McClure, J T; Browning, R T; Vantrease, C M; Bittle, S T
1994-01-01
Previous research suggests that traumatic brain injury (TBI) results in impairment of iconic memory abilities.We would like to acknowledge the contribution of Jeffrey D. Vantrease, who wrote the software program for the Iconic Memory procedure and measurement. This raises serious implications for brain injury rehabilitation. Most cognitive rehabilitation programs do not include iconic memory training. Instead it is common for cognitive rehabilitation programs to focus on attention and concentration skills, memory skills, and visual scanning skills.This study compared the iconic memory skills of brain-injury survivors and control subjects who all reached criterion levels of visual scanning skills. This involved previous training for the brain-injury survivors using popular visual scanning programs that allowed them to visually scan with response time and accuracy within normal limits. Control subjects required only minimal training to reach normal limits criteria. This comparison allows for the dissociation of visual scanning skills and iconic memory skills.The results are discussed in terms of their implications for cognitive rehabilitation and the relationship between visual scanning training and iconic memory skills.
Iconic memory and parietofrontal network: fMRI study using temporal integration.
Saneyoshi, Ayako; Niimi, Ryosuke; Suetsugu, Tomoko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko
2011-08-03
We investigated the neural basis of iconic memory using functional magnetic resonance imaging. The parietofrontal network of selective attention is reportedly relevant to readout from iconic memory. We adopted a temporal integration task that requires iconic memory but not selective attention. The results showed that the task activated the parietofrontal network, confirming that the network is involved in readout from iconic memory. We further tested a condition in which temporal integration was performed by visual short-term memory but not by iconic memory. However, no brain region revealed higher activation for temporal integration by iconic memory than for temporal integration by visual short-term memory. This result suggested that there is no localized brain region specialized for iconic memory per se.
Partial report and other sampling procedures overestimate the duration of iconic memory.
Appelman, I B
1980-03-01
In three experiments, subjects estimated the duration of a brief visual image (iconic memory) either directly by adjusting onset of a click to offset of the visual image, or indirectly with a Sperling partial report (sampling) procedure. The results indicated that partial report and other sampling procedures may reflect other brief phenomena along with iconic memory. First, the partial report procedure yields a greater estimate of the duration of iconic memory than the more direct click method. Second, the partial report estimate of the duration of iconic memory is affected if the subject is required to simultaneously retain a list of distractor items (memory load), while the click method estimate of the duration of iconic memory is not affected by a memory load. Finally, another sampling procedure based on visual cuing yields different estimates of the duration of iconic memory depending on how many items are cued. It was concluded that partial report and other sampling procedures overestimate the duration of iconic memory.
Object representations in visual memory: evidence from visual illusions.
Ben-Shalom, Asaf; Ganel, Tzvi
2012-07-26
Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.
The sensory components of high-capacity iconic memory and visual working memory.
Bradley, Claire; Pearson, Joel
2012-01-01
EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.
The Sensory Components of High-Capacity Iconic Memory and Visual Working Memory
Bradley, Claire; Pearson, Joel
2012-01-01
Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more “high-level” alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful “lower-capacity” visual working memory. PMID:23055993
Manipulations of attention dissociate fragile visual short-term memory from visual working memory.
Vandenbroucke, Annelinde R E; Sligte, Ilja G; Lamme, Victor A F
2011-05-01
People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Iconic Memories Die a Sudden Death.
Pratte, Michael S
2018-06-01
Iconic memory is characterized by its large storage capacity and brief storage duration, whereas visual working memory is characterized by its small storage capacity. The limited information stored in working memory is often modeled as an all-or-none process in which studied information is either successfully stored or lost completely. This view raises a simple question: If almost all viewed information is stored in iconic memory, yet one second later most of it is completely absent from working memory, what happened to it? Here, I characterized how the precision and capacity of iconic memory changed over time and observed a clear dissociation: Iconic memory suffered from a complete loss of visual items, while the precision of items retained in memory was only marginally affected by the passage of time. These results provide new evidence for the discrete-capacity view of working memory and a new characterization of iconic memory decay.
Keysers, C; Xiao, D-K; Foldiak, P; Perrett, D I
2005-05-01
Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without interstimulus gaps to human observers and macaque monkeys. For gaps of up to 93 ms between consecutive images, human observers and neurones in the temporal cortex of macaque monkeys were found to continue processing a stimulus as if it was still present on the screen. The continued firing of neurones in temporal cortex may therefore underlie iconic memory. Based on these findings, a neurophysiological vision of iconic memory is presented.
Read-out of emotional information from iconic memory: the longevity of threatening stimuli.
Kuhbandner, Christof; Spitzer, Bernhard; Pekrun, Reinhard
2011-05-01
Previous research has shown that emotional stimuli are more likely than neutral stimuli to be selected by attention, indicating that the processing of emotional information is prioritized. In this study, we examined whether the emotional significance of stimuli influences visual processing already at the level of transient storage of incoming information in iconic memory, before attentional selection takes place. We used a typical iconic memory task in which the delay of a poststimulus cue, indicating which of several visual stimuli has to be reported, was varied. Performance decreased rapidly with increasing cue delay, reflecting the fast decay of information stored in iconic memory. However, although neutral stimulus information and emotional stimulus information were initially equally likely to enter iconic memory, the subsequent decay of the initially stored information was slowed for threatening stimuli, a result indicating that fear-relevant information has prolonged availability for read-out from iconic memory. This finding provides the first evidence that emotional significance already facilitates stimulus processing at the stage of iconic memory.
Iconic-Memory Processing of Unfamiliar Stimuli by Retarded and Nonretarded Individuals.
ERIC Educational Resources Information Center
Hornstein, Henry A.; Mosley, James L.
1979-01-01
The iconic-memory processing of unfamiliar stimuli by 11 mentally retarded males (mean age 22 years) was undertaken employing a visually cued partial-report procedure and a visual masking procedure. (Author/CL)
Detailed sensory memory, sloppy working memory.
Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F
2010-01-01
Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.
Iconic-memory processing of unfamiliar stimuli by retarded and nonretarded individuals.
Hornstein, H A; Mosley, J L
1979-07-01
The iconic-memory processing of unfamiliar stimuli was undertaken employing a visually cued partial-report procedure and a visual masking procedure. Subjects viewed stimulus arrays consisting of six Chinese characters arranged in a circular pattern for 100 msec. At variable stimulus-onset asynchronies, a teardrop indicator or an annulus was presented for 100 msec. Immediately upon cue offset, the subject was required to recognize the cued stimulus from a card containing a single character. Retarded subjects' performance was comparable to that of MA- and CA-matched subjects. We suggested that earlier reported iconic-memory differences between retarded and nonretarded individuals may be attributable to processes other than iconic memory.
Barban, Francesco; Zannino, Gian Daniele; Macaluso, Emiliano; Caltagirone, Carlo; Carlesimo, Giovanni A
2013-06-01
Iconic memory is a high-capacity low-duration visual memory store that allows the persistence of a visual stimulus after its offset. The categorical nature of this store has been extensively debated. This study provides functional magnetic resonance imaging evidence for brain regions underlying the persistence of postcategorical representations of visual stimuli. In a partial report paradigm, subjects matched a cued row of a 3 × 3 array of letters (postcategorical stimuli) or false fonts (precategorical stimuli) with a subsequent triplet of stimuli. The cued row was indicated by two visual flankers presented at the onset (physical stimulus readout) or after the offset of the array (iconic memory readout). The left planum temporale showed a greater modulation of the source of readout (iconic memory vs. physical stimulus) when letters were presented compared to false fonts. This is a multimodal brain region responsible for matching incoming acoustic and visual patterns with acoustic pattern templates. These findings suggest that letters persist after their physical offset in an abstract postcategorical representation. A targeted region of interest analysis revealed a similar pattern of activation in the Visual Word Form Area. These results suggest that multiple higher-order visual areas mediate iconic memory for postcategorical stimuli. Copyright © 2012 Wiley Periodicals, Inc.
Iconic memory requires attention
Persuh, Marjan; Genzer, Boris; Melara, Robert D.
2012-01-01
Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features. PMID:22586389
Iconic memory requires attention.
Persuh, Marjan; Genzer, Boris; Melara, Robert D
2012-01-01
Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features.
Limits to the usability of iconic memory.
Rensink, Ronald A
2014-01-01
Human vision briefly retains a trace of a stimulus after it disappears. This trace-iconic memory-is often believed to be a surrogate for the original stimulus, a representational structure that can be used as if the original stimulus were still present. To investigate its nature, a flicker-search paradigm was developed that relied upon a full scan (rather than partial report) of its contents. Results show that for visual search it can indeed act as a surrogate, with little cost for alternating between visible and iconic representations. However, the duration over which it can be used depends on the type of task: some tasks can use iconic memory for at least 240 ms, others for only about 190 ms, while others for no more than about 120 ms. The existence of these different limits suggests that iconic memory may have multiple layers, each corresponding to a particular level of the visual hierarchy. In this view, the inability to use a layer of iconic memory may reflect an inability to maintain feedback connections to the corresponding representation.
Readout from iconic memory and selective spatial attention involve similar neural processes.
Ruff, Christian C; Kristjánsson, Arni; Driver, Jon
2007-10-01
Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus.
Readout From Iconic Memory and Selective Spatial Attention Involve Similar Neural Processes
Ruff, Christian C; Kristjánsson, Árni; Driver, Jon
2007-01-01
Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus. PMID:17894608
Limits to the usability of iconic memory
Rensink, Ronald A.
2014-01-01
Human vision briefly retains a trace of a stimulus after it disappears. This trace—iconic memory—is often believed to be a surrogate for the original stimulus, a representational structure that can be used as if the original stimulus were still present. To investigate its nature, a flicker-search paradigm was developed that relied upon a full scan (rather than partial report) of its contents. Results show that for visual search it can indeed act as a surrogate, with little cost for alternating between visible and iconic representations. However, the duration over which it can be used depends on the type of task: some tasks can use iconic memory for at least 240 ms, others for only about 190 ms, while others for no more than about 120 ms. The existence of these different limits suggests that iconic memory may have multiple layers, each corresponding to a particular level of the visual hierarchy. In this view, the inability to use a layer of iconic memory may reflect an inability to maintain feedback connections to the corresponding representation. PMID:25221539
Iconic memory for the gist of natural scenes.
Clarke, Jason; Mack, Arien
2014-11-01
Does iconic memory contain the gist of multiple scenes? Three experiments were conducted. In the first, four scenes from different basic-level categories were briefly presented in one of two conditions: a cue or a no-cue condition. The cue condition was designed to provide an index of the contents of iconic memory of the display. Subjects were more sensitive to scene gist in the cue condition than in the no-cue condition. In the second, the scenes came from the same basic-level category. We found no difference in sensitivity between the two conditions. In the third, six scenes from different basic level categories were presented in the visual periphery. Subjects were more sensitive to scene gist in the cue condition. These results suggest that scene gist is contained in iconic memory even in the visual periphery; however, iconic representations are not sufficiently detailed to distinguish between scenes coming from the same category. Copyright © 2014 Elsevier Inc. All rights reserved.
Reward associations impact both iconic and visual working memory.
Infanti, Elisa; Hickey, Clayton; Turatto, Massimo
2015-02-01
Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
A New Conceptualization of Human Visual Sensory-Memory
Öğmen, Haluk; Herzog, Michael H.
2016-01-01
Memory is an essential component of cognition and disorders of memory have significant individual and societal costs. The Atkinson–Shiffrin “modal model” forms the foundation of our understanding of human memory. It consists of three stores: Sensory Memory (SM), whose visual component is called iconic memory, Short-Term Memory (STM; also called working memory, WM), and Long-Term Memory (LTM). Since its inception, shortcomings of all three components of the modal model have been identified. While the theories of STM and LTM underwent significant modifications to address these shortcomings, models of the iconic memory remained largely unchanged: A high capacity but rapidly decaying store whose contents are encoded in retinotopic coordinates, i.e., according to how the stimulus is projected on the retina. The fundamental shortcoming of iconic memory models is that, because contents are encoded in retinotopic coordinates, the iconic memory cannot hold any useful information under normal viewing conditions when objects or the subject are in motion. Hence, half-century after its formulation, it remains an unresolved problem whether and how the first stage of the modal model serves any useful function and how subsequent stages of the modal model receive inputs from the environment. Here, we propose a new conceptualization of human visual sensory memory by introducing an additional component whose reference-frame consists of motion-grouping based coordinates rather than retinotopic coordinates. We review data supporting this new model and discuss how it offers solutions to the paradoxes of the traditional model of sensory memory. PMID:27375519
A New Conceptualization of Human Visual Sensory-Memory.
Öğmen, Haluk; Herzog, Michael H
2016-01-01
Memory is an essential component of cognition and disorders of memory have significant individual and societal costs. The Atkinson-Shiffrin "modal model" forms the foundation of our understanding of human memory. It consists of three stores: Sensory Memory (SM), whose visual component is called iconic memory, Short-Term Memory (STM; also called working memory, WM), and Long-Term Memory (LTM). Since its inception, shortcomings of all three components of the modal model have been identified. While the theories of STM and LTM underwent significant modifications to address these shortcomings, models of the iconic memory remained largely unchanged: A high capacity but rapidly decaying store whose contents are encoded in retinotopic coordinates, i.e., according to how the stimulus is projected on the retina. The fundamental shortcoming of iconic memory models is that, because contents are encoded in retinotopic coordinates, the iconic memory cannot hold any useful information under normal viewing conditions when objects or the subject are in motion. Hence, half-century after its formulation, it remains an unresolved problem whether and how the first stage of the modal model serves any useful function and how subsequent stages of the modal model receive inputs from the environment. Here, we propose a new conceptualization of human visual sensory memory by introducing an additional component whose reference-frame consists of motion-grouping based coordinates rather than retinotopic coordinates. We review data supporting this new model and discuss how it offers solutions to the paradoxes of the traditional model of sensory memory.
Vigilance and iconic memory in children at high risk for alcoholism.
Steinhauer, S R; Locke, J; Hill, S Y
1997-07-01
Previous studies report reduced visual event-related potential (ERP) amplitudes in young males at high risk for alcoholism. These findings could involve difficulties at several stages of visual processing. This study was aimed at examining vigilance performance and iconic memory functions in children at high risk or low risk for alcoholism. Sustained vigilance and retrieval from iconic memory were evaluated in 54 (29 male) white children at high risk and 47 (25 male) white children at low risk for developing alcoholism. Children were also grouped according to gender and age (younger: 8-12 years; older: 13-18 years). No differences is visual sensitivity, response criterion or reaction time were associated with risk status on the degraded visual stimulus version of the Continuous Performance Test. For the Span of Apprehension, no differences were found due to risk status when only 1 or 5 distractors were presented, although with 9 distractors a significant effect of risk status was found when it was tested as an interaction with gender and age (decreased accuracy for older high-risk boys compared to older low-risk boys). These findings suggest that ERP deviations are not attributable to stages of visual processing deficits, but represent difficulty involving more complex utilization of information. Implications of these results are that the differences between high- and low-risk children that have been reported previously for visual ERP components (e.g., P300) are not attributable to deficits of attentional or iconic memory mechanisms.
An Examination of Iconic Memory in Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
McMorris, Carly A.; Brown, Stephanie M.; Bebko, James M.
2013-01-01
"Iconic memory" is the ability to accurately recall a number of items after a very brief visual exposure. Previous research has examined these capabilities in typically developing (TD) children and individuals with intellectual disabilities (ID); however, there is limited research on these abilities in children with Autism Spectrum…
An examination of iconic memory in children with autism spectrum disorders.
McMorris, Carly A; Brown, Stephanie M; Bebko, James M
2013-08-01
Iconic memory is the ability to accurately recall a number of items after a very brief visual exposure. Previous research has examined these capabilities in typically developing (TD) children and individuals with intellectual disabilities (ID); however, there is limited research on these abilities in children with Autism Spectrum Disorders (ASD). Twenty-one TD and eighteen ASD children were presented with circular visual arrays of letters for 100 ms and were asked to recall as many letters as possible or a single letter that was cued for recall. Groups did not differ in the number of items recalled, the rate of information decay, or speed of information processing. These findings suggest that iconic memory is an intact skill for children with ASD, a result that has implications for subsequent information processing.
Implications of differences of echoic and iconic memory for the design of multimodal displays
NASA Astrophysics Data System (ADS)
Glaser, Daniel Shields
It has been well documented that dual-task performance is more accurate when each task is based on a different sensory modality. It is also well documented that the memory for each sense has unequal durations, particularly visual (iconic) and auditory (echoic) sensory memory. In this dissertation I address whether differences in sensory memory (e.g. iconic vs. echoic) duration have implications for the design of a multimodal display. Since echoic memory persists for seconds in contrast to iconic memory which persists only for milliseconds, one of my hypotheses was that in a visual-auditory dual task condition, performance will be better if the visual task is completed before the auditory task than vice versa. In Experiment 1 I investigated whether the ability to recall multi-modal stimuli is affected by recall order, with each mode being responded to separately. In Experiment 2, I investigated the effects of stimulus order and recall order on the ability to recall information from a multi-modal presentation. In Experiment 3 I investigated the effect of presentation order using a more realistic task. In Experiment 4 I investigated whether manipulating the presentation order of stimuli of different modalities improves humans' ability to combine the information from the two modalities in order to make decision based on pre-learned rules. As hypothesized, accuracy was greater when visual stimuli were responded to first and auditory stimuli second. Also as hypothesized, performance was improved by not presenting both sequences at the same time, limiting the perceptual load. Contrary to my expectations, overall performance was better when a visual sequence was presented before the audio sequence. Though presenting a visual sequence prior to an auditory sequence lengthens the visual retention interval, it also provides time for visual information to be recoded to a more robust form without disruption. Experiment 4 demonstrated that decision making requiring the integration of visual and auditory information is enhanced by reducing workload and promoting a strategic use of echoic memory. A framework for predicting Experiment 1-4 results is proposed and evaluated.
Beste, Christian; Schneider, Daniel; Epplen, Jörg T; Arning, Larissa
2011-01-01
The brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in nerve growth and survival. Especially, a single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met, has gained a lot of attention, because of its effect on activity-dependent BDNF secretion and its link to impaired memory processes. We hypothesize that the BDNF Val66Met polymorphism may have modulatory effects on the visual sensory (iconic) memory performance. Two hundred and eleven healthy German students (106 female and 105 male) were included in the data analysis. Since BDNF is also discussed to be involved in the pathogenesis of depression, we additionally tested for possible interactions with depressive mood. The BDNF Val66Met polymorphism significantly influenced iconic-memory performance, with the combined Val/Met-Met/Met genotype group revealing less time stability of information stored in iconic memory than the Val/Val group. Furthermore, this stability was positively correlated with depressive mood exclusively in the Val/Val genotype group. Thus, these results show that the BDNF Val66Met polymorphism has an effect on pre-attentive visual sensory memory processes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Comparing Iconic Memory in Children with and without Attention Deficit Hyperactivity Disorder
Ahmadi, Nastaran; Goodarzi, Mohammad Ali; Hadianfard, Habib; Mohamadi, Norolah; Farid, Daryush; Kholasehzadeh, Golrasteh; Sakhvidi, Mohammad Nadi
2013-01-01
Objective Children with attention deficit hyperactivity disorder (ADHD) do not process most information due to inattention and loss of the opportunity to save and retrieve information. Therefore, these children experience memory impairment. Although visual memory has been previously studied in children with ADHD, iconic memory in these children has been less evaluated. We aimed to study the possibility of iconic memory impairment in children with ADHD, and compare the results with that of children without ADHD. Methods The experimental group of this study were 6-9 year-old children who referred to the Imam Hosein Clinic and were diagnosed as having ADHD by a psychiatrist during 2011-2012 (n = 30).The subjects were interviewed clinically by a psychologist; and in order to diagnose ADHD, their parents and teachers were asked to complete the child symptom inventory-4 (CSI-4). The comparison group were 6-9 year-old children without ADHD who studied in 1st and 2nd educational district of Yazd (n = 30). Subjects’ iconic memory was assessed using an iconic memory task. Repeated measure ANOVA was used for data analysis. Results Based on the iconic memory test, the mean score of ADHD children was significantly lower than that of children without ADHD (P < 0.001). Moreover, the performance of the experimental group differed significantly when the duration of the presentation differed from 50 ms to 100 ms as compared to the control group (P < 0.001). The number of correct answers increased in the experimental group as the duration of presentation increased. However, children with ADHD scored less than children without ADHD at 50 ms as well as 100 ms. The means of ADHD children increased as the duration of the presentation increased from 50 ms to 100 ms to 300 ms (P < 0.001). Conclusion Visual memory is weaker in children with ADHD, and they have weaker performance than normal children in both visual and auditory symbols at presentation durations of 50 and 100 ms. The performance of ADHD children improves as the stimulation time increases PMID:24454422
Comparing Iconic Memory in Children with and without Attention Deficit Hyperactivity Disorder.
Ahmadi, Nastaran; Goodarzi, Mohammad Ali; Hadianfard, Habib; Mohamadi, Norolah; Farid, Daryush; Kholasehzadeh, Golrasteh; Sakhvidi, Mohammad Nadi; Hemyari, Camellia
2013-08-01
Children with attention deficit hyperactivity disorder (ADHD) do not process most information due to inattention and loss of the opportunity to save and retrieve information. Therefore, these children experience memory impairment. Although visual memory has been previously studied in children with ADHD, iconic memory in these children has been less evaluated. We aimed to study the possibility of iconic memory impairment in children with ADHD, and compare the results with that of children without ADHD. The experimental group of this study were 6-9 year-old children who referred to the Imam Hosein Clinic and were diagnosed as having ADHD by a psychiatrist during 2011-2012 (n = 30).The subjects were interviewed clinically by a psychologist; and in order to diagnose ADHD, their parents and teachers were asked to complete the child symptom inventory-4 (CSI-4). The comparison group were 6-9 year-old children without ADHD who studied in 1st and 2nd educational district of Yazd (n = 30). Subjects' iconic memory was assessed using an iconic memory task. Repeated measure ANOVA was used for data analysis. Based on the iconic memory test, the mean score of ADHD children was significantly lower than that of children without ADHD (P < 0.001). Moreover, the performance of the experimental group differed significantly when the duration of the presentation differed from 50 ms to 100 ms as compared to the control group (P < 0.001). The number of correct answers increased in the experimental group as the duration of presentation increased. However, children with ADHD scored less than children without ADHD at 50 ms as well as 100 ms. The means of ADHD children increased as the duration of the presentation increased from 50 ms to 100 ms to 300 ms (P < 0.001). Visual memory is weaker in children with ADHD, and they have weaker performance than normal children in both visual and auditory symbols at presentation durations of 50 and 100 ms. The performance of ADHD children improves as the stimulation time increases.
Fast decay of iconic memory in observers with mild cognitive impairments.
Lu, Zhong-Lin; Neuse, James; Madigan, Stephen; Dosher, Barbara Anne
2005-02-01
In a previous clinical report, unusually fast decay of iconic memory was obtained from a subject who later developed Alzheimer's disease. By using the partial-report paradigm, iconic memory (a form of visual sensory memory) in a group of observers with mild cognitive impairments (MCI) was characterized and compared with that of young college-age adults and older controls. Relatively long stimulus exposures were used for all three groups to ensure that older observers could perceive the stimuli. A set of conventional neuropsychological tests assessed cognitive functions of the MCI and older control groups. We found that iconic memory decayed much faster for observers with MCI than for normal controls, old or young, although the two groups of older observers performed at equivalent levels in precue tests (assay of visibility) and tests cued at long delays (assay of short-term memory). The result suggests that fast decay of iconic memory might be a general characteristic of observers with MCI who are at much higher than average risk of developing Alzheimer's disease later in life.
Fast decay of iconic memory in observers with mild cognitive impairments
Lu, Zhong-Lin; Neuse, James; Madigan, Stephen; Dosher, Barbara Anne
2005-01-01
In a previous clinical report, unusually fast decay of iconic memory was obtained from a subject who later developed Alzheimer's disease. By using the partial-report paradigm, iconic memory (a form of visual sensory memory) in a group of observers with mild cognitive impairments (MCI) was characterized and compared with that of young college-age adults and older controls. Relatively long stimulus exposures were used for all three groups to ensure that older observers could perceive the stimuli. A set of conventional neuropsychological tests assessed cognitive functions of the MCI and older control groups. We found that iconic memory decayed much faster for observers with MCI than for normal controls, old or young, although the two groups of older observers performed at equivalent levels in precue tests (assay of visibility) and tests cued at long delays (assay of short-term memory). The result suggests that fast decay of iconic memory might be a general characteristic of observers with MCI who are at much higher than average risk of developing Alzheimer's disease later in life. PMID:15665101
Are There Multiple Visual Short-Term Memory Stores?
Sligte, Ilja G.; Scholte, H. Steven; Lamme, Victor A. F.
2008-01-01
Background Classic work on visual short-term memory (VSTM) suggests that people store a limited amount of items for subsequent report. However, when human observers are cued to shift attention to one item in VSTM during retention, it seems as if there is a much larger representation, which keeps additional items in a more fragile VSTM store. Thus far, it is not clear whether the capacity of this fragile VSTM store indeed exceeds the traditional capacity limits of VSTM. The current experiments address this issue and explore the capacity, stability, and duration of fragile VSTM representations. Methodology/Principal Findings We presented cues in a change-detection task either just after off-set of the memory array (iconic-cue), 1,000 ms after off-set of the memory array (retro-cue) or after on-set of the probe array (post-cue). We observed three stages in visual information processing 1) iconic memory with unlimited capacity, 2) a four seconds lasting fragile VSTM store with a capacity that is at least a factor of two higher than 3) the robust and capacity-limited form of VSTM. Iconic memory seemed to depend on the strength of the positive after-image resulting from the memory display and was virtually absent under conditions of isoluminance or when intervening light masks were presented. This suggests that iconic memory is driven by prolonged retinal activation beyond stimulus duration. Fragile VSTM representations were not affected by light masks, but were completely overwritten by irrelevant pattern masks that spatially overlapped the memory array. Conclusions/Significance We find that immediately after a stimulus has disappeared from view, subjects can still access information from iconic memory because they can see an after-image of the display. After that period, human observers can still access a substantial, but somewhat more limited amount of information from a high-capacity, but fragile VSTM that is overwritten when new items are presented to the eyes. What is left after that is the traditional VSTM store, with a limit of about four objects. We conclude that human observers store more sustained representations than is evident from standard change detection tasks and that these representations can be accessed at will. PMID:18301775
Are there multiple visual short-term memory stores?
Sligte, Ilja G; Scholte, H Steven; Lamme, Victor A F
2008-02-27
Classic work on visual short-term memory (VSTM) suggests that people store a limited amount of items for subsequent report. However, when human observers are cued to shift attention to one item in VSTM during retention, it seems as if there is a much larger representation, which keeps additional items in a more fragile VSTM store. Thus far, it is not clear whether the capacity of this fragile VSTM store indeed exceeds the traditional capacity limits of VSTM. The current experiments address this issue and explore the capacity, stability, and duration of fragile VSTM representations. We presented cues in a change-detection task either just after off-set of the memory array (iconic-cue), 1,000 ms after off-set of the memory array (retro-cue) or after on-set of the probe array (post-cue). We observed three stages in visual information processing 1) iconic memory with unlimited capacity, 2) a four seconds lasting fragile VSTM store with a capacity that is at least a factor of two higher than 3) the robust and capacity-limited form of VSTM. Iconic memory seemed to depend on the strength of the positive after-image resulting from the memory display and was virtually absent under conditions of isoluminance or when intervening light masks were presented. This suggests that iconic memory is driven by prolonged retinal activation beyond stimulus duration. Fragile VSTM representations were not affected by light masks, but were completely overwritten by irrelevant pattern masks that spatially overlapped the memory array. We find that immediately after a stimulus has disappeared from view, subjects can still access information from iconic memory because they can see an after-image of the display. After that period, human observers can still access a substantial, but somewhat more limited amount of information from a high-capacity, but fragile VSTM that is overwritten when new items are presented to the eyes. What is left after that is the traditional VSTM store, with a limit of about four objects. We conclude that human observers store more sustained representations than is evident from standard change detection tasks and that these representations can be accessed at will.
Driver memory for in-vehicle visual and auditory messages
DOT National Transportation Integrated Search
1999-12-01
Three experiments were conducted in a driving simulator to evaluate effects of in-vehicle message modality and message format on comprehension and memory for younger and older drivers. Visual icons and text messages were effective in terms of high co...
Iconic Memory and Reading Performance in Nine-Year-Old Children
ERIC Educational Resources Information Center
Riding, R. J.; Pugh, J. C.
1977-01-01
The reading process incorporates three factors: images registered in visual sensory memory, semantic analysis in short-term memory, and long-term memory storage. The focus here is on the contribution of sensory memory to reading performance. (Author/RK)
Always look on the broad side of life: happiness increases the breadth of sensory memory.
Kuhbandner, Christof; Lichtenfeld, Stephanie; Pekrun, Reinhard
2011-08-01
Research has shown that positive affect increases the breadth of information processing at several higher stages of information processing, such as attentional selection or knowledge activation. In the present study, we examined whether these affective influences are already present at the level of transiently storing incoming information in sensory memory, before attentional selection takes place. After inducing neutral, happy, or sad affect, participants performed an iconic memory task which measures visual sensory memory. In all conditions, iconic memory performance rapidly decreased with increasing delay between stimulus presentation and test, indicating that affect did not influence the decay of iconic memory. However, positive affect increased the amount of incoming information stored in iconic memory. In particular, our results showed that this occurs due to an elimination of the spatial bias typically observed in iconic memory. Whereas performance did not differ at positions where observers in the neutral and negative conditions showed the highest performance, positive affect enhanced performance at all positions where observers in the neutral and negative conditions were relatively "blind." These findings demonstrate that affect influences the breadth of information processing already at earliest processing stages, suggesting that affect may produce an even more fundamental shift in information processing than previously believed. 2011 APA, all rights reserved
Sligte, Ilja G; Wokke, Martijn E; Tesselaar, Johannes P; Scholte, H Steven; Lamme, Victor A F
2011-05-01
To guide our behavior in successful ways, we often need to rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). While VSTM is usually broken down into iconic memory (brief and high-capacity store) and visual working memory (sustained, yet limited-capacity store), recent studies have suggested the existence of an additional and intermediate form of VSTM that depends on activity in extrastriate cortex. In previous work, we have shown that this fragile form of VSTM can be dissociated from iconic memory. In the present study, we provide evidence that fragile VSTM is different from visual working memory as magnetic stimulation of the right dorsolateral prefrontal cortex (DLPFC) disrupts visual working memory, while leaving fragile VSTM intact. In addition, we observed that people with high DLPFC activity had superior working memory capacity compared to people with low DLPFC activity, and only people with high DLPFC activity really showed a reduction in working memory capacity in response to magnetic stimulation. Altogether, this study shows that VSTM consists of three stages that have clearly different characteristics and rely on different neural structures. On the methodological side, we show that it is possible to predict individual susceptibility to magnetic stimulation based on functional MRI activity. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Wong, Yvonne J; Aldcroft, Adrian J; Large, Mary-Ellen; Culham, Jody C; Vilis, Tutis
2009-12-01
We examined the role of temporal synchrony-the simultaneous appearance of visual features-in the perceptual and neural processes underlying object persistence. When a binding cue (such as color or motion) momentarily exposes an object from a background of similar elements, viewers remain aware of the object for several seconds before it perceptually fades into the background, a phenomenon known as object persistence. We showed that persistence from temporal stimulus synchrony, like that arising from motion and color, is associated with activation in the lateral occipital (LO) area, as measured by functional magnetic resonance imaging. We also compared the distribution of occipital cortex activity related to persistence to that of iconic visual memory. Although activation related to iconic memory was largely confined to LO, activation related to object persistence was present across V1 to LO, peaking in V3 and V4, regardless of the binding cue (temporal synchrony, motion, or color). Although persistence from motion cues was not associated with higher activation in the MT+ motion complex, persistence from color cues was associated with increased activation in V4. Taken together, these results demonstrate that although persistence is a form of visual memory, it relies on neural mechanisms different from those of iconic memory. That is, persistence not only activates LO in a cue-independent manner, it also recruits visual areas that may be necessary to maintain binding between object elements.
Effect of Typeface on Iconic Storage Capacity.
ERIC Educational Resources Information Center
Hoffman, Valerie
Various aspects of iconic memory have been studied in the past. Two tachistoscopic experiments were conducted to examine how legibility of a stimulus affects a subject's ability to recall brief visual presentation. The studies used letter arrays set in four different typefaces (Helvetica, Cooper Black Outline, Electronic, Old English). In the…
Negative emotion boosts quality of visual working memory representation.
Xie, Weizhen; Zhang, Weiwei
2016-08-01
Negative emotion impacts a variety of cognitive processes, including working memory (WM). The present study investigated whether negative emotion modulated WM capacity (quantity) or resolution (quality), 2 independent limits on WM storage. In Experiment 1, observers tried to remember several colors over 1-s delay and then recalled the color of a randomly picked memory item by clicking a best-matching color on a continuous color wheel. On each trial, before the visual WM task, 1 of 3 emotion conditions (negative, neutral, or positive) was induced by having observers to rate the valence of an International Affective Picture System image. Visual WM under negative emotion showed enhanced resolution compared with neutral and positive conditions, whereas the number of retained representations was comparable across the 3 emotion conditions. These effects were generalized to closed-contour shapes in Experiment 2. To isolate the locus of these effects, Experiment 3 adopted an iconic memory version of the color recall task by eliminating the 1-s retention interval. No significant change in the quantity or quality of iconic memory was observed, suggesting that the resolution effects in the first 2 experiments were critically dependent on the need to retain memory representations over a short period of time. Taken together, these results suggest that negative emotion selectively boosts visual WM quality, supporting the dissociable nature quantitative and qualitative aspects of visual WM representation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Lin, Zhicheng; He, Sheng
2012-10-25
Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.
Fragile visual short-term memory is an object-based and location-specific store.
Pinto, Yaïr; Sligte, Ilja G; Shapiro, Kimron L; Lamme, Victor A F
2013-08-01
Fragile visual short-term memory (FM) is a recently discovered form of visual short-term memory. Evidence suggests that it provides rich and high-capacity storage, like iconic memory, yet it exists, without interference, almost as long as visual working memory. In the present study, we sought to unveil the functional underpinnings of this memory storage. We found that FM is only completely erased when the new visual scene appears at the same location and consists of the same objects as the to-be-recalled information. This result has two important implications: First, it shows that FM is an object- and location-specific store, and second, it suggests that FM might be used in everyday life when the presentation of visual information is appropriately designed.
A Model-Based Analysis of Semi-Automated Data Discovery and Entry Using Automated Content Extraction
2011-02-01
Accomplish Goal) to (a) visually search the contents of a file folder until the icon corresponding to the desired file is located (Choose...Item_from_set), and (b) move the mouse to that icon and double click to open it (Double_select Object). Note that Choose Item_from_set and Double_select...argument, which Open File fills with <found_item>, a working memory pointer to the file icon that Choose_item_from Set finds. Look_at, Point_to
Lin, Zhicheng; He, Sheng
2012-01-01
Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817
Mental Imagery and Visual Working Memory
Keogh, Rebecca; Pearson, Joel
2011-01-01
Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024
Mental imagery and visual working memory.
Keogh, Rebecca; Pearson, Joel
2011-01-01
Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.
ERIC Educational Resources Information Center
Meyer, Philip A.
Reported were four experiments which investigated the developmental and mental retardation aspects of an initial stage of visual information processing termed iconic memory. The stage was explained to involve processing visual stimuli prior to sensation and through to recognition. In three of the four experiments, the paradigm of visual masking…
Is There a Separate Visual Iconic Memory System? Final Report.
ERIC Educational Resources Information Center
Levie, W. Howard; Levie, Diane D.
The purpose of these studies was to provide evidence to support either the dual-coding hypothesis or the single-system hypothesis of human memory. In one experiment, college subjects were shown a mixed series of words and pictures either while simultaneously engaged in shadowing (repeating aloud) a prose passage presented via earphones or while…
Monitoring eye movements to investigate the picture superiority effect in spatial memory.
Cattaneo, Zaira; Rosen, Mitchell; Vecchi, Tomaso; Pelz, Jeff B
2008-01-01
Spatial memory is usually better for iconic than for verbal material. Our aim was to assess whether such effect is related to the way iconic and verbal targets are viewed when people have to memorize their locations. Eye movements were recorded while participants memorized the locations of images or words. Images received fewer, but longer, gazes than words. Longer gazes on images might reflect greater attention devoted to images due to their higher sensorial distinctiveness and/or generation with images of an additional phonological code beyond the visual code immediately available. We found that words were scanned mainly from left to right while a more heterogeneous scanning strategy characterized encoding of images. This suggests that iconic configurations tend to be maintained as global integrated representations in which all the item/location pairs are simultaneously present whilst verbal configurations are maintained through more sequential processes.
ERIC Educational Resources Information Center
Voss, Victoria; Frauenknecht, Marianne
1996-01-01
Presents ideas for a lesson that allows elementary and secondary students to experience an iconic representation of the Names Project AIDS Memorial Quilt in the classroom. By visualizing the quilt exhibit through pictures of individual panels, students can develop a greater appreciation of the human toll taken by the AIDS epidemic. (SM)
Tracking the first two seconds: three stages of visual information processing?
Jacob, Jane; Breitmeyer, Bruno G; Treviño, Melissa
2013-12-01
We compared visual priming and comparison tasks to assess information processing of a stimulus during the first 2 s after its onset. In both tasks, a 13-ms prime was followed at varying SOAs by a 40-ms probe. In the priming task, observers identified the probe as rapidly and accurately as possible; in the comparison task, observers determined as rapidly and accurately as possible whether or not the probe and prime were identical. Priming effects attained a maximum at an SOA of 133 ms and then declined monotonically to zero by 700 ms, indicating reliance on relatively brief visuosensory (iconic) memory. In contrast, the comparison effects yielded a multiphasic function, showing a maximum at 0 ms followed by a minimum at 133 ms, followed in turn by a maximum at 240 ms and another minimum at 720 ms, and finally a third maximum at 1,200 ms before declining thereafter. The results indicate three stages of prime processing that we take to correspond to iconic visible persistence, iconic informational persistence, and visual working memory, with the first two used in the priming task and all three in the comparison task. These stages are related to stages presumed to underlie stimulus processing in other tasks, such as those giving rise to the attentional blink.
Hahn, Britta; Kappenman, Emily S.; Robinson, Benjamin M.; Fuller, Rebecca L.; Luck, Steven J.; Gold, James M.
2011-01-01
Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the information is lost and could thus contribute to the working memory deficit seen in the illness. The current study used a partial report procedure to test the hypothesis that patients with schizophrenia (n = 37) display faster iconic memory decay than matched healthy control participants (n = 28). Six letters, arranged in a circle, were presented for 50 ms. Following a variable delay of 0–1000 ms, a central arrow cue indicated the item to be reported. In both patients and control subjects, recall accuracy decreased with increasing cue delay, reflecting decay of the iconic representation of the stimulus array. Patients displayed impaired memory performance across all cue delays, consistent with an impairment in working memory, but the rate of iconic memory decay did not differ between patients and controls. This provides clear evidence against faster loss of iconic memory representations in schizophrenia, ruling out iconic decay as an underlying source of the working memory impairment in this population. Thus, iconic decay rate can be added to a growing list of unimpaired cognitive building blocks in schizophrenia. PMID:20053864
Iconic decay in schizophrenia.
Hahn, Britta; Kappenman, Emily S; Robinson, Benjamin M; Fuller, Rebecca L; Luck, Steven J; Gold, James M
2011-09-01
Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the information is lost and could thus contribute to the working memory deficit seen in the illness. The current study used a partial report procedure to test the hypothesis that patients with schizophrenia (n = 37) display faster iconic memory decay than matched healthy control participants (n = 28). Six letters, arranged in a circle, were presented for 50 ms. Following a variable delay of 0-1000 ms, a central arrow cue indicated the item to be reported. In both patients and control subjects, recall accuracy decreased with increasing cue delay, reflecting decay of the iconic representation of the stimulus array. Patients displayed impaired memory performance across all cue delays, consistent with an impairment in working memory, but the rate of iconic memory decay did not differ between patients and controls. This provides clear evidence against faster loss of iconic memory representations in schizophrenia, ruling out iconic decay as an underlying source of the working memory impairment in this population. Thus, iconic decay rate can be added to a growing list of unimpaired cognitive building blocks in schizophrenia.
Wilkinson, Krista M; Dennis, Nancy A; Webb, Christina E; Therrien, Mari; Stradtman, Megan; Farmer, Jacquelyn; Leach, Raevynn; Warrenfeltz, Megan; Zeuner, Courtney
2015-01-01
Visual aided augmentative and alternative communication (AAC) consists of books or technologies that contain visual symbols to supplement spoken language. A common observation concerning some forms of aided AAC is that message preparation can be frustratingly slow. We explored the uses of fMRI to examine the neural correlates of visual search for line drawings on AAC displays in 18 college students under two experimental conditions. Under one condition, the location of the icons remained stable and participants were able to learn the spatial layout of the display. Under the other condition, constant shuffling of the locations of the icons prevented participants from learning the layout, impeding rapid search. Brain activation was contrasted under these conditions. Rapid search in the stable display was associated with greater activation of cortical and subcortical regions associated with memory, motor learning, and dorsal visual pathways compared to the search in the unpredictable display. Rapid search for line drawings on stable AAC displays involves not just the conceptual knowledge of the symbol meaning but also the integration of motor, memory, and visual-spatial knowledge about the display layout. Further research must study individuals who use AAC, as well as the functional effect of interventions that promote knowledge about array layout.
Iconic Factors and Language Word Order
ERIC Educational Resources Information Center
Moeser, Shannon Dawn
1975-01-01
College students were presented with an artificial language in which spoken nonsense words were correlated with visual references. Inferences regarding vocabulary acquisition were drawn, and it was suggested that the processing of the language was mediated through a semantic memory system. (CK)
Seeing Iconic Gestures While Encoding Events Facilitates Children's Memory of These Events.
Aussems, Suzanne; Kita, Sotaro
2017-11-08
An experiment with 72 three-year-olds investigated whether encoding events while seeing iconic gestures boosts children's memory representation of these events. The events, shown in videos of actors moving in an unusual manner, were presented with either iconic gestures depicting how the actors performed these actions, interactive gestures, or no gesture. In a recognition memory task, children in the iconic gesture condition remembered actors and actions better than children in the control conditions. Iconic gestures were categorized based on how much of the actors was represented by the hands (feet, legs, or body). Only iconic hand-as-body gestures boosted actor memory. Thus, seeing iconic gestures while encoding events facilitates children's memory of those aspects of events that are schematically highlighted by gesture. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Iconic memory is not a case of attention-free awareness.
Mack, Arien; Erol, Muge; Clarke, Jason
2015-05-01
Whether or not awareness entails attention is a much debated question. Since iconic memory has been generally assumed to be attention-free, it has been considered an important piece of evidence that it does not (Koch & Tsuchiya, 2007). Therefore the question of the role of attention in iconic memory matters. Recent evidence (Persuh, Genzer, & Melara, 2012), suggests that iconic memory does depend on attention. Because of the centrality of iconic memory to this debate, we looked again at the role of attention in iconic memory using a standard whole versus partial report task of letters in a 3×2 matrix. We manipulated attention to the array by coupling it with a second task that was either easy or hard and by manipulating the probability of which task was to be performed on any given trial. When attention was maximally diverted from the matrix, participants were able to report less than a single item, confirming the prior results and supporting the conclusion that iconic memory entails attention. It is not an instance of attention-free awareness. Copyright © 2015 Elsevier Inc. All rights reserved.
Spatial resolution in visual memory.
Ben-Shalom, Asaf; Ganel, Tzvi
2015-04-01
Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory.
Object Persistence Enhances Spatial Navigation: A Case Study in Smartphone Vision Science.
Liverence, Brandon M; Scholl, Brian J
2015-07-01
Violations of spatiotemporal continuity disrupt performance in many tasks involving attention and working memory, but experiments on this topic have been limited to the study of moment-by-moment on-line perception, typically assessed by passive monitoring tasks. We tested whether persisting object representations also serve as underlying units of longer-term memory and active spatial navigation, using a novel paradigm inspired by the visual interfaces common to many smartphones. Participants used key presses to navigate through simple visual environments consisting of grids of icons (depicting real-world objects), only one of which was visible at a time through a static virtual window. Participants found target icons faster when navigation involved persistence cues (via sliding animations) than when persistence was disrupted (e.g., via temporally matched fading animations), with all transitions inspired by smartphone interfaces. Moreover, this difference occurred even after explicit memorization of the relevant information, which demonstrates that object persistence enhances spatial navigation in an automatic and irresistible fashion. © The Author(s) 2015.
