tumor cell apoptosis following PDT with LP-ICG-C18 was also observed under optical microscopy, MTT assay, and TUNEL staining. Conclusion These findings suggest that LP-ICG-C18 may be an effective intervening material in PDT for malignant disease. PMID:25850029

  18. Treatment of near-infrared photodynamic therapy using a liposomally formulated indocyanine green derivative for squamous cell carcinoma.

    PubMed

    Maruyama, Tetsuro; Akutsu, Yasunori; Suganami, Akiko; Tamura, Yutaka; Fujito, Hiromichi; Ouchi, Tomoki; Akanuma, Naoki; Isozaki, Yuka; Takeshita, Nobuyoshi; Hoshino, Isamu; Uesato, Masaya; Toyota, Taro; Hayashi, Hideki; Matsubara, Hisahiro

    2015-01-01

    Photodynamic therapy (PDT) is a less invasive option for cancer treatment that has evolved through recent developments in nanotechnology. We have designed and synthesized a novel liposome system that includes an indocyanine green (ICG) derivative, ICG-C18, in its bilayer. In addition to its use as an optical imager to visualize blood, lymphatic, and bile flow, ICG has also been used as an optical sensitizer. In the present report, we evaluate the use of our novel liposome system, LP-ICG-C18, in PDT for squamous cell carcinoma in an autologous murine model. An excitation pulse beam (300 μJ/pulse) of a single band (800 nm) was used for sensitization. The cytotoxicity of the photodynamic therapy was evaluated in terms of cellular morphology changes, methyl thiazolyl tetrazolium (MTT) assay results, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining. We tested the enhanced permeability and retention effect of LP-ICG-C18 in tumor-bearing C3H/He mice using a near-infrared fluorescence imaging system and fluorescence microscopy. We also examined the antitumor effect of PDT by measuring tumor volume in tumor-bearing mice. Cell death and apoptosis were only observed in the PDT group receiving LP-ICG-C18. LP-ICG-C18 itself had no cytotoxic activity and showed good biocompatibility. LP-ICG-C18 accumulated on the tumor 24 hours after injection and was retained for approximately 3 weeks. Tumor cell apoptosis following PDT with LP-ICG-C18 was also observed under optical microscopy, MTT assay, and TUNEL staining. These findings suggest that LP-ICG-C18 may be an effective intervening material in PDT for malignant disease.

  19. Near infrared lymphatic imaging demonstrates the dynamics of lymph flow and lymphangiogenesis during the acute vs. chronic phases of arthritis in mice

    PubMed Central

    Zhou, Quan; Wood, Ronald; Schwarz, Edward M.; Wang, Yong-Jun; Xing, Lianping

    2010-01-01

    Objective Development of an in vivo imaging method to assess lymphatic draining function in the K/B×N mouse model of inflammatory arthritis. Methods Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye, was injected intradermally into the footpad of wild-type mice, the limb was illuminated with an 806 nm NIR laser, and the movement of ICG from the injection site to the draining popliteal lymph node (PLN) was recorded with a CCD camera. ICG-NIR images were analyzed to obtain 5 measures of lymphatic function across time. K/B×N arthritic mice and control non-arthritic littermates were imaged at one-month of age when acute joint inflammation commenced, and repeated at 3 months when joint inflammation became chronic. Lymphangiogenesis in PLNs was assessed by immunochemistry. Results ICG and its transport within lymphatic vessels were readily visualized and quantitative measures derived. During the acute phase of arthritis, the lymphatic vessels were dilated with increased ICG signal intensity and lymphatic pulses, and PLNs became fluorescent quickly. During the chronic phase, new lymphatic vessels were present near the foot. However, ICG appearance in lymphatic vessels was delayed. The size and area of PLN lymphatic sinuses progressively increased in the K/B×N mice. Conclusion ICG-NIR lymphatic imaging is a valuable method to assess the lymphatic draining function in mice with inflammatory arthritis. ICG-NIR imaging of K/B×N mice identified two distinct lymphatic phenotypes during the acute and chronic phase of inflammation. This technique can be used to assess new therapies for lymphatic disorders. PMID:20309866

  20. Affinity of Indocyanine Green in the Detection of Colorectal Peritoneal Carcinomatosis.

    PubMed

    Filippello, Alexandre; Porcheron, Jack; Klein, Jean Philippe; Cottier, Michèle; Barabino, Gabriele

    2017-04-01

    Indocyanine green (ICG) is increasingly being used in digestive oncology. In colorectal cancer, ICG can be used to detect lymph node metastasis and hepatic metastasis on the surface of the liver. In peritoneal carcinomatosis, it was previously suspected that the diffusion of ICG in the tumor mass was due to the enhanced permeability and retention effect; however, this phenomenon has not been clearly demonstrated. Using bevacizumab, an antibody directed against vascular endothelial growth factor that consequently inhibits neoangiogenesis, we sought to confirm the mode of ICG diffusion. We compared the fluorescence of peritoneal carcinomatosis nodules from patients who had previously received bevacizumab during their oncologic treatment with those who did not receive this therapy. The sensitivity of the carcinomatosis nodule fluorescence was higher in the patients who did not receive bevacizumab compared with those who received the drug (76.3% and 65.0%, respectively). The rate of false-negative results was higher in the bevacizumab group than in the group that did not receive the drug (53.8% and 42.9%, respectively). Using bevacizumab, we demonstrate that the enhanced permeability and retention effect causes ICG accumulation in peritoneal carcinomatosis resulting from colorectal cancer.

  1. Quantitative cerebral perfusion assessment using microscope-integrated analysis of intraoperative indocyanine green fluorescence angiography versus positron emission tomography in superficial temporal artery to middle cerebral artery anastomosis.

    PubMed

    Kobayashi, Shinya; Ishikawa, Tatsuya; Tanabe, Jun; Moroi, Junta; Suzuki, Akifumi

    2014-01-01

    Intraoperative qualitative indocyanine green (ICG) angiography has been used in cerebrovascular surgery. Hyperperfusion may lead to neurological complications after superficial temporal artery to middle cerebral artery (STA-MCA) anastomosis. The purpose of this study is to quantitatively evaluate intraoperative cerebral perfusion using microscope-integrated dynamic ICG fluorescence analysis, and to assess whether this value predicts hyperperfusion syndrome (HPS) after STA-MCA anastomosis. Ten patients undergoing STA-MCA anastomosis due to unilateral major cerebral artery occlusive disease were included. Ten patients with normal cerebral perfusion served as controls. The ICG transit curve from six regions of interest (ROIs) on the cortex, corresponding to ROIs on positron emission tomography (PET) study, was recorded. Maximum intensity (IMAX), cerebral blood flow index (CBFi), rise time (RT), and time to peak (TTP) were evaluated. RT/TTP, but not IMAX or CBFi, could differentiate between control and study subjects. RT/TTP correlated (|r| = 0.534-0.807; P < 0.01) with mean transit time (MTT)/MTT ratio in the ipsilateral to contralateral hemisphere by PET study. Bland-Altman analysis showed a wide limit of agreement between RT and MTT and between TTP and MTT. The ratio of RT before and after bypass procedures was significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.60 ± 0.032 and 0.80 ± 0.056, respectively; P = 0.017). The ratio of TTP was also significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.64 ± 0.081 and 0.85 ± 0.095, respectively; P = 0.017). Time-dependent intraoperative parameters from the ICG transit curve provide quantitative information regarding cerebral circulation time with quality and utility comparable to information obtained by PET. These parameters may help predict the occurrence of postoperative HPS.

  2. Pure 3D laparoscopic living donor right hemihepatectomy in a donor with separate right posterior and right anterior hepatic ducts and portal veins.

    PubMed

    Hong, Suk Kyun; Suh, Kyung-Suk; Kim, Hyo-Sin; Yoon, Kyung Chul; Ahn, Sung-Woo; Oh, Dongkyu; Kim, Hyeyoung; Yi, Nam-Joon; Lee, Kwang-Woong

    2017-11-01

    Despite increases in the performance of pure laparoscopic living donor hepatectomy, variations in the bile duct or portal vein have been regarded as relative contraindications to this technique [1-3]. This report describes a donor with separate right posterior and right anterior hepatic ducts and portal veins who underwent pure laparoscopic living donor right hemihepatectomy, integrated with 3D laparoscopy and indocyanine green (ICG) near-infrared fluorescence cholangiography [1, 4, 5]. A 50-year-old man offered to donate part of his liver to his older brother, who required a transplant for hepatitis B-associated liver cirrhosis and hepatocellular carcinoma. Donor height was 178.0 cm, body weight was 82.7 kg, and body mass index was 26.1 kg/m 2 . Preoperative computed tomography and magnetic resonance cholangiopancreatography showed that the donor had separate right posterior and right anterior hepatic ducts and portal veins. The entire procedure was performed under 3D laparoscopic view. Following intravenous injections of 0.05 mg/kg ICG, ICG near-infrared fluorescence camera was used to demarcate the exact transection line and determine the optimal bile duct division point. The total operation time was 443 min; the donor required no transfusions and experienced no intraoperative complications. The graft weighed 1146 g with a graft-to-recipient weight ratio of 1.88%. The optimal bile duct division point was identified using ICG fluorescence cholangiography, and the bile duct was divided with good patency without any stricture. The right anterior and posterior portal veins were transected with endostaplers without any torsion. The patient was discharged on postoperative day 8, with no complications. Using a 3D view and ICG fluorescence cholangiography, pure 3D laparoscopic living donor right hemihepatectomy is feasible in a donor with separate right posterior and right anterior hepatic ducts and portal veins.

  3. Intraoperative indocyanine green videoangiography for identification of pituitary adenomas using a microscopic transsphenoidal approach.

    PubMed

    Sandow, N; Klene, W; Elbelt, U; Strasburger, C J; Vajkoczy, P

    2015-10-01

    Initial successful surgical treatment of pituitary adenomas is crucial to reach long-term remission. Indocyanine green (ICG) videoangiography (VA) is well established in vascular neurosurgery nowadays and several reports described ICG application in brain tumor surgery. We designed this study to evaluate the feasibility of intravenous application of ICG and visualisation of a pituitary lesion via the fluorescence mode of the operation microscope. 22 patients with pituitary adenomas were treated with transsphenoidal microsurgery and were included in this study. Intraoperatively 25 mg ICG was administered intravenously and visualized via the fluorescence mode of the operation microscope (Pentero/Zeiss). 22 patients qualified for transsphenoidal surgery presenting with different clinical symptoms (13 patients with acromegaly, 6 with M. Cushing and 3 with other symptoms like vision disorder or dizziness) and identification of a pituitary lesion (21 of 22 patients) in preoperative MR-imaging (mean diameter: 9 mm; SD 3.6; 6 macroadenomas, 15 microadenomas, 1 MR-negative). In all 22 patients ICG VA was performed during surgery. No technical failures or adverse events after drug administration occurred. Visualization was optimal approximately 2.4 min after intravenous application. In all patients the adenoma could be detected via two different types of visualization: direct visualization by fluorophore emission versus indirect detection of the adenoma by a lower ICG fluorescence compared to the surrounding tissue. Our data show that intraoperative ICG VA can be a useful and easily applicable additional diagnostic tool for visualization of pituitary lesions using the microscopic approach.

  4. Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria.

    PubMed

    Portnoy, Emma; Vakruk, Natalia; Bishara, Ameer; Shmuel, Miriam; Magdassi, Shlomo; Golenser, Jacob; Eyal, Sara

    2016-01-01

    Cerebral malaria (CM) is a major cause of death of Plasmodium falciparum infection. Misdiagnosis of CM often leads to treatment delay and mortality. Conventional brain imaging technologies are rarely applicable in endemic areas. Here we address the unmet need for a simple, non-invasive imaging methodology for early diagnosis of CM. This study presents the diagnostic and therapeutic monitoring using liposomes containing the FDA-approved fluorescent dye indocyanine green (ICG) in a CM murine model. Increased emission intensity of liposomal ICG was demonstrated in comparison with free ICG. The Liposomal ICG's emission was greater in the brains of the infected mice compared to naïve mice and drug treated mice (where CM was prevented). Histological analyses suggest that the accumulation of liposomal ICG in the cerebral vasculature is due to extensive uptake mediated by activated phagocytes. Overall, liposomal ICG offers a valuable diagnostic tool and a biomarker for effectiveness of CM treatment, as well as other diseases that involve inflammation and blood vessel occlusion.

  5. Engineering of near infrared fluorescent proteinoid-poly(L-lactic acid) particles for in vivo colon cancer detection.

    PubMed

    Kolitz-Domb, Michal; Grinberg, Igor; Corem-Salkmon, Enav; Margel, Shlomo

    2014-08-12

    The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer owing to the negligible absorption and autofluorescence of water and other intrinsic biomolecules in this region. The main aim of the present study is to synthesize and characterize novel NIR fluorescent nanoparticles based on proteinoid and PLLA for early detection of colon tumors. The present study describes the synthesis of new proteinoid-PLLA copolymer and the preparation of NIR fluorescent nanoparticles for use in diagnostic detection of colon cancer. These fluorescent nanoparticles were prepared by a self-assembly process in the presence of the NIR dye indocyanine green (ICG), a FDA-approved NIR fluorescent dye. Anti-carcinoembryonic antigen antibody (anti-CEA), a specific tumor targeting ligand, was covalently conjugated to the P(EF-PLLA) nanoparticles through the surface carboxylate groups using the carbodiimide activation method. The P(EF-PLLA) nanoparticles are stable in different conditions, no leakage of the encapsulated dye into PBS containing 4% HSA was detected. The encapsulation of the NIR fluorescent dye within the P(EF-PLLA) nanoparticles improves significantly the photostability of the dye. The fluorescent nanoparticles are non-toxic, and the biodistribution study in a mouse model showed they evacuate from the body over 24 h. Specific colon tumor detection in a chicken embryo model and a mouse model was demonstrated for anti-CEA-conjugated NIR fluorescent P(EF-PLLA) nanoparticles. The results of this study suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent P(EF-PLLA) nanoparticles over colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs such as paclitaxel and/or doxorubicin, within these biodegradable NIR fluorescent P(EF-PLLA) nanoparticles, for both detection and therapy of colon cancer.

  6. Detecting thermal phase transitions in corneal stroma by fluorescence micro-imaging analysis

    NASA Astrophysics Data System (ADS)

    Matteini, P.; Rossi, F.; Ratto, F.; Bruno, I.; Nesi, P.; Pini, R.

    2008-02-01

    Thermal modifications induced in corneal stroma were investigated by the use of fluorescence microscopy. Freshly extracted porcine corneas were immersed for 5 minutes in a water bath at temperatures in the 35-90°C range and stored in formalin. The samples were then sliced in 200-μm-thick transversal sections and analyzed under a stereomicroscope to assess corneal shrinkage. Fluorescence images of the thermally treated corneal samples were acquired using a slow-scan cooled CCD camera, after staining the slices with Indocyanine Green (ICG) fluorescent dye which allowed to detect fluorescence signal from the whole tissue. All measurements were performed using an inverted epifluorescence microscope equipped with a mercury lamp. The thermally-induced modifications to the corneal specimens were evaluated by studying the grey level distribution in the fluorescence images. For each acquired image, Discrete Fourier Transform (DFT) and entropy analyses were performed. The spatial distribution of DFT absolute value indicated the spatial orientation of the lamellar planes, while entropy was used to study the image texture, correlated to the stromal structural transitions. As a result, it was possible to indicate a temperature threshold value (62°C) for high thermal damage, resulting in a disorganization of the lamellar planes and in full agreement with the measured temperature for corneal shrinkage onset. Analysis of the image entropy evidenced five strong modifications in stromal architecture at temperatures of ~45°C, 53°C, 57°C, 66°C, 75°C. The proposed procedure proved to be an effective micro-imaging method capable of detecting subtle changes in corneal tissue subjected to thermal treatment.

  7. A superior bright NIR luminescent nanoparticle preparation and indicating calcium signaling detection in cells and small animals.

    PubMed

    Zhang, Jian; Lakowicz, Joseph R

    2018-01-01

    Near-field fluorescence (NFF) effects were employed to develop a novel near-infrared (NIR) luminescent nanoparticle (LNP) with superior brightness. The LNP is used as imaging contrast agent for cellular and small animal imaging and furthermore suggested to use for detecting voltage-sensitive calcium in living cells and animals with high sensitivity. NIR Indocyanine green (ICG) dye was conjugated with human serum albumin (HSA) followed by covalently binding to gold nanorod (AuNR). The AuNR displayed dual plasmons from transverse and longitudinal axis, and the longitudinal plasmon was localized at the NIR region which could efficiently couple with the excitation and emission of ICG dye leading to a largely enhanced NFF. The enhancement factor was measured to be about 16-fold using both ensemble and single nanoparticle spectral methods. As an imaging contrast agent, the ICG-HSA-Au complex (abbreviate as ICG-Au) was conjugated on HeLa cells and fluorescence cell images were recorded on a time-resolved confocal microscope. The emission signals of ICG-Au complexes were distinctly resolved as the individual spots that were observed over the cellular backgrounds due to their strong brightness as well as shortened lifetime. The LNPs were also tested to have a low cytotoxicity. The ICG-Au complexes were injected below the skin surface of mouse showing emission spots 5-fold brighter than those from the same amount of free ICG-HSA conjugates. Based on the observations in this research, the excitation and emission of NIR ICG dyes were found to be able to sufficiently couple with the longitudinal plasmon of AuNRs leading to a largely enhanced NFF. Using the LNP with super-brightness as a contrast agent, the ICG-Au complex could be resolved from the background in the cell and small animal imaging. The novel NIR LNP has also a great potential for detection of voltage-gated calcium concentration in the cell and living animal with a high sensitivity.

  8. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green

    PubMed Central

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  9. Photo-multiplier Tube Based Hybrid MRI and Frequency Domain Fluorescence Tomography System for Small Animal Imaging

    PubMed Central

    Lin, Y; Ghijsen, M T; Gao, H; Liu, N; Nalcioglu, O; Gulsen, G

    2014-01-01

    Fluorescence tomography (FT) is a promising molecular imaging technique that can spatially resolve both fluorophore concentration and lifetime parameters. However, recovered fluorophore parameters highly depend on the size and depth of the object due to the ill-posedness of the FT inverse problem. Structural a priori information from another high spatial resolution imaging modality has been demonstrated to significantly improve FT reconstruction accuracy. In this study, we have constructed a combined magnetic resonance imaging (MRI) and FT system for small animal imaging. A photo-multiplier tube (PMT) is used as the detector to acquire frequency domain FT measurements. This is the first MR-compatible time-resolved FT system that can reconstruct both fluorescence concentration and lifetime maps simultaneously. The performance of the hybrid system is evaluated with phantom studies. Two different fluorophores, Indocyanine Green (ICG) and 3-3′ Diethylthiatricarbocyanine Iodide (DTTCI), which have similar excitation and emission spectra but different lifetimes, are utilized. The fluorescence concentration and lifetime maps are both reconstructed with and without the structural a priori information obtained from MRI for comparison. We show that the hybrid system can accurately recover both fluorescence intensity and lifetime within 10% error for two 4.2 mm-diameter cylindrical objects embedded in a 38 mm-diameter cylindrical phantom when MRI structural a priori information is utilized. PMID:21753235

  10. Development of a QDots 800 based fluorescent solid phantom for validation of NIRF imaging platforms

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Sevick-Muraca, Eva M.

    2013-02-01

    Over the past decade, we developed near-infrared fluorescence (NIRF) devices for non-invasive lymphatic imaging using microdosages of ICG in humans and for detection of lymph node metastasis in animal models mimicking metastatic human prostate cancer. To validate imaging, a NIST traceable phantom is needed so that developed "first-inhumans" drugs may be used with different luorescent imaging platforms. In this work, we developed a QDots 800 based fluorescent solid phantom for installation and operational qualification of clinical and preclinical, NIRF imaging devices. Due to its optical clearance, polyurethane was chosen as the base material. Titanium dioxide was used as the scattering agent because of its miscibility in polyurethane. QDots 800 was chosen owing to its stability and NIR emission spectra. A first phantom was constructed for evaluation of the noise floor arising from excitation light leakage, a phenomenon that can be minimized during engineering and design of fluorescent imaging systems. A second set of phantoms were constructed to enable quantification of device sensitivity associated with our preclinical and clinical devices. The phantoms have been successfully applied for installation and operational qualification of our preclinical and clinical devices. Assessment of excitation light leakage provides a figure of merit for "noise floor" and imaging sensitivity can be used to benchmark devices for specific imaging agents.

  11. Sentinel lymph node mapping in endometrial cancer: comparison of fluorescence dye with traditional radiocolloid and blue.

    PubMed

    Papadia, Andrea; Gasparri, Maria Luisa; Buda, Alessandro; Mueller, Michael D

    2017-10-01

    Sentinel lymph node (SLN) mapping in endometrial cancer (EMCA) is rapidly gaining acceptance in the clinical community. As compared to a full lymphadenectomy in every patient, to a selective lymphadenectomy after frozen section of uterus in selected patients with intrauterine risk factors or to a strategy in which a lymphadenectomy is always omitted, SLN mapping seems to be a reasonable and oncologically safe middle ground. Various protocols can be used when applying an SLN mapping. In this manuscript we review the characteristics, toxicity and clinical impact of technetium-99m radiocolloid (Tc-99m), of the blue dyes (methylene blue, isosulfan blue and patent blue) and of indocyanine green (ICG). ICG has an excellent toxicity profile, has higher overall and bilateral detection rates as compared to blue dyes and higher bilateral detection rates as compared to a combination of Tc-99m and blue dye. The detrimental effect of BMI on the detection rates is attenuated when ICG is used as a tracer. The ease of use of the ICG SLN mapping is perceived by the patients as a better quality of care delivered. Whenever possible, ICG should be favored over the other tracers for SLN mapping in EMCA patients.

  12. Novel Indocyanine Green-Phytate Colloid Technique for Sentinel Node Detection in Head and Neck: Mouse Study.

    PubMed

    Araki, Koji; Mizokami, Daisuke; Tomifuji, Masayuki; Yamashita, Taku; Ohnuki, Kazunobu; Umeda, Izumi O; Fujii, Hirofumi; Kosuda, Shigeru; Shiotani, Akihiro

    2014-08-01

    Sentinel node navigation surgery using real-time, near-infrared imaging with indocyanine green is becoming popular by allowing head and neck surgeons to avoid unnecessary neck dissection. The major drawback of this method is its quick migration through the lymphatics, limiting the diagnostic time window and undesirable detection of downstream nodes. We resolved this problem by mixing indocyanine green (ICG) with phytate colloid to retard its migration and demonstrated its feasibility in a nude mouse study. Experimental prospective animal study. Animal laboratory. Indocyanine green at 3 concentrations was tested to determine the optimal concentration for sentinel lymph node detection in a mouse model. Effect of indocyanine green with phytate colloid mixture solutions was also analyzed. Indocyanine green or mixture solution at different mixing ratios were injected into the tongue of nude mice and near-infrared fluorescence images were captured sequentially for up to 48 hours. The brightness of fluorescence in the sentinel lymph node and lymph nodes further downstream were assessed. Indocyanine green concentration >50 μg/mL did not improve sentinel lymph node detection. The addition of phytate colloid to indocyanine green extended the period when sentinel lymph node was detectable. Second echelon lymph nodes were not imaged in mice injected with the mixture, while these were visualized in mice injected with indocyanine green alone. This novel technique of ICG-phytate colloid mixture allows prolonged diagnostic time window, prevention of downstream subsequent nodes detection, and improved accuracy for the detection of true sentinel lymph nodes. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  13. The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma

    PubMed Central

    Zhang, Caiqin; Zhao, Yong; Zhang, He; Chen, Xue; Zhao, Ningning; Tan, Dengxu; Zhang, Hai; Shi, Changhong

    2017-01-01

    Near infrared fluorescence (NIRF) imaging has strong potential for widespread use in noninvasive tumor imaging. Indocyanine green (ICG) is the only Food and Drug Administration (FDA) -approved NIRF dye for clinical diagnosis; however, it is unstable and poorly targets tumors. DZ-1 is a novel heptamethine cyanine NIRF dye, suitable for imaging and tumor targeting. Here, we compared the fluorescence intensity and metabolism of DZ-1 and ICG. Additionally, we assayed their specificities and abilities to target tumor cells, using cultured hepatocellular carcinoma (HCC) cell lines, a nude mouse subcutaneous xenograft model of liver cancer, and a rabbit orthotopic transplantation model. We found that DZ-1 accumulates in tumor tissue and specifically recognizes HCC in subcutaneous and orthotopic models. The NIRF intensity of DZ-1 was one order of magnitude stronger than that of ICG, and DZ-1 showed excellent intraoperative tumor targeting in the rabbit model. Importantly, ICG accumulated at tumor sites, as well as in the liver and kidney. Furthermore, DZ-1 analog-gemcitabine conjugate (NIRG) exhibited similar tumor-specific targeting and imaging properties, including inhibition of tumor growth, in HCC patient-derived xenograft (PDX) mice. DZ-1 and NIRG demonstrated superior tumor-targeting specificity, compared to ICG. We show that DZ-1 is an effective molecular probe for specific imaging, targeting, and therapy in HCC. PMID:28635650

  14. The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma.

    PubMed

    Zhang, Caiqin; Zhao, Yong; Zhang, He; Chen, Xue; Zhao, Ningning; Tan, Dengxu; Zhang, Hai; Shi, Changhong

    2017-06-21

    Near infrared fluorescence (NIRF) imaging has strong potential for widespread use in noninvasive tumor imaging. Indocyanine green (ICG) is the only Food and Drug Administration (FDA) -approved NIRF dye for clinical diagnosis; however, it is unstable and poorly targets tumors. DZ-1 is a novel heptamethine cyanine NIRF dye, suitable for imaging and tumor targeting. Here, we compared the fluorescence intensity and metabolism of DZ-1 and ICG. Additionally, we assayed their specificities and abilities to target tumor cells, using cultured hepatocellular carcinoma (HCC) cell lines, a nude mouse subcutaneous xenograft model of liver cancer, and a rabbit orthotopic transplantation model. We found that DZ-1 accumulates in tumor tissue and specifically recognizes HCC in subcutaneous and orthotopic models. The NIRF intensity of DZ-1 was one order of magnitude stronger than that of ICG, and DZ-1 showed excellent intraoperative tumor targeting in the rabbit model. Importantly, ICG accumulated at tumor sites, as well as in the liver and kidney. Furthermore, DZ-1 analog-gemcitabine conjugate (NIRG) exhibited similar tumor-specific targeting and imaging properties, including inhibition of tumor growth, in HCC patient-derived xenograft (PDX) mice. DZ-1 and NIRG demonstrated superior tumor-targeting specificity, compared to ICG. We show that DZ-1 is an effective molecular probe for specific imaging, targeting, and therapy in HCC.