Limited capacity for contour curvature in iconic memory.
Sakai, Koji
2006-06-01
We measured the difference threshold for contour curvature in iconic memory by using the cued discrimination method. The study stimulus consisting of 2 to 6 curved contours was briefly presented in the fovea, followed by two lines as cues. Subjects discriminated the curvature of two cued curves. The cue delays were 0 msec. and 300 msec. in Exps. 1 and 2, respectively, and 50 msec. before the study offset in Exp. 3. Analysis of data from Exps. 1 and 2 showed that the Weber fraction rose monotonically with the increase in set size. Clear set-size effects indicate that iconic memory has a limited capacity. Moreover, clear set-size effect in Exp. 3 indicates that perception itself has a limited capacity. Larger set-size effects in Exp. 1 than in Exp. 3 suggest that iconic memory after perceptual process has limited capacity. These properties of iconic memory at threshold level are contradictory to the traditional view that iconic memory has a high capacity both at suprathreshold and categorical levels.
Iconic Memory Deficit of Mildly Mentally Retarded Individuals.
ERIC Educational Resources Information Center
Hornstein, Henry A.; Mosley, James L.
1987-01-01
Ten mildly retarded young adult males and nonretarded subjects matched for chronological age or mental age were required to recognize both verbal and nonverbal stimuli presented tachistoscopically. Results of a backward visual masking paradigm varying stimulus onset asynchrony (SOA) indicated the retarded subjects performed poorer at the longest…
ERIC Educational Resources Information Center
So, Wing Chee; Chen-Hui, Colin Sim; Wei-Shan, Julie Low
2012-01-01
Abundant research has shown that encoding meaningful gesture, such as an iconic gesture, enhances memory. This paper asked whether gesture needs to carry meaning to improve memory recall by comparing the mnemonic effect of meaningful (i.e., iconic gestures) and nonmeaningful gestures (i.e., beat gestures). Beat gestures involve simple motoric…
Appelbaum, L Gregory; Cain, Matthew S; Darling, Elise F; Mitroff, Stephen R
2013-08-01
Action video game playing has been experimentally linked to a number of perceptual and cognitive improvements. These benefits are captured through a wide range of psychometric tasks and have led to the proposition that action video game experience may promote the ability to extract statistical evidence from sensory stimuli. Such an advantage could arise from a number of possible mechanisms: improvements in visual sensitivity, enhancements in the capacity or duration for which information is retained in visual memory, or higher-level strategic use of information for decision making. The present study measured the capacity and time course of visual sensory memory using a partial report performance task as a means to distinguish between these three possible mechanisms. Sensitivity measures and parameter estimates that describe sensory memory capacity and the rate of memory decay were compared between individuals who reported high evels and low levels of action video game experience. Our results revealed a uniform increase in partial report accuracy at all stimulus-to-cue delays for action video game players but no difference in the rate or time course of the memory decay. The present findings suggest that action video game playing may be related to enhancements in the initial sensitivity to visual stimuli, but not to a greater retention of information in iconic memory buffers.
Does visual short-term memory have a high-capacity stage?
Matsukura, Michi; Hollingworth, Andrew
2011-12-01
Visual short-term memory (VSTM) has long been considered a durable, limited-capacity system for the brief retention of visual information. However, a recent work by Sligte et al. (Plos One 3:e1699, 2008) reported that, relatively early after the removal of a memory array, a cue allowed participants to access a fragile, high-capacity stage of VSTM that is distinct from iconic memory. In the present study, we examined whether this stage division is warranted by attempting to corroborate the existence of an early, high-capacity form of VSTM. The results of four experiments did not support Sligte et al.'s claim, since we did not obtain evidence for VSTM retention that exceeded traditional estimates of capacity. However, performance approaching that observed in Sligte et al. can be achieved through extensive practice, providing a clear explanation for their findings. Our evidence favors the standard view of VSTM as a limited-capacity system that maintains a few object representations in a relatively durable form.
V4 activity predicts the strength of visual short-term memory representations.
Sligte, Ilja G; Scholte, H Steven; Lamme, Victor A F
2009-06-10
Recent studies have shown the existence of a form of visual memory that lies intermediate of iconic memory and visual short-term memory (VSTM), in terms of both capacity (up to 15 items) and the duration of the memory trace (up to 4 s). Because new visual objects readily overwrite this intermediate visual store, we believe that it reflects a weak form of VSTM with high capacity that exists alongside a strong but capacity-limited form of VSTM. In the present study, we isolated brain activity related to weak and strong VSTM representations using functional magnetic resonance imaging. We found that activity in visual cortical area V4 predicted the strength of VSTM representations; activity was low when there was no VSTM, medium when there was a weak VSTM representation regardless of whether this weak representation was available for report or not, and high when there was a strong VSTM representation. Altogether, this study suggests that the high capacity yet weak VSTM store is represented in visual parts of the brain. Allegedly, only some of these VSTM traces are amplified by parietal and frontal regions and as a consequence reside in traditional or strong VSTM. The additional weak VSTM representations remain available for conscious access and report when attention is redirected to them yet are overwritten as soon as new visual stimuli hit the eyes.
Iconic and Immediate Memory in Elementary School Children.
ERIC Educational Resources Information Center
Ewert, G. D.; Janzen, H. L.
1978-01-01
As age and grade increased, recall on all tasks increased; subjects in grades three to six were also seen to have a fully developed Iconic Memory, while only sixth graders had a functionally developed Immediate Memory. (KR)
Sirota, Miroslav; Kostovičová, Lenka; Juanchich, Marie
2014-08-01
Knowing which properties of visual displays facilitate statistical reasoning bears practical and theoretical implications. Therefore, we studied the effect of one property of visual diplays - iconicity (i.e., the resemblance of a visual sign to its referent) - on Bayesian reasoning. Two main accounts of statistical reasoning predict different effect of iconicity on Bayesian reasoning. The ecological-rationality account predicts a positive iconicity effect, because more highly iconic signs resemble more individuated objects, which tap better into an evolutionary-designed frequency-coding mechanism that, in turn, facilitates Bayesian reasoning. The nested-sets account predicts a null iconicity effect, because iconicity does not affect the salience of a nested-sets structure-the factor facilitating Bayesian reasoning processed by a general reasoning mechanism. In two well-powered experiments (N = 577), we found no support for a positive iconicity effect across different iconicity levels that were manipulated in different visual displays (meta-analytical overall effect: log OR = -0.13, 95% CI [-0.53, 0.28]). A Bayes factor analysis provided strong evidence in favor of the null hypothesis-the null iconicity effect. Thus, these findings corroborate the nested-sets rather than the ecological-rationality account of statistical reasoning.
Yanes, Danielle; Loprinzi, Paul D
2018-06-11
The present experiment evaluated the effects of acute exercise on iconic memory and short- and long-term episodic memory. A two-arm, parallel-group randomized experiment was employed ( n = 20 per group; M age = 21 year). The experimental group engaged in an acute bout of moderate-intensity treadmill exercise for 15 min, while the control group engaged in a seated, time-matched computer task. Afterwards, the participants engaged in a paragraph-level episodic memory task (20 min delay and 24 h delay recall) as well as an iconic memory task, which involved 10 trials (at various speeds from 100 ms to 800 ms) of recalling letters from a 3 × 3 array matrix. For iconic memory, there was a significant main effect for time (F = 42.9, p < 0.001, η² p = 0.53) and a trend towards a group × time interaction (F = 2.90, p = 0.09, η² p = 0.07), but no main effect for group (F = 0.82, p = 0.37, η² p = 0.02). The experimental group had higher episodic memory scores at both the baseline (19.22 vs. 17.20) and follow-up (18.15 vs. 15.77), but these results were not statistically significant. These findings provide some suggestive evidence hinting towards an iconic memory and episodic benefit from acute exercise engagement.
qPR: An adaptive partial-report procedure based on Bayesian inference.
Baek, Jongsoo; Lesmes, Luis Andres; Lu, Zhong-Lin
2016-08-01
Iconic memory is best assessed with the partial report procedure in which an array of letters appears briefly on the screen and a poststimulus cue directs the observer to report the identity of the cued letter(s). Typically, 6-8 cue delays or 600-800 trials are tested to measure the iconic memory decay function. Here we develop a quick partial report, or qPR, procedure based on a Bayesian adaptive framework to estimate the iconic memory decay function with much reduced testing time. The iconic memory decay function is characterized by an exponential function and a joint probability distribution of its three parameters. Starting with a prior of the parameters, the method selects the stimulus to maximize the expected information gain in the next test trial. It then updates the posterior probability distribution of the parameters based on the observer's response using Bayesian inference. The procedure is reiterated until either the total number of trials or the precision of the parameter estimates reaches a certain criterion. Simulation studies showed that only 100 trials were necessary to reach an average absolute bias of 0.026 and a precision of 0.070 (both in terms of probability correct). A psychophysical validation experiment showed that estimates of the iconic memory decay function obtained with 100 qPR trials exhibited good precision (the half width of the 68.2% credible interval = 0.055) and excellent agreement with those obtained with 1,600 trials of the conventional method of constant stimuli procedure (RMSE = 0.063). Quick partial-report relieves the data collection burden in characterizing iconic memory and makes it possible to assess iconic memory in clinical populations.
qPR: An adaptive partial-report procedure based on Bayesian inference
Baek, Jongsoo; Lesmes, Luis Andres; Lu, Zhong-Lin
2016-01-01
Iconic memory is best assessed with the partial report procedure in which an array of letters appears briefly on the screen and a poststimulus cue directs the observer to report the identity of the cued letter(s). Typically, 6–8 cue delays or 600–800 trials are tested to measure the iconic memory decay function. Here we develop a quick partial report, or qPR, procedure based on a Bayesian adaptive framework to estimate the iconic memory decay function with much reduced testing time. The iconic memory decay function is characterized by an exponential function and a joint probability distribution of its three parameters. Starting with a prior of the parameters, the method selects the stimulus to maximize the expected information gain in the next test trial. It then updates the posterior probability distribution of the parameters based on the observer's response using Bayesian inference. The procedure is reiterated until either the total number of trials or the precision of the parameter estimates reaches a certain criterion. Simulation studies showed that only 100 trials were necessary to reach an average absolute bias of 0.026 and a precision of 0.070 (both in terms of probability correct). A psychophysical validation experiment showed that estimates of the iconic memory decay function obtained with 100 qPR trials exhibited good precision (the half width of the 68.2% credible interval = 0.055) and excellent agreement with those obtained with 1,600 trials of the conventional method of constant stimuli procedure (RMSE = 0.063). Quick partial-report relieves the data collection burden in characterizing iconic memory and makes it possible to assess iconic memory in clinical populations. PMID:27580045
Choosing colors for map display icons using models of visual search.
Shive, Joshua; Francis, Gregory
2013-04-01
We show how to choose colors for icons on maps to minimize search time using predictions of a model of visual search. The model analyzes digital images of a search target (an icon on a map) and a search display (the map containing the icon) and predicts search time as a function of target-distractor color distinctiveness and target eccentricity. We parameterized the model using data from a visual search task and performed a series of optimization tasks to test the model's ability to choose colors for icons to minimize search time across icons. Map display designs made by this procedure were tested experimentally. In a follow-up experiment, we examined the model's flexibility to assign colors in novel search situations. The model fits human performance, performs well on the optimization tasks, and can choose colors for icons on maps with novel stimuli to minimize search time without requiring additional model parameter fitting. Models of visual search can suggest color choices that produce search time reductions for display icons. Designers should consider constructing visual search models as a low-cost method of evaluating color assignments.
Voluntary eyeblinks disrupt iconic memory.
Thomas, Laura E; Irwin, David E
2006-04-01
In the present research, we investigated whether eyeblinks interfere with cognitive processing. In Experiment 1, the participants performed a partial-report iconic memory task in which a letter array was presented for 106 msec, followed 50, 150, or 750 msec later by a tone that cued recall of onerow of the array. At a cue delay of 50 msec between array offset and cue onset, letter report accuracy was lower when the participants blinked following array presentation than under no-blink conditions; the participants made more mislocation errors under blink conditions. This result suggests that blinking interferes with the binding of object identity and object position in iconic memory. Experiment 2 demonstrated that interference due to blinks was not due merely to changes in light intensity. Experiments 3 and 4 demonstrated that other motor responses did not interfere with iconic memory. We propose a new phenomenon, cognitive blink suppression, in which blinking inhibits cognitive processing. This phenomenon may be due to neural interference. Blinks reduce activation in area V1, which may interfere with the representation of information in iconic memory.
ERIC Educational Resources Information Center
Miller, Robert; Rammsayer, Thomas H.; Schweizer, Karl; Troche, Stefan J.
2010-01-01
Several memory processes have been examined regarding their relation to psychometric intelligence with the exception of sensory memory. This study examined the relation between decay of iconic memory traces, measured with a partial-report task, and psychometric intelligence, assessed with the Berlin Intelligence Structure test, in 111…
Graziano, Martin; Sigman, Mariano
2008-05-23
When a stimulus is presented, its sensory trace decays rapidly, lasting for approximately 1000 ms. This brief and labile memory, referred as iconic memory, serves as a buffer before information is transferred to working memory and executive control. Here we explored the effect of different factors--geometric, spatial, and experience--with respect to the access and the maintenance of information in iconic memory and the progressive distortion of this memory. We studied performance in a partial report paradigm, a design wherein recall of only part of a stimulus array is required. Subjects had to report the identity of a letter in a location that was cued in a variable delay after the stimulus onset. Performance decayed exponentially with time, and we studied the different parameters (time constant, zero-delay value, and decay amplitude) as a function of the different factors. We observed that experience (determined by letter frequency) affected the access to iconic memory but not the temporal decay constant. On the contrary, spatial position affected the temporal course of delay. The entropy of the error distribution increased with time reflecting a progressive morphological distortion of the iconic buffer. We discuss our results on the context of a model of information access to executive control and how it is affected by learning and attention.
Perceptual Considerations in Icon Design for Instructional Communication.
ERIC Educational Resources Information Center
Lee, Shih-Chung
1996-01-01
Discusses the use of icons in computer interface design. Highlights include picture processing time, complexity, recognition memory, differences between picture icons and picture/text icons, the use of color, size, placement, and touch design. (LRW)
Computer Icons and the Art of Memory.
ERIC Educational Resources Information Center
McNair, John R.
1996-01-01
States that key aspects of "memoria," the ancient Art of Memory, especially its focus on vivid representational images set against distinct backgrounds, can be helpful in creating memorable, universal, and easily retrievable computer icons. (PA)
Optical Associative Processors For Visual Perception"
NASA Astrophysics Data System (ADS)
Casasent, David; Telfer, Brian
1988-05-01
We consider various associative processor modifications required to allow these systems to be used for visual perception, scene analysis, and object recognition. For these applications, decisions on the class of the objects present in the input image are required and thus heteroassociative memories are necessary (rather than the autoassociative memories that have been given most attention). We analyze the performance of both associative processors and note that there is considerable difference between heteroassociative and autoassociative memories. We describe associative processors suitable for realizing functions such as: distortion invariance (using linear discriminant function memory synthesis techniques), noise and image processing performance (using autoassociative memories in cascade with with a heteroassociative processor and with a finite number of autoassociative memory iterations employed), shift invariance (achieved through the use of associative processors operating on feature space data), and the analysis of multiple objects in high noise (which is achieved using associative processing of the output from symbolic correlators). We detail and provide initial demonstrations of the use of associative processors operating on iconic, feature space and symbolic data, as well as adaptive associative processors.
Differential effects of ADORA2A gene variations in pre-attentive visual sensory memory subprocesses.
Beste, Christian; Stock, Ann-Kathrin; Ness, Vanessa; Epplen, Jörg T; Arning, Larissa
2012-08-01
The ADORA2A gene encodes the adenosine A(2A) receptor that is highly expressed in the striatum where it plays a role in modulating glutamatergic and dopaminergic transmission. Glutamatergic signaling has been suggested to play a pivotal role in cognitive functions related to the pre-attentive processing of external stimuli. Yet, the precise molecular mechanism of these processes is poorly understood. Therefore, we aimed to investigate whether ADORA2A gene variation has modulating effects on visual pre-attentive sensory memory processing. Studying two polymorphisms, rs5751876 and rs2298383, in 199 healthy control subjects who performed a partial-report paradigm, we find that ADORA2A variation is associated with differences in the efficiency of pre-attentive sensory memory sub-processes. We show that especially the initial visual availability of stimulus information is rendered more efficiently in the homozygous rare genotype groups. Processes related to the transfer of information into working memory and the duration of visual sensory (iconic) memory are compromised in the homozygous rare genotype groups. Our results show a differential genotype-dependent modulation of pre-attentive sensory memory sub-processes. Hence, we assume that this modulation may be due to differential effects of increased adenosine A(2A) receptor signaling on glutamatergic transmission and striatal medium spiny neuron (MSN) interaction. Copyright © 2011 Elsevier B.V. and ECNP. All rights reserved.
Huang, Kuo-Chen; Chiu, Tsai-Lan
2007-04-01
This study investigated the effects of color combinations for the figure/icon background, icon shape, and line width of the icon border on visual search performance on a liquid crystal display screen. In a circular stimulus array, subjects had to search for a target item which had a diameter of 20 cm and included one target and 19 distractors. Analysis showed that the icon shape significantly affected search performance. The correct response time was significantly shorter for circular icons than for triangular icons, for icon borders with a line width of 3 pixels than for 1 or 2 pixels, and for 2 pixels than for 1 pixel. The color combination also significantly affected the visual search performance: white/yellow, white/blue, black-red, and black/ yellow color combinations for the figure/icon background had shorter correct response times compared to yellow/blue, red/green, yellow/green, and blue/red. However, no effects were found for the line width of the icon border or the icon shape on the error rate. Results have implications for graphics-based design of interfaces, such as for mobile phones, Web sites, and PDAs, as well as complex industrial processes.
Short-term visual memory for location in depth: A U-shaped function of time.
Reeves, Adam; Lei, Quan
2017-10-01
Short-term visual memory was studied by displaying arrays of four or five numerals, each numeral in its own depth plane, followed after various delays by an arrow cue shown in one of the depth planes. Subjects reported the numeral at the depth cued by the arrow. Accuracy fell with increasing cue delay for the first 500 ms or so, and then recovered almost fully. This dipping pattern contrasts with the usual iconic decay observed for memory traces. The dip occurred with or without a verbal or color-shape retention load on working memory. In contrast, accuracy did not change with delay when a tonal cue replaced the arrow cue. We hypothesized that information concerning the depths of the numerals decays over time in sensory memory, but that cued recall is aided later on by transfer to a visual memory specialized for depth. This transfer is sufficiently rapid with a tonal cue to compensate for the sensory decay, but it is slowed by the need to tag the arrow cue's depth relative to the depths of the numerals, exposing a dip when sensation has decayed and transfer is not yet complete. A model with a fixed rate of sensory decay and varied transfer rates across individuals captures the dip as well as the cue modality effect.
Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk
2015-01-01
Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.
Orthographic Structure and Reading Experience Affect the Transfer from Iconic to Short Term Memory
ERIC Educational Resources Information Center
Lefton, Lester A.; Spragins, Anne B.
1974-01-01
The basic hypothesis of these experiments was that the processing strategy for the transfer of alphabetic material from iconic storage to short-term memory involves a sequential left-to-right factor that develops with increases in experience with reading. (Author)
Vandenbroucke, Annelinde R E; Sligte, Ilja G; de Vries, Jade G; Cohen, Michael X; Lamme, Victor A F
2015-12-01
Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F. Manipulations of attention dissociate fragile visual STM from visual working memory. Neuropsychologia, 49, 1559-1568, 2011; Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. Are there multiple visual STM stores? PLoS One, 3, e1699, 2008]. Although FM can be distinguished from IM using behavioral and fMRI methods, the question remains whether FM is a weak expression of WM or a separate form of memory with its own neural signature. Here, we tested whether FM and WM in humans are supported by dissociable time-frequency features of EEG recordings. Participants performed a partial-report change detection task, from which individual differences in FM and WM capacity were estimated. These individual FM and WM capacities were correlated with time-frequency characteristics of the EEG signal before and during encoding and maintenance of the memory display. FM capacity showed negative alpha correlations over peri-occipital electrodes, whereas WM capacity was positively related, suggesting increased visual processing (lower alpha) to be related to FM capacity. Furthermore, FM capacity correlated with an increase in theta power over central electrodes during preparation and processing of the memory display, whereas WM did not. In addition to a difference in visual processing characteristics, a positive relation between gamma power and FM capacity was observed during both preparation and maintenance periods of the task. On the other hand, we observed that theta-gamma coupling was negatively correlated with FM capacity, whereas it was slightly positively correlated with WM. These data show clear differences in the neural substrates of FM versus WM and suggest that FM depends more on visual processing mechanisms compared with WM. This study thus provides novel evidence for a dissociation between different stages in VSTM.
Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.
Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni
2006-01-01
Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.
Orienting attention to locations in mental representations
Astle, Duncan Edward; Summerfield, Jennifer; Griffin, Ivan; Nobre, Anna Christina
2014-01-01
Many cognitive processes depend on our ability to hold information in mind, often well beyond the offset of the original sensory input. The capacity of this ‘visual short-term memory’ (VSTM) is limited to around three to four items. Recent research has demonstrated that the content of VSTM can be modulated by top-down attentional biases. This has been demonstrated using retrodictive spatial cues, termed ‘retro-cues’, which orient participants’ attention to spatial locations within VSTM. In the current paper, we tested whether the use of these cues is modulated by memory load and cue delay. There are a number of important conclusions: i) top-down biases can operate upon very brief iconic traces as well as older VSTM representations (Experiment 1); ii) when operating within capacity, subjects use the cue to prioritize where they initiate their memory search, rather than to discard un-cued items (Experiments 2 and 3); iii) when capacity is exceeded there is little benefit to top-down biasing relative to a neutral condition, however, unattended items are lost, with there being a substantial cost of invalid spatial cueing (Experiment 3); iv) these costs and benefits of orienting spatial attention differ across iconic memory and VSTM representations when VSTM capacity is exceeded (Experiment 4). PMID:21972046
Expertise Reversal for Iconic Representations in Science Visualizations
ERIC Educational Resources Information Center
Homer, Bruce D.; Plass, Jan L.
2010-01-01
The influence of prior knowledge and cognitive development on the effectiveness of iconic representations in science visualizations was examined. Middle and high school students (N = 186) were given narrated visualizations of two chemistry topics: Kinetic Molecular Theory (Day 1) and Ideal Gas Laws (Day 2). For half of the visualizations, iconic…
Bottlenecks of Motion Processing during a Visual Glance: The Leaky Flask Model
Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E.; Tripathy, Srimant P.
2013-01-01
Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing. PMID:24391806
Bottlenecks of motion processing during a visual glance: the leaky flask model.
Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E; Tripathy, Srimant P
2013-01-01
Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.
Huang, Kuo-Chen; Chiang, Shu-Ying; Chen, Chen-Fu
2008-02-01
The effects of color combinations of an icon's symbol/background and components of flicker and flicker rate on visual search performance on a liquid crystal display screen were investigated with 39 subjects who searched for a target icon in a circular stimulus array (diameter = 20 cm) including one target and 19 distractors. Analysis showed that the icon's symbol/background color significantly affected search time. The search times for icons with black/red and white/blue were significantly shorter than for white/yellow, black/yellow, and black/blue. Flickering of different components of the icon significantly affected the search time. Search time for an icon's border flickering was shorter than for an icon symbol flickering; search for flicker rates of 3 and 5 Hz was shorter than that for 1 Hz. For icon's symbol/background color combinations, search error rate for black/blue was greater than for black/red and white/blue combinations, and the error rate for an icon's border flickering was lower than for an icon's symbol flickering. Interactions affected search time and error rate. Results are applicable to design of graphic user interfaces.
Searching for Signs, Symbols, and Icons: Effects of Time of Day, Visual Complexity, and Grouping
ERIC Educational Resources Information Center
McDougall, Sine; Tyrer, Victoria; Folkard, Simon
2006-01-01
Searching for icons, symbols, or signs is an integral part of tasks involving computer or radar displays, head-up displays in aircraft, or attending to road traffic signs. Icons therefore need to be designed to optimize search times, taking into account the factors likely to slow down visual search. Three factors likely to adversely affect visual…
ERIC Educational Resources Information Center
Sakitt, Barbara
1976-01-01
Describes a series of experiments showing that in normal subjects (a) iconic storage occurs primarily in the retina in the photoreceptors and (b) under conditions of dark pre- and postexposure fields, the icon is mainly a rod phenomenon. Draws conclusions based on these experiments, discusses previous work done by others, and attempts to reconcile…
Miller, Robert; Weckesser, Lisa J; Smolka, Michael N; Kirschbaum, Clemens; Plessow, Franziska
2015-03-01
A substantial amount of research documents the impact of glucocorticoids on higher-order cognitive functioning. By contrast, surprisingly little is known about the susceptibility of basic sensory processes to glucocorticoid exposure given that the glucocorticoid receptor density in the human visual cortex exceeds those observed in prefrontal and most hippocampal brain regions. As executive tasks also rely on these sensory processes, the present study investigates the impact of glucocorticoid exposure on different performance parameters characterizing the maintenance and transfer of sensory information from iconic memory (IM; the sensory buffer of the visual system) to working memory (WM). Using a crossover factorial design, we administered one out of three doses of hydrocortisone (0.06, 0.12, or 0.24mg/kg bodyweight) and a placebo to 18 healthy young men. Thereafter participants performed a partial report task, which was used to assess their individual ability to process sensory information. Blood samples were concurrently drawn to determine free and total cortisol concentrations. The compiled pharmacokinetic and psychophysical data demonstrates that free cortisol specifically accelerated the decay of sensory information (r=0.46) without significantly affecting the selective information transfer from IM to WM or the capacity limit of WM. Specifically, nonparametric regression revealed a sigmoid dose-response relationship between free cortisol levels during the testing period and the IM decay rates. Our findings highlight that glucocorticoid exposure may not only impact on the recruitment of top-down control for an active maintenance of sensory information, but alter their passive (stimulus-driven) maintenance thereby changing the availability of information prior to subsequent executive processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Visualization of the NASA ICON mission in 3d
NASA Astrophysics Data System (ADS)
Mendez, R. A., Jr.; Immel, T. J.; Miller, N.
2016-12-01
The ICON Explorer mission (http://icon.ssl.berkeley.edu) will provide several data products for the atmosphere and ionosphere after its launch in 2017. This project will support the mission by investigating the capability of these tools for visualization of current and predicted observatory characteristics and data acquisition. Visualization of this mission can be accomplished using tools like Google Earth or CesiumJS, as well assistance from Java or Python. Ideally we will bring this visualization into the homes of people without the need of additional software. The path of launching a standalone website, building this environment, and a full toolkit will be discussed. Eventually, the initial work could lead to the addition of a downloadable visualization packages for mission demonstration or science visualization.
Schubert, Torsten; Finke, Kathrin; Redel, Petra; Kluckow, Steffen; Müller, Hermann; Strobach, Tilo
2015-05-01
Experts with video game experience, in contrast to non-experienced persons, are superior in multiple domains of visual attention. However, it is an open question which basic aspects of attention underlie this superiority. We approached this question using the framework of Theory of Visual Attention (TVA) with tools that allowed us to assess various parameters that are related to different visual attention aspects (e.g., perception threshold, processing speed, visual short-term memory storage capacity, top-down control, spatial distribution of attention) and that are measurable on the same experimental basis. In Experiment 1, we found advantages of video game experts in perception threshold and visual processing speed; the latter being restricted to the lower positions of the used computer display. The observed advantages were not significantly moderated by general person-related characteristics such as personality traits, sensation seeking, intelligence, social anxiety, or health status. Experiment 2 tested a potential causal link between the expert advantages and video game practice with an intervention protocol. It found no effects of action video gaming on perception threshold, visual short-term memory storage capacity, iconic memory storage, top-down control, and spatial distribution of attention after 15 days of training. However, observations of a selected improvement of processing speed at the lower positions of the computer screen after video game training and of retest effects are suggestive for limited possibilities to improve basic aspects of visual attention (TVA) with practice. Copyright © 2015 Elsevier B.V. All rights reserved.
The effect of visual and verbal modes of presentation on children's retention of images and words
NASA Astrophysics Data System (ADS)
Vasu, Ellen Storey; Howe, Ann C.
This study tested the hypothesis that the use of two modes of presenting information to children has an additive memory effect for the retention of both images and words. Subjects were 22 first-grade and 22 fourth-grade children randomly assigned to visual and visual-verbal treatment groups. The visual-verbal group heard a description while observing an object; the visual group observed the same object but did not hear a description. Children were tested individually immediately after presentation of stimuli and two weeks later. They were asked to represent the information recalled through a drawing and an oral verbal description. In general, results supported the hypothesis and indicated, in addition, that children represent more information in iconic (pictorial) form than in symbolic (verbal) form. Strategies for using these results to enhance science learning at the elementary school level are discussed.
An Iconic Comparison of Photographs and the Live Television Screen in Visual Diagnostic Ability.
ERIC Educational Resources Information Center
Hofer, Jarrel
This study focused on five major activities: (1) developing an achievement test to measure visual diagnostic ability of television service technicians, (2) assessing the independence of the dimension of visual diagnostic ability, (3) comparing the iconic equivalence of photographs with motion cues and live screen presentations of defective…
Tse, Chi-Shing; Kurby, Christopher A.; Du, Feng
2010-01-01
We examined the effect of spatial iconicity (a perceptual simulation of canonical locations of objects) and word-order frequency on language processing and episodic memory of orientation. Participants made speeded relatedness judgments to pairs of words presented in locations typical to their real world arrangements (e.g., ceiling on top and floor on bottom). They then engaged in a surprise orientation recognition task for the word pairs. We replicated Louwerse’s finding (2008) that word-order frequency has a stronger effect on semantic relatedness judgments than spatial iconicity. This is consistent with recent suggestions that linguistic representations have a stronger impact on immediate decisions about verbal materials than perceptual simulations. In contrast, spatial iconicity enhanced episodic memory of orientation to a greater extent than word-order frequency did. This new finding indicates that perceptual simulations have an important role in episodic memory. Results are discussed with respect to theories of perceptual representation and linguistic processing. PMID:19742388
Combining Semantic and Lexical Methods for Mapping MedDRA to VCM Icons.
Lamy, Jean-Baptiste; Tsopra, Rosy
2018-01-01
VCM (Visualization of Concept in Medicine) is an iconic language that represents medical concepts, such as disorders, by icons. VCM has a formal semantics described by an ontology. The icons can be used in medical software for providing a visual summary or enriching texts. However, the use of VCM icons in user interfaces requires to map standard medical terminologies to VCM. Here, we present a method combining semantic and lexical approaches for mapping MedDRA to VCM. The method takes advantage of the hierarchical relations in MedDRA. It also analyzes the groups of lemmas in the term's labels, and relies on a manual mapping of these groups to the concepts in the VCM ontology. We evaluate the method on 50 terms. Finally, we discuss the method and suggest perspectives.
NPY2-receptor variation modulates iconic memory processes.
Arning, Larissa; Stock, Ann-Kathrin; Kloster, Eugen; Epplen, Jörg T; Beste, Christian
2014-08-01
Sensory memory systems are modality-specific buffers that comprise information about external stimuli, which represent the earliest stage of information processing. While these systems have been the subject of cognitive neuroscience research for decades, little is known about the neurobiological basis of sensory memory. However, accumulating evidence suggests that the glutamatergic system and systems influencing glutamatergic neural transmission are important. In the current study we examine if functional promoter variations in neuropeptide Y (NPY) and its receptor gene NPY2R affect iconic memory processes using a partial report paradigm. We found that iconic memory decayed much faster in individuals carrying the rare promoter NPY2R G allele which is associated with increased expression of the Y2 receptor. Possibly this effect is due to altered presynaptic inhibition of glutamate release, known to be modulated by Y2 receptors. Altogether, our results provide evidence that the functionally relevant single nucleotide polymorphism (SNP) in the NPY2R promoter gene affect circumscribed processes of early sensory processing, i.e. only the stability of information in sensory memory buffers. This leads us to suggest that especially the stability of information in sensory memory buffers depends on glutamatergic neural transmission and factors modulating glutamatergic turnover. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
No iconic memory without attention.
Mack, Arien; Erol, Muge; Clarke, Jason; Bert, John
2016-02-01
The experiments reported extend the findings of our earlier paper, (Mack, Erol, & Clarke, 2015) and allow us to reject Bachmann and Aru's critique of our conclusion (2015) that IM requires attention. They suggested our manipulations, which diverted attention from a letter reporting task in a dual task procedure where the task-cue occurred after the array disappeared, might only have affected access to IM and not the "existence of the phenomenal experience". By further decreasing the probability of reporting letters to only 10% and adding a final trial in which the letter matrix was either completely absent or distorted, we found more than half our subjects were unaware of its absence, or distortion i.e., were inattentionally blind. We take this as powerful evidence against the existence of any phenomenal experience component of iconic memory and consistent with the view that iconic memory demands attention and that conscious perception does as well. Copyright © 2015 Elsevier Inc. All rights reserved.
The impact of iconic gestures on foreign language word learning and its neural substrate.
Macedonia, Manuela; Müller, Karsten; Friederici, Angela D
2011-06-01
Vocabulary acquisition represents a major challenge in foreign language learning. Research has demonstrated that gestures accompanying speech have an impact on memory for verbal information in the speakers' mother tongue and, as recently shown, also in foreign language learning. However, the neural basis of this effect remains unclear. In a within-subjects design, we compared learning of novel words coupled with iconic and meaningless gestures. Iconic gestures helped learners to significantly better retain the verbal material over time. After the training, participants' brain activity was registered by means of fMRI while performing a word recognition task. Brain activations to words learned with iconic and with meaningless gestures were contrasted. We found activity in the premotor cortices for words encoded with iconic gestures. In contrast, words encoded with meaningless gestures elicited a network associated with cognitive control. These findings suggest that memory performance for newly learned words is not driven by the motor component as such, but by the motor image that matches an underlying representation of the word's semantics. Copyright © 2010 Wiley-Liss, Inc.
Ward, Emily J; Bear, Adam; Scholl, Brian J
2016-07-01
Do we see more than we can report? Psychologists and philosophers have been hotly debating this question, in part because both possibilities are supported by suggestive evidence. On one hand, phenomena such as inattentional blindness and change blindness suggest that visual awareness is especially sparse. On the other hand, experiments relating to iconic memory suggest that our in-the-moment awareness of the world is much richer than can be reported. Recent research has attempted to resolve this debate by showing that observers can accurately report the color diversity of a quickly flashed group of letters, even for letters that are unattended. If this ability requires awareness of the individual letters' colors, then this may count as a clear case of conscious awareness overflowing cognitive access. Here we explored this requirement directly: can we perceive ensemble properties of scenes even without being aware of the relevant individual features? Across several experiments that combined aspects of iconic memory with measures of change blindness, we show that observers can accurately report the color diversity of unattended stimuli, even while their self-reported awareness of the individual elements is coarse or nonexistent-and even while they are completely blind to situations in which each individual element changes color mid-trial throughout the entire experiment. We conclude that awareness of statistical properties may occur in the absence of awareness of individual features, and that such results are fully consistent with sparse visual awareness. Copyright © 2016 Elsevier B.V. All rights reserved.
Iconic hyperlinks on e-commerce websites.
Cheng, Hong-In; Patterson, Patrick E
2007-01-01
The proper use of iconic interfaces reduces system complexity and helps users interact with systems more easily. However, due to carelessness, inadequate research, and the web's relatively short history, the icons used on web sites often are ambiguous. Because non-identifiable icons may convey meanings other than those intended, designers must consider whether icons are easily identifiable when creating web sites. In this study, visual icons used on e-business web sites were examined by population stereotypy and categorized into three groups: identifiable, medium, and vague. Representative icons from each group were tested by comparing selection performance in groups of student volunteers, with identifiable and medium icons improving performance. We found that only easily identifiable icons can reduce complexity and increase system usability.
Östling, Robert; Börstell, Carl; Courtaux, Servane
2018-01-01
We use automatic processing of 120,000 sign videos in 31 different sign languages to show a cross-linguistic pattern for two types of iconic form–meaning relationships in the visual modality. First, we demonstrate that the degree of inherent plurality of concepts, based on individual ratings by non-signers, strongly correlates with the number of hands used in the sign forms encoding the same concepts across sign languages. Second, we show that certain concepts are iconically articulated around specific parts of the body, as predicted by the associational intuitions by non-signers. The implications of our results are both theoretical and methodological. With regard to theoretical implications, we corroborate previous research by demonstrating and quantifying, using a much larger material than previously available, the iconic nature of languages in the visual modality. As for the methodological implications, we show how automatic methods are, in fact, useful for performing large-scale analysis of sign language data, to a high level of accuracy, as indicated by our manual error analysis. PMID:29867684
The Iconography of Universities as Institutional Narratives
ERIC Educational Resources Information Center
Drori, Gili S.; Delmestri, Giuseppe; Oberg, Achim
2016-01-01
The coming of "brand society" and the onset of mediatization spur universities to strategize their visual identity and pay particular attention to their icon. Resulting from branding initiatives, university icons are visual self-representations and material-cum-symbolic forms of organizational identity. In this work we ask: What identity…
Stutz, Aaron J.
2014-01-01
Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment. PMID:25136323
Stutz, Aaron J
2014-01-01
Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.
Drijvers, Linda; Özyürek, Asli
2017-01-01
This study investigated whether and to what extent iconic co-speech gestures contribute to information from visible speech to enhance degraded speech comprehension at different levels of noise-vocoding. Previous studies of the contributions of these 2 visual articulators to speech comprehension have only been performed separately. Twenty participants watched videos of an actress uttering an action verb and completed a free-recall task. The videos were presented in 3 speech conditions (2-band noise-vocoding, 6-band noise-vocoding, clear), 3 multimodal conditions (speech + lips blurred, speech + visible speech, speech + visible speech + gesture), and 2 visual-only conditions (visible speech, visible speech + gesture). Accuracy levels were higher when both visual articulators were present compared with 1 or none. The enhancement effects of (a) visible speech, (b) gestural information on top of visible speech, and (c) both visible speech and iconic gestures were larger in 6-band than 2-band noise-vocoding or visual-only conditions. Gestural enhancement in 2-band noise-vocoding did not differ from gestural enhancement in visual-only conditions. When perceiving degraded speech in a visual context, listeners benefit more from having both visual articulators present compared with 1. This benefit was larger at 6-band than 2-band noise-vocoding, where listeners can benefit from both phonological cues from visible speech and semantic cues from iconic gestures to disambiguate speech.
Icon Duration and Development.
ERIC Educational Resources Information Center
Gummerman, Kent; And Others
In this study, developmental changes in duration of the icon (visual sensory store) were investigated with three converging tachistoscopic tasks. (1) Stimulus interuption detection (SID), a variation of the two-flash threshold method, was performed by 29 first- and 32 fifth-graders, and 32 undergraduates. Icon duration was estimated by stimulus…
A working memory bias for alcohol-related stimuli depends on drinking score.
Kessler, Klaus; Pajak, Katarzyna Malgorzata; Harkin, Ben; Jones, Barry
2013-03-01
We tested 44 participants with respect to their working memory (WM) performance on alcohol-related versus neutral visual stimuli. Previously an alcohol attentional bias (AAB) had been reported using these stimuli, where the attention of frequent drinkers was automatically drawn toward alcohol-related items (e.g., beer bottle). The present study set out to provide evidence for an alcohol memory bias (AMB) that would persist over longer time-scales than the AAB. The WM task we used required memorizing 4 stimuli in their correct locations and a visual interference task was administered during a 4-sec delay interval. A subsequent probe required participants to indicate whether a stimulus was shown in the correct or incorrect location. For each participant we calculated a drinking score based on 3 items derived from the Alcohol Use Questionnaire, and we observed that higher scorers better remembered alcohol-related images compared with lower scorers, particularly when these were presented in their correct locations upon recall. This provides first evidence for an AMB. It is important to highlight that this effect persisted over a 4-sec delay period including a visual interference task that erased iconic memories and diverted attention away from the encoded items, thus the AMB cannot be reduced to the previously reported AAB. Our finding calls for further investigation of alcohol-related cognitive biases in WM, and we propose a preliminary model that may guide future research. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Visual representation of spatiotemporal structure
NASA Astrophysics Data System (ADS)
Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.
1998-07-01
The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.
3D visualization of ultra-fine ICON climate simulation data
NASA Astrophysics Data System (ADS)
Röber, Niklas; Spickermann, Dela; Böttinger, Michael
2016-04-01
Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (<10km) ocean simulations, as well as for ultra-fine cloud resolving (120m) atmospheric simulations. This results in very large 3D time dependent multi-variate data that need to be displayed and analyzed. We have developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.
Icons as Visual Forum of Knowledge Representation on the World Wide Web: A Semiotic Analysis.
ERIC Educational Resources Information Center
Ma, Yan; Diodato, Virgil
1999-01-01
Compares the indexing structure of icons with principles used for traditional indexing. A sample of 15 library homepages was drawn from the total population of the United States library homepages. Semiotics theory was used to study the icons. Analysis and results are outlined. (AEF)
Aussems, Suzanne; Kwok, Natasha; Kita, Sotaro
2018-06-01
Human locomotion is a fundamental class of events, and manners of locomotion (e.g., how the limbs are used to achieve a change of location) are commonly encoded in language and gesture. To our knowledge, there is no openly accessible database containing normed human locomotion stimuli. Therefore, we introduce the GestuRe and ACtion Exemplar (GRACE) video database, which contains 676 videos of actors performing novel manners of human locomotion (i.e., moving from one location to another in an unusual manner) and videos of a female actor producing iconic gestures that represent these actions. The usefulness of the database was demonstrated across four norming experiments. First, our database contains clear matches and mismatches between iconic gesture videos and action videos. Second, the male actors and female actors whose action videos matched the gestures in the best possible way, perform the same actions in very similar manners and different actions in highly distinct manners. Third, all the actions in the database are distinct from each other. Fourth, adult native English speakers were unable to describe the 26 different actions concisely, indicating that the actions are unusual. This normed stimuli set is useful for experimental psychologists working in the language, gesture, visual perception, categorization, memory, and other related domains.
ERIC Educational Resources Information Center
Drijvers, Linda; Ozyurek, Asli
2017-01-01
Purpose: This study investigated whether and to what extent iconic co-speech gestures contribute to information from visible speech to enhance degraded speech comprehension at different levels of noise-vocoding. Previous studies of the contributions of these 2 visual articulators to speech comprehension have only been performed separately. Method:…
A novel visual hardware behavioral language
NASA Technical Reports Server (NTRS)
Li, Xueqin; Cheng, H. D.
1992-01-01
Most hardware behavioral languages just use texts to describe the behavior of the desired hardware design. This is inconvenient for VLSI designers who enjoy using the schematic approach. The proposed visual hardware behavioral language has the ability to graphically express design information using visual parallel models (blocks), visual sequential models (processes) and visual data flow graphs (which consist of primitive operational icons, control icons, and Data and Synchro links). Thus, the proposed visual hardware behavioral language can not only specify hardware concurrent and sequential functionality, but can also visually expose parallelism, sequentiality, and disjointness (mutually exclusive operations) for the hardware designers. That would make the hardware designers capture the design ideas easily and explicitly using this visual hardware behavioral language.