  15. Prussian blue/serum albumin/indocyanine green as a multifunctional nanotheranostic agent for bimodal imaging guided laser mediated combinatorial phototherapy.

    PubMed

    Sahu, Abhishek; Lee, Jong Hyun; Lee, Hye Gyeong; Jeong, Yong Yeon; Tae, Giyoong

    2016-08-28

    Developing novel nanotheranostic agent using only clinically approved materials is highly desirable and challenging. In this study, we combined three clinically approved materials, Prussian blue (PB), serum albumin (BSA), and indocyanine green (ICG), by a simple and biocompatible method to prepare a multifunctional theranostic PB-BSA-ICG nanoparticle. The multifunctional nanoparticle system could provide dual mode magnetic resonance (MR) and near infrared (NIR) fluorescence imaging as well as combined photothermal and photodynamic (PTT-PDT) therapy in response to a single NIR laser. This nanoparticle showed an excellent stability in physiological solutions and could suppress the photo-instability of ICG. In the absence of light, the nanoparticles showed no cytotoxicity, but significant cell death was induced through combined PTT-PDT effect after irradiation with NIR laser light. A high tumor accumulation and minimal nonspecific uptake by other major organs of PB-BSA-ICG nanoparticle were observed in vivo, analyzed by T1-weighted MR and NIR fluorescence bimodal imaging in tumor xenograft mice after intravenous injection. The nanoparticles efficiently suppressed the tumor growth through combinatorial phototherapy with no tumor recurrence upon a single NIR laser irradiation. These results demonstrated that PB-BSA-ICG is potentially an interesting nanotheranostic agent for imaging guided cancer therapy by overcoming the limitations of each technology and enhancing the therapeutic efficiency as well as reducing side effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Preparation study of indocyanine green-rituximab: A new receptor-targeted tracer for sentinel lymph node in breast cancer

    PubMed Central

    Cong, Bin-Bin; Sun, Xiao; Song, Xian-Rang; Liu, Yan-Bing; Zhao, Tong; Cao, Xiao-Shan; Qiu, Peng-Fei; Tian, Chong-Lin

    2016-01-01

    An appropriate receptor-targeted tracer for sentinel lymph node biopsy (SLNB) was prepared. We combined the fluorescence tracer (Indocyanine green, ICG) with Rituximab (a chimeric human/murine monoclonal antibody targeting the CD20 antigen on the surface of lymphocyte) directly to produce a new tracer (ICG-Rituximab). When the new tracer drains to the lymph node, Rituximab will combine with CD20 receptor on the B-cell surface in the lymph node. If the statue of antibody-receptor connection does not reach saturation, the number of Rituximab is less than CD20. With this appropriate injection dose, the new tracer could only stay in sentinel lymph node (SLN) and make it imaging. Positive fluorescence SLN was detected 12 minutes after injection with no other organs imaging. The imaging of SLN was stable and clear for 20–24 hours. Due to SLN stained with more ICG than the lymphatic vessel, the fluorescence situation of SLN would be brighter than the vessel. The surgeon can detect the positive fluorescence SLN easily without following the fluorescence imaging lymphatic vessel. The results of our preliminary study showed that the new tracer might be useful for improving SLN imaging and worth further clinical study. SLNB with the new tracer could be a convenient method for detecting SLN and would become a standard performance in clinical practice. PMID:27374088

  17. Preparation study of indocyanine green-rituximab: A new receptor-targeted tracer for sentinel lymph node in breast cancer.

    PubMed

    Cong, Bin-Bin; Sun, Xiao; Song, Xian-Rang; Liu, Yan-Bing; Zhao, Tong; Cao, Xiao-Shan; Qiu, Peng-Fei; Tian, Chong-Lin; Yu, Jin-Ming; Wang, Yong-Sheng

    2016-07-26

    An appropriate receptor-targeted tracer for sentinel lymph node biopsy (SLNB) was prepared. We combined the fluorescence tracer (Indocyanine green, ICG) with Rituximab (a chimeric human/murine monoclonal antibody targeting the CD20 antigen on the surface of lymphocyte) directly to produce a new tracer (ICG-Rituximab). When the new tracer drains to the lymph node, Rituximab will combine with CD20 receptor on the B-cell surface in the lymph node. If the statue of antibody-receptor connection does not reach saturation, the number of Rituximab is less than CD20. With this appropriate injection dose, the new tracer could only stay in sentinel lymph node (SLN) and make it imaging. Positive fluorescence SLN was detected 12 minutes after injection with no other organs imaging. The imaging of SLN was stable and clear for 20-24 hours. Due to SLN stained with more ICG than the lymphatic vessel, the fluorescence situation of SLN would be brighter than the vessel. The surgeon can detect the positive fluorescence SLN easily without following the fluorescence imaging lymphatic vessel. The results of our preliminary study showed that the new tracer might be useful for improving SLN imaging and worth further clinical study. SLNB with the new tracer could be a convenient method for detecting SLN and would become a standard performance in clinical practice.

  18. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  19. Long-term effects of short-term retinal bleb detachments in rabbits.

    PubMed

    Ivert, Lena; Kjeldbye, Hild; Gouras, Peter

    2002-03-01

    To examine the effects of saline-induced bleb detachments in rabbit retina. Retinal bleb detachments were produced by the injection of 50 microl of balanced salt solution (BSS) into the subretinal space of one eye of each of six rabbits using a glass pipette with a flat tip, 50 microm in diameter. The retina was examined by biomicroscopy, scanning laser ophthalmoscopy (SLO), auto-fluorescence and simultaneous fluorescein and indocyanine green (ICG) angiography. Histological examination was carried out at 1, 2, 3 and 4 months after surgery. All rabbits showed leakage of fluorescein for at least a day after detachment, but within 1 month the leakage ceased. ICG staining developed gradually at the level of the RPE or Bruch's membrane near sites of previous staining. Lipofuscin fluorescence also developed gradually around areas of staining. Histology revealed the source of the excessive lipofuscin to be in the RPE layer, especially in cells migrating away from Bruch's membrane. Short-term bleb detachments cause a transient breakdown in the blood-retinal barrier, long-term ICG staining at or deep to the RPE layer, hyperlipofuscinosis and migration of the RPE. The abnormal lipofuscin accumulation is apparent on fluorescence ophthalmoscopy and can be confused with markers such as green fluorescent protein.

  20. Optical imaging for the diagnosis of oral cancer and oral potentially malignant disorders

    NASA Astrophysics Data System (ADS)

    Yoshida, K.

    2016-03-01

    Optical Imaging is being conducted as a therapeutic non-invasive. Many kinds of the light source are selected for this purpose. Recently the oral cancer screening is conducted by using light-induced tissue autofluorescence examination such as several kinds of handheld devices. However, the mechanism of its action is still not clear. Therefore basic experimental research was conducted. One of auto fluorescence Imaging (AFI) device, VELscopeTM and near-infrared (NIR) fluorescence imaging using ICG-labeled antibody as a probe were compared using oral squamous cell carcinoma (OSCC) mouse models. The experiments revealed that intracutaneous tumor was successfully visualized as low density image by VELscopeTM and high density image by NIR image. In addition, VELscopeTM showed higher sensitivity and lower specificity than that of NIR fluorescence imaging and the sensitivity of identification of carcinoma areas with the VELscopeTM was good results. However, further more studies were needed to enhance the screening and diagnostic uses, sensitivity and specificity for detecting malignant lesions and differentiation from premalignant or benign lesions. Therefore, additional studies were conducted using a new developed near infrared (NIR) fluorescence imaging method targeting podoplanine (PDPN) which consists of indocyanine green (ICG)-labeled anti-human podoplanin antibody as a probe and IVIS imaging system or a handy realtime ICG imaging device that is overexpressed in oral malignant neoplasm to improve imaging for detection of early oral malignant neoplasm. Then evaluated for its sensitivity and specificity for detection of oral malignant neoplasm in xenografted mice model and compared with VELscopeTM. The results revealed that ICG fluorescence imaging method and VELscopeTM had the almost the same sensitivity for detection of oral malignant neoplasm. The current topics of optical imaging about oral malignant neoplasm were reviewed.

  1. Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source

    PubMed Central

    Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.

    2010-01-01

    Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging. PMID:20459250

  2. Feasibility of Real-Time Near-Infrared Fluorescence Tracer Imaging in Sentinel Node Biopsy for Oral Cavity Cancer Patients.

    PubMed

    Christensen, Anders; Juhl, Karina; Charabi, Birgitte; Mortensen, Jann; Kiss, Katalin; Kjær, Andreas; von Buchwald, Christian

    2016-02-01

    Sentinel node biopsy (SNB) is an established method in oral squamous cell carcinoma (OSCC) for staging the cN0 neck and to select patients who will benefit from a neck dissection. Near-infrared fluorescence (NIRF) imaging has the potential to improve the SNB procedure by facilitating intraoperative visual identification of the sentinel lymph node (SN). The purpose of this study was to evaluate the feasibility of fluorescence tracer imaging for SN detection in conjunction with conventional radio-guided technique. Prospective study of patients with primary OSCC planned for tumor resection and SNB. Thirty patients were injected peritumorally with a bimodal tracer (ICG-99mTc-Nanocoll) followed by lymphoscintigraphy and SPECT/CT to define the SNs and their anatomic allocation preoperatively. SNs were detected intraoperatively with a hand-held gamma-probe and a hand-held NIRF camera. In 29 of 30 subjects (97%), all preoperatively defined SNs could be identified intraoperatively using a combination of radioactive and fluorescence guidance. A total of 94 SNs (mean 3, range 1-5) that were both radioactive and fluorescent ex vivo were harvested. Eleven of 94 SNs (12%) could only be identified in vivo using NIRF imaging, and the majority of those were located in level 1 close to the primary tumor. A combined fluorescent and radioactive tracer for SNB is feasible, and the additional use of NIRF imaging may improve the accuracy of SN identification in oral cancer patients. Intraoperative fluorescence guidance seems of particular value when SNs are located in close proximity to the injection site.

  3. Clinical use of endovenous indocyanine green during rectosigmoid segmental resection for endometriosis.

    PubMed

    Seracchioli, Renato; Raimondo, Diego; Arena, Alessandro; Zanello, Margherita; Mabrouk, Mohamed

    2018-06-01

    To describe a new use of endovenous indocyanine green (ICG) to allow real-time visualization of bowel perfusion in women with recto-sigmoid endometriosis who may be candidates for segmental resection. Step-by-step explanation of this method using descriptive text and educational video. Tertiary level referral academic center. A nulliparous 36-year-old woman affected by a large rectal endometriotic nodule was referred for severe dysmenorrhea, dyspareunia, hematochezia, and dyschezia, despite progestinic therapy. An intravenous injection of 1.5 mL solution containing 3.75 mg dose of ICG for intraoperative fluorescence imaging. Evaluation of blood perfusion of bowel and rectal endometriosis nodule. Evaluation of neoanastomosis vascularization after bowel resection. The procedure of endometriosis removal was performed using the daVinciXi surgical platform (Intuitive Surgical, Sunnyvale, CA). After ovarian endometriosis removal and adhesiolysis, we identified the endometriosis nodule on the anterior surface of the rectum. Pararectal, rectovaginal, and retrorectal spaces were dissected with a nerve-sparing technique. Indocyanine green was administered through a peripheral line. A near-infrared camera head enabled vision of the colorant after latency of a few seconds. We observed the ischemic area around the rectal nodule and perfusion areas upstream and downstream from the lesion. We selected the transecting line for rectal resection, taking account of this objective evaluation, beyond the limits of macroscopic disease. After direct mechanical anastomosis, we checked the rectal vascularization with ICG. To the best of our knowledge, this is the first reported use of endovenous ICG during a bowel resection for deep endometriosis. Endovenous ICG is proposed during surgery for rectosigmoid endometriosis to assess the perfusion of the bowel and select the transecting line. With ICG fluorescence imaging, we can objectively evaluate whether blood supply to the anastomosis is

  4. Navigation.

    PubMed

    Wiltschko, Roswitha

    2017-07-01

    Experiments with migrating birds displaced during autumn migration outside their normal migration corridor reveal two different navigational strategies: adult migrants compensate for the displacement, and head towards their traditional wintering areas, whereas young first-time migrants continue in their migratory direction. Young birds are guided to their still unknown goal by a genetically coded migration program that indicates duration and direction(s) of the migratory flight by controlling the amount of migratory restlessness and the compass course(s) with respect to the geomagnetic field and celestial rotation. Adult migrants that have already wintered and are familiar with the goal area approach the goal by true navigation, specifically heading towards it and changing their course correspondingly after displacement. During their first journey, young birds experience the distribution of potential navigational factors en route and in their winter home, which allows them to truly navigate on their next migrations. The navigational factors used appear to include magnetic intensity as a component in their multi-modal navigational 'map'; olfactory input is also involved, even if it is not yet entirely clear in what way. The mechanisms of migratory birds for true navigation over long distances appear to be in principle similar to those discussed for by homing pigeons.

  5. Estrogen receptor-targeted optical imaging of breast cancer cells with near-infrared fluorescent dye

    NASA Astrophysics Data System (ADS)

    Jose, Iven; Deodhar, Kodand; Chiplunkar, Shuba V.; Patkar, Meena

    2010-02-01

    Molecular imaging provides the in vivo characterization of cellular molecular events involved in normal and pathologic processes. With the advent of optical molecular imaging, specific molecules, proteins and genes may be tagged with a luminescent reporter and visualized in small animals. This powerful new tool has pushed in vivo optical imaging to the forefront as it allows for direct determination of drug bio-distribution and uptake kinetics as well as an indicator of biochemical activity and drug efficacy. Although optical imaging encompasses diverse techniques and makes use of various wavelengths of light, a great deal of excitement in molecular research lies in the use of tomographic and fluorescence techniques to image living tissues with near-infrared (NIR) light. Nonionizing, noninvasive near-infrared optical imaging has great potential to become promising alternative for breast cancer detection. Fluorescence spectroscopy studies of human tissue suggest that a variety of lesions show distinct fluorescence spectra compared to those of normal tissue. It has also been shown that exogenous dyes exhibit selective uptake in neoplastic lesions and may offer the best contrast for optical imaging. Use of exogenous agents would provide fluorescent markers, which could serve to detect embedded tumors in the breast. In particular, the ability to monitor the fluorescent yield and lifetime may also enable biochemical specificity if the fluorophore is sensitive to a specific metabolite, such as oxygen. As a first step, we have synthesized and characterized one such NIR fluorescent dye conjugate, which could potentially be used to detect estrogen receptors (ER)[2] . The conjugate was synthesized by ester formation between 17-β estradiol and a hydrophilic derivative of indocyanine green (ICG) cyanine dye, bis-1, 1-(4-sulfobutyl) indotricarbocyanine-5- carboxylic acid, sodium salt. The ester formed was found to have an extra binding ability with the receptor cites as

  6. Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping

    PubMed Central

    B. Mondal, Suman; Gao, Shengkui; Zhu, Nan; Sudlow, Gail P.; Liang, Kexian; Som, Avik; Akers, Walter J.; Fields, Ryan C.; Margenthaler, Julie; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2015-01-01

    The inability to identify microscopic tumors and assess surgical margins in real-time during oncologic surgery leads to incomplete tumor removal, increases the chances of tumor recurrence, and necessitates costly repeat surgery. To overcome these challenges, we have developed a wearable goggle augmented imaging and navigation system (GAINS) that can provide accurate intraoperative visualization of tumors and sentinel lymph nodes in real-time without disrupting normal surgical workflow. GAINS projects both near-infrared fluorescence from tumors and the natural color images of tissue onto a head-mounted display without latency. Aided by tumor-targeted contrast agents, the system detected tumors in subcutaneous and metastatic mouse models with high accuracy (sensitivity = 100%, specificity = 98% ± 5% standard deviation). Human pilot studies in breast cancer and melanoma patients using a near-infrared dye show that the GAINS detected sentinel lymph nodes with 100% sensitivity. Clinical use of the GAINS to guide tumor resection and sentinel lymph node mapping promises to improve surgical outcomes, reduce rates of repeat surgery, and improve the accuracy of cancer staging. PMID:26179014

  7. Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping

    NASA Astrophysics Data System (ADS)

    B. Mondal, Suman; Gao, Shengkui; Zhu, Nan; Sudlow, Gail P.; Liang, Kexian; Som, Avik; Akers, Walter J.; Fields, Ryan C.; Margenthaler, Julie; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2015-07-01

    The inability to identify microscopic tumors and assess surgical margins in real-time during oncologic surgery leads to incomplete tumor removal, increases the chances of tumor recurrence, and necessitates costly repeat surgery. To overcome these challenges, we have developed a wearable goggle augmented imaging and navigation system (GAINS) that can provide accurate intraoperative visualization of tumors and sentinel lymph nodes in real-time without disrupting normal surgical workflow. GAINS projects both near-infrared fluorescence from tumors and the natural color images of tissue onto a head-mounted display without latency. Aided by tumor-targeted contrast agents, the system detected tumors in subcutaneous and metastatic mouse models with high accuracy (sensitivity = 100%, specificity = 98% ± 5% standard deviation). Human pilot studies in breast cancer and melanoma patients using a near-infrared dye show that the GAINS detected sentinel lymph nodes with 100% sensitivity. Clinical use of the GAINS to guide tumor resection and sentinel lymph node mapping promises to improve surgical outcomes, reduce rates of repeat surgery, and improve the accuracy of cancer staging.

  8. Enhancement of indocyanine green stability and cellular uptake by incorporating cationic lipid into indocyanine green-loaded nanoemulsions.

    PubMed

    Lee, Eun-Hye; Kim, Jin-Ki; Lim, Joon-Seok; Lim, Soo-Jeong

    2015-12-01

    Indocyanine green (ICG) is a near-infrared optical dye approved by the Food and Drug Administration. ICG has been investigated as a simultaneous color and fluorescence-imaging tracer for the intraoperative identification of sentinel lymph nodes, but its use has recently expanded to include application as a photosensitizer for the local photodynamic/thermal treatment of identified lymph node metastases. The current study was designed to develop an ICG-loaded nanoemulsion as an effective agent for both the diagnosis and treatment of lymph node metastases. Incorporating the cationic lipid stearylamine (SA) together with ICG in the shell of nanoemulsions did not affect the loaded ICG concentration, but changed the surface charge of nanoemulsions from a negative to a positive value and improved the physical stability of nanoemulsions. Loading ICG into SA-incorporated nanoemulsions more effectively blocked the aggregation and degradation of ICG compared to loading in SA-free nanoemulsions. SA incorporation also enhanced tumor cell uptake of ICG-loaded nanoemulsions, resulting in greater cell killing upon light irradiation. After subcutaneous injection into the footpad of mice, SA-incorporated nanoemulsions increased the concentration of ICG accumulated in popliteal lymph nodes to a greater extent than SA-free nanoemulsions without affecting the kinetics of lymph node uptake of nanoemulsions. These multiple beneficial effects of incorporating SA in nanoemulsions are likely attributable to the electrostatic interaction between anionic ICG and cationic SA, as well as the change in the nanoemulsion surface charge from negative to positive. Our findings indicate that SA-incorporated nanoemulsions are promising ICG carriers for combined diagnosis and treatment of lymph node metastases. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. PubMed Central

    Hackethal, Andreas; Hirschburger, Markus; Eicker, Sven Oliver; Mücke, Thomas; Lindner, Christoph; Buchweitz, Olaf

    2018-01-01

    Modern surgical strategies aim to reduce trauma by using functional imaging to improve surgical outcomes. This reviews considers and evaluates the importance of the fluorescent dye indocyanine green (ICG) to visualize lymph nodes, lymphatic pathways and vessels and tissue borders in an interdisciplinary setting. The work is based on a selective search of the literature in PubMed, Scopus, and Google Scholar and the authorsʼ own clinical experience. Because of its simple, radiation-free and uncomplicated application, ICG has become an important clinical indicator in recent years. In oncologic surgery ICG is used extensively to identify sentinel lymph nodes with promising results. In some studies, the detection rates with ICG have been better than the rates obtained with established procedures. When ICG is used for visualization and the quantification of tissue perfusion, it can lead to fewer cases of anastomotic insufficiency or transplant necrosis. The use of ICG for the imaging of organ borders, flap plasty borders and postoperative vascularization has also been scientifically evaluated. Combining the easily applied ICG dye with technical options for intraoperative and interventional visualization has the potential to create new functional imaging procedures which, in future, could expand or even replace existing established surgical techniques, particularly the techniques used for sentinel lymph node and anastomosis imaging. PMID:29375146

  10. Indocyanine Green Fluorescence for Free-Flap Perfusion Imaging Revisited: Advanced Decision Making by Virtual Perfusion Reality in Visionsense Fusion Imaging Angiography.

    PubMed

    Bigdeli, Amir Khosrow; Gazyakan, Emre; Schmidt, Volker Juergen; Hernekamp, Frederick Jochen; Harhaus, Leila; Henzler, Thomas; Kremer, Thomas; Kneser, Ulrich; Hirche, Christoph

    2016-06-01

    Near-infrared indocyanine green video angiography (ICG-NIR-VA) has been introduced for free-flap surgery and may provide intraoperative flap designing as well as postoperative monitoring. Nevertheless, the technique has not been established in clinical routine because of controversy over benefits. Improved technical features of the novel Visionsense ICG-NIR-VA surgery system are promising to revisit the field of application. It features a unique real-time fusion image of simultaneous NIR and white light visualization, with highlighted perfusion, including a color-coded perfusion flow scale for optimized anatomical understanding. In a feasibility study, the Visionsense ICG-NIR-VA system was applied during 10 free-flap surgeries in 8 patients at our center. Indications included anterior lateral thigh (ALT) flap (n = 4), latissimus dorsi muscle flap (n = 1), tensor fascia latae flap (n = 1), and two bilateral deep inferior epigastric artery perforator flaps (n = 4). The system was used intraoperatively and postoperatively to investigate its impact on surgical decision making and to observe perfusion patterns correlated to clinical monitoring. Visionsense ICG-NIR-VA aided assessing free-flap design and perfusion patterns in all cases and correlated with clinical observations. Additional interventions were performed in 2 cases (22%). One venous anastomosis was revised, and 1 flap was redesigned. Indicated by ICG-NIR-VA, 1 ALT flap developed partial flap necrosis (11%). The Visionsense ICG-NIR-VA system allowed a virtual view of flap perfusion anatomy by fusion imaging in real-time. The system improved decision making for flap design and surgical decisions. Clinical and ICG-NIR-VA parameters correlated. Its future implementation may aid in improving outcomes for free-flap surgery, but additional experience is needed to define its final role. © The Author(s) 2015.

  11. Preparation of Multifunctional Fe@Au Core-Shell Nanoparticles with Surface Grafting as a Potential Treatment for Magnetic Hyperthermia.

    PubMed

    Chung, Ren-Jei; Shih, Hui-Ting

    2014-01-24

    Iron core gold shell nanoparticles grafted with Methotrexate (MTX) and indocyanine green (ICG) were synthesized for the first time in this study, and preliminarily evaluated for their potential in magnetic hyperthermia treatment. The core-shell Fe@Au nanoparticles were prepared via the microemulsion process and then grafted with MTX and ICG using hydrolyzed poly(styrene-alt-maleic acid) (PSMA) to obtain core-shell Fe@Au-PSMA-ICG/MTX nanoparticles. MTX is an anti-cancer therapeutic, and ICG is a fluorescent dye. XRD, TEM, FTIR and UV-Vis spectrometry were performed to characterize the nanoparticles. The data indicated that the average size of the nanoparticles was 6.4 ± 09 nm and that the Au coating protected the Fe core from oxidation. MTX and ICG were successfully grafted onto the surface of the nanoparticles. Under exposure to high frequency induction waves, the superparamagnetic nanoparticles elevated the temperature of a solution in a few minutes, which suggested the potential for an application in magnetic hyperthermia treatment. The in vitro studies verified that the nanoparticles were biocompatible; nonetheless, the Fe@Au-PSMA-ICG/MTX nanoparticles killed cancer cells (Hep-G2) via the magnetic hyperthermia mechanism and the release of MTX.

  12. SURVIVORSHIP NAVIGATION OUTCOME MEASURES: A report from the ACS Patient Navigation Working Group on Survivorship Navigation

    PubMed Central

    Pratt-Chapman, Mandi; Simon, Melissa A.; Patterson, Angela; Risendal, Betsy C.; Patierno, Steven

    2013-01-01

    Survivorship navigation is a relatively new concept in the field of patient navigation, but an important one. This paper highlights the essential functions of the survivorship navigator and defines core outcomes and measures for navigation in the survivorship period. Barriers to access to care experienced by patients during active cancer treatment can continue into the post-treatment period, affecting quality follow-up care for survivors. These barriers to care can be particularly acute for non-English speakers, immigrants, the uninsured, the underinsured and other vulnerable populations. The survivorship navigator can help reduce barriers and facilitate access to survivorship care and services through communication and information exchange for patients. Survivorship navigation may improve appropriate health care utilization through education and care coordination, potentially improving health outcomes and quality of life of survivors while reducing cost to the health care system. Survivorship navigators can also educate survivors on how to improve their overall wellness, thereby directly impacting the health of a growing population of cancer survivors. PMID:21780092

  13. The achromatic locus: Effect of navigation direction in color space

    PubMed Central

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-01

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m2). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes. PMID:24464164

  14. The achromatic locus: effect of navigation direction in color space.

    PubMed

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-24

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m(2)). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.

  15. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigator and specialized navigation equipment. 121.389 Section 121.389 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an...

  16. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigator and specialized navigation equipment. 121.389 Section 121.389 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an...

  17. PATIENT NAVIGATION

    PubMed Central

    Wells, Kristen J.; Battaglia, Tracy A.; Dudley, Donald J.; Garcia, Roland; Greene, Amanda; Calhoun, Elizabeth; Mandelblatt, Jeanne S.; Paskett, Electra D.; Raich, Peter C.

    2008-01-01

    Background First implemented in 1990, patient navigation interventions are emerging as an approach to reduce cancer disparities. However, there is lack of consensus about how patient navigation is defined, what patient navigators do, and what their qualifications should be. Little is known about the efficacy and cost effectiveness of patient navigation. Methods We conducted a qualitative synthesis of published literature on cancer patient navigation. Using the keywords “navigator” or “navigation” and “cancer,” we identified 45 articles from Pubmed and reference searches that were published or in press through October 2007. 16 provided data on efficacy of navigation in improving timeliness and receipt of cancer screening, diagnostic follow-up care, and treatment. Patient navigation services are defined and differentiated from other outreach services. Results Overall there is evidence for some degree of efficacy for patient navigation in increasing participation in cancer screening and adherence to diagnostic follow-up care following an abnormality, with increases in screening ranging from 10.8% to 17.1% and increases in adherence to diagnostic follow-up care ranging from 21% to 29.2%, when compared to control patients. There is less evidence regarding efficacy of patient navigation in reducing either late stage cancer diagnosis or delays in initiation of cancer treatment or improving outcomes during cancer survivorship. There were methodological limitations in most studies, such as lack of control groups, small sample sizes, and contamination with other interventions. Conclusions Although cancer-related patient navigation interventions are being increasingly adopted across the U.S. and Canada, further research is necessary to evaluate their efficacy and cost-effectiveness in improving cancer care. PMID:18780320

  18. Area navigation and required navigation performance procedures and depictions

    DOT National Transportation Integrated Search

    2012-09-30

    Area navigation (RNAV) and required navigation performance (RNP) procedures are fundamental to the implementation of a performance based navigation (PBN) system, which is a key enabling technology for the Next Generation Air Transportation System (Ne...

  19. Calibrating the imaging and therapy performance of magneto-fluorescent gold nanoshells for breast cancer

    NASA Astrophysics Data System (ADS)

    Dowell, Adam; Chen, Wenxue; Biswal, Nrusingh; Ayala-Orozco, Ciceron; Giuliano, Mario; Schiff, Rachel; Halas, Naomi J.; Joshi, Amit

    2012-03-01

    Gold nanoshells with NIR plasmon resonance can be modified to simultaneously enhance conjugated NIR fluorescence dyes and T2 contrast of embedded iron-oxide nanoparticles, and molecularly targeted to breast and other cancers. We calibrated the theranostic performance of magneto-fluorescent nanoshells, and contrasted the performance of molecularly targeted and untargeted nanoshells for breast cancer therapy, employing MCF-7L and their HER2 overexpressing derivative MCF-7/HER2-18 breast cancer cells as in vitro model systems. Silica core gold nanoshells with plasmon resonance on ~810 nm were doped with NIR dye ICG and ~10 nm iron-oxide nanoparticles in a ~20 nm epilayer of silica. A subset of nanoshells was conjugated to antibodies targeting HER2. Cell viability with varying laser power levels in presence and absence of bare and HER2-targeted nanoshells was assessed by calcein and propidium iodide staining. For MCF-7L cells, increasing power resulted in increased cell death (F=5.63, p=0.0018), and bare nanoshells caused more cell death than HER2-targeted nanoshells or laser treatment alone (F=30.13, p<0.001). For MCF-7/HER2-18 cells, death was greater with HER2-targeted nanoshells and was independent of laser power. This study demonstrates the capability of magneto-fluorescent nanocomplexes for imaging and therapy of breast cancer cells, and the advantages of targeting receptors unique to cancer cells.

  20. Combining 5-Aminolevulinic Acid Fluorescence and Intraoperative Magnetic Resonance Imaging in Glioblastoma Surgery: A Histology-Based Evaluation.

    PubMed

    Hauser, Sonja B; Kockro, Ralf A; Actor, Bertrand; Sarnthein, Johannes; Bernays, René-Ludwig

    2016-04-01

    Glioblastoma resection guided by 5-aminolevulinic acid (5-ALA) fluorescence and intraoperative magnetic resonance imaging (iMRI) may improve surgical results and prolong survival. To evaluate 5-ALA fluorescence combined with subsequent low-field iMRI for resection control in glioblastoma surgery. Fourteen patients with suspected glioblastoma suitable for complete resection of contrast-enhancing portions were enrolled. The surgery was carried out using 5-ALA-induced fluorescence and frameless navigation. Areas suspicious for tumor underwent biopsy. After complete resection of fluorescent tissue, low-field iMRI was performed. Areas suspicious for tumor remnant underwent biopsy under navigation guidance and were resected. The histological analysis was blinded. In 13 of 14 cases, the diagnosis was glioblastoma multiforme. One lymphoma and 1 case without fluorescence were excluded. In 11 of 12 operations, residual contrast enhancement on iMRI was found after complete resection of 5-ALA fluorescent tissue. In 1 case, the iMRI enhancement was in an eloquent area and did not undergo a biopsy. The 28 biopsies of areas suspicious for tumor on iMRI in the remaining 10 cases showed tumor in 39.3%, infiltration zone in 25%, reactive central nervous system tissue in 32.1%, and normal brain in 3.6%. Ninety-three fluorescent and 24 non-fluorescent tissue samples collected before iMRI contained tumor in 95.7% and 87.5%, respectively. 5-ALA fluorescence-guided resection may leave some glioblastoma tissue undetected. MRI might detect areas suspicious for tumor even after complete resection of all fluorescent tissue; however, due to the limited accuracy of iMRI in predicting tumor remnant (64.3%), resection of this tissue has to be considered with caution in eloquent regions.

  1. Sex differences in virtual navigation influenced by scale and navigation experience.

    PubMed

    Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A

    2017-04-01

    The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.

  2. Prospective Trial with Optical Molecular Imaging for Percutaneous Interventions in Focal Hepatic Lesions

    PubMed Central

    Sheth, Rahul A.; Arellano, Ronald S.; Uppot, Raul N.; Samir, Anthony E.; Goyal, Lipika; Zhu, Andrew X.; Gervais, Debra A.

    2015-01-01

    Purpose To demonstrate the clinical translation of optical molecular imaging (OMI) for the localization of focal hepatic lesions during percutaneous hepatic interventions. Materials and Methods Institutional review board approval was obtained for this prospective, single-center, HIPAA-compliant trial. Patients who were suspected of having hepatocellular carcinoma or liver metastases from colorectal cancer and were scheduled for percutaneous liver biopsy or thermal ablation were eligible for this study. Patients (n = 5) received 0.5 mg per kilogram of body weight of indocyanine green (ICG) intravenously 24 hours prior to their scheduled procedure in this study. Intraprocedurally, a handheld device composed of an endoscope that fits coaxially through a standard 17-gauge introducer needle was advanced into the liver, and real-time measurements of ICG fluorescence were obtained. A point-of-care fluorescence imaging system was used to image ICG fluorescence in biopsy samples. Target-to-background ratios (TBRs) were calculated by dividing the mean fluorescence intensity in the lesion by the mean fluorescence intensity in the adjacent liver parenchyma. The reference standard for determination of proper needle positioning in patients undergoing biopsy was final pathologic analysis of biopsy specimens or follow-up imaging. Results Intraprocedural OMI was successfully performed in six lesions (two lesions in patient 3) in five patients. The median size of the targeted lesions was 16 mm (range, 10–21 mm). Four of five biopsies (80%) yielded an accurate pathologic diagnosis, and one biopsy specimen showed benign liver parenchyma; both ablated lesions showed no residual disease 1 month after the procedure. The median overall added procedure time to perform OMI was 2 minutes. ICG was found to localize with TBRs greater than 2.0 (median, 7.9; range, 2.4–13.4) in all target lesions. No trial-related adverse events were reported. Conclusion The clinical translation of OMI to

  3. Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics.

    PubMed

    Hu, Dehong; Zhang, Jingnan; Gao, Guanhui; Sheng, Zonghai; Cui, Haodong; Cai, Lintao

    2016-01-01

    Photoacoustic (PA) imaging and photothermal therapy (PTT) as light-induced theranostic platforms have been attracted much attention in recent years. However, the development of highly efficient and integrated phototheranostic nanoagents for amplifying PA imaging and PTT treatments poses great challenges. Here, we report a novel phototheranostic nanoagent using indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites (ICG-PDA-rGO) with amplifying PA and PTT effects for cancer theranostics. The results demonstrate that the PDA layer coating on the surface of rGO could effectively absorb a large number of ICG molecules, quench ICG's fluorescence, and enhance the PDA-rGO's optical absorption at 780 nm. The obtained ICG-PDA-rGO exhibits stronger PTT effect and higher PA contrast than that of pure GO and PDA-rGO. After PA imaging-guided PTT treatments, the tumors in 4T1 breast subcutaneous and orthotopic mice models are suppressed completely and no treatment-induced toxicity being observed. It illustrates that the ICG-PDA-rGO nanocomposites constitute a new class of theranostic nanomedicine for amplifying PA imaging and PTT treatments.

  4. Setup for testing cameras for image guided surgery using a controlled NIR fluorescence mimicking light source and tissue phantom

    NASA Astrophysics Data System (ADS)

    Georgiou, Giota; Verdaasdonk, Rudolf M.; van der Veen, Albert; Klaessens, John H.

    2017-02-01

    In the development of new near-infrared (NIR) fluorescence dyes for image guided surgery, there is a need for new NIR sensitive camera systems that can easily be adjusted to specific wavelength ranges in contrast the present clinical systems that are only optimized for ICG. To test alternative camera systems, a setup was developed to mimic the fluorescence light in a tissue phantom to measure the sensitivity and resolution. Selected narrow band NIR LED's were used to illuminate a 6mm diameter circular diffuse plate to create uniform intensity controllable light spot (μW-mW) as target/source for NIR camera's. Layers of (artificial) tissue with controlled thickness could be placed on the spot to mimic a fluorescent `cancer' embedded in tissue. This setup was used to compare a range of NIR sensitive consumer's cameras for potential use in image guided surgery. The image of the spot obtained with the cameras was captured and analyzed using ImageJ software. Enhanced CCD night vision cameras were the most sensitive capable of showing intensities < 1 μW through 5 mm of tissue. However, there was no control over the automatic gain and hence noise level. NIR sensitive DSLR cameras proved relative less sensitive but could be fully manually controlled as to gain (ISO 25600) and exposure time and are therefore preferred for a clinical setting in combination with Wi-Fi remote control. The NIR fluorescence testing setup proved to be useful for camera testing and can be used for development and quality control of new NIR fluorescence guided surgery equipment.

  5. In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe

    NASA Astrophysics Data System (ADS)

    Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong

    2018-02-01

    Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.

  6. Interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Stuart, J. R.

    1984-01-01

    The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.

  7. Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release.

    PubMed

    Lajunen, Tatu; Kontturi, Leena-Stiina; Viitala, Lauri; Manna, Moutusi; Cramariuc, Oana; Róg, Tomasz; Bunker, Alex; Laaksonen, Timo; Viitala, Tapani; Murtomäki, Lasse; Urtti, Arto

    2016-06-06

    Light-triggered drug delivery systems enable site-specific and time-controlled drug release. In previous work, we have achieved this with liposomes containing gold nanoparticles in the aqueous core. Gold nanoparticles absorb near-infrared light and release the energy as heat that increases the permeability of the liposomal bilayer, thus releasing the contents of the liposome. In this work, we replaced the gold nanoparticles with the clinically approved imaging agent indocyanine green (ICG). The ICG liposomes were stable at storage conditions (4-22 °C) and at body temperature, and fast near-infrared (IR) light-triggered drug release was achieved with optimized phospholipid composition and a 1:50 ICG-to-lipid molar ratio. Encapsulated small molecular calcein and FITC-dextran (up to 20 kDa) were completely released from the liposomes after light exposure for 15 s. Location of ICG in the PEG layer of the liposomes was simulated with molecular dynamics. ICG has important benefits as a light-triggering agent in liposomes: fast content release, improved stability, improved possibility of liposomal size control, regulatory approval to use in humans, and the possibility of imaging the in vivo location of the liposomes based on the fluorescence of ICG. Near-infrared light used as a triggering mechanism has good tissue penetration and safety. Thus, ICG liposomes are an attractive option for light-controlled and efficient delivery of small and large drug molecules.

  8. Formulation of long-wavelength indocyanine green nanocarriers

    NASA Astrophysics Data System (ADS)

    Pansare, Vikram J.; Faenza, William J.; Lu, Hoang; Adamson, Douglas H.; Prud'homme, Robert K.

    2017-09-01

    Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICG-tetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 1∶1 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations.

  9. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions.

    PubMed

    van Oosterom, Matthias N; van der Poel, Henk G; Navab, Nassir; van de Velde, Cornelis J H; van Leeuwen, Fijs W B

    2018-03-01

    To provide an overview of the developments made for virtual- and augmented-reality navigation procedures in urological interventions/surgery. Navigation efforts have demonstrated potential in the field of urology by supporting guidance for various disorders. The navigation approaches differ between the individual indications, but seem interchangeable to a certain extent. An increasing number of pre- and intra-operative imaging modalities has been used to create detailed surgical roadmaps, namely: (cone-beam) computed tomography, MRI, ultrasound, and single-photon emission computed tomography. Registration of these surgical roadmaps with the real-life surgical view has occurred in different forms (e.g. electromagnetic, mechanical, vision, or near-infrared optical-based), whereby the combination of approaches was suggested to provide superior outcome. Soft-tissue deformations demand the use of confirmatory interventional (imaging) modalities. This has resulted in the introduction of new intraoperative modalities such as drop-in US, transurethral US, (drop-in) gamma probes and fluorescence cameras. These noninvasive modalities provide an alternative to invasive technologies that expose the patients to X-ray doses. Whereas some reports have indicated navigation setups provide equal or better results than conventional approaches, most trials have been performed in relatively small patient groups and clear follow-up data are missing. The reported computer-assisted surgery research concepts provide a glimpse in to the future application of navigation technologies in the field of urology.

  10. Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Unger, Jakob; Lagarto, Joao; Phipps, Jennifer; Ma, Dinglong; Bec, Julien; Sorger, Jonathan; Farwell, Gregory; Bold, Richard; Marcu, Laura

    2017-02-01

    Multi-Spectral Time-Resolved Fluorescence Spectroscopy (ms-TRFS) can provide label-free real-time feedback on tissue composition and pathology during surgical procedures by resolving the fluorescence decay dynamics of the tissue. Recently, an ms-TRFS system has been developed in our group, allowing for either point-spectroscopy fluorescence lifetime measurements or dynamic raster tissue scanning by merging a 450 nm aiming beam with the pulsed fluorescence excitation light in a single fiber collection. In order to facilitate an augmented real-time display of fluorescence decay parameters, the lifetime values are back projected to the white light video. The goal of this study is to develop a 3D real-time surface reconstruction aiming for a comprehensive visualization of the decay parameters and providing an enhanced navigation for the surgeon. Using a stereo camera setup, we use a combination of image feature matching and aiming beam stereo segmentation to establish a 3D surface model of the decay parameters. After camera calibration, texture-related features are extracted for both camera images and matched providing a rough estimation of the surface. During the raster scanning, the rough estimation is successively refined in real-time by tracking the aiming beam positions using an advanced segmentation algorithm. The method is evaluated for excised breast tissue specimens showing a high precision and running in real-time with approximately 20 frames per second. The proposed method shows promising potential for intraoperative navigation, i.e. tumor margin assessment. Furthermore, it provides the basis for registering the fluorescence lifetime maps to the tissue surface adapting it to possible tissue deformations.

  11. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser

    PubMed Central

    Liu, Yang; Xu, Ming; Chen, Qing; Guan, Guannan; Hu, Wen; Zhao, Xiuli; Qiao, Mingxi; Hu, Haiyang; Liang, Ying; Zhu, Heyun; Chen, Dawei

    2015-01-01

    Photothermal therapy (PTT) is widely regarded as a promising technology for cancer treatment. Gold nanorods (GNRs), as excellent PTT agent candidates, have shown high-performance photothermal conversion ability under laser irradiation, yet two major obstacles to their clinical application are the lack of selective accumulation in the target site following systemic administration and the greatly reduced photothermal conversion efficiency caused by self-aggregating in aqueous environment. Herein, we demonstrate that tLyp-1 peptide-functionalized, indocyanine green (ICG)-containing mesoporous silica-coated GNRs (I-TMSG) possessed dual-function as tumor cells-targeting near-infrared (NIR) fluorescent probe and PTT agents. The construction of the nanostructure began with synthesis of GNRs by seed-mediated growth method, followed by the coating of mesoporous silica, the chemical conjugation of PEG and tLyp-1 peptide, and the enclosure of ICG as an NIR imaging agent in the mesoporous. The as-prepared nanoparticles could shield the GNRs against their self-aggregation, improve the stability of ICG, and exhibit negligible dark cytotoxicity. More importantly, such a theranostic nanocomposite could realize the combination of GNRs-based photothermal ablation under NIR illumination, ICG-mediated fluorescent imaging, and tLyp-1-enabled more easy endocytosis into breast cancer cells. All in all, I-TMSG nanoparticles, in our opinion, possessed the strong potential to realize the effective diagnosis and PTT treatment of human mammary cancer. PMID:26251596

  12. Preclinical evaluation of a novel cyanine dye for tumor imaging with in vivo photoacoustic imaging.

    PubMed

    Temma, Takashi; Onoe, Satoru; Kanazaki, Kengo; Ono, Masahiro; Saji, Hideo

    2014-09-01

    Photoacoustic imaging (PA imaging or PAI) has shown great promise in the detection and monitoring of cancer. Although nanocarrier-based contrast agents have been studied for use in PAI, small molecule contrast agents are required due to their ease of preparation, costeffectiveness, and low toxicity. Here, we evaluated the usefulness of a novel cyanine dye IC7-1-Bu as a PAI contrast agent without conjugated targeting moieties for in vivo tumor imaging in a mice model. Basic PA characteristics of IC7-1-Bu were compared with indocyanine green (ICG), a Food and Drug Administration approved dye, in an aqueous solution. We evaluated the tumor accumulation profile of IC7-1-Bu and ICG by in vivo fluorescence imaging. In vivo PAI was then performed with a photoacoustic tomography system 24 and 48 h after intravenous injection of IC7-1-Bu into tumor bearing mice. IC7-1-Bu showed about a 2.3-fold higher PA signal in aqueous solution compared with that of ICG. Unlike ICG, IC7-1-Bu showed high tumor fluorescence after intravenous injection. In vivo PAI provided a tumor to background PA signal ratio of approximately 2.5 after intravenous injection of IC7-1-Bu. These results indicate that IC7-1-Bu is a promising PAI contrast agent for cancer imaging without conjugation of targeting moieties.

  13. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  14. Modified Navigation Instructions for Spatial Navigation Assistance Systems Lead to Incidental Spatial Learning

    PubMed Central

    Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja

    2017-01-01

    Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219

  15. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  16. Feasibility and optimal dosage of indocyanine green fluorescence for sentinel lymph node detection using robotic single-site instrumentation: preclinical study.

    PubMed

    Levinson, Kimberly L; Mahdi, Haider; Escobar, Pedro F

    2013-01-01

    The present study was performed to determine the optimal dosage of indocyanine green (ICG) to accurately differentiate the sentinel node from surrounding tissue and then to test this dosage using novel single-port robotic instrumentation. The study was performed in healthy female pigs. After induction of anesthesia, all pigs underwent exploratory laparotomy, dissection of the bladder, and colpotomy to reveal the cervical os. With use of a 21-gauge needle, 0.5 mL normal saline solution was injected at the 3- and 9-o'clock positions as control. Four concentrations of ICG were constituted for doses of 1000, 500, 250, and 175 μg per 0.5 mL. ICG was then injected at the 3- and 9-o'clock positions on the cervix. The SPY camera was used to track ICG into the sentinel nodes and to quantify the intensity of light emitted. SPY technology uses an intensity scale of 1 to 256; this scale was used to determine the difference in intensity between the sentinel node and surrounding tissues. The optimal dosage was tested using single-port robotic instrumentation with the same injection techniques. A sentinel node was identified at all doses except 175 μg, at which ICG stayed in the cervix and vasculature only. For both the 500- and 250-μg doses, the sentinel node was identified before reaching maximum intensity. At maximum intensity, the difference between the surrounding tissue and the node was 207 (251 vs 44) for the 500-μg dose and 159 (251 vs 92) for the 250-μg dose. Sentinel lymph node (SLN) biopsy was successfully performed using single-port robotic technology with both the 250- and 500-μg doses. For SLN detection, the dose of ICG is related to the ability to differentiate the sentinel node from the surrounding tissue. An ICG dose of 250 to 500 μg enables identification of a SLN with more distinction from the surrounding tissues, and this procedure is feasible using single-port robotics instrumentation. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights

  17. Laparoscopic Sentinel Lymph Node Mapping with Indocyanine Green Using the iSpies Platform: Initial Experience Argentina.

    PubMed

    Di Guilmi, Julian; Darin, Maria Cecilia; Toscano, Maria; Maya, Gustavo

    To demonstrate the initial experience in Argentina using the iSpies indocyanine green (ICG) platform in sentinel lymph node mapping in patients with early-stage cervical cancer. Step-by-step demonstration of the technique using a video and pictures (educative video) (Canadian Task Force classification III). Laparoscopic and robotic sentinel lymph node mapping using ICG has been shown to be safe and feasible; however, in developing countries, the opportunities to use fluorescent imaging through a minimally invasive approach are very limited, given the cost restrictions of acquiring the near-infrared technology and the fluorescent dyes. A 47-year-old woman presented with a stage IB1 squamous cervical cancer. Physical examination revealed a 1.5-cm tumor without evidence of parametrial involvement. Magnetic resonance imaging did not show any evidence of metastatic disease. The patient underwent laparoscopic radical hysterectomy with sentinel lymph node mapping. On laparoscopic exposure of the pelvic spaces, a cervical injection of ICG (1 mL superficial and deep) was administered using a spinal needle at the 3 o'clock and 9 o'clock positions. Sentinel lymph node mapping was then performed using the ICG (Pulsion Medical Systems, Feldkirchen, Germany) and an iSpies near-infrared camera (Karl Storz Endoskope, Tuttlingen, Germany). Bilateral sentinel lymph nodes were detected on the left external iliac artery and in the right obturator space. Both were confirmed ex vivo. The total operative time was 170 minutes. No intraoperative or postoperative complications were reported, and the patient was discharged at 48 hours after surgery. Estimated blood loss was minimal. Sentinel lymph node mapping alone is not the standard of care in our institution, and thus bilateral lymphadenectomy was performed. Ultrastaging is routinely performed when a sentinel lymph node is evaluated. Final pathology revealed a tumor confined to the cervix, with tumor-free margins, and a total of 10

  18. Uptake of indocyanine green by hamster sebaceous glands

    NASA Astrophysics Data System (ADS)

    McMillan, Kathleen; Lo, Kai-Ming; Wang, Zhi

    2001-05-01

    Photothermal injury to the sebaceous glands is a potential curative treatment for the common skin disease acne vulgaris. Accumulation of the exogenous chromophore indocyanine green in the sebaceous glands may be accomplished using an emulsion or liposomal formulation applied to the skin surface. An emulsion containing 0.09% by weight indocyanine green (ICG) was applied to the epidermis of hamster ears ex vivo and the flank organ in vivo. Fluorescence microscopy demonstrated selective accumulation of ICG in the underlying sebaceous glands. The concentration of ICG that may be expected to accumulate in sebaceous glands of humans was then estimated on the basis of the gland size and orifice area, for the case of topical application of a more concentrated 1% ICG liposomal formulation. Monte Carlo modeling and heat transfer calculations showed that the sebaceous glands containing the exogenous chromophore may be selectively damaged by pulsed 810 nm laser radiation in conjunction with cryogen spray cooling.

  19. INL Autonomous Navigation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  20. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  1. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  2. Formulation of long-wavelength indocyanine green nanocarriers.

    PubMed

    Pansare, Vikram J; Faenza, William J; Lu, Hoang; Adamson, Douglas H; Prud'homme, Robert K

    2017-09-01

    Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICG-tetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 1∶1 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Comparison of Near-Infrared Imaging Camera Systems for Intracranial Tumor Detection.

    PubMed

    Cho, Steve S; Zeh, Ryan; Pierce, John T; Salinas, Ryan; Singhal, Sunil; Lee, John Y K

    2018-04-01

    Distinguishing neoplasm from normal brain parenchyma intraoperatively is critical for the neurosurgeon. 5-Aminolevulinic acid (5-ALA) has been shown to improve gross total resection and progression-free survival but has limited availability in the USA. Near-infrared (NIR) fluorescence has advantages over visible light fluorescence with greater tissue penetration and reduced background fluorescence. In order to prepare for the increasing number of NIR fluorophores that may be used in molecular imaging trials, we chose to compare a state-of-the-art, neurosurgical microscope (System 1) to one of the commercially available NIR visualization platforms (System 2). Serial dilutions of indocyanine green (ICG) were imaged with both systems in the same environment. Each system's sensitivity and dynamic range for NIR fluorescence were documented and analyzed. In addition, brain tumors from six patients were imaged with both systems and analyzed. In vitro, System 2 demonstrated greater ICG sensitivity and detection range (System 1 1.5-251 μg/l versus System 2 0.99-503 μg/l). Similarly, in vivo, System 2 demonstrated signal-to-background ratio (SBR) of 2.6 ± 0.63 before dura opening, 5.0 ± 1.7 after dura opening, and 6.1 ± 1.9 after tumor exposure. In contrast, System 1 could not easily detect ICG fluorescence prior to dura opening with SBR of 1.2 ± 0.15. After the dura was reflected, SBR increased to 1.4 ± 0.19 and upon exposure of the tumor SBR increased to 1.8 ± 0.26. Dedicated NIR imaging platforms can outperform conventional microscopes in intraoperative NIR detection. Future microscopes with improved NIR detection capabilities could enhance the use of NIR fluorescence to detect neoplasm and improve patient outcome.

  4. Navigable networks as Nash equilibria of navigation games.

    PubMed

    Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-07-03

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.

  5. Designing a wearable navigation system for image-guided cancer resection surgery

    PubMed Central

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2015-01-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure. PMID:24980159

  6. Designing a wearable navigation system for image-guided cancer resection surgery.

    PubMed

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2014-11-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.

  7. Autonomous Navigation Above the GNSS Constellations and Beyond: GPS Navigation for the Magnetospheric Multiscale Mission and SEXTANT Pulsar Navigation Demonstration

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke

    2017-01-01

    This talk will describe two first-of-their-kind technology demonstrations attached to ongoing NASA science missions, both of which aim to extend the range of autonomous spacecraft navigation far from the Earth. First, we will describe the onboard GPS navigation system for the Magnetospheric Multiscale (MMS) mission which is currently operating in elliptic orbits reaching nearly halfway to the Moon. The MMS navigation system is a key outgrowth of a larger effort at NASA Goddard Space Flight Center to advance high-altitude Global Navigation Satellite System (GNSS) navigation on multiple fronts, including developing Global Positioning System receivers and onboard navigation software, running simulation studies, and leading efforts to characterize and protect signals at high-altitude in the so-called GNSS Space-Service Volume (SSV). In the second part of the talk, we will describe the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission that aims to make the first in-space demonstration of X-ray pulsar navigation (XNAV). SEXTANT is attached to the NASA astrophysics mission Neutron-star Interior Composition ExploreR (NICER) whose International Space Station mounted X-ray telescope is investigating the fundamental physics of extremes in gravity, material density, and electromagnetic fields found in neutron stars, and whose instrument provides a nearly ideal navigation sensor for XNAV.