An insect-like mushroom body in a crustacean brain
Wolff, Gabriella Hannah; Thoen, Hanne Halkinrud; Marshall, Justin; Sayre, Marcel E
2017-01-01
Mushroom bodies are the iconic learning and memory centers of insects. No previously described crustacean possesses a mushroom body as defined by strict morphological criteria although crustacean centers called hemiellipsoid bodies, which serve functions in sensory integration, have been viewed as evolutionarily convergent with mushroom bodies. Here, using key identifiers to characterize neural arrangements, we demonstrate insect-like mushroom bodies in stomatopod crustaceans (mantis shrimps). More than any other crustacean taxon, mantis shrimps display sophisticated behaviors relating to predation, spatial memory, and visual recognition comparable to those of insects. However, neuroanatomy-based cladistics suggesting close phylogenetic proximity of insects and stomatopod crustaceans conflicts with genomic evidence showing hexapods closely related to simple crustaceans called remipedes. We discuss whether corresponding anatomical phenotypes described here reflect the cerebral morphology of a common ancestor of Pancrustacea or an extraordinary example of convergent evolution. PMID:28949916
Cultural Interpretations of the Visual Meaning of Icons and Images Used in North American Web Design
ERIC Educational Resources Information Center
Knight, Eliot; Gunawardena, Charlotte N.; Aydin, Cengiz Hakan
2009-01-01
This study examines cross-cultural interpretations of icons and images drawn from US academic websites. Participants from Morocco, Sri Lanka, Turkey, and the USA responded to an online questionnaire containing 18 icons and images representing online functions and information types common on US academic websites. Participants supplied meanings for…
Soldier-worn augmented reality system for tactical icon visualization
NASA Astrophysics Data System (ADS)
Roberts, David; Menozzi, Alberico; Clipp, Brian; Russler, Patrick; Cook, James; Karl, Robert; Wenger, Eric; Church, William; Mauger, Jennifer; Volpe, Chris; Argenta, Chris; Wille, Mark; Snarski, Stephen; Sherrill, Todd; Lupo, Jasper; Hobson, Ross; Frahm, Jan-Michael; Heinly, Jared
2012-06-01
This paper describes the development and demonstration of a soldier-worn augmented reality system testbed that provides intuitive 'heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a robust soldier pose estimation capability with a helmet mounted see-through display to accurately overlay geo-registered iconography (i.e., navigation waypoints, blue forces, aircraft) on the soldier's view of reality. Applied Research Associates (ARA), in partnership with BAE Systems and the University of North Carolina - Chapel Hill (UNC-CH), has developed this testbed system in Phase 2 of the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program. The ULTRA-Vis testbed system functions in unprepared outdoor environments and is robust to numerous magnetic disturbances. We achieve accurate and robust pose estimation through fusion of inertial, magnetic, GPS, and computer vision data acquired from helmet kit sensors. Icons are rendered on a high-brightness, 40°×30° field of view see-through display. The system incorporates an information management engine to convert CoT (Cursor-on-Target) external data feeds into mil-standard icons for visualization. The user interface provides intuitive information display to support soldier navigation and situational awareness of mission-critical tactical information.
Icons improve older and younger adults' comprehension of medication information.
Morrow, D G; Hier, C M; Menard, W E; Leirer, V O
1998-07-01
We examined whether timeline icons improved older and younger adults' comprehension of medication information. In Experiment 1, comprehension of instructions with the icon (icon/text format) and without the icon (text-only format) was assessed by questions about information that was (a) implicit in the text but depicted explicitly by the icon (total dose in a 24 hour period), (b) stated and depicted in the icon/text condition (medication dose and times), and (c) stated but not depicted by the icon (e.g., side effects). In a separate task, participants also recalled medication instructions (with or without the icon) after a study period. We found that questions about dose and time information were answered more quickly and accurately when the icon was present in the instructions. Notably, icon benefits were greater for information that was implicit rather than stated in the text. This finding suggests that icons can improve older and younger adults' comprehension by reducing the need to draw some inferences. The icon also reduced effective study time (study time per item recalled). In Experiment 2, icon benefits did not occur for a less integrated version of the timeline icon that, like the text, required participants to integrate dose and time information in order to identify the total daily dose. The integrated version of the icon again improved comprehension, as in Experiment 1, as well as drawing inferences from memory. These findings show that integrated timeline icons improved comprehension primarily by aiding the integration of dose and time information. These findings are discussed in terms of a situation model approach to comprehension.
Pereira, Marta LG Freitas; Camargo, Marina von Zuben A; Aprahamian, Ivan; Forlenza, Orestes V
2014-01-01
A great amount of research has been developed around the early cognitive impairments that best predict the onset of Alzheimer’s disease (AD). Given that mild cognitive impairment (MCI) is no longer considered to be an intermediate state between normal aging and AD, new paths have been traced to acquire further knowledge about this condition and its subtypes, and to determine which of them have a higher risk of conversion to AD. It is now known that other deficits besides episodic and semantic memory impairments may be present in the early stages of AD, such as visuospatial and executive function deficits. Furthermore, recent investigations have proven that the hippocampus and the medial temporal lobe structures are not only involved in memory functioning, but also in visual processes. These early changes in memory, visual, and executive processes may also be detected with the study of eye movement patterns in pathological conditions like MCI and AD. In the present review, we attempt to explore the existing literature concerning these patterns of oculomotor changes and how these changes are related to the early signs of AD. In particular, we argue that deficits in visual short-term memory, specifically in iconic memory, attention processes, and inhibitory control, may be found through the analysis of eye movement patterns, and we discuss how they might help to predict the progression from MCI to AD. We add that the study of eye movement patterns in these conditions, in combination with neuroimaging techniques and appropriate neuropsychological tasks based on rigorous concepts derived from cognitive psychology, may highlight the early presence of cognitive impairments in the course of the disease. PMID:25031536
ERIC Educational Resources Information Center
Thompson, Robin L.; Vinson, David P.; Vigliocco, Gabriella
2010-01-01
Signed languages exploit the visual/gestural modality to create iconic expression across a wide range of basic conceptual structures in which the phonetic resources of the language are built up into an analogue of a mental image (Taub, 2001). Previously, we demonstrated a processing advantage when iconic properties of signs were made salient in a…
ERIC Educational Resources Information Center
Angermeier, Katie; Schlosser, Ralf W.; Luiselli, James K.; Harrington, Caroline; Carter, Beth
2008-01-01
Research on graphic symbol learning suggests that symbols with a greater visual resemblance to their referents (greater iconicity) are more easily learned. The iconicity hypothesis has not yet been explored within the intervention protocol of the Picture Exchange Communication System (PECS). Within the PECS protocol, participants do not point to a…
ERIC Educational Resources Information Center
Tung, Ting-Chun; Chen, Hung-Yuan
2017-01-01
With the advance of mobile computing and wireless technology, a user's intent to interact with the interface of a mobile device is motivated not only by its intuitional operation, but also by the emotional perception induced by its aesthetic appeal. A graphical interface employing icons with suitable visual effect based on the users' emotional…
Nyamsuren, Enkhbold; Taatgen, Niels A
2013-01-01
Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving.
The Effect of Visual Representation Style in Problem-Solving: A Perspective from Cognitive Processes
Nyamsuren, Enkhbold; Taatgen, Niels A.
2013-01-01
Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving. PMID:24260415
Semantic distance as a critical factor in icon design for in-car infotainment systems.
Silvennoinen, Johanna M; Kujala, Tuomo; Jokinen, Jussi P P
2017-11-01
In-car infotainment systems require icons that enable fluent cognitive information processing and safe interaction while driving. An important issue is how to find an optimised set of icons for different functions in terms of semantic distance. In an optimised icon set, every icon needs to be semantically as close as possible to the function it visually represents and semantically as far as possible from the other functions represented concurrently. In three experiments (N = 21 each), semantic distances of 19 icons to four menu functions were studied with preference rankings, verbal protocols, and the primed product comparisons method. The results show that the primed product comparisons method can be efficiently utilised for finding an optimised set of icons for time-critical applications out of a larger set of icons. The findings indicate the benefits of the novel methodological perspective into the icon design for safety-critical contexts in general. Copyright © 2017 Elsevier Ltd. All rights reserved.
Learning a New Selection Rule in Visual and Frontal Cortex.
van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R
2016-08-01
How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.
Visual Semiotics & Uncertainty Visualization: An Empirical Study.
MacEachren, A M; Roth, R E; O'Brien, J; Li, B; Swingley, D; Gahegan, M
2012-12-01
This paper presents two linked empirical studies focused on uncertainty visualization. The experiments are framed from two conceptual perspectives. First, a typology of uncertainty is used to delineate kinds of uncertainty matched with space, time, and attribute components of data. Second, concepts from visual semiotics are applied to characterize the kind of visual signification that is appropriate for representing those different categories of uncertainty. This framework guided the two experiments reported here. The first addresses representation intuitiveness, considering both visual variables and iconicity of representation. The second addresses relative performance of the most intuitive abstract and iconic representations of uncertainty on a map reading task. Combined results suggest initial guidelines for representing uncertainty and discussion focuses on practical applicability of results.
When semantics aids phonology: A processing advantage for iconic word forms in aphasia.
Meteyard, Lotte; Stoppard, Emily; Snudden, Dee; Cappa, Stefano F; Vigliocco, Gabriella
2015-09-01
Iconicity is the non-arbitrary relation between properties of a phonological form and semantic content (e.g. "moo", "splash"). It is a common feature of both spoken and signed languages, and recent evidence shows that iconic forms confer an advantage during word learning. We explored whether iconic forms conferred a processing advantage for 13 individuals with aphasia following left-hemisphere stroke. Iconic and control words were compared in four different tasks: repetition, reading aloud, auditory lexical decision and visual lexical decision. An advantage for iconic words was seen for some individuals in all tasks, with consistent group effects emerging in reading aloud and auditory lexical decision. Both these tasks rely on mapping between semantics and phonology. We conclude that iconicity aids spoken word processing for individuals with aphasia. This advantage is due to a stronger connection between semantic information and phonological forms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microcomputers in the Introductory Laboratory.
ERIC Educational Resources Information Center
Bare, John K.
1982-01-01
A microcomputer was used successfully to replicate Sternberg's 1966 study of retrieval from short-term memory and Sperling's 1960 study on sensory or iconic memory. Computers with a capacity for measuring reaction time are useful in the laboratory for introductory psychology courses. (SR)
Janczyk, Markus; Berryhill, Marian E
2014-04-01
The retro-cue effect (RCE) describes superior working memory performance for validly cued stimulus locations long after encoding has ended. Importantly, this happens with delays beyond the range of iconic memory. In general, the RCE is a stable phenomenon that emerges under varied stimulus configurations and timing parameters. We investigated its susceptibility to dual-task interference to determine the attentional requirements at the time point of cue onset and encoding. In Experiment 1, we compared single- with dual-task conditions. In Experiment 2, we borrowed from the psychological refractory period paradigm and compared conditions with high and low (dual-) task overlap. The secondary task was always binary tone discrimination requiring a manual response. Across both experiments, an RCE was found, but it was diminished in magnitude in the critical dual-task conditions. A previous study did not find evidence that sustained attention is required in the interval between cue offset and test. Our results apparently contradict these findings and point to a critical time period around cue onset and briefly thereafter during which attention is required.
Berryhill, Marian E.
2014-01-01
The retro-cue effect (RCE) describes superior working memory performance for validly cued stimulus locations long after encoding has ended. Importantly, this happens with delays beyond the range of iconic memory. In general, the RCE is a stable phenomenon that emerges under varied stimulus configurations and timing parameters. We investigated its susceptibility to dual-task interference to determine the attentional requirements at the time point of cue onset and encoding. In Experiment 1, we compared single- with dual-task conditions. In Experiment 2, we borrowed from the psychological refractory period paradigm and compared conditions with high and low (dual-) task overlap. The secondary task was always binary tone discrimination requiring amanual response. Across both experiments, an RCE was found, but it was diminished in magnitude in the critical dual-task conditions. A previous study did not find evidence that sustained attention is required in the interval between cue offset and test. Our results apparently contradict these findings and point to a critical time period around cue onset and briefly thereafter during which attention is required. PMID:24452383
Iconicity as a General Property of Language: Evidence from Spoken and Signed Languages
Perniss, Pamela; Thompson, Robin L.; Vigliocco, Gabriella
2010-01-01
Current views about language are dominated by the idea of arbitrary connections between linguistic form and meaning. However, if we look beyond the more familiar Indo-European languages and also include both spoken and signed language modalities, we find that motivated, iconic form-meaning mappings are, in fact, pervasive in language. In this paper, we review the different types of iconic mappings that characterize languages in both modalities, including the predominantly visually iconic mappings found in signed languages. Having shown that iconic mapping are present across languages, we then proceed to review evidence showing that language users (signers and speakers) exploit iconicity in language processing and language acquisition. While not discounting the presence and importance of arbitrariness in language, we put forward the idea that iconicity need also be recognized as a general property of language, which may serve the function of reducing the gap between linguistic form and conceptual representation to allow the language system to “hook up” to motor, perceptual, and affective experience. PMID:21833282
Straube, Benjamin; Meyer, Lea; Green, Antonia; Kircher, Tilo
2014-06-03
Speech-associated gesturing leads to memory advantages for spoken sentences. However, unexpected or surprising events are also likely to be remembered. With this study we test the hypothesis that different neural mechanisms (semantic elaboration and surprise) lead to memory advantages for iconic and unrelated gestures. During fMRI-data acquisition participants were presented with video clips of an actor verbalising concrete sentences accompanied by iconic gestures (IG; e.g., circular gesture; sentence: "The man is sitting at the round table"), unrelated free gestures (FG; e.g., unrelated up down movements; same sentence) and no gestures (NG; same sentence). After scanning, recognition performance for the three conditions was tested. Videos were evaluated regarding semantic relation and surprise by a different group of participants. The semantic relationship between speech and gesture was rated higher for IG (IG>FG), whereas surprise was rated higher for FG (FG>IG). Activation of the hippocampus correlated with subsequent memory performance of both gesture conditions (IG+FG>NG). For the IG condition we found activation in the left temporal pole and middle cingulate cortex (MCC; IG>FG). In contrast, for the FG condition posterior thalamic structures (FG>IG) as well as anterior and posterior cingulate cortices were activated (FG>NG). Our behavioral and fMRI-data suggest different mechanisms for processing related and unrelated co-verbal gestures, both of them leading to enhanced memory performance. Whereas activation in MCC and left temporal pole for iconic co-verbal gestures may reflect semantic memory processes, memory enhancement for unrelated gestures relies on the surprise response, mediated by anterior/posterior cingulate cortex and thalamico-hippocampal structures. Copyright © 2014 Elsevier B.V. All rights reserved.
ICoN, the Interactive Chart of Nuclides
NASA Astrophysics Data System (ADS)
Lee, Kevin; Mumpower, Matthew; Aprahamian, Ani
2015-10-01
Nuclear data is critical to research fields from medicine to astrophysics. The chart of nuclides is a more descriptive version of the periodic table that can be used to visualize nuclear properties such as half-lives and mass. We have created ICoN (simply short for Interactive Chart of Nuclides), an API which can be used to visualize theoretical and experimental datasets. This visualization is achieved by using D3 (Data Driven Documents), HTML, and CSS3 to plot the elements and color them accordingly. ICoN features many customization options that users can access that are dynamically applied to the chart without reloading the page. Users can save the customized chart they create to various formats. We have constructed these features in order to provide a unique approach for researchers to interface with nuclear data. ICoN can also be used on all electronic devices without loss of support. We report on the current progress of this project and will present a working demo that highlights each aspect of the aforementioned features. This is the first time that all available technologies are put to use to make nuclear data more accessible than ever before. This is a first and we will make it available as open source ware.
Comments on how Mack et al. (2015) (do not) see iconic memory.
Bachmann, Talis; Aru, Jaan
2015-07-01
In a recent paper (Mack et al., 2015) the effect of attentional manipulations on partial report performance was investigated. The results were interpreted in favor of the stance that an attention-free phenomenal iconic store does not exist. Therefore, the authors argue that consciousness requires attention. Here we question their conclusions both on the methodological and conceptual grounds. Copyright © 2015 Elsevier Inc. All rights reserved.
So, Wing-Chee; Yi-Feng, Alvan Low; Yap, De-Fu; Kheng, Eugene; Yap, Ju-Min Melvin
2013-01-01
Previous studies have shown that iconic gestures presented in an isolated manner prime visually presented semantically related words. Since gestures and speech are almost always produced together, this study examined whether iconic gestures accompanying speech would prime words and compared the priming effect of iconic gestures with speech to that of iconic gestures presented alone. Adult participants (N = 180) were randomly assigned to one of three conditions in a lexical decision task: Gestures-Only (the primes were iconic gestures presented alone); Speech-Only (the primes were auditory tokens conveying the same meaning as the iconic gestures); Gestures-Accompanying-Speech (the primes were the simultaneous coupling of iconic gestures and their corresponding auditory tokens). Our findings revealed significant priming effects in all three conditions. However, the priming effect in the Gestures-Accompanying-Speech condition was comparable to that in the Speech-Only condition and was significantly weaker than that in the Gestures-Only condition, suggesting that the facilitatory effect of iconic gestures accompanying speech may be constrained by the level of language processing required in the lexical decision task where linguistic processing of words forms is more dominant than semantic processing. Hence, the priming effect afforded by the co-speech iconic gestures was weakened. PMID:24155738
Rapid iconic erasure without masking.
Tijus, Charles Albert; Reeves, Adam
2004-01-01
We report on the erasure of the iconic memory of an array of 12 black letters flashed on a continuously- present white field. Erasure is accomplished by replacing the 16 ms letter array (frame 1) with a blank white frame for 16 ms (frame 2). The letter array returns in frame 3, with from one to six letters missing. Report of the missing letters is accurate without the blank white frame but is impoverished with it, as if interposing the blank erases the icon. Erasure occurs without any obvious luminance masking, 'mud splashes', pattern masking (backward, forward, or metacontrast), lateral masking, or masking by object substitution. Erasure is greatly decreased if the blank is presented one frame earlier or later. We speculate that erasure is due to a rapid reset of the icon produced by an informational mis-match.
When Content Matters: The Role of Processing Code in Tactile Display Design.
Ferris, Thomas K; Sarter, Nadine
2010-01-01
The distribution of tasks and stimuli across multiple modalities has been proposed as a means to support multitasking in data-rich environments. Recently, the tactile channel and, more specifically, communication via the use of tactile/haptic icons have received considerable interest. Past research has examined primarily the impact of concurrent task modality on the effectiveness of tactile information presentation. However, it is not well known to what extent the interpretation of iconic tactile patterns is affected by another attribute of information: the information processing codes of concurrent tasks. In two driving simulation studies (n = 25 for each), participants decoded icons composed of either spatial or nonspatial patterns of vibrations (engaging spatial and nonspatial processing code resources, respectively) while concurrently interpreting spatial or nonspatial visual task stimuli. As predicted by Multiple Resource Theory, performance was significantly worse (approximately 5-10 percent worse) when the tactile icons and visual tasks engaged the same processing code, with the overall worst performance in the spatial-spatial task pairing. The findings from these studies contribute to an improved understanding of information processing and can serve as input to multidimensional quantitative models of timesharing performance. From an applied perspective, the results suggest that competition for processing code resources warrants consideration, alongside other factors such as the naturalness of signal-message mapping, when designing iconic tactile displays. Nonspatially encoded tactile icons may be preferable in environments which already rely heavily on spatial processing, such as car cockpits.
Transition Icons for Time-Series Visualization and Exploratory Analysis.
Nickerson, Paul V; Baharloo, Raheleh; Wanigatunga, Amal A; Manini, Todd M; Tighe, Patrick J; Rashidi, Parisa
2018-03-01
The modern healthcare landscape has seen the rapid emergence of techniques and devices that temporally monitor and record physiological signals. The prevalence of time-series data within the healthcare field necessitates the development of methods that can analyze the data in order to draw meaningful conclusions. Time-series behavior is notoriously difficult to intuitively understand due to its intrinsic high-dimensionality, which is compounded in the case of analyzing groups of time series collected from different patients. Our framework, which we call transition icons, renders common patterns in a visual format useful for understanding the shared behavior within groups of time series. Transition icons are adept at detecting and displaying subtle differences and similarities, e.g., between measurements taken from patients receiving different treatment strategies or stratified by demographics. We introduce various methods that collectively allow for exploratory analysis of groups of time series, while being free of distribution assumptions and including simple heuristics for parameter determination. Our technique extracts discrete transition patterns from symbolic aggregate approXimation representations, and compiles transition frequencies into a bag of patterns constructed for each group. These transition frequencies are normalized and aligned in icon form to intuitively display the underlying patterns. We demonstrate the transition icon technique for two time-series datasets-postoperative pain scores, and hip-worn accelerometer activity counts. We believe transition icons can be an important tool for researchers approaching time-series data, as they give rich and intuitive information about collective time-series behaviors.
ERIC Educational Resources Information Center
Ward, Robin E.; Lee, William D.
2006-01-01
Roundhouse is a visually creative information-processing tool (J. E. Trowbridge and J. H. Wandersee 1998). The procedure requires learners to construct knowledge using "mindful" connections to replace less effective practices of memorizing fragmented information. Students create observable organization schemes of related ideas and icons in a…
Mapping language to the world: the role of iconicity in the sign language input.
Perniss, Pamela; Lu, Jenny C; Morgan, Gary; Vigliocco, Gabriella
2018-03-01
Most research on the mechanisms underlying referential mapping has assumed that learning occurs in ostensive contexts, where label and referent co-occur, and that form and meaning are linked by arbitrary convention alone. In the present study, we focus on iconicity in language, that is, resemblance relationships between form and meaning, and on non-ostensive contexts, where label and referent do not co-occur. We approach the question of language learning from the perspective of the language input. Specifically, we look at child-directed language (CDL) in British Sign Language (BSL), a language rich in iconicity due to the affordances of the visual modality. We ask whether child-directed signing exploits iconicity in the language by highlighting the similarity mapping between form and referent. We find that CDL modifications occur more often with iconic signs than with non-iconic signs. Crucially, for iconic signs, modifications are more frequent in non-ostensive contexts than in ostensive contexts. Furthermore, we find that pointing dominates in ostensive contexts, and suggest that caregivers adjust the semiotic resources recruited in CDL to context. These findings offer first evidence for a role of iconicity in the language input and suggest that iconicity may be involved in referential mapping and language learning, particularly in non-ostensive contexts. © 2017 John Wiley & Sons Ltd.
Efficient in-situ visualization of unsteady flows in climate simulation
NASA Astrophysics Data System (ADS)
Vetter, Michael; Olbrich, Stephan
2017-04-01
The simulation of climate data tends to produce very large data sets, which hardly can be processed in classical post-processing visualization applications. Typically, the visualization pipeline consisting of the processes data generation, visualization mapping and rendering is distributed into two parts over the network or separated via file transfer. Within most traditional post-processing scenarios the simulation is done on a supercomputer whereas the data analysis and visualization is done on a graphics workstation. That way temporary data sets with huge volume have to be transferred over the network, which leads to bandwidth bottlenecks and volume limitations. The solution to this issue is the avoidance of temporary storage, or at least significant reduction of data complexity. Within the Climate Visualization Lab - as part of the Cluster of Excellence "Integrated Climate System Analysis and Prediction" (CliSAP) at the University of Hamburg, in cooperation with the German Climate Computing Center (DKRZ) - we develop and integrate an in-situ approach. Our software framework DSVR is based on the separation of the process chain between the mapping and the rendering processes. It couples the mapping process directly to the simulation by calling methods of a parallelized data extraction library, which create a time-based sequence of geometric 3D scenes. This sequence is stored on a special streaming server with an interactive post-filtering option and then played-out asynchronously in a separate 3D viewer application. Since the rendering is part of this viewer application, the scenes can be navigated interactively. In contrast to other in-situ approaches where 2D images are created as part of the simulation or synchronous co-visualization takes place, our method supports interaction in 3D space and in time, as well as fixed frame rates. To integrate in-situ processing based on our DSVR framework and methods in the ICON climate model, we are continuously evolving the data structures and mapping algorithms of the framework to support the ICON model's native grid structures, since DSVR originally was designed for rectilinear grids only. We now have implemented a new output module to ICON to take advantage of the DSVR visualization. The visualization can be configured as most output modules by using a specific namelist and is exemplarily integrated within the non-hydrostatic atmospheric model time loop. With the integration of a DSVR based in-situ pathline extraction within ICON, a further milestone is reached. The pathline algorithm as well as the grid data structures have been optimized for the domain decomposition used for the parallelization of ICON based on MPI and OpenMP. The software implementation and evaluation is done on the supercomputers at DKRZ. In principle, the data complexity is reduced from O(n3) to O(m), where n is the grid resolution and m the number of supporting point of all pathlines. The stability and scalability evaluation is done using Atmospheric Model Intercomparison Project (AMIP) runs. We will give a short introduction in our software framework, as well as a short overview on the implementation and usage of DSVR within ICON. Furthermore, we will present visualization and evaluation results of sample applications.
Cells from icons to symbols: molecularizing cell biology in the 1980s.
Serpente, Norberto
2011-12-01
Over centuries cells have been the target of optical and electronic microscopes as well as others technologies, with distinctive types of visual output. Whilst optical technologies produce images 'evident to the eye', the electronic and especially the molecular create images that are more elusive to conceptualization and assessment. My study applies the semiotic approach to the production of images in cell biology to capture the shift from microscopic images to non-traditional visual technologies around 1980. Here I argue that the visual shift that coincides with the growing dominance of molecular biology involves a change from iconic to symbolic forms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Iconic gestures prime related concepts: an ERP study.
Wu, Ying Croon; Coulson, Seana
2007-02-01
To assess priming by iconic gestures, we recorded EEG (at 29 scalp sites) in two experiments while adults watched short, soundless videos of spontaneously produced, cospeech iconic gestures followed by related or unrelated probe words. In Experiment 1, participants classified the relatedness between gestures and words. In Experiment 2, they attended to stimuli, and performed an incidental recognition memory test on words presented during the EEG recording session. Event-related potentials (ERPs) time-locked to the onset of probe words were measured, along with response latencies and word recognition rates. Although word relatedness did not affect reaction times or recognition rates, contextually related probe words elicited less-negative ERPs than did unrelated ones between 300 and 500 msec after stimulus onset (N400) in both experiments. These findings demonstrate sensitivity to semantic relations between iconic gestures and words in brain activity engendered during word comprehension.
Speech Auditory Alerts Promote Memory for Alerted Events in a Video-Simulated Self-Driving Car Ride.
Nees, Michael A; Helbein, Benji; Porter, Anna
2016-05-01
Auditory displays could be essential to helping drivers maintain situation awareness in autonomous vehicles, but to date, few or no studies have examined the effectiveness of different types of auditory displays for this application scenario. Recent advances in the development of autonomous vehicles (i.e., self-driving cars) have suggested that widespread automation of driving may be tenable in the near future. Drivers may be required to monitor the status of automation programs and vehicle conditions as they engage in secondary leisure or work tasks (entertainment, communication, etc.) in autonomous vehicles. An experiment compared memory for alerted events-a component of Level 1 situation awareness-using speech alerts, auditory icons, and a visual control condition during a video-simulated self-driving car ride with a visual secondary task. The alerts gave information about the vehicle's operating status and the driving scenario. Speech alerts resulted in better memory for alerted events. Both auditory display types resulted in less perceived effort devoted toward the study tasks but also greater perceived annoyance with the alerts. Speech auditory displays promoted Level 1 situation awareness during a simulation of a ride in a self-driving vehicle under routine conditions, but annoyance remains a concern with auditory displays. Speech auditory displays showed promise as a means of increasing Level 1 situation awareness of routine scenarios during an autonomous vehicle ride with an unrelated secondary task. © 2016, Human Factors and Ergonomics Society.
New Methodologies To Evaluate the Memory Strategies of Deaf Individuals.
ERIC Educational Resources Information Center
Clark, Diane
Prior studies have often confounded linguistic and perceptual performance when evaluating deaf subjects' skills, a confusion that may be responsible for results indicating lesser recall ability among the deaf. In this series of studies this linguistic/perceptual confound was investigated in both the iconic and short term memory of deaf…
Left neglect dyslexia and the effect of stimulus duration.
Arduino, Lisa S; Vallar, Giuseppe; Burani, Cristina
2006-01-01
The present study investigated the effects of the duration of the stimulus on the reading performance of right-brain-damaged patients with left neglect dyslexia. Three Italian patients read aloud words and nonwords, under conditions of unlimited time of stimulus exposure and of timed presentation. In the untimed condition, the majority of the patients' errors involved the left side of the letter string (i.e., neglect dyslexia errors). Conversely, in the timed condition, although the overall level of performance decreased, errors were more evenly distributed across the whole letter string (i.e., visual - nonlateralized - errors). This reduction of neglect errors with a reduced time of presentation of the stimulus may reflect the read out of elements of the letter string from a preserved visual storage component, such as iconic memory. Conversely, a time-unlimited presentation of the stimulus may bring about the rightward bias that characterizes the performance of neglect patients, possibly by a capture of the patients' attention by the final (rightward) letters of the string.
Affective Congruence between Sound and Meaning of Words Facilitates Semantic Decision.
Aryani, Arash; Jacobs, Arthur M
2018-05-31
A similarity between the form and meaning of a word (i.e., iconicity) may help language users to more readily access its meaning through direct form-meaning mapping. Previous work has supported this view by providing empirical evidence for this facilitatory effect in sign language, as well as for onomatopoetic words (e.g., cuckoo) and ideophones (e.g., zigzag). Thus, it remains largely unknown whether the beneficial role of iconicity in making semantic decisions can be considered a general feature in spoken language applying also to "ordinary" words in the lexicon. By capitalizing on the affective domain, and in particular arousal, we organized words in two distinctive groups of iconic vs. non-iconic based on the congruence vs. incongruence of their lexical (meaning) and sublexical (sound) arousal. In a two-alternative forced choice task, we asked participants to evaluate the arousal of printed words that were lexically either high or low arousing. In line with our hypothesis, iconic words were evaluated more quickly and more accurately than their non-iconic counterparts. These results indicate a processing advantage for iconic words, suggesting that language users are sensitive to sound-meaning mappings even when words are presented visually and read silently.
Icon Images in HyperCard: An Exploration of Visual Concepts with Middle School Students.
ERIC Educational Resources Information Center
Philleo, Tom
The purpose of this project was to investigate, in an informal and exploratory manner, the reactions of middle school students to unfamiliar symbols used as computer screen icons. The project focused on discovering a means to address the following issues: (1) the appearance of buttons containing text compared to those with graphics; (2) the…
Wade, Nicholas J
2011-01-01
Pictorial images are icons as well as eye-cons: they provide distillations of objects or ideas into simpler shapes. They create the impression of representing that which cannot be presented. Even at the level of the photograph, the links between icon and object are tenuous. The dimensions of depth and motion are missing from icons, and these alone introduce all manner of potential ambiguities. The history of art can be considered as exploring the missing link between icon and object. Eye-cons can also be illusions—tricks of vision so that what is seen does not necessarily correspond to what is physically presented. Pictorial images can be spatialised or stylised; spatialised images generally share some of the projective characteristics of the object represented. Written words are also icons, but they do not resemble the objects they represent—they are stylised or conventional. Icons as stylised words and spatialised images were set in delightful opposition by René Magritte in a series of pipe paintings, and this theme is here alluded to. Most of visual science is now concerned with icons—two-dimensional displays on computer monitors. Is vision now the science of eye-cons? PMID:23145240
Cognitive mechanisms for inferring the meaning of novel signals during symbolisation
2018-01-01
As participants repeatedly interact using graphical signals (as in a game of Pictionary), the signals gradually shift from being iconic (or motivated) to being symbolic (or arbitrary). The aim here is to test experimentally whether this change in the form of the signal implies a concomitant shift in the inferential mechanisms needed to understand it. The results show that, during early, iconic stages, there is more reliance on creative inferential processes associated with insight problem solving, and that the recruitment of these cognitive mechanisms decreases over time. The variation in inferential mechanism is not predicted by the sign’s visual complexity or iconicity, but by its familiarity, and by the complexity of the relevant mental representations. The discussion explores implications for pragmatics, language evolution, and iconicity research. PMID:29337998
Conjoint Influence of Maps and Auded Prose on Children's Retrieval of Instruction.
ERIC Educational Resources Information Center
Webb, James M.; And Others
1994-01-01
Ninety-six fifth-grade students studied a map of a fictitious island while twice listening to a related narrative with target feature and nonfeature items, cued by varying iconic and verbal stimuli in four map cue conditions. Memory for feature information and pictorial retrieval cues appeared to activate memory for nonfeature information. (SLD)
Some neglected contributions of Wilhelm Wundt to the psychology of memory.
Carpenter, Shana K
2005-08-01
Wilhelm Wundt, whose name is rarely associated with the scientific study of memory, conducted a number of memory experiments that appear to have escaped the awareness of modern cognitive psychologists. Aspects of Wundt's system are reviewed, particularly with respect to his experimental work on memory. Wundt investigated phenomena that would fall under the modern headings of iconic memory, short-term memory, and the enactment and generation effects, but this research has been neglected. Revisiting the Wundtian perspective may provide insight into some of the reasons behind the historical course of memory research and in general into the progress of science in psychology.
Einstein, race, and the myth of the cultural icon
NASA Astrophysics Data System (ADS)
Jerome, Fred
2004-12-01
The most remarkable aspect of Einstein's 1946 address at Lincoln University is that it has vanished from Einstein's recorded history. Its disappearance into a historical black hole symbolizes what seems to happen in the creation of a cultural icon. It is but one of many political statements by Einstein to have met such a fate, though his civil rights activism is most glaringly mission. One explanation for this historical amnesia is that those who shape our official memories felt that Einstein's "controversial" friends like Paul Robeson and activities like co-chairing the anti-lynching crusade might tarnish Einstein as an icon. That icon, sanctified by Time magazine when it dubbed Einstein "Person of the Century" at the end of 1999, is a myth, albeit a marvelous one. Yet it is not so much the motive for the omission but the consequence of it that should concern us. Americans and the millions of Einstein fans around the world are left unaware that he was an outspoken, passionate, committed antiracist.
From Iconic to Lingual: Interpreting Visual Statements.
ERIC Educational Resources Information Center
Curtiss, Deborah
In this age of proliferating visual communications, there is a permissiveness in subject matter, content, and meaning that is exhilarating, yet overwhelming to interpret in a meaningful or consensual way. By recognizing visual statements, whether a piece of sculpture, an advertisement, a video, or a building, as communication, one can approach…
Transfer of contextual cueing in full-icon display remapping.
Shi, Zhuanghua; Zang, Xuelian; Jia, Lina; Geyer, Thomas; Müller, Hermann J
2013-02-25
Invariant spatial context can expedite visual search, an effect that is known as contextual cueing (e.g., Chun & Jiang, 1998). However, disrupting learned display configurations abolishes the effect. In current touch-based mobile devices, such as the iPad, icons are shuffled and remapped when the display mode is changed. However, such remapping also disrupts the spatial relationships between icons. This may hamper usability. In the present study, we examined the transfer of contextual cueing in four different methods of display remapping: position-order invariant, global rotation, local invariant, and central invariant. We used full-icon landscape mode for training and both landscape and portrait modes for testing, to check whether the cueing transfers to portrait mode. The results showed transfer of contextual cueing but only with the local invariant and the central invariant remapping methods. We take the results to mean that the predictability of target locations is a crucial factor for the transfer of contextual cueing and thus icon remapping design for mobile devices.
Icon arrays help younger children's proportional reasoning.
Ruggeri, Azzurra; Vagharchakian, Laurianne; Xu, Fei
2018-06-01
We investigated the effects of two context variables, presentation format (icon arrays or numerical frequencies) and time limitation (limited or unlimited time), on the proportional reasoning abilities of children aged 7 and 10 years, as well as adults. Participants had to select, between two sets of tokens, the one that offered the highest likelihood of drawing a gold token, that is, the set of elements with the greater proportion of gold tokens. Results show that participants performed better in the unlimited time condition. Moreover, besides a general developmental improvement in accuracy, our results show that younger children performed better when proportions were presented as icon arrays, whereas older children and adults were similarly accurate in the two presentation format conditions. Statement of contribution What is already known on this subject? There is a developmental improvement in proportional reasoning accuracy. Icon arrays facilitate reasoning in adults with low numeracy. What does this study add? Participants were more accurate when they were given more time to make the proportional judgement. Younger children's proportional reasoning was more accurate when they were presented with icon arrays. Proportional reasoning abilities correlate with working memory, approximate number system, and subitizing skills. © 2018 The British Psychological Society.
The Relation of Age and Reading Ability to Memory Processing.
ERIC Educational Resources Information Center
Marrach, Alexa; Fireman, Gary
This study examined the relation of reading ability, age, and familiarity to iconic and short-term memory processing and how the familiarity of the stimuli affects recall. A total of 10 children in grades 2 through 6 and 10 adults were shown novel abstract forms, words, and non-words varying in order of approximation to English, for 50 msec., 500…
Visual information mining in remote sensing image archives
NASA Astrophysics Data System (ADS)
Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.
2002-01-01
The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.
ERIC Educational Resources Information Center
McIntyre, Patrick J.; Reed, Jack A.
1976-01-01
Visual devices were used, corresponding to Bruner's three types of information-processing models: enactive (action), iconic (imagery), and symbolic (language). Concluded that the type of visual device had no significant effect on the subjects' achievement on an electrostatics concepts test. (MLH)
A Low-Cost PC-Based Image Workstation for Dynamic Interactive Display of Three-Dimensional Anatomy
NASA Astrophysics Data System (ADS)
Barrett, William A.; Raya, Sai P.; Udupa, Jayaram K.
1989-05-01
A system for interactive definition, automated extraction, and dynamic interactive display of three-dimensional anatomy has been developed and implemented on a low-cost PC-based image workstation. An iconic display is used for staging predefined image sequences through specified increments of tilt and rotation over a solid viewing angle. Use of a fast processor facilitates rapid extraction and rendering of the anatomy into predefined image views. These views are formatted into a display matrix in a large image memory for rapid interactive selection and display of arbitrary spatially adjacent images within the viewing angle, thereby providing motion parallax depth cueing for efficient and accurate perception of true three-dimensional shape, size, structure, and spatial interrelationships of the imaged anatomy. The visual effect is that of holding and rotating the anatomy in the hand.
Jones, Luke A; Allely, Clare S; Wearden, John H
2011-02-01
A series of experiments demonstrated that a 5-s train of clicks that have been shown in previous studies to increase the subjective duration of tones they precede (in a manner consistent with "speeding up" timing processes) could also have an effect on information-processing rate. Experiments used studies of simple and choice reaction time (Experiment 1), or mental arithmetic (Experiment 2). In general, preceding trials by clicks made response times significantly shorter than those for trials without clicks, but white noise had no effects on response times. Experiments 3 and 4 investigated the effects of clicks on performance on memory tasks, using variants of two classic experiments of cognitive psychology: Sperling's (1960) iconic memory task and Loftus, Johnson, and Shimamura's (1985) iconic masking task. In both experiments participants were able to recall or recognize significantly more information from stimuli preceded by clicks than those preceded by silence.
Interaction of cerebral hemispheres and artistic thinking
NASA Astrophysics Data System (ADS)
Nikolaenko, Nikolay N.
1998-07-01
Study of drawings by patients with local lesions of the right or left hemisphere allows to understand how artistic thinking is supported by brain structures. The role of the right hemisphere is significant at the early stage of creative process. The right hemisphere is a generator of nonverbal visuo-spatial thinking. It operates with blurred nonverbal images and arrange them in a visual space. With the help of iconic signs the right hemisphere reflects the world and creates perceptive visual standards which are stored in the long-term right hemisphere memory. The image, which appeared in the `inner' space, should be transferred into a principally different language, i.e. a left hemispheric sign language. This language operates with a number of discrete units, logical succession and learned grammar rules. This process can be explained by activation (information) transfer from the right hemisphere to the left one. Thus, natural and spontaneous creative process, which is finished by a conscious effort, can be understood as an activation impulse transfer from the right hemisphere to the left one and back.
2014-01-01
Background Clinical practice guidelines are useful for physicians, and guidelines are available on the Internet from various websites such as Vidal Recos. However, these guidelines are long and difficult to read, especially during consultation. Similar difficulties have been encountered with drug summaries of product characteristics. In a previous work, we have proposed an iconic language (called VCM, for Visualization of Concepts in Medicine) for representing patient conditions, treatments and laboratory tests, and we have used these icons to design a user interface that graphically indexes summaries of product characteristics. In the current study, our objective was to design and evaluate an iconic user interface for the consultation of clinical practice guidelines by physicians. Methods Focus groups of physicians were set up to identify the difficulties encountered when reading guidelines. Icons were integrated into Vidal Recos, taking human factors into account. The resulting interface includes a graphical summary and an iconic indexation of the guideline. The new interface was evaluated. We compared the response times and the number of errors recorded when physicians answered questions about two clinical scenarios using the interactive iconic interface or a textual interface. Users’ perceived usability was evaluated with the System Usability Scale. Results The main difficulties encountered by physicians when reading guidelines were obtaining an overview and finding recommendations for patients corresponding to “particular cases”. We designed a graphical interface for guideline consultation, using icons to identify particular cases and providing a graphical summary of the icons organized by anatomy and etiology. The evaluation showed that physicians gave clinical responses more rapidly with the iconic interface than the textual interface (25.2 seconds versus 45.6, p < 0.05). The physicians appreciated the new interface, and the System Usability Scale score value was 75 (between good and excellent). Conclusion An interactive iconic interface can provide physicians with an overview of clinical practice guidelines, and can decrease the time required to access the content of such guidelines. PMID:25158762
Pereira, Suzanne; Hassler, Sylvain; Hamek, Saliha; Boog, César; Leroy, Nicolas; Beuscart-Zéphir, Marie-Catherine; Favre, Madeleine; Venot, Alain; Duclos, Catherine; Lamy, Jean-Baptiste
2014-08-26
Clinical practice guidelines are useful for physicians, and guidelines are available on the Internet from various websites such as Vidal Recos. However, these guidelines are long and difficult to read, especially during consultation. Similar difficulties have been encountered with drug summaries of product characteristics. In a previous work, we have proposed an iconic language (called VCM, for Visualization of Concepts in Medicine) for representing patient conditions, treatments and laboratory tests, and we have used these icons to design a user interface that graphically indexes summaries of product characteristics. In the current study, our objective was to design and evaluate an iconic user interface for the consultation of clinical practice guidelines by physicians. Focus groups of physicians were set up to identify the difficulties encountered when reading guidelines. Icons were integrated into Vidal Recos, taking human factors into account. The resulting interface includes a graphical summary and an iconic indexation of the guideline. The new interface was evaluated. We compared the response times and the number of errors recorded when physicians answered questions about two clinical scenarios using the interactive iconic interface or a textual interface. Users' perceived usability was evaluated with the System Usability Scale. The main difficulties encountered by physicians when reading guidelines were obtaining an overview and finding recommendations for patients corresponding to "particular cases". We designed a graphical interface for guideline consultation, using icons to identify particular cases and providing a graphical summary of the icons organized by anatomy and etiology. The evaluation showed that physicians gave clinical responses more rapidly with the iconic interface than the textual interface (25.2 seconds versus 45.6, p < 0.05). The physicians appreciated the new interface, and the System Usability Scale score value was 75 (between good and excellent). An interactive iconic interface can provide physicians with an overview of clinical practice guidelines, and can decrease the time required to access the content of such guidelines.
Co-speech iconic gestures and visuo-spatial working memory.
Wu, Ying Choon; Coulson, Seana
2014-11-01
Three experiments tested the role of verbal versus visuo-spatial working memory in the comprehension of co-speech iconic gestures. In Experiment 1, participants viewed congruent discourse primes in which the speaker's gestures matched the information conveyed by his speech, and incongruent ones in which the semantic content of the speaker's gestures diverged from that in his speech. Discourse primes were followed by picture probes that participants judged as being either related or unrelated to the preceding clip. Performance on this picture probe classification task was faster and more accurate after congruent than incongruent discourse primes. The effect of discourse congruency on response times was linearly related to measures of visuo-spatial, but not verbal, working memory capacity, as participants with greater visuo-spatial WM capacity benefited more from congruent gestures. In Experiments 2 and 3, participants performed the same picture probe classification task under conditions of high and low loads on concurrent visuo-spatial (Experiment 2) and verbal (Experiment 3) memory tasks. Effects of discourse congruency and verbal WM load were additive, while effects of discourse congruency and visuo-spatial WM load were interactive. Results suggest that congruent co-speech gestures facilitate multi-modal language comprehension, and indicate an important role for visuo-spatial WM in these speech-gesture integration processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Visual degradation in Leonardo da Vinci's iconic self-portrait: A nanoscale study
NASA Astrophysics Data System (ADS)
Conte, A. Mosca; Pulci, O.; Misiti, M. C.; Lojewska, J.; Teodonio, L.; Violante, C.; Missori, M.
2014-06-01
The discoloration of ancient paper, due to the development of oxidized groups acting as chromophores in its chief component, cellulose, is responsible for severe visual degradation in ancient artifacts. By adopting a non-destructive approach based on the combination of optical reflectance measurements and time-dependent density functional theory ab-initio calculations, we describe and quantify the chromophores affecting Leonardo da Vinci's iconic self-portrait. Their relative concentrations are very similar to those measured in modern and ancient samples aged in humid environments. This analysis quantifies the present level of optical degradation of the Leonardo da Vinci's self-portrait which, compared with future measurements, will assess its degradation rate. This is a fundamental information in order to plan appropriate conservation strategies.
Myers, Lauren J; Liben, Lynn S
2012-01-01
Children gradually develop interpretive theory of mind (iToM)-the understanding that different people may interpret identical events or stimuli differently. The present study tested whether more advanced iToM underlies children's recognition that map symbols' meanings must be communicated to others when symbols are iconic (resemble their referents). Children (6-9 years; N = 80) made maps using either iconic or abstract symbols. After accounting for age, intelligence, vocabulary, and memory, iToM predicted children's success in communicating symbols' meaning to a naïve map-user when mapping tasks involved iconic (but not abstract) symbols. Findings suggest children's growing appreciation of alternative representations and of the intentional assignment of meaning, and support the contention that ToM progresses beyond mastery of false belief. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.
Visualizing second order tensor fields with hyperstreamlines
NASA Technical Reports Server (NTRS)
Delmarcelle, Thierry; Hesselink, Lambertus
1993-01-01
Hyperstreamlines are a generalization to second order tensor fields of the conventional streamlines used in vector field visualization. As opposed to point icons commonly used in visualizing tensor fields, hyperstreamlines form a continuous representation of the complete tensor information along a three-dimensional path. This technique is useful in visulaizing both symmetric and unsymmetric three-dimensional tensor data. Several examples of tensor field visualization in solid materials and fluid flows are provided.
Two forms of persistence in visual information processing.
Di Lollo, Vincent; Dixon, Peter
1988-11-01
Iconic memory, which was initially regarded as a unitary phenomenon, has since been subdivided into several components. In the present work we examined the joint effects of two such components (visible persistence and the visual analog representation) on performance in a partial report task. The display consisted of 15 alphabetic characters arranged around the perimeter of an imaginary circle on the face of an oscilloscope. The observer named the character singled out by a bar-probe. Two factors were varied: exposure duration of the array (10, 50, 100, 150, 200, 300, 400 or 500 ms) and duration of blank period (interstimulus interval, ISI) between the termination of the array and the onset of the probe (0, 50, 100, 150, or 200 ms). Performance was progressively impaired as both exposure duration and ISI were increased. The results were explained in terms of a probabilistic combinatorial model in which the timecourses of visible persistence and of the visual analog representation are regarded as time-locked to the onset and to the end of stimulation, respectively. The impairing effect of exposure duration was attributed to the relatively high spatial demands of the task that could be met optimally by information in visible persistence (which declines as a function of exposure duration), but less adequately by information in the visual analog representation. A second experiment, employing a task with lesser spatial demands, confirmed this interpretation.
From Icons to iPods: Visual Electronic Media Use and Worship Satisfaction
ERIC Educational Resources Information Center
Gilbert, Ronald
2010-01-01
A steady transition has been taking place in church services with the employment of visual electronic media intended to enhance the worship experience for congregants. Electronically assisted worship utilizes presentational software and hardware to incorporate video, film clips, texts, graphics, lyrics, TV broadcasts, Internet, Twitter, and even…
Iconographic dental typography. A dental character font for computer graphics.
McCormack, J
1991-06-08
The recent massive increase in available memory for microcomputers now allows multiple font faces to be stored in computer RAM memory for instant access to the screen and for printed output. Fonts can be constructed in which the characters are not just letters or numbers, but are miniature graphic icons--in this instance pictures of teeth. When printed on an appropriate laser printer, this produces printed graphics of publishing quality.
Mack, Arien; Clarke, Jason; Erol, Muge
2015-09-01
A reply to the Bachmann and Aru (2015) critique of our paper (Mack, Erol, & Clarke, 2015) in which we rebut their criticisms and argue once again that our results support our view that iconic memory requires attention. Copyright © 2015 Elsevier Inc. All rights reserved.
The impact of memory load and perceptual cues on puzzle learning by 24-month olds.
Barr, Rachel; Moser, Alecia; Rusnak, Sylvia; Zimmermann, Laura; Dickerson, Kelly; Lee, Herietta; Gerhardstein, Peter
2016-11-01
Early childhood is characterized by memory capacity limitations and rapid perceptual and motor development [Rovee-Collier (1996). Infant Behavior & Development, 19, 385-400]. The present study examined 2-year olds' reproduction of a sliding action to complete an abstract fish puzzle under different levels of memory load and perceptual feature support. Experimental groups were compared to baseline controls to assess spontaneous rates of production of the target actions; baseline production was low across all experiments. Memory load was manipulated in Exp. 1 by adding pieces to the puzzle, increasing sequence length from 2 to 3 items, and to 3 items plus a distractor. Although memory load did not influence how toddlers learned to manipulate the puzzle pieces, it did influence toddlers' achievement of the goal-constructing the fish. Overall, girls were better at constructing the puzzle than boys. In Exp. 2, the perceptual features of the puzzle were altered by changing shape boundaries to create a two-piece horizontally cut puzzle (displaying bilateral symmetry), and by adding a semantically supportive context to the vertically cut puzzle (iconic). Toddlers were able to achieve the goal of building the fish equally well across the 2-item puzzle types (bilateral symmetry, vertical, iconic), but how they learned to manipulate the puzzle pieces varied as a function of the perceptual features. Here, as in Exp. 1, girls showed a different pattern of performance from the boys. This study demonstrates that changes in memory capacity and perceptual processing influence both goal-directed imitation learning and motoric performance. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Takaya, Kentei
2016-01-01
Visual literacy is an important skill for students to have in order to interpret embedded messages on signs and in advertisements successfully. As advertisements today tend to feature iconic people or events that shaped the modern world, it is crucial to develop students' visual literacy skills so they can comprehend the intended messages. This…
ERIC Educational Resources Information Center
McIntyre, Patrick Joseph
The purpose of this study was to determine the relative effectiveness of three different types of visual devices in an instructional program designed to teach an understanding of selected theoretical science concepts to elementary school children. The visual devices were prepared using Bruner's three modes of representation (enactive, iconic, and…
Hearing and seeing meaning in speech and gesture: insights from brain and behaviour
Özyürek, Aslı
2014-01-01
As we speak, we use not only the arbitrary form–meaning mappings of the speech channel but also motivated form–meaning correspondences, i.e. iconic gestures that accompany speech (e.g. inverted V-shaped hand wiggling across gesture space to demonstrate walking). This article reviews what we know about processing of semantic information from speech and iconic gestures in spoken languages during comprehension of such composite utterances. Several studies have shown that comprehension of iconic gestures involves brain activations known to be involved in semantic processing of speech: i.e. modulation of the electrophysiological recording component N400, which is sensitive to the ease of semantic integration of a word to previous context, and recruitment of the left-lateralized frontal–posterior temporal network (left inferior frontal gyrus (IFG), medial temporal gyrus (MTG) and superior temporal gyrus/sulcus (STG/S)). Furthermore, we integrate the information coming from both channels recruiting brain areas such as left IFG, posterior superior temporal sulcus (STS)/MTG and even motor cortex. Finally, this integration is flexible: the temporal synchrony between the iconic gesture and the speech segment, as well as the perceived communicative intent of the speaker, modulate the integration process. Whether these findings are special to gestures or are shared with actions or other visual accompaniments to speech (e.g. lips) or other visual symbols such as pictures are discussed, as well as the implications for a multimodal view of language. PMID:25092664
Hearing and seeing meaning in speech and gesture: insights from brain and behaviour.
Özyürek, Aslı
2014-09-19
As we speak, we use not only the arbitrary form-meaning mappings of the speech channel but also motivated form-meaning correspondences, i.e. iconic gestures that accompany speech (e.g. inverted V-shaped hand wiggling across gesture space to demonstrate walking). This article reviews what we know about processing of semantic information from speech and iconic gestures in spoken languages during comprehension of such composite utterances. Several studies have shown that comprehension of iconic gestures involves brain activations known to be involved in semantic processing of speech: i.e. modulation of the electrophysiological recording component N400, which is sensitive to the ease of semantic integration of a word to previous context, and recruitment of the left-lateralized frontal-posterior temporal network (left inferior frontal gyrus (IFG), medial temporal gyrus (MTG) and superior temporal gyrus/sulcus (STG/S)). Furthermore, we integrate the information coming from both channels recruiting brain areas such as left IFG, posterior superior temporal sulcus (STS)/MTG and even motor cortex. Finally, this integration is flexible: the temporal synchrony between the iconic gesture and the speech segment, as well as the perceived communicative intent of the speaker, modulate the integration process. Whether these findings are special to gestures or are shared with actions or other visual accompaniments to speech (e.g. lips) or other visual symbols such as pictures are discussed, as well as the implications for a multimodal view of language. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Expectation creates something out of nothing: The role of attention in iconic memory reconsidered.
Aru, Jaan; Bachmann, Talis
2017-08-01
Conscious experience is modulated by attention and expectation, yet is believed to be independent of attention. The experiments on iconic memory (IM) are usually taken as support for this claim. However, a recent experiment demonstrated that when attention is diverted away from the IM letter display subjects fail to see the absence of IM letters. Here we contribute to the ongoing debate by overcoming experimental shortcomings of this previous experiment, by measuring subjective visibility and by testing the effect of the post-cue. We were able to replicate these earlier findings and extend them by demonstrating that subjects who do not realize the absence of letters perceive illusory letters. This result means that there is still phenomenal consciousness, even when attention is diverted. Expectation creates illusory content that overwrites valid IM content. Taken together these findings suggest that the present experimental paradigm is not appropriate to make claims about IM content. Copyright © 2017 Elsevier Inc. All rights reserved.
Age and Visual Information Processing.
ERIC Educational Resources Information Center
Gummerman, Kent; And Others
This paper reports on three studies concerned with aspects of human visual information processing. Study I was an effort to measure the duration of iconic storage using a partial report method in children ranging in age from 6 to 13 years. Study II was designed to detect age related changes in the rate of processing (perceptually encoding) letters…
Seventh Grade Students and the Visual Messages They Love
ERIC Educational Resources Information Center
De Abreu, Belinha
2008-01-01
Most seventh grade students partially define themselves through everyday media messages. As a part of understanding how these images and the media impacts their lives, the author collaborated with her colleagues to develop a unit to help teens learn how visual messages such as those in pictures, media icons, logos, slogans, clothing, toys, and…
What Geoscience Experts and Novices Look At, and What They See, When Viewing Data Visualizations
ERIC Educational Resources Information Center
Kastens, Kim A.; Shipley, Thomas F.; Boone, Alexander P.; Straccia, Frances
2016-01-01
This study examines how geoscience experts and novices make meaning from an iconic type of data visualization: shaded relief images of bathymetry and topography. Participants examined, described, and interpreted a global image, two high-resolution seafloor images, and 2 high-resolution continental images, while having their gaze direction…
Sensory Mode and "Information Load": Examining the Effects of Timing on Multisensory Processing.
ERIC Educational Resources Information Center
Tiene, Drew
2000-01-01
Discussion of the development of instructional multimedia materials focuses on a study of undergraduates that examined how the use of visual icons affected learning, differences in the instructional effectiveness of visual versus auditory processing of the same information, and timing (whether simultaneous or sequential presentation is more…
The neurobiology of the human memory.
Fietta, Pierluigi; Fietta, Pieranna
2011-01-01
Memory can be defined as the ability to acquire, process, store, and retrieve information. Memory is indispensable for learning, adaptation, and survival of every living organism. In humans, the remembering process has acquired great flexibility and complexity, reaching close links with other mental functions, such as thinking and emotions. Changes in synaptic connectivity and interactions among multiple neural networks provide the neurobiological substrates for memory encoding, retention, and consolidation. Memory may be categorized as short-term and long-term memory (according to the storage temporal duration), as implicit and explicit memory (with respect to the consciousness of remembering), as declarative (knowing that [fact]) and procedural (knowing how [skill]) memory, or as sensory (echoic, iconic and haptil), semantic, and episodic memory (according to the various remembering domains). Significant advances have been obtained in understanding memory neurobiology, but much remains to be learned in its cognitive, psychological, and phenomenological aspects.
Franco, Marcia Rodrigues; Pinto, Rafael Zambelli; Delbaere, Kim; Eto, Bianca Yumie; Faria, Maíra Sgobbi; Aoyagi, Giovana Ayumi; Steffens, Daniel; Pastre, Carlos Marcelo
2018-02-14
The Iconographical Falls Efficacy Scale (Icon-FES) is an innovative tool to assess concern of falling that uses pictures as visual cues to provide more complete environmental contexts. Advantages of Icon-FES over previous scales include the addition of more demanding balance-related activities, ability to assess concern about falling in highly functioning older people, and its normal distribution. To perform a cross-cultural adaptation and to assess the measurement properties of the 30-item and 10-item Icon-FES in a community-dwelling Brazilian older population. The cross-cultural adaptation followed the recommendations of international guidelines. We evaluated the measurement properties (i.e. internal consistency, test-retest reproducibility, standard error of the measurement, minimal detectable change, construct validity, ceiling/floor effect, data distribution and discriminative validity), in 100 community-dwelling people aged ≥60 years. The 30-item and 10-item Icon-FES-Brazil showed good internal consistency (alpha and omega >0.70) and excellent intra-rater reproducibility (ICC 2,1 =0.96 and 0.93, respectively). According to the standard error of the measurement and minimal detectable change, the magnitude of change needed to exceed the measurement error and variability were 7.2 and 3.4 points for the 30-item and 10-item Icon-FES, respectively. We observed an excellent correlation between both versions of the Icon-FES and Falls Efficacy Scale - International (rho=0.83, p<0.001 [30-item version]; 0.76, p<0.001 [10-item version]). Icon-FES versions showed normal distribution, no floor/ceiling effects and were able to discriminate between groups relating to fall risk factors. Icon-FES-Brazil is a semantically and linguistically appropriate tool with acceptable measurement properties to evaluate concern about falling among the community-dwelling older population. Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Becoming Curt Lemay: The Formative Experiences of an Air Force Icon
2011-06-01
Turbulent Life of General Curtis LeMay some 20 years after LeMay‟s autobiographical piece. Laced with an apologetic undertone, Iron Eagle is insufficiently...to radio her position around midnight. The three B- 59 “ Memories of Gen. LeMay,” San Antonio
The User Interface: The Point of Competition.
ERIC Educational Resources Information Center
Tufte, Edward
1992-01-01
Discusses the importance of skillful visual design of computer screens and provides guidelines for screen design in the areas of information resolution, interaction of design elements, color, and typography and icons. (MES)
Utilization and Organization of Visually Presented Information. Final Report.
ERIC Educational Resources Information Center
Dick, A. O.
The experiments discussed in this report do not have a direct relationship to each other but represent work on a series of sub-issues within the general framework of visual processing of information. Because of this discreteness, the report is organized into a series of papers. The first is a general review of tachistoscopic work on iconic memory…
Preschool children's ability to visually represent relations.
Koerber, Susanne; Sodian, Beate
2008-05-01
The developmental origins of mapping temporal relations onto space was investigated in N = 122 3- to 5-year-old children and adults. Spontaneous production and comprehension were investigated. Production was investigated in two conditions: an iconic condition (three-dimensional objects depicting the events or objects to be represented) and an abstract condition (plain discs). Consistent with findings by Tversky, Kugelmass and Winter (1991), 5-year-olds performed on an adult-like level. Developmental progress was observed between the ages of 3 and 4 years, with comprehension preceding production. Consistent with DeLoache's findings (2000), 4-year-olds' performance was better in abstract than in iconic conditions, indicating that dual representational demands may have affected task performance in the iconic condition. In sum, abilities to map temporal relations onto spatial relations appear to develop spontaneously, even before children have experience with conventional notational systems.
When expectation confounds iconic memory.
Bachmann, Talis; Aru, Jaan
2016-10-01
In response to the methodological criticism (Bachmann & Aru, 2015) of the interpretation of their earlier experimental results (Mack, Erol, & Clarke, 2015) Mack, Erol, Clarke, and Bert (2016) presented new results that they interpret again in favor of the stance that an attention-free phenomenal iconic store does not exist. Here we once more question their conclusions. When their subjects were unexpectedly asked to report the letters instead of the post-cued circles in the 101th trial where letters were actually absent, they likely failed to see the empty display area because prior experience with letters in the preceding trials produced expectancy based illusory experience of letter-like objects. Copyright © 2016 Elsevier Inc. All rights reserved.
Language as a multimodal phenomenon: implications for language learning, processing and evolution
Vigliocco, Gabriella; Perniss, Pamela; Vinson, David
2014-01-01
Our understanding of the cognitive and neural underpinnings of language has traditionally been firmly based on spoken Indo-European languages and on language studied as speech or text. However, in face-to-face communication, language is multimodal: speech signals are invariably accompanied by visual information on the face and in manual gestures, and sign languages deploy multiple channels (hands, face and body) in utterance construction. Moreover, the narrow focus on spoken Indo-European languages has entrenched the assumption that language is comprised wholly by an arbitrary system of symbols and rules. However, iconicity (i.e. resemblance between aspects of communicative form and meaning) is also present: speakers use iconic gestures when they speak; many non-Indo-European spoken languages exhibit a substantial amount of iconicity in word forms and, finally, iconicity is the norm, rather than the exception in sign languages. This introduction provides the motivation for taking a multimodal approach to the study of language learning, processing and evolution, and discusses the broad implications of shifting our current dominant approaches and assumptions to encompass multimodal expression in both signed and spoken languages. PMID:25092660
The role of iconic memory in change-detection tasks.
Becker, M W; Pashler, H; Anstis, S M
2000-01-01
In three experiments, subjects attempted to detect the change of a single item in a visually presented array of items. Subjects' ability to detect a change was greatly reduced if a blank interstimulus interval (ISI) was inserted between the original array and an array in which one item had changed ('change blindness'). However, change detection improved when the location of the change was cued during the blank ISI. This suggests that people represent more information of a scene than change blindness might suggest. We test two possible hypotheses why, in the absence of a cue, this representation fails to produce good change detection. The first claims that the intervening events employed to create change blindness result in multiple neural transients which co-occur with the to-be-detected change. Poor detection rates occur because a serial search of all the transient locations is required to detect the change, during which time the representation of the original scene fades. The second claims that the occurrence of the second frame overwrites the representation of the first frame, unless that information is insulated against overwriting by attention. The results support the second hypothesis. We conclude that people may have a fairly rich visual representation of a scene while the scene is present, but fail to detect changes because they lack the ability to simultaneously represent two complete visual representations.
A Supramodal Neural Network for Speech and Gesture Semantics: An fMRI Study
Weis, Susanne; Kircher, Tilo
2012-01-01
In a natural setting, speech is often accompanied by gestures. As language, speech-accompanying iconic gestures to some extent convey semantic information. However, if comprehension of the information contained in both the auditory and visual modality depends on same or different brain-networks is quite unknown. In this fMRI study, we aimed at identifying the cortical areas engaged in supramodal processing of semantic information. BOLD changes were recorded in 18 healthy right-handed male subjects watching video clips showing an actor who either performed speech (S, acoustic) or gestures (G, visual) in more (+) or less (−) meaningful varieties. In the experimental conditions familiar speech or isolated iconic gestures were presented; during the visual control condition the volunteers watched meaningless gestures (G−), while during the acoustic control condition a foreign language was presented (S−). The conjunction of the visual and acoustic semantic processing revealed activations extending from the left inferior frontal gyrus to the precentral gyrus, and included bilateral posterior temporal regions. We conclude that proclaiming this frontotemporal network the brain's core language system is to take too narrow a view. Our results rather indicate that these regions constitute a supramodal semantic processing network. PMID:23226488
DICON: interactive visual analysis of multidimensional clusters.
Cao, Nan; Gotz, David; Sun, Jimeng; Qu, Huamin
2011-12-01
Clustering as a fundamental data analysis technique has been widely used in many analytic applications. However, it is often difficult for users to understand and evaluate multidimensional clustering results, especially the quality of clusters and their semantics. For large and complex data, high-level statistical information about the clusters is often needed for users to evaluate cluster quality while a detailed display of multidimensional attributes of the data is necessary to understand the meaning of clusters. In this paper, we introduce DICON, an icon-based cluster visualization that embeds statistical information into a multi-attribute display to facilitate cluster interpretation, evaluation, and comparison. We design a treemap-like icon to represent a multidimensional cluster, and the quality of the cluster can be conveniently evaluated with the embedded statistical information. We further develop a novel layout algorithm which can generate similar icons for similar clusters, making comparisons of clusters easier. User interaction and clutter reduction are integrated into the system to help users more effectively analyze and refine clustering results for large datasets. We demonstrate the power of DICON through a user study and a case study in the healthcare domain. Our evaluation shows the benefits of the technique, especially in support of complex multidimensional cluster analysis. © 2011 IEEE
Polar exponential sensor arrays unify iconic and Hough space representation
NASA Technical Reports Server (NTRS)
Weiman, Carl F. R.
1990-01-01
The log-polar coordinate system, inherent in both polar exponential sensor arrays and log-polar remapped video imagery, is identical to the coordinate system of its corresponding Hough transform parameter space. The resulting unification of iconic and Hough domains simplifies computation for line recognition and eliminates the slope quantization problems inherent in the classical Cartesian Hough transform. The geometric organization of the algorithm is more amenable to massively parallel architectures than that of the Cartesian version. The neural architecture of the human visual cortex meets the geometric requirements to execute 'in-place' log-Hough algorithms of the kind described here.
A Developmental Examination of Basic Perceptual Processes in Reading. Final Report.
ERIC Educational Resources Information Center
Lefton, Lester A.
This report summarizes four groups of experiments examining the nature of basic perceptual processes in reading. The first group examined the relationship of English orthography to reading, specifically the transfer of information from the icon to short-term memory. The second group of experiments examined the use of peripheral information…
NASA Astrophysics Data System (ADS)
Hsu, Bailey; van Huele, Jean-Francois
2009-10-01
The Stern-Gerlach effect (SGE) is iconic for visualizing spin. We analyze the evolution of atomic wavepackets by constructing exact solutions using propagators in SGE field configurations in different approximations. We contrast our results with the standard presentation of the SGE in textbooks and literature and illustrate with visual animations in 2D and 3D.
Visual Memories Bypass Normalization.
Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam
2018-05-01
How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.
Visual Memories Bypass Normalization
Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam
2018-01-01
How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038
Experience and information loss in auditory and visual memory.
Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K
2017-07-01
Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.
Neural integration of iconic and unrelated coverbal gestures: a functional MRI study.
Green, Antonia; Straube, Benjamin; Weis, Susanne; Jansen, Andreas; Willmes, Klaus; Konrad, Kerstin; Kircher, Tilo
2009-10-01
Gestures are an important part of interpersonal communication, for example by illustrating physical properties of speech contents (e.g., "the ball is round"). The meaning of these so-called iconic gestures is strongly intertwined with speech. We investigated the neural correlates of the semantic integration for verbal and gestural information. Participants watched short videos of five speech and gesture conditions performed by an actor, including variation of language (familiar German vs. unfamiliar Russian), variation of gesture (iconic vs. unrelated), as well as isolated familiar language, while brain activation was measured using functional magnetic resonance imaging. For familiar speech with either of both gesture types contrasted to Russian speech-gesture pairs, activation increases were observed at the left temporo-occipital junction. Apart from this shared location, speech with iconic gestures exclusively engaged left occipital areas, whereas speech with unrelated gestures activated bilateral parietal and posterior temporal regions. Our results demonstrate that the processing of speech with speech-related versus speech-unrelated gestures occurs in two distinct but partly overlapping networks. The distinct processing streams (visual versus linguistic/spatial) are interpreted in terms of "auxiliary systems" allowing the integration of speech and gesture in the left temporo-occipital region.
Language as a multimodal phenomenon: implications for language learning, processing and evolution.
Vigliocco, Gabriella; Perniss, Pamela; Vinson, David
2014-09-19
Our understanding of the cognitive and neural underpinnings of language has traditionally been firmly based on spoken Indo-European languages and on language studied as speech or text. However, in face-to-face communication, language is multimodal: speech signals are invariably accompanied by visual information on the face and in manual gestures, and sign languages deploy multiple channels (hands, face and body) in utterance construction. Moreover, the narrow focus on spoken Indo-European languages has entrenched the assumption that language is comprised wholly by an arbitrary system of symbols and rules. However, iconicity (i.e. resemblance between aspects of communicative form and meaning) is also present: speakers use iconic gestures when they speak; many non-Indo-European spoken languages exhibit a substantial amount of iconicity in word forms and, finally, iconicity is the norm, rather than the exception in sign languages. This introduction provides the motivation for taking a multimodal approach to the study of language learning, processing and evolution, and discusses the broad implications of shifting our current dominant approaches and assumptions to encompass multimodal expression in both signed and spoken languages. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Obermeier, Christian; Holle, Henning; Gunter, Thomas C
2011-07-01
The present series of experiments explores several issues related to gesture-speech integration and synchrony during sentence processing. To be able to more precisely manipulate gesture-speech synchrony, we used gesture fragments instead of complete gestures, thereby avoiding the usual long temporal overlap of gestures with their coexpressive speech. In a pretest, the minimal duration of an iconic gesture fragment needed to disambiguate a homonym (i.e., disambiguation point) was therefore identified. In three subsequent ERP experiments, we then investigated whether the gesture information available at the disambiguation point has immediate as well as delayed consequences on the processing of a temporarily ambiguous spoken sentence, and whether these gesture-speech integration processes are susceptible to temporal synchrony. Experiment 1, which used asynchronous stimuli as well as an explicit task, showed clear N400 effects at the homonym as well as at the target word presented further downstream, suggesting that asynchrony does not prevent integration under explicit task conditions. No such effects were found when asynchronous stimuli were presented using a more shallow task (Experiment 2). Finally, when gesture fragment and homonym were synchronous, similar results as in Experiment 1 were found, even under shallow task conditions (Experiment 3). We conclude that when iconic gesture fragments and speech are in synchrony, their interaction is more or less automatic. When they are not, more controlled, active memory processes are necessary to be able to combine the gesture fragment and speech context in such a way that the homonym is disambiguated correctly.
ERIC Educational Resources Information Center
Obermeier, Christian; Holle, Henning; Gunter, Thomas C.
2011-01-01
The present series of experiments explores several issues related to gesture-speech integration and synchrony during sentence processing. To be able to more precisely manipulate gesture-speech synchrony, we used gesture fragments instead of complete gestures, thereby avoiding the usual long temporal overlap of gestures with their coexpressive…
Using Visual Displays to Communicate Risk of Cancer to Women From Diverse Race/Ethnic Backgrounds
Wong, Sabrina T.; Pérez-Stable, Eliseo J.; Kim, Sue E.; Gregorich, Steven E.; Sawaya, George F.; Walsh, Judith M. E.; Washington, A. Eugene; Kaplan, Celia P.
2012-01-01
Objective This study evaluated how well women from diverse race/ethnic groups were able to take a quantitative cancer risk statistic verbally provided to them and report it in a visual format. Methods Cross-sectional survey was administered in English, Spanish or Chinese, to women aged 50 to 80 (n=1,160), recruited from primary care practices. The survey contained breast, colorectal or cervical cancer questions regarding screening and prevention. Women were told cancer-specific lifetime risk then shown a visual display of risk and asked to indicate the specific lifetime risk. Correct indication of risk was the main outcome. Results Correct responses on icon arrays were 46% for breast, 55% for colon, and 44% for cervical; only 25% correctly responded to a magnifying glass graphic. Compared to Whites, African American and Latina women were significantly less likely to use the icon arrays correctly. Higher education and higher numeracy were associated with correct responses. Lower education was associated with lower numeracy. Conclusions Race/Ethnic differences were associated with women’s ability to take a quantitative cancer risk statistic verbally provided to them and report it in a visual format. Practice Implications Systematically considering the complexity of intersecting factors such as race/ethnicity, educational level, poverty, and numeracy in most health communications is needed. (200) PMID:22244322
Insensitivity of visual short-term memory to irrelevant visual information.
Andrade, Jackie; Kemps, Eva; Werniers, Yves; May, Jon; Szmalec, Arnaud
2002-07-01
Several authors have hypothesized that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996b). Experiment I replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery.
Courtin, C; Hervé, P-Y; Petit, L; Zago, L; Vigneau, M; Beaucousin, V; Jobard, G; Mazoyer, B; Mellet, E; Tzourio-Mazoyer, N
2010-09-01
"Highly iconic" structures in Sign Language enable a narrator to act, switch characters, describe objects, or report actions in four-dimensions. This group of linguistic structures has no real spoken-language equivalent. Topographical descriptions are also achieved in a sign-language specific manner via the use of signing-space and spatial-classifier signs. We used functional magnetic resonance imaging (fMRI) to compare the neural correlates of topographic discourse and highly iconic structures in French Sign Language (LSF) in six hearing native signers, children of deaf adults (CODAs), and six LSF-naïve monolinguals. LSF materials consisted of videos of a lecture excerpt signed without spatially organized discourse or highly iconic structures (Lect LSF), a tale signed using highly iconic structures (Tale LSF), and a topographical description using a diagrammatic format and spatial-classifier signs (Topo LSF). We also presented texts in spoken French (Lect French, Tale French, Topo French) to all participants. With both languages, the Topo texts activated several different regions that are involved in mental navigation and spatial working memory. No specific correlate of LSF spatial discourse was evidenced. The same regions were more activated during Tale LSF than Lect LSF in CODAs, but not in monolinguals, in line with the presence of signing-space structure in both conditions. Motion processing areas and parts of the fusiform gyrus and precuneus were more active during Tale LSF in CODAs; no such effect was observed with French or in LSF-naïve monolinguals. These effects may be associated with perspective-taking and acting during personal transfers. 2010 Elsevier Inc. All rights reserved.
Pillai, Roshni; Yathiraj, Asha
2017-09-01
The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.
Avatar DNA Nanohybrid System in Chip-on-a-Phone
NASA Astrophysics Data System (ADS)
Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho
2014-05-01
Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording.
Avatar DNA Nanohybrid System in Chip-on-a-Phone
Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho
2014-01-01
Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording. PMID:24824876
How to reduce the effect of framing on messages about health.
Garcia-Retamero, Rocio; Galesic, Mirta
2010-12-01
Patients must be informed about risks before any treatment can be implemented. Yet serious problems in communicating these risks occur because of framing effects. To investigate the effects of different information frames when communicating health risks to people with high and low numeracy and determine whether these effects can be countered or eliminated by using different types of visual displays (i.e., icon arrays, horizontal bars, vertical bars, or pies). Experiment on probabilistic, nationally representative US (n = 492) and German (n = 495) samples, conducted in summer 2008. Participants' risk perceptions of the medical risk expressed in positive (i.e., chances of surviving after surgery) and negative (i.e., chances of dying after surgery) terms. Although low-numeracy people are more susceptible to framing than those with high numeracy, use of visual aids is an effective method to eliminate its effects. However, not all visual aids were equally effective: pie charts and vertical and horizontal bars almost completely removed the effect of framing. Icon arrays, however, led to a smaller decrease in the framing effect. Difficulties with understanding numerical information often do not reside in the mind, but in the representation of the problem.
Barton, Andrea; Sevcik, Rose A; Romski, Mary Ann
2006-03-01
The process of language acquisition requires an individual to organize the world through a system of symbols and referents. For children with severe intellectual disabilities and language delays, the ability to link a symbol to its referent may be a difficult task. In addition to the intervention strategy, issues such as the visual complexity and iconicity of a symbol arise when deciding what to select as a medium to teach language. This study explored the ability of four pre-school age children with developmental and language delays to acquire the meanings of Blissymbols and lexigrams using an observational experiential language intervention. In production, all four of the participants demonstrated symbol-referent relationships, while in comprehension, three of the four participants demonstrated at least emerging symbol-referent relationships. Although the number of symbols learned across participants varied, there were no differences between the learning of arbitrary and comparatively iconic symbols. The participants' comprehension skills appeared to influence their performance.
The Effect of Animated Banner Advertisements on a Visual Search Task
2001-01-01
experimental result calls into question previous advertising tips suggested by WebWeek, cited in [17]. In 1996, the online magazine recommended that site...prone in the presence of animated banners. Keywords Animation, visual search, banner advertisements , flashing INTRODUCTION As processor and Internet...is the best way to represent the selection tool in a toolbar, where each icon must fit in a small area? Photoshop and other popular painting programs
Making memories: the development of long-term visual knowledge in children with visual agnosia.
Metitieri, Tiziana; Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo
2013-01-01
There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2 years and 3.7 years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment.
Making Memories: The Development of Long-Term Visual Knowledge in Children with Visual Agnosia
Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo
2013-01-01
There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2 years and 3.7 years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment. PMID:24319599
Kristensen, Hanne; Oerbeck, Beate
2006-01-01
Our main aim in this study was to explore the association between selective mutism (SM) and aspects of nonverbal cognition such as visual memory span and visual memory. Auditory-verbal memory span was also examined. The etiology of SM is unclear, and it probably represents a heterogeneous condition. SM is associated with language impairment, but nonspecific neurodevelopmental factors, including motor problems, are also reported in SM without language impairment. Furthermore, SM is described in Asperger's syndrome. Studies on nonverbal cognition in SM thus merit further investigation. Neuropsychological tests were administered to a clinical sample of 32 children and adolescents with SM (ages 6-17 years, 14 boys and 18 girls) and 62 nonreferred controls matched for age, gender, and socioeconomic status. We used independent t-tests to compare groups with regard to auditory-verbal memory span, visual memory span, and visual memory (Benton Visual Retention Test), and employed linear regression analysis to study the impact of SM on visual memory, controlling for IQ and measures of language and motor function. The SM group differed from controls on auditory-verbal memory span but not on visual memory span. Controlled for IQ, language, and motor function, the SM group did not differ from controls on visual memory. Motor function was the strongest predictor of visual memory performance. SM does not appear to be associated with deficits in visual memory span or visual memory. The reduced auditory-verbal memory span supports the association between SM and language impairment. More comprehensive neuropsychological studies are needed.
Hand gestures support word learning in patients with hippocampal amnesia.
Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C
2018-06-01
Co-speech hand gesture facilitates learning and memory, yet the cognitive and neural mechanisms supporting this remain unclear. One possibility is that motor information in gesture may engage procedural memory representations. Alternatively, iconic information from gesture may contribute to declarative memory representations mediated by the hippocampus. To investigate these alternatives, we examined gesture's effects on word learning in patients with hippocampal damage and declarative memory impairment, with intact procedural memory, and in healthy and in brain-damaged comparison groups. Participants learned novel label-object pairings while producing gesture, observing gesture, or observing without gesture. After a delay, recall and object identification were assessed. Unsurprisingly, amnesic patients were unable to recall the labels at test. However, they correctly identified objects at above chance levels, but only if they produced a gesture at encoding. Comparison groups performed well above chance at both recall and object identification regardless of gesture. These findings suggest that gesture production may support word learning by engaging nondeclarative (procedural) memory. © 2018 Wiley Periodicals, Inc.
Educational Supports for Students with Special Needs: Preservice Music Educators' Perceptions
ERIC Educational Resources Information Center
Whipple, Jennifer; VanWeelden, Kimberly
2012-01-01
Historically, music educators have expressed concerns about inadequate preparation to work with students with special needs, specifically desiring skills related to instruction adaptation. Research has indicated that educational supports (written words, color coding, icons, echoing, buddy system, and other visual aids) can be particularly…
Object perception is selectively slowed by a visually similar working memory load.
Robinson, Alan; Manzi, Alberto; Triesch, Jochen
2008-12-22
The capacity of visual working memory has been extensively characterized, but little work has investigated how occupying visual memory influences other aspects of cognition and perception. Here we show a novel effect: maintaining an item in visual working memory slows processing of similar visual stimuli during the maintenance period. Subjects judged the gender of computer rendered faces or the naturalness of body postures while maintaining different visual memory loads. We found that when stimuli of the same class (faces or bodies) were maintained in memory, perceptual judgments were slowed. Interestingly, this is the opposite of what would be predicted from traditional priming. Our results suggest there is interference between visual working memory and perception, caused by visual similarity between new perceptual input and items already encoded in memory.
Intelligent Computer-Aided Instruction and Musical Performance Skills. CITE Report No. 18.
ERIC Educational Resources Information Center
Baker, Michael
This paper is a transcription from memory of a short talk that used overhead projector slides, with musical examples played on an Apple Macintosh computer and a Yamaha CX5 synthesizer. The slides appear in the text as reduced "icons" at the point where they would have been used in the talk. The paper concerns ways in which artificial intelligence…
1983-10-19
knowledge -based symbolic reasoning, it nonetheless remains de- pendent on the lower levels of iconic processing for its raw information . Both sorts of...priori knowledge of where any particular line might go, and therefore no information regarding the extent of memory access required for the local...IC FILE COPY ,. c 4/t/7 ISG Report 104 IMAGE UNDERSTANDING RESEARCH Final Technical Report Covering Research Activity During the Period October 1
77 FR 73008 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... release of the 2010 DGA a new communication initiative built around USDA's new MyPlate icon, including the resources at ChooseMyPlate.gov , was launched. MyPlate is a visual cue supported by Dietary Guidelines... how the Dietary Guidelines for Americans recommendations and messages supporting MyPlate are...
A dual-trace model for visual sensory memory.
Cappiello, Marcus; Zhang, Weiwei
2016-11-01
Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
An Experimental Analysis of Memory Processing
Wright, Anthony A
2007-01-01
Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory strengthened. Capuchin monkeys, pigeons, and humans showed similar visual-memory changes. Rhesus learned an auditory memory task and showed octave generalization for some lists of notes—tonal, but not atonal, musical passages. In contrast with visual list memory, auditory primacy memory diminished with delay and auditory recency memory strengthened. Manipulations of interitem intervals, list length, and item presentation frequency revealed proactive and retroactive inhibition among items of individual auditory lists. Repeating visual items from prior lists produced interference (on nonmatching tests) revealing how far back memory extended. The possibility of using the interference function to separate familiarity vs. recollective memory processing is discussed. PMID:18047230
van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T
2012-01-04
The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.
Olivers, Christian N L; Meijer, Frank; Theeuwes, Jan
2006-10-01
In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by an additional memory task. Singleton distractors interfered even more when they were identical or related to the object held in memory, but only when it was difficult to verbalize the memory content. Furthermore, this content-specific interaction occurred for features that were relevant to the memory task but not for irrelevant features of the same object or for once-remembered objects that could be forgotten. Finally, memory-related distractors attracted more eye movements but did not result in longer fixations. The results demonstrate memory-driven attentional capture on the basis of content-specific representations. Copyright 2006 APA.
Carabalona, Roberta
2017-01-01
Visual P300-based Brain-Computer Interface (BCI) spellers enable communication or interaction with the environment by flashing elements in a matrix and exploiting consequent changes in end-user's brain activity. Despite research efforts, performance variability and BCI-illiteracy still are critical issues for real world applications. Moreover, there is a quite unaddressed kind of BCI-illiteracy, which becomes apparent when the same end-user operates BCI-spellers intended for different applications: our aim is to understand why some well performers can become BCI-illiterate depending on speller type. We manipulated stimulus type (factor STIM: either characters or icons), color (factor COLOR: white, green) and timing (factor SPEED: fast, slow). Each BCI session consisted of training (without feedback) and performance phase (with feedback), both in copy-spelling. For fast flashing spellers, we observed a performance worsening for white icon-speller. Our findings are consistent with existing results reported on end-users using identical white×fast spellers, indicating independence of worsening trend from users' group. The use of slow stimulation timing shed a new light on the perceptual and cognitive phenomena related to the use of a BCI-speller during both the training and the performance phase. We found a significant STIM main effect for the N1 component on Pz and PO7 during the training phase and on PO8 during the performance phase, whereas in both phases neither the STIM×COLOR interaction nor the COLOR main effect was statistically significant. After collapsing data for factor COLOR, it emerged a statistically significant modulation of N1 amplitude depending to the phase of BCI session: N1 was more negative for icons than for characters both on Pz and PO7 (training), whereas the opposite modulation was observed for PO8 (performance). Results indicate that both feedback and expertise with respect to the stimulus type can modulate the N1 component and that icons require more perceptual analysis. Therefore, fast flashing is likely to be more detrimental for end-users' performance in case of icon-spellers. In conclusion, the interplay between stimulus type and timing seems relevant for a satisfactory and efficient end-user's BCI-experience. PMID:28713233
Carabalona, Roberta
2017-01-01
Visual P300-based Brain-Computer Interface (BCI) spellers enable communication or interaction with the environment by flashing elements in a matrix and exploiting consequent changes in end-user's brain activity. Despite research efforts, performance variability and BCI-illiteracy still are critical issues for real world applications. Moreover, there is a quite unaddressed kind of BCI-illiteracy, which becomes apparent when the same end-user operates BCI-spellers intended for different applications: our aim is to understand why some well performers can become BCI-illiterate depending on speller type. We manipulated stimulus type (factor STIM: either characters or icons), color (factor COLOR: white, green) and timing (factor SPEED: fast, slow). Each BCI session consisted of training (without feedback) and performance phase (with feedback), both in copy-spelling. For fast flashing spellers, we observed a performance worsening for white icon-speller. Our findings are consistent with existing results reported on end-users using identical white×fast spellers, indicating independence of worsening trend from users' group. The use of slow stimulation timing shed a new light on the perceptual and cognitive phenomena related to the use of a BCI-speller during both the training and the performance phase. We found a significant STIM main effect for the N1 component on P z and PO 7 during the training phase and on PO 8 during the performance phase, whereas in both phases neither the STIM×COLOR interaction nor the COLOR main effect was statistically significant. After collapsing data for factor COLOR, it emerged a statistically significant modulation of N1 amplitude depending to the phase of BCI session: N1 was more negative for icons than for characters both on P z and PO 7 (training), whereas the opposite modulation was observed for PO 8 (performance). Results indicate that both feedback and expertise with respect to the stimulus type can modulate the N1 component and that icons require more perceptual analysis. Therefore, fast flashing is likely to be more detrimental for end-users' performance in case of icon-spellers. In conclusion, the interplay between stimulus type and timing seems relevant for a satisfactory and efficient end-user's BCI-experience.
Visual Working Memory Capacity and Proactive Interference
Hartshorne, Joshua K.
2008-01-01
Background Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Methodology/Principal Findings Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. Conclusions/Significance This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals. PMID:18648493
Visual working memory capacity and proactive interference.
Hartshorne, Joshua K
2008-07-23
Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.
How to Reduce the Effect of Framing on Messages About Health
Galesic, Mirta
2010-01-01
ABSTRACT BACKGROUND Patients must be informed about risks before any treatment can be implemented. Yet serious problems in communicating these risks occur because of framing effects. OBJECTIVE To investigate the effects of different information frames when communicating health risks to people with high and low numeracy and determine whether these effects can be countered or eliminated by using different types of visual displays (i.e., icon arrays, horizontal bars, vertical bars, or pies). DESIGN Experiment on probabilistic, nationally representative US (n = 492) and German (n = 495) samples, conducted in summer 2008. OUTCOME MEASURES Participants’ risk perceptions of the medical risk expressed in positive (i.e., chances of surviving after surgery) and negative (i.e., chances of dying after surgery) terms. KEY RESULTS Although low‐numeracy people are more susceptible to framing than those with high numeracy, use of visual aids is an effective method to eliminate its effects. However, not all visual aids were equally effective: pie charts and vertical and horizontal bars almost completely removed the effect of framing. Icon arrays, however, led to a smaller decrease in the framing effect. CONCLUSIONS Difficulties with understanding numerical information often do not reside in the mind, but in the representation of the problem. PMID:20737295
Selective transfer of visual working memory training on Chinese character learning.
Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel
2014-01-01
Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and imagery processes with complex visual stimuli that fosters the coherent synthesis of a percept from a complex visual input in service of enhanced Chinese character learning. © 2013 Published by Elsevier Ltd.
The cost of misremembering: Inferring the loss function in visual working memory.
Sims, Chris R
2015-03-04
Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. © 2015 ARVO.
Siedlecki, Karen L
2015-01-01
Visual perspective in autobiographical memories was examined in terms of reliability, consistency, and relationship to objective memory performance in a sample of 99 individuals. Autobiographical memories may be recalled from two visual perspectives--a field perspective in which individuals experience the memory through their own eyes, or an observer perspective in which individuals experience the memory from the viewpoint of an observer in which they can see themselves. Participants recalled nine word-cued memories that differed in emotional valence (positive, negative and neutral) and rated their memories on 18 scales. Results indicate that visual perspective was the most reliable memory characteristic overall and is consistently related to emotional intensity at the time of recall and amount of emotion experienced during the memory. Visual perspective is unrelated to memory for words, stories, abstract line drawings or faces.
The sensory strength of voluntary visual imagery predicts visual working memory capacity.
Keogh, Rebecca; Pearson, Joel
2014-10-09
How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.
Meyerhoff, Hauke S; Huff, Markus
2016-04-01
Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.
The Rise of the Graphical User Interface.
ERIC Educational Resources Information Center
Edwards, Alastair D. N.