  8. Delayed near-infrared analysis permits visualization of rodent retinal pigment epithelium layer in vivo

    NASA Astrophysics Data System (ADS)

    Pankova, Natalie; Zhao, Xu; Liang, Huiyuan; Baek, David Sung Hyeon; Wang, Hai; Boyd, Shelley

    2014-07-01

    Patches of atrophy of the retinal pigment epithelium (RPE) have not been described in rodent models of retinal degeneration, as they have the clinical setting using fundus autofluorescence. We hypothesize that prelabeling the RPE would increase contrast and allow for improved visualization of RPE loss in vivo. Here, we demonstrate a new technique termed "delayed near-infrared analysis (DNIRA)" that permits ready detection of rat RPE, using optical imaging in the near-infrared (IR) spectrum with aid of indocyanine green (ICG) dye. Using DNIRA, we demonstrate a fluorescent RPE signal that is detected using confocal scanning laser ophthalmoscopy up to 28 days following ICG injection. This signal is apparent only after ICG injection, is dose dependent, requires the presence of the ICG filters (795/810 nm excitation/emission), does not appear in the IR reflectance channel, and is eliminated in the presence of sodium iodate, a toxin that causes RPE loss. Rat RPE explants confirm internalization of ICG dye. Together with normal retinal electrophysiology, these findings demonstrate that DNIRA is a new and safe noninvasive optical imaging technique for in vivo visualization of the RPE in models of retinal disease.

  9. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  10. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...

  11. Navigable networks as Nash equilibria of navigation games

    PubMed Central

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-01-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277

  12. Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua

    2017-03-01

    Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.

  13. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery.

    PubMed

    Xin, Yu; Liu, Tie; Yang, Chenlong

    We have prepared novel poly(d,l-lactide- co -glycolide) (PLGA) lipid nanoparticles (PNPs) that covalently conjugate folic acid (FA) and indocyanine green (ICG), in addition to encapsulating resveratrol (RSV) (FA-RSV/ICG-PLGA-lipid NPs, abbreviated as FA-RIPNPs); these nanoparticles have been developed for simultaneous targeted delivery of anticancer drug and fluorescence imaging. The FA-RIPNPs, with an average particle size of 92.8±2.1 nm, were prepared by a facile self-assembly-and-nanoprecipitation method, and they showed excellent stability and biocompatibility characteristics. The FA-RIPNPs exhibited an RSV encapsulation efficiency of approximately 65.6%±4.7% and a maximum release ratio of 78.2%±4.1% at pH 5.0 and 37°C. Confocal fluorescence images showed that FA-RIPNPs may facilitate a high cellular uptake via FA receptor-mediated endocytosis. Furthermore, FA-RIPNPs (containing 50 μg/mL RSV) induced a 81.4%±2.1% U87 cell inhibition rate via apoptosis, a value that proved to be higher than what has been shown for free RSV (53.1%±1.1%, equivalent RSV concentration). With a formulated polyethylene glycol (PEG) shell around the PLGA core, FA-RIPNPs prolonged the blood circulation of both free RSV and ICG, which approximately increased 6.96- and 39.4-fold ( t 1/2 ), respectively. Regarding FA-RIPNP use as a near-infrared probe, in vivo fluorescence images indicated a highly efficient accumulation of FA-RIPNPs in the tumor tissue, which proved to be approximately 2.8- and 12.6-fold higher than the RIPNPs and free ICG, respectively. Intravenous injection of FA-RIPNPs into U87 tumor-bearing mice demonstrated the best tumor inhibition effect for all tested drugs, including free RSV and RIPNPs, with no relapse, showing high biocompatibility and with no significant systemic in vivo toxicity over the course of the treatment (1 month). The results obtained demonstrate the versatility of the NPs, featuring stable fluorescence and tumor-targeting characteristics, with

  14. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery

    PubMed Central

    Xin, Yu; Liu, Tie; Yang, Chenlong

    2016-01-01

    We have prepared novel poly(d,l-lactide-co-glycolide) (PLGA) lipid nanoparticles (PNPs) that covalently conjugate folic acid (FA) and indocyanine green (ICG), in addition to encapsulating resveratrol (RSV) (FA-RSV/ICG-PLGA-lipid NPs, abbreviated as FA-RIPNPs); these nanoparticles have been developed for simultaneous targeted delivery of anticancer drug and fluorescence imaging. The FA-RIPNPs, with an average particle size of 92.8±2.1 nm, were prepared by a facile self-assembly-and-nanoprecipitation method, and they showed excellent stability and biocompatibility characteristics. The FA-RIPNPs exhibited an RSV encapsulation efficiency of approximately 65.6%±4.7% and a maximum release ratio of 78.2%±4.1% at pH 5.0 and 37°C. Confocal fluorescence images showed that FA-RIPNPs may facilitate a high cellular uptake via FA receptor-mediated endocytosis. Furthermore, FA-RIPNPs (containing 50 μg/mL RSV) induced a 81.4%±2.1% U87 cell inhibition rate via apoptosis, a value that proved to be higher than what has been shown for free RSV (53.1%±1.1%, equivalent RSV concentration). With a formulated polyethylene glycol (PEG) shell around the PLGA core, FA-RIPNPs prolonged the blood circulation of both free RSV and ICG, which approximately increased 6.96- and 39.4-fold (t1/2), respectively. Regarding FA-RIPNP use as a near-infrared probe, in vivo fluorescence images indicated a highly efficient accumulation of FA-RIPNPs in the tumor tissue, which proved to be approximately 2.8- and 12.6-fold higher than the RIPNPs and free ICG, respectively. Intravenous injection of FA-RIPNPs into U87 tumor-bearing mice demonstrated the best tumor inhibition effect for all tested drugs, including free RSV and RIPNPs, with no relapse, showing high biocompatibility and with no significant systemic in vivo toxicity over the course of the treatment (1 month). The results obtained demonstrate the versatility of the NPs, featuring stable fluorescence and tumor-targeting characteristics, with

  15. Application of intraoperative indocyanine green angiography for CNS tumors: results on the first 100 cases.

    PubMed

    Ferroli, P; Acerbi, F; Albanese, E; Tringali, G; Broggi, M; Franzini, A; Broggi, G

    2011-01-01

    To investigate the application of indocyanine green (ICG) videoangiography during microsurgery for central nervous system (CNS) tumors. One hundred patients with CNS tumors who underwent microsurgical resection from December 2006 to December 2008 were retrospectively analyzed. The diagnosis was high grade glioma in 54 cases, low grade in 17 cases, meningioma in 14 cases, metastasis in 12 cases and hemangioblastoma in 3 cases. Overall, ICG was injected intraoperatively 194 times. The standard dose of 25mg of dye was injected intravenously and intravascular fluorescence from within the blood vessels was imaged through an ad hoc microscope with dedicated software (Pentero, Carl Zeiss Co., Oberkochen, Germany). Pre-resection and post-resection arterial, capillary and venous ICG videoangiographic phases were intraoperatively observed and recorded. ICG videangiography allowed for a good evaluation of blood flow in the tumoral and peritumoral exposed vessels in all cases. No side effects due to ICG were observed. ICG video-angiography is a significant method for monitoring blood flow in the exposed vessels during microsurgical removal of CNS tumors. Pre-resection videoangiography provides useful information on the tumoral circulation and the pathology-induced alteration in surrounding brain circulation. Post-resection examination allows for an immediate check of patency of those vessels that are closely related to the tumor mass and that the surgeon does not want to damage.

  16. Patient Navigation from the Paired Perspectives of Cancer Patients and Navigators: A Qualitative Analysis

    PubMed Central

    Yosha, Amanat M.; Carroll, Jennifer K.; Hendren, Samantha; Salamone, Charcy M.; Sanders, Mechelle; Fiscella, Kevin; Epstein, Ronald M.

    2011-01-01

    Objective Patient navigation for cancer care assesses and alleviates barriers to health care services. We examined paired perspectives of cancer patients and their navigators to examine the process of patient navigation. We explored the strengths, limitations, and our own lessons learned about adopting the novel methodology of multiperspective analysis. Methods As part of a larger RCT, patients and navigators were interviewed separately. We reviewed interviews with 18 patient-navigator dyads. Dyad summaries were created that explicitly incorporated both patient and navigator perspectives. Emerging themes and verbatim quotations were reflected in the summaries. Results Paired perspectives were valuable in identifying struggles that arose during navigation. These were represented as imbalanced investment and relational amelioration. Patients and navigators had general consensus about important patient needs for cancer care, but characterized these needs differently. Conclusion Our experience with multiperspective analysis revealed a methodology that delivers novel relational findings, but is best conducted de novo rather than as part of a larger study. Practice Implications Multiperspective analysis should be more widely adopted with clear aims and analytic strategy that strengthen the ability to reveal relational dynamics. Navigation training programs should anticipate navigator struggles and provide navigators with tools to manage them. PMID:21255958

  17. Fluorescence cholangiography during laparoscopic cholecystectomy in a patient with situs inversus totalis: a case report and literature review.

    PubMed

    Rungsakulkij, Narongsak; Tangtawee, Pongsatorn

    2017-04-20

    Situs inversus totalis is a rare autosomal disorder in which the patient's affected visceral organs are a perfect mirror image of their normal positions. Surgery in these patients is technically challenging. Minimally invasive surgery such as laparoscopic cholecystectomy is the standard treatment for symptomatic cholelithiasis, but it can be difficult to perform. Laparoscopic cholecystectomy in patients with situs inversus totalis may be even more technically challenging. Fluorescence cholangiography is a new innovation in the field of navigation surgery. This procedure is safe and easy to perform, its findings are easy to interpret, and it does not require a learning curve or radiographs. It can be used in real time during surgery to identify extrahepatic biliary structures. We herein report a case of situs inversus totalis in a Thai patient with a history of biliary pancreatitis. He underwent laparoscopic cholecystectomy with intraoperative fluorescence cholangiography. The operation was successfully completed without complications. To the best of our knowledge, this is the first case report of the use of fluorescence cholangiography during laparoscopic cholecystectomy in a patient with situs inversus. Fluorescence cholangiographyis a new navigational surgical technique with which to identify extrahepatic biliary structures. It can be used as an adjunct technique during laparoscopic cholecystectomy to avoid biliary tract injury in difficult cases.

  18. Global Navigation Satellite Systems and Space Weather: Building upon the International Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Gadimova, S. H.; Haubold, H. J.

    2014-01-01

    Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.

  19. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy.

    PubMed

    Sheng, Zonghai; Hu, Dehong; Zheng, Mingbin; Zhao, Pengfei; Liu, Huilong; Gao, Duyang; Gong, Ping; Gao, Guanhui; Zhang, Pengfei; Ma, Yifan; Cai, Lintao

    2014-12-23

    Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a light-activated local treatment modality that is under intensive preclinical and clinical investigations for cancer. To enhance the treatment efficiency of phototherapy and reduce the light-associated side effects, it is highly desirable to improve drug accumulation and precision guided phototherapy for efficient conversion of the absorbed light energy to reactive oxygen species (ROS) and local hyperthermia. In the present study, a programmed assembly strategy was developed for the preparation of human serum albumin (HSA)-indocyanine green (ICG) nanoparticles (HSA-ICG NPs) by intermolecular disulfide conjugations. This study indicated that HSA-ICG NPs had a high accumulation with tumor-to-normal tissue ratio of 36.12±5.12 at 24 h and a long-term retention with more than 7 days in 4T1 tumor-bearing mice, where the tumor and its margin, normal tissue were clearly identified via ICG-based in vivo near-infrared (NIR) fluorescence and photoacoustic dual-modal imaging and spectrum-resolved technology. Meanwhile, HSA-ICG NPs efficiently induced ROS and local hyperthermia simultaneously for synergetic PDT/PTT treatments under a single NIR laser irradiation. After an intravenous injection of HSA-ICG NPs followed by imaging-guided precision phototherapy (808 nm, 0.8 W/cm2 for 5 min), the tumor was completely suppressed, no tumor recurrence and treatments-induced toxicity were observed. The results suggest that HSA-ICG NPs generated by programmed assembly as smart theranostic nanoplatforms are highly potential for imaging-guided cancer phototherapy with PDT/PTT synergistic effects.

  20. Indocyanine green fluorescence-guided parathyroidectomy for primary hyperparathyroidism.

    PubMed

    DeLong, Jonathan C; Ward, Erin P; Lwin, Thinzar M; Brumund, Kevin T; Kelly, Kaitlyn J; Horgan, Santiago; Bouvet, Michael

    2018-02-01

    Our aim was to evaluate the ease and utility of using indocyanine green fluorescence angiography for intraoperative localization of the parathyroid glands. Indocyanine green fluorescence angiography was performed during 60 parathyroidectomies for primary hyperparathyroidism during a 22-month period. Indocyanine green was administered intravenously to guide operative navigation using a commercially available fluorescence imaging system. Video files were graded by 3 independent surgeons for strength of enhancement using an adapted numeric scoring system. There were 46 (77%) female patients and 14 (23%) male patients whose ages ranged from 17 to 87 (average 60) years old. Of the 60 patients, 43 (71.6%) showed strong enhancement, 13 (21.7%) demonstrated mild to moderate vascular enhancement, and 4 (6.7%) exhibited little or no vascular enhancement. Of the 54 patients who had a preoperative sestamibi scan, a parathyroid adenoma was identified in 36, while 18 failed to localize. Of the 18 patients who failed to localize, all 18 patients (100%) had an adenoma that fluoresced on indocyanine green imaging. The operations were performed safely with minimal blood loss and short operative times. Indocyanine green angiography has the potential to assist surgeons in identifying parathyroid glands rapidly with minimal risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Aging Navigational System.

    PubMed

    Lester, Adam W; Moffat, Scott D; Wiener, Jan M; Barnes, Carol A; Wolbers, Thomas

    2017-08-30

    The discovery of neuronal systems dedicated to computing spatial information, composed of functionally distinct cell types such as place and grid cells, combined with an extensive body of human-based behavioral and neuroimaging research has provided us with a detailed understanding of the brain's navigation circuit. In this review, we discuss emerging evidence from rodents, non-human primates, and humans that demonstrates how cognitive aging affects the navigational computations supported by these systems. Critically, we show 1) that navigational deficits cannot solely be explained by general deficits in learning and memory, 2) that there is no uniform decline across different navigational computations, and 3) that navigational deficits might be sensitive markers for impending pathological decline. Following an introduction to the mechanisms underlying spatial navigation and how they relate to general processes of learning and memory, the review discusses how aging affects the perception and integration of spatial information, the creation and storage of memory traces for spatial information, and the use of spatial information during navigational behavior. The closing section highlights the clinical potential of behavioral and neural markers of spatial navigation, with a particular emphasis on neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A greedy-navigator approach to navigable city plans

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Holme, Petter

    2013-01-01

    We use a set of four theoretical navigability indices for street maps to investigate the shape of the resulting street networks, if they are grown by optimizing these indices. The indices compare the performance of simulated navigators (having a partial information about the surroundings, like humans in many real situations) to the performance of optimally navigating individuals. We show that our simple greedy shortcut construction strategy generates the emerging structures that are different from real road network, but not inconceivable. The resulting city plans, for all navigation indices, share common qualitative properties such as the tendency for triangular blocks to appear, while the more quantitative features, such as degree distributions and clustering, are characteristically different depending on the type of metrics and routing strategies. We show that it is the type of metrics used which determines the overall shapes characterized by structural heterogeneity, but the routing schemes contribute to more subtle details of locality, which is more emphasized in case of unrestricted connections when the edge crossing is allowed.

  3. Intraoperative imaging using intravascular contrast agent

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Garland, Summer; Lemole, G. Michael; Romanowski, Marek

    2016-03-01

    Near-infrared (NIR) contrast agents are becoming more frequently studied in medical imaging due to their advantageous characteristics, most notably the ability to capture near-infrared signal across the tissue and the safety of the technique. This produces a need for imaging technology that can be specific for both the NIR dye and medical application. Indocyanine green (ICG) is currently the primary NIR dye used in neurosurgery. Here we report on using the augmented microscope we described previously for image guidance in a rat glioma resection. Luc-C6 cells were implanted in a rat in the left-frontal lobe and grown for 22 days. Surgical resection was performed by a neurosurgeon using augmented microscopy guidance with ICG contrast. Videos and images were acquired to evaluate image quality and resection margins. ICG accumulated in the tumor tissue due to enhanced permeation and retention from the compromised bloodbrain- barrier. The augmented microscope was capable of guiding the rat glioma resection and intraoperatively highlighted tumor tissue regions via ICG fluorescence under normal illumination of the surgical field.

  4. Establishment of novel detection system for embryonic stem cell-derived hepatocyte-like cells based on nongenetic manipulation with indocyanine green.

    PubMed

    Yoshie, Susumu; Ito, Jun; Shirasawa, Sakiko; Yokoyama, Tadayuki; Fujimura, Yuu; Takeda, Kazuo; Mizuguchi, Masahiro; Matsumoto, Ken; Tomotsune, Daihachiro; Sasaki, Katsunori

    2012-01-01

    Hepatocytes derived from embryonic stem cells (ESCs) are expected to be useful for basic research and clinical applications. However, in several studies, genetic methods used to detect and obtain them are difficult and pose major safety problems. Therefore, in this study, we established a novel detection system for hepatocytes by using indocyanine green (ICG), which is selectively taken up by hepatocytes, based on nongenetic manipulation. ICG has maximum light absorption near 780 nm, and it fluoresces between 800 and 900 nm. Making use of these properties, we developed flow cytometry equipped with an excitation lazer of 785 nm and specific bandpass filters and successfully detected ESC-derived ICG-positive cells that were periodic acid-Schiff positive and expressed hepatocyte phenotypic mRNAs. These results demonstrate that this detection system based on nongenetic manipulation with ICG will lead to isolate hepatocytes generated from ESCs and provide the appropriate levels of stability, quality, and safety required for cell source for cell-based therapy and pharmaceutical studies such as toxicology.

  5. Relationship between intraprostatic tracer deposits and sentinel lymph node mapping in prostate cancer patients.

    PubMed

    Buckle, Tessa; Brouwer, Oscar R; Valdés Olmos, Renato A; van der Poel, Henk G; van Leeuwen, Fijs W B

    2012-07-01

    Intraprostatic injection of the hybrid tracer indocyanine green (ICG)-(99m)Tc-nanocolloid enables both preoperative sentinel node (SN) identification and intraoperative visualization of the SN. Relating the fluorescence deposits in embedded prostate tissue specimens to the preoperatively detected SNs also provides the opportunity to study the influence of their placement on lymphatic drainage pattern. Nineteen patients with prostate carcinoma scheduled for robot-assisted laparoscopic prostatectomy and lymph node (LN) dissection were included. ICG-(99m)Tc-nanocolloid was injected intraprostatically, guided by ultrasound. SN biopsy was performed using a combination of radioguidance and fluorescence guidance. Tracer distribution was visualized in paraffin-embedded prostate samples using ex vivo fluorescence imaging. This distribution was correlated to the number and location of the SNs identified on preoperative lymphoscintigraphy and SPECT/CT. ICG-(99m)Tc-nanocolloid helped guide surgical excision of the SNs. Ex vivo fluorescence imaging revealed a large variation in the locations of intraprostatic tracer deposits among patients. Tracer deposits in the peripheral zone correlated with a higher number of visualized LNs than deposits in the central zone (on average, 4.7 vs. 2.4 LNs per patient). Furthermore, tracer deposits in the mid gland correlated with a higher number of visualized LNs than deposits near the base or apex of the prostate (on average, 6 vs. 3.5 LNs per patient). The hybrid nature of the tracer not only enables surgical guidance but also provides an opportunity to study the correlation between the location of tracer deposits within the prostate and the number and location of preoperatively visualized SNs. These data suggest that the location at which a tracer deposit is placed influences the lymphatic drainage pattern.

  6. Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery

    PubMed Central

    Lee, John Y-K.; Thawani, Jayesh P.; Pierce, John; Zeh, Ryan; Martinez-Lage, Maria; Chanin, Michelle; Venegas, Ollin; Nims, Sarah; Learned, Kim; Keating, Jane; Singhal, Sunil

    2016-01-01

    Background Although real-time localization of gliomas has improved with intraoperative image guidance systems, these tools are limited by brain shift, surgical cavity deformation, and expense. Objective To propose a novel method to perform near-infrared (NIR) imaging during glioma resections based on preclinical and clinical investigations, in order to localize tumors and to potentially identify residual disease. Methods Fifteen patients were identified and administered an FDA-approved, NIR contrast agent (Second Window indocyanine green [ICG], 5 mg/kg) prior to surgical resection. An NIR camera was utilized to localize the tumor prior to resection and to visualize surgical margins following resection. Neuropathology and MR imaging data were used to assess the accuracy and precision of NIR-fluorescence in identifying tumor tissue. Results NIR visualization of 15 gliomas (10 glioblastoma multiforme, 1 anaplastic astrocytoma, 2 low grade astrocytoma, 1 juvenile pilocytic astrocytoma, and 1 ganglioglioma) was performed 22.7 hours (mean) after intravenous injection of ICG. During surgery, 12/15 tumors were visualized with the NIR camera. The mean signal-to-background ratio was 9.5 ± 0.8 and fluorescence was noted through the dura to a maximum parenchymal depth of 13 mm. The best predictor of positive fluorescence was enhancement on T1-weighted imaging; this correlated with SBR (P = .03). Non-enhancing tumors did not demonstrate NIR fluorescence. Using pathology as the gold standard, the technique demonstrated a sensitivity of 98% and specificity of 45% to identify tumor in gadolinium-enhancing specimens (n = 71). Conclusion Using Second Window ICG, gadolinium-enhancing tumors can be localized through brain parenchyma intraoperatively. Its utility for margin detection is promising but limited by lower specificity. PMID:27741220

  7. A step towards standardization: A method for end-point titer determination by fluorescence index of an automated microscope. End-point titer determination by fluorescence index.

    PubMed

    Carbone, Teresa; Gilio, Michele; Padula, Maria Carmela; Tramontano, Giuseppina; D'Angelo, Salvatore; Pafundi, Vito

    2018-05-01

    Indirect Immunofluorescence (IIF) is widely considered the Gold Standard for Antinuclear Antibody (ANA) screening. However, the high inter-reader variability remains the major disadvantage associated with ANA testing and the main reason for the increasing demand of the computer-aided immunofluorescence microscope. Previous studies proposed the quantification of the fluorescence intensity as an alternative for the classical end-point titer evaluation. However, the different distribution of bright/dark light linked to the nature of the self-antigen and its location in the cells result in different mean fluorescence intensities. The aim of the present study was to correlate Fluorescence Index (F.I.) with end-point titers for each well-defined ANA pattern. Routine serum samples were screened for ANA testing on HEp-2000 cells using Immuno Concepts Image Navigator System, and positive samples were serially diluted to assign the end-point titer. A comparison between F.I. and end-point titers related to 10 different staining patterns was made. According to our analysis, good technical performance of F.I. (97% sensitivity and 94% specificity) was found. A significant correlation between quantitative reading of F.I. and end-point titer groups was observed using Spearman's test and regression analysis. A conversion scale of F.I. in end-point titers for each recognized ANA-pattern was obtained. The Image Navigator offers the opportunity to improve worldwide harmonization of ANA test results. In particular, digital F.I. allows quantifying ANA titers by using just one sample dilution. It could represent a valuable support for the routine laboratory and an effective tool to reduce inter- and intra-laboratory variability. Copyright © 2018. Published by Elsevier B.V.

  8. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence.

    PubMed

    Widhalm, Georg

    2014-01-01

    Precise histopathological diagnosis of brain tumors is essential for the correct patient management. Furthermore, complete resection of brain tumors is associated with an improved patient prognosis. However, histopathological undergrading and incomplete tumor removal are not uncommon, especially due to insufficient intra-operative visualization of brain tumor tissue. The fluorescent dye 5-aminolevulinic acid (5-ALA) is currently applied for fluorescence-guided resections of high-grade gliomas. The value of 5-ALA-induced protoporphyrin (PpIX) fluorescence for intra-operative visualization of other tumors than high-grade gliomas remains unclear. Within the frame of this thesis, we found a significantly higher rate of complete resections of our high-grade gliomas as compared to control cases by using the newly established 5-ALA fluorescence technology at our department. Additionally, we showed that MRI spectroscopy-based chemical shift imaging (CSI) is capable to identify intratumoral high-grade glioma areas (= anaplastic foci) during navigation guided resections to avoid histopathological undergrading. However, the accuracy of navigation systems with integrated pre-operative imaging data such as CSI declines during resections due to intra-operative brainshift. In two further studies, we found that 5-ALA induced PpIX fluorescence is capable as a novel intra-operative marker to detect anaplastic foci within initially suspected low-grade gliomas independent of brainshift. Finally, we showed that the application of 5-ALA is also of relevance in needle biopsies for intra-operative identification of representative brain tumor tissue. These data indicate that 5-ALA is not only of major importance for resection of high-grade gliomas, but also for intra-operative visualization of anaplastic foci as well as representative brain tumor tissue in needle biopsies unaffected by brainshift. Consequently, this new technique might become a novel standard in brain tumor surgery that

  9. Indocyanine green detects sentinel lymph nodes in early breast cancer.

    PubMed

    Liu, Jun; Huang, Linping; Wang, Ning; Chen, Ping

    2017-04-01

    Objective To explore the clinical value of indocyanine green (ICG) for the fluorescence-guided detection of sentinel lymph nodes (SLNs) during sentinel lymph node biopsy (SLNB) in patients with early breast cancer. Methods This retrospective study included female patients with breast cancer. Patients were administered methylene blue and ICG using standard techniques. All SLNs that were collected during surgery were submitted for pathological examination. SLNs were defined as those that were either fluorescent, blue, fluorescent and blue or palpably suspicious. Surgical complications, axillary recurrence, distant metastasis and overall survival rates were observed postoperatively. Results A total of 60 patients were enrolled in the study. The fluorescence detection rate of SLNs was 100% ( n = 177), with a mean of 2.95 SLNs per patient. The methylene blue staining rate was 88.3% ( n = 106), with a mean of 1.77 SLNs per patient. Pathological assessment of intraoperative frozen specimens revealed SLN metastases in 10 patients, who immediately underwent axillary lymph node dissection. No patient had axillary recurrence or distant metastases, with a survival rate of 100%. Patients who underwent SLNB showed good appearance in the axillary wound, with no limited shoulder joint abduction and upper limb oedema. Conclusion Fluorescence-guided SLNB has several advantages and is suitable for clinical application.

  10. Localization of near-infrared contrast agents in tumors by intravital microscopy

    NASA Astrophysics Data System (ADS)

    Becker, Andreas; Schneider, Guenther; Riefke, Bjoern; Licha, Kai; Semmler, Wolfhard

    1999-01-01

    In this contribution we use intravital microscopy to study the dynamics of extravasation into normal and tumor tissue of several hydrophilic cyanine dyes used as near-infrared (NIR) contrast agents. The technique provides information about the angiographic properties of the dyes and about their interaction with tumor tissue under dynamic conditions in vivo. In our previous work we demonstrated that several NIR- absorbing fluorescent dyes enable in vivo fluorescence detection of tumors in mice and rats. However, the mechanism leading to dye accumulation and enhanced fluorescence in tumors is not fully understood. Increased extravasation of dyes into tumor tissue due to pathologically altered tumor vessels may be an important factor in this process. Indocyanine green (ICG) displayed predominantly intravascular distribution and rapid elimination resulting in enhanced fluorescence signal of vessels during the first 15 min after administration only. No elevated extravasation into tumor tissue was observed with ICG. A hydrophilic indotricarbocyanine derivative with a high molecular weight displayed prolonged intravascular distribution and increased fluorescence signal of the vasculature compared to surrounding tissue for up to five hours. Rapid extravasation and accumulation in tumor areas, yielding elevated contrast of tumors up to 15 min after administration, was observed with hydrophilic, low molecular weight indotricarbocyanine derivatives.

  11. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  12. Coordinating sensing and local navigation

    NASA Technical Reports Server (NTRS)

    Slack, Marc G.

    1991-01-01

    Based on Navigation Templates (or NaTs), this work presents a new paradigm for local navigation which addresses the noisy and uncertain nature of sensor data. Rather than creating a new navigation plan each time the robot's perception of the world changes, the technique incorporates perceptual changes directly into the existing navigation plan. In this way, the robot's navigation plan is quickly and continuously modified, resulting in actions that remain coordinated with its changing perception of the world.

  13. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE...), will report the channel conditions promptly, using standard tabular forms, to: Director, Defense... operations in important channels in tidal waters—either in progress and not already reported, or soon to be...

  14. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  15. Impact of Patient Navigation on Timely Cancer Care: The Patient Navigation Research Program

    PubMed Central

    Battaglia, Tracy A.; Calhoun, Elizabeth; Darnell, Julie S.; Dudley, Donald J.; Fiscella, Kevin; Hare, Martha L.; LaVerda, Nancy; Lee, Ji-Hyun; Levine, Paul; Murray, David M.; Patierno, Steven R.; Raich, Peter C.; Roetzheim, Richard G.; Simon, Melissa; Snyder, Frederick R.; Warren-Mears, Victoria; Whitley, Elizabeth M.; Winters, Paul; Young, Gregory S.; Paskett, Electra D.

    2014-01-01

    Background Patient navigation is a promising intervention to address cancer disparities but requires a multisite controlled trial to assess its effectiveness. Methods The Patient Navigation Research Program compared patient navigation with usual care on time to diagnosis or treatment for participants with breast, cervical, colorectal, or prostate screening abnormalities and/or cancers between 2007 and 2010. Patient navigators developed individualized strategies to address barriers to care, with the focus on preventing delays in care. To assess timeliness of diagnostic resolution, we conducted a meta-analysis of center- and cancer-specific adjusted hazard ratios (aHRs) comparing patient navigation vs usual care. To assess initiation of cancer therapy, we calculated a single aHR, pooling data across all centers and cancer types. We conducted a metaregression to evaluate variability across centers. All statistical tests were two-sided. Results The 10521 participants with abnormal screening tests and 2105 with a cancer or precancer diagnosis were predominantly from racial/ethnic minority groups (73%) and publically insured (40%) or uninsured (31%). There was no benefit during the first 90 days of care, but a benefit of navigation was seen from 91 to 365 days for both diagnostic resolution (aHR = 1.51; 95% confidence interval [CI] = 1.23 to 1.84; P < .001)) and treatment initiation (aHR = 1.43; 95% CI = 1.10 to 1.86; P < .007). Metaregression revealed that navigation had its greatest benefits within centers with the greatest delays in follow-up under usual care. Conclusions Patient navigation demonstrated a moderate benefit in improving timely cancer care. These results support adoption of patient navigation in settings that serve populations at risk of being lost to follow-up. PMID:24938303

  16. A Leapfrog Navigation System

    NASA Astrophysics Data System (ADS)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  17. The navigation of homing pigeons: Do they use sun Navigation?

    NASA Technical Reports Server (NTRS)

    Walcott, C.

    1972-01-01

    Experiments to determine the dependence of homing pigeons on the sun as a navigational cue are discussed. Various methods were employed to interrupt the circadian rhythms of the pigeons prior to release. It was determined that the sun may serve as a compass, but that topographic features are more important for navigation. The effects of a magnetic field produced by electric equipment carried by the bird were also investigated. It was concluded that magnetic fields may have a small effect on the homing ability. The exact nature of the homing pigeon's navigational ability is still unknown after years of elaborate experimentation.

  18. Optimal motion planning using navigation measure

    NASA Astrophysics Data System (ADS)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  19. A navigation system for the visually impaired using colored navigation lines and RFID tags.

    PubMed

    Seto, First Tatsuya

    2009-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane senses the colored navigation line, and the system informs the visually impaired that he/she is walking along the navigation line by vibration. The color recognition system is controlled by a one-chip microprocessor and this system can discriminate 6 colored navigation lines. RFID tags and a receiver for these tags are used in the map information system. The RFID tags and the RFID tag receiver are also installed on a white cane. The receiver receives tag information and notifies map information to the user by mp3 formatted pre-recorded voice. Three normal subjects who were blindfolded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the map information system was good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  20. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and...

  1. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and...

  2. Impact of patient navigation on timely cancer care: the Patient Navigation Research Program.

    PubMed

    Freund, Karen M; Battaglia, Tracy A; Calhoun, Elizabeth; Darnell, Julie S; Dudley, Donald J; Fiscella, Kevin; Hare, Martha L; LaVerda, Nancy; Lee, Ji-Hyun; Levine, Paul; Murray, David M; Patierno, Steven R; Raich, Peter C; Roetzheim, Richard G; Simon, Melissa; Snyder, Frederick R; Warren-Mears, Victoria; Whitley, Elizabeth M; Winters, Paul; Young, Gregory S; Paskett, Electra D

    2014-06-01

    Patient navigation is a promising intervention to address cancer disparities but requires a multisite controlled trial to assess its effectiveness. The Patient Navigation Research Program compared patient navigation with usual care on time to diagnosis or treatment for participants with breast, cervical, colorectal, or prostate screening abnormalities and/or cancers between 2007 and 2010. Patient navigators developed individualized strategies to address barriers to care, with the focus on preventing delays in care. To assess timeliness of diagnostic resolution, we conducted a meta-analysis of center- and cancer-specific adjusted hazard ratios (aHRs) comparing patient navigation vs usual care. To assess initiation of cancer therapy, we calculated a single aHR, pooling data across all centers and cancer types. We conducted a metaregression to evaluate variability across centers. All statistical tests were two-sided. The 10521 participants with abnormal screening tests and 2105 with a cancer or precancer diagnosis were predominantly from racial/ethnic minority groups (73%) and publically insured (40%) or uninsured (31%). There was no benefit during the first 90 days of care, but a benefit of navigation was seen from 91 to 365 days for both diagnostic resolution (aHR = 1.51; 95% confidence interval [CI] = 1.23 to 1.84; P < .001)) and treatment initiation (aHR = 1.43; 95% CI = 1.10 to 1.86; P < .007). Metaregression revealed that navigation had its greatest benefits within centers with the greatest delays in follow-up under usual care. Patient navigation demonstrated a moderate benefit in improving timely cancer care. These results support adoption of patient navigation in settings that serve populations at risk of being lost to follow-up. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Miller, Kathy; Kruger, Robert

    2006-02-01

    Purpose. To evaluate photoacoustic spectroscopy as a potential imaging modality capable of measuring intra-tumor heterogeneity and spectral features associated with hemoglobin and the molecular probe indocyanine green (ICG). Material and Methods. Immune deficient mice were injected with wildtype and VEGF enhanced MCF-7 breast cancer cells or SKOV3x ovarian cancer cells, which were allowed to grow to a size of 6-12 mm in diameter. Two mice were imaged alive and after euthanasia for (oxy/deoxy)-hemoglobin content. A 0.4 mL volume of 1 μg/mL concentration of ICG was injected into the tail veins of two mice prior to imaging using the photoacoustic computed tomography (PCT) spectrometer (Optosonics, Inc., Indianapolis, IN 46202) scanner. Mouse images were acquired for wavelengths spanning 700-920 nm, after which the major organs were excised, and similarly imaged. A histological study was performed by sectioning the organ and optically imaging the fluorescence distribution. Results. Calibration of PCT-spectroscopy with different samples of oxygenated blood reproduced a hemoglobin dissociation curve consistent with empirical formula with an average error of 5.6%. In vivo PCT determination of SaO II levels within the tumor vascular was measurably tracked, and spatially correlated to the periphery of the tumor. Statistical and systematic errors associated with hypoxia were estimated to be 10 and 13%, respectively. Measured ICG concentrations determined by contrast-differential PCT images in excised organs (tumor, liver) were approximately 0.8 μg/mL, consistent with fluorescent histological results. Also, the difference in the ratio of ICG concentration in the gall bladder-to-vasculature between the mice was consistent with excretion times between the two mice. Conclusion. PCT spectroscopic imaging has shown to be a noninvasive modality capable of imaging intra-tumor heterogeneity of (oxy/deoxy)-hemoglobin and ICG in vivo, with an estimated error in SaO II at 17% and in

  4. The real-world navigator

    NASA Technical Reports Server (NTRS)

    Balabanovic, Marko; Becker, Craig; Morse, Sarah K.; Nourbakhsh, Illah R.

    1994-01-01

    The success of every mobile robot application hinges on the ability to navigate robustly in the real world. The problem of robust navigation is separable from the challenges faced by any particular robot application. We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about an explicit description of positional uncertainty. We provide two implementations of real-world robot systems that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully navigated a portion of the Stanford University campus. The Scimmer project developed successful entries for the AIAA 1993 Robotics Competition, placing first in one of the two contests entered.

  5. Near-infrared fluorescence imaging of experimentally collagen-induced arthritis in rats using the nonspecific dye tetrasulfocyanine in comparison with gadolinium-based contrast-enhanced magnetic resonance imaging, histology, and clinical score

    NASA Astrophysics Data System (ADS)

    Gemeinhardt, Ines; Puls, Dorothee; Gemeinhardt, Ole; Taupitz, Matthias; Wagner, Susanne; Schnorr, Beatrix; Licha, Kai; Schirner, Michael; Ebert, Bernd; Petzelt, Diethard; Macdonald, Rainer; Schnorr, Jörg

    2012-10-01

    Using 15 rats with collagen-induced arthritis (30 joints) and 7 control rats (14 joints), we correlated the intensity of near-infrared fluorescence (NIRF) of the nonspecific dye tetrasulfocyanine (TSC) with magnetic resonance imaging (MRI), histopathology, and clinical score. Fluorescence images were obtained in reflection geometry using a NIRF camera system. Normalized fluorescence intensity (INF) was determined after intravenous dye administration on different time points up to 120 min. Contrast-enhanced MRI using gadodiamide was performed after NIRF imaging. Analyses were performed in a blinded fashion. Histopathological and clinical scores were determined for each ankle joint. INF of moderate and high-grade arthritic joints were significantly higher (p<0.005) than the values of control and low-grade arthritic joints between 5 and 30 min after TSC-injection. This result correlated well with post-contrast MRI signal intensities at about 5 min after gadodiamide administration. Furthermore, INF and signal increase on contrast-enhanced MRI showed high correlation with clinical and histopathological scores. Sensitivities and specificities for detection of moderate and high-grade arthritic joints were slightly lower for NIRF imaging (89%/81%) than for MRI (100%/91%). NIRF imaging using TSC, which is characterized by slower plasma clearance compared to indocyanine green (ICG), has the potential to improve monitoring of inflamed joints.

  6. Racial and Ethnic Differences in Patient Navigation: Results from the Patient Navigation Research Program

    PubMed Central

    Ko, Naomi Y; Snyder, Frederick R; Raich, Peter C; Paskett, Electra D.; Dudley, Donald; Lee, Ji-Hyun; Levine, Paul H.; Freund, Karen M

    2016-01-01

    Purpose Patient navigation was developed to address barriers to timely care and reduce cancer disparities. This study explores navigation and racial and ethnic differences in time to diagnostic resolution of a cancer screening abnormality. Patients and Methods We conducted an analysis of the multi-site Patient Navigation Research Program. Participants with an abnormal cancer screening test were allocated to either navigation or control. Unadjusted median time to resolution was calculated for each racial and ethnic group by navigation and control. Multivariable Cox proportional hazards models were fit, adjusting for sex, age, cancer abnormality type, and health insurance, stratifying by center of care. Results Among a sample of 7,514 participants, 29% were Non-Hispanic White, 43% Hispanic, and 28% Black. In the control group Blacks had a longer median time to diagnostic resolution (108 days) than Non-Hispanic Whites (65 days) or Hispanics (68 days) (p< .0001). In the navigated groups, Blacks had a reduction in median time to diagnostic resolution (97 days) (p <.0001). In the multivariable models, among controls, Black race was associated with increased delay to diagnostic resolution (HR=0.77; 95% CI: 0.69, 0.84) compared to the Non-Hispanic Whites, which was reduced in the navigated arm (HR=0.85; 95% CI: 0.77, 0.94). Conclusion Patient navigation had its greatest impact for Black patients who had the greatest delays in care. PMID:27227342

  7. NIR-driven Smart Theranostic Nanomedicine for On-demand Drug Release and Synergistic Antitumour Therapy.

    PubMed

    Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2015-09-24

    Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL 'opens' to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.

  8. NIR-driven Smart Theranostic Nanomedicine for On-demand Drug Release and Synergistic Antitumour Therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2015-09-01

    Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL ‘opens’ to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.

  9. Comparison of Indocyanine Green Angiography and Laser Speckle Contrast Imaging for the Assessment of Vasculature Perfusion

    PubMed Central

    Towle, Erica L.; Richards, Lisa M.; Kazmi, S. M. Shams; Fox, Douglas J.; Dunn, Andrew K.

    2013-01-01

    BACKGROUND Assessment of the vasculature is critical for overall success in cranial vascular neurological surgery procedures. Although several methods of monitoring cortical perfusion intraoperatively are available, not all are appropriate or convenient in a surgical environment. Recently, 2 optical methods of care have emerged that are able to obtain high spatial resolution images with easily implemented instrumentation: indocyanine green (ICG) angiography and laser speckle contrast imaging (LSCI). OBJECTIVE To evaluate the usefulness of ICG and LSCI in measuring vessel perfusion. METHODS An experimental setup was developed that simultaneously collects measurements of ICG fluorescence and LSCI in a rodent model. A 785-nm laser diode was used for both excitation of the ICG dye and the LSCI illumination. A photothrombotic clot model was used to occlude specific vessels within the field of view to enable comparison of the 2 methods for monitoring vessel perfusion. RESULTS The induced blood flow change demonstrated that ICG is an excellent method for visualizing the volume and type of vessel at a single point in time; however, it is not always an accurate representation of blood flow. In contrast, LSCI provides a continuous and accurate measurement of blood flow changes without the need of an external contrast agent. CONCLUSION These 2 methods should be used together to obtain a complete understanding of tissue perfusion. PMID:22843129

  10. Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer

    PubMed Central

    Tsujimoto, Hironori; Morimoto, Yuji; Takahata, Risa; Nomura, Shinsuke; Yoshida, Kazumichi; Horiguchi, Hiroyuki; Hiraki, Shuichi; Ono, Satoshi; Miyazaki, Hiromi; Saito, Daizo; Hara, Isao; Ozeki, Eiichi; Yamamoto, Junji; Hase, Kazuo

    2014-01-01

    Although there have been multiple advances in the development of novel anticancer agents and operative procedures, prognosis of patients with advanced gastric cancer remains poor, especially in patients with peritoneal metastasis. In this study, we established nanoparticles loaded with indocyanine green (ICG) derivatives: ICG loaded lactosomes (ICGm) and investigated the diagnostic and therapeutic value of photodynamic therapy (PDT) using ICGm for experimental peritoneal dissemination of gastric cancer. Experimental peritoneal disseminated xenografts of human gastric cancer were established in nude mice. Three weeks after intraperitoneal injection of the cancer cells, either ICGm (ICGm-treated mice) or ICG solution (ICG-treated mice) was injected through the tail vein. Forty-eight hours after injection of the photosensitizer, in vivo and ex vivo imaging was carried out. For PDT, 48 h after injection of the photosensitizer, other mice were irradiated through the abdominal wall, and the body weight and survival rate were monitored. In vivo imaging revealed that peritoneal tumors were visualized through the abdominal wall in ICGm-treated mice, whereas only non-specific fluorescence was observed in ICG-treated mice. The PDT reduced the total weight of the disseminated nodules and significantly improved weight loss and survival rate in ICGm-treated mice. In conclusion, ICGm can be used as a novel diagnostic and therapeutic nanodevice in peritoneal dissemination of gastric cancer. PMID:25287817

  11. Texas ports and navigation districts : overview.

    DOT National Transportation Integrated Search

    2017-01-01

    The first Navigation District was established in 1909, and there are now 24 Navigation Districts statewide.1 Navigation districts generally provide for the construction and improvement of waterways in Texas for the purpose of navigation. The creation...

  12. Aqueous Angiography–Mediated Guidance of Trabecular Bypass Improves Angiographic Outflow in Human Enucleated Eyes

    PubMed Central

    Huang, Alex S.; Saraswathy, Sindhu; Dastiridou, Anna; Begian, Alan; Mohindroo, Chirayu; Tan, James C. H.; Francis, Brian A.; Hinton, David R.; Weinreb, Robert N.

    2016-01-01

    Purpose To assess the ability of trabecular micro-bypass stents to improve aqueous humor outflow (AHO) in regions initially devoid of AHO as assessed by aqueous angiography. Methods Enucleated human eyes (14 total from 7 males and 3 females [ages 52–84]) were obtained from an eye bank within 48 hours of death. Eyes were oriented by inferior oblique insertion, and aqueous angiography was performed with indocyanine green (ICG; 0.4%) or fluorescein (2.5%) at 10 mm Hg. With an angiographer, infrared and fluorescent images were acquired. Concurrent anterior segment optical coherence tomography (OCT) was performed, and fixable fluorescent dextrans were introduced into the eye for histologic analysis of angiographically positive and negative areas. Experimentally, some eyes (n = 11) first received ICG aqueous angiography to determine angiographic patterns. These eyes then underwent trabecular micro-bypass sham or stent placement in regions initially devoid of angiographic signal. This was followed by fluorescein aqueous angiography to query the effects. Results Aqueous angiography in human eyes yielded high-quality images with segmental patterns. Distally, angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. Trabecular bypass but not sham in regions initially devoid of ICG aqueous angiography led to increased aqueous angiography as assessed by fluorescein (P = 0.043). Conclusions Using sequential aqueous angiography in an enucleated human eye model system, regions initially without angiographic flow or signal could be recruited for AHO using a trabecular bypass stent. PMID:27588614

  13. Shuttle unified navigation filter, revision 1

    NASA Technical Reports Server (NTRS)

    Muller, E. S., Jr.

    1973-01-01

    Equations designed to meet the navigation requirements of the separate shuttle mission phases are presented in a series of reports entitled, Space Shuttle GN and C Equation Document. The development of these equations is based on performance studies carried out for each particular mission phase. Although navigation equations have been documented separately for each mission phase, a single unified navigation filter design is embodied in these separate designs. The purpose of this document is to present the shuttle navigation equations in a form in which they would most likely be coded-as the single unified navigation filter used in each mission phase. This document will then serve as a single general reference for the navigation equations replacing each of the individual mission phase navigation documents (which may still be used as a description of a particular navigation phase).

  14. Assessment of incomplete clipping of aneurysms intraoperatively by a near-infrared indocyanine green-video angiography (Niicg-Va) integrated microscope.

    PubMed

    Imizu, S; Kato, Y; Sangli, A; Oguri, D; Sano, H

    2008-08-01

    The objective of this article was to assess the clinical use and the completeness of clipping with total occlusion of the aneurysmal lumen, real-time assessment of vascular patency in the parent, branching and perforating vessels, intraoperative assessment of blood flow, image quality, spatial resolution and clinical value in difficult aneurysms using near infrared indocyanine green video angiography integrated on to an operative Pentero neurosurgical microscope (Carl Zeiss, Oberkochen Germany). Thirteen patients with aneurysms were operated upon. An infrared camera with near infrared technology was adapted on to the OPMI Pentero microscope with a special filter and infrared excitation light to illuminate the operating field which was designed to allow passage of the near infrared light required for excitation of indocyanine green (ICG) which was used as the intravascular marker. The intravascular fluorescence was imaged with a video camera attached to the microscope. ICG fluorescence (700-850 nm) from a modified microscope light source on to the surgical field and passage of ICG fluorescence (780-950 nm) from the surgical field, back into the optical path of the microscope was used to detect the completeness of aneurysmal clipping Incomplete clipping in three patients (1 female and 2 males) with unruptured complicated aneurysms was detected using indocyanine green video angiography. There were no adverse effects after injection of indocyanine green. The completeness of clipping was inadequately detected by Doppler ultrasound miniprobe and rigid endoscopy and was thus complemented by indocyanine green video angiography. The operative microscope-integrated ICG video angiography as a new intraoperative method for detecting vascular flow, was found to be quick, reliable, cost-effective and possibly a substitute or adjunct for Doppler ultrasonography or intraoperative DSA, which is presently the gold standard. The simplicity of the method, the speed with which the

  15. Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.

    PubMed

    Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C

    2017-04-03

    The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  16. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  17. Novel use of indocyanine green for intraoperative, real-time localization of ureteral stenosis during robot-assisted ureteroureterostomy.

    PubMed

    Lee, Ziho; Simhan, Jay; Parker, Daniel C; Reilly, Christopher; Llukani, Elton; Lee, David I; Mydlo, Jack H; Eun, Daniel D

    2013-09-01

    To present a novel method to intraoperatively localize ureteral strictures during robot-assisted ureteroureterostomy via indocyanine green (ICG) visualization under near-infrared (NIR) light. Seven patients underwent robot-assisted ureteroureterostomy for ureteral stricture by a single surgeon (D.D.E.). Intraoperative localization of ureteral stricture involved instilling ICG (25 mg in 10 mL distilled water) above and below the level of stenosis through a ureteral catheter or a percutaneous nephrostomy tube, or both. The fluorescent tracer was detected as a green color using the NIR modality on the da Vinci Si (Intuitive Surgical, Sunnyvale, CA). All patients consented to off-label use of ICG after full disclosure. Intraoperative ICG injection and visualization under NIR light assisted in the performance of a tension-free anastomosis in all patients. At the time of surgery, mean age was 55.7 ± 12.4 years and mean body mass index was 30.3 ± 5.8 kg/m(2). Mean operative time was 171.3 ± 52.4 minutes, mean estimated blood loss was 175.0 ± 146.5 mL, and mean length of ureteral excision on pathologic analysis was 1.6 ± 0.7 cm. There were no immediate or delayed adverse effects attributable to intraureteral ICG administration. Mean hospital length of stay was 1.6 ± 1.5 days, with no postoperative complications. Mean follow-up was 5.9 ± 1.5 months, and all cases were clinically and radiographically successful at last follow-up. Intraureteral injection of ICG with visualization under NIR light allows for real-time delineation of the ureter. Additionally, ICG administration aids in discerning healthy ureter from diseased tissue, further assisting successful robotic ureteral repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. [Navigated retinal laser therapy].

    PubMed

    Kernt, M; Ulbig, M; Kampik, A; Neubauer, A S

    2013-08-01

    Navigated laser therapy introduces for the first time computerized assistance systems for retinal laser therapy. The Navilas system offers high precision and safety and provides additional benefits regarding standardization of planning, execution, documentation and quality assurance. The current focus of clinical application for navigated laser therapy besides laser treatment after retinal vein occlusion and panretinal laser photocoagulation in proliferative diabetic retinopathy (PDR) is diabetic macular edema. Recent data indicate that combined initial anti-vascular endothelial growth factor (anti-VEGF) and navigated macular laser therapy allows achievement and maintenance of treatment success with a minimum number of interventions. Despite very promising results the current assessment of navigated laser therapy is still limited by the evidence available worldwide.

  19. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  20. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  1. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  2. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  3. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  4. Indoor navigation by image recognition

    NASA Astrophysics Data System (ADS)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  5. Analysis of safety reports involving area navigation and required navigation performance procedures.

    DOT National Transportation Integrated Search

    2010-11-03

    In order to achieve potential operational and safety benefits enabled by Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures it is important to monitor emerging issues in their initial implementation. Reports from the Aviation...

  6. Surface navigation on Mars with a Navigation Satellite

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    1992-01-01

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  7. Surface navigation on Mars with a Navigation Satellite

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  8. Computer-assisted navigation in orthopedic surgery.

    PubMed

    Mavrogenis, Andreas F; Savvidou, Olga D; Mimidis, George; Papanastasiou, John; Koulalis, Dimitrios; Demertzis, Nikolaos; Papagelopoulos, Panayiotis J

    2013-08-01

    Computer-assisted navigation has a role in some orthopedic procedures. It allows the surgeons to obtain real-time feedback and offers the potential to decrease intra-operative errors and optimize the surgical result. Computer-assisted navigation systems can be active or passive. Active navigation systems can either perform surgical tasks or prohibit the surgeon from moving past a predefined zone. Passive navigation systems provide intraoperative information, which is displayed on a monitor, but the surgeon is free to make any decisions he or she deems necessary. This article reviews the available types of computer-assisted navigation, summarizes the clinical applications and reviews the results of related series using navigation, and informs surgeons of the disadvantages and pitfalls of computer-assisted navigation in orthopedic surgery. Copyright 2013, SLACK Incorporated.

  9. Bio-inspired polarized skylight navigation: a review

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Wan, Yongqin; Li, Lijing

    2015-12-01

    The idea of using skylight polarization in navigation is learned from animals such as desert ants and honeybees. Various research groups have been working on the development of novel navigation systems inspired by polarized skylight. The research of background in polarized skylight navigation is introduced, and basic principle of the insects navigation is expatiated. Then, the research progress status at home and abroad in skylight polarization pattern, three bio-inspired polarized skylight navigation sensors and polarized skylight navigation are reviewed. Finally, the research focuses in the field of polarized skylight navigation are analyzed. At the same time, the trend of development and prospect in the future are predicted. It is believed that the review is helpful to people understand polarized skylight navigation and polarized skylight navigation sensors.

  10. Autonomous navigation system. [gyroscopic pendulum for air navigation

    NASA Technical Reports Server (NTRS)

    Merhav, S. J. (Inventor)

    1981-01-01

    An inertial navigation system utilizing a servo-controlled two degree of freedom pendulum to obtain specific force components in the locally level coordinate system is described. The pendulum includes a leveling gyroscope and an azimuth gyroscope supported on a two gimbal system. The specific force components in the locally level coordinate system are converted to components in the geographical coordinate system by means of a single Euler transformation. The standard navigation equations are solved to determine longitudinal and lateral velocities. Finally, vehicle position is determined by a further integration.