1996-01-01
Discusses the history of the graphical user interface (GUI) and the growing realization that adaptations must be made to it lest its visual nature discriminate against nonsighted or sight-impaired users. One of the most popular commercially developed adaptations is to develop sounds that signal the location of icons or menus to mouse users.…
A Curriculum for Logical Thinking. NAAESC Occasional Papers, Volume 1, Number 4.
ERIC Educational Resources Information Center
Charuhas, Mary S.
The purpose of this paper is to demonstrate methods for developing cognitive processes in adult students. It discusses concept formation and concept attainment, problem solving (which involves concept formation and concept attainment), Bruner's three stages of learning (enactive, iconic, and symbolic modes), and visual thinking. A curriculum for…
Badges: A Common Currency for Learning
ERIC Educational Resources Information Center
Bowen, Kyle; Thomas, Andrea
2014-01-01
Digital Badges--icons that can represent skills and achievements at a more fine-grained level than a degree--give colleges and universities a new way to document learning outcomes and to map the pathways students follow to earn a degree. They also provide a common currency to denote learning outcomes and give employers a visual representation and…
BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort
Avgan, Nesli; Sutherland, Heidi G.; Spriggens, Lauren K.; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.
2017-01-01
Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. PMID:28304362
BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort.
Avgan, Nesli; Sutherland, Heidi G; Spriggens, Lauren K; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R
2017-03-17
Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory ( p -value = 0.003) in a small cohort ( n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism ( p -value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF , and its anti-sense transcript BDNF-AS , in long-term visual memory performance.
Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby
2015-10-01
The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these findings, reading instruction that capitalizes on the strengths in visual short-term memory and working memory is suggested for young children with early-onset hearing loss. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The Impact of Visual Memory Deficits on Academic Achievement in Children and Adolescents
ERIC Educational Resources Information Center
Larsen, Jessica Maria
2011-01-01
Memory assessment can often alert practitioners and educators to learning problems children may be experiencing. Results of a memory assessment may indicate that a child has a specific memory deficit in verbal memory, visual memory, or both. Deficits in visual or verbal modes of memory could potentially have adverse effects on academic…
How visual working memory contents influence priming of visual attention.
Carlisle, Nancy B; Kristjánsson, Árni
2017-04-12
Recent evidence shows that when the contents of visual working memory overlap with targets and distractors in a pop-out search task, intertrial priming is inhibited (Kristjánsson, Sævarsson & Driver, Psychon Bull Rev 20(3):514-521, 2013, Experiment 2, Psychonomic Bulletin and Review). This may reflect an interesting interaction between implicit short-term memory-thought to underlie intertrial priming-and explicit visual working memory. Evidence from a non-pop-out search task suggests that it may specifically be holding distractors in visual working memory that disrupts intertrial priming (Cunningham & Egeth, Psychol Sci 27(4):476-485, 2016, Experiment 2, Psychological Science). We examined whether the inhibition of priming depends on whether feature values in visual working memory overlap with targets or distractors in the pop-out search, and we found that the inhibition of priming resulted from holding distractors in visual working memory. These results are consistent with separate mechanisms of target and distractor effects in intertrial priming, and support the notion that the impact of implicit short-term memory and explicit visual working memory can interact when each provides conflicting attentional signals.
A review of visual memory capacity: Beyond individual items and towards structured representations
Brady, Timothy F.; Konkle, Talia; Alvarez, George A.
2012-01-01
Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and structure of remembered information. The main thesis of this review will be that one cannot fully understand memory systems or memory processes without also determining the nature of memory representations. Nowhere is this connection more obvious than in research that attempts to measure the capacity of visual memory. We will review research on the capacity of visual working memory and visual long-term memory, highlighting recent work that emphasizes the contents of memory. This focus impacts not only how we estimate the capacity of the system - going beyond quantifying how many items can be remembered, and moving towards structured representations - but how we model memory systems and memory processes. PMID:21617025
Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.
Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein
2012-10-15
Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Olivers, Christian N. L.; Meijer, Frank; Theeuwes, Jan
2006-01-01
In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by…
Website Designs for Communicating About Chemicals in Cigarette Smoke.
Lazard, Allison J; Byron, M Justin; Vu, Huyen; Peters, Ellen; Schmidt, Annie; Brewer, Noel T
2017-12-13
The Family Smoking Prevention and Tobacco Control Act requires the US government to inform the public about the quantities of toxic chemicals in cigarette smoke. A website can accomplish this task efficiently, but the site's user interface must be usable to benefit the general public. We conducted online experiments with national convenience samples of 1,451 US adult smokers and nonsmokers to examine the impact of four interface display elements: the chemicals, their associated health effects, quantity information, and a visual risk indicator. Outcomes were perceptions of user experience (perceived clarity and usability), motivation (willingness to use), and potential impact (elaboration about the harms of smoking). We found displaying health effects as text with icons, providing quantity information for chemicals (e.g., ranges), and showing a visual risk indicator all improved the user experience of a webpage about chemicals in cigarette smoke (all p < .05). Displaying a combination of familiar and unfamiliar chemicals, providing quantity information for chemicals, and showing a visual risk indicator all improved motivation to use the webpage (all p < .05). Displaying health effects or quantity information increased the potential impact of the webpage (all p < .05). Overall, interface designs displaying health effects of chemicals in cigarette smoke as text with icons and with a visual risk indicator had the greatest impact on the user experience, motivation, and potential impact of the website. Our findings provide guidance for accessible website designs that can inform consumers about the toxic chemicals in cigarette smoke.
Shifting visual perspective during memory retrieval reduces the accuracy of subsequent memories.
Marcotti, Petra; St Jacques, Peggy L
2018-03-01
Memories for events can be retrieved from visual perspectives that were never experienced, reflecting the dynamic and reconstructive nature of memories. Characteristics of memories can be altered when shifting from an own eyes perspective, the way most events are initially experienced, to an observer perspective, in which one sees oneself in the memory. Moreover, recent evidence has linked these retrieval-related effects of visual perspective to subsequent changes in memories. Here we examine how shifting visual perspective influences the accuracy of subsequent memories for complex events encoded in the lab. Participants performed a series of mini-events that were experienced from their own eyes, and were later asked to retrieve memories for these events while maintaining the own eyes perspective or shifting to an alternative observer perspective. We then examined how shifting perspective during retrieval modified memories by influencing the accuracy of recall on a final memory test. Across two experiments, we found that shifting visual perspective reduced the accuracy of subsequent memories and that reductions in vividness when shifting visual perspective during retrieval predicted these changes in the accuracy of memories. Our findings suggest that shifting from an own eyes to an observer perspective influences the accuracy of long-term memories.
: Facebook Facebook Icon: Twitter Twitter Icon: YouTube YouTube Icon: Google Plus Google + Icon: Instagram Instagram Icon: Flickr Flickr Icon: DoDLive Blog DOD Live Blog Icon: Email Email Icon: RSS Feeds RSS Feeds
Molloy, Carly S; Wilson-Ching, Michelle; Doyle, Lex W; Anderson, Vicki A; Anderson, Peter J
2014-04-01
Contemporary data on visual memory and learning in survivors born extremely preterm (EP; <28 weeks gestation) or with extremely low birth weight (ELBW; <1,000 g) are lacking. Geographically determined cohort study of 298 consecutive EP/ELBW survivors born in 1991 and 1992, and 262 randomly selected normal-birth-weight controls. Visual learning and memory data were available for 221 (74.2%) EP/ELBW subjects and 159 (60.7%) controls. EP/ELBW adolescents exhibited significantly poorer performance across visual memory and learning variables compared with controls. Visual learning and delayed visual memory were particularly problematic and remained so after controlling for visual-motor integration and visual perception and excluding adolescents with neurosensory disability, and/or IQ <70. Male EP/ELBW adolescents or those treated with corticosteroids had poorer outcomes. EP/ELBW adolescents have poorer visual memory and learning outcomes compared with controls, which cannot be entirely explained by poor visual perceptual or visual constructional skills or intellectual impairment.
Shifting Visual Perspective During Retrieval Shapes Autobiographical Memories
St Jacques, Peggy L.; Szpunar, Karl K.; Schacter, Daniel L.
2016-01-01
The dynamic and flexible nature of memories is evident in our ability to adopt multiple visual perspectives. Although autobiographical memories are typically encoded from the visual perspective of our own eyes they can be retrieved from the perspective of an observer looking at our self. Here, we examined the neural mechanisms of shifting visual perspective during long-term memory retrieval and its influence on online and subsequent memories using functional magnetic resonance imaging (fMRI). Participants generated specific autobiographical memories from the last five years and rated their visual perspective. In a separate fMRI session, they were asked to retrieve the memories across three repetitions while maintaining the same visual perspective as their initial rating or by shifting to an alternative perspective. Visual perspective shifting during autobiographical memory retrieval was supported by a linear decrease in neural recruitment across repetitions in the posterior parietal cortices. Additional analyses revealed that the precuneus, in particular, contributed to both online and subsequent changes in the phenomenology of memories. Our findings show that flexibly shifting egocentric perspective during autobiographical memory retrieval is supported by the precuneus, and suggest that this manipulation of mental imagery during retrieval has consequences for how memories are retrieved and later remembered. PMID:27989780
NPS Collaborative Technology Testbed for ONR CKM Program
2005-01-11
or have access to the MIT E-Wall hosted by the TOC. The combination of E-Wall and agents lend themselves to the dynamic gathering and display of...display, intuitive icons or menus that is easy to activate and customize , and automatically seeks and connects to other like services/networks/agents...integration creates network- centric memory mechanism for developing shared understanding of SA events Data Base Integration of Sensor-DM Agents and
1989-02-01
Doctor of Philosophy in the Department of Experimental and Clinical Psychology in the Graduate School of the University of Alabama. Ii. Table of...6 In contrast to this popular single buffer account, other authors have offered more complex descriptions of the mechanisms involved in the processing...experiment exploring sex differences in retention of verbal and spatial information in short-term memory. Males remembered letter identity and letter
Infant Visual Recognition Memory
ERIC Educational Resources Information Center
Rose, Susan A.; Feldman, Judith F.; Jankowski, Jeffery J.
2004-01-01
Visual recognition memory is a robust form of memory that is evident from early infancy, shows pronounced developmental change, and is influenced by many of the same factors that affect adult memory; it is surprisingly resistant to decay and interference. Infant visual recognition memory shows (a) modest reliability, (b) good discriminant…
Defense.gov Special Report: Travels with Winnefeld: USO Tour
: Facebook Facebook Icon: Twitter Twitter Icon: YouTube YouTube Icon: Google Plus Google + Icon: Instagram Instagram Icon: Flickr Flickr Icon: DoDLive Blog DOD Live Blog Icon: Email Email Icon: RSS Feeds RSS Feeds
Defense.gov Special Report: Travels with Lynn - June 2011
: Facebook Facebook Icon: Twitter Twitter Icon: YouTube YouTube Icon: Google Plus Google + Icon: Instagram Instagram Icon: Flickr Flickr Icon: DoDLive Blog DOD Live Blog Icon: Email Email Icon: RSS Feeds RSS Feeds
Semantic and Visual Memory After Alcohol Abuse.
ERIC Educational Resources Information Center
Donat, Dennis C.
1986-01-01
Compared the relative performance of 40 patients with a history of alcohol abuse on tasks of short-term semantic and visual memory. Performance on the visual memory tasks was impaired significantly relative to the semantic memory task in a within-subjects analysis of variance. Semantic memory was unimpaired. (Author/ABB)
Visual long-term memory has the same limit on fidelity as visual working memory.
Brady, Timothy F; Konkle, Talia; Gill, Jonathan; Oliva, Aude; Alvarez, George A
2013-06-01
Visual long-term memory can store thousands of objects with surprising visual detail, but just how detailed are these representations, and how can one quantify this fidelity? Using the property of color as a case study, we estimated the precision of visual information in long-term memory, and compared this with the precision of the same information in working memory. Observers were shown real-world objects in random colors and were asked to recall the colors after a delay. We quantified two parameters of performance: the variability of internal representations of color (fidelity) and the probability of forgetting an object's color altogether. Surprisingly, the fidelity of color information in long-term memory was comparable to the asymptotic precision of working memory. These results suggest that long-term memory and working memory may be constrained by a common limit, such as a bound on the fidelity required to retrieve a memory representation.
Serum Dioxin and Memory Among Veterans of Operation Ranch Hand
2007-09-01
logical memory and visual reproductions subtests. In 1987, the WMS-R was published, expanding on the original WMS and creating a more thorough and...the Verbal Paired Associates subtest, the Logical Memory subtest (immediate and delayed recall), and the Visual Reproduction subtest (immediate and...Visual Reproduction subtest, designed to assess visual memory, the veteran was asked to draw from memory four simple geometric designs that were each
Verbal overshadowing of visual memories: some things are better left unsaid.
Schooler, J W; Engstler-Schooler, T Y
1990-01-01
It is widely believed that verbal processing generally improves memory performance. However, in a series of six experiments, verbalizing the appearance of previously seen visual stimuli impaired subsequent recognition performance. In Experiment 1, subjects viewed a videotape including a salient individual. Later, some subjects described the individual's face. Subjects who verbalized the face performed less well on a subsequent recognition test than control subjects who did not engage in memory verbalization. The results of Experiment 2 replicated those of Experiment 1 and further clarified the effect of memory verbalization by demonstrating that visualization does not impair face recognition. In Experiments 3 and 4 we explored the hypothesis that memory verbalization impairs memory for stimuli that are difficult to put into words. In Experiment 3 memory impairment followed the verbalization of a different visual stimulus: color. In Experiment 4 marginal memory improvement followed the verbalization of a verbal stimulus: a brief spoken statement. In Experiments 5 and 6 the source of verbally induced memory impairment was explored. The results of Experiment 5 suggested that the impairment does not reflect a temporary verbal set, but rather indicates relatively long-lasting memory interference. Finally, Experiment 6 demonstrated that limiting subjects' time to make recognition decisions alleviates the impairment, suggesting that memory verbalization overshadows but does not eradicate the original visual memory. This collection of results is consistent with a recording interference hypothesis: verbalizing a visual memory may produce a verbally biased memory representation that can interfere with the application of the original visual memory.
Moreno-Granados, Josefa María; Ferrín, Maite; Salcedo-Marín, Dolores M; Ruiz-Veguilla, Miguel
2014-01-01
The importance of neuropsychological functioning in First-Episode Psychosis (FEP) has led to the publication of a growing number of studies in this area of research. The present study pursued three goals: First, to examine verbal and visual memory in a sample of Child and Adolescent FEP, second, to evaluate the effect of other cognitive domains on verbal and visual memory, and finally, to examine the relationship between performance in this cognitive dimension and the use of cannabis at this age. A sample of 41 FEPs and 39 healthy subjects were evaluated. The variables assessed were verbal and visual memory, attention, working memory, processing speed, mental flexibility, verbal fluency, motor coordination, planning ability and intelligence. Our results found impairment of short and long-term recall of verbal memory, and short-term visual memory in early psychosis. They also found relationships between cognitive dimensions, such as visual memory and intelligence and motor coordination. Finally, a «paradoxical» effect was found in patients who used cannabis, as the FEP consumers performed the visual memory test better than those who had not used it. Patients showed impairment of short and long-term recall of verbal information and short-term visual reproduction. In the second place, motor coordination and intelligence influenced short-term visual memory in patients in the early stages of the illness. Third, use of cannabis in patients with FEP was associated with better performance in the test that evaluated the short-term visual memory, as measured by task completion time, that is, efficiency in performing the test. However, when measured by task execution accuracy, their visual memory was no better than the controls. Copyright © 2012 SEP y SEPB. Published by Elsevier España. All rights reserved.
Stay connected | National Oceanic and Atmospheric Administration
areas and people. Please note: Some links below will lead to non-governmental websites visit the site disclaimer to see how these links are handled. Facebook icon. Facebook Facebook lets users follow people and ;a visual discovery tool that you can use to find ideas for all your projects and interests."
Finding the Rose Among the Thorns: Some Thoughts on Integrating Media Research.
ERIC Educational Resources Information Center
Angert, Jay F.; Clark, Francis E.
A meta-analysis procedure was used to review research on pictorial effectiveness which focused on the use of static iconic visuals in instructional materials. The purpose of this exploratory study was to provide a means for forming future hypotheses based upon a quantitative aggregation of past research. The study was concerned with differential…
Drew, Trafton; Boettcher, Sage E P; Wolfe, Jeremy M
2016-02-01
In "hybrid search" tasks, such as finding items on a grocery list, one must search the scene for targets while also searching the list in memory. How is the representation of a visual item compared with the representations of items in the memory set? Predominant theories would propose a role for visual working memory (VWM) either as the site of the comparison or as a conduit between visual and memory systems. In seven experiments, we loaded VWM in different ways and found little or no effect on hybrid search performance. However, the presence of a hybrid search task did reduce the measured capacity of VWM by a constant amount regardless of the size of the memory or visual sets. These data are broadly consistent with an account in which VWM must dedicate a fixed amount of its capacity to passing visual representations to long-term memory for comparison to the items in the memory set. The data cast doubt on models in which the search template resides in VWM or where memory set item representations are moved from LTM through VWM to earlier areas for comparison to visual items.
Student Visual Communication of Evolution
NASA Astrophysics Data System (ADS)
Oliveira, Alandeom W.; Cook, Kristin
2017-06-01
Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.
Task set induces dynamic reallocation of resources in visual short-term memory.
Sheremata, Summer L; Shomstein, Sarah
2017-08-01
Successful interaction with the environment requires the ability to flexibly allocate resources to different locations in the visual field. Recent evidence suggests that visual short-term memory (VSTM) resources are distributed asymmetrically across the visual field based upon task demands. Here, we propose that context, rather than the stimulus itself, determines asymmetrical distribution of VSTM resources. To test whether context modulates the reallocation of resources to the right visual field, task set, defined by memory-load, was manipulated to influence visual short-term memory performance. Performance was measured for single-feature objects embedded within predominantly single- or two-feature memory blocks. Therefore, context was varied to determine whether task set directly predicts changes in visual field biases. In accord with the dynamic reallocation of resources hypothesis, task set, rather than aspects of the physical stimulus, drove improvements in performance in the right- visual field. Our results show, for the first time, that preparation for upcoming memory demands directly determines how resources are allocated across the visual field.
Gender differences in episodic memory and visual working memory including the effects of age.
Pauls, Franz; Petermann, Franz; Lepach, Anja Christina
2013-01-01
Analysing the relationship between gender and memory, and examining the effects of age on the overall memory-related functioning, are the ongoing goals of psychological research. The present study examined gender and age group differences in episodic memory with respect to the type of task. In addition, these subgroup differences were also analysed in visual working memory. A sample of 366 women and 330 men, aged between 16 and 69 years of age, participated in the current study. Results indicate that women outperformed men on auditory memory tasks, whereas male adolescents and older male adults showed higher level performances on visual episodic and visual working memory measures. However, the size of gender-linked effects varied somewhat across age groups. Furthermore, results partly support a declining performance on episodic memory and visual working memory measures with increasing age. Although age-related losses in episodic memory could not be explained by a decreasing verbal and visuospatial ability with age, women's advantage in auditory episodic memory could be explained by their advantage in verbal ability. Men's higher level visual episodic memory performance was found to result from their advantage in visuospatial ability. Finally, possible methodological, biological, and cognitive explanations for the current findings are discussed.
Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.
Harrison, William J; Bays, Paul M
2018-03-21
The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural architecture in sensory cortex that encodes stimuli. We investigated this claim by manipulating the spacing in visual cortex between sequentially presented memoranda such that some items shared cortical representations more than others while preventing perceptual interference between stimuli. We found clear evidence that short-term memory is independent of the intracortical spacing of memoranda, revealing a dissociation between perceptual and memory representations. Our data indicate that working memory relies on different neural mechanisms from sensory perception. Copyright © 2018 Harrison and Bays.
Does constraining memory maintenance reduce visual search efficiency?
Buttaccio, Daniel R; Lange, Nicholas D; Thomas, Rick P; Dougherty, Michael R
2018-03-01
We examine whether constraining memory retrieval processes affects performance in a cued recall visual search task. In the visual search task, participants are first presented with a memory prompt followed by a search array. The memory prompt provides diagnostic information regarding a critical aspect of the target (its colour). We assume that upon the presentation of the memory prompt, participants retrieve and maintain hypotheses (i.e., potential target characteristics) in working memory in order to improve their search efficiency. By constraining retrieval through the manipulation of time pressure (Experiments 1A and 1B) or a concurrent working memory task (Experiments 2A, 2B, and 2C), we directly test the involvement of working memory in visual search. We find some evidence that visual search is less efficient under conditions in which participants were likely to be maintaining fewer hypotheses in working memory (Experiments 1A, 2A, and 2C), suggesting that the retrieval of representations from long-term memory into working memory can improve visual search. However, these results should be interpreted with caution, as the data from two experiments (Experiments 1B and 2B) did not lend support for this conclusion.
Iconic photographs and the ebb and flow of empathic response to humanitarian disasters.
Slovic, Paul; Västfjäll, Daniel; Erlandsson, Arvid; Gregory, Robin
2017-01-24
The power of visual imagery is well known, enshrined in such familiar sayings as "seeing is believing" and "a picture is worth a thousand words." Iconic photos stir our emotions and transform our perspectives about life and the world in which we live. On September 2, 2015, photographs of a young Syrian child, Aylan Kurdi, lying face-down on a Turkish beach, filled the front pages of newspapers worldwide. These images brought much-needed attention to the Syrian war that had resulted in hundreds of thousands of deaths and created millions of refugees. Here we present behavioral data demonstrating that, in this case, an iconic photo of a single child had more impact than statistical reports of hundreds of thousands of deaths. People who had been unmoved by the relentlessly rising death toll in Syria suddenly appeared to care much more after having seen Aylan's photograph; however, this newly created empathy waned rather quickly. We briefly examine the psychological processes underlying these findings, discuss some of their policy implications, and reflect on the lessons they provide about the challenges to effective intervention in the face of mass threats to human well-being.
Iconic photographs and the ebb and flow of empathic response to humanitarian disasters
Slovic, Paul; Västfjäll, Daniel; Erlandsson, Arvid; Gregory, Robin
2017-01-01
The power of visual imagery is well known, enshrined in such familiar sayings as “seeing is believing” and “a picture is worth a thousand words.” Iconic photos stir our emotions and transform our perspectives about life and the world in which we live. On September 2, 2015, photographs of a young Syrian child, Aylan Kurdi, lying face-down on a Turkish beach, filled the front pages of newspapers worldwide. These images brought much-needed attention to the Syrian war that had resulted in hundreds of thousands of deaths and created millions of refugees. Here we present behavioral data demonstrating that, in this case, an iconic photo of a single child had more impact than statistical reports of hundreds of thousands of deaths. People who had been unmoved by the relentlessly rising death toll in Syria suddenly appeared to care much more after having seen Aylan’s photograph; however, this newly created empathy waned rather quickly. We briefly examine the psychological processes underlying these findings, discuss some of their policy implications, and reflect on the lessons they provide about the challenges to effective intervention in the face of mass threats to human well-being. PMID:28074038
Visual short-term memory always requires general attention.
Morey, Candice C; Bieler, Malte
2013-02-01
The role of attention in visual memory remains controversial; while some evidence has suggested that memory for binding between features demands no more attention than does memory for the same features, other evidence has indicated cognitive costs or mnemonic benefits for explicitly attending to bindings. We attempted to reconcile these findings by examining how memory for binding, for features, and for features during binding is affected by a concurrent attention-demanding task. We demonstrated that performing a concurrent task impairs memory for as few as two visual objects, regardless of whether each object includes one or more features. We argue that this pattern of results reflects an essential role for domain-general attention in visual memory, regardless of the simplicity of the to-be-remembered stimuli. We then discuss the implications of these findings for theories of visual working memory.
High visual working memory capacity in trait social anxiety.
Moriya, Jun; Sugiura, Yoshinori
2012-01-01
Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.
Method matters: Systematic effects of testing procedure on visual working memory sensitivity
Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.
2010-01-01
Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This study presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the testing procedure, supporting the idea that representations in visual WM are susceptible to interference from testing. In this study, participants were shown an array of colors to remember. After a short retention interval, memory for one of the items was tested with either a same-different task or a 2-alternative-forced-choice (2AFC) task. Memory sensitivity was much lower in the 2AFC task than in the same-different task. This difference was found regardless of encoding similarity or whether visual WM required a fine memory resolution or a coarse resolution. The 2AFC disadvantage was reduced when participants were informed shortly before testing which item would be probed. The 2AFC disadvantage diminished in perceptual tasks and was not found in tasks probing visual long-term memory. These results support memory models that acknowledge the labile nature of visual WM, and have implications for the format of visual WM and its assessment. PMID:20854011
Storage of features, conjunctions and objects in visual working memory.
Vogel, E K; Woodman, G F; Luck, S J
2001-02-01
Working memory can be divided into separate subsystems for verbal and visual information. Although the verbal system has been well characterized, the storage capacity of visual working memory has not yet been established for simple features or for conjunctions of features. The authors demonstrate that it is possible to retain information about only 3-4 colors or orientations in visual working memory at one time. Observers are also able to retain both the color and the orientation of 3-4 objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing many individual features to be retained when distributed across a small number of objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features.
The cortical basis of true memory and false memory for motion.
Karanian, Jessica M; Slotnick, Scott D
2014-02-01
Behavioral evidence indicates that false memory, like true memory, can be rich in sensory detail. By contrast, there is fMRI evidence that true memory for visual information produces greater activity in earlier visual regions than false memory, which suggests true memory is associated with greater sensory detail. However, false memory in previous fMRI paradigms may have lacked sufficient sensory detail to recruit earlier visual processing regions. To investigate this possibility in the present fMRI study, we employed a paradigm that produced feature-specific false memory with a high degree of visual detail. During the encoding phase, moving or stationary abstract shapes were presented to the left or right of fixation. During the retrieval phase, shapes from encoding were presented at fixation and participants classified each item as previously "moving" or "stationary" within each visual field. Consistent with previous fMRI findings, true memory but not false memory for motion activated motion processing region MT+, while both true memory and false memory activated later cortical processing regions. In addition, false memory but not true memory for motion activated language processing regions. The present findings indicate that true memory activates earlier visual regions to a greater degree than false memory, even under conditions of detailed retrieval. Thus, the dissociation between previous behavioral findings and fMRI findings do not appear to be task dependent. Future work will be needed to assess whether the same pattern of true memory and false memory activity is observed for different sensory modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Iconic memory-based omnidirectional route panorama navigation.
Yagi, Yasushi; Imai, Kousuke; Tsuji, Kentaro; Yachida, Masahiko
2005-01-01
A route navigation method for a mobile robot with an omnidirectional image sensor is described. The route is memorized from a series of consecutive omnidirectional images of the horizon when the robot moves to its goal. While the robot is navigating to the goal point, input is matched against the memorized spatio-temporal route pattern by using dual active contour models and the exact robot position and orientation is estimated from the converged shape of the active contour models.
Different effects of executive and visuospatial working memory on visual consciousness.
De Loof, Esther; Poppe, Louise; Cleeremans, Axel; Gevers, Wim; Van Opstal, Filip
2015-11-01
Consciousness and working memory are two widely studied cognitive phenomena. Although they have been closely tied on a theoretical and neural level, empirical work that investigates their relation is largely lacking. In this study, the relationship between visual consciousness and different working memory components is investigated by using a dual-task paradigm. More specifically, while participants were performing a visual detection task to measure their visual awareness threshold, they had to concurrently perform either an executive or visuospatial working memory task. We hypothesized that visual consciousness would be hindered depending on the type and the size of the load in working memory. Results showed that maintaining visuospatial content in working memory hinders visual awareness, irrespective of the amount of information maintained. By contrast, the detection threshold was progressively affected under increasing executive load. Interestingly, increasing executive load had a generic effect on detection speed, calling into question whether its obstructing effect is specific to the visual awareness threshold. Together, these results indicate that visual consciousness depends differently on executive and visuospatial working memory.
The role of early visual cortex in visual short-term memory and visual attention.
Offen, Shani; Schluppeck, Denis; Heeger, David J
2009-06-01
We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.
Introduction to the special issue on visual working memory.
Wolfe, Jeremy M
2014-10-01
Visual working memory is a volatile, limited-capacity memory that appears to play an important role in our impression of a visual world that is continuous in time. It also mediates between the contents of the mind and the contents of that visual world. Research on visual working memory has become increasingly prominent in recent years. The articles in this special issue of Attention, Perception, & Psychophysics describe new empirical findings and theoretical understandings of the topic.
Effects of Iconicity and Semantic Relatedness on Lexical Access in American Sign Language
Bosworth, Rain G.; Emmorey, Karen
2010-01-01
Iconicity is a property that pervades the lexicon of many sign languages, including American Sign Language (ASL). Iconic signs exhibit a motivated, non-arbitrary mapping between the form of the sign and its meaning. We investigated whether iconicity enhances semantic priming effects for ASL and whether iconic signs are recognized more quickly than non-iconic signs (controlling for strength of iconicity, semantic relatedness, familiarity, and imageability). Twenty deaf signers made lexical decisions to the second item of a prime-target pair. Iconic target signs were preceded by prime signs that were a) iconic and semantically related, b) non-iconic and semantically related, or c) semantically unrelated. In addition, a set of non-iconic target signs was preceded by semantically unrelated primes. Significant facilitation was observed for target signs when preceded by semantically related primes. However, iconicity did not increase the priming effect (e.g., the target sign PIANO was primed equally by the iconic sign GUITAR and the non-iconic sign MUSIC). In addition, iconic signs were not recognized faster or more accurately than non-iconic signs. These results confirm the existence of semantic priming for sign language and suggest that iconicity does not play a robust role in on-line lexical processing. PMID:20919784
When does Iconicity in Sign Language Matter?
Baus, Cristina; Carreiras, Manuel; Emmorey, Karen
2012-01-01
We examined whether iconicity in American Sign Language (ASL) enhances translation performance for new learners and proficient signers. Fifteen hearing nonsigners and 15 proficient ASL-English bilinguals performed a translation recognition task and a production translation task. Nonsigners were taught 28 ASL verbs (14 iconic; 14 non-iconic) prior to performing these tasks. Only new learners benefited from sign iconicity, recognizing iconic translations faster and more accurately and exhibiting faster forward (English-ASL) and backward (ASL-English) translation times for iconic signs. In contrast, proficient ASL-English bilinguals exhibited slower recognition and translation times for iconic signs. We suggest iconicity aids memorization in the early stages of adult sign language learning, but for fluent L2 signers, iconicity interacts with other variables that slow translation (specifically, the iconic signs had more translation equivalents than the non-iconic signs). Iconicity may also have slowed translation performance by forcing conceptual mediation for iconic signs, which is slower than translating via direct lexical links. PMID:23543899
Qualitative similarities in the visual short-term memory of pigeons and people.
Gibson, Brett; Wasserman, Edward; Luck, Steven J
2011-10-01
Visual short-term memory plays a key role in guiding behavior, and individual differences in visual short-term memory capacity are strongly predictive of higher cognitive abilities. To provide a broader evolutionary context for understanding this memory system, we directly compared the behavior of pigeons and humans on a change detection task. Although pigeons had a lower storage capacity and a higher lapse rate than humans, both species stored multiple items in short-term memory and conformed to the same basic performance model. Thus, despite their very different evolutionary histories and neural architectures, pigeons and humans have functionally similar visual short-term memory systems, suggesting that the functional properties of visual short-term memory are subject to similar selective pressures across these distant species.
Left-Brain Finance for Right-Brain People: A Money Guide for the Creatively Inclined.
ERIC Educational Resources Information Center
Monroe, Paula Ann
This basic money book takes a creative approach for visual learners by using icons, varied fonts, and highlighted text. The book's design will appeal to holistic thinkers by allowing them to jump from point to point without losing overall meaning. It is divided into five sections, each with a subset of related topics: (1) "The Big…
Testing and evaluation of a wearable augmented reality system for natural outdoor environments
NASA Astrophysics Data System (ADS)
Roberts, David; Menozzi, Alberico; Cook, James; Sherrill, Todd; Snarski, Stephen; Russler, Pat; Clipp, Brian; Karl, Robert; Wenger, Eric; Bennett, Matthew; Mauger, Jennifer; Church, William; Towles, Herman; MacCabe, Stephen; Webb, Jeffrey; Lupo, Jasper; Frahm, Jan-Michael; Dunn, Enrique; Leslie, Christopher; Welch, Greg
2013-05-01
This paper describes performance evaluation of a wearable augmented reality system for natural outdoor environments. Applied Research Associates (ARA), as prime integrator on the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program, is developing a soldier-worn system to provide intuitive `heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a novel pose estimation capability, a helmet-mounted see-through display, and a wearable processing unit to accurately overlay geo-registered iconography (e.g., navigation waypoints, sensor points of interest, blue forces, aircraft) on the soldier's view of reality. We achieve accurate pose estimation through fusion of inertial, magnetic, GPS, terrain data, and computer-vision inputs. We leverage a helmet-mounted camera and custom computer vision algorithms to provide terrain-based measurements of absolute orientation (i.e., orientation of the helmet with respect to the earth). These orientation measurements, which leverage mountainous terrain horizon geometry and mission planning landmarks, enable our system to operate robustly in the presence of external and body-worn magnetic disturbances. Current field testing activities across a variety of mountainous environments indicate that we can achieve high icon geo-registration accuracy (<10mrad) using these vision-based methods.
Differential learning and memory performance in OEF/OIF veterans for verbal and visual material.
Sozda, Christopher N; Muir, James J; Springer, Utaka S; Partovi, Diana; Cole, Michael A
2014-05-01
Memory complaints are particularly salient among veterans who experience combat-related mild traumatic brain injuries and/or trauma exposure, and represent a primary barrier to successful societal reintegration and everyday functioning. Anecdotally within clinical practice, verbal learning and memory performance frequently appears differentially reduced versus visual learning and memory scores. We sought to empirically investigate the robustness of a verbal versus visual learning and memory discrepancy and to explore potential mechanisms for a verbal/visual performance split. Participants consisted of 103 veterans with reported history of mild traumatic brain injuries returning home from U.S. military Operations Enduring Freedom and Iraqi Freedom referred for outpatient neuropsychological evaluation. Findings indicate that visual learning and memory abilities were largely intact while verbal learning and memory performance was significantly reduced in comparison, residing at approximately 1.1 SD below the mean for verbal learning and approximately 1.4 SD below the mean for verbal memory. This difference was not observed in verbal versus visual fluency performance, nor was it associated with estimated premorbid verbal abilities or traumatic brain injury history. In our sample, symptoms of depression, but not posttraumatic stress disorder, were significantly associated with reduced composite verbal learning and memory performance. Verbal learning and memory performance may benefit from targeted treatment of depressive symptomatology. Also, because visual learning and memory functions may remain intact, these might be emphasized when applying neurocognitive rehabilitation interventions to compensate for observed verbal learning and memory difficulties.
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2012-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars presented from each category. At test, observers indicated which of 2 exemplars they had previously studied. Memory performance was high and remained quite high (82% accuracy) with 16 exemplars from a category in memory, demonstrating a large memory capacity for object exemplars. However, memory performance decreased as more exemplars were held in memory, implying systematic categorical interference. Object categories with conceptually distinctive exemplars showed less interference in memory as the number of exemplars increased. Interference in memory was not predicted by the perceptual distinctiveness of exemplars from an object category, though these perceptual measures predicted visual search rates for an object target among exemplars. These data provide evidence that observers’ capacity to remember visual information in long-term memory depends more on conceptual structure than perceptual distinctiveness. PMID:20677899
ERIC Educational Resources Information Center
Olivers, Christian N. L.
2009-01-01
An important question is whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. Some past research has indicated that they do: Singleton distractors interfered more strongly with a visual search task when they…
An Experimental Analysis of Memory Processing
ERIC Educational Resources Information Center
Wright, Anthony A.
2007-01-01
Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory…
Spatial Working Memory Effects in Early Visual Cortex
ERIC Educational Resources Information Center
Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan
2010-01-01
The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…
Visual dot interaction with short-term memory.
Etindele Sosso, Faustin Armel
2017-06-01
Many neurodegenerative diseases have a memory component. Brain structures related to memory are affected by environmental stimuli, and it is difficult to dissociate effects of all behavior of neurons. Here, visual cortex of mice was stimulated with gratings and dot, and an observation of neuronal activity before and after was made. Bandwidth, firing rate and orientation selectivity index were evaluated. A primary communication between primary visual cortex and short-term memory appeared to show an interesting path to train cognitive circuitry and investigate the basics mechanisms of the neuronal learning. The findings also suggested the interplay between primary visual cortex and short-term plasticity. The properties inside a visual target shape the perception and affect the basic encoding. Using visual cortex, it may be possible to train the memory and improve the recovery of people with cognitive disabilities or memory deficit.
Components of working memory and visual selective attention.
Burnham, Bryan R; Sabia, Matthew; Langan, Catherine
2014-02-01
Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Office of the Under Secretary of Defense (Comptroller)
Estimates for FY 2019 (Green Book) PDF icon Excel icon (Zip File) Operations and Maintenance Overview Operation and Maintenance Overview PDF icon Budget Documents Military Personnel Programs (M-1) PDF icon Excel icon - Budget Appendix Display (M-1) Excel icon Operation and Maintenance Programs (O-1) PDF icon
The impact of interference on short-term memory for visual orientation.
Rademaker, Rosanne L; Bloem, Ilona M; De Weerd, Peter; Sack, Alexander T
2015-12-01
Visual short-term memory serves as an efficient buffer for maintaining no longer directly accessible information. How robust are visual memories against interference? Memory for simple visual features has proven vulnerable to distractors containing conflicting information along the relevant stimulus dimension, leading to the idea that interacting feature-specific channels at an early stage of visual processing support memory for simple visual features. Here we showed that memory for a single randomly orientated grating was susceptible to interference from a to-be-ignored distractor grating presented midway through a 3-s delay period. Memory for the initially presented orientation became noisier when it differed from the distractor orientation, and response distributions were shifted toward the distractor orientation (by ∼3°). Interestingly, when the distractor was rendered task-relevant by making it a second memory target, memory for both retained orientations showed reduced reliability as a function of increased orientation differences between them. However, the degree to which responses to the first grating shifted toward the orientation of the task-relevant second grating was much reduced. Finally, using a dichoptic display, we demonstrated that these systematic biases caused by a consciously perceived distractor disappeared once the distractor was presented outside of participants' awareness. Together, our results show that visual short-term memory for orientation can be systematically biased by interfering information that is consciously perceived. (c) 2015 APA, all rights reserved).
Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.
Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608
Potheegadoo, Jevita; Berna, Fabrice; Cuervo-Lombard, Christine; Danion, Jean-Marie
2013-10-01
There is growing interest in clinical research regarding the visual perspective adopted during memory retrieval, because it reflects individuals' self-attitude towards their memories of past personal events. Several autobiographical memory deficits, including low specificity of personal memories, have been identified in schizophrenia, but visual perspective during autobiographical memory retrieval has not yet been investigated in patients. The aim of this study was therefore to investigate the visual perspective with which patients visualize themselves when recalling autobiographical memories and to assess the specificity of their memories which is a major determinant of visual perspective. Thirty patients with schizophrenia and 30 matched controls recalled personal events from 4 life periods. After each recall, they were asked to report their visual perspective (Field or Observer) associated with the event. The specificity of their memories was assessed by independent raters. Our results showed that patients reported significantly fewer Field perspectives than comparison participants. Patients' memories, whether recalled with Field or Observer perspectives, were less specific and less detailed. Our results indicate that patients with schizophrenia adopt Field perspectives less frequently than comparison participants, and that this may contribute to a weakened sense of the individual of being an actor of his past events, and hence to a reduced sense of self. They suggest that this may be related to low specificity of memories and that all the important aspects involved in re-experiencing autobiographical events are impaired in patients with schizophrenia. © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Wong, Jason H.; Peterson, Matthew S.; Thompson, James C.
2008-01-01
The capacity of visual working memory was examined when complex objects from different categories were remembered. Previous studies have not examined how visual similarity affects object memory, though it has long been known that similar-sounding phonological information interferes with rehearsal in auditory working memory. Here, experiments…
ERIC Educational Resources Information Center
Bedard, Anne-Claude; Martinussen, Rhonda; Ickowicz, Abel; Tannock, Rosemary
2004-01-01
Objective: To investigate the effect of methylphenidate (MPH) on visual-spatial memory, as measured by subtests of the Cambridge Neuropsychological Testing Automated Battery (CANTAB), in children with attention-deficit/hyperactivity disorder (ADHD). Visual-spatial memory is a core component of working memory that has been shown to be impaired in…
Spatial Working Memory Interferes with Explicit, but Not Probabilistic Cuing of Spatial Attention
ERIC Educational Resources Information Center
Won, Bo-Yeong; Jiang, Yuhong V.
2015-01-01
Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal…
Evidence for Two Attentional Components in Visual Working Memory
ERIC Educational Resources Information Center
Allen, Richard J.; Baddeley, Alan D.; Hitch, Graham J.
2014-01-01
How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found…
Differential Age Effects on Spatial and Visual Working Memory
ERIC Educational Resources Information Center
Oosterman, Joukje M.; Morel, Sascha; Meijer, Lisette; Buvens, Cleo; Kessels, Roy P. C.; Postma, Albert
2011-01-01
The present study was intended to compare age effects on visual and spatial working memory by using two versions of the same task that differed only in presentation mode. The working memory task contained both a simultaneous and a sequential presentation mode condition, reflecting, respectively, visual and spatial working memory processes. Young…
Visual memory, the long and the short of it: A review of visual working memory and long-term memory.
Schurgin, Mark W
2018-04-23
The majority of research on visual memory has taken a compartmentalized approach, focusing exclusively on memory over shorter or longer durations, that is, visual working memory (VWM) or visual episodic long-term memory (VLTM), respectively. This tutorial provides a review spanning the two areas, with readers in mind who may only be familiar with one or the other. The review is divided into six sections. It starts by distinguishing VWM and VLTM from one another, in terms of how they are generally defined and their relative functions. This is followed by a review of the major theories and methods guiding VLTM and VWM research. The final section is devoted toward identifying points of overlap and distinction across the two literatures to provide a synthesis that will inform future research in both fields. By more intimately relating methods and theories from VWM and VLTM to one another, new advances can be made that may shed light on the kinds of representational content and structure supporting human visual memory.
Viewpoint in the Visual-Spatial Modality: The Coordination of Spatial Perspective
Pyers, Jennie E.; Perniss, Pamela; Emmorey, Karen
2015-01-01
Sign languages express viewpoint-dependent spatial relations (e.g., left, right) iconically but must conventionalize from whose viewpoint the spatial relation is being described, the signer's or the perceiver's. In Experiment 1, ASL signers and sign-naïve gesturers expressed viewpoint-dependent relations egocentrically, but only signers successfully interpreted the descriptions non-egocentrically, suggesting that viewpoint convergence in the visual modality emerges with language conventionalization. In Experiment 2, we observed that the cost of adopting a non-egocentric viewpoint was greater for producers than for perceivers, suggesting that sign languages have converged on the most cognitively efficient means of expressing left-right spatial relations. We suggest that non-linguistic cognitive factors such as visual perspective-taking and motor embodiment may constrain viewpoint convergence in the visual-spatial modality. PMID:26981027
Viewpoint in the Visual-Spatial Modality: The Coordination of Spatial Perspective.
Pyers, Jennie E; Perniss, Pamela; Emmorey, Karen
2015-06-01
Sign languages express viewpoint-dependent spatial relations (e.g., left, right) iconically but must conventionalize from whose viewpoint the spatial relation is being described, the signer's or the perceiver's. In Experiment 1, ASL signers and sign-naïve gesturers expressed viewpoint-dependent relations egocentrically, but only signers successfully interpreted the descriptions non-egocentrically, suggesting that viewpoint convergence in the visual modality emerges with language conventionalization. In Experiment 2, we observed that the cost of adopting a non-egocentric viewpoint was greater for producers than for perceivers, suggesting that sign languages have converged on the most cognitively efficient means of expressing left-right spatial relations. We suggest that non-linguistic cognitive factors such as visual perspective-taking and motor embodiment may constrain viewpoint convergence in the visual-spatial modality.
John H Glenn Jr. Wreath Laying Ceremony
2016-12-09
A portrait of Sen. John Glenn and a memorial wreath stand at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex before a ceremony remembering the iconic astronaut who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
Symbol-string sensitivity and children's reading.
Pammer, Kristen; Lavis, Ruth; Hansen, Peter; Cornelissen, Piers L
2004-06-01
In this study of primary school children, a novel 'symbol-string' task is used to assess sensitivity to the position of briefly presented non-alphabetic but letter-like symbols. The results demonstrate that sensitivity in the symbol-string task explains a unique proportion of the variability in children's contextual reading accuracy. Moreover, developmental dyslexic readers show reduced sensitivity in this task, compared to chronological age controls. The results suggest that limitations set by visuo-spatial processes and/or attentional iconic memory resources may constrain children's reading accuracy.