  11. Navigating Space by the Stars

    NASA Image and Video Library

    2018-06-19

    A tool that has helped guide sailors across oceans for centuries is now being tested aboard the International Space Station as a potential emergency navigation tool for guiding future spacecraft across the cosmos. The Sextant Navigation investigation tests use of a hand-held sextant aboard the space station. Sextants have a telescope-like optical sight to take precise angle measurements between pairs of stars from land or sea, enabling navigation without computer assistance. NASA’s Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a navigation backup in the event the crew lost communications from their spacecraft. Jim Lovell demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. Astronauts conducted additional sextant experiments on Skylab. Read more about the Sextant experiment happening aboard the space station: https://www.nasa.gov/mission_pages/station/research/news/Sextant_ISS HD Download: https://archive.org/details/jsc2018m000418_Navigating_Space_by_the_Stars

  12. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  13. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights that...

  14. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights that...

  15. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights that...

  16. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights that...

  17. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights that...

  18. Mission Operations and Navigation Toolkit Environment

    NASA Technical Reports Server (NTRS)

    Sunseri, Richard F.; Wu, Hsi-Cheng; Hanna, Robert A.; Mossey, Michael P.; Duncan, Courtney B.; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.; Martin Mur, Tomas J.; hide

    2009-01-01

    MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services.

  19. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way: General...

  20. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way: General...

  1. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way: General...

  2. An excellent navigation system and experience in craniomaxillofacial navigation surgery: a double-center study

    PubMed Central

    Dai, Jiewen; Wu, Jinyang; Wang, Xudong; Yang, Xudong; Wu, Yunong; Xu, Bing; Shi, Jun; Yu, Hongbo; Cai, Min; Zhang, Wenbin; Zhang, Lei; Sun, Hao; Shen, Guofang; Zhang, Shilei

    2016-01-01

    Numerous problems regarding craniomaxillofacial navigation surgery are not well understood. In this study, we performed a double-center clinical study to quantitatively evaluate the characteristics of our navigation system and experience in craniomaxillofacial navigation surgery. Fifty-six patients with craniomaxillofacial disease were included and randomly divided into experimental (using our AccuNavi-A system) and control (using Strker system) groups to compare the surgical effects. The results revealed that the average pre-operative planning time was 32.32 mins vs 29.74 mins between the experimental and control group, respectively (p > 0.05). The average operative time was 295.61 mins vs 233.56 mins (p > 0.05). The point registration orientation accuracy was 0.83 mm vs 0.92 mm. The maximal average preoperative navigation orientation accuracy was 1.03 mm vs 1.17 mm. The maximal average persistent navigation orientation accuracy was 1.15 mm vs 0.09 mm. The maximal average navigation orientation accuracy after registration recovery was 1.15 mm vs 1.39 mm between the experimental and control group. All patients healed, and their function and profile improved. These findings demonstrate that although surgeons should consider the patients’ time and monetary costs, our qualified navigation surgery system and experience could offer an accurate guide during a variety of craniomaxillofacial surgeries. PMID:27305855

  3. Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid–induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters

    PubMed Central

    Roberts, David W.; Valdés, Pablo A.; Harris, Brent T.; Fontaine, Kathryn M.; Hartov, Alexander; Fan, Xiaoyao; Ji, Songbai; Lollis, S. Scott; Pogue, Brian W.; Leblond, Frederic; Tosteson, Tor D.; Wilson, Brian C.; Paulsen, Keith D.

    2010-01-01

    Object The aim of this study was to investigate the relationships between intraoperative fluorescence, features on MR imaging, and neuropathological parameters in 11 cases of newly diagnosed glioblastoma multiforme (GBM) treated using protoporphyrin IX (PpIX) fluorescence-guided resection. Methods In 11 patients with a newly diagnosed GBM, δ-aminolevulinic acid (ALA) was administered to enhance endogenous synthesis of the fluorophore PpIX. The patients then underwent fluorescence-guided resection, coregistered with conventional neuronavigational image guidance. Biopsy specimens were collected at different times during surgery and assigned a fluorescence level of 0–3 (0, no fluorescence; 1, low fluorescence; 2, moderate fluorescence; or 3, high fluorescence). Contrast enhancement on MR imaging was quantified using two image metrics: 1) Gd-enhanced signal intensity (GdE) on T1-weighted subtraction MR image volumes, and 2) normalized contrast ratios (nCRs) in T1-weighted, postGd-injection MR image volumes for each biopsy specimen, using the biopsy-specific image-space coordinate transformation provided by the navigation system. Subsequently, each GdE and nCR value was grouped into one of two fluorescence categories, defined by its corresponding biopsy specimen fluorescence assessment as negative fluorescence (fluorescence level 0) or positive fluorescence (fluorescence level 1, 2, or 3). A single neuropathologist analyzed the H & E–stained tissue slides of each biopsy specimen and measured three neuropathological parameters: 1) histopathological score (0–IV); 2) tumor burden score (0–III); and 3) necrotic burden score (0–III). Results Mixed-model analyses with random effects for individuals show a highly statistically significant difference between fluorescing and nonfluorescing tissue in GdE (mean difference 8.33, p = 0.018) and nCRs (mean difference 5.15, p < 0.001). An analysis of association demonstrated a significant relationship between the levels of

  4. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104, “Marine...

  5. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104, “Marine...

  6. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104, “Marine...

  7. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104, “Marine...

  8. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104, “Marine...

  9. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  10. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  11. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  12. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  13. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  14. The effects of age, spatial ability, and navigational information on navigational performance

    DOT National Transportation Integrated Search

    1995-12-01

    The purpose of the study reported here was to examine whether age and spatial ability are factors that influence a driver?s ability to navigate and to use navigational displays. These factors were examined because previous research suggests that spat...

  15. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler

  16. Basic Navigator Battery: An Experimental Selection Composite for Undergraduate Navigator Training.

    ERIC Educational Resources Information Center

    Shanahan, Frank M.; Kantor, Jeffrey E.

    High rates of attrition among students in Undergraduate Navigator Training (UNT) is a major concern for Air Training Command. The main objective of this research was to evaluate the Basic Navigator Battery (BNB), a multi-test experimental selection instrument, for its potential to increase the validity of the Air Force Officer Qualifying Test…

  17. Features of lymphatic dysfunction in compressed skin tissues - Implications in pressure ulcer aetiology.

    PubMed

    Gray, Robert J; Voegeli, David; Bader, Dan L

    2016-02-01

    Impaired lymph formation and clearance has previously been proposed as a contributory factor in the development of pressure ulcers. The present study has been designed to trial fluorescence lymphangiography for establishing how lymphatic function is altered under a clinically relevant form of mechanical loading. Lymph formation and clearance was traced in both forearms by an intradermal injection of indocyanine green (ICG) (50 μl, 0.05%w/v), imaged using a commercial near-infrared fluorescence imaging unit (Fluobeam(®) 800). External uniaxial loading equivalent to a pressure of 60 mmHg was applied for 45 min in one arm using a custom-built indenter. Loading was associated with a decreased frequency of normal directional drainage (DD) of ICG within delineated vessels, both immediately after loading and 45 min thereafter. Loading was also associated with non-directional drainage (NDD) of ICG within the interstitium. Signal intensity within NDD was often greatest at areas of stress concentration, producing a 'halo pattern', corresponding to the rounded edges of the indenter. These results suggest that loading skin with a clinically relevant magnitude of pressure alters both lymph formation and clearance. Further work to quantify impaired clearance under mechanical loading could provide valuable insight into their involvement in the development of pressure ulcers. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  18. Navigation/Prop Software Suite

    NASA Technical Reports Server (NTRS)

    Bruchmiller, Tomas; Tran, Sanh; Lee, Mathew; Bucker, Scott; Bupane, Catherine; Bennett, Charles; Cantu, Sergio; Kwong, Ping; Propst, Carolyn

    2012-01-01

    Navigation (Nav)/Prop software is used to support shuttle mission analysis, production, and some operations tasks. The Nav/Prop suite containing configuration items (CIs) resides on IPS/Linux workstations. It features lifecycle documents, and data files used for shuttle navigation and propellant analysis for all flight segments. This suite also includes trajectory server, archive server, and RAT software residing on MCC/Linux workstations. Navigation/Prop represents tool versions established during or after IPS Equipment Rehost-3 or after the MCC Rehost.

  19. Racial and ethnic differences in patient navigation: Results from the Patient Navigation Research Program.

    PubMed

    Ko, Naomi Y; Snyder, Frederick R; Raich, Peter C; Paskett, Electra D; Dudley, Donald J; Lee, Ji-Hyun; Levine, Paul H; Freund, Karen M

    2016-09-01

    Patient navigation was developed to address barriers to timely care and reduce cancer disparities. The current study explored navigation and racial and ethnic differences in time to the diagnostic resolution of a cancer screening abnormality. The authors conducted an analysis of the multisite Patient Navigation Research Program. Participants with an abnormal cancer screening test were allocated to either navigation or control. The unadjusted median time to resolution was calculated for each racial and ethnic group by navigation and control. Multivariable Cox proportional hazards models were fit, adjusting for sex, age, cancer abnormality type, and health insurance and stratifying by center of care. Among a sample of 7514 participants, 29% were non-Hispanic white, 43% were Hispanic, and 28% were black. In the control group, black individuals were found to have a longer median time to diagnostic resolution (108 days) compared with non-Hispanic white individuals (65 days) or Hispanic individuals (68 days) (P<.0001). In the navigated groups, black individuals had a reduction in the median time to diagnostic resolution (97 days) (P<.0001). In the multivariable models, among controls, black race was found to be associated with an increased delay to diagnostic resolution (hazard ratio, 0.77; 95% confidence interval, 0.69-0.84) compared with non-Hispanic white individuals, which was reduced in the navigated arm (hazard ratio, 0.85; 95% confidence interval, 0.77-0.94). Patient navigation appears to have the greatest impact among black patients, who had the greatest delays in care. Cancer 2016. © 2016 American Cancer Society. Cancer 2016;122:2715-2722. © 2016 American Cancer Society. © 2016 American Cancer Society.

  20. Can patient navigation improve receipt of recommended breast cancer care? Evidence from the National Patient Navigation Research Program.

    PubMed

    Ko, Naomi Y; Darnell, Julie S; Calhoun, Elizabeth; Freund, Karen M; Wells, Kristin J; Shapiro, Charles L; Dudley, Donald J; Patierno, Steven R; Fiscella, Kevin; Raich, Peter; Battaglia, Tracy A

    2014-09-01

    Poor and underserved women face barriers in receiving timely and appropriate breast cancer care. Patient navigators help individuals overcome these barriers, but little is known about whether patient navigation improves quality of care. The purpose of this study is to examine whether navigated women with breast cancer are more likely to receive recommended standard breast cancer care. Women with breast cancer who participated in the national Patient Navigation Research Program were examined to determine whether the care they received included the following: initiation of antiestrogen therapy in patients with hormone receptor-positive breast cancer; initiation of postlumpectomy radiation therapy; and initiation of chemotherapy in women younger than age 70 years with triple-negative tumors more than 1 cm. This is a secondary analysis of a multicenter quasi-experimental study funded by the National Cancer Institute to evaluate patient navigation. Multiple logistic regression was performed to compare differences in receipt of care between navigated and non-navigated participants. Among participants eligible for antiestrogen therapy, navigated participants (n = 380) had a statistically significant higher likelihood of receiving antiestrogen therapy compared with non-navigated controls (n = 381; odds ratio [OR], 1.73; P = .004) in a multivariable analysis. Among the participants eligible for radiation therapy after lumpectomy, navigated participants (n = 255) were no more likely to receive radiation (OR, 1.42; P = .22) than control participants (n = 297). We demonstrate that navigated participants were more likely than non-navigated participants to receive antiestrogen therapy. Future studies are required to determine the full impact patient navigation may have on ensuring that vulnerable populations receive quality care. © 2014 by American Society of Clinical Oncology.

  1. Can Patient Navigation Improve Receipt of Recommended Breast Cancer Care? Evidence From the National Patient Navigation Research Program

    PubMed Central

    Ko, Naomi Y.; Darnell, Julie S.; Calhoun, Elizabeth; Freund, Karen M.; Wells, Kristin J.; Shapiro, Charles L.; Dudley, Donald J.; Patierno, Steven R.; Fiscella, Kevin; Raich, Peter; Battaglia, Tracy A.

    2014-01-01

    Purpose Poor and underserved women face barriers in receiving timely and appropriate breast cancer care. Patient navigators help individuals overcome these barriers, but little is known about whether patient navigation improves quality of care. The purpose of this study is to examine whether navigated women with breast cancer are more likely to receive recommended standard breast cancer care. Patients and Methods Women with breast cancer who participated in the national Patient Navigation Research Program were examined to determine whether the care they received included the following: initiation of antiestrogen therapy in patients with hormone receptor–positive breast cancer; initiation of postlumpectomy radiation therapy; and initiation of chemotherapy in women younger than age 70 years with triple-negative tumors more than 1 cm. This is a secondary analysis of a multicenter quasi-experimental study funded by the National Cancer Institute to evaluate patient navigation. Multiple logistic regression was performed to compare differences in receipt of care between navigated and non-navigated participants. Results Among participants eligible for antiestrogen therapy, navigated participants (n = 380) had a statistically significant higher likelihood of receiving antiestrogen therapy compared with non-navigated controls (n = 381; odds ratio [OR], 1.73; P = .004) in a multivariable analysis. Among the participants eligible for radiation therapy after lumpectomy, navigated participants (n = 255) were no more likely to receive radiation (OR, 1.42; P = .22) than control participants (n = 297). Conclusion We demonstrate that navigated participants were more likely than non-navigated participants to receive antiestrogen therapy. Future studies are required to determine the full impact patient navigation may have on ensuring that vulnerable populations receive quality care. PMID:25071111

  2. Investigation of new techniques for aircraft navigation using the omega navigation

    NASA Technical Reports Server (NTRS)

    Baxa, E. G., Jr.

    1978-01-01

    An OMEGA navigation receiver with a microprocessor as the computational component was investigated. A version of the INTEL 4004 microprocessor macroassembler suitable for use on the CDC-6600 system and development of a FORTRAN IV simulator program for the microprocessor was developed. Supporting studies included development and evaluation of navigation algorithms to generate relative position information from OMEGA VLF phase measurements. Simulation studies were used to evaluate assumptions made in developing a navigation equation in OMEGA Line of Position (LOP) coordinates. Included in the navigation algorithms was a procedure for calculating a position in latitude/longitude given an OMEGA LOP fix. Implementation of a digital phase locked loop (DPLL) was evaluated on the basic of phase response characteristics over a range of input phase variations. Included also is an analytical evaluation on the basis of error probability of an algorithm for automatic time synchronization of the receiver to the OMEGA broadcast format. The use of actual OMEGA phase data and published propagation prediction corrections to determine phase velocity estimates was discussed.

  3. Navigation Operations for the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.

  4. An assessment of patient navigator activities in breast cancer patient navigation programs using a nine-principle framework.

    PubMed

    Gunn, Christine M; Clark, Jack A; Battaglia, Tracy A; Freund, Karen M; Parker, Victoria A

    2014-10-01

    To determine how closely a published model of navigation reflects the practice of navigation in breast cancer patient navigation programs. Observational field notes describing patient navigator activities collected from 10 purposefully sampled, foundation-funded breast cancer navigation programs in 2008-2009. An exploratory study evaluated a model framework for patient navigation published by Harold Freeman by using an a priori coding scheme based on model domains. Field notes were compiled and coded. Inductive codes were added during analysis to characterize activities not included in the original model. Programs were consistent with individual-level principles representing tasks focused on individual patients. There was variation with respect to program-level principles that related to program organization and structure. Program characteristics such as the use of volunteer or clinical navigators were identified as contributors to patterns of model concordance. This research provides a framework for defining the navigator role as focused on eliminating barriers through the provision of individual-level interventions. The diversity observed at the program level in these programs was a reflection of implementation according to target population. Further guidance may be required to assist patient navigation programs to define and tailor goals and measurement to community needs. © Health Research and Educational Trust.

  5. An Assessment of Patient Navigator Activities in Breast Cancer Patient Navigation Programs Using a Nine-Principle Framework

    PubMed Central

    Gunn, Christine M; Clark, Jack A; Battaglia, Tracy A; Freund, Karen M; Parker, Victoria A

    2014-01-01

    Objective To determine how closely a published model of navigation reflects the practice of navigation in breast cancer patient navigation programs. Data Source Observational field notes describing patient navigator activities collected from 10 purposefully sampled, foundation-funded breast cancer navigation programs in 2008–2009. Study Design An exploratory study evaluated a model framework for patient navigation published by Harold Freeman by using an a priori coding scheme based on model domains. Data Collection Field notes were compiled and coded. Inductive codes were added during analysis to characterize activities not included in the original model. Principal Findings Programs were consistent with individual-level principles representing tasks focused on individual patients. There was variation with respect to program-level principles that related to program organization and structure. Program characteristics such as the use of volunteer or clinical navigators were identified as contributors to patterns of model concordance. Conclusions This research provides a framework for defining the navigator role as focused on eliminating barriers through the provision of individual-level interventions. The diversity observed at the program level in these programs was a reflection of implementation according to target population. Further guidance may be required to assist patient navigation programs to define and tailor goals and measurement to community needs. PMID:24820445

  6. Feasibility of simultaneous sodium fluorescein and indocyanine green injection in neurosurgical procedures.

    PubMed

    Acerbi, F; Restelli, F; Broggi, M; Schiariti, M; Ferroli, P

    2016-07-01

    The objective of this study is to assess the feasibility of simultaneous Sodium Fluorescein (SF) and Indocyanine Green (ICG) injection during neurosurgical procedures. Three patients harboring a high-grade glioma (HGG) were retrospectively identified in the surgical database of the Neurosurgical Unit 2 at the Foundation IRCCS Istituto Neurologico C. Besta in Milan, by having received intraoperatively both SF for tumor resection and ICG for vasculature angiographic studies in the same surgical procedure. We identified 2 males and 1 female (age range 25-60). Lesions were located in the left temporo-polar area and hippocampus (1 case), right superior frontal gyrus (1 case), left supplementary motor area (1 case). All the three lesions showed Magnetic Resonance Imaging (MRI) characteristics of HGG and, for this reason, in all patients a fluorescein-guided tumor removal was proposed. In the same surgical procedure ICG videoangiography was considered necessary in order to study arterial and venous vasculature, given by the strict relation of the tumor with an unexpected Posterior Communicating Artery (PComA) aneurysm in one case and with cortical drainage veins complexes in the other two cases. In all cases a microscope equipped with both YELLOW560 and IR800 integrated filters (Pentero 900, Carl Zeiss, Oberkorchen, Germany) was used. Fluorescein was i.v. injected at a dose of 5mg/kg immediately after patient intubation. ICG was i.v. injected in bolus on demand of the operating surgeon at a dose of 12.5mg. No side-effects related to simultaneous injection of SF and ICG were identified. In all three cases, the use of SF allowed to better visualize the tumor areas during surgical removal, thus leading to a radical resection until no macroscopic appearance of residual tumor mass and no fluorescence was visible in the surgical cavity. ICG videoangiography confirmed the patency of branches of internal carotid artery after clipping of an unexpected small PComA aneurysm found

  7. Coastal Piloting & Charting: Navigation 101.

    ERIC Educational Resources Information Center

    Osinski, Alison

    This curriculum guide for a beginning course on marine navigation describes marine navigation (the art of and science of determining position of a ship and its movement from one position to another in order to keep track of where the ship is and where it is going) and defines dead reckoning, piloting, electronic navigation, and celestial…

  8. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  9. Patients' experiences with navigation for cancer care.

    PubMed

    Carroll, Jennifer K; Humiston, Sharon G; Meldrum, Sean C; Salamone, Charcy M; Jean-Pierre, Pascal; Epstein, Ronald M; Fiscella, Kevin

    2010-08-01

    We examined how navigation, defined as the assessment and alleviation of barriers to adequate health care, influences patients' perspectives on the quality of their cancer care. We conducted post-study patient interviews from a randomized controlled trial (usual care vs. patient navigation services) from cancer diagnosis through treatment completion. Patients were recruited from 11 primary care, hospital and community oncology practices in New York. We interviewed patients about their expectations and experience of patient navigation or, for non-navigated patients, other sources of assistance. Thirty-five patients newly diagnosed with breast or colorectal cancer. Valued aspects of navigation included emotional support, assistance with information needs and problem-solving, and logistical coordination of cancer care. Unmet cancer care needs expressed by patients randomized to usual care consisted of lack of assistance or support with childcare, household responsibilities, coordination of care, and emotional support. Cancer patients value navigation. Instrumental benefits were the most important expectations for navigation from navigated and non-navigated patients. Navigated patients received emotional support and assistance with information needs, problem-solving, and logistical aspects of cancer care coordination. Navigation services may help improve cancer care outcomes important to patients by addressing fragmented, confusing, uncoordinated, or inefficient care. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Patients' Experiences with Navigation for Cancer Care

    PubMed Central

    Carroll, Jennifer K.; Humiston, Sharon G.; Meldrum, Sean C.; Salamone, Charcy M.; Jean-Pierre, Pascal; Epstein, Ronald M.; Fiscella, Kevin

    2010-01-01

    Objective We examined how navigation, defined as the assessment and alleviation of barriers to adequate health care, influences patients' perspectives on the quality of their cancer care. Methods We conducted post-study patient interviews from a randomized controlled trial (usual care vs. patient navigation services) from cancer diagnosis through treatment completion. Patients were recruited from 11 primary care, hospital and community oncology practices in New York. We interviewed patients about their expectations and experience of patient navigation or, for non-navigated patients, other sources of assistance. Results Thirty-five patients newly diagnosed with breast or colorectal cancer. Valued aspects of navigation included emotional support, assistance with information needs and problem-solving, and logistical coordination of cancer care. Unmet cancer care needs expressed by patients randomized to usual care consisted of lack of assistance or support with childcare, household responsibilities, coordination of care, and emotional support. Conclusion Cancer patients value navigation. Instrumental benefits were the most important expectations for navigation from navigated and non-navigated patients. Navigated patients received emotional support and assistance with information needs, problem-solving, and logistical aspects of cancer care coordination. Practice Implications Navigation services may help improve cancer care outcomes important to patients by addressing fragmented, confusing, uncoordinated, or inefficient care. PMID:20006459

  11. Hybrid lymph node imaging using 64Cu-labeled mannose-conjugated human serum albumin with and without indocyanine green.

    PubMed

    Kang, Choong Mo; An, Gwang Il; Choe, Yearn Seong

    2015-10-01

    Human serum albumin (HSA), which has 58 Lys residues, one Cys residue, and indocyanine green (ICG) adsorption sites, can be used as a multifunctional platform for the development of hybrid imaging probes. In this study, we prepared 64Cu-labeled mannose-conjugated HSA with and without ICG ([64Cu]1-ICG and [64Cu]1, respectively) and compared hybrid PET/near-infrared fluorescence (NIRF) imaging with positron emission tomography (PET)/Cerenkov luminescence (CL) imaging of lymph nodes (LNs). 1,4,7,10-Tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)/mannose-conjugated HSA (1) was synthesized by conjugating mannose molecules to Lys residues and a DOTA molecule to a Cys residue of HSA. Compound 1 was then labeled with Cu ([64Cu]1), and the resulting [64Cu]1 was adsorbed with ICG ([64Cu]1-ICG). PET/NIRF or PET/CL imaging and subsequent biodistribution studies were performed in ICR mice after injection of the probes into the foot pads. The numbers of mannose and DOTA molecules conjugated to HSA were 7.17 ± 0.49 and 0.95 ± 0.18, respectively. The site-specific conjugation of one DOTA molecule to HSA was sufficient for 64Cu-labeling with high efficiency (96.0 ± 1.1%). PET/NIRF and PET/CL imaging and subsequent biodistribution studies demonstrated that the probes were avidly taken up by the popliteal LNs (PO), with a slightly higher uptake ratio of the PO to the lumbar LNs by [64Cu]1. In-vivo studies suggest that [64Cu]1 has more specific and selective binding to mannose receptors in the PO than [64Cu]1-ICG.

  12. Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles.

    PubMed

    Yan, Fei; Wu, Hao; Liu, Hongmei; Deng, Zhiting; Liu, Hong; Duan, Wanlu; Liu, Xin; Zheng, Hairong

    2016-02-28

    Multifunctional near-infrared (NIR) nanoparticles demonstrate great potential in tumor theranostic applications. To achieve the sensitive detection and effective phototherapy in the early stage of tumor genesis, it is highly desirable to improve the targeting of NIR theranostic agents to biomarkers and to enhance their accumulation in tumor. Here we report a novel targeted multifunctional theranostic nanoparticle, internalized RGD (iRGD)-modified indocyanine green (ICG) liposomes (iRGD-ICG-LPs), for molecular imaging-guided photothermal therapy (PTT) and photodynamic therapy (PDT) therapy against breast tumor. The iRGD peptides with high affinity to αvβ3 integrin and effective tumor-internalized property were firstly used to synthesize iRGD-PEG2000-DSPE lipopeptides, which were further utilized to fabricate the targeted ICG liposomes. The results indicated that iRGD-ICG-LPs exhibited excellent stability and could provide an accurate and sensitive detection of breast tumor through NIR fluorescence molecular imaging. We further employed this nanoparticle for tumor theranostic application, demonstrating significantly higher tumor accumulation and tumor inhibition efficacy through PTT/PDT effects. Histological analysis further revealed much more apoptotic cells, confirming the advantageous anti-tumor effect of iRGD-ICG-LPs over non-targeted ICG-LPs. Notably, the targeting therapy mediated by iRGD provides almost equivalent anti-tumor efficacy at a 12.5-fold lower drug dose than that by monoclonal antibody, and no tumor recurrence and obvious treatment-induced toxicity were observed in our study. Our study provides a promising strategy to realize the sensitive detection and effective treatment of tumors by integrating molecular imaging into PTT/PDT therapy. Copyright © 2015. Published by Elsevier B.V.

  13. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications.

    PubMed

    Han, Ya-Hui; Kankala, Ranjith Kumar; Wang, Shi-Bin; Chen, Ai-Zheng

    2018-05-24

    In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.

  14. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities

  15. Relative Navigation of Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, J. Russell; Grambling, Cheryl

    2002-01-01

    This paper compares autonomous relative navigation performance for formations in eccentric, medium and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS), crosslink, and celestial object measurements. For close formations, the relative navigation accuracy is highly dependent on the magnitude of the uncorrelated measurement errors. A relative navigation position accuracy of better than 10 centimeters root-mean-square (RMS) can be achieved for medium-altitude formations that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 15 meters RMS can be achieved for high-altitude formations that have sparse tracking of the GPS signals. The addition of crosslink measurements can significantly improve relative navigation accuracy for formations that use sparse GPS tracking or celestial object measurements for absolute navigation.