Morgan, Erin E.; Woods, Steven Paul; Poquette, Amelia J.; Vigil, Ofilio; Heaton, Robert K.; Grant, Igor
2012-01-01
Objective Chronic use of methamphetamine (MA) has moderate effects on neurocognitive functions associated with frontal systems, including the executive aspects of verbal episodic memory. Extending this literature, the current study examined the effects of MA on visual episodic memory with the hypothesis that a profile of deficient strategic encoding and retrieval processes would be revealed for visuospatial information (i.e., simple geometric designs), including possible differential effects on source versus item recall. Method The sample comprised 114 MA-dependent (MA+) and 110 demographically-matched MA-nondependent comparison participants (MA−) who completed the Brief Visuospatial Memory Test – Revised (BVMT-R), which was scored for standard learning and memory indices, as well as novel item (i.e., figure) and source (i.e., location) memory indices. Results Results revealed a profile of impaired immediate and delayed free recall (p < .05) in the context of preserved learning slope, retention, and recognition discriminability in the MA+ group. The MA+ group also performed more poorly than MA− participants on Item visual memory (p < .05) but not Source visual memory (p > .05), and no group by task-type interaction was observed (p > .05). Item visual memory demonstrated significant associations with executive dysfunction, deficits in working memory, and shorter length of abstinence from MA use (p < 0.05). Conclusions These visual memory findings are commensurate with studies reporting deficient strategic verbal encoding and retrieval in MA users that are posited to reflect the vulnerability of frontostriatal circuits to the neurotoxic effects of MA. Potential clinical implications of these visual memory deficits are discussed. PMID:22311530
Sneve, Markus H; Magnussen, Svein; Alnæs, Dag; Endestad, Tor; D'Esposito, Mark
2013-11-01
Visual STM of simple features is achieved through interactions between retinotopic visual cortex and a set of frontal and parietal regions. In the present fMRI study, we investigated effective connectivity between central nodes in this network during the different task epochs of a modified delayed orientation discrimination task. Our univariate analyses demonstrate that the inferior frontal junction (IFJ) is preferentially involved in memory encoding, whereas activity in the putative FEFs and anterior intraparietal sulcus (aIPS) remains elevated throughout periods of memory maintenance. We have earlier reported, using the same task, that areas in visual cortex sustain information about task-relevant stimulus properties during delay intervals [Sneve, M. H., Alnæs, D., Endestad, T., Greenlee, M. W., & Magnussen, S. Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. Neuroimage, 63, 166-178, 2012]. To elucidate the temporal dynamics of the IFJ-FEF-aIPS-visual cortex network during memory operations, we estimated Granger causality effects between these regions with fMRI data representing memory encoding/maintenance as well as during memory retrieval. We also investigated a set of control conditions involving active processing of stimuli not associated with a memory task and passive viewing. In line with the developing understanding of IFJ as a region critical for control processes with a possible initiating role in visual STM operations, we observed influence from IFJ to FEF and aIPS during memory encoding. Furthermore, FEF predicted activity in a set of higher-order visual areas during memory retrieval, a finding consistent with its suggested role in top-down biasing of sensory cortex.
Method Matters: Systematic Effects of Testing Procedure on Visual Working Memory Sensitivity
ERIC Educational Resources Information Center
Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.
2010-01-01
Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This article presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the…
Reasoning and dyslexia: is visual memory a compensatory resource?
Bacon, Alison M; Handley, Simon J
2014-11-01
Effective reasoning is fundamental to problem solving and achievement in education and employment. Protocol studies have previously suggested that people with dyslexia use reasoning strategies based on visual mental representations, whereas non-dyslexics use abstract verbal strategies. This research presents converging evidence from experimental and individual differences perspectives. In Experiment 1, dyslexic and non-dyslexic participants were similarly accurate on reasoning problems, but scores on a measure of visual memory ability only predicted reasoning accuracy for dyslexics. In Experiment 2, a secondary task loaded visual memory resources during concurrent reasoning. Dyslexics were significantly less accurate when reasoning under conditions of high memory load and showed reduced ability to subsequently recall the visual stimuli, suggesting that the memory and reasoning tasks were competing for the same visual cognitive resource. The results are consistent with an explanation based on limitations in the verbal and executive components of working memory in dyslexia and the use of compensatory visual strategies for reasoning. There are implications for cognitive activities that do not readily support visual thinking, whether in education, employment or less formal everyday settings. Copyright © 2014 John Wiley & Sons, Ltd.
Chee, Michael W L; Chuah, Y M Lisa
2007-05-29
Sleep deprivation (SD) impairs short-term memory, but it is unclear whether this is because of reduced storage capacity or processes contributing to appropriate information encoding. We evaluated 30 individuals twice, once after a night of normal sleep and again after 24 h of SD. In each session, we evaluated visual memory capacity by presenting arrays of one to eight colored squares. Additionally, we measured cortical responses to varying visual array sizes without engaging memory. The magnitude of intraparietal sulcus activation and memory capacity after normal sleep were highly correlated. SD elicited a pattern of activation in both tasks, indicating that deficits in visual processing and visual attention accompany and could account for loss of short-term memory capacity. Additionally, a comparison between better and poorer performers showed that preservation of precuneus and temporoparietal junction deactivation with increasing memory load corresponds to less performance decline when one is sleep-deprived.
How visual short-term memory maintenance modulates subsequent visual aftereffects.
Saad, Elyana; Silvanto, Juha
2013-05-01
Prolonged viewing of a visual stimulus can result in sensory adaptation, giving rise to perceptual phenomena such as the tilt aftereffect (TAE). However, it is not known if short-term memory maintenance induces such effects. We examined how visual short-term memory (VSTM) maintenance modulates the strength of the TAE induced by subsequent visual adaptation. We reasoned that if VSTM maintenance induces aftereffects on subsequent encoding of visual information, then it should either enhance or reduce the TAE induced by a subsequent visual adapter, depending on the congruency of the memory cue and the adapter. Our results were consistent with this hypothesis and thus indicate that the effects of VSTM maintenance can outlast the maintenance period.
Seidman, Larry J; Lanca, Margaret; Kremen, William S; Faraone, Stephen V; Tsuang, Ming T
2003-10-01
Verbal declarative memory deficits in schizophrenia are well documented whereas visual declarative memory is less studied. Moreover, there are limited data on whether organizational and visual memory deficits are specific to schizophrenic psychoses. We compared visual memory and organizational function in patients with chronic schizophrenia (n=79) and chronic bipolar psychotic disorder (n=14), and in healthy controls (n=84) using the Rey-Osterrieth Complex Figure (ROCF), testing whether organizational impairments (i.e., executive dysfunctions) account for the visual memory deficit. Groups were comparable on age, handedness and expected intellectual ability (based on single word reading). Using analyses of covariance with sex, parental SES and ethnicity as co-variates, patients with schizophrenia were significantly more impaired than controls on copy accuracy, on recall accuracy, and on percent accuracy of recall. Patients with schizophrenia used a more detail-oriented style on copy and recall and had significantly worse recognition memory. After co-varying IQ, copy organization was also significantly different between the groups. Results for accuracy of copy and recall were not significantly attenuated when controlling for copy organization. Duration of illness was associated with visual memory. Bipolar patients performed at an intermediate level between controls and patients with schizophrenia. The data suggest that in schizophrenia, patients have a visual memory disorder characterized by both organizational processing impairments and retention difficulties, and that there is a decline in visual memory functions with duration of illness. Further research is required to determine whether similar mechanisms underlie the neurocognitive deficits in these psychotic disorders.
The role of visual imagery in the retention of information from sentences.
Drose, G S; Allen, G L
1994-01-01
We conducted two experiments to evaluate a multiple-code model for sentence memory that posits both propositional and visual representational systems. Both sentences involved recognition memory. The results of Experiment 1 indicated that subjects' recognition memory for concrete sentences was superior to their recognition memory for abstract sentences. Instructions to use visual imagery to enhance recognition performance yielded no effects. Experiment 2 tested the prediction that interference by a visual task would differentially affect recognition memory for concrete sentences. Results showed the interference task to have had a detrimental effect on recognition memory for both concrete and abstract sentences. Overall, the evidence provided partial support for both a multiple-code model and a semantic integration model of sentence memory.
Motivation and short-term memory in visual search: Attention's accelerator revisited.
Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton
2018-05-01
A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kreuzmair, Christina; Siegrist, Michael; Keller, Carmen
2017-03-01
Researchers recommend the use of pictographs in medical risk communication to improve people's risk comprehension and decision making. However, it is not yet clear whether the iconicity used in pictographs to convey risk information influences individuals' information processing and comprehension. In an eye-tracking experiment with participants from the general population (N = 188), we examined whether specific types of pictograph icons influence the processing strategy viewers use to extract numerical information. In addition, we examined the effect of iconicity and numeracy on probability estimation, recall, and icon liking. This experiment used a 2 (iconicity: blocks vs. restroom icons) × 2 (scenario: medical vs. nonmedical) between-subject design. Numeracy had a significant effect on information processing strategy, but we found no effect of iconicity or scenario. Results indicated that both icon types enabled high and low numerates to use their default way of processing and extracting the gist of the message from the pictorial risk communication format: high numerates counted icons, whereas low numerates used large-area processing. There was no effect of iconicity in the probability estimation. However, people who saw restroom icons had a higher probability of correctly recalling the exact risk level. Iconicity had no effect on icon liking. Although the effects are small, our findings suggest that person-like restroom icons in pictographs seem to have some advantages for risk communication. Specifically, in nonpersonalized prevention brochures, person-like restroom icons may maintain reader motivation for processing the risk information. © 2016 Society for Risk Analysis.
Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory
Lee, Sue-Hyun; Baker, Chris I.
2016-01-01
The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997
Evans, Julia L.; Pollak, Seth D.
2011-01-01
This study examined the electrophysiological correlates of auditory and visual working memory in children with Specific Language Impairments (SLI). Children with SLI and age-matched controls (11;9 – 14;10) completed visual and auditory working memory tasks while event-related potentials (ERPs) were recorded. In the auditory condition, children with SLI performed similarly to controls when the memory load was kept low (1-back memory load). As expected, when demands for auditory working memory were higher, children with SLI showed decreases in accuracy and attenuated P3b responses. However, children with SLI also evinced difficulties in the visual working memory tasks. In both the low (1-back) and high (2-back) memory load conditions, P3b amplitude was significantly lower for the SLI as compared to CA groups. These data suggest a domain-general working memory deficit in SLI that is manifested across auditory and visual modalities. PMID:21316354
ERIC Educational Resources Information Center
Vergauwe, Evie; Barrouillet, Pierre; Camos, Valerie
2009-01-01
Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and…
Dynamic visual noise reduces confidence in short-term memory for visual information.
Kemps, Eva; Andrade, Jackie
2012-05-01
Previous research has shown effects of the visual interference technique, dynamic visual noise (DVN), on visual imagery, but not on visual short-term memory, unless retention of precise visual detail is required. This study tested the prediction that DVN does also affect retention of gross visual information, specifically by reducing confidence. Participants performed a matrix pattern memory task with three retention interval interference conditions (DVN, static visual noise and no interference control) that varied from trial to trial. At recall, participants indicated whether or not they were sure of their responses. As in previous research, DVN did not impair recall accuracy or latency on the task, but it did reduce recall confidence relative to static visual noise and no interference. We conclude that DVN does distort visual representations in short-term memory, but standard coarse-grained recall measures are insensitive to these distortions.
Poon, Cynthia; Chin-Cottongim, Lisa G.; Coombes, Stephen A.; Corcos, Daniel M.
2012-01-01
It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control. PMID:22696535
Self-grounding visual, auditory and olfactory autobiographical memories.
Knez, Igor; Ljunglöf, Louise; Arshamian, Artin; Willander, Johan
2017-07-01
Given that autobiographical memory provides a cognitive foundation for the self, we investigated the relative importance of visual, auditory and olfactory autobiographical memories for the self. Thirty subjects, with a mean age of 35.4years, participated in a study involving a three×three within-subject design containing nine different types of autobiographical memory cues: pictures, sounds and odors presented with neutral, positive and negative valences. It was shown that visual compared to auditory and olfactory autobiographical memories involved higher cognitive and emotional constituents for the self. Furthermore, there was a trend showing positive autobiographical memories to increase their proportion to both cognitive and emotional components of the self, from olfactory to auditory to visually cued autobiographical memories; but, yielding a reverse trend for negative autobiographical memories. Finally, and independently of modality, positive affective states were shown to be more involved in autobiographical memory than negative ones. Copyright © 2017 Elsevier Inc. All rights reserved.
Klaver, Peter; Talsma, Durk
2013-11-01
We recorded ERPs to investigate whether the visual memory load can bias visual selective attention. Participants memorized one or four letters and then responded to memory-matching letters presented in a relevant color while ignoring distractor letters or letters in an irrelevant color. Stimuli in the relevant color elicited larger frontal selection positivities (FSP) and occipital selection negativities (OSN) compared to irrelevant color stimuli. Only distractors elicited a larger FSP in the high than in the low memory load task. Memory load prolonged the OSN for all letters. Response mapping complexity was also modulated but did not affect the FSP and OSN. Together, the FSP data suggest that high memory load increased distractability. The OSN data suggest that memory load sustained attention to letters in a relevant color until working memory processing was completed, independently of whether the letters were in working memory or not. Copyright © 2013 Society for Psychophysiological Research.
Evaluating young children's cognitive capacities through computer versus hand drawings.
Olsen, J
1992-09-01
Young normal and handicapped children, aged 3 to 6 years, were taught to draw a scene of a house, garden and a sky with a computer drawing program that uses icons and is operated by a mouse. The drawings were rated by a team of experts on a 7-category scale. The children's computer- and hand-produced drawings were compared with one another and with results on cognitive, visual and fine motor tests. The computer drawing program made it possible for the children to accurately draw closed shapes, to get instant feedback on the adequacy of the drawing, and to make corrections with ease. It was hypothesized that these features would compensate for the young children's limitations in such cognitive skills, as memory, concentration, planning and accomplishment, as well as their weak motor skills. In addition, it was hypothesized that traditional cognitive ratings of hand drawings may underestimate young children's intellectual ability, because drawing by hand demands motor skills and memory, concentration and planning skills that are more developed than that actually shown by young children. To test the latter hypothesis, the children completed a training program in using a computer to make drawings. The results show that cognitive processes such as planning, analysis and synthesis can be investigated by means of a computer drawing program in a way not possible using traditional pencil and paper drawings. It can be said that the method used here made it possible to measure cognitive abilities "under the floor" of what is ordinarily possible by means of traditionally hand drawings.
ERIC Educational Resources Information Center
Palczewski, Catherine H.
2005-01-01
In 1909, at the height of the woman suffrage controversy and during the golden age of postcards, the Dunston-Weiler Lithograph Company of New York produced a twelve-card set of full-color lithographic cartoon postcards opposing woman suffrage. The postcard images reflect, and depart from, verbal arguments concerning woman suffrage prevalent during…
Byron, Margaret; Cockshott, Zoë; Brownett, Hilary; Ramkalawan, Tina
2005-02-01
Disability teaching is a core theme in undergraduate medical education. Medical students bring a range of experiences of disability to their medical training. The principal aim of this study was to explore the words that medical students associate with the term "disability" and to consider how the resulting information could inform teaching. A secondary aim was to see if a short disability course changed the word associations. Students were asked to write down 2 words that came to mind when they heard the word "disability", before and after a 4-day course in disability. Words from 4 cohorts were analysed by frequency and the following word dichotomies: visual icons/personal attributes; loss/enabling, and medical model/social model. A random sample of students took part in focus groups at the beginning and end of the course. A total of 381 students provided 667 before-course words and 189 students provided 336 after-course words. Before the course, words denoting visual icons of disability, and loss were prominent, accounting for 85% of the words, and 74% of the words describing personal attributes were negative. Focus group responses at this stage reflected an eagerness to help but patronising terms were prominent, along with concern about political correctness. Students also expressed nervousness about encountering disabled people. In response, teaching was adapted to make it more learner-focused, to offer a safe environment in which students can test out their language, to build on the positive associations and to develop a range of pre-course creative activities with disabled people. After the course a considerable and significant shift in emphasis was observed, with a reduction in the use of visual icon words, an increase in words denoting enablement, and an increase in words relating to the social model of disability and to positive personal attributes (P < 0.001). Focus group participants at this stage reported greater confidence in approaching disabled people but continued to question political correctness. Medical students associate disability predominantly with depersonalised or negative words. A short disability course appears to change these associations. Reasons for this and implications for teaching are discussed.
Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.
Won, Bo-Yeong; Jiang, Yuhong V
2015-05-01
Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. (c) 2015 APA, all rights reserved).
Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention
Won, Bo-Yeong; Jiang, Yuhong V.
2014-01-01
Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460
Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias
2010-12-01
To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Working memory dependence of spatial contextual cueing for visual search.
Pollmann, Stefan
2018-05-10
When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.
The Comparison of Visual Working Memory Representations with Perceptual Inputs
ERIC Educational Resources Information Center
Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew; Luck, Steven J.
2009-01-01
The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. In this study, the authors tested the hypothesis that differences between the memory of a stimulus array and the perception of a…
Automatic Guidance of Visual Attention from Verbal Working Memory
ERIC Educational Resources Information Center
Soto, David; Humphreys, Glyn W.
2007-01-01
Previous studies have shown that visual attention can be captured by stimuli matching the contents of working memory (WM). Here, the authors assessed the nature of the representation that mediates the guidance of visual attention from WM. Observers were presented with either verbal or visual primes (to hold in memory, Experiment 1; to verbalize,…
False memory for context and true memory for context similarly activate the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2017-06-01
The role of the parahippocampal cortex is currently a topic of debate. One view posits that the parahippocampal cortex specifically processes spatial layouts and sensory details (i.e., the visual-spatial processing view). In contrast, the other view posits that the parahippocampal cortex more generally processes spatial and non-spatial contexts (i.e., the general contextual processing view). A large number of studies have found that true memories activate the parahippocampal cortex to a greater degree than false memories, which would appear to support the visual-spatial processing view as true memories are typically associated with greater visual-spatial detail than false memories. However, in previous studies, contextual details were also greater for true memories than false memories. Thus, such differential activity in the parahippocampal cortex may have reflected differences in contextual processing, which would challenge the visual-spatial processing view. In the present functional magnetic resonance imaging (fMRI) study, we employed a source memory paradigm to investigate the functional role of the parahippocampal cortex during true memory and false memory for contextual information to distinguish between the visual-spatial processing view and the general contextual processing view. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old shapes were presented at fixation and participants indicated whether each shape was previously on the "left" or "right" followed by an "unsure", "sure", or "very sure" confidence rating. The conjunction of confident true memories for context and confident false memories for context produced activity in the parahippocampal cortex, which indicates that this region is associated with contextual processing. Furthermore, the direct contrast of true memory and false memory produced activity in the visual cortex but did not produce activity in the parahippocampal cortex. The present evidence suggests that the parahippocampal cortex is associated with general contextual processing rather than only being associated with visual-spatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Souza, Alessandra S; Rerko, Laura; Oberauer, Klaus
2016-06-01
Visual working memory (VWM) has a limited capacity. This limitation can be mitigated by the use of focused attention: if attention is drawn to the relevant working memory content before test, performance improves (the so-called retro-cue benefit). This study tests 2 explanations of the retro-cue benefit: (a) Focused attention protects memory representations from interference by visual input at test, and (b) focusing attention enhances retrieval. Across 6 experiments using color recognition and color reproduction tasks, we varied the amount of color interference at test, and the delay between a retrieval cue (i.e., the retro-cue) and the memory test. Retro-cue benefits were larger when the memory test introduced interfering visual stimuli, showing that the retro-cue effect is in part because of protection from visual interference. However, when visual interference was held constant, retro-cue benefits were still obtained whenever the retro-cue enabled retrieval of an object from VWM but delayed response selection. Our results show that accessible information in VWM might be lost in the processes of testing memory because of visual interference and incomplete retrieval. This is not an inevitable state of affairs, though: Focused attention can be used to get the most out of VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A neural correlate of working memory in the monkey primary visual cortex.
Supèr, H; Spekreijse, H; Lamme, V A
2001-07-06
The brain frequently needs to store information for short periods. In vision, this means that the perceptual correlate of a stimulus has to be maintained temporally once the stimulus has been removed from the visual scene. However, it is not known how the visual system transfers sensory information into a memory component. Here, we identify a neural correlate of working memory in the monkey primary visual cortex (V1). We propose that this component may link sensory activity with memory activity.
Ensemble coding remains accurate under object and spatial visual working memory load.
Epstein, Michael L; Emmanouil, Tatiana A
2017-10-01
A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.
Kim, Eun Hwi; Suh, Soon Rim
2017-06-01
This study was conducted to verify the effects of a memory and visual-motor integration program for older adults based on self-efficacy theory. A non-equivalent control group pretest-posttest design was implemented in this quasi-experimental study. The participants were 62 older adults from senior centers and older adult welfare facilities in D and G city (Experimental group=30, Control group=32). The experimental group took part in a 12-session memory and visual-motor integration program over 6 weeks. Data regarding memory self-efficacy, memory, visual-motor integration, and depression were collected from July to October of 2014 and analyzed with independent t-test and Mann-Whitney U test using PASW Statistics (SPSS) 18.0 to determine the effects of the interventions. Memory self-efficacy (t=2.20, p=.031), memory (Z=-2.92, p=.004), and visual-motor integration (Z=-2.49, p=.013) increased significantly in the experimental group as compared to the control group. However, depression (Z=-0.90, p=.367) did not decrease significantly. This program is effective for increasing memory, visual-motor integration, and memory self-efficacy in older adults. Therefore, it can be used to improve cognition and prevent dementia in older adults. © 2017 Korean Society of Nursing Science
Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan
2006-09-01
The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.
Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria
2012-01-01
Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.
Origin of symbol-using systems: speech, but not sign, without the semantic urge
Sereno, Martin I.
2014-01-01
Natural language—spoken and signed—is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint. PMID:25092671
Štillová, Klára; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Bočková, Martina; Goldemundová, Sabina; Říha, Ivo; Rektor, Ivan
2015-01-01
To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures.
Short-term memory for spatial configurations in the tactile modality: a comparison with vision.
Picard, Delphine; Monnier, Catherine
2009-11-01
This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.
[Visual representation of natural scenes in flicker changes].
Nakashima, Ryoichi; Yokosawa, Kazuhiko
2010-08-01
Coherence theory in scene perception (Rensink, 2002) assumes the retention of volatile object representations on which attention is not focused. On the other hand, visual memory theory in scene perception (Hollingworth & Henderson, 2002) assumes that robust object representations are retained. In this study, we hypothesized that the difference between these two theories is derived from the difference of the experimental tasks that they are based on. In order to verify this hypothesis, we examined the properties of visual representation by using a change detection and memory task in a flicker paradigm. We measured the representations when participants were instructed to search for a change in a scene, and compared them with the intentional memory representations. The visual representations were retained in visual long-term memory even in the flicker paradigm, and were as robust as the intentional memory representations. However, the results indicate that the representations are unavailable for explicitly localizing a scene change, but are available for answering the recognition test. This suggests that coherence theory and visual memory theory are compatible.
Expertise for upright faces improves the precision but not the capacity of visual working memory.
Lorenc, Elizabeth S; Pratte, Michael S; Angeloni, Christopher F; Tong, Frank
2014-10-01
Considerable research has focused on how basic visual features are maintained in working memory, but little is currently known about the precision or capacity of visual working memory for complex objects. How precisely can an object be remembered, and to what extent might familiarity or perceptual expertise contribute to working memory performance? To address these questions, we developed a set of computer-generated face stimuli that varied continuously along the dimensions of age and gender, and we probed participants' memories using a method-of-adjustment reporting procedure. This paradigm allowed us to separately estimate the precision and capacity of working memory for individual faces, on the basis of the assumptions of a discrete capacity model, and to assess the impact of face inversion on memory performance. We found that observers could maintain up to four to five items on average, with equally good memory capacity for upright and upside-down faces. In contrast, memory precision was significantly impaired by face inversion at every set size tested. Our results demonstrate that the precision of visual working memory for a complex stimulus is not strictly fixed but, instead, can be modified by learning and experience. We find that perceptual expertise for upright faces leads to significant improvements in visual precision, without modifying the capacity of working memory.
Robot Evolutionary Localization Based on Attentive Visual Short-Term Memory
Vega, Julio; Perdices, Eduardo; Cañas, José M.
2013-01-01
Cameras are one of the most relevant sensors in autonomous robots. However, two of their challenges are to extract useful information from captured images, and to manage the small field of view of regular cameras. This paper proposes implementing a dynamic visual memory to store the information gathered from a moving camera on board a robot, followed by an attention system to choose where to look with this mobile camera, and a visual localization algorithm that incorporates this visual memory. The visual memory is a collection of relevant task-oriented objects and 3D segments, and its scope is wider than the current camera field of view. The attention module takes into account the need to reobserve objects in the visual memory and the need to explore new areas. The visual memory is useful also in localization tasks, as it provides more information about robot surroundings than the current instantaneous image. This visual system is intended as underlying technology for service robot applications in real people's homes. Several experiments have been carried out, both with simulated and real Pioneer and Nao robots, to validate the system and each of its components in office scenarios. PMID:23337333
The loss of short-term visual representations over time: decay or temporal distinctiveness?
Mercer, Tom
2014-12-01
There has been much recent interest in the loss of visual short-term memories over the passage of time. According to decay theory, visual representations are gradually forgotten as time passes, reflecting a slow and steady distortion of the memory trace. However, this is controversial and decay effects can be explained in other ways. The present experiment aimed to reexamine the maintenance and loss of visual information over the short term. Decay and temporal distinctiveness models were tested using a delayed discrimination task, in which participants compared complex and novel objects over unfilled retention intervals of variable length. Experiment 1 found no significant change in the accuracy of visual memory from 2 to 6 s, but the gap separating trials reliably influenced task performance. Experiment 2 found evidence for information loss at a 10-s retention interval, but temporally separating trials restored the fidelity of visual memory, possibly because temporally isolated representations are distinct from older memory traces. In conclusion, visual representations lose accuracy at some point after 6 s, but only within temporally crowded contexts. These findings highlight the importance of temporal distinctiveness within visual short-term memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Directed Forgetting and Directed Remembering in Visual Working Memory
Williams, Melonie; Woodman, Geoffrey F.
2013-01-01
A defining characteristic of visual working memory is its limited capacity. This means that it is crucial to maintain only the most relevant information in visual working memory. However, empirical research is mixed as to whether it is possible to selectively maintain a subset of the information previously encoded into visual working memory. Here we examined the ability of subjects to use cues to either forget or remember a subset of the information already stored in visual working memory. In Experiment 1, participants were cued to either forget or remember one of two groups of colored squares during a change-detection task. We found that both types of cues aided performance in the visual working memory task, but that observers benefited more from a cue to remember than a cue to forget a subset of the objects. In Experiment 2, we show that the previous findings, which indicated that directed-forgetting cues are ineffective, were likely due to the presence of invalid cues that appear to cause observers to disregard such cues as unreliable. In Experiment 3, we recorded event-related potentials (ERPs) and show that an electrophysiological index of focused maintenance is elicited by cues that indicate which subset of information in visual working memory needs to be remembered, ruling out alternative explanations of the behavioral effects of retention-interval cues. The present findings demonstrate that observers can focus maintenance mechanisms on specific objects in visual working memory based on cues indicating future task relevance. PMID:22409182
Pietrzak, Robert H; Scott, James Cobb; Harel, Brian T; Lim, Yen Ying; Snyder, Peter J; Maruff, Paul
2012-11-01
Alprazolam is a benzodiazepine that, when administered acutely, results in impairments in several aspects of cognition, including attention, learning, and memory. However, the profile (i.e., component processes) that underlie alprazolam-related decrements in visual paired associate learning has not been fully explored. In this double-blind, placebo-controlled, randomized cross-over study of healthy older adults, we used a novel, "process-based" computerized measure of visual paired associate learning to examine the effect of a single, acute 1-mg dose of alprazolam on component processes of visual paired associate learning and memory. Acute alprazolam challenge was associated with a large magnitude reduction in visual paired associate learning and memory performance (d = 1.05). Process-based analyses revealed significant increases in distractor, exploratory, between-search, and within-search error types. Analyses of percentages of each error type suggested that, relative to placebo, alprazolam challenge resulted in a decrease in the percentage of exploratory errors and an increase in the percentage of distractor errors, both of which reflect memory processes. Results of this study suggest that acute alprazolam challenge decreases visual paired associate learning and memory performance by reducing the strength of the association between pattern and location, which may reflect a general breakdown in memory consolidation, with less evidence of reductions in executive processes (e.g., working memory) that facilitate visual paired associate learning and memory. Copyright © 2012 John Wiley & Sons, Ltd.
Differential verbal, visual, and spatial working memory in written language production.
Raulerson, Bascom A; Donovan, Michael J; Whiteford, Alison P; Kellogg, Ronald T
2010-02-01
The contributions of verbal, visual, and spatial working memory to written language production were investigated. Participants composed definitions for nouns while concurrently performing a task which required updating, storing, and retrieving information coded either verbally, visually, or spatially. The present study extended past findings by showing the linguistic encoding of planned conceptual content makes its largest demand on verbal working memory for both low and high frequency nouns. Kellogg, Olive, and Piolat in 2007 found that concrete nouns place substantial demands on visual working memory when imaging the nouns' referents during planning, whereas abstract nouns make no demand. The current study further showed that this pattern was not an artifact of visual working memory being sensitive to manipulation of just any lexical property of the noun prompts. In contrast to past results, writing made a small but detectible demand on spatial working memory.
Attention Effects During Visual Short-Term Memory Maintenance: Protection or Prioritization?
Matsukura, Michi; Luck, Steven J.; Vecera, Shaun P.
2007-01-01
Interactions between visual attention and visual short-term memory (VSTM) play a central role in cognitive processing. For example, attention can assist in selectively encoding items into visual memory. Attention appears to be able to influence items already stored in visual memory as well; cues that appear long after the presentation of an array of objects can affect memory for those objects (Griffin & Nobre, 2003). In five experiments, we distinguished two possible mechanisms for the effects of cues on items currently stored in VSTM. A protection account proposes that attention protects the cued item from becoming degraded during the retention interval. By contrast, a prioritization account suggests that attention increases a cued item’s priority during the comparison process that occurs when memory is tested. The results of the experiments were consistent with the first of these possibilities, suggesting that attention can serve to protect VSTM representations while they are being maintained. PMID:18078232
Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.
Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor
2012-01-29
Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.
Model-Driven Study of Visual Memory
2004-12-01
dimensional stimuli (synthetic human faces ) afford important insights into episodic recognition memory. The results were well accommodated by a summed...the unusual properties of the z-transformed ROCS. 15. SUBJECT TERMS Memory, visual memory, computational model, human memory, faces , identity 16...3 Accomplishments/New Findings 3 Work on Objective One: Recognition Memory for Synthetic Faces . 3 Experim ent 1
Nelwan, Michel; Vissers, Constance; Kroesbergen, Evelyn H
2018-05-01
The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were evaluated. In this study, 23 children between 9 and 12 years of age with both attentional and mathematical difficulties participated in a working memory training program with a high amount of coaching, while another 25 children received no working memory training. Results of these groups were compared to 21 children who completed the training with a lower amount of coaching. The quality of working memory, as well as mathematic skills, were measured three times using untrained transfer tasks. Bayesian statistics were used to test informative hypotheses. After receiving working memory training, the highly coached group performed better than the group that received less coaching on visual working memory and mathematics, but not on verbal working memory. The highly coached group retained their advantage in mathematics, even though the effect on visual working memory decreased. However, no added effect of working memory training was found on the learning curve during mathematical training. Moreover, the less-coached group was outperformed by the group that did not receive working memory training, both in visual working memory and mathematics. These results suggest that motivation and proper coaching might be crucial for ensuring compliance and effects of working memory training, and that far transfer might be possible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Testing of Candidate Icons to Identify Acetaminophen-Containing Medicines
Shiffman, Saul; Cotton, Helene; Jessurun, Christina; Sembower, Mark A.; Pype, Steve; Phillips, Jerry
2016-01-01
Adding icons on labels of acetaminophen-containing medicines could help users identify the active ingredient and avoid concomitant use of multiple medicines containing acetaminophen. We evaluated five icons for communication effectiveness. Adults (n = 300) were randomized to view a prescription container label or over-the-counter labels with either one or two icons. Participants saw two icon candidates, and reported their interpretation; experts judged whether these reflected critical confusions that might cause harm. Participants rated how effectively each icon communicated key messages. Icons based on abbreviations of “acetaminophen” (“Ac”, “Ace”, “Acm”) were rated less confusing and more effective in communicating the active ingredient than icons based on “APAP” or an abstract symbol. Icons did not result in critical confusion when seen on a readable medicine label. Icon implementation on prescription labels was more effective at communicating the warning against concomitant use than implementation on over-the-counter (OTC) labels. Adding an icon to a second location on OTC labels did not consistently enhance this communication, but reduced rated effectiveness of acetaminophen ingredient communication among participants with limited health literacy. The abbreviation-based icons seem most suitable for labeling acetaminophen-containing medications to enable users to identify acetaminophen-containing products. PMID:28970383
Woodman, Geoffrey F.; Luck, Steven J.
2007-01-01
In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that working memory activation produces a simple but uncontrollable bias signal leads to the prediction that items matching the contents of working memory will automatically capture attention. However, no evidence for automatic attentional capture was obtained; instead, the participants avoided attending to these items. Thus, the contents of working memory can be used in a flexible manner for facilitation or inhibition of processing. PMID:17469973
Woodman, Geoffrey F; Luck, Steven J
2007-04-01
In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that working memory activation produces a simple but uncontrollable bias signal leads to the prediction that items matching the contents of working memory will automatically capture attention. However, no evidence for automatic attentional capture was obtained; instead, the participants avoided attending to these items. Thus, the contents of working memory can be used in a flexible manner for facilitation or inhibition of processing.
MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.
Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd
2018-07-01
Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.
NASA Astrophysics Data System (ADS)
Blanco, J. M.; Zhukov, A. P.; González, J.
1999-12-01
The magneto-impedance effect icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/ZH = [Z(H)-Z(Hmax)]/Z(Hmax) has been measured in (Fe0.95Co0.05)72.5B15Si12.5 wire under torsion stress, icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> (torsion angle per unit length) with axial magnetic field (H) as parameter. Without stress (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)H(H) dependence has a non-monotonous shape with first an increase of total impedance Z and then a decrease, i.e. shows a maximum at certain axial magnetic field Hm. It was found that the torsion stress dependence of electrical impedance (torsion impedance), (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> = [Z(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>)-Z(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>max)]/Z(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>max), has asymmetric character with a clear maximum at torsion angle, icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> around 7icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/> rad m-1 in as-cast wire, while (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> reaches a maximum around 170%. Thermal treatments under torsion stress (without and with a previous annealing stage) develop a helical anisotropy on the amorphous wire, which drastically modifies the (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> response. Such treatments were carried out by using current annealing which resulted in a drastic increase of the maximum (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> up to 225%, and a change of torsion dependence of icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z with a tendency to a finally symmetric dependence of (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/>(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>). The maximum (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> ratio, (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> m, was obtained under torsion stress of icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> = 20icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/> rad m-1 (in a torsion annealed sample) and
= 11
rad m-1 (with pre-annealing and torsion annealing). Observed dependences were explained taking into account the frozen-in magneto-elastic anisotropy owing to the internal stress distribution during the fabrication process, the helical anisotropies induced by the torsion strain and that developed by thermal treatment under torsion stress (torsion annealing). The differences in the shape and intensity of the maximum (
Z/Z)
m between the torsion annealed and pre-annealed and torsion annealed samples should be ascribed to the visco-elastic character of the helical anisotropy induced by torsion stress.
Words, shape, visual search and visual working memory in 3-year-old children.
Vales, Catarina; Smith, Linda B
2015-01-01
Do words cue children's visual attention, and if so, what are the relevant mechanisms? Across four experiments, 3-year-old children (N = 163) were tested in visual search tasks in which targets were cued with only a visual preview versus a visual preview and a spoken name. The experiments were designed to determine whether labels facilitated search times and to examine one route through which labels could have their effect: By influencing the visual working memory representation of the target. The targets and distractors were pictures of instances of basic-level known categories and the labels were the common name for the target category. We predicted that the label would enhance the visual working memory representation of the target object, guiding attention to objects that better matched the target representation. Experiments 1 and 2 used conjunctive search tasks, and Experiment 3 varied shape discriminability between targets and distractors. Experiment 4 compared the effects of labels to repeated presentations of the visual target, which should also influence the working memory representation of the target. The overall pattern fits contemporary theories of how the contents of visual working memory interact with visual search and attention, and shows that even in very young children heard words affect the processing of visual information. © 2014 John Wiley & Sons Ltd.
Image understanding in terms of semiotics
NASA Astrophysics Data System (ADS)
Zakharko, E.; Kaminsky, Roman M.; Shpytko, V.
1995-06-01
Human perception of pictorial visual information is investigated from iconical sign view-point and appropriate semiotical model is discussed. Image construction (syntactics) is analyzed as a complex hierarchical system and various types of pictorial objects, their relations, regular configurations are represented, studied, and modeled. Relations between image syntactics, its semantics, and pragmatics is investigated. Research results application to the problems of thematic interpretation of Earth surface remote imgages is illustrated.
Comets, Charisma, and Celebrity: Reflections on Their Deep Impact
NASA Astrophysics Data System (ADS)
Olson, R. J. M.; Pasachoff, J. M.
In celebration of the Deep Impact Mission, this essay explores the influence of comets on the arts and sciences since the beginning of recorded time. Through images, ranging from the sublime to the humorous, it probes the reasons why comets are among the most charismatic visual spectacles in the universe and why, even as scientific missions unmask their mysteries, they remain iconic symbols and harbingers of change.
English Orthographic Learning in Chinese-L1 Young EFL Beginners
ERIC Educational Resources Information Center
Cheng, Yu-Lin
2017-01-01
English orthographic learning, among Chinese-L1 children who were beginning to learn English as a foreign language, was documented when: (1) "only" visual memory was at their disposal, (2) visual memory and either "some" letter-sound knowledge or "some" semantic information was available, and (3) visual memory,…
FMRI of visual working memory in high school football players.
Shenk, Trey E; Robinson, Meghan E; Svaldi, Diana O; Abbas, Kausar; Breedlove, Katherine M; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M
2015-01-01
Visual working memory deficits have been observed in at-risk athletes. This study uses a visual N-back working memory functional magnetic resonance imaging task to longitudinally assess asymptomatic football athletes for abnormal activity. Athletes were increasingly "flagged" as the season progressed. Flagging may provide early detection of injury.
Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention.
ERIC Educational Resources Information Center
Chun, Marvin M.; Jiang, Yuhong
1998-01-01
Six experiments involving a total of 112 college students demonstrate that a robust memory for visual context exists to guide spatial attention. Results show how implicit learning and memory of visual context can guide spatial attention toward task-relevant aspects of a scene. (SLD)
The Relevance of Visual Sequential Memory to Reading.
ERIC Educational Resources Information Center
Crispin, Lisa; And Others
1984-01-01
Results of three visual sequential memory tests and a group reading test given to 19 elementary students are discussed in terms of task analysis and structuralist approaches to analysis of reading skills. Relation of visual sequential memory to other reading subskills is considered in light of current reasearch. (CMG)
Memory as Perception of the Past: Compressed Time inMind and Brain.
Howard, Marc W
2018-02-01
In the visual system retinal space is compressed such that acuity decreases further from the fovea. Different forms of memory may rely on a compressed representation of time, manifested as decreased accuracy for events that happened further in the past. Neurophysiologically, "time cells" show receptive fields in time. Analogous to the compression of visual space, time cells show less acuity for events further in the past. Behavioral evidence suggests memory can be accessed by scanning a compressed temporal representation, analogous to visual search. This suggests a common computational language for visual attention and memory retrieval. In this view, time functions like a scaffolding that organizes memories in much the same way that retinal space functions like a scaffolding for visual perception. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory.
Bergmann, Johanna; Genç, Erhan; Kohler, Axel; Singer, Wolf; Pearson, Joel
2016-01-01
Despite the immense processing power of the human brain, working memory storage is severely limited, and the neuroanatomical basis of these limitations has remained elusive. Here, we show that the stable storage limits of visual working memory for over 9 s are bound by the precise gray matter volume of primary visual cortex (V1), defined by fMRI retinotopic mapping. Individuals with a bigger V1 tended to have greater visual working memory storage. This relationship was present independently for both surface size and thickness of V1 but absent in V2, V3 and for non-visual working memory measures. Additional whole-brain analyses confirmed the specificity of the relationship to V1. Our findings indicate that the size of primary visual cortex plays a critical role in limiting what we can hold in mind, acting like a gatekeeper in constraining the richness of working mental function. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pigeon visual short-term memory directly compared to primates.
Wright, Anthony A; Elmore, L Caitlin
2016-02-01
Three pigeons were trained to remember arrays of 2-6 colored squares and detect which of two squares had changed color to test their visual short-term memory. Procedures (e.g., stimuli, displays, viewing times, delays) were similar to those used to test monkeys and humans. Following extensive training, pigeons performed slightly better than similarly trained monkeys, but both animal species were considerably less accurate than humans with the same array sizes (2, 4 and 6 items). Pigeons and monkeys showed calculated memory capacities of one item or less, whereas humans showed a memory capacity of 2.5 items. Despite the differences in calculated memory capacities, the pigeons' memory results, like those from monkeys and humans, were all well characterized by an inverse power-law function fit to d' values for the five display sizes. This characterization provides a simple, straightforward summary of the fundamental processing of visual short-term memory (how visual short-term memory declines with memory load) that emphasizes species similarities based upon similar functional relationships. By closely matching pigeon testing parameters to those of monkeys and humans, these similar functional relationships suggest similar underlying processes of visual short-term memory in pigeons, monkeys and humans. Copyright © 2015 Elsevier B.V. All rights reserved.
An Ideal Observer Analysis of Visual Working Memory
Sims, Chris R.; Jacobs, Robert A.; Knill, David C.
2013-01-01
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this paper we develop an ideal observer analysis of human visual working memory, by deriving the expected behavior of an optimally performing, but limited-capacity memory system. This analysis is framed around rate–distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in two empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (for example, how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis—one which allows variability in the number of stored memory representations, but does not assume the presence of a fixed item limit—provides an excellent account of the empirical data, and further offers a principled re-interpretation of existing models of visual working memory. PMID:22946744
Griffon, Nicolas; Kerdelhué, Gaétan; Hamek, Saliha; Hassler, Sylvain; Boog, César; Lamy, Jean-Baptiste; Duclos, Catherine; Venot, Alain; Darmoni, Stéfan J
2014-10-01
Doc'CISMeF (DC) is a semantic search engine used to find resources in CISMeF-BP, a quality controlled health gateway, which gathers guidelines available on the internet in French. Visualization of Concepts in Medicine (VCM) is an iconic language that may ease information retrieval tasks. This study aimed to describe the creation and evaluation of an interface integrating VCM in DC in order to make this search engine much easier to use. Focus groups were organized to suggest ways to enhance information retrieval tasks using VCM in DC. A VCM interface was created and improved using the ergonomic evaluation approach. 20 physicians were recruited to compare the VCM interface with the non-VCM one. Each evaluator answered two different clinical scenarios in each interface. The ability and time taken to select a relevant resource were recorded and compared. A usability analysis was performed using the System Usability Scale (SUS). The VCM interface contains a filter based on icons, and icons describing each resource according to focus group recommendations. Some ergonomic issues were resolved before evaluation. Use of VCM significantly increased the success of information retrieval tasks (OR=11; 95% CI 1.4 to 507). Nonetheless, it took significantly more time to find a relevant resource with VCM interface (101 vs 65 s; p=0.02). SUS revealed 'good' usability with an average score of 74/100. VCM was successfully implemented in DC as an option. It increased the success rate of information retrieval tasks, despite requiring slightly more time, and was well accepted by end-users. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Štillová, Klára; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Bočková, Martina; Goldemundová, Sabina; Říha, Ivo; Rektor, Ivan
2015-01-01
Objective To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. Methods We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. Results P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. Conclusions The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures. PMID:26529407
Why Do Pictures, but Not Visual Words, Reduce Older Adults’ False Memories?
Smith, Rebekah E.; Hunt, R. Reed; Dunlap, Kathryn R.
2015-01-01
Prior work shows that false memories resulting from the study of associatively related lists are reduced for both young and older adults when the auditory presentation of study list words is accompanied by related pictures relative to when auditory word presentation is combined with visual presentation of the word. In contrast, young adults, but not older adults, show a reduction in false memories when presented with the visual word along with the auditory word relative to hearing the word only. In both the case of pictures relative to visual words and visual words relative to auditory words alone, the benefit of picture and visual words in reducing false memories has been explained in terms of monitoring for perceptual information. In our first experiment we provide the first simultaneous comparison of all three study presentation modalities (auditory only, auditory plus visual word, and auditory plus picture). Young and older adults show a reduction in false memories in the auditory plus picture condition, but only young adults show a reduction in the visual word condition relative to the auditory only condition. A second experiment investigates whether older adults fail to show a reduction in false memory in the visual word condition because they do not encode perceptual information in the visual word condition. In addition, the second experiment provides evidence that the failure of older adults to show the benefits of visual word presentation is related to reduced cognitive resources. PMID:26213799
Why do pictures, but not visual words, reduce older adults' false memories?
Smith, Rebekah E; Hunt, R Reed; Dunlap, Kathryn R
2015-09-01
Prior work shows that false memories resulting from the study of associatively related lists are reduced for both young and older adults when the auditory presentation of study list words is accompanied by related pictures relative to when auditory word presentation is combined with visual presentation of the word. In contrast, young adults, but not older adults, show a reduction in false memories when presented with the visual word along with the auditory word relative to hearing the word only. In both cases of pictures relative to visual words and visual words relative to auditory words alone, the benefit of picture and visual words in reducing false memories has been explained in terms of monitoring for perceptual information. In our first experiment, we provide the first simultaneous comparison of all 3 study presentation modalities (auditory only, auditory plus visual word, and auditory plus picture). Young and older adults show a reduction in false memories in the auditory plus picture condition, but only young adults show a reduction in the visual word condition relative to the auditory only condition. A second experiment investigates whether older adults fail to show a reduction in false memory in the visual word condition because they do not encode perceptual information in the visual word condition. In addition, the second experiment provides evidence that the failure of older adults to show the benefits of visual word presentation is related to reduced cognitive resources. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
ERIC Educational Resources Information Center
Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.
2015-01-01
Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…
Qadri, Muhammad A J; Leonard, Kevin; Cook, Robert G; Kelly, Debbie M
2018-02-15
Clark's nutcrackers exhibit remarkable cache recovery behavior, remembering thousands of seed locations over the winter. No direct laboratory test of their visual memory capacity, however, has yet been performed. Here, two nutcrackers were tested in an operant procedure used to measure different species' visual memory capacities. The nutcrackers were incrementally tested with an ever-expanding pool of pictorial stimuli in a two-alternative discrimination task. Each picture was randomly assigned to either a right or a left choice response, forcing the nutcrackers to memorize each picture-response association. The nutcrackers' visual memorization capacity was estimated at a little over 500 pictures, and the testing suggested effects of primacy, recency, and memory decay over time. The size of this long-term visual memory was less than the approximately 800-picture capacity established for pigeons. These results support the hypothesis that nutcrackers' spatial memory is a specialized adaptation tied to their natural history of food-caching and recovery, and not to a larger long-term, general memory capacity. Furthermore, despite millennia of separate and divergent evolution, the mechanisms of visual information retention seem to reflect common memory systems of differing capacities across the different species tested in this design.
Visual Astronomy in the Mythology and Ritual of India: The Sun Temples of Varanasi
NASA Astrophysics Data System (ADS)
Malville, J. McKim; Singh, Rana P. B.
We use Varanasi, the paradigmatic holy city of India, as an illustration of the incorporation of visual astronomy into Hindu culture. In the city the Sun is honored in three ways: at morning worship, during pilgrimage, and as an icon in temples. Specific attributes of the Sun are symbolized by the adityas, represented by fourteen temples which were destroyed during the years of Mughal occupation of the city after A.D. 1192. According to local tradition the locations of these temples remained in the communal memory of the city and are marked today by Sun disks, lotus-form stones or images of Surya, that are set into the walls of houses or installed in shrines or temples. Many of the sites are included in pilgrimage routes of the city. With the use of the Global Positioning System (GPS) we have mapped the positions of the adityas and find that most lie along the sides of a triangle which surrounded the original center of the city. The major text that deals with Varanasi and its spiritual traditions, the Kashi Khanda, gives the myths, stories and rituals associated with each of the former Sun temples and reveals the significance of the Sun for inhabitants and pilgrims. The Sun is understood to be a caring and protective deity, providing relief from life's ordinary problems such as skin disease, infertility, hunger and the problems of old age and death. The Kashi Khanda also includes references to probable observations of naked-eye sunspots, meteor showers, and the total solar eclipse of A.D. 1054.
Familiarity enhances visual working memory for faces.
Jackson, Margaret C; Raymond, Jane E
2008-06-01
Although it is intuitive that familiarity with complex visual objects should aid their preservation in visual working memory (WM), empirical evidence for this is lacking. This study used a conventional change-detection procedure to assess visual WM for unfamiliar and famous faces in healthy adults. Across experiments, faces were upright or inverted and a low- or high-load concurrent verbal WM task was administered to suppress contribution from verbal WM. Even with a high verbal memory load, visual WM performance was significantly better and capacity estimated as significantly greater for famous versus unfamiliar faces. Face inversion abolished this effect. Thus, neither strategic, explicit support from verbal WM nor low-level feature processing easily accounts for the observed benefit of high familiarity for visual WM. These results demonstrate that storage of items in visual WM can be enhanced if robust visual representations of them already exist in long-term memory.
Motor learning and working memory in children born preterm: a systematic review.
Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G
2012-04-01
Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.
Drummond, Sean P A; Anderson, Dane E; Straus, Laura D; Vogel, Edward K; Perez, Veronica B
2012-01-01
Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).
Short-term memory coding in children with intellectual disabilities.
Henry, Lucy
2008-05-01
To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and word length effects). Neither the intellectual disabilities nor MA groups showed evidence for memory coding strategies. However, children in these groups with MAs above 6 years showed significant visual similarity and word length effects, broadly consistent with an intermediate stage of dual visual and verbal coding. These results suggest that developmental progressions in memory coding strategies are independent of intellectual disabilities status and consistent with MA.
Iconicity in English and Spanish and Its Relation to Lexical Category and Age of Acquisition
Lupyan, Gary
2015-01-01
Signed languages exhibit iconicity (resemblance between form and meaning) across their vocabulary, and many non-Indo-European spoken languages feature sizable classes of iconic words known as ideophones. In comparison, Indo-European languages like English and Spanish are believed to be arbitrary outside of a small number of onomatopoeic words. In three experiments with English and two with Spanish, we asked native speakers to rate the iconicity of ~600 words from the English and Spanish MacArthur-Bates Communicative Developmental Inventories. We found that iconicity in the words of both languages varied in a theoretically meaningful way with lexical category. In both languages, adjectives were rated as more iconic than nouns and function words, and corresponding to typological differences between English and Spanish in verb semantics, English verbs were rated as relatively iconic compared to Spanish verbs. We also found that both languages exhibited a negative relationship between iconicity ratings and age of acquisition. Words learned earlier tended to be more iconic, suggesting that iconicity in early vocabulary may aid word learning. Altogether these findings show that iconicity is a graded quality that pervades vocabularies of even the most “arbitrary” spoken languages. The findings provide compelling evidence that iconicity is an important property of all languages, signed and spoken, including Indo-European languages. PMID:26340349
Looking sharp: Becoming a search template boosts precision and stability in visual working memory.
Rajsic, Jason; Ouslis, Natasha E; Wilson, Daryl E; Pratt, Jay
2017-08-01
Visual working memory (VWM) plays a central role in visual cognition, and current work suggests that there is a special state in VWM for items that are the goal of visual searches. However, whether the quality of memory for target templates differs from memory for other items in VWM is currently unknown. In this study, we measured the precision and stability of memory for search templates and accessory items to determine whether search templates receive representational priority in VWM. Memory for search templates exhibited increased precision and probability of recall, whereas accessory items were remembered less often. Additionally, while memory for Templates showed benefits when instances of the Template appeared in search, this benefit was not consistently observed for Accessory items when they appeared in search. Our results show that becoming a search template can substantially affect the quality of a representation in VWM.
Cognitive Control Network Contributions to Memory-Guided Visual Attention
Rosen, Maya L.; Stern, Chantal E.; Michalka, Samantha W.; Devaney, Kathryn J.; Somers, David C.
2016-01-01
Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network (CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. PMID:25750253
Accurate metacognition for visual sensory memory representations.
Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F
2014-04-01
The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.
Seemüller, Anna; Fiehler, Katja; Rösler, Frank
2011-01-01
The present study investigated whether visual and kinesthetic stimuli are stored as multisensory or modality-specific representations in unimodal and crossmodal working memory tasks. To this end, angle-shaped movement trajectories were presented to 16 subjects in delayed matching-to-sample tasks either visually or kinesthetically during encoding and recognition. During the retention interval, a secondary visual or kinesthetic interference task was inserted either immediately or with a delay after encoding. The modality of the interference task interacted significantly with the encoding modality. After visual encoding, memory was more impaired by a visual than by a kinesthetic secondary task, while after kinesthetic encoding the pattern was reversed. The time when the secondary task had to be performed interacted with the encoding modality as well. For visual encoding, memory was more impaired, when the secondary task had to be performed at the beginning of the retention interval. In contrast, memory after kinesthetic encoding was more affected, when the secondary task was introduced later in the retention interval. The findings suggest that working memory traces are maintained in a modality-specific format characterized by distinct consolidation processes that take longer after kinesthetic than after visual encoding. Copyright © 2010 Elsevier B.V. All rights reserved.
Sex differences in visual-spatial working memory: A meta-analysis.
Voyer, Daniel; Voyer, Susan D; Saint-Aubin, Jean
2017-04-01
Visual-spatial working memory measures are widely used in clinical and experimental settings. Furthermore, it has been argued that the male advantage in spatial abilities can be explained by a sex difference in visual-spatial working memory. Therefore, sex differences in visual-spatial working memory have important implication for research, theory, and practice, but they have yet to be quantified. The present meta-analysis quantified the magnitude of sex differences in visual-spatial working memory and examined variables that might moderate them. The analysis used a set of 180 effect sizes from healthy males and females drawn from 98 samples ranging in mean age from 3 to 86 years. Multilevel meta-analysis was used on the overall data set to account for non-independent effect sizes. The data also were analyzed in separate task subgroups by means of multilevel and mixed-effects models. Results showed a small but significant male advantage (mean d = 0.155, 95 % confidence interval = 0.087-0.223). All the tasks produced a male advantage, except for memory for location, where a female advantage emerged. Age of the participants was a significant moderator, indicating that sex differences in visual-spatial working memory appeared first in the 13-17 years age group. Removing memory for location tasks from the sample affected the pattern of significant moderators. The present results indicate a male advantage in visual-spatial working memory, although age and specific task modulate the magnitude and direction of the effects. Implications for clinical applications, cognitive model building, and experimental research are discussed.
Dynamic interactions between visual working memory and saccade target selection
Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew
2014-01-01
Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628
Development of Flexible Visual Recognition Memory in Human Infants
ERIC Educational Resources Information Center
Robinson, Astri J.; Pascalis, Olivier
2004-01-01
Research using the visual paired comparison task has shown that visual recognition memory across changing contexts is dependent on the integrity of the hippocampal formation in human adults and in monkeys. The acquisition of contextual flexibility may contribute to the change in memory performance that occurs late in the first year of life. To…
Verbal Mediation and Memory for Novel Figural Designs: A Dual Interference Study
ERIC Educational Resources Information Center
Silverberg, N.; Buchanan, L.
2005-01-01
To the extent that all types of visual stimuli can be verbalized to some degree, verbal mediation is intrinsic in so-called ''visual'' memory processing. This impurity complicates the interpretation of visual memory performance, particularly in certain neurologically impaired populations (e.g., aphasia). The purpose of this study was to…
Effects of age, gender, and stimulus presentation period on visual short-term memory.
Kunimi, Mitsunobu
2016-01-01
This study focused on age-related changes in visual short-term memory using visual stimuli that did not allow verbal encoding. Experiment 1 examined the effects of age and the length of the stimulus presentation period on visual short-term memory function. Experiment 2 examined the effects of age, gender, and the length of the stimulus presentation period on visual short-term memory function. The worst memory performance and the largest performance difference between the age groups were observed in the shortest stimulus presentation period conditions. The performance difference between the age groups became smaller as the stimulus presentation period became longer; however, it did not completely disappear. Although gender did not have a significant effect on d' regardless of the presentation period in the young group, a significant gender-based difference was observed for stimulus presentation periods of 500 ms and 1,000 ms in the older group. This study indicates that the decline in visual short-term memory observed in the older group is due to the interaction of several factors.
Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory
Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.
2013-01-01
Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773
The influence of visual ability on learning and memory performance in 13 strains of mice.
Brown, Richard E; Wong, Aimée A
2007-03-01
We calculated visual ability in 13 strains of mice (129SI/Sv1mJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, SJL/J, SM/J, and SPRET/EiJ) on visual detection, pattern discrimination, and visual acuity and tested these and other mice of the same strains in a behavioral test battery that evaluated visuo-spatial learning and memory, conditioned odor preference, and motor learning. Strain differences in visual acuity accounted for a significant proportion of the variance between strains in measures of learning and memory in the Morris water maze. Strain differences in motor learning performance were not influenced by visual ability. Conditioned odor preference was enhanced in mice with visual defects. These results indicate that visual ability must be accounted for when testing for strain differences in learning and memory in mice because differences in performance in many tasks may be due to visual deficits rather than differences in higher order cognitive functions. These results have significant implications for the search for the neural and genetic basis of learning and memory in mice.
Sensorimotor Interference When Reasoning About Described Environments
NASA Astrophysics Data System (ADS)
Avraamides, Marios N.; Kyranidou, Melina-Nicole
The influence of sensorimotor interference was examined in two experiments that compared pointing with iconic arrows and verbal responding in a task that entailed locating target-objects from imagined perspectives. Participants studied text narratives describing objects at locations around them in a remote environment and then responded to targets from memory. Results revealed only minor differences between the two response modes suggesting that bodily cues do not exert severe detrimental interference on spatial reasoning from imagined perspective when non-immediate described environments are used. The implications of the findings are discussed.
The case of the missing visual details: Occlusion and long-term visual memory.
Williams, Carrick C; Burkle, Kyle A
2017-10-01
To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing the visible details in the former and the object's overall form in the latter. On a token discrimination test, surprisingly, memory for solid or stripe occluded objects at either encoding (Experiment 1) or test (Experiment 2) was the same. In contrast, when occluded objects matched at encoding and test (Experiment 3) or when the occlusion shifted, revealing the entire object piecemeal (Experiment 4), memory was better for solid compared with stripe occluded objects, indicating that objects are represented differently in long-term visual memory. Critically, we also found that when the task emphasized remembering exactly what was shown, memory performance in the more detailed solid occlusion condition exceeded that in the stripe condition (Experiment 5). However, when the task emphasized the whole object form, memory was better in the stripe condition (Experiment 6) than in the solid condition. We argue that long-term visual memory can represent objects flexibly, and task demands can interact with visual information, allowing the viewer to cope with changing real-world visual environments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Memory and linguistic/executive functions of children with borderline intellectual functioning.
Água Dias, Andrea B; Albuquerque, Cristina P; Simões, Mário R
2017-11-08
Children with Borderline Intellectual Functioning (BIF) have received a minimal amount of research attention and have been studied in conjunction with Intellectual and Developmental Disabilities. The present study intends to broaden the knowledge of BIF, by analyzing domains such as verbal memory and visual memory, as well as tasks that rely simultaneously on memory, executive functions, and language. A cross-sectional, comparison study was carried out between a group of 40 children with BIF (mean age = 10.03; 24 male and 16 female), and a control group of 40 normal children of the same age, gender, and socioeconomic level as the BIF group. The WISC-III Full Scale IQs of the BIF group ranged from 71 to 84. The following instruments were used: Word List, Narrative Memory, Rey Complex Figure, Face Memory, Rapid Naming (both RAN and RAS tests), and Verbal Fluency. The results showed deficits in children with BIF in verbal short-term memory, rapid naming, phonemic verbal fluency, and visual short-term memory, specifically in a visual recognition task, when compared with the control group. Long-term verbal memory was impaired only in older children with BIF and long-term visual memory showed no deficit. Verbal short-term memory stands out as a limitation and visual long-term memory as a strength. Correlations between the WISC-III and neuropsychological tests scores were predominantly low. The study expands the neuropsychological characterization of children with BIF and the implications of the deficits and strengths are stressed.
Williams, Melonie; Hong, Sang W; Kang, Min-Suk; Carlisle, Nancy B; Woodman, Geoffrey F
2013-04-01
Recent research using change-detection tasks has shown that a directed-forgetting cue, indicating that a subset of the information stored in memory can be forgotten, significantly benefits the other information stored in visual working memory. How do these directed-forgetting cues aid the memory representations that are retained? We addressed this question in the present study by using a recall paradigm to measure the nature of the retained memory representations. Our results demonstrated that a directed-forgetting cue leads to higher-fidelity representations of the remaining items and a lower probability of dropping these representations from memory. Next, we showed that this is made possible by the to-be-forgotten item being expelled from visual working memory following the cue, allowing maintenance mechanisms to be focused on only the items that remain in visual working memory. Thus, the present findings show that cues to forget benefit the remaining information in visual working memory by fundamentally improving their quality relative to conditions in which just as many items are encoded but no cue is provided.
Remembering faces and scenes: The mixed-category advantage in visual working memory.
Jiang, Yuhong V; Remington, Roger W; Asaad, Anthony; Lee, Hyejin J; Mikkalson, Taylor C
2016-09-01
We examined the mixed-category memory advantage for faces and scenes to determine how domain-specific cortical resources constrain visual working memory. Consistent with previous findings, visual working memory for a display of 2 faces and 2 scenes was better than that for a display of 4 faces or 4 scenes. This pattern was unaffected by manipulations of encoding duration. However, the mixed-category advantage was carried solely by faces: Memory for scenes was not better when scenes were encoded with faces rather than with other scenes. The asymmetry between faces and scenes was found when items were presented simultaneously or sequentially, centrally, or peripherally, and when scenes were drawn from a narrow category. A further experiment showed a mixed-category advantage in memory for faces and bodies, but not in memory for scenes and objects. The results suggest that unique category-specific interactions contribute significantly to the mixed-category advantage in visual working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Special Operations Aerial Mobility Vehicle Training Syllabus
2013-12-01
18 Figure 11. Icon Aircraft A5 Amphibious Light-Sport Aircraft .........................................19 Figure 12... Icon Aircraft A5 Wing Fold .............................................................................19 Figure 13. Icon Aircraft A5 Off Airport...intuitive. Figure 11. Icon Aircraft A5 Amphibious Light-Sport Aircraft34 Figure 12. Icon Aircraft A5 Wing Fold35
A neural measure of precision in visual working memory.
Ester, Edward F; Anderson, David E; Serences, John T; Awh, Edward
2013-05-01
Recent studies suggest that the temporary storage of visual detail in working memory is mediated by sensory recruitment or sustained patterns of stimulus-specific activation within feature-selective regions of visual cortex. According to a strong version of this hypothesis, the relative "quality" of these patterns should determine the clarity of an individual's memory. Here, we provide a direct test of this claim. We used fMRI and a forward encoding model to characterize population-level orientation-selective responses in visual cortex while human participants held an oriented grating in memory. This analysis, which enables a precise quantitative description of multivoxel, population-level activity measured during working memory storage, revealed graded response profiles whose amplitudes were greatest for the remembered orientation and fell monotonically as the angular distance from this orientation increased. Moreover, interparticipant differences in the dispersion-but not the amplitude-of these response profiles were strongly correlated with performance on a concurrent memory recall task. These findings provide important new evidence linking the precision of sustained population-level responses in visual cortex and memory acuity.
Cammisuli, Davide Maria; Sportiello, Marco Timpano
2016-06-01
Memory system turns out to be one of the cognitive domains most severely impaired in schizophrenia. Within the theoretical framework of cognitive psychopathology, we compared the performance of schizophrenia patients on the Wechsler Memory Scale-IV with that in matched patients with Obsessive-compulsive disorder and that in healthy control subjects to establish the specific nature of memory deficits in schizophrenia. 30 schizophrenia patients, 30 obsessive-compulsive disorder patients and 40 healthy controls completed the Wechsler Memory Scale-IV. Schizophrenia symptom severity was assessed by the Positive and Negative Syndrome Scale (PANSS). Performances on memory battery including Indexes and subtests scores were compared by a One-Way ANOVA (Scheffé post-hoc test). Spearman Rank correlations were performed between scores on PANSS subscales and symptoms and WMS-IV Indexes and subtests, respectively. Schizophrenia patients showed a memory profile characterized by mild difficulties in auditory memory and visual working memory and poor functioning of visual, immediate and delayed memory. As expected, schizophrenia patients scored lower than healthy controls on all WMS-IV measures. With regard to the WMS-IV Indexes, schizophrenia patients performed worse on Auditory Memory, Visual Memory, Immediate and Delayed Memory than Obsessive-compulsive disorder patients but not on Visual Working Memory. Such a pattern was made even clearer for specific tasks such as immediate and delayed recall and spatial recall and memory for visual details, as revealed by the lowest scores on Logical Memory (immediate and delayed conditions) and Designs (immediate condition) subtests, respectively. Significant negative correlations between Logical Memory I and II were found with PANSS Excitement symptom as well as between DE I and PANSS Tension symptom. Significant positive correlations between LM II and PANSS Blunted affect and Poor rapport symptoms as well as DE I and PANSS Blunted affect and Mannerism and Posturing symptoms, were found too. Memory damage observed in schizophrenia patients was more severe and wider than that of patients with obsessive-compulsive disorder, except for visual working memory. Memory dysfunction, mainly related to episodic memory damage and reduced efficiency of central executive, is intimately connected to the specific psychopathological processes characterizing schizophrenia. Implications for therapeutics and cognitive remediation techniques are discussed.
Khalil, Amr Farid; Iwasaki, Masaki; Nishio, Yoshiyuki; Jin, Kazutaka; Nakasato, Nobukazu; Tominaga, Teiji
2016-11-15
Post-operative memory changes after temporal lobe surgery have been established mainly by group analysis of cognitive outcome. This study investigated individual patient-based memory outcome in surgically-treated patients with mesial temporal lobe epilepsy (TLE). This study included 84 consecutive patients with intractable TLE caused by unilateral hippocampal sclerosis (HS) who underwent epilepsy surgery (47 females, 41 left [Lt] TLE). Memory functions were evaluated with the Wechsler Memory Scale-Revised before and at 1 year after surgery. Pre-operative memory function was classified into three patterns: verbal dominant memory impairment (Verb-D), visual dominant impairment (Vis-D), and no material-specific impairment. Post-operative changes in verbal and visual memory indices were classified into meaningful improvement, worsening, or no significant changes. Pre-operative patterns and post-operative changes in verbal and visual memory function were compared between the Lt and right (Rt) TLE groups. Pre-operatively, Verb-D was the most common type of impairment in both the Lt and Rt TLE groups (65.9 and 48.8%), and verbal memory indices were lower than visual memory indices, especially in the Lt compared with Rt TLE group. Vis-D was observed only in 11.6% of Rt and 7.3% of Lt TLE patients. Post-operatively, meaningful improvement of memory indices was observed in 23.3-36.6% of the patients, and the memory improvement was equivalent between Lt and Rt TLE groups and between verbal and visual materials. In conclusion, Verb-D is most commonly observed in patients with both the Lt and Rt TLE associated with HS. Hippocampectomy can improve memory indices in such patients regardless of the side of surgery and the function impaired.
Martin, R C; Sawrie, S M; Roth, D L; Gilliam, F G; Faught, E; Morawetz, R B; Kuzniecky, R
1998-10-01
To characterize patterns of base rate change on measures of verbal and visual memory after anterior temporal lobectomy (ATL) using a newly developed regression-based outcome methodology that accounts for effects of practice and regression towards the mean, and to comment on the predictive utility of baseline memory measures on postoperative memory outcome. Memory change was operationalized using regression-based change norms in a group of left (n = 53) and right (n = 48) ATL patients. All patients were administered tests of episodic verbal (prose recall, list learning) and visual (figure reproduction) memory, and semantic memory before and after ATL. ATL patients displayed a wide range of memory outcome across verbal and visual memory domains. Significant performance declines were noted for 25-50% of left ATL patients on verbal semantic and episodic memory tasks, while one-third of right ATL patients displayed significant declines in immediate and delayed episodic prose recall. Significant performance improvement was noted in an additional one-third of right ATL patients on delayed prose recall. Base rate change was similar between the two ATL groups across immediate and delayed visual memory. Approximately one-fourth of all patients displayed clinically meaningful losses on the visual memory task following surgery. Robust relationships between preoperative memory measures and nonstandardized change scores were attenuated or reversed using standardized memory outcome techniques. Our results demonstrated substantial group variability in memory outcome for ATL patients. These results extend previous research by incorporating known effects of practice and regression to the mean when addressing meaningful neuropsychological change following epilepsy surgery. Our findings also suggest that future neuropsychological outcome studies should take steps towards controlling for regression-to-the-mean before drawing predictive conclusions.
Working memory resources are shared across sensory modalities.
Salmela, V R; Moisala, M; Alho, K
2014-10-01
A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.
Falconer, D W; Cleland, J; Fielding, S; Reid, I C
2010-06-01
The cognitive impact of electroconvulsive therapy (ECT) is rarely measured systematically in everyday clinical practice even though patient and clinician acceptance is limited by its adverse affect on memory. If patients are tested it is often with simple paper and pencil tests of visual or verbal memory. There are no reported studies of computerized neuropsychological testing to assess the cognitive impact of ECT on visuospatial memory. Twenty-four patients with severe depression were treated with a course of bilateral ECT and assessed with a battery of visual memory tests within the Cambridge Neuropsychological Test Automated Battery (CANTAB). These included spatial and pattern recognition memory, pattern-location associative learning and a delayed matching to sample test. Testing was carried out before ECT, during ECT, within the week after ECT and 1 month after ECT. Patients showed significant impairments in visual and visuospatial memory both during and within the week after ECT. Most impairments resolved 1 month following ECT; however, significant impairment in spatial recognition memory remained. This is one of only a few studies that have detected anterograde memory deficits more than 2 weeks after treatment. Patients receiving ECT displayed a range of visual and visuospatial deficits over the course of their treatment. These deficits were most prominent for tasks dependent on the use of the right medial temporal lobe; frontal lobe function may also be implicated. The CANTAB appears to be a useful instrument for measuring the adverse cognitive effects of ECT on aspects of visual and visuospatial memory.
Attention is required for maintenance of feature binding in visual working memory.
Zokaei, Nahid; Heider, Maike; Husain, Masud
2014-01-01
Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.
Representational Account of Memory: Insights from Aging and Synesthesia.
Pfeifer, Gaby; Ward, Jamie; Chan, Dennis; Sigala, Natasha
2016-12-01
The representational account of memory envisages perception and memory to be on a continuum rather than in discretely divided brain systems [Bussey, T. J., & Saksida, L. M. Memory, perception, and the ventral visual-perirhinal-hippocampal stream: Thinking outside of the boxes. Hippocampus, 17, 898-908, 2007]. We tested this account using a novel between-group design with young grapheme-color synesthetes, older adults, and young controls. We investigated how the disparate sensory-perceptual abilities between these groups translated into associative memory performance for visual stimuli that do not induce synesthesia. ROI analyses of the entire ventral visual stream showed that associative retrieval (a pair-associate retrieved in the absence of a visual stimulus) yielded enhanced activity in young and older adults' visual regions relative to synesthetes, whereas associative recognition (deciding whether a visual stimulus was the correct pair-associate) was characterized by enhanced activity in synesthetes' visual regions relative to older adults. Whole-brain analyses at associative retrieval revealed an effect of age in early visual cortex, with older adults showing enhanced activity relative to synesthetes and young adults. At associative recognition, the group effect was reversed: Synesthetes showed significantly enhanced activity relative to young and older adults in early visual regions. The inverted group effects observed between retrieval and recognition indicate that reduced sensitivity in visual cortex (as in aging) comes with increased activity during top-down retrieval and decreased activity during bottom-up recognition, whereas enhanced sensitivity (as in synesthesia) shows the opposite pattern. Our results provide novel evidence for the direct contribution of perceptual mechanisms to visual associative memory based on the examples of synesthesia and aging.
Visual working memory capacity and the medial temporal lobe.
Jeneson, Annette; Wixted, John T; Hopkins, Ramona O; Squire, Larry R
2012-03-07
Patients with medial temporal lobe (MTL) damage are sometimes impaired at remembering visual information across delays as short as a few seconds. Such impairments could reflect either impaired visual working memory capacity or impaired long-term memory (because attention has been diverted or because working memory capacity has been exceeded). Using a standard change-detection task, we asked whether visual working memory capacity is intact or impaired after MTL damage. Five patients with hippocampal lesions and one patient with large MTL lesions saw an array of 1, 2, 3, 4, or 6 colored squares, followed after 3, 4, or 8 s by a second array where one of the colored squares was cued. The task was to decide whether the cued square had the same color as the corresponding square in the first array or a different color. At the 1 s delay typically used to assess working memory capacity, patients performed as well as controls at all array sizes. At the longer delays, patients performed as well as controls at small array sizes, thought to be within the capacity limit, and worse than controls at large array sizes, thought to exceed the capacity limit. The findings suggest that visual working memory capacity in humans is intact after damage to the MTL structures and that damage to these structures impairs performance only when visual working memory is insufficient to support performance.
The Influence of Similarity on Visual Working Memory Representations
Lin, Po-Han; Luck, Steven J.
2007-01-01
In verbal memory, similarity between items in memory often leads to interference and impaired memory performance. The present study sought to determine whether analogous interference effects would be observed in visual working memory by varying the similarity of the to-be-remembered objects in a color change-detection task. Instead of leading to interference and impaired performance, increased similarity among the items being held in memory led to improved performance. Moreover, when two similar colors were presented along with one dissimilar color, memory performance was better for the similar colors than for the dissimilar color. Similarity produced better performance even when the objects were presented sequentially and even when memory for the first item in the sequence was tested. These findings show that similarity does not lead to interference between representations in visual working memory. Instead, similarity may lead to improved task performance, possibly due to increased stability or precision of the memory representations during maintenance. PMID:19430536
Effects of load on the guidance of visual attention from working memory.
Zhang, Bao; Zhang, John X; Huang, Sai; Kong, Lingyue; Wang, Suiping
2011-12-08
An active recent line of research on working memory and attention has shown that the visual attention can be top-down guided by working memory contents. The present study examined whether the guidance effect is modulated by memory load, i.e., the amount of information maintained in working memory. In a set of three experiments, participants were asked to perform a visual search task while maintaining several objects in working memory. The memory-driven attentional guidance effect was observed in all experiments when there were spare working memory resources. When memory load was increased from one item to two items, there was no sign that the guidance effect was attenuated. When load was further increased to four items, the guidance effect disappeared completely, indicating a clear impact of memory load on attentional guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Scene and Position Specificity in Visual Memory for Objects
ERIC Educational Resources Information Center
Hollingworth, Andrew
2006-01-01
This study investigated whether and how visual representations of individual objects are bound in memory to scene context. Participants viewed a series of naturalistic scenes, and memory for the visual form of a target object in each scene was examined in a 2-alternative forced-choice test, with the distractor object either a different object…
Route Descriptions by Visually Impaired and Sighted Children from Memory and from Maps.
ERIC Educational Resources Information Center
Edwards, Rachel; Ungar, Simon; Blades, Mark
1998-01-01
This study evaluated descriptions, either from memory or by using a map (print or tactile), of 12 visually impaired and 12 sighted elementary grade children of two routes around their schools. Descriptions from maps were generally poorer than those from memory. Qualitative differences were also found between descriptions of visually impaired and…
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
ERIC Educational Resources Information Center
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2010-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars…
Orienting Attention in Visual Working Memory Reduces Interference from Memory Probes
ERIC Educational Resources Information Center
Makovski, Tal; Sussman, Rachel; Jiang, Yuhong V.
2008-01-01
Given a changing visual environment, and the limited capacity of visual working memory (VWM), the contents of VWM must be in constant flux. Using a change detection task, the authors show that VWM is subject to obligatory updating in the face of new information. Change detection performance is enhanced when the item that may change is…
ERIC Educational Resources Information Center
Chang, Ting-Wen; Kinshuk; Chen, Nian-Shing; Yu, Pao-Ta
2012-01-01
This study investigates the effects of successive and simultaneous information presentation methods on learner's visual search ability and working memory load for different information densities. Since the processing of information in the brain depends on the capacity of visual short-term memory (VSTM), the limited information processing capacity…
No evidence for visual context-dependency of olfactory learning in Drosophila
NASA Astrophysics Data System (ADS)
Yarali, Ayse; Mayerle, Moritz; Nawroth, Christian; Gerber, Bertram
2008-08-01
How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.
Liebel, Spencer W; Nelson, Jason M
2017-12-01
We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p < .001, d = -0.85. Within the attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dynamic visual noise affects visual short-term memory for surface color, but not spatial location.
Dent, Kevin
2010-01-01
In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.
Technology and informal education: what is taught, what is learned.
Greenfield, Patricia M
2009-01-02
The informal learning environments of television, video games, and the Internet are producing learners with a new profile of cognitive skills. This profile features widespread and sophisticated development of visual-spatial skills, such as iconic representation and spatial visualization. A pressing social problem is the prevalence of violent video games, leading to desensitization, aggressive behavior, and gender inequity in opportunities to develop visual-spatial skills. Formal education must adapt to these changes, taking advantage of new strengths in visual-spatial intelligence and compensating for new weaknesses in higher-order cognitive processes: abstract vocabulary, mindfulness, reflection, inductive problem solving, critical thinking, and imagination. These develop through the use of an older technology, reading, which, along with audio media such as radio, also stimulates imagination. Informal education therefore requires a balanced media diet using each technology's specific strengths in order to develop a complete profile of cognitive skills.
Conscious visual memory with minimal attention.
Pinto, Yair; Vandenbroucke, Annelinde R; Otten, Marte; Sligte, Ilja G; Seth, Anil K; Lamme, Victor A F
2017-02-01
Is conscious visual perception limited to the locations that a person attends? The remarkable phenomenon of change blindness, which shows that people miss nearly all unattended changes in a visual scene, suggests the answer is yes. However, change blindness is found after visual interference (a mask or a new scene), so that subjects have to rely on working memory (WM), which has limited capacity, to detect the change. Before such interference, however, a much larger capacity store, called fragile memory (FM), which is easily overwritten by newly presented visual information, is present. Whether these different stores depend equally on spatial attention is central to the debate on the role of attention in conscious vision. In 2 experiments, we found that minimizing spatial attention almost entirely erases visual WM, as expected. Critically, FM remains largely intact. Moreover, minimally attended FM responses yield accurate metacognition, suggesting that conscious memory persists with limited spatial attention. Together, our findings help resolve the fundamental issue of how attention affects perception: Both visual consciousness and memory can be supported by only minimal attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The impact of modality and working memory capacity on achievement in a multimedia environment
NASA Astrophysics Data System (ADS)
Stromfors, Charlotte M.
This study explored the impact of working memory capacity and student learning in a dual modality, multimedia environment titled Visualizing Topography. This computer-based instructional program focused on the basic skills in reading and interpreting topographic maps. Two versions of the program presented the same instructional content but varied the modality of verbal information: the audio-visual condition coordinated topographic maps and narration; the visual-visual condition provided the same topographic maps with readable text. An analysis of covariance procedure was conducted to evaluate the effects due to the two conditions in relation to working memory capacity, controlling for individual differences in spatial visualization and prior knowledge. The scores on the Figural Intersection Test were used to separate subjects into three levels in terms of their measured working memory capacity: low, medium, and high. Subjects accessed Visualizing Topography by way of the Internet and proceeded independently through the program. The program architecture was linear in format. Subjects had a minimum amount of flexibility within each of five segments, but not between segments. One hundred and fifty-one subjects were randomly assigned to either the audio-visual or the visual-visual condition. The average time spent in the program was thirty-one minutes. The results of the ANCOVA revealed a small to moderate modality effect favoring an audio-visual condition. The results also showed that subjects with low and medium working capacity benefited more from the audio-visual condition than the visual-visual condition, while subjects with a high working memory capacity did not benefit from either condition. Although splitting the data reduced group sizes, ANCOVA results by gender suggested that the audio-visual condition favored females with low working memory capacities. The results have implications for designers of educational software, the teachers who select software, and the students themselves. Splitting information into two, non-redundant sources, one audio and one visual, may effectively extend working memory capacity. This is especially significant for the student population encountering difficult science concepts that require the formation and manipulation of mental representations. It is recommended that multimedia environments be designed or selected with attention to modality conditions that facilitate student learning.
Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition
Gagnepain, Pierre; Henson, Richard N.; Anderson, Michael C.
2014-01-01
Suppressing retrieval of unwanted memories reduces their later conscious recall. It is widely believed, however, that suppressed memories can continue to exert strong unconscious effects that may compromise mental health. Here we show that excluding memories from awareness not only modulates medial temporal lobe regions involved in explicit retention, but also neocortical areas underlying unconscious expressions of memory. Using repetition priming in visual perception as a model task, we found that excluding memories of visual objects from consciousness reduced their later indirect influence on perception, literally making the content of suppressed memories harder for participants to see. Critically, effective connectivity and pattern similarity analysis revealed that suppression mechanisms mediated by the right middle frontal gyrus reduced activity in neocortical areas involved in perceiving objects and targeted the neural populations most activated by reminders. The degree of inhibitory modulation of the visual cortex while people were suppressing visual memories predicted, in a later perception test, the disruption in the neural markers of sensory memory. These findings suggest a neurobiological model of how motivated forgetting affects the unconscious expression of memory that may be generalized to other types of memory content. More generally, they suggest that the century-old assumption that suppression leaves unconscious memories intact should be reconsidered. PMID:24639546
Grubert, Anna; Eimer, Martin
2015-11-11
During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.
Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne
2011-09-01
Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.
Distractor devaluation requires visual working memory.
Goolsby, Brian A; Shapiro, Kimron L; Raymond, Jane E
2009-02-01
Visual stimuli seen previously as distractors in a visual search task are subsequently evaluated more negatively than those seen as targets. An attentional inhibition account for this distractor-devaluation effect posits that associative links between attentional inhibition and to-be-ignored stimuli are established during search, stored, and then later reinstantiated, implying that distractor devaluation may require visual working memory (WM) resources. To assess this, we measured distractor devaluation with and without a concurrent visual WM load. Participants viewed a memory array, performed a simple search task, evaluated one of the search items (or a novel item), and then viewed a memory test array. Although distractor devaluation was observed with low (and no) WM load, it was absent when WM load was increased. This result supports the notions that active association of current attentional states with stimuli requires WM and that memory for these associations plays a role in affective response.
Brown, Franklin C; Roth, Robert M; Katz, Lynda J
2015-08-30
Attention Deficit Hyperactivity Disorder (ADHD) has often been conceptualized as arising executive dysfunctions (e.g., inattention, defective inhibition). However, recent studies suggested that cognitive inefficiency may underlie many ADHD symptoms, according to reaction time and processing speed abnormalities. This study explored whether a non-timed measure of cognitive inefficiency would also be abnormal. A sample of 23 ADHD subjects was compared to 23 controls on a test that included both egocentric and allocentric visual memory subtests. A factor analysis was used to determine which cognitive variables contributed to allocentric visual memory. The ADHD sample performed significantly lower on the allocentric but not egocentric conditions. Allocentric visual memory was not associated with timed, working memory, visual perception, or mental rotation variables. This paper concluded by discussing how these results supported a cognitive inefficiency explanation for some ADHD symptoms, and discussed future research directions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Alescio-Lautier, B.; Michel, B. F.; Herrera, C.; Elahmadi, A.; Chambon, C.; Touzet, C.; Paban, V.
2007-01-01
It has been proposed that visual recognition memory and certain attentional mechanisms are impaired early in Alzheimer disease (AD). Little is known about visuospatial recognition memory in AD. The crucial role of the hippocampus on spatial memory and its damage in AD suggest that visuospatial recognition memory may also be impaired early. The aim…
ERIC Educational Resources Information Center
Pyo, Geunyeong; Ala, Tom; Kyrouac, Gregory A.; Verhulst, Steven J.
2010-01-01
Objective assessment of memory functioning is an important part of evaluation for Dementia of Alzheimer Type (DAT). The revised Picture Recognition Memory Test (r-PRMT) is a test for visual recognition memory to assess memory functioning of persons with intellectual disabilities (ID), specifically targeting moderate to severe ID. A pilot study was…
ERIC Educational Resources Information Center
Lee, Gregory P.; And Others
1992-01-01
To gather normative observations on a visual memory test developed by A. Rey (1964), it was administered to 100 temporal-lobe epilepsy patients with memory deficits and 56 outpatients with neurological disorders. Results suggest a cutoff score of 7 on the memory test may alert the clinician to possible factitious memory complaints. (SLD)
Pauls, Franz; Petermann, Franz; Lepach, Anja Christina
2013-01-01
Between-group comparisons are permissible and meaningfully interpretable only if diagnostic instruments are proved to measure the same latent dimensions across different groups. Addressing this issue, the present study was carried out to provide a rigorous test of measurement invariance. Confirmatory factor analyses were used to determine which model solution could best explain memory performance as measured by the Wechsler Memory Scale-Fourth Edition (WMS-IV) in a clinical depression sample and in healthy controls. Multigroup confirmatory factor analysis was conducted to evaluate the evidence for measurement invariance. A three-factor model solution including the dimensions of auditory memory, visual memory, and visual working memory was identified to best fit the data in both samples, and measurement invariance was partially satisfied. The results supported clinical utility of the WMS-IV--that is, auditory and visual memory performances of patients with depressive disorders are interpretable on the basis of the WMS-IV standardization data. However, possible differences in visual working memory functions between healthy and depressed individuals could restrict comparisons of the WMS-IV working memory index.
ERIC Educational Resources Information Center
Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei
2011-01-01
Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…
Visual Fast Mapping in School-Aged Children with Specific Language Impairment
ERIC Educational Resources Information Center
Alt, Mary
2013-01-01
Purpose: To determine whether children with specific language impairment (SLI) demonstrate impaired visual fast mapping skills compared with unimpaired peers and to test components of visual working memory that may contribute to a visual working memory deficit. Methods: Fifty children (25 SLI) played 2 computer-based visual fast mapping games…
Effects of Iconicity and Semantic Relatedness on Lexical Access in American Sign Language
ERIC Educational Resources Information Center
Bosworth, Rain G.; Emmorey, Karen
2010-01-01
Iconicity is a property that pervades the lexicon of many sign languages, including American Sign Language (ASL). Iconic signs exhibit a motivated, nonarbitrary mapping between the form of the sign and its meaning. We investigated whether iconicity enhances semantic priming effects for ASL and whether iconic signs are recognized more quickly than…
Executive and Perceptual Distraction in Visual Working Memory
2017-01-01
The contents of visual working memory are likely to reflect the influence of both executive control resources and information present in the environment. We investigated whether executive attention is critical in the ability to exclude unwanted stimuli by introducing concurrent potentially distracting irrelevant items to a visual working memory paradigm, and manipulating executive load using simple or more demanding secondary verbal tasks. Across 7 experiments varying in presentation format, timing, stimulus set, and distractor number, we observed clear disruptive effects of executive load and visual distraction, but relatively minimal evidence supporting an interactive relationship between these factors. These findings are in line with recent evidence using delay-based interference, and suggest that different forms of attentional selection operate relatively independently in visual working memory. PMID:28414499
Misinformation lingers in memory: Failure of three pro-vaccination strategies.
Pluviano, Sara; Watt, Caroline; Della Sala, Sergio
2017-01-01
People's inability to update their memories in light of corrective information may have important public health consequences, as in the case of vaccination choice. In the present study, we compare three potentially effective strategies in vaccine promotion: one contrasting myths vs. facts, one employing fact and icon boxes, and one showing images of non-vaccinated sick children. Beliefs in the autism/vaccines link and in vaccines side effects, along with intention to vaccinate a future child, were evaluated both immediately after the correction intervention and after a 7-day delay to reveal possible backfire effects. Results show that existing strategies to correct vaccine misinformation are ineffective and often backfire, resulting in the unintended opposite effect, reinforcing ill-founded beliefs about vaccination and reducing intentions to vaccinate. The implications for research on vaccines misinformation and recommendations for progress are discussed.