  16. Space shuttle navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.

    1976-01-01

    A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.

  17. Are breast cancer navigation programs cost-effective? Evidence from the Chicago Cancer Navigation Project.

    PubMed

    Markossian, Talar W; Calhoun, Elizabeth A

    2011-01-01

    One of the aims of the Chicago Cancer Navigation Project (CCNP) is to reduce the interval of time between abnormal breast cancer screening and definitive diagnosis in patients who are navigated as compared to usual care. In this article, we investigate the extent to which total costs of breast cancer navigation can be offset by survival benefits and savings in lifetime breast cancer-attributable costs. Data sources for the cost-effectiveness analysis include data from published literature, secondary data from the NCI's Surveillance Epidemiology and End Results (SEER) program, and primary data from the CCNP. If women enrolled in CCNP receive breast cancer diagnosis earlier by 6 months as compared to usual care, then navigation is borderline cost-effective for $95,625 per life-year saved. Results from sensitivity analyses suggest that the cost-effectiveness of navigation is sensitive to: the interval of time between screening and diagnosis, percent increase in number of women who receive cancer diagnosis and treatment, women's age, and the positive predictive value of a mammogram. In planning cost-effective navigation programs, special considerations should be made regarding the characteristics of the disease, program participants, and the initial screening test that determines program eligibility. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Navigating oceans and cultures: Polynesian and European navigation systems in the late eighteenth century

    NASA Astrophysics Data System (ADS)

    Walker, M.

    2012-05-01

    Significant differences in the rotation of the celestial dome between the tropical and temperate zones did not stop the peoples of either the tropical Pacific or temperate Europe from using geocentric astronomy to guide exploration of the oceans. Although the differences in the night sky contributed to differences between the Pacific Island and European systems for navigation at sea, the two navigation systems exhibit substantial similarities. Both systems define positions on the surface of the Earth using two coordinates that vary at right angles to each other and use stars, and to a lesser extent the sun, to determine directions. This essay explores similarities and differences in the use of geocentric astronomy for navigation at sea by the peoples of Polynesia and Europe in the late eighteenth century. Captain Cook's orders to discover the unknown southern continent after observing the transit of Venus combined with differences in language and culture to obscure the deeper similarities between the navigation systems used by Cook and the Polynesians. Although it was a further 200 years before anthropologists studied Pacific navigation, collaborations in voyaging with communities in Oceania demonstrated the effectiveness of Pacific navigation systems, revived interest in traditional voyaging in island communities around the Pacific, and potentially open the way for further collaborations in other areas.

  19. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    NASA Technical Reports Server (NTRS)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  20. Usability Testing of Two Ambulatory EHR Navigators.

    PubMed

    Hultman, Gretchen; Marquard, Jenna; Arsoniadis, Elliot; Mink, Pamela; Rizvi, Rubina; Ramer, Tim; Khairat, Saif; Fickau, Keri; Melton, Genevieve B

    2016-01-01

    Despite widespread electronic health record (EHR) adoption, poor EHR system usability continues to be a significant barrier to effective system use for end users. One key to addressing usability problems is to employ user testing and user-centered design. To understand if redesigning an EHR-based navigation tool with clinician input improved user performance and satisfaction. A usability evaluation was conducted to compare two versions of a redesigned ambulatory navigator. Participants completed tasks for five patient cases using the navigators, while employing a think-aloud protocol. The tasks were based on Meaningful Use (MU) requirements. The version of navigator did not affect perceived workload, and time to complete tasks was longer in the redesigned navigator. A relatively small portion of navigator content was used to complete the MU-related tasks, though navigation patterns were highly variable across participants for both navigators. Preferences for EHR navigation structures appeared to be individualized. This study demonstrates the importance of EHR usability assessments to evaluate group and individual performance of different interfaces and preferences for each design.

  1. The sensory ecology of ocean navigation.

    PubMed

    Lohmann, Kenneth J; Lohmann, Catherine M F; Endres, Courtney S

    2008-06-01

    How animals guide themselves across vast expanses of open ocean, sometimes to specific geographic areas, has remained an enduring mystery of behavioral biology. In this review we briefly contrast underwater oceanic navigation with terrestrial navigation and summarize the advantages and constraints of different approaches used to analyze animal navigation in the sea. In addition, we highlight studies and techniques that have begun to unravel the sensory cues that underlie navigation in sea turtles, salmon and other ocean migrants. Environmental signals of importance include geomagnetic, chemical and hydrodynamic cues, perhaps supplemented in some cases by celestial cues or other sources of information that remain to be discovered. An interesting similarity between sea turtles and salmon is that both have been hypothesized to complete long-distance reproductive migrations using navigational systems composed of two different suites of mechanisms that function sequentially over different spatial scales. The basic organization of navigation in these two groups of animals may be functionally similar, and perhaps also representative of other long-distance ocean navigators.

  2. Navigator program risk management

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Padilla, Deborah A.

    2004-01-01

    In this paper, program risk management as applied to the Navigator Program: In Search of New Worlds will be discussed. The Navigator Program's goals are to learn how planetary systems form and to search for those worlds that could or do harbor life.

  3. Development of a breast navigation program.

    PubMed

    Shockney, Lillie D; Haylock, Pamela J; Cantril, Cynthia

    2013-05-01

    To review the development of a navigation program in a major US academic health care institution, and provide guidance for navigation programmatic development in other settings. The Johns Hopkins Breast Center Steering Committee minutes, Hospital Cancer Registry; administrative data, and literature. Incorporating navigation services throughout the cancer continuum, from diagnosis to survivorship, provides guidance for patients with cancer. Navigation processes and programs must remain dynamic, reflecting patient and community needs. Oncology nurses have traditionally performed many tasks associated with navigation, including patient education, psychosocial support, and addressing barriers to care. This article provides an exemplar for nurses developing or enhancing comprehensive breast programs. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. 33 CFR 165.838 - Regulated Navigation Area; Gulf Intracoastal Waterway, Inner Harbor Navigation Canal, New Orleans...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... before closure of the navigational structures, all floating vessels must depart the RNA except as follows... Harbor Navigation Canal, New Orleans, LA. (a) Location. The following is a regulated navigation area (RNA... West of Harvey Locks (WHL) (b) Definitions. As used in this section: (1) Breakaway means a floating...

  5. Implementation of evidence-based patient navigation programs.

    PubMed

    Freund, Karen M

    2017-02-01

    Patient navigation refers to a direct patient care role that links patients with clinical providers and their support system and provides individualized support during cancer care, ensuring that patients have access to the knowledge and resources necessary to complete recommended treatment. While most reports have studied the role of patient navigators during the cancer screening or diagnostic process, emerging evidence indicates the benefits of patient navigation during active cancer treatment. Reports in the literature are conflicting on the impact of patient navigation during cancer care and on the benefits to timely or quality care in all populations. Recent sub-analyses of the Patient Navigation Research Program data demonstrated specifically the benefits of targeting patient navigation to the most vulnerable populations, including those with low educational attainment, low income and unstable housing, less social support, multiple comorbidities, and minority race/ethnicity. The implications of the Patient Navigation Research Program are that this resource is best utilized when directed to support the care of patients at locations with known challenges to timely care and for specific patients with risk factors for delays in care, including comorbidities, low educational attainment and low income. Implementation of patient navigation programs requires the following processes: needs assessment, selection of a navigator to meet the community and care needs, supervision and integration of the navigator into clinical processes, and systems support to facilitate the identification and tracking of those patients requiring patient navigation. There is a need for ongoing research on methods to fund and sustain patient navigation programs.

  6. 75 FR 50884 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... 3 and 165 to reflect changes in Coast Guard internal organizational structure. Sector Portland and... 1625-ZA25 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector... Waters; Technical, Organizational, and Conforming Amendments, Sector Columbia River.'' 2. On page 48564...

  7. Laparoscopic Sentinel Node Mapping in Endometrial Cancer After Hysteroscopic Injection of Indocyanine Green.

    PubMed

    Martinelli, Fabio; Ditto, Antonino; Bogani, Giorgio; Signorelli, Mauro; Chiappa, Valentina; Lorusso, Domenica; Haeusler, Edward; Raspagliesi, Francesco

    2017-01-01

    To report the detection rate (DR) of sentinel lymph nodes (SLNs) in endometrial cancer (EC) patients after hysteroscopic injection of indocyanine green (ICG) and laparoscopic near-infrared (L-NIR) fluorescence mapping. Prospectively collected data (Canadian Task Force classification II-2). Gynecologic oncology referral center. Consecutive patients with apparent early-stage endometrioid EC scheduled for surgical treatment: total laparoscopic hysterectomy, bilateral salpingo-oophorectomy, SLN mapping. The mapping technique consisted in an intraoperative hysteroscopic peritumoral injection of 5 mg ICG followed by L-NIR fluorescence mapping. Evaluations of the SLN DR and sites of mapping were performed. A total of 57 procedures was performed. Patient mean age was 60 years (range, 28-80) and mean body mass index was 28.2 kg/m 2 (range, 19-43). At least 1 SLN was detected in 89.5% of the whole population (51/57). After the first 16 cases, L-NIR camera technical improvement led to a 95% DR (39/41). The mean number of harvested SLNs was 4.1 (range. 1-8), and in 47% of cases SLNs mapped to aortic nodes (24/51). Bilateral pelvic mapping was found in 74.5% of cases (38/51). Three patients had SLN metastases: 1 in the pelvic area only, 1 both in the pelvic and aortic area, and 1 presented with 2 metastatic aortic SLNs with negative pelvic SLNs. Overall, 2 of 3 node-positive patients (67%) had aortic SLN involvement. No adverse events were reported. Laparoscopic SLN mapping after the hysteroscopic injection of ICG has comparable DRs with both radioactive tracer series and ICG series with cervical injection, overcoming the need for radioactive substances. Hysteroscopic injection leads to a higher mapping in the aortic area compared with cervical injection. Further investigation is warranted on this topic. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  8. Dual-Image Videoangiography During Intracranial Microvascular Surgery.

    PubMed

    Feletti, Alberto; Wang, Xiangdong; Tanaka, Riki; Yamada, Yasuhiro; Suyama, Daisuke; Kawase, Tsukasa; Sano, Hirotoshi; Kato, Yoko

    2017-03-01

    Indocyanine green videoangiography (ICG-VA) is a valuable tool to assess vessel and aneurysm patency during neurovascular surgical procedures. However, ICG-VA highlights vascular structures, which appear white over a black background. Anatomic relationships are sometimes difficult to understand at first glance. Dual-image videoangiography (DIVA) enables simultaneous visualization of light and near-infrared fluorescence images of ICG-VA. The DIVA system was mounted on an OPMI Pentero Flow 800 intraoperative microscope. DIVA was used during microsurgical procedures on 5 patients who were operated for aneurysm clipping and superficial temporal artery-middle cerebral artery bypass. DIVA provides real-time simultaneous visualization of aneurysm and vessels and surrounding structures including brain, nerves, and surgical clips. Although visual contrast between vessels and background is higher with standard black-and-white imaging, DIVA makes it easier to understand anatomic relationships between intracranial structures. DIVA also provides better vision of the depth of field. DIVA has the potential to become a widely used intraoperative tool to check patency of intracranial vessels. It should be considered as an adjunct to standard ICG-VA for better understanding of vascular anatomy in relation to surrounding structures and can have an impact on decision making during surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Breast cancer navigation and patient satisfaction: exploring a community-based patient navigation model in a rural setting.

    PubMed

    Hook, Ann; Ware, Laurie; Siler, Bobbie; Packard, Abbot

    2012-07-01

    To explore patient satisfaction among newly diagnosed patients with breast cancer in a rural community setting using a nurse navigation model. Nonexperimental, descriptive study. Large, multispecialty physician outpatient clinic serving about 150 newly diagnosed patients with breast cancer annually at the time of the study. 103 patients using nurse navigation services during a two-year period. A researcher-developed 14-item survey tool using a Likert-type scale was mailed to about 300 navigated patients. Nurse navigation and patient satisfaction. The majority of participants (n = 73, 72%) selected "strongly agree" in each survey statement when questioned about the benefits of nurse navigation. Patients receiving nurse navigation for breast cancer are highly satisfied with the services offered in this setting. Findings from this study offer insight regarding the effectiveness of an individualized supportive care approach to nurses and providers of oncology care. That information can be used to guide the implementation of future nurse navigation programs, determine effective methods of guiding patients through the cancer experience, and aid in promoting the highest standard of oncology care.

  10. Maps and navigation methods

    NASA Technical Reports Server (NTRS)

    Duval, A

    1922-01-01

    Different maps and scales are discussed with particular emphasis on their use in aviation. The author makes the observation that current navigation methods are slow and dangerous and should be replaced by scientific methods of navigation based on loxodromy and the use of the compass.

  11. Inertial navigation without accelerometers

    NASA Astrophysics Data System (ADS)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  12. Spatial navigation in young versus older adults

    PubMed Central

    Gazova, Ivana; Laczó, Jan; Rubinova, Eva; Mokrisova, Ivana; Hyncicova, Eva; Andel, Ross; Vyhnalek, Martin; Sheardova, Katerina; Coulson, Elizabeth J.; Hort, Jakub

    2013-01-01

    Older age is associated with changes in the brain, including the medial temporal lobe, which may result in mild spatial navigation deficits, especially in allocentric navigation. The aim of the study was to characterize the profile of real-space allocentric (world-centered, hippocampus-dependent) and egocentric (body-centered, parietal lobe dependent) navigation and learning in young vs. older adults, and to assess a possible influence of gender. We recruited healthy participants without cognitive deficits on standard neuropsychological testing, white matter lesions or pronounced hippocampal atrophy: 24 young participants (18–26 years old) and 44 older participants stratified as participants 60–70 years old (n = 24) and participants 71–84 years old (n = 20). All underwent spatial navigation testing in the real-space human analog of the Morris Water Maze, which has the advantage of assessing separately allocentric and egocentric navigation and learning. Of the eight consecutive trials, trials 2–8 were used to reduce bias by a rebound effect (more dramatic changes in performance between trials 1 and 2 relative to subsequent trials). The participants who were 71–84 years old (p < 0.001), but not those 60–70 years old, showed deficits in allocentric navigation compared to the young participants. There were no differences in egocentric navigation. All three groups showed spatial learning effect (p’ s ≤ 0.01). There were no gender differences in spatial navigation and learning. Linear regression limited to older participants showed linear (β = 0.30, p = 0.045) and quadratic (β = 0.30, p = 0.046) effect of age on allocentric navigation. There was no effect of age on egocentric navigation. These results demonstrate that navigation deficits in older age may be limited to allocentric navigation, whereas egocentric navigation and learning may remain preserved. This specific pattern of spatial navigation impairment may help differentiate normal aging from

  13. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  14. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  15. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  16. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  17. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  18. Fluorescent humanized anti-CEA antibody specifically labels metastatic pancreatic cancer in a patient-derived orthotopic xenograft (PDOX) mouse model

    NASA Astrophysics Data System (ADS)

    Lwin, Thinzar M.; Miyake, Kentaro; Murakami, Takashi; DeLong, Jonathan C.; Yazaki, Paul J.; Shivley, John E.; Clary, Bryan; Hoffman, Robert M.; Bouvet, Michael

    2018-03-01

    Specific tumor targeting can result in selective labeling of cancer in vivo for surgical navigation. In the present study, we show that the use of an anti-CEA antibody conjugated to the near-infrared (NIR) fluorescent dye, IRDye800CW, can selectively target and label pancreatic cancer and its metastases in a clinically relevant patient derived xenograft mouse model.

  19. 33 CFR 183.810 - Navigation light certification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Navigation light certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Navigation Lights § 183.810 Navigation light certification requirements. (a) Except as provided by paragraph (b) of this section, each...

  20. 33 CFR 183.810 - Navigation light certification requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Navigation light certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Navigation Lights § 183.810 Navigation light certification requirements. (a) Except as provided by paragraph (b) of this section, each...

  1. 33 CFR 183.810 - Navigation light certification requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation light certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Navigation Lights § 183.810 Navigation light certification requirements. (a) Except as provided by paragraph (b) of this section, each...

  2. 33 CFR 183.810 - Navigation light certification requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Navigation light certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Navigation Lights § 183.810 Navigation light certification requirements. (a) Except as provided by paragraph (b) of this section, each...

  3. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under way...

  4. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under way...

  5. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under way...

  6. Optical measurement of mouse strain differences in cerebral blood flow using indocyanine green

    PubMed Central

    Kang, Hye-Min; Sohn, Inkyung; Kim, Seunggyu; Kim, Daehwan; Jung, Junyang; Jeong, Joo-Won; Park, Chan

    2015-01-01

    C57BL/6 mice have more cerebral arterial branches and collaterals than BALB/c mice. We measured and compared blood flow dynamics of the middle cerebral artery (MCA) in these two strains, using noninvasive optical imaging with indocyanine green (ICG). Relative maximum fluorescence intensity (Imax) and the time needed for ICG to reach Imax in the MCA of C57BL/c were lower than that in BALB/c mice. Moreover, the mean transit time was significantly lower in C57BL/6 than in BALB/c mice. These data suggest that the higher number of arterial branches and collaterals in C57BL/6 mice yields a lower blood flow per cerebral artery. PMID:25833343

  7. 14 CFR 63.61 - Flight navigator courses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight navigator courses. 63.61 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Navigators § 63.61 Flight navigator courses. An applicant for approval of a flight navigator course must submit a letter to the Administrator...

  8. 14 CFR 63.61 - Flight navigator courses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight navigator courses. 63.61 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Navigators § 63.61 Flight navigator courses. An applicant for approval of a flight navigator course must submit a letter to the Administrator...

  9. 14 CFR 63.61 - Flight navigator courses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight navigator courses. 63.61 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Navigators § 63.61 Flight navigator courses. An applicant for approval of a flight navigator course must submit a letter to the Administrator...

  10. 33 CFR 100.45 - Establishment of aids to navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... navigation incidental to the holding of a regatta or marine parade are private aids to navigation as... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Establishment of aids to navigation. 100.45 Section 100.45 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  11. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications § 67.35-10...

  12. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications § 67.35-10...

  13. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications § 67.35-10...

  14. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications § 67.35-10...

  15. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications § 67.35-10...

  16. NFC Internal: An Indoor Navigation System

    PubMed Central

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  17. On Navigation Sensor Error Correction

    NASA Astrophysics Data System (ADS)

    Larin, V. B.

    2016-01-01

    The navigation problem for the simplest wheeled robotic vehicle is solved by just measuring kinematical parameters, doing without accelerometers and angular-rate sensors. It is supposed that the steerable-wheel angle sensor has a bias that must be corrected. The navigation parameters are corrected using the GPS. The approach proposed regards the wheeled robot as a system with nonholonomic constraints. The performance of such a navigation system is demonstrated by way of an example

  18. Electromagnetic Navigation Diagnostic Bronchoscopy

    PubMed Central

    Gildea, Thomas R.; Mazzone, Peter J.; Karnak, Demet; Meziane, Moulay; Mehta, Atul C.

    2006-01-01

    Rationale: Electromagnetic navigation bronchoscopy using superDimension/Bronchus System is a novel method to increase diagnostic yield of peripheral and mediastinal lung lesions. Objectives: A prospective, open label, single-center, pilot study was conducted to determine the ability of electromagnetic navigation bronchoscopy to sample peripheral lung lesions and mediastinal lymph nodes with standard bronchoscopic instruments and demonstrate safety. Methods: Electromagnetic navigation bronchoscopy was performed using the superDimension/Bronchus system consisting of electromagnetic board, position sensor encapsulated in the tip of a steerable probe, extended working channel, and real-time reconstruction of previously acquired multiplanar computed tomography images. The final distance of the steerable probe to lesion, expected error based on the actual and virtual markers, and procedure yield was gathered. Measurements: 60 subjects were enrolled between December 2004 and September 2005. Mean navigation times were 7 ± 6 min and 2 ± 2 min for peripheral lesions and lymph nodes, respectively. The steerable probe tip was navigated to the target lung area in all cases. The mean peripheral lesions and lymph nodes size was 22.8 ± 12.6 mm and 28.1 ± 12.8 mm. Yield was determined by results obtained during the bronchoscopy per patient. Results: The yield/procedure was 74% and 100% for peripheral lesions and lymph nodes, respectively. A diagnosis was obtained in 80.3% of bronchoscopic procedures. A definitive diagnosis of lung malignancy was made in 74.4% of subjects. Pneumothorax occurred in two subjects. Conclusion: Electromagnetic navigation bronchoscopy is a safe method for sampling peripheral and mediastinal lesions with high diagnostic yield independent of lesion size and location. PMID:16873767

  19. 46 CFR 111.75-17 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Navigation lights. 111.75-17 Section 111.75-17 Shipping... REQUIREMENTS Lighting Circuits and Protection § 111.75-17 Navigation lights. Each navigation light system must...-5(a) of this chapter, each navigation light panel must be supplied by a feeder from the emergency...

  20. 46 CFR 111.75-17 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Navigation lights. 111.75-17 Section 111.75-17 Shipping... REQUIREMENTS Lighting Circuits and Protection § 111.75-17 Navigation lights. Each navigation light system must...-5(a) of this chapter, each navigation light panel must be supplied by a feeder from the emergency...

  1. 46 CFR 111.75-17 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Navigation lights. 111.75-17 Section 111.75-17 Shipping... REQUIREMENTS Lighting Circuits and Protection § 111.75-17 Navigation lights. Each navigation light system must...-5(a) of this chapter, each navigation light panel must be supplied by a feeder from the emergency...

  2. 46 CFR 111.75-17 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Navigation lights. 111.75-17 Section 111.75-17 Shipping... REQUIREMENTS Lighting Circuits and Protection § 111.75-17 Navigation lights. Each navigation light system must...-5(a) of this chapter, each navigation light panel must be supplied by a feeder from the emergency...

  3. 46 CFR 111.75-17 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Navigation lights. 111.75-17 Section 111.75-17 Shipping... REQUIREMENTS Lighting Circuits and Protection § 111.75-17 Navigation lights. Each navigation light system must...-5(a) of this chapter, each navigation light panel must be supplied by a feeder from the emergency...

  4. Sex differences in navigation strategy and efficiency.

    PubMed

    Boone, Alexander P; Gong, Xinyi; Hegarty, Mary

    2018-05-22

    Research on human navigation has indicated that males and females differ in self-reported navigation strategy as well as objective measures of navigation efficiency. In two experiments, we investigated sex differences in navigation strategy and efficiency using an objective measure of strategy, the dual-solution paradigm (DSP; Marchette, Bakker, & Shelton, 2011). Although navigation by shortcuts and learned routes were the primary strategies used in both experiments, as in previous research on the DSP, individuals also utilized route reversals and sometimes found the goal location as a result of wandering. Importantly, sex differences were found in measures of both route selection and navigation efficiency. In particular, males were more likely to take shortcuts and reached their goal location faster than females, while females were more likely to follow learned routes and wander. Self-report measures of strategy were only weakly correlated with objective measures of strategy, casting doubt on their usefulness. This research indicates that the sex difference in navigation efficiency is large, and only partially related to an individual's navigation strategy as measured by the dual-solution paradigm.

  5. Celestial Navigation in the USA, Fiji, and Tunisia

    NASA Astrophysics Data System (ADS)

    Holbrook, Jarita C.

    2015-05-01

    Today there are many coastal communities that are home to navigators who use stars for position finding at night; I was, however, unaware of this fact when I began researching celestial navigation practices in 1997. My project focused on three communities: the Moce Islanders of Fiji, the Kerkennah Islanders in Tunisia, and the U.S. Navy officers and students at the United States Naval Academy, Annapolis, Maryland. My goal was to answer the question of why people continue to navigate by the stars, but also to understand the role of technology in their navigation practices. Using anthropology techniques of ethnography including participant observation, formal and informal interviews, audio and videotaping, I gathered data over five years at the three communities. I began by learning the details of how they use the stars for navigation. Next, I learned about who did the navigation and where they learned to navigate. I gathered opinions on various navigation aids and instruments, and opinions about the future of using the stars for navigation. I listened to the stories that they told about navigating. In the United States I worked in English, in Fiji, in Fijian and English, and in Tunisia, French and English. For the formal interviews I worked with translators. The navigators use stars for navigating today but the future of their techniques is not certain. Though practiced today, these celestial navigation traditions have undergone and continue to undergo changes. New navigational technologies are part of the stimulation for change, thus 'a meeting of different worlds' is symbolized by peoples encounters with these technologies.

  6. Navigational Strategies and Their Neural Correlates

    PubMed Central

    Deshmukh, Sachin S.

    2018-01-01

    Animals depend on navigation to find food, water, mate(s), shelter, etc. Different species use diverse strategies that utilise forms of motion- and location-related information derived from the environment to navigate to their goals and back. We start by describing behavioural studies undertaken to unearth different strategies used in navigation. Then we move on to outline what we know about the brain area most associated with spatial navigation, namely the hippocampal formation. While doing so, we first briefly explain the anatomical connections in the area and then proceed to describe the neural correlates that are considered to play a role in navigation. We conclude by looking at how the strategies might interact and complement each other in certain contexts. PMID:29657367

  7. Optical spectroscopy for stereotactic biopsy of brain tumors

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; von Berg, Anna; Fiedler, Sebastian; Goetz, Marcus; Haj-Hosseini, Neda; Polzer, Christoph; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2015-07-01

    Stereotactic biopsy procedure is performed to obtain a tissue sample for diagnosis purposes. Currently, a fiber-based mechano-optical device for stereotactic biopsies of brain tumors is developed. Two different fluorophores are employed to improve the safety and reliability of this procedure: The fluorescence of intravenously applied indocyanine green (ICG) facilitates the recognition of blood vessels and thus helps minimize the risk of cerebral hemorrhages. 5- aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence is used to localize vital tumor tissue. ICG fluorescence detection using a 2-fiber probe turned out to be an applicable method to recognize blood vessels about 1.5 mm ahead of the fiber tip during a brain tumor biopsy. Moreover, the suitability of two different PpIX excitation wavelengths regarding practical aspects was investigated: While PpIX excitation in the violet region (at 405 nm) allows for higher sensitivity, red excitation (at 633 nm) is noticeably superior with regard to blood layers obscuring the fluorescence signal. Contact measurements on brain simulating agar phantoms demonstrated that a typical blood coverage of the tumor reduces the PpIX signal to about 75% and nearly 0% for 633 nm and 405 nm excitation, respectively. As a result, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy.

  8. Navigation for the new millennium: Autonomous navigation for Deep Space 1

    NASA Technical Reports Server (NTRS)

    Reidel, J. E.; Bhaskaran, S.; Synnott, S. P.; Desai, S. D.; Bollman, W. E.; Dumont, P. J.; Halsell, C. A.; Han, D.; Kennedy, B. M.; Null, G. W.; hide

    1997-01-01

    The autonomous optical navigation system technology for the Deep Space 1 (DS1) mission is reported on. The DS1 navigation system will be the first to use autonomous navigation in deep space. The systems tasks are to: perform interplanetary cruise orbit determination using images of distant asteroids; control and maintain the orbit of the spacecraft with an ion propulsion system and conventional thrusters, and perform late knowledge updates of target position during close flybys in order to facilitate high quality data return from asteroid MaAuliffe and comet West-Kohoutek-Ikemura. To accomplish these tasks, the following functions are required: picture planning; image processing; dynamical modeling and integration; planetary ephemeris and star catalog handling; orbit determination; data filtering and estimation; maneuver estimation, and spacecraft ephemeris updating. These systems and functions are described and preliminary performance data are presented.

  9. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Navigation projects. 644.3 Section 644.3... ESTATE HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee..., and temporary construction and borrow areas. (3) In navigation-only projects, the right to permanently...

  10. Design of all-weather celestial navigation system

    NASA Astrophysics Data System (ADS)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  11. Guidewire navigation in coronary artery stenoses using a novel magnetic navigation system: first clinical experience.

    PubMed

    Tsuchida, Keiichi; García-García, Héctor M; van der Giessen, Willem J; McFadden, Eugène P; van der Ent, Martin; Sianos, Georgios; Meulenbrug, Hans; Ong, Andrew T L; Serruys, Patrick W

    2006-03-01

    The objective of this study was to investigate the efficacy of guidewire navigation across coronary artery stenoses using magnetic navigation system (MNS) versus conventional navigation. The MNS is a novel option to facilitate access to target lesions, particularly in tortuous vessels. In an experimental study using a challenging vessel phantom, magnetic-navigated guidewire passage has been reported to reduce fluoroscopy and procedure time significantly. Both magnetic and manual guidewire navigation were attempted in 21 consecutive diseased coronary arteries. The study endpoint was defined as an intraluminal wire position distal to the stenosis. Procedural success was defined as successful guidewire passage without procedural events. Procedure time, amount of contrast, fluoroscopy time, and radiation dose/area product (DAP) were evaluated. There were no procedural events related to either guidewire. Although the lesions attempted had relatively simple and straightforward characteristics, significantly shorter procedure and fluoroscopy time were observed for manual guidewire navigation compared to MNS (median, 40 vs. 120 sec, P=0.001; 38 vs. 105 sec, P=0.001, respectively). Contrast amount and DAP were higher in MNS than in conventional method (median, 13 vs. 9 ml, P=0.018; 215 vs. 73 Gym2, P=0.002, respectively). The magnetic wire did not cross in two vessels. Guidewire navigation using MNS presented a novel, safe, and feasible approach to address coronary artery lesions. Clinical studies are needed to evaluate the potential benefit of the MNS in more complex coronary lesions and tortuous anatomy. Copyright (c) 2006 Wiley-Liss, Inc.

  12. An on-line monitoring system for navigation equipment

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  13. Patient Navigation Improves Subsequent Breast Cancer Screening After a Noncancerous Result: Evidence from the Patient Navigation in Medically Underserved Areas Study.

    PubMed

    Molina, Yamile; Kim, Sage J; Berrios, Nerida; Glassgow, Anne Elizabeth; San Miguel, Yazmin; Darnell, Julie S; Pauls, Heather; Vijayasiri, Ganga; Warnecke, Richard B; Calhoun, Elizabeth A

    2018-03-01

    Past efforts to assess patient navigation on cancer screening utilization have focused on one-time uptake, which may not be sufficient in the long term. This is partially due to limited resources for in-person, longitudinal patient navigation. We examine the effectiveness of a low-intensity phone- and mail-based navigation on multiple screening episodes with a focus on screening uptake after receiving noncancerous results during a previous screening episode. The is a secondary analysis of patients who participated in a randomized controlled patient navigation trial in Chicago. Participants include women referred for a screening mammogram, aged 50-74 years, and with a history of benign/normal screening results. Navigation services focused on identification of barriers and intervention via shared decision-making processes. A multivariable logistic regression intent-to-treat model was used to examine differences in odds of obtaining a screening mammogram within 2 years of the initial mammogram (yes/no) between navigated and non-navigated women. Sensitivity analyses were conducted to explore patterns across subsets of participants (e.g., navigated women successfully contacted before the initial appointment; women receiving care at Hospital C). The final sample included 2,536 women (741 navigated, 1,795 non-navigated). Navigated women exhibited greater odds of obtaining subsequent screenings relative to women in the standard care group in adjusted models and analyses including women who received navigation before the initial appointment. Our findings suggest that low-intensity navigation services can improve follow-up screening among women who receive a noncancerous result. Further investigation is needed to confirm navigation's impacts on longitudinal screening.

  14. Navigation Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS) Experiment

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Christopher; Baraban, Dmitri

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Navigation Demonstration on Shuttle (CANDOS) experiment flown on STS-107. This experiment was the initial flight of a Low Power Transceiver (LPT) that featured high capacity space- space and space-ground communications and GPS- based navigation capabilities. The LPT also hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using LPT communications links via the Tracking and Data Relay Satellite System (TDRSS). An overview of the LPT s navigation software and the GPS experiment timeline is presented, along with comparisons of test results to the NASA Johnson Space Center (JSC) real-time ground navigation vectors and Best Estimate of Trajectory (BET).

  15. Navigation and Landing Transition Strategy

    DOT National Transportation Integrated Search

    2002-08-01

    Attached is the Federal Aviation Administration's (FAA) Navigation and Landing Transition Strategy. This report defines the satellite navigation transition strategy that considers the vulnerability of the Global Positioning System (GPS) and describes...

  16. Honeybees consolidate navigation memory during sleep.

    PubMed

    Beyaert, Lisa; Greggers, Uwe; Menzel, Randolf

    2012-11-15

    Sleep is known to support memory consolidation in animals, including humans. Here we ask whether consolidation of novel navigation memory in honeybees depends on sleep. Foragers were exposed to a forced navigation task in which they learned to home more efficiently from an unexpected release site by acquiring navigational memory during the successful homing flight. This task was quantified using harmonic radar tracking and applied to bees that were equipped with a radio frequency identification device (RFID). The RFID was used to record their outbound and inbound flights and continuously monitor their behavior inside the colony, including their rest during the day and sleep at night. Bees marked with the RFID behaved normally inside and outside the hive. Bees slept longer during the night following forced navigation tasks, but foraging flights of different lengths did not lead to different rest times during the day or total sleep time during the night. Sleep deprivation before the forced navigation task did not alter learning and memory acquired during the task. However, sleep deprivation during the night after forced navigation learning reduced the probability of returning successfully to the hive from the same release site. It is concluded that consolidation of novel navigation memory is facilitated by night sleep in bees.

  17. 32 CFR 644.3 - Navigation Projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navigation Projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation Projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...

  18. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Navigation projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...

  19. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Navigation projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...

  20. Costs and Outcomes Evaluation of Patient Navigation Following Abnormal Cancer Screening: Evidence from the Patient Navigation Research Program

    PubMed Central

    Bensink, Mark E.; Ramsey, Scott D.; Battaglia, Tracy; Fiscella, Kevin; Hurd, Thelma C.; McKoy, June M.; Patierno, Steven R.; Raich, Peter C.; Seiber, Eric E.; Mears, Victoria Warren; Whitley, Elizabeth; Paskett, Electra D.; Mandelblatt, Jeanne S.

    2013-01-01

    Background Navigators can facilitate timely access to cancer services but there are little data on their economic impact. Methods We conduct a cost-consequence analysis of navigation vs. usual care among 10,521 individuals with abnormal breast, cervix, colorectal or prostate cancer screening results who enrolled in the Patient Navigation Research Program study from January 1 2006 to March 31 2010. Navigation costs included diagnostic evaluation, patient and staff time, materials, and overhead. Consequences or outcomes were time to diagnostic resolution and probability of resolution. Differences in costs and outcomes were evaluated using multi-level, mixed-effects regression adjusting for age, race/ethnicity, language, marital status, insurance, cancer, and site clustering. Results Most individuals were minority (70.7%) and un- or publically-insured (72.7%). Diagnostic resolution was higher for navigation vs. usual care at 180 (56.2% vs. 53.8%, p=0.008) and 270 days: 70.0% vs. 68.2%, p<0.001). While there were no differences in average days to resolution (110 vs. 109 days, p=.63), the probability of ever having diagnostic resolution was higher for navigation vs. usual care (84.5% vs. 79.6%, p <0.001). The added cost of navigation vs. usual care was $275 per patient (95% CI $260 – $290, p <0.001). There was no significant difference in stage distribution among the 12.4% of navigated vs. 11% of usual care patients diagnosed with cancer. Conclusions Navigation adds costs and modestly increases the probability of diagnostic resolution among patients with abnormal screening tests. Navigation is only likely to be cost-effective if improved resolution translates into earlier cancer stage at diagnosis. PMID:24166217

  1. Boston Patient Navigation Research Program: the impact of navigation on time to diagnostic resolution after abnormal cancer screening.

    PubMed

    Battaglia, Tracy A; Bak, Sharon M; Heeren, Timothy; Chen, Clara A; Kalish, Richard; Tringale, Stephen; Taylor, James O; Lottero, Barbara; Egan, A Patrick; Thakrar, Nisha; Freund, Karen M

    2012-10-01

    There is a need for controlled studies to assess the impact of patient navigation in vulnerable cancer populations. Boston Patient Navigation Research Program conducted a quasi-experimental patient navigation intervention across six federally qualified inner-city community health centers, three assigned to a breast cancer navigation intervention and three assigned to a cervical cancer navigation intervention; each group then served as the control for the other. Eligible women had an abnormal breast or cervical cancer screening test conducted at one of the participating health centers during a baseline (2004-2005) or intervention period (2007-2008). Kaplan-Meier survival curves and proportional hazards regression examined the effect of patient navigation on time to definitive diagnosis, adjusting for covariates, clustering by clinic and differences between the baseline and intervention period. We enrolled 997 subjects in the baseline period and 3,041 subjects during the intervention period, of whom 1,497 were in the navigated arm, and 1,544 in the control arm. There was a significant decrease in time to diagnosis for subjects in the navigated group compared with controls among those with a cervical screening abnormality [aHR 1.46; 95% confidence interval (CI), 1.1-1.9]; and among those with a breast cancer screening abnormality that resolved after 60 days (aHR 1.40; 95% CI, 1.1-1.9), with no differences before 60 days. This study documents a benefit of patient navigation on time to diagnosis among a racially/ethnically diverse inner city population. Patient navigation may address cancer health disparities by reducing time to diagnosis following an abnormal cancer-screening event. 2012 AACR

  2. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  3. Indocyanine green for intraoperative localization of ureter.

    PubMed

    Siddighi, Sam; Yune, Junchan Joshua; Hardesty, Jeffrey

    2014-10-01

    Intraurethral injection of indocyanine green (ICG; Akorn, Lake Forest, IL) and visualization under near-infrared (NIR) light allows for real-time delineation of the ureter. This technology can be helpful to prevent iatrogenic ureteral injury during pelvic surgery. Patients were scheduled to undergo robot-assisted laparoscopic sacrocolpopexy. Before the robotic surgery started, the tip of a 6-F ureteral catheter was inserted into the ureteral orifice. Twenty-five milligrams of ICG was dissolved in 10-mL of sterile water and injected through the open catheter. The same procedure was repeated on the opposite side. The ICG reversibly stained the inside lining of the ureter by binding to proteins on urothelial layer. During the course of robotic surgery, the NIR laser on the da Vinci Si surgical robot (Intuitive Surgical, Inc, Sunnyvale, CA) was used to excite ICG molecules, and infrared emission was captured by the da Vinci filtered lens system and electronically converted to green color. Thus, the ureter fluoresced green, which allowed its definitive identification throughout the entire case. In all cases of >10 patients, we were able to visualize bilateral ureters with this technology, even though there was some variation in brightness that depended on the depth of the ureter from the peritoneal surface. For example, in a morbidly obese patient, the ureters were not as bright green. There were no intraoperative or postoperative adverse effects attributable to ICG administration for up to 2 months of observation. In our experience, this novel method of intraurethral ICG injection was helpful to identify the entire course of ureter and allowed a safe approach to tissues that were adjacent to the urinary tract. The advantage of our technique is that it requires the insertion of just the tip of ureteral catheter. Despite our limited cohort of patients, our findings are consistent with previous reports of the excellent safety profile of intravenous and intrabiliary ICG

  4. Optimal scheme of star observation of missile-borne inertial navigation system/stellar refraction integrated navigation

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Yang, Lie

    2018-05-01

    To achieve accurate and completely autonomous navigation for spacecraft, inertial/celestial integrated navigation gets increasing attention. In this study, a missile-borne inertial/stellar refraction integrated navigation scheme is proposed. Position Dilution of Precision (PDOP) for stellar refraction is introduced and the corresponding equation is derived. Based on the condition when PDOP reaches the minimum value, an optimized observation scheme is proposed. To verify the feasibility of the proposed scheme, numerical simulation is conducted. The results of the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are compared and impact factors of navigation accuracy are studied in the simulation. The simulation results indicated that the proposed observation scheme has an accurate positioning performance, and the results of EKF and UKF are similar.

  5. Optimal scheme of star observation of missile-borne inertial navigation system/stellar refraction integrated navigation.

    PubMed

    Lu, Jiazhen; Yang, Lie

    2018-05-01

    To achieve accurate and completely autonomous navigation for spacecraft, inertial/celestial integrated navigation gets increasing attention. In this study, a missile-borne inertial/stellar refraction integrated navigation scheme is proposed. Position Dilution of Precision (PDOP) for stellar refraction is introduced and the corresponding equation is derived. Based on the condition when PDOP reaches the minimum value, an optimized observation scheme is proposed. To verify the feasibility of the proposed scheme, numerical simulation is conducted. The results of the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are compared and impact factors of navigation accuracy are studied in the simulation. The simulation results indicated that the proposed observation scheme has an accurate positioning performance, and the results of EKF and UKF are similar.

  6. 14 CFR 121.349 - Communication and navigation equipment for operations under VFR over routes not navigated by...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment for... § 121.349 Communication and navigation equipment for operations under VFR over routes not navigated by... receiver providing visual and aural signals; and (iii) One ILS receiver; and (3) Any RNAV system used to...

  7. Quantum imaging for underwater arctic navigation

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  8. Experiment D009: Simple navigation

    NASA Technical Reports Server (NTRS)

    Silva, R. M.; Jorris, T. R.; Vallerie, E. M., III

    1971-01-01

    Space position-fixing techniques have been investigated by collecting data on the observable phenomena of space flight that could be used to solve the problem of autonomous navigation by the use of optical data and manual computations to calculate the position of a spacecraft. After completion of the developmental and test phases, the product of the experiment would be a manual-optical technique of orbital space navigation that could be used as a backup to onboard and ground-based spacecraft-navigation systems.

  9. Analysis of key technologies in geomagnetic navigation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Zhao, Yan

    2008-10-01

    Because of the costly price and the error accumulation of high precise Inertial Navigation Systems (INS) and the vulnerability of Global Navigation Satellite Systems (GNSS), the geomagnetic navigation technology, a passive autonomous navigation method, is paid attention again. Geomagnetic field is a natural spatial physical field, and is a function of position and time in near earth space. The navigation technology based on geomagnetic field is researched in a wide range of commercial and military applications. This paper presents the main features and the state-of-the-art of Geomagnetic Navigation System (GMNS). Geomagnetic field models and reference maps are described. Obtaining, modeling and updating accurate Anomaly Magnetic Field information is an important step for high precision geomagnetic navigation. In addition, the errors of geomagnetic measurement using strapdown magnetometers are analyzed. The precise geomagnetic data is obtained by means of magnetometer calibration and vehicle magnetic field compensation. According to the measurement data and reference map or model of geomagnetic field, the vehicle's position and attitude can be obtained using matching algorithm or state-estimating method. The tendency of geomagnetic navigation in near future is introduced at the end of this paper.

  10. Two-dimensional laser Doppler velocimeter and its integrated navigation with a strapdown inertial navigation system.

    PubMed

    Wang, Qi; Gao, Chunfeng; Zhou, Jian; Wei, Guo; Nie, Xiaoming; Long, Xingwu

    2018-05-01

    In the field of land navigation, a laser Doppler velocimeter (LDV) can be used to provide the velocity of a vehicle for an integrated navigation system with a strapdown inertial navigation system. In order to suppress the influence of vehicle jolts on a one-dimensional (1D) LDV, this paper designs a split-reuse two-dimensional (2D) LDV. The velocimeter is made up of two 1D velocimeter probes that are mirror-mounted. By the different effects of the vertical vibration on the two probes, the velocimeter can calculate the forward velocity and the vertical velocity of a vehicle. The results of the vehicle-integrated navigation experiments show that the 2D LDV not only can actually suppress the influence of vehicle jolts and greatly improve the navigation positioning accuracy, but also can give high-precision altitude information. The maximum horizontal position errors of the two experiments are 2.6 m and 3.2 m in 1.9 h, and the maximum altitude errors are 0.24 m and 0.22 m, respectively.

  11. Unraveling the neural basis of insect navigation.

    PubMed

    Heinze, Stanley

    2017-12-01

    One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    GPS has been used for spacecraft navigation for many years center dot In support of this, the US has committed that future GPS satellites will continue to provide signals in the Space Service Volume center dot NASA is working with international agencies to obtain similar commitments from other providers center dot In support of this effort, I simulated multi-constellation navigation in the Space Service Volume In this presentation, I extend the work to examine the navigational benefits and drawbacks of the new constellations center dot A major benefit is the reduced geometric dilution of precision (GDOP). I show that there is a substantial reduction in GDOP by using all of the GNSS constellations center dot The increased number of GNSS satellites broadcasting does produce mutual interference, raising the noise floor. A near/far signal problem can also occur where a nearby satellite drowns out satellites that are far away. - In these simulations, no major effect was observed Typically, the use of multi-constellation GNSS navigation improves GDOP by a factor of two or more over GPS alone center dot In addition, at the higher altitudes, four satellite solutions can be obtained much more often center dot This show the value of having commitments to provide signals in the Space Service Volume Besides a commitment to provide a minimum signal in the Space Service Volume, detailed signal gain information is useful for mission planning center dot Knowledge of group and phase delay over the pattern would also reduce the navigational uncertainty

  13. Shuttle OFT Level C navigation requirements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Detailed requirements for the orbital operations computer loads, OPS 2, and OPS 8 are given. These requirements represent the total on-orbit/rendezvous navigation baseline requirements for the following principal functions: on-orbital/rendezvous navigation sequencer; on-orbit/rendezvous UPP sequencer; on-orbit rendezvous navigation; on-orbit prediction; on-orbit user parameter processing; and landing Site update.

  14. The attribution of success when using navigation aids.

    PubMed

    Brown, Michael; Houghton, Robert; Sharples, Sarah; Morley, Jeremy

    2015-01-01

    Attitudes towards geographic information technology is a seldom explored research area that can be explained with reference to established theories of attribution. This article reports on a study of how the attribution of success and failure in pedestrian navigation varies with level of automation, degree of success and locus of control. A total of 113 participants took part in a survey exploring reflections on personal experiences and vignettes describing fictional navigation experiences. A complex relationship was discovered in which success tends to be attributed to skill and failure to the navigation aid when participants describe their own experiences. A reversed pattern of results was found when discussing the navigation of others. It was also found that navigation success and failure are associated with personal skill to a greater extent when using paper maps, as compared with web-based routing engines or satellite navigation systems. This article explores the influences on the attribution of success and failure when using navigation aids. A survey was performed exploring interpretations of navigation experiences. Level of success, self or other as navigator and type of navigation aid used are all found to influence the attribution of outcomes to internal or external factors.

  15. Costs and outcomes evaluation of patient navigation after abnormal cancer screening: evidence from the Patient Navigation Research Program.

    PubMed

    Bensink, Mark E; Ramsey, Scott D; Battaglia, Tracy; Fiscella, Kevin; Hurd, Thelma C; McKoy, June M; Patierno, Steven R; Raich, Peter C; Seiber, Eric E; Warren-Mears, Victoria; Whitley, Elizabeth; Paskett, Electra D; Mandelblatt, S

    2014-02-15

    Navigators can facilitate timely access to cancer services, but to the authors' knowledge there are little data available regarding their economic impact. The authors conducted a cost-consequence analysis of navigation versus usual care among 10,521 individuals with abnormal breast, cervical, colorectal, or prostate cancer screening results who enrolled in the Patient Navigation Research Program study from January 1, 2006 to March 31, 2010. Navigation costs included diagnostic evaluation, patient and staff time, materials, and overhead. Consequences or outcomes were time to diagnostic resolution and probability of resolution. Differences in costs and outcomes were evaluated using multilevel, mixed-effects regression modeling adjusting for age, race/ethnicity, language, marital status, insurance status, cancer, and site clustering. The majority of individuals were members of a minority (70.7%) and uninsured or publically insured (72.7%). Diagnostic resolution was higher for navigation versus usual care at 180 days (56.2% vs 53.8%; P = .008) and 270 days (70.0% vs 68.2%; P < .001). Although there were no differences in the average number of days to resolution between the 2 groups (110 days vs 109 days; P = .63), the probability of ever having diagnostic resolution was higher for the navigation group versus the usual-care group (84.5% vs 79.6%; P < .001). The added cost of navigation versus usual care was $275 per patient (95% confidence interval, $260-$290; P < .001). There was no significant difference in stage distribution among the 12.4% of patients in the navigation group vs 11% of the usual-care patients diagnosed with cancer. Navigation adds costs and modestly increases the probability of diagnostic resolution among patients with abnormal screening test results. Navigation is only likely to be cost-effective if improved resolution translates into an earlier cancer stage at the time of diagnosis. © 2013 American Cancer Society.

  16. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    NASA Astrophysics Data System (ADS)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  17. Polarized skylight navigation.

    PubMed

    Hamaoui, Moshe

    2017-01-20

    Vehicle state estimation is an essential prerequisite for navigation. The present approach seeks to use skylight polarization to facilitate state estimation under autonomous unconstrained flight conditions. Atmospheric scattering polarizes incident sunlight such that solar position is mathematically encoded in the resulting skylight polarization pattern. Indeed, several species of insects are able to sense skylight polarization and are believed to navigate polarimetrically. Sun-finding methodologies for polarized skylight navigation (PSN) have been proposed in the literature but typically rely on calibration updates to account for changing atmospheric conditions and/or are limited to 2D operation. To address this technology gap, a gradient-based PSN solution is developed based upon the Rayleigh sky model. The solution is validated in simulation, and effects of measurement error and changing atmospheric conditions are investigated. Finally, an experimental effort is described wherein polarimetric imagery is collected, ground-truth is established through independent imager-attitude measurement, the gradient-based PSN solution is applied, and results are analyzed.

  18. Patient navigation in breast cancer: a systematic review.

    PubMed

    Robinson-White, Stephanie; Conroy, Brenna; Slavish, Kathleen H; Rosenzweig, Margaret

    2010-01-01

    The role of the patient navigator in cancer care and specifically in breast cancer care has grown to incorporate many titles and functions. To better evaluate the outcomes of patient navigation in breast cancer care, a comprehensive review of empiric literature detailing the efficacy of breast cancer navigation on breast cancer outcomes (screening, diagnosis, treatment, and participation in clinical research) was performed. Published articles were reviewed if published in the scientific literature between January 1990 and April 2009. Searches were conducted using PubMed and Ovid databases. Search terms included MeSH (Medical Subject Headings) terms, "patient navigator," "navigation," "breast cancer," and "adherence." Data-based literature indicates that the role of patient navigation is diverse with multiple roles and targeted populations. Navigation across many aspects of the breast cancer disease trajectory improves adherence to breast cancer care. The empiric review found that navigation interventions have been more commonly applied in breast cancer screening and early diagnosis than for adherence to treatment. There is evidence supporting the role of patient navigation in breast cancer to improve many aspects of breast cancer care. Data describing the role of patient navigation in breast cancer will assist in better defining future direction for the breast navigation role. Ongoing research will better inform issues related to role definition, integration into clinical breast cancer care, impact on quality of life, cost-effectiveness, and sustainability.

  19. NAVIGATION PERFORMANCE IN HIGH EARTH ORBITS USING NAVIGATOR GPS RECEIVER

    NASA Technical Reports Server (NTRS)

    Bamford, William; Naasz, Bo; Moreau, Michael C.

    2006-01-01

    NASA GSFC has developed a GPS receiver that can acquire and track GPS signals with sensitivity significantly lower than conventional GPS receivers. This opens up the possibility of using GPS based navigation for missions in high altitude orbit, such as Geostationary Operational Environmental Satellites (GOES) in a geostationary orbit, and the Magnetospheric MultiScale (MMS) Mission, in highly eccentric orbits extending to 12 Earth radii and higher. Indeed much research has been performed to study the feasibility of using GPS navigation in high Earth orbits and the performance achievable. Recently, GSFC has conducted a series of hardware in-the-loop tests to assess the performance of this new GPS receiver in various high Earth orbits of interest. Tracking GPS signals to down to approximately 22-25 dB-Hz, including signals from the GPS transmitter side-lobes, steady-state navigation performance in a geostationary orbit is on the order of 10 meters. This paper presents the results of these tests, as well as sensitivity analysis to such factors as ionosphere masks, use of GPS side-lobe signals, and GPS receiver sensitivity.

  20. Indocyanine green videoangiography methodological variations: review.

    PubMed

    Simal-Julián, Juan A; Miranda-Lloret, Pablo; Evangelista-Zamora, Rocio; Sanromán-Álvarez, Pablo; Pérez de San Román, Laila; Pérez-Borredá, Pedro; Beltrán-Giner, Andrés; Botella-Asunción, Carlos

    2015-01-01

    Indocyanine green videoangiography (ICGVA) procedures have become widespread within the spectrum of microsurgical techniques for neurovascular pathologies. We have conducted a review to identify and assess the impact of all of the methodological variations of conventional ICGVA applied in the field of neurovascular pathology that have been published to date in the English literature. A total of 18 studies were included in this review, identifying four primary methodological variants compared to conventional ICGVA: techniques based on the transient occlusion, intra-arterial ICG administration via catheters, use of endoscope system with a filter to collect florescence of ICG, and quantitative fluorescence analysis. These variants offer some possibilities for resolving the limitations of the conventional technique (first, the vascular structure to be analyzed must be exposed and second, vascular filling with ICG follows an additive pattern) and allow qualitatively superior information to be obtained during surgery. Advantages and disadvantages of each procedure are discussed. More case studies with a greater number of patients are needed to compare the different procedures with their gold standard, in order to establish these results consistently.