Auracher, Jan
2017-01-01
The concept of sound iconicity implies that phonemes are intrinsically associated with non-acoustic phenomena, such as emotional expression, object size or shape, or other perceptual features. In this respect, sound iconicity is related to other forms of cross-modal associations in which stimuli from different sensory modalities are associated with each other due to the implicitly perceived correspondence of their primal features. One prominent example is the association between vowels, categorized according to their place of articulation, and size, with back vowels being associated with bigness and front vowels with smallness. However, to date the relative influence of perceptual and conceptual cognitive processing on this association is not clear. To bridge this gap, three experiments were conducted in which associations between nonsense words and pictures of animals or emotional body postures were tested. In these experiments participants had to infer the relation between visual stimuli and the notion of size from the content of the pictures, while directly perceivable features did not support-or even contradicted-the predicted association. Results show that implicit associations between articulatory-acoustic characteristics of phonemes and pictures are mainly influenced by semantic features, i.e., the content of a picture, whereas the influence of perceivable features, i.e., size or shape, is overridden. This suggests that abstract semantic concepts can function as an interface between different sensory modalities, facilitating cross-modal associations.
Willis, Suzi; Goldbart, Juliet; Stansfield, Jois
2014-07-01
To compare verbal short-term memory and visual working memory abilities of six children with congenital hearing-impairment identified as having significant language learning difficulties with normative data from typically hearing children using standardized memory assessments. Six children with hearing loss aged 8-15 years were assessed on measures of verbal short-term memory (Non-word and word recall) and visual working memory annually over a two year period. All children had cognitive abilities within normal limits and used spoken language as the primary mode of communication. The language assessment scores at the beginning of the study revealed that all six participants exhibited delays of two years or more on standardized assessments of receptive and expressive vocabulary and spoken language. The children with hearing-impairment scores were significantly higher on the non-word recall task than the "real" word recall task. They also exhibited significantly higher scores on visual working memory than those of the age-matched sample from the standardized memory assessment. Each of the six participants in this study displayed the same pattern of strengths and weaknesses in verbal short-term memory and visual working memory despite their very different chronological ages. The children's poor ability to recall single syllable words in relation to non-words is a clinical indicator of their difficulties in verbal short-term memory. However, the children with hearing-impairment do not display generalized processing difficulties and indeed demonstrate strengths in visual working memory. The poor ability to recall words, in combination with difficulties with early word learning may be indicators of children with hearing-impairment who will struggle to develop spoken language equal to that of their normally hearing peers. This early identification has the potential to allow for target specific intervention that may remediate their difficulties. Copyright © 2014. Published by Elsevier Ireland Ltd.
McDougall, Siné; Isherwood, Sarah
2009-05-01
Communication using icons is now commonplace. It is therefore important to understand the processes involved in icon comprehension and the stimulus cues that individuals utilize to facilitate identification. In this study, we examined predictors of icon identification as participants gained experience with icons over a series of learning trials. A dynamic pattern of findings emerged in which the primary predictors of identification changed as learning progressed. In early learning trials, semantic distance (the closeness of the relationship between icon and function) was the best predictor of performance, accounting for up to 55% of the variance observed, whereas familiarity with the function was more important in later trials. Other stimulus characteristics, such as our familiarity with the graphic in the icon and its concreteness, were also found to be important for icon design. The theoretical implications of these findings are discussed, with particular emphasis on the parallels with picture naming. The icon identification norms from this study may be downloaded from brm.psychonomic-journals.org/content/supplemental.
The neural basis of visual dominance in the context of audio-visual object processing.
Schmid, Carmen; Büchel, Christian; Rose, Michael
2011-03-01
Visual dominance refers to the observation that in bimodal environments vision often has an advantage over other senses in human. Therefore, a better memory performance for visual compared to, e.g., auditory material is assumed. However, the reason for this preferential processing and the relation to the memory formation is largely unknown. In this fMRI experiment, we manipulated cross-modal competition and attention, two factors that both modulate bimodal stimulus processing and can affect memory formation. Pictures and sounds of objects were presented simultaneously in two levels of recognisability, thus manipulating the amount of cross-modal competition. Attention was manipulated via task instruction and directed either to the visual or the auditory modality. The factorial design allowed a direct comparison of the effects between both modalities. The resulting memory performance showed that visual dominance was limited to a distinct task setting. Visual was superior to auditory object memory only when allocating attention towards the competing modality. During encoding, cross-modal competition and attention towards the opponent domain reduced fMRI signals in both neural systems, but cross-modal competition was more pronounced in the auditory system and only in auditory cortex this competition was further modulated by attention. Furthermore, neural activity reduction in auditory cortex during encoding was closely related to the behavioural auditory memory impairment. These results indicate that visual dominance emerges from a less pronounced vulnerability of the visual system against competition from the auditory domain. Copyright © 2010 Elsevier Inc. All rights reserved.
The aftermath of memory retrieval for recycling visual working memory representations.
Park, Hyung-Bum; Zhang, Weiwei; Hyun, Joo-Seok
2017-07-01
We examined the aftermath of accessing and retrieving a subset of information stored in visual working memory (VWM)-namely, whether detection of a mismatch between memory and perception can impair the original memory of an item while triggering recognition-induced forgetting for the remaining, untested items. For this purpose, we devised a consecutive-change detection task wherein two successive testing probes were displayed after a single set of memory items. Across two experiments utilizing different memory-testing methods (whole vs. single probe), we observed a reliable pattern of poor performance in change detection for the second test when the first test had exhibited a color change. The impairment after a color change was evident even when the same memory item was repeatedly probed; this suggests that an attention-driven, salient visual change made it difficult to reinstate the previously remembered item. The second change detection, for memory items untested during the first change detection, was also found to be inaccurate, indicating that recognition-induced forgetting had occurred for the unprobed items in VWM. In a third experiment, we conducted a task that involved change detection plus continuous recall, wherein a memory recall task was presented after the change detection task. The analyses of the distributions of recall errors with a probabilistic mixture model revealed that the memory impairments from both visual changes and recognition-induced forgetting are explained better by the stochastic loss of memory items than by their degraded resolution. These results indicate that attention-driven visual change and recognition-induced forgetting jointly influence the "recycling" of VWM representations.
Travels With Panetta - October 2012
Afghanistan NATO Partners to Discuss Afghan Successes, Challenges NATO Ministers Discuss 'Smart Defense Careers Web Policy Stay Connected Icon: Facebook Facebook Icon: Twitter Twitter Icon: YouTube YouTube Icon
Accelerating electron tomography reconstruction algorithm ICON with GPU.
Chen, Yu; Wang, Zihao; Zhang, Jingrong; Li, Lun; Wan, Xiaohua; Sun, Fei; Zhang, Fa
2017-01-01
Electron tomography (ET) plays an important role in studying in situ cell ultrastructure in three-dimensional space. Due to limited tilt angles, ET reconstruction always suffers from the "missing wedge" problem. With a validation procedure, iterative compressed-sensing optimized NUFFT reconstruction (ICON) demonstrates its power in the restoration of validated missing information for low SNR biological ET dataset. However, the huge computational demand has become a major problem for the application of ICON. In this work, we analyzed the framework of ICON and classified the operations of major steps of ICON reconstruction into three types. Accordingly, we designed parallel strategies and implemented them on graphics processing units (GPU) to generate a parallel program ICON-GPU. With high accuracy, ICON-GPU has a great acceleration compared to its CPU version, up to 83.7×, greatly relieving ICON's dependence on computing resource.
ERIC Educational Resources Information Center
Wyver, Shirley R.; Markham, Roslyn
1998-01-01
This study compared the memory processes underpinning the performance of 19 children with visual impairments and 19 sighted children on the Digit Span subtest of the Wechsler Intelligence Scales. No support was found for claims of the superior performance of children with visual impairments on the subtest nor of a greater awareness of memory…
The Anatomy of Non-conscious Recognition Memory.
Rosenthal, Clive R; Soto, David
2016-11-01
Cortical regions as early as primary visual cortex have been implicated in recognition memory. Here, we outline the challenges that this presents for neurobiological accounts of recognition memory. We conclude that understanding the role of early visual cortex (EVC) in this process will require the use of protocols that mask stimuli from visual awareness. Copyright © 2016 Elsevier Ltd. All rights reserved.
MacKay, Donald G; James, Lori E
2009-10-01
Two experiments compared the visual cognition performance of amnesic H.M. and memory-normal controls matched for age, background, intelligence, and education. In Experiment 1 H.M. exhibited deficits relative to the controls in detecting "erroneous objects" in complex visual scenes--for example, a bird flying inside a fishbowl. In Experiment 2 H.M. exhibited deficits relative to the controls in standard Hidden-Figure tasks when detecting unfamiliar targets but not when detecting familiar targets--for example, circles, squares, and right-angle triangles. H.M.'s visual cognition deficits were not due to his well-known problems in explicit learning and recall, inability to comprehend or remember the instructions, general slowness, motoric difficulties, low motivation, low IQ relative to the controls, or working-memory limitations. Parallels between H.M.'s selective deficits in visual cognition, language, and memory are discussed. These parallels contradict the standard "systems theory" account of H.M.'s condition but comport with the hypothesis that H.M. has difficulty representing unfamiliar but not familiar information in visual cognition, language, and memory. Implications of our results are discussed for binding theory and the ongoing debate over what counts as "memory" versus "not-memory."
Experimentally-induced dissociation impairs visual memory.
Brewin, Chris R; Mersaditabari, Niloufar
2013-12-01
Dissociation is a phenomenon common in a number of psychological disorders and has been frequently suggested to impair memory for traumatic events. In this study we explored the effects of dissociation on visual memory. A dissociative state was induced experimentally using a mirror-gazing task and its short-term effects on memory performance were investigated. Sixty healthy individuals took part in the experiment. Induced dissociation impaired visual memory performance relative to a control condition; however, the degree of dissociation was not associated with lower memory scores in the experimental group. The results have theoretical and practical implications for individuals who experience frequent dissociative states such as patients with posttraumatic stress disorder (PTSD). Copyright © 2013 Elsevier Inc. All rights reserved.
Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan
2016-01-15
Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.
Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.
Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N
2017-08-01
Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.
Proactive interference from items previously stored in visual working memory.
Makovski, Tal; Jiang, Yuhong V
2008-01-01
This study investigates the fate of information that was previously stored in visual working memory but that is no longer needed. Previous research has found inconsistent results, with some showing effective release of irrelevant information and others showing proactive interference. Using change detection tasks of colors or shapes, we show that participants tend to falsely classify a changed item as "no change" if it matches one of the memory items on the preceding trial. The interference is spatially specific: Memory for the preceding trial interferes more if it matches the feature value and the location of a test item than if it does not. Interference results from retaining information in visual working memory, since it is absent when items on the preceding trials are passively viewed, or are attended but not memorized. We conclude that people cannot fully eliminate unwanted visual information from current working memory tasks.
Effects of verbal and nonverbal interference on spatial and object visual working memory.
Postle, Bradley R; Desposito, Mark; Corkin, Suzanne
2005-03-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.
Effects of verbal and nonverbal interference on spatial and object visual working memory
POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE
2005-01-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575
Feature-Based Visual Short-Term Memory Is Widely Distributed and Hierarchically Organized.
Dotson, Nicholas M; Hoffman, Steven J; Goodell, Baldwin; Gray, Charles M
2018-06-15
Feature-based visual short-term memory is known to engage both sensory and association cortices. However, the extent of the participating circuit and the neural mechanisms underlying memory maintenance is still a matter of vigorous debate. To address these questions, we recorded neuronal activity from 42 cortical areas in monkeys performing a feature-based visual short-term memory task and an interleaved fixation task. We find that task-dependent differences in firing rates are widely distributed throughout the cortex, while stimulus-specific changes in firing rates are more restricted and hierarchically organized. We also show that microsaccades during the memory delay encode the stimuli held in memory and that units modulated by microsaccades are more likely to exhibit stimulus specificity, suggesting that eye movements contribute to visual short-term memory processes. These results support a framework in which most cortical areas, within a modality, contribute to mnemonic representations at timescales that increase along the cortical hierarchy. Copyright © 2018 Elsevier Inc. All rights reserved.
Stroboscopic visual training improves information encoding in short-term memory.
Appelbaum, L Gregory; Cain, Matthew S; Schroeder, Julia E; Darling, Elise F; Mitroff, Stephen R
2012-11-01
The visual system has developed to transform an undifferentiated and continuous flow of information into discrete and manageable representations, and this ability rests primarily on the uninterrupted nature of the input. Here we explore the impact of altering how visual information is accumulated over time by assessing how intermittent vision influences memory retention. Previous work has shown that intermittent, or stroboscopic, visual training (i.e., practicing while only experiencing snapshots of vision) can enhance visual-motor control and visual cognition, yet many questions remain unanswered about the mechanisms that are altered. In the present study, we used a partial-report memory paradigm to assess the possible changes in visual memory following training under stroboscopic conditions. In Experiment 1, the memory task was completed before and immediately after a training phase, wherein participants engaged in physical activities (e.g., playing catch) while wearing either specialized stroboscopic eyewear or transparent control eyewear. In Experiment 2, an additional group of participants underwent the same stroboscopic protocol but were delayed 24 h between training and assessment, so as to measure retention. In comparison to the control group, both stroboscopic groups (immediate and delayed retest) revealed enhanced retention of information in short-term memory, leading to better recall at longer stimulus-to-cue delays (640-2,560 ms). These results demonstrate that training under stroboscopic conditions has the capacity to enhance some aspects of visual memory, that these faculties generalize beyond the specific tasks that were trained, and that trained improvements can be maintained for at least a day.
Shifting Attention within Memory Representations Involves Early Visual Areas
Munneke, Jaap; Belopolsky, Artem V.; Theeuwes, Jan
2012-01-01
Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings. PMID:22558165
Ye, Byoung Seok; Chin, Juhee; Kim, Seong Yoon; Lee, Jung-Sun; Kim, Eun-Joo; Lee, Yunhwan; Hong, Chang Hyung; Choi, Seong Hye; Park, Kyung Won; Ku, Bon D; Moon, So Young; Kim, SangYun; Han, Seol-Hee; Lee, Jae-Hong; Cheong, Hae-Kwan; Park, Sun Ah; Jeong, Jee Hyang; Na, Duk L; Seo, Sang Won
2015-01-01
We evaluate the longitudinal outcomes of amnestic mild cognitive impairment (aMCI) according to the modality of memory impairment involved. We recruited 788 aMCI patients and followed them up. aMCI patients were categorized into three groups according to the modality of memory impairment: Visual-aMCI, only visual memory impaired; Verbal-aMCI, only verbal memory impaired; and Both-aMCI, both visual and verbal memory impaired. Each aMCI group was further categorized according to the presence or absence of recognition failure. Risk of progression to dementia was compared with pooled logistic regression analyses while controlling for age, gender, education, and interval from baseline. Of the sample, 219 (27.8%) aMCI patients progressed to dementia. Compared to the Visual-aMCI group, Verbal-aMCI (OR = 1.98, 95% CI = 1.19-3.28, p = 0.009) and Both-aMCI (OR = 3.05, 95% CI = 1.97-4.71, p < 0.001) groups exhibited higher risks of progression to dementia. Memory recognition failure was associated with increased risk of progression to dementia only in the Visual-aMCI group, but not in the Verbal-aMCI and Both-aMCI groups. The Visual-aMCI without recognition failure group were subcategorized into aMCI with depression, small vessel disease, or accelerated aging, and these subgroups showed a variety of progression rates. Our findings underlined the importance of heterogeneous longitudinal outcomes of aMCI, especially Visual-aMCI, for designing and interpreting future treatment trials in aMCI.
Visual memory and sustained attention impairment in youths with autism spectrum disorders.
Chien, Y-L; Gau, S S-F; Shang, C-Y; Chiu, Y-N; Tsai, W-C; Wu, Y-Y
2015-08-01
An uneven neurocognitive profile is a hallmark of autism spectrum disorder (ASD). Studies focusing on the visual memory performance in ASD have shown controversial results. We investigated visual memory and sustained attention in youths with ASD and typically developing (TD) youths. We recruited 143 pairs of youths with ASD (males 93.7%; mean age 13.1, s.d. 3.5 years) and age- and sex-matched TD youths. The ASD group consisted of 67 youths with autistic disorder (autism) and 76 with Asperger's disorder (AS) based on the DSM-IV criteria. They were assessed using the Cambridge Neuropsychological Test Automated Battery involving the visual memory [spatial recognition memory (SRM), delayed matching to sample (DMS), paired associates learning (PAL)] and sustained attention (rapid visual information processing; RVP). Youths with ASD performed significantly worse than TD youths on most of the tasks; the significance disappeared in the superior intelligence quotient (IQ) subgroup. The response latency on the tasks did not differ between the ASD and TD groups. Age had significant main effects on SRM, DMS, RVP and part of PAL tasks and had an interaction with diagnosis in DMS and RVP performance. There was no significant difference between autism and AS on visual tasks. Our findings implied that youths with ASD had a wide range of visual memory and sustained attention impairment that was moderated by age and IQ, which supports temporal and frontal lobe dysfunction in ASD. The lack of difference between autism and AS implies that visual memory and sustained attention cannot distinguish these two ASD subtypes, which supports DSM-5 ASD criteria.
Ecstasy (MDMA) and memory function: a meta-analytic update.
Laws, Keith R; Kokkalis, Joy
2007-08-01
A meta-analysis was conducted to examine the impact of recreational ecstasy use on short-term memory (STM), long-term memory (LTM), verbal and visual memory. We located 26 studies containing memory data for ecstasy and non-ecstasy users from which effect sizes could be derived. The analyses provided measures of STM and LTM in 610 and 439 ecstasy users and revealed moderate-to-large effect sizes (Cohen's d) of d = -0.63 and d = -0.87, respectively. The difference between STM versus LTM was non-significant. The effect size for verbal memory was large (d = -1.00) and significantly larger than the small effect size for visual memory (d = -0.27). Indeed, our analyses indicate that visual memory may be affected more by concurrent cannabis use. Finally, we found that the total lifetime number of ecstasy tablets consumed did not significantly predict memory performance. Copyright 2007 John Wiley & Sons, Ltd.
Enhanced dimension-specific visual working memory in grapheme–color synesthesia☆
Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi
2013-01-01
There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme–color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. PMID:23892185
Lerch, Rachel A; Sims, Chris R
2016-06-01
Limitations in visual working memory (VWM) have been extensively studied in psychophysical tasks, but not well understood in terms of how these memory limits translate to performance in more natural domains. For example, in reaching to grasp an object based on a spatial memory representation, overshooting the intended target may be more costly than undershooting, such as when reaching for a cup of hot coffee. The current body of literature lacks a detailed account of how the costs or consequences of memory error influence what we encode in visual memory and how we act on the basis of remembered information. Here, we study how externally imposed monetary costs influence behavior in a motor decision task that involves reach planning based on recalled information from VWM. We approach this from a decision theoretic perspective, viewing decisions of where to aim in relation to the utility of their outcomes given the uncertainty of memory representations. Our results indicate that subjects accounted for the uncertainty in their visual memory, showing a significant difference in their reach planning when monetary costs were imposed for memory errors. However, our findings indicate that subjects memory representations per se were not biased by the imposed costs, but rather subjects adopted a near-optimal post-mnemonic decision strategy in their motor planning.
Type of iconicity influences children's comprehension of gesture.
Hodges, Leslie E; Özçalışkan, Şeyda; Williamson, Rebecca
2018-02-01
Children produce iconic gestures conveying action information earlier than the ones conveying attribute information (Özçalışkan, Gentner, & Goldin-Meadow, 2014). In this study, we ask whether children's comprehension of iconic gestures follows a similar pattern, also with earlier comprehension of iconic gestures conveying action. Children, ages 2-4years, were presented with 12 minimally-informative speech+iconic gesture combinations, conveying either an action (e.g., open palm flapping as if bird flying) or an attribute (e.g., fingers spread as if bird's wings) associated with a referent. They were asked to choose the correct match for each gesture in a forced-choice task. Our results showed that children could identify the referent of an iconic gesture conveying characteristic action earlier (age 2) than the referent of an iconic gesture conveying characteristic attribute (age 3). Overall, our study identifies ages 2-3 as important in the development of comprehension of iconic co-speech gestures, and indicates that the comprehension of iconic gestures with action meanings is easier than, and may even precede, the comprehension of iconic gestures with attribute meanings. Copyright © 2017 Elsevier Inc. All rights reserved.
An integrative view of storage of low- and high-level visual dimensions in visual short-term memory.
Magen, Hagit
2017-03-01
Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.
Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Van Luit, Johannes E H
2015-04-01
The relative importance of visual-spatial and verbal working memory for mathematics performance and learning seems to vary with age, the novelty of the material, and the specific math domain that is investigated. In this study, the relations between verbal and visual-spatial working memory and performance in four math domains (i.e., addition, subtraction, multiplication, and division) at different ages during primary school are investigated. Children (N = 4337) from grades 2 through 6 participated. Visual-spatial and verbal working memory were assessed using online computerized tasks. Math performance was assessed at the start, middle, and end of the school year using a speeded arithmetic test. Multilevel Multigroup Latent Growth Modeling was used to model individual differences in level and growth in math performance, and examine the predictive value of working memory per grade, while controlling for effects of classroom membership. The results showed that as grade level progressed, the predictive value of visual-spatial working memory for individual differences in level of mathematics performance waned, while the predictive value of verbal working memory increased. Working memory did not predict individual differences between children in their rate of performance growth throughout the school year. These findings are discussed in relation to three, not mutually exclusive, explanations for such age-related findings.
Defense.gov Special Report: Travels With Hagel
History Frequently Asked Questions Available jobs with DOD Top Issues Targeted Operations Against ISIL Connected Icon: Facebook Facebook Icon: Twitter Twitter Icon: YouTube YouTube Icon: Google Plus Google
Shang, Chi-Yung; Gau, Susan Shur-Fen
2012-10-01
Atomoxetine is efficacious in reducing symptoms of attention- deficit/hyperactivity disorder (ADHD), but its effect on visual memory and attention needs more investigation. This study aimed to assess the effect of atomoxetine on visual memory, attention, and school function in boys with ADHD in Taiwan. This was an open-label 12 week atomoxetine treatment trial among 30 drug-naíve boys with ADHD, aged 8-16 years. Before administration of atomoxetine, the participants were assessed using psychiatric interviews, the Wechsler Intelligence Scale for Children, 3rd edition (WISC-III), the school function of the Chinese version of the Social Adjustment Inventory for Children and Adolescents (SAICA), the Conners' Continuous Performance Test (CPT), and the tasks of the Cambridge Neuropsychological Test Automated Battery (CANTAB) involving visual memory and attention: Pattern Recognition Memory, Spatial Recognition Memory, and Reaction Time, which were reassessed at weeks 4 and 12. Our results showed there was significant improvement in pattern recognition memory and spatial recognition memory as measured by the CANTAB tasks, sustained attention and response inhibition as measured by the CPT, and reaction time as measured by the CANTAB after treatment with atomoxetine for 4 weeks or 12 weeks. In addition, atomoxetine significantly enhanced school functioning in children with ADHD. Our findings suggested that atomoxetine was associated with significant improvement in visual memory, attention, and school functioning in boys with ADHD.
Infant Visual Recognition Memory: Independent Contributions of Speed and Attention.
ERIC Educational Resources Information Center
Rose, Susan A.; Feldman, Judith F.; Jankowski, Jeffery J.
2003-01-01
Examined contributions of cognitive processing speed, short-term memory capacity, and attention to infant visual recognition memory. Found that infants who showed better attention and faster processing had better recognition memory. Contributions of attention and processing speed were independent of one another and similar at all ages studied--5,…
The Interaction of Color Realism and Pictorial Recall Memory.
ERIC Educational Resources Information Center
Berry, Louis H.
This study investigated the interaction of variations in color realism on pictorial recall memory in order to better understand the effects of variations in color realism, and to draw comparisons between visual recall memory and visual recognition memory in terms of color information processing. Stimulus materials used were three sets of slides,…
Feature Binding in Visual Working Memory Evaluated by Type Identification Paradigm
ERIC Educational Resources Information Center
Saiki, Jun; Miyatsuji, Hirofumi
2007-01-01
Memory for feature binding comprises a key ingredient in coherent object representations. Previous studies have been equivocal about human capacity for objects in the visual working memory. To evaluate memory for feature binding, a type identification paradigm was devised and used with a multiple-object permanence tracking task. Using objects…
ERIC Educational Resources Information Center
Oberauer, Klaus; Awh, Edward; Sutterer, David W.
2017-01-01
We report 4 experiments examining whether associations in visual working memory are subject to proactive interference from long-term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of 3…
Eye Movements and Visual Memory for Scenes
2005-01-01
Scene memory research has demonstrated that the memory representation of a semantically inconsistent object in a scene is more detailed and/or complete... memory during scene viewing, then changes to semantically inconsistent objects (which should be represented more com- pletely) should be detected more... semantic description. Due to the surprise nature of the visual memory test, any learning that occurred during the search portion of the experiment was
Störmer, Viola S; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen
2012-05-01
Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic pathways. Here we review the literature on cholinergic and dopaminergic modulations of visual-spatial attention and visual working memory processes to gain insights on aging-related changes in these processes. Some extant findings have suggested that the cholinergic system plays a role in the orienting of attention to enable the detection and discrimination of visual information, whereas the dopaminergic system has mainly been associated with working memory processes such as updating and stabilizing representations. However, since visual-spatial attention and working memory processes are not fully dissociable, there is also evidence of interacting cholinergic and dopaminergic modulations of both processes. We further review gene-cognition association studies that have shown that individual differences in visual-spatial attention and visual working memory are associated with acetylcholine- and dopamine-relevant genes. The efficiency of these 2 transmitter systems declines substantially during healthy aging. These declines, in part, contribute to age-related deficits in attention and working memory functions. We report novel data showing an effect of dopamine COMT gene on spatial updating processes in older but not in younger adults, indicating potential magnification of genetic effects in old age.
Brébion, Gildas; Stephan-Otto, Christian; Huerta-Ramos, Elena; Ochoa, Susana; Usall, Judith; Abellán-Vega, Helena; Roca, Mercedes; Haro, Josep Maria
2015-01-01
Previous research has revealed the contribution of decreased processing speed and reduced working memory span in verbal and visual memory impairment in patients with schizophrenia. The role of affective symptoms in verbal memory has also emerged in a few studies. The authors designed a picture recognition task to investigate the impact of these factors on visual encoding. Two types of pictures (black and white vs. colored) were presented under 2 different conditions of context encoding (either displayed at a specific location or in association with another visual stimulus). It was assumed that the process of encoding associated pictures was more effortful than that of encoding pictures that were presented alone. Working memory span and processing speed were assessed. In the patient group, working memory span was significantly associated with the recognition of the associated pictures but not significantly with that of the other pictures. Controlling for processing speed eliminated the patients' deficit in the recognition of the colored pictures and greatly reduced their deficit in the recognition of the black-and-white pictures. The recognition of the black-and-white pictures was inversely related to anxiety in men and to depression in women. Working memory span constrains the effortful visual encoding processes in patients, whereas processing speed decrement accounts for most of their visual encoding deficit. Affective symptoms also have an impact on visual encoding, albeit differently in men and women. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Visual areas become less engaged in associative recall following memory stabilization.
Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Oostenveld, Robert; Fernández, Guillén; Jensen, Ole
2008-04-15
Numerous studies have focused on changes in the activity in the hippocampus and higher association areas with consolidation and memory stabilization. Even though perceptual areas are engaged in memory recall, little is known about how memory stabilization is reflected in those areas. Using magnetoencephalography (MEG) we investigated changes in visual areas with memory stabilization. Subjects were trained on associating a face to one of eight locations. The first set of associations ('stabilized') was learned in three sessions distributed over a week. The second set ('labile') was learned in one session just prior to the MEG measurement. In the recall session only the face was presented and subjects had to indicate the correct location using a joystick. The MEG data revealed robust gamma activity during recall, which started in early visual cortex and propagated to higher visual and parietal brain areas. The occipital gamma power was higher for the labile than the stabilized condition (time=0.65-0.9 s). Also the event-related field strength was higher during recall of labile than stabilized associations (time=0.59-1.5 s). We propose that recall of the spatial associations prior to memory stabilization involves a top-down process relying on reconstructing learned representations in visual areas. This process is reflected in gamma band activity consistent with the notion that neuronal synchronization in the gamma band is required for visual representations. More direct synaptic connections are formed with memory stabilization, thus decreasing the dependence on visual areas.
Attention is required for maintenance of feature binding in visual working memory
Heider, Maike; Husain, Masud
2013-01-01
Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343
Splitting Attention across the Two Visual Fields in Visual Short-Term Memory
ERIC Educational Resources Information Center
Delvenne, Jean-Francois; Holt, Jessica L.
2012-01-01
Humans have the ability to attentionally select the most relevant visual information from their extrapersonal world and to retain it in a temporary buffer, known as visual short-term memory (VSTM). Research suggests that at least two non-contiguous items can be selected simultaneously when they are distributed across the two visual hemifields. In…
The role of object categories in hybrid visual and memory search
Cunningham, Corbin A.; Wolfe, Jeremy M.
2014-01-01
In hybrid search, observers (Os) search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that responses times (RT) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g. this apple in this pose). Typical real world tasks involve more broadly defined sets of stimuli (e.g. any “apple” or, perhaps, “fruit”). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, Os searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches. PMID:24661054
Visual working memory is more tolerant than visual long-term memory.
Schurgin, Mark W; Flombaum, Jonathan I
2018-05-07
Human visual memory is tolerant, meaning that it supports object recognition despite variability across encounters at the image level. Tolerant object recognition remains one capacity in which artificial intelligence trails humans. Typically, tolerance is described as a property of human visual long-term memory (VLTM). In contrast, visual working memory (VWM) is not usually ascribed a role in tolerant recognition, with tests of that system usually demanding discriminatory power-identifying changes, not sameness. There are good reasons to expect that VLTM is more tolerant; functionally, recognition over the long-term must accommodate the fact that objects will not be viewed under identical conditions; and practically, the passive and massive nature of VLTM may impose relatively permissive criteria for thinking that two inputs are the same. But empirically, tolerance has never been compared across working and long-term visual memory. We therefore developed a novel paradigm for equating encoding and test across different memory types. In each experiment trial, participants saw two objects, memory for one tested immediately (VWM) and later for the other (VLTM). VWM performance was better than VLTM and remained robust despite the introduction of image and object variability. In contrast, VLTM performance suffered linearly as more variability was introduced into test stimuli. Additional experiments excluded interference effects as causes for the observed differences. These results suggest the possibility of a previously unidentified role for VWM in the acquisition of tolerant representations for object recognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Ho, Yim-Chi; Cheung, Mei-Chun; Chan, Agnes S
2003-07-01
The hypothesis that music training can improve verbal memory was tested in children. The results showed that children with music training demonstrated better verbal but not visual memory than did their counterparts without such training. When these children were followed up after a year, those who had begun or continued music training demonstrated significant verbal memory improvement. Students who discontinued the training did not show any improvement. Contrary to the differences in verbal memory between the groups, their changes in visual memory were not significantly different. Consistent with previous findings for adults (A. S. Chan, Y. Ho, & M. Cheung, 1998), the results suggest that music training systematically affects memory processing in accordance with possible neuroanatomical modifications in the left temporal lobe.
McDougall, Siné; Reppa, Irene; Kulik, Jozef; Taylor, Alisdair
2016-07-01
Although icons appear on almost all interfaces, there is a paucity of research examining the determinants of icon appeal. The experiments reported here examined the icon characteristics determining appeal and the extent to which processing fluency - the subjective ease with which individuals process information - was used as a heuristic to guide appeal evaluations. Participants searched for, and identified, icons in displays. The initial appeal of icons was held constant while ease of processing was manipulated by systematically varying the complexity and familiarity of the icons presented and the type of task participants were asked to carry out. Processing fluency reliably influenced users' appeal ratings and appeared to be based on users' unconscious awareness of the ease with which they carried out experimental tasks. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Engel-Yeger, Batya; Durr, Doris H; Josman, Naomi
2011-01-01
This study aimed (1) to compare visual memory and meta-memory abilities, including the use of strategies as context, of children with cochlear implant (CI) and children with normal hearing; (2) to examine the concurrent and construct validity of 'The Contextual Memory Test for Children' (CMT-CH). Twenty children with CI and 20 children with normal hearing, aged 8-10 years, participated in this study. Memory abilities were measured by two subtests of the Children's Memory Scale (CMS) and by CMT-CH, which also measures meta-memory abilities. Children with CI scored significantly lower in both tests of memory and meta-memory and showed less efficient use of context to memorise. Significant positive correlations were found between CMS and CMT-CH memory tests in both groups. Visual memory and meta-memory abilities may be impaired in children with CI. Evaluation and intervention for children with CI should refer to their memory and meta-memory abilities in order to measure the outcomes of CIs, and enhance language development academic achievements. Although more studies on CMT-CH should be performed, the CMT-CH may be used for the evaluation of visual memory of children with CI.
Brain oscillatory substrates of visual short-term memory capacity.
Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C
2009-11-17
The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.
[Cortical potentials evoked to response to a signal to make a memory-guided saccade].
Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V
2010-01-01
The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.
van Schie, Hein T; Wijers, Albertus A; Mars, Rogier B; Benjamins, Jeroen S; Stowe, Laurie A
2005-05-01
Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that involved 5 s retention of simple 4-angled polygons (load 1), complex 10-angled polygons (load 2), and a no-load baseline condition. During the polygon retention interval subjects were presented with a lexical decision task to auditory presented concrete (imageable) and abstract (nonimageable) words, and pseudowords. ERP results are consistent with the use of object working memory for the visualisation of concrete words. Our data indicate a two-step processing model of visual semantics in which visual descriptive information of concrete words is first encoded in semantic memory (indicated by an anterior N400 and posterior occipital positivity), and is subsequently visualised via the network for object working memory (reflected by a left frontal positive slow wave and a bilateral occipital slow wave negativity). Results are discussed in the light of contemporary models of semantic memory.
Familiarity Enhances Visual Working Memory for Faces
ERIC Educational Resources Information Center
Jackson, Margaret C.; Raymond, Jane E.
2008-01-01
Although it is intuitive that familiarity with complex visual objects should aid their preservation in visual working memory (WM), empirical evidence for this is lacking. This study used a conventional change-detection procedure to assess visual WM for unfamiliar and famous faces in healthy adults. Across experiments, faces were upright or…
Effects of synthetic speech output in the learning of graphic symbols of varied iconicity.
Koul, Rajinder; Schlosser, Ralf
To examine the effects of additional auditory feedback from synthetic speech on the learning of high translucent symbols versus low translucent symbols. Two adults with little or no functional speech and severe intellectual disabilities served as participants. A single-subject ABACA/ACABA design was used to study the relative effects of two treatments: symbol training in the presence and absence of synthetic speech output. The results clearly indicated that the two treatments, rather than extraneous variables were responsible for gains in the symbol learning. Both participants learned either more low translucent symbols or reached their maximum learning of low translucent symbols in the speech output condition. The results of this preliminary study replicate and extend the iconicity hypothesis to a new set of learning conditions involving speech output, and suggest that feedback from speech output may assist adults with profound intellectual disabilities in coding particularly those symbols whose association with their referent cannot be coded via their visual resemblance with the referent.
Single-exposure visual memory judgments are reflected in inferotemporal cortex
Meyer, Travis
2018-01-01
Our visual memory percepts of whether we have encountered specific objects or scenes before are hypothesized to manifest as decrements in neural responses in inferotemporal cortex (IT) with stimulus repetition. To evaluate this proposal, we recorded IT neural responses as two monkeys performed a single-exposure visual memory task designed to measure the rates of forgetting with time. We found that a weighted linear read-out of IT was a better predictor of the monkeys’ forgetting rates and reaction time patterns than a strict instantiation of the repetition suppression hypothesis, expressed as a total spike count scheme. Behavioral predictions could be attributed to visual memory signals that were reflected as repetition suppression and were intermingled with visual selectivity, but only when combined across the most sensitive neurons. PMID:29517485
Attar, Nada; Schneps, Matthew H; Pomplun, Marc
2016-10-01
An observer's pupil dilates and constricts in response to variables such as ambient and focal luminance, cognitive effort, the emotional stimulus content, and working memory load. The pupil's memory load response is of particular interest, as it might be used for estimating observers' memory load while they are performing a complex task, without adding an interruptive and confounding memory test to the protocol. One important task in which working memory's involvement is still being debated is visual search, and indeed a previous experiment by Porter, Troscianko, and Gilchrist (Quarterly Journal of Experimental Psychology, 60, 211-229, 2007) analyzed observers' pupil sizes during search to study this issue. These authors found that pupil size increased over the course of the search, and they attributed this finding to accumulating working memory load. However, since the pupil response is slow and does not depend on memory load alone, this conclusion is rather speculative. In the present study, we estimated working memory load in visual search during the presentation of intermittent fixation screens, thought to induce a low, stable level of arousal and cognitive effort. Using standard visual search and control tasks, we showed that this paradigm reduces the influence of non-memory-related factors on pupil size. Furthermore, we found an early increase in working memory load to be associated with more efficient search, indicating a significant role of working memory in the search process.
Changes in the Capacity of Visual Working Memory in 5- to 10-Year-Olds
ERIC Educational Resources Information Center
Riggs, Kevin J.; McTaggart, James; Simpson, Andrew; Freeman, Richard P. J.
2006-01-01
Using the Luck and Vogel change detection paradigm, we sought to investigate the capacity of visual working memory in 5-, 7-, and 10-year-olds. We found that performance on the task improved significantly with age and also obtained evidence that the capacity of visual working memory approximately doubles between 5 and 10 years of age, where it…
When Do Visual and Verbal Memories Conflict?: The Importance of Working-Memory Load and Retrieval
ERIC Educational Resources Information Center
Morey, Candice C.; Cowan, Nelson
2005-01-01
Examinations of interference between verbal and visual materials in working memory have produced mixed results. If there is a central form of storage (e.g., the focus of attention; N. Cowan, 2001), then cross-domain interference should be obtained. The authors examined this question with a visual-array comparison task (S. J. Luck & E. K. Vogel,…
Defense.gov Special Report: Suicide Prevention and Awareness - 2013
Force Suicide Prevention Special DOD Suicide Prevention YouTube Channel . Main Menu Home Today in DOD : Twitter Twitter Icon: YouTube YouTube Icon: Google Plus Google + Icon: Instagram Instagram Icon: Flickr
What you say matters: exploring visual-verbal interactions in visual working memory.
Mate, Judit; Allen, Richard J; Baqués, Josep
2012-01-01
The aim of this study was to explore whether the content of a simple concurrent verbal load task determines the extent of its interference on memory for coloured shapes. The task consisted of remembering four visual items while repeating aloud a pair of words that varied in terms of imageability and relatedness to the task set. At test, a cue appeared that was either the colour or the shape of one of the previously seen objects, with participants required to select the object's other feature from a visual array. During encoding and retention, there were four verbal load conditions: (a) a related, shape-colour pair (from outside the experimental set, i.e., "pink square"); (b) a pair of unrelated but visually imageable, concrete, words (i.e., "big elephant"); (c) a pair of unrelated and abstract words (i.e., "critical event"); and (d) no verbal load. Results showed differential effects of these verbal load conditions. In particular, imageable words (concrete and related conditions) interfered to a greater degree than abstract words. Possible implications for how visual working memory interacts with verbal memory and long-term memory are discussed.
Brébion, Gildas; Bressan, Rodrigo A; Pilowsky, Lyn S; David, Anthony S
2011-05-01
Previous work has suggested that decrement in both processing speed and working memory span plays a role in the memory impairment observed in patients with schizophrenia. We undertook a study to examine simultaneously the effect of these two factors. A sample of 49 patients with schizophrenia and 43 healthy controls underwent a battery of verbal and visual memory tasks. Superficial and deep encoding memory measures were tallied. We conducted regression analyses on the various memory measures, using processing speed and working memory span as independent variables. In the patient group, processing speed was a significant predictor of superficial and deep memory measures in verbal and visual memory. Working memory span was an additional significant predictor of the deep memory measures only. Regression analyses involving all participants revealed that the effect of diagnosis on all the deep encoding memory measures was reduced to non-significance when processing speed was entered in the regression. Decreased processing speed is involved in verbal and visual memory deficit in patients, whether the task require superficial or deep encoding. Working memory is involved only insofar as the task requires a certain amount of effort.
Visual imagery of famous faces: effects of memory and attention revealed by fMRI.
Ishai, Alumit; Haxby, James V; Ungerleider, Leslie G
2002-12-01
Complex pictorial information can be represented and retrieved from memory as mental visual images. Functional brain imaging studies have shown that visual perception and visual imagery share common neural substrates. The type of memory (short- or long-term) that mediates the generation of mental images, however, has not been addressed previously. The purpose of this study was to investigate the neural correlates underlying imagery generated from short- and long-term memory (STM and LTM). We used famous faces to localize the visual response during perception and to compare the responses during visual imagery generated from STM (subjects memorized specific pictures of celebrities before the imagery task) and imagery from LTM (subjects imagined famous faces without seeing specific pictures during the experimental session). We found that visual perception of famous faces activated the inferior occipital gyri, lateral fusiform gyri, the superior temporal sulcus, and the amygdala. Small subsets of these face-selective regions were activated during imagery. Additionally, visual imagery of famous faces activated a network of regions composed of bilateral calcarine, hippocampus, precuneus, intraparietal sulcus (IPS), and the inferior frontal gyrus (IFG). In all these regions, imagery generated from STM evoked more activation than imagery from LTM. Regardless of memory type, focusing attention on features of the imagined faces (e.g., eyes, lips, or nose) resulted in increased activation in the right IPS and right IFG. Our results suggest differential effects of memory and attention during the generation and maintenance of mental images of faces.
Mungkhetklang, Chantanee; Bavin, Edith L.; Crewther, Sheila G.; Goharpey, Nahal; Parsons, Carl
2016-01-01
It is usually assumed that performance on non-verbal intelligence tests reflects visual cognitive processing and that aspects of working memory (WM) will be involved. However, the unique contribution of memory to non-verbal scores is not clear, nor is the unique contribution of vocabulary. Thus, we aimed to investigate these contributions. Non-verbal test scores for 17 individuals with intellectual disability (ID) and 39 children with typical development (TD) of similar mental age were compared to determine the unique contribution of visual and verbal short-term memory (STM) and WM and the additional variance contributed by vocabulary scores. No significant group differences were found in the non-verbal test scores or receptive vocabulary scores, but there was a significant difference in expressive vocabulary. Regression analyses indicate that for the TD group STM and WM (both visual and verbal) contributed similar variance to the non-verbal scores. For the ID group, visual STM and verbal WM contributed most of the variance to the non-verbal test scores. The addition of vocabulary scores to the model contributed greater variance for both groups. More unique variance was contributed by vocabulary than memory for the TD group, whereas for the ID group memory contributed more than vocabulary. Visual and auditory memory and vocabulary contributed significantly to solving visual non-verbal problems for both the TD group and the ID group. However, for each group, there were different weightings of these variables. Our findings indicate that for individuals with TD, vocabulary is the major factor in solving non-verbal problems, not memory, whereas for adolescents with ID, visual STM, and verbal WM are more influential than vocabulary, suggesting different pathways to achieve solutions to non-verbal problems. PMID:28082922
Kawashima, Tomoya; Matsumoto, Eriko
2016-03-23
Items in working memory guide visual attention toward a memory-matching object. Recent studies have shown that when searching for an object this attentional guidance can be modulated by knowing the probability that the target will match an item in working memory. Here, we recorded the P3 and contralateral delay activity to investigate how top-down knowledge controls the processing of working memory items. Participants performed memory task (recognition only) and memory-or-search task (recognition or visual search) in which they were asked to maintain two colored oriented bars in working memory. For visual search, we manipulated the probability that target had the same color as memorized items (0, 50, or 100%). Participants knew the probabilities before the task. Target detection in 100% match condition was faster than that in 50% match condition, indicating that participants used their knowledge of the probabilities. We found that the P3 amplitude in 100% condition was larger than in other conditions and that contralateral delay activity amplitude did not vary across conditions. These results suggest that more attention was allocated to the memory items when observers knew in advance that their color would likely match a target. This led to better search performance despite using qualitatively equal working memory representations.
ERIC Educational Resources Information Center
Bahrick, Lorraine E.; Hernandez-Reif, Maria; Pickens, Jeffrey N.
1997-01-01
Tested hypothesis from Bahrick and Pickens' infant attention model that retrieval cues increase memory accessibility and shift visual preferences toward greater novelty to resemble recent memories. Found that after retention intervals associated with remote or intermediate memory, previous familiarity preferences shifted to null or novelty